
E M B E D D E D S Y S T E M S D E S I G N

APRIL 2012

VOLUME 25,
NUMBER 3

SHIELDING
SYSTEMS
FROM
ATTACK 12

Win with secure
and reliable

8

Data-at-rest
protection

19

Efficient tests for
magnetic cards and

readers
24

Probing pointers
32

The Official Publication of The Embedded Systems Conferences and Embedded.com

Get current,
 without the hassle.

Design News is a registered trademark of UBM plc © 2012

REGISTER AT

DesignNews.com/dkcec

With Digi-Key’s Continuing Education Center, catch up to 180 days of free,

interactive courses engineered by Design News, starting January 2012.

Build your engineering know how. Take one or all. It’s your choice.

Tracks include: Microcontrollers Basic, Microcontrollers Advanced, MEMS Sensor

Technology, Lighting, Embedded Internet and Cloud, Wirelesss, and Power.

@DigiKeyCEC

Digi-Key Continuing Education Center

FOLLOW US

For nearly 30 years the world’s leading defense companies have trusted
Green Hills Software’s secure and reliable high performance software for
mission-critical and safety-critical applications.

From the Joint Tactical Radio System, through naval anti-surface
missiles, to the F-35 Lightning II and Eurofighter Typhoon, Green
Hills Software has been delivering proven and secure
underpinning technology.

To find out how the world’s most secure and reliable operating
system and software can take the risk out of your defense project,
visit www.ghs.com/s4d

Copyright © 2012 Green Hills Software. Green Hills Software and the Green Hills logo are registered trademarks of Green Hills Software.
All other product names are trademarks of their respective holders. U.S. Navy photo by Mass Communication Specialist 2nd Class James R.
Evans/Released.

TRUSTED SOFTWARE FOR DEFENSE

SEcURE
 REliAblE

SAFE

mouser.com/ti

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and company names mentioned herein, may be trademarks of their respective owners.

The Newest Products for Your Newest Designs®

*bigger TM

*bigger TM

mouser.com
Semiconductors and electronic
components for design engineers.

Authorized Distributor

Scan here
to Find TI.

Over 80,000 Searchable Part Numbers. More than 100 TI Product Knowledge Centers.

Find TI here. Faster at mouser.com.

Your Complete Source for Everything TI.

E M B E D D E D S Y S T E M S D E S I G N

THE OFF IC IAL PUBLICATION OF THE EMBEDDED SYSTEMS CONFERENCES AND EMBEDDED.COM

VOLUME 25, NUMBER 3
APRIL 2012

COLUMNS
barr
code 8
Building reliable and secure
embedded systems
BY MICHAEL BARR

Take it from an expert witness: If you
don’t learn to create reliable and secure
products, your source code and design
documents might be the ones the
lawyers pore over.

break points 32
Probing pointers, take 2
BY JACK G. GANSSLE

Jack tests several probes to see how

different probes change the results.

DEPARTMENTS
#include 7
A tale of two design sites
BY COLIN HOLLAND

If not attending ESC/DESIGN
West, spend time at www.ubm
design.com and embedded.com.

parity bit 10
Probes and analyzers

analyst’s corner 11
Not in Kansas anymore:
Securing SCADA
BY ERIC MARKS

IN PERSON
DESIGN West/ESC Silicon Valley
March 16–29, 2012
http://esc.eetimes.com/siliconvalley/

DESIGN East/ESC Boston
September 17–20, 2012
http://esc.eetimes.com/boston/

ONLINE
www.embedded.com

EMBEDDED SYSTEMS DESIGN (ISSN 1558-2493) print; (ISSN 1558-2507 PDF-electronic) is published 10 times a year as follows: Jan/Feb, March, April, May, June,
July/August, Sept., Oct., Nov., Dec. by the EE Times Group, 303 Second Street, Ste 900, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries
to this address. SUBSCRIPTION RATE for the United States is $55 for 10 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with additional
postage of $6 per year. All other foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year for
airmail. POSTMASTER: Send all changes to EMBEDDED SYSTEMS DESIGN, EE Times/ESD, PO Box #3609, Northbrook, IL 60065-3257, embedsys@omeda.com. For cus-
tomer service, telephone toll-free (847) 559-7597. Please allow four to six weeks for change of address to take effect. Periodicals postage paid at San Francisco, CA and additional
mailing offices. EMBEDDED SYSTEMS DESIGN is a registered trademark owned by the parent company, UBM Electronics. All material published in EMBEDDED SYSTEMS
DESIGN is copyright © 2012 by UBM Electronics. All rights reserved. Reproduction of material appearing in EMBEDDED SYSTEMS DESIGN is forbidden without permission.

Cover Feature:
Security fundamentals
for embedded software
BY DAVID KALINSKY
Even if your device is not connected to
the Internet, you need to protect it from
malicious attacks. Here are some simple
protections you can institute to make
your system more impenetrable.

19 Enhance system security with better
data-at-rest encryption
BY DAVID KLEIDERMACHER, GREEN HILLS SOFTWARE
Embedded systems designers can protect sensitive data
on a device’s hard drive (data-at-rest) by using encryp-
tion techniques.

24 Make magnetic card readers more reliable
in noisy environments
BY IRFAN CHAUDHRY, MAXIM INTEGRATED PRODUCTS
Here’s a less time-consuming way to maintain the reliability of
magnetic card readers and cards in a variety of noisy electronic
environments.

12

INDUSTRIAL

MEDICAL

AEROSPACE

AVIATION

SYSTEM ON A CHIP

CONSUMER

Express Logic has completed 14 years
of successful business operation,
and our fl agship product, ThreadX,
has been used in over 1 billion
electronic devices and systems,
ranging from printers to smartphones, from single-chip
SoCs to multiprocessors. Time and time again, when
leading manufacturers put their company on the line,
when their engineering team chooses an RTOS for their
next critical product, they choose ThreadX.

Our ThreadX RTOS is rock-solid, thoroughly fi eld-proven,
and represents not only the safe choice, but the most
cost-effective choice when your company’s product

ThreadX, FileX, and TraceX are registered trademarks, and NetX, USBX, PEGX, StackX, and Certifi cation Pack are trademarks of Express Logic, Inc.
All other trademarks are the property of their respective owners.

Copyright © 2010, Express Logic, Inc.

Express Logic has completed 14 years

When Your Company’s Success, And Your Job, Are On The Line -
You Can Count On Express Logic’s ThreadX® RTOS

REALLY COUNTS
THREADX: WHEN IT

simply must succeed. Its royalty-free
licensing model helps keep your BOM low,
and its proven dependability helps keep
your support costs down as well. ThreadX
repeatedly tops the time-to-market results

reported by embedded developers like you. All the while,
Express Logic is there to assist you with enhancements,
training, and responsive telephone support.

Join leading organizations like HP, Apple, Marvell, Philips, NASA,
and many more who have chosen ThreadX for use in over 800
million of their products – because their products are too
important to rely on anything but the best. Rely on ThreadX,
when it really counts!

Contact Express Logic to fi nd out more about our ThreadX RTOS, FileX® fi le system, NetX™ Dual IPv4/IPv6 TCP/IP stack, USBX™
USB Host/Device/OTG stack, and our PEGX™ graphics toolkit for embedded GUI development. Also ask about our TraceX®
real-time event trace and analysis tool, and StackX™, our patent-pending stack size analysis tool that makes stack overfl ows a
thing of the past. And if you’re developing safety-critical products for aviation, industrial or medical applications, ask
about our new Certifi cation Pack™ for ThreadX.

For a free evaluation copy, visit www.rtos.com • 1-888-THREADX

ThreadX, FileX, and TraceX are registered trademarks, and NetX, USBX, PEGX, StackX, and Certifi cation Pack are trademarks of Express Logic, Inc.

, our patent-pending stack size analysis tool that makes stack overfl ows a

Edward L. Lamie

With ThreadX

Second Edition

Now with appendices for ARM, Coldfi re,

MIPS and PowerPC architectures

Newnes

INCLUDED
INCLUDED
INCLUDED
CD-ROM

REAL-TIME

EMBEDDED

MULTITHREADING

Express Logic has completed 14 years
of successful business operation,
and our fl agship product, ThreadX,
has been used in over 800 million
electronic devices and systems,

Express Logic has completed 14 years simply simply
licensing model helps keep your BOM low,
and its proven dependability helps keep
your support costs down as well. ThreadX
repeatedly tops the time-to-market results

T H R E A D

BY Colin Holland #include
E M B E D D E D S Y S T E M S D E S I G NE M B E D D E D S Y S T E M S D E S I G N BY Colin Holland #include
E M B E D D E D S Y S T E M S D E S I G N

Director of Content
Colin Holland
colin.holland@ubm.com

Managing Editor
Susan Rambo
(415) 947-6675
susan.rambo@ubm.com

Acquisitions/Newsletter Editor,
ESD and Embedded.com
Bernard Cole
(928) 525-9087
bccole@acm.org

Contributing Editors
Michael Barr
Jack W. Crenshaw
Jack G. Ganssle
Dan Saks

Art Director
Debee Rommel
debee.rommel@ubm.com

Production Director
Donna Ambrosino
dambrosino@ubm-us.com

Article submissions
After reading our writer’s guidelines, send
article submissions to Bernard Cole at
bccole@acm.org

Subscriptions/RSS Feeds/Newsletters
www.eetimes.com/electronics-subscriptions

Subscriptions Customer Service (Print)
Embedded Systems Design
PO Box # 3609
Northbrook, IL 60065- 3257
embedsys@omeda.com
(847) 559-7597

Article Reprints, E-prints, and
Permissions
Mike Lander
Wright’s Reprints
(877) 652-5295 (toll free)
(281) 419-5725 ext.105
Fax: (281) 419-5712
www.wrightsreprints.com/reprints/index.cfm
?magid=2210

Publisher
David Blaza
(415) 947-6929
david.blaza@ubm.com

Associate Publisher, ESD and EE Times
Bob Dumas
(516) 562-5742
bob.dumas@ubm.com

Corporate—UBM Electronics
Paul Miller Chief Executive Officer
David Blaza Vice President
Karen Field Senior Vice President, Content
Felicia Hamerman Vice President, Marketing
Brent Pearson Chief Information Officer
Jean-Marie Enjuto Vice President, Finance
Amandeep Sandhu Director of Audience Engagement &

Analytics
Barbara Couchois Vice President, Partner Services &

Operations

Corporate—UBM LLC
Marie Myers Senior Vice President,

Manufacturing
Pat Nohilly Senior Vice President, Strategic

Development and Business
Administration

E M B E D D E D S Y S T E M S D E S I G N

A tale of two design sites

 www.embedded.com | embedded systems design | APRIL 2012 7

Some of you will undoubtedly be
reading this while attending the
ESC/DESIGN West event or in

the lead up to it. For those not fortunate
to be joining us in San Jose in the last
week of March, I would like to highlight
what we’ll be providing through the
event website www.ubmdesign.com.

As well as all the information re-
quired for people to plan a conference
visit, we’ll be updating news from the
show via the Breaking News tab on
www.ubmdesign.com (or directly here:
www.ubmdesign.com/breaking-news).
What’s more exciting is that you’ll be
able to access several areas on the site
aimed at extending the life of content
from the shows and well as providing
two-way interaction. One such section
is the forum-like Answerstream
(www.ubmdesign.com/answerstream),
which will provide discussion areas on:

Analog/mixed signal
Android
Development tools
FPGA
LEDs
Low power
Memory
Medical
Microprocessors/microcontrollers
RTOS
Security
Sensors
Test and measurement

This is part of our goal to provide
a continuing educational experience
and community resource year-round.
The web site will provide intelligent,
personalized content in real-time in-

cluding white papers, webinars, videos,
special offers, and collateral. The intel-
ligent content functionality not only
delivers targeted subject matter con-
tent but also dynamically monitors
your reactions and engagement pat-
terns in able to recommend additional,
meaningful content. The application is
platform agnostic and available to
work on tablet and desktop devices.

In parallel over the coming
months, we’ll be looking to upgrade
and enhance our sister website, Em-
bedded.com. This site has long been
regarded as the must-visit location for
many people involved in the embed-
ded sector worldwide. I’m extremely
keen to receive feedback from existing
and potential readers on what you
would like to see from Embedded.com
—let me know what we do well, the
content you like and would like to see
expanded, but more importantly
where we could improve our service to
you.

The design of embedded systems is
continually evolving and we want Em-
bedded.com to reflect that while mak-
ing sure we don’t “throw the baby out
with the bathwater” and discard any-
thing you find useful and rely on to
help you to implement your designs.
What else would be useful to you—
more code for download, detailed de-
scriptions of development kits? What
else should we add that could make
you more efficient?

I look forward to receiving com-
ments from as many of you as possible.

In the meantime, live at ESC and
later in April we’ll be doing a webinar
on the results of our annual Embedded
Market Survey—keep an eye on Em-
bedded.com and its newsletter for an
update on the date.

Colin Holland
Colin.holland@ubm.com

Colin Holland is the director
of content for Embedded
Systems Design magazine,
Embedded.com, and the
DesignWest and East (which
includes the Embedded
Systems Conferences).
You may reach him at
colin.holland@ubm.com.

the field—so that the number and
impact of failures are minimized.
One key strategy for building reli-
able systems is to eliminate single
points of failure. For example, re-
dundancy could be added around
that critical input sensor—perhaps
by adding a second sensor in parallel
with the first.

Another aspect of reliability that
is under the complete control of de-
signers (at least when they consider
it from the start) are the “fail-safe”
mechanisms. Perhaps a suitable but
lower-cost alternative to a redun-
dant sensor is detection of the failed
sensor with a fall back to mechanical
braking.

Failure Mode and Effect Analysis
(FMEA) is one of the most effective
and important design processes used
by engineers serious about designing
reliability into their systems. Follow-
ing this process, each possible failure
point is traced from the root failure
outward to its effects. In an FMEA,
numerical weights can be applied to
the likelihoods of each failure as well
as the seriousness of consequences.
An FMEA can thus help guide you to
a cost effective but higher reliability

design by highlighting the most valuable places to insert
the redundancy, fail-safes, or other elements that rein-
force the system’s overall reliability.

In certain industries, reliability is a key driver of
product safety. And that is why you see these techniques,

In this era of 140 characters or
less, it has been well and con-
cisely stated that, “reliability

concerns accidental errors causing
failures, whereas security concerns
intentional errors causing failures.”
In this column, I expand on this
statement, especially as regards the
design of embedded systems and
their place in our network-con-
nected and safety-concious mod-
ern world.

As the designers of embedded
systems, the first thing we must ac-
complish on any project is to make
the hardware and software work.
That is to say, we need to make the
system behave as it was designed
to. The first iteration of this is of-
ten flaky; certain uses or perturba-
tions of the system by testers can
easily dislodge the system into a
non-working state. In common
parlance, “expect bugs.”

Given time, tightening cycles of
debug and test can get us past the
bugs and through to a shippable
product. But is a debugged system
good enough? Neither reliability
nor security can be tested into a
product. Each must be designed in
from the start. So let’s take a closer look at these two im-
portant design aspects for modern embedded systems and
then I’ll bring them back together at the end.

RELIABLE EMBEDDED SYSTEMS
A product can be stable yet lack reliability. Consider, for
example, an anti-lock braking computer installed in a
car. The software in the anti-lock brakes may be bug-
free, but how does it function if a critical input sensor
fails?

Reliable systems are robust in the face of adverse
run-time environments. Reliable systems are able to work
around errors encountered as they occur to the system in

Building reliable and secure embedded
systems

 By Michael Barrbarr code

Michael Barr is CTO of Barr Group and a leading expert in
the architecture of embedded software for secure and reli-
able real-time computing. Barr is also a former lecturer at
the University of Maryland and Johns Hopkins University and
author of three books and more than sixty five articles and
papers on embedded systems design. Contact him at
mbarr@barrgroup.com.

Neither reliability nor
security can be tested,
debugged, or patched into
a product. They must be
designed into embedded
systems from day one.

!
!
!

8 APRIL 2012 | embedded systems design | www.embedded.com

 www.embedded.com | embedded systems design | APRIL 2012 9

FMEA, and other design-for-reliability processes being ap-
plied by the designers of safety-critical automotive, medical,
avionics, nuclear, and industrial systems. The same tech-
niques can, of course, be used to make any type of embed-
ded system more reliable.

Regardless of your industry, it is typically difficult or
impossible to make your product as reliable via patches.
There’s no way to add hardware like that redundant sensor,
so your options may reduce to a fail-safe that is helpful but
less reliable overall. Reliability cannot be patched or tested
or debugged into your system. Rather, reliability must be
designed in from the start.

SECURE EMBEDDED SYSTEMS
A product can also be stable yet lack secu-
rity. For example, an office printer is the
kind of product most of us purchase and
use without giving a minute of thought to
security. The software in the printer may
be bug-free, but is it able to prevent a
would-be eavesdropper from capturing a
remote electronic copy of everything you
print, including your sensitive financial
documents?

Secure systems are robust in the face of
persistent attack. Secure systems are able
to keep hackers out by design. One key
strategy for building secure systems is to
validate all inputs, especially those arriv-
ing over an open network connection. For
example, security could be added to a
printer by ensuring against buffer over-
flows and encrypting and digitally signing
firmware updates.

One of the unfortunate facts of designing secure em-
bedded systems is that the hackers who want to get in only
need to find and exploit a single weakness. Adding layers of
security is good, but if even any one of those layers remains
fundamentally weak, a sufficiently motivated attacker will
eventually find and breach that defense. But that’s not an
excuse for not trying.

For years, the largest printer maker in the world appar-
ently gave little thought to the security of the firmware in
its home/office printers, even as it was putting tens of mil-
lions of tempting targets out into the world. Now the secu-
rity of those printers has been breached by security re-
searchers with a reasonable awareness of embedded systems
design. Said one of the lead researchers, “We can actually
modify the firmware of the printer as part of a legitimate
document. It renders correctly, and at the end of the job
there’s a firmware update. ... In a super-secure environment
where there’s a firewall and no access—the government,
Wall Street—you could send a résumé to print out.”

Security is a brave new world for many embedded sys-

tems designers. For decades we have relied on the fact that
the microcontrollers and flash memory and real-time oper-
ating systems and other less mainstream technologies we
use will protect our products from attack. Or that we can
gain enough “security by obscurity” by keeping our com-
munications protocols and firmware upgrade processes se-
cret. But we no longer live in that world. You must adapt.

Consider the implications of an insecure design of an
automotive safety system that is connected to another Inter-
net-connected computer in the car via CAN; or the inse-
cure design of an implanted medical device; or the insecure
design of your product.

Too often, the ability to upgrade a product’s firmware in
the field is the very vector that’s used to attack. This can

happen even when a primary pur-
pose for including remote
firmware updates is motivated by
security. For example, as I’ve
learned in my work as an expert
witness in numerous cases involv-
ing reverse engineering of the
techniques and technology of
satellite television piracy, much of
that piracy has been empowered
by the same software patching
mechanism that allowed the
broadcasters to perform security
upgrades and electronic counter-
measures. Ironically, had the secu-
rity smart cards in those set-top
boxes had only masked ROM im-
ages the overall system security
may have been higher. This was

certainly not what the designers of the system had in mind.
But security is also an arms race.

Like reliability, security must be designed in from the
start. Security can’t be patched or tested or debugged in.
You simply can’t add security as effectively once the prod-
uct ships. For example, an attacker who wished to exploit a
current weakness in your office printer or smart card might
download his hack software into your device and write-pro-
tect his sectors of the flash today so that his code could re-
main resident even as you applied security patches.

RELIABLE AND SECURE EMBEDDED SYSTEMS
It is important to note at this point that reliable systems are
inherently more secure. And that, vice versa, secure systems
are inherently more reliable. So, although, design for relia-
bility and design for security will often individually yield
different results—there is also an overlap between them.

An investment in reliability, for example, generally pays
off in security. Why? Well, because a more reliable system is
more robust in its handling of all errors, whether they are
accidental or intentional. An anti-lock braking system with

Security is a brave new
world for many embedded
systems designers. For
decades, we relied on the
technologies we use to
protect our products or
that we can gain enough
“security by obscurity.”
But we no longer live in
that world.

!
!
!
!
!

a fall back to mechanical braking for increased reliability is
also more secure against an attack against that critical hard-
ware input sensor. Similarly, those printers wouldn’t be at
risk of fuser-induced fire in the case of a security breach if
they were never at risk of fire in the case of any misbehavior
of the software.

Consider, importantly, that one of the first things a
hacker intent on breaching the security of your embedded
device might do is to perform a (mental at least) fault-tree
analysis of your system. This attacker would then target his
time, talents, and other resources at one or more single
points of failure he considers most likely to fail in a useful
way.

Because a fault-tree analysis starts from the general goal
and works inward deductively toward the identification of
one or more choke points that might produce the desired
erroneous outcome, attention paid to increasing reliability
such as via FMEA usually reduces choke points and makes
the attackers job considerably more difficult. Where securi-
ty can break down even in a reliable system is where the
possibility of an attacker’s intentionally-induced failure is
ignored in the FMEA weighting and thus possible layers of
protection are omitted.

Similarly, an investment in security may pay off in
greater reliability—even without a directed focus on relia-
bility. For example, if you secure your firmware upgrade
process to accept only encrypted and digitally-signed bina-
ry images you’ll be adding a layer of protection against a in-
advertently corrupted binary causing an accidental error
and product failure. Anything you do to improve the relia-
bility of communications (through checksums, prevention
of buffer overflows, and so forth) can have a similar effect
on reliability.

THE ONLY WAY FORWARD
Each year it becomes increasingly important for all of us in
the embedded systems design community to learn to design
reliable and secure products. If you don’t, it might be your
product making the wrong kind of headlines and your
source code and design documents being pored over by
lawyers. It is no longer acceptable to stick your head in the
sand on these issues. ■

barr code

10 APRIL 2012 | embedded systems design | www.embedded.com

Reliable systems are inherently more
secure. And vice versa, secure systems are
inherently more reliable. So, although,
design for reliability and design for securi-
ty will often individually yield different
results—there is overlap between them.

!
!
!

Excellent article (“Troubleshooting real-time soft-
ware issues using a logic analyzer,” David B.
Stewart, March 2012, p. 19, www.eetimes.com/

4236800). With a bit of extra programming, you can
also sometimes use a “companion” microcontroller
instead of a dedicated logic analyzer.

—vapats

I’m wanting to try
this out for the fun of
it with a pinball ma-
chine’s logic board.

—K1200LT Rider

Probe pointers
Very informative
(“Probing pointers,”
Jack Ganssle, March
2012, p. 34, www.ee
times.com/4236927). I
have had $15 “all
purpose” probes

come back and bite me.
I’m assuming that for emergency run repairs on

printed-circuit boards it would be better to arch the
patch wire off the PCB than have it lay on top of
the board.

—Saluki_456

Discriminated unions
With virtual functions and proper instantiation, you
do not need any isKindOf() operator to discriminate
which parameters or functions to use (“Discriminat-
ed unions,” Dan Saks, March 2012, p. 9, www.ee
times.com/4237055). This is one of the most power-
ful underpinnings of the C++ language.

— krwada

Probes and
analyzers

parity bit

E M B E D D E D S Y S T E M S D E S I G N

MARCH 2012

The Official Publication of The Embedded Systems Conferences and Embedded.com

VOLUME 25,
NUMBER 2

Discriminated
unions

9

Debug real-time
SW with logic analyzer

19

Managing multiple
processes in multicore

27

Probing pointers
34

VERIFYING
REQUIREMENTS
AND OBJECT
CODE 12

We welcome your feedback. Letters to the editor may be edited.
Send your comments to Colin Holland at colin.holland@ubm.com
or post your feedback directly online, under the article you wish
to discuss.

CONTENTS

New Supported Processors 4

Nexus-Trace for Small Package Format Cores 5

Checking JTAG Signals 6

Enhancements to Target OS-Awareness 6

Code-Coverage – Simplified 7

CoreSight Trace Memory Controller 10

Trace Analyses for Cortex-M3/M4 12

Simulink® Integration 14

UEFI BIOS Debugging with TRACE32 16

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2012

Embedded designs are becoming ever more com-
plex and time to market is getting shorter. To meet
these challenges many project managers now rely on
debug and trace tools that can accompany developers
through all phases of the project.

TRACE32, the debug and trace tool family from Lauter-
bach provides a consistent concept and environment
which can be further extended with user customizable
scripts. This helps to shorten the familiarization pro-
cess and makes time for the actual development work.
Developers with practical knowledge gained from
more than 10 years experience with TRACE32 are
quite common. So, what makes TRACE32 different?

•	 Hardware-	and	software-based	tools
•	 Early	support	for	new	processors
•	 Large	portfolio	of	supported	processors
•	 Extensive	test	and	analysis	functions
•	 Seamless	integration	into	the	embedded	tool	chain

Hardware and Software Tools

The core business of Lauterbach is the design and
manufacture of hardware-based debug and trace tools.
In addition Lauterbach has also offered logic analyzers

for over 20 years. The key feature of TRACE32 logic
analyzers is seamless integration within the hardware-
based debug and trace tools. For a typical application
using the logic analyzer integrated in PowerTrace II
read the article “Checking JTAG Signals” on page 6.

Fast, efficient computers mean that more simulation
and validation is being undertaken on PC and worksta-
tions. In the embedded world the pre-silicon software
development on virtual targets has become the norm.
For this phase of the project Lauterbach can provide
pure software solutions.

A Debugger for all Phases of the Project

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2012

http://www.lauterbach.com

NEWS 2012 www.lauterbach.com2

Virtual Targets

Today virtual targets are increasingly being used to
start software development long before the first hard-
ware prototypes become available. As soon as a
virtual target is available, debugging of the driver, the
operating system, and the application can begin.

For debugging and tracing, most virtual targets have
their own API. If this is not the case, the standardized
MCD-API (http://www.lauterbach.com/mcd_api.html)
can be used. Many new projects today use multicore
chips. Consequently, Lauterbach has expanded its mul-
ticore debugging support for virtual targets since 2011.

Pre-Silicon Validation

For semiconductor manufacturers, it is important to
validate the design of their processors or SoCs before
actual production. Individual sections are intensely
tested, for example: the JTAG interface, the entire core,
or the interaction between core and peripherals.

For this testing, you traditionally used an emulator for
the silicon (e.g. Palladium) or FPGA prototypes, con-
nected to the hardware-based TRACE32 debug tools.
This would run much slower than the real processors.

Today, you can perform first validations of Verilog or
SystemC models directly on a PC or a workstation.
With pure software validation you cannot use debug
hardware. Therefore, Lauterbach added a Verilog
Back-End to its software in 2011. This simulates a
JTAG interface at the signal level (see figure 1).

The integration of TRACE32 tools into the pre-silicon
validation forms an important part of the early support
for the latest processors and SoCs:

•	 Tested	tools	are	ready	before	the	first	silicon	leaves	
the factory.

•	 Expert	 knowledge	 of	 the	 new	 processor/SoC	 is	
available and can be accessed by the customer.

•	 Start-up	 scripts	 for	 the	 TRACE32	 debugger	 are	
available.

60+ Supported Processor Architectures

Lauterbach has tools available for all the common
processors or SoCs on the embedded market. In fact
Lauterbach is the only provider of tools for many cores.
Standard controllers, DSPs, FPGA softcores, configu-
rable cores - everything can be combined into a multi-
core chip and debugged with a TRACE32 tool.

In 2011, Lauterbach also added support for numerous
new processors and multicore chips. For an overview,
see the table on page 4.

Test and Analysis Functions

Each phase of a project requires its own test and
analysis functions. To provide this, the TRACE32
PowerView GUI includes an extensive selection of
commands and menus. Boundary scan commands
(see figure 2), core detection commands and com-
mands for manipulating the JTAG pins are some
examples of low-level commands.

Fig. 1: For each user entry in TRACE32 Front-End, Verilog Back-End produces JTAG signals for validation of the model.

Verilog model

TRACE32
Actuator

(shared library)
.DLL /.SO

TRACE32 Front-End for ARM

TRACE32
Verilog Back-End
for Cortex-A/-R

.V

JTAG TAP
.V

Cortex-A
.V

.V

Trigger

Verilog Simulator for Cortex-A

Run-time
counter

JTAG

Reset

TRACE32
Actuator

.V

Verilog
Procedural
InterfaceNamed

pipe

3

During the quality and test phase the high-level com-
mands provide support for the developer and these
typically deal with analysis of trace data. Examples
are: measuring function runtime, energy profiling, or
details of code-coverage.

Since the beginning of 2011, Lauterbach has enabled
most major processor architectures to stream the trace
information to the host computer in real-time. This
allows significantly more diagnostic data to be col-
lected and quality assurance becomes much easier.
For more information, see the article “Code-Coverage
– Simplified” on page 7.

Integration into Embedded Tool Chain

The TRACE32 software is an open design so that it
works smoothly with all of the common basic compo-
nents of an embedded design. This includes:

•	 Host	operating	systems
•	 Programming	languages	and	compilers
•	 Target	operating	systems
•	 Virtual	machines,	such	as	Android	VM	Dalvik

The open TRACE32 API allows seamless interaction
with numerous third-party tools. Examples include
special IDEs such as Eclipse, graphical programming
tools and external profiling tools. Several new develop-
ments in this area were added in 2011.

Prism, the parallelization tool from the Scottish com-
pany CriticalBlue, supports developers when migrat-
ing single-core code to run on multicore chips. The tool
enables you to try different parallelization strategies
without making changes to the function code. When
the optimal strategy is determined, the paralleliza-
tion can be performed step by step, also supported
by Prism.

Since July 2011, Lauterbach has included the option of
exporting trace information in Prism format, enabling
the CriticalBlue tools to work with the trace recorded
by the actual operation of the code.

The article “Simulation and Reality Come Closer
Together” on page 14 thoroughly describes another
innovation – the integration between MATLAB Simu-
link® and TRACE32.

Extended Lifetime

When migrating to a new technology Lauterbach has a
philosophy of ensuring there is a long transition phase.
They will not force a customer to accept a technology
change while in the middle of a key project.

For example: Starting in May 2012, Lauterbach will
introduce a QT version of its graphical user interface
TRACE32 PowerView (see figure 3). With QT, an up-
to-date GUI will be available for Linux, Mac OS X, and
other host operating systems.

Lauterbach will continue to support the Motif version
of TRACE32 PowerView so that customers can deter-
mine their own best transition time.

Within these pages of our NEWS 2012, you will find
further information which might be useful for your cur-
rent	or	future	projects.	Hopefully	you	will	find	a	feature	
that contributes to your project’s success. We will be
demonstrating several of them live at the upcoming
ESC Silicon Valley, March 26-29th, in San Jose, and at
many other shows in the US throughout the year.

Scan chain configuration

Fig. 2: Boundary-Scan commands are available for commissioning
the hardware.

QT-based PowerView

Fig. 3: The new QT-based GUI for Linux, Mac OS X and other operating
systems.

NEWS 2012 www.lauterbach.com4

New Supported Processors

New Derivatives

Altera Cortex-A / -R
•			FPGA	with	Cortex-A9	MPCore
				as	Hardcore
MIPS32
•			MP32

AppliedMicro PPC44x
•			86290	/	491	/	791					Q2/2012

ARM Cortex-A / -R
•			Cortex-A7/Cortex-A7	MPCore
•			Cortex-A15
•			Cortex-A15	MPCore
•			Cortex-R5/Cortex-R5	MPCore
•			Cortex-R7/Cortex-R7	MPCore

Beyond
Semiconductor

Beyond
•			BA22

Broadcom MIPS32
•			BCM35230
•			BCM63168,	BCM63268	
•			BCM7231,	BCM7358

Cavium MIPS64
•			CN61XX	/	CN62XX	/	CN66XX
•			CN67XX	/	CN68XX

Ceva CEVA-X
•			CEVA-XC

CSR ARM11
•			QUATRO	4500

Cypress ARM9
•			EZ-USB	FX3

Energy Micro Cortex-M
•			Giant	Gecko

Freescale MCS12X
•			MC9S12VR,	MC9S12XS	
•			MM912F634
Cortex-A / -R
•			i.MX	6	Series
MPC55xx/56xx
•			MPC5604E,	MPC5675K,
•			MPC5676R	
Power QUICC III
•			P1010,	P1020
•			P2040,	P2041
•			P3041,	P4040,	P4080
•			PSC9131
QorIQ 64-Bit
•			P5010,	P5020

Fujitsu Cortex-A / -R
•			MB9DF126,	MB9EF126

IBM PPC44x
•			476FP																			Q2/2012

Ikanos MIPS32
•			Fusiv	Vx185

Infineon TriCore
•			TriCore	Multi-Core	
 Architecture

Intel® Atom™/x86
•			Atom	D2500,	Atom	N550
•			Core	i3/i5/i7	2nd	Generation

Lantiq MIPS32
•			XWAY	xRX100
•			XWAY	xRX200

LSI PPC44x
•			ACP344x															Q2/2012

Marvell ARM9 Debug-Cabel
•			88E7251
ARM11 Debug-Cabel
•			88AP610-V6,	MV78460-V6
Cortex-A / -R Debug-Cabel
•			88AP610-V7,	MV78460-V7

Nuvoton Cortex-M
•			NuMicro

NXP Cortex-M
•			LPC12xx
Beyond
•			JN5148

Qualcomm MIPS32
•			AR7242	
Cortex-A / -R
•			Krait

Renesas V850
•			V850E2/Fx4: 70F3548..66
 70F4000..70F4011
•			V850E2/Fx4-L:	70F3570..89
•			V850E2/Px4:	70F3503	/	05
					70F3507	/	08	/	09
78K0R / RL78
•			78K0R/Kx3-C/L
•			RL78/G14,	RL78/G1A
•			RL78/F12,	RL78/I1A
SH
•			SH708x	with	
 AUD/Onchip-Trace
•			SH7147

5

The Nexus cell, which is integrated into the control-
lers	of	the	MPC560xB/C	family	from	Freescale	or	the	
SPC560B/C	controllers	of	ST,	can	generate	trace	data	
for the instructions executed by the core. If an operat-
ing system is used, information on task switching are
produced as well.

A microcontroller must have a trace interface, so
that an external trace tool, such as TRACE32, can
record	 this	 trace	data.	However,	 the	members	of	 the	
MPC560xB/C	family	do	not	have	this	interface	in	their	
standard packaging. To provide access to this valu-
able data about the program run during the develop-
ment phase, silicon-compatible microcontrollers in a
208-pin	BGA	development	package	are	offered,	which	
have a Nexus interface with 4 MDO (Message Data
Out) pins.

Since mid-2011, Lauterbach has provided
MPC560xB/C	 adapters	 that	 can	 replace	 the	 original	
controller	on	 the	 target	hardware	with	a	208-pin	con-
troller with Nexus interface.

The	 MPC560xB/C	 adapter	 consists	 of	 a	 suitable	
MPC560xB/C	controller	in	208-pin	BGA	development	
package and Mictor plug with Nexus interface for con-
necting TRACE32 trace tools (shown in figure 4 in
blue). In addition, a socket adapter from the Tokyo
Eletech company is required.

Nexus-Trace Also for Small Package Format Cores

New Derivatives

Samsung ARM7
•			S3F4
Cortex-A / -R
•		S5PV310
Cortex-M
•			S3FM,	S3FN

ST-Ericsson Cortex-A / -R
•			A9500,	A9540,	M7400
MMDSP
•		A9500,	A9540	

STMicro-
electronics

MPC55xx/56xx
•			SPC56A80,	SPC56HK
Cortex-M
•			STM32F2xx,	STM32F4xx

Synopsys ARC
•			ARC	EM4,	ARC	EM6

Tensilica Xtensa
•			BSP3,	LX4,	SSP16

Texas Instruments MSP430
•			CC430Fxxx,	MSP430FR5xxx
•			MSP430x1xx..MSP430x6xx

Texas Instruments
(Cont.)

ARM9
•			AM38xx
•			OMAP4460	/	4470
•			TMS320C6A81xx
•			TMS320DM81xx
Cortex-A / -R
•			AM335x,	AM38xx
•			OMAP4460	/	4470	/	543x
•			RM48L950
•			TMS320C6A81xx
•			TMS320DM81xx
•			TMS570LS3xxx
Cortex-M
•			AM335x
•			OMAP4460	/	4470	/	543x
•			TMS470MFxxx
TMS320C28X
•			TMS320C28346	/	F28069
TMS320C6x00
•			OMAP4460	/	4470	/	543x
•			TMS320C6A81xx
•			TMS320DM81xx
•			TMS320TCI6616	/	18

Xilinx Cortex-A / -R
•			Zynq7000

Tokyo Eletech adapter

Tokyo Eletech socket

Nexus connector
MPC560xB/C in 208-pin package

Fig.	4:	 The	 MPC560xB/C	 adapter	 allows	 a	 development	 package	 with	
Nexus interface to be used instead of the original controller.

NEWS 2012 www.lauterbach.com6

The following version adaptations have been made:

•	 eCos	3.0	 •	 embOS	3.80	 •	 FreeRTOS	v7
•	 Linux	v3.0	 •	 MQX	3.6	 •	 RTEMS	4.10
•	 SMX	v4

•	 The	 content	 of	 the	 QNX	 tracelogger	 can	 be	 dis-

played using TRACE32 QNX OS-Awareness. A
graphical representation of the task switch is also
possible using the TRACE32 command group
LOGGER.Chart.

•	 TRACE32	 QNX	 OS-Awareness	 has	 been	 adapted	
for the use of position-independent executables.

Checking JTAG Signals

Fig.	5:	 Measuring	arrangement	for	recording	the	JTAG	signals.

JTAG signals

Fig. 6: The recorded JTAG signals.

JTAG protocol

Fig. 7: The protocol representation of the JTAG signals.

New Supported Target-OS

µC/OS-II for Andes available

Elektrobit	tresos	(OSEK/ORTI) available

Erika	(OSEK/ORTI) available

FreeRTOS für AVR32 available

Linux for Beyond planned

MQX for ARC available

OSEK/ORTI	SMP planned

PikeOS available

PXROS-HR	Run	Mode	Debugging available

RTEMS for Nios II available

Sciopta 2.x available

SYS/BIOS	for	ARM available

VxWorks SMP available

Lauterbach’s PowerTrace II is equipped with an inte-
grated logic analyzer and supplied with a standard
digital probe. This enables 17 digital channels to be
recorded	with	a	sampling	rate	of	up	to	200	MHz.	This	

logic	analyzer	has	a	save	depth	of	up	to	1024K	sam-
ples and an example of its use would be the test of
the JTAG signals during pre-silicon validation (see fig-
ures 6 and 7).

Enhancements to Target OS-Awareness

7

As of March 2011, TRACE32 trace information can
be streamed to a host hard-disk from the running
target. The large amount of program flow data
which can result from this method, leads to a sig-
nificant simplification of the code-coverage.

Trace-based Code-Coverage

Proof of statement coverage and condition coverage is
often required to meet system quality specifications in
industries such as medical and automotive.

•			Statement coverage proves that each line of code
was executed during the system test.

•		 Condition coverage proves that for each condi-
tional instruction both pass and fail branches were
executed at least once.

For many embedded systems highly optimized code
must be tested in real-time. The alternatives of code
instrumentation and non-real-time operation cannot
be used in these cases.

To be able to meet these requirements, the target pro-
cessor/SoC must fulfill the following prerequisites:

1. The cores which are implemented must have a core
trace	logic	(see	figure	8).	This	logic	generates	infor-
mation about the instructions executed by the core.
Depending on the operation of the trace logic, infor-
mation about the task switches and the read/write
operations can also appear.

2. The processor/SoC must have a trace port with suf-
ficient bandwidth so that the trace information can
be recorded by an external tool without any informa-
tion loss.

The Classic Measurement Process

Until now, code-coverage analysis was performed with
TRACE32 using the following steps:

1. Start program execution and automatically stop
when the trace memory is full.

2. Transfer the trace memory content to the code-
coverage database.

3. Continue program execution.

For each measurement step, the amount of data col-
lected was limited by the size of the memory available
within the trace tool. The results of the code-coverage-
analysis could be checked after the total measurement
was completed or, if needed, after each intermediate
step.

New: Streaming

If the trace data is transferred to a drive on the host
computer at the time of recording, the complete soft-
ware routine can be recorded in one measurement
step. The streamed data is stored within a file on the
hard-disk. To avoid completely filling the hard-disk with
trace data, TRACE32 stops streaming as soon as less
than 1 GByte of free memory remains.

To be able to stream, the following technical prerequi-
sites must be fulfilled:

•	 64-bit	 host	 computer	 and	 64-bit	TRACE32	 execut-
able

•	 Interface	 between	 trace	 tool	 and	 host	 computer	
must be as fast as possible.

•	 Optimal	 configuration	 of	 the	 trace	 source	 and	 the	
trace tool

TRACE32 PowerView
64-bit host

SoC

Tr
ac

e
p

o
rt

JT
A

G

Trace
control
logic

Trace memory
as FIFO

File on
hard-disk

Core
trace
logic

Core

Fig.	8:	 For	the	code-coverage	analysis,	up	to	1	TByte	of	trace	data	can	be	streamed	to	the	host	computer.

Code-Coverage – Simplified

NEWS 2012 www.lauterbach.com8

Fast Host Interface

The amount of trace data that is exported via the trace
port depends on the target system hardware. The
number of cores, the number of trace port pins, and
the trace clock speed are all important parameters.
The protocol used by the core trace logic plays also an
important role. For example, the ARM PTM protocol
is more compact than the ARM ETMv3 protocol (see
figure	9).

The embedded software is another major variable. A
software program that performs many jumps and
retrieves data/instructions mainly from the cache pro-
duces more trace data per second than a software
program that processes many sequential instructions
and must frequently wait for the availability of data/
instructions.

The amount of data varies but it is always large. Stream-
ing only works properly, if the transfer rate between the
tool and the host computer is fast enough to transfer
all of the data from the trace port to the host computer
without any data loss. The 1 GBit Ethernet interface is
the only recommended interface for the PowerTrace II.

The programming of the trace logic on the chip can
be used to directly influence the amount of trace data
being generated. The logic should be programmed so
that only trace information which is relevant to the code-
coverage analysis is being generated. To illustrate this
point, the following two examples are provided.

ETM/PTM: Optimal Configuration

ETM and PTM are different implementations of the
core trace logic on the ARM/Cortex architectures.

The ETM can be configured so that trace information
is produced only for the instructions executed by the
program. Information about the read/write operations
is not needed for code-coverage. By default the PTM
only generates information about the program flow.
Therefore the PTM does not need to be configured.

Both trace sources encode the virtual address instruc-
tions. If an embedded design uses an operating sys-
tem, such as Linux or Embedded Windows, virtual ad-
dresses cannot be mapped unambiguously to physical

TRACE32 trace tools are available in two designs,
which differ especially in relation to their features.

•	 256	or	512	MByte	trace	memory
•	 USB	2.x	and	100	MBit	Ethernet
•	 80	MBit/s	as	maximum	transfer	rate	to	host		 	
 computer
•	 Software	compression	of	trace	data	(factor	3)
•	 Memory	interface	with	100	MHz

•	 1/2/4	GByte	trace	memory
•	 USB	2.x	and	1	GBit	Ethernet
•	 500	MBit/s	as	maximum	transfer	rate	to			 	
 host computer
•	 Hardware	compression	of	trace	data	for	ETMv3	 	
 and PTM (factor 6)
•	 Memory	interface	with	233	MHz

PowerTrace vs. PowerTrace II

PowerTrace

PowerTrace II

Average load

Maximum load

20 4 6 8 10 GBit/s

3.2 GBit/s max. transmission rate

Cortex-R4
@ 500MHz

ETMv3

Cortex-A9
@ 1GHz

PTM

4 x Cortex-A9
@ 1GHz

PTM

Fig.	9:	 A	transmission	rate	of	3.2	GB/s	is	generally	adequate	for	streaming	program	sequence	information	on	the	host.

9

Statement & condition coverage

Function coverage

Detailed coverage

addresses. The trace source must also be configured,
so that information is generated defining the virtual
address space in which an instruction was located.

For the ARM ETM/PTM, the amount of trace data can
be further reduced:

•	 The	 code-coverage	 analysis	 does	 not	 analyze	 or	
need time information. We therefore recommend
configuring the TRACE32 trace tool so that the trace
data is transferred to the host without time stamps.
This reduces the amount of data by a third.

•	 PowerTrace	II	also	provides	FPGA-based	hardware	
compression of the trace data. This enables up to
3.2 GBit/s trace data to be transferred to the host
computer.	Figure	9	shows	 that	 this	 transfer	 rate	 is	
generally sufficient for streaming ETM/PTM data
without any data loss.

Nexus: Optimal Configuration

On	processors	of	 the	MPC5xxx/SPC5xx	 families	 the	
core trace logic is implemented to the Nexus standard.
To undertake code-coverage analysis, a Nexus class 2
trace cell is adequate as all you need is detail of the

program sequence on the individual core(s). If Branch
History	 Messaging	 is	 used	 this	 can	 make	 the	 trace	
data very compact. Compared to standard trace data
a reduction by a factor of 10 is realistic. Only Power-
Trace II supports streaming from the Nexus trace port.

Streaming also works for all other processors/SoCs
that are supported by TRACE32 and have a trace
port.

Code-Coverage for SMP-Systems

TRACE32 also supports code-coverage analysis on
SMP (symmetric multiprocessing) systems. For code-
coverage it must be proven that an instruction was
executed, which core was responsible for running the
code is irrelevant. Figure 10 shows the results of code-
coverage	for	two	Cortex-A9	MPCores.

For statement and condition coverage, if only the fail-
branch of a conditional statement was run the state-
ment is highlighted in yellow and marked with “not
exec”. The detailed coverage lists the specifics of how
often each statement or each branch of the statement
was run.

Fig. 10: Code-coverage analysis for an SMP system.

NEWS 2012 www.lauterbach.com10

The new CoreSight Trace Memory Controller pro-
vides SoC designers with more design options for
the trace infrastructure. TRACE32 already has sup-
port for the first designs which use the TMC.

Through CoreSight, the diagnosis data needed for
the analysis of SoC-internal processes is produced
by ‘trace macrocells’. There are three types of trace
macrocells:

•	 Core trace macrocells are assigned to a core and
generate trace information about the instructions
processed by that core. Information about process
switches and load/store operations is generated
depending on the design of the trace cell.

•	 Bus trace macrocells are firmly assigned to a bus
and generate trace information on data transfers
that occur on the bus.

•	 System trace macrocells generate trace informa-
tion for hardware trigger (system event tracing) or
provide diagnostic information produced by code
instrumentation of the application software.

The CoreSight Funnel combines all of the trace data
into a single data stream (see figure 11). This trace
data stream is then either stored in an on-chip mem-
ory buffer (ETB) or exported to an external tool using
a trace port (TPIU). The IP for CoreSight trace being
implemented today is sometimes pushed to the limit
when dealing with complex multicore SoCs that con-
tain many trace macrocells.

•	 ETB: The on-chip trace memory is often too small to
record enough trace data for any meaningful future
analysis. The typical size for the ETB is still between
4	and	16	KByte.

•	 TPIU: System states may occur where more trace
data is being generated than the trace port can output.
The CoreSight design is such that trace data from the
trace macrocells is only taken over if the trace data
can be exported by the TPIU. If the trace data gener-
ated remains in the trace macrocells for too long, the
FIFOs there can overflow and important data may
be lost.

The new CoreSight Trace Memory Controller should
provide a solution for both of the above scenarios.

TMC as Embedded Trace Buffer

To be able to store more trace data on-chip for later
analysis, the chip manufacturer can theoretically con-
nect up to 4 GByte of SRAM to the Trace Memory Con-
troller (see figure 12).

CoreSight Trace Memory Controller

ARM CoreSight

With CoreSight, ARM makes available an exten-
sive set of IP blocks, which enables SoC designers
to build a custom debug and trace infrastructure.

A single debug interface is enough to control and
coordinate all cores of the SoC, as well as access
all memory.

One trace interface is sufficient for providing diag-
nostic data about the processes occurring within the
SoCs without any impact on real-time performance.

Core
trace

System
trace

Bus
trace

TPIU ETB

F
unnel

F
unnel

Trace bus (ATB)

Fig. 11: CoreSight Funnel combines all trace data produced by trace
macrocells into a single data stream.

Trace Memory Controller
in ETB mode

SRAM

Trace bus (ATB)

Fig. 12: In ETB mode, the Trace Memory Controller can make up to 4 GByte
of on-chip trace memory available.

11

TMC as Embedded Trace FIFO

Inspections of the trace data streams being exported
by the TPIU have shown that the bandwidth of most
trace ports is large enough for normal operation. Over-
load, and therefore loss of trace data, only happens
when peaks occur.

The Trace Memory Controller can be integrated into
the trace infrastructure of the SoCs, so that the Trace
Memory Controller acts as an Embedded Trace FIFO
and cushions peaks in the load on the TPIU (see fig-
ure 13). This ETF is designed so that no trace data
loss can occur. The size of the ETF can be freely de-
fined	from	512	Bytes	to	4	GBytes.

Both integrations of the Trace Memory Controller in
the trace infrastructure depicted are simple examples.
Of course, you can build the TMC IP block into the
CoreSight system in much more complex and flexible
ways.

Modifications in TRACE32

As you would expect, Lauterbach has to modify the
TRACE32 software for the configuration and handling
of the Trace Memory Controller. This applies especially
when the Trace Memory Controller is integrated in the
SoC using new, previously unsupported ways. The
TRACE32 user only needs to configure the basic ad-
dress for the TMC. Then all the proven trace display
and analysis features can be used as usual.

TMC as Router to High-Speed Link

The idea of moving away from dedicated trace ports
has long been discussed within the embedded com-
munity. There are certainly several good arguments for
this move.

For the first time CoreSight traces can now connect
to a high-speed standard interface by using the Trace
Memory Controller. USB or Ethernet interfaces are
common favorites, especially as they are available in
many end products. Ideally, the external trace tool will
share the interface with the other connected devices.

Within the SoC, the TMC operates as Embedded Trace
Router and has the task of passing on the trace data
through the AXI bus for the export to the IP of the high-
speed interface (see figure 14).

This new method of trace export will need completely
new trace tools. Lauterbach is currently in close contact
with leading semiconductor manufacturers to develop
the appropriate tools for this switch in technology.

•	 Open	for	use	with	all	cores	which	can	be	integrated	
into CoreSight; Lauterbach offers debug solutions
for all ARM/Cortex cores and for numerous DSPs,
as well as for configurable cores.

•	 Support	for	asymmetric	multiprocessing	(AMP)	and	
symmetric multiprocessing (SMP)

•	 Debugging via JTAG interface and 2-pin Serial Wire
Debug

•	 Synchronized	debugging	of	all	cores

•	 Support	for	the	CoreSight	Cross	Trigger	Matrix

•	 Support	for	all	types	of	trace	macrocells	
(ETM,	PTM,	HTM,	ITM,	STM,	and	more)

•	 Tools	for	parallel	and	serial	trace	ports

•	 Multicore	tracing

TRACE32 CoreSight Features

Trace bus (ATB)

Trace Memory Controller
in FIFO mode

SRAM

TPIU

Fig. 13: In FIFO mode, the Trace Memory Controller can cushion load
peaks on the TPIU. By doing this, trace data loss can be avoided.

Trace Memory Controller
in Router mode

SRAM

AXI

High-speed link
(USB, Ethernet, ...)

Trace bus (ATB)

Fig. 14: In Router mode, the Trace Memory Controller forwards the trace
data for the export to a high-speed standard interface.

NEWS 2012 www.lauterbach.com12

Troubleshooting, performance tuning and code-
coverage - all of these can be performed quickly
and precisely on an embedded system if the ad-
equate trace analysis is provided. In 2011, Lauter-
bach explored new paths to enable optimized trace
analyses for the Cortex-M3/M4 processors.

Combining ETM and ITM

For Cortex-M3/M4 processors, trace information can
be generated from two different sources (see fig-
ure 17). The ETMv3 generates information about the
executed instructions. The ITM generates information
about the performed read/write accesses assisted by
the Data Watchpoint and Trace Unit (DWT).

The ITM trace packages for read/write accesses con-
tain the following information: data address, data value,
program counter.

Through analysis of the program counter, the data
accesses which are separately generated can be
seamlessly integrated into the program sequence (see

figure	15),	which	in	turn	leads	to	significantly	simpler	
error location. The cause of an error such as an incor-
rect data value being written into an address can be
easily found if the write accesses are embedded into
the overall program trace.

OS-Aware Tracing

If an operating system is running on the Cortex-M3/
M4, task switch information becomes essential for the
trace analysis.

Intelligent Trace Analyses for Cortex-M3/M4

Instruction flow with task switches (ETM&ITM)

Timing diagram for task switches (ITM) Timing diagram for task MIPS (ETM&ITM)

Call tree for task "sens1" (ETM&ITM)

Fig. 16: Through the combination of ETM and ITM trace data, extensive trace analysis can be provided for the eCos operating system.

Instruction flow with data accesses (ETM&ITM)

Fig.	15:	 By	combining	ETM	and	ITM	trace	data,	read/write	accesses	can	be	
integrated seamlessly into the program sequence.

13

In order to receive information about task switches the
following method can be used: Trace information on
the write cycle in which the kernel writes the identifier
for the current task on the corresponding OS variable
can be generated using the ITM. As described above
the write access information can be integrated seam-
lessly into the program flow trace. This improves the
readability of the trace listing (see figure 16). The inte-
gration of the task switch into the program sequence
also forms the basis for the runtime analyses shown
in the figure 16.

Three Recording Modes

To record the trace information generated by the
Cortex-M3/M4 processors, Lauterbach supports three
modes:

•	 FIFO mode:	Storing	the	information	in	the	128	MByte	
memory of the TRACE32 CombiProbe.

•	 STREAM mode: Streaming the information to a
hard-disk on the host computer.

•	 Real-time Profiling: The trace information is
streamed to the host computer and analyzed during
runtime.

For the first two recording modes, the trace informa-
tion is collected and the trace analysis is undertaken
after recording is completed.

Each recording mode has its own features. FIFO is the
most commonly used mode. It is quick and usually all
that is needed for error location and the runtime analy-
ses.

The ETMv3 implemented on Cortex-M3/M4 proces-
sors has neither a trigger nor a trace filter. It is not
possible to select for recording only those program
segments that are needed for troubleshooting. This
can mean trace data might have to be collected for a
relatively long period in order to cover the area needed
for analysis. In this case the STREAM mode can be
the best option. The STREAM mode, however, places
high demands on the debug environment:

•	 The	large	amount	of	data	that	results	from	stream-
ing requires a 64-bit TRACE32 executable. This is
needed to allow the address range for the large
number of trace entries that will be collected.

•	 The	 transfer	 rate	 between	 CombiProbe	 and	 host	
computer must be fast enough to stream all trace
data	without	a	data	loss.	The	128	MByte	memory	of	
the CombiProbe is used to cushion load peaks from
the trace port (TPIU).

Real-time Profiling is particularly suitable for perform-
ing statement and condition coverage. The coverage
analysis can be followed live on the screen and the
test results are visible immediately (see figure17). “ok”
marked lines are already covered.

Cortex-M3/M4 Core

Formatter

DWT
4 hardware watchpoints
on load/store operations

ITM
Instrumentation Trace

Macrocell

ETMv3
Instruction flow

only

TPIU
Trace Port Interface

Unit

Statement coverage on running system

Function coverage on running system

TRACE32
CombiProbe

Fig. 17: Real-time profiling enables code-coverage analysis to be followed
live on the screen

TPIU
Trace Port Interface

Unit

TRACE32
CombiProbe

NEWS 2012 www.lauterbach.com14

It is now common to perform simulation and verifica-
tion of designs before committing to hardware. This is
why tools such as MATLAB® and Simulink® have made
inroads as development software into the control
engineering market. It can save a lot of time and effort
if the control loop can be tested for the effects of many
variables before finalizing the design.

So what is the next step, after the control algorithm has
been	found	through	simulation?	How	is	this	solution	in-
tegrated into the control hardware? For this, Simulink
enables you to generate code automatically. But can
you be sure that the program behaves the same way
on the control hardware as in the simulation?

Verification Approach

The Institute of Flight System Dynamics at Technische
Universität München came up with an interesting solu-
tion during development of a flight control system for a
Diamond DA42 (see figure 20).

After the control algorithms had been created and
functionally tested with Simulink, the corresponding
program code for the processor of the control hard-
ware was generated from the control blocks using the
Embedded Coder. Using a TRACE32 debugger, the
generated code was loaded into the control hardware
and functionally tested in-situ.

To determine the level of deviation between simulated
control behavior (red path) and real control behavior
(green path), but above all to confirm the numeric accu-
racy of the control hardware, a Processor-In-the-Loop
simulation	 (PIL)	was	chosen	 (see	Figure	18).	Essen-
tially, the PIL simulation is based on the specially de-
veloped Simulink blocks “PIL Send” and “PIL Receive”.
These were designed to implement communication
between Simulink and the TRACE32 Remote API.

In each run through, the flight control algorithm per-
forms a single calculation step of the discrete time
flight control on the target hardware. The Simulink
model provides the necessary input parameters. The
values calculated are returned to the Simulink model
and there supply the aircraft model. In a parallel calcu-
lation, the simulated flight control algorithm computes
the same values. The difference is then used to com-
pare the two results.

The testing in the stand resulted in an absolute de-
viation of 10-13 – a high level of consistency that was
elegantly and easily proven with this approach.

For more information about the project of the Institute of
Flight System Dynamics at the Technische Universität
München, go to www.lauterbach.com/intsimulink.html.

TRACE32 Integration for Simulink®

At the Embedded World show February 2012 in
Nuremberg/Germany, Lauterbach will be presenting
an even closer coupling between Simulink and Lauter-
bach’s TRACE32 debuggers.

Lauterbach has used the property of the Simulink code
generation that the code block always begins with a
comment line which contains the name and model
path for the block. These comment lines are available
after the generated code has been loaded into the

Simulation and Reality Draw Closer Together

Flight control algorithm

Target

Flight test
pattern

-
Deviation
protocol

Aircraft
model

Flight control
algorithm

PIL
Send

PIL
Rcv

Flight control algorithm

TRACE32 Remote API

Simulink® model

Fig.	18:	 The	real	control	behavior	 (green	path)	and	 the	simulated	control	
behavior (red path) are compared.

15

TRACE32 PowerView Simulink®

Fig.	19:	 The	block	belonging	to	the	selected	source	code	line	is	marked	in	Simulink.

Fig. 20: Diamond DA42 (Source: www.diamond-air.at)

TRACE32 debugger. These lines allow a simple cor-
relation between the Simulink block and the lines in
the source code.

Navigation from Simulink® to TRACE32

A global TRACE32 menu and TRACE32 menus
for blocks and signals are integrated into Simulink
as ‘Simulink Customization Menus’. The TRACE32
debugger can be controlled from Simulink with the help
of these menus. The following functions are available:

•	 Show	block	code	in	TRACE32
•	 Open	TRACE32	Variable	Watch	Window	for	signals
•	 Load	Simulink	build	to	the	TRACE32	debugger
•	 Set	and	manage	block/signal	breakpoints
•	 Start	and	stop	program	on	the	control	hardware

Navigation from TRACE32 to Simulink®

Selecting a section of source code in the TRACE32
debugger marks the corresponding block in Simulink
(see	Figure	19).

Future

When Simulink Release 2012a is available, fur-
ther TRACE32 functions will be possible in Simulink.
Lauterbach will use the improved functionality of the
Simulink rtiostream API to integrate a PIL simulation,
data logging, and parameter tuning.

MATLAB® and Simulink® are registered trademarks of
The MathWorks, Inc.

www.lauterbach.com16

A new TRACE32 extension for the Atom™ De-
bugger provides a complete debug capability of
Insyde’s H2O UEFI BIOS.

UEFI is the successor to the traditional PC BIOS. It
functions as an interface between firmware and oper-
ating system managing the boot process. From power-
on to takeover by the operating system, UEFI runs
through various, clearly distinguished phases (see
figure 21).

As it is a JTAG-based tool, TRACE32 allows debug-
ging to start from the reset vector.

In each phase of the boot process, the PowerView
user interface provides special windows which show
UEFI specific information. Functions and prepared
scripts enable debugging of dynamically loaded
drivers starting from the first instruction. For more
information about the new UEFI extension, go to
www.lauterbach.com/uefi.html.

UEFI BIOS Debugging with TRACE32

Board
Init

Device,
Bus, or
Service
Driver

Chipset
Init

?

OS-Absent
App

Transient OS
Environment

Transient OS
Boot Loader

Boot Services
Runtime Services

Final OS
Environment

OS-Present
App

Security
Pre-EFI

Initialization
Environment

Driver
Execution

Environment

Boot
Device

Selection

Transient
System Load Runtime Afterlife

ve
ri

fy

security

Power on Platform initialization OS boot Shutdown

DXE
Dispatcher

CPU
Init

Pre
Verifier

Final OS
Boot Loader

Boot
Dispatcher

Fig. 21: System boot process with UEFI.

WORLDWIDE BRANCHES

		•		USA
		•		Germany

 •		France
 •		UK
 •		Italy
 •		China
 •		Japan

Represented by experienced
partners in all other countries

16

		•		USA
		•

Represented by experienced
partners in all other countries

KEEP US INFORMED

If your address has
changed or if you
no longer want to
be on our mailing
list, please send
us an e-mail to:

info_us@lauterbach.com

KEEP US INFORMED

Security researchers warn that at-
tacks against supervisory control
and data acquisition (SCADA) sys-

tems could cripple critical infrastructure
services. SCADA networks encompass
computers and applications that per-
form key functions in providing essen-
tial services and commodities such as
electricity, natural gas, gasoline, water,
waste treatment, and transportation—
all part of the nation’s critical infra-
structure. The first step in safeguarding
our critical infrastructures is in identify-
ing system vulnerabilities.

Even though SCADA systems have
been used for a decade to monitor and
control critical equipment at power
companies, manufacturing facilities, wa-
ter treatment plants, and even building
automation, not until recently has the
focus been on security and the vulnera-
bilities of such systems.

SYSTEM VULNERABILITIES
Digital Bond, a consulting firm special-
izing in control-system security, has
found that the latest vulnerabilities
mostly exist in free or low-cost Win-
dows-based engineering work-stations
that are used as graphical user interfaces
to back-end control systems. SCADA
systems such as Siemens are deployed
widely in critical infrastructures.

Siemens reported last year that a
Stuxnet worm was released for the pur-
pose of stealing industrial secrets, dis-
turbing operations and infecting some
14 nuclear plants. The worm leveraged a
previously unknown Windows vulnera-
bility (now patched) that allowed it to
spread from computer to computer,
typically via USB sticks. In today’s times,
it has become increasing apparent that
attacks on vulnerable SCADA systems
can wreak havoc.

Cambashi analyst Christine Easter-
field agrees and advises that you “con-
sider operational procedures, staff, and
other factors. For example, staff need to
be trained in secure practices and made
aware of the risks to which they may ex-
pose critical systems.”

Blue Pillar, a provider of energy as-
sets management software, confirmed
Cambashi’s operational procedures and
staff concerns and believes that with the
exception of the IT staff, the operational
and energy management staff does not
even have energy asset security on their
radar as a security concern. The reality is
that they either rely 100% on physical
security or they have to rely on the unse-
cured and open industrial automation
implementations running Modbus
TCP-IP throughout their networks.

According to Kyle Zeronik, Blue
Pillar’s VP of Information Technology,
it’s critical to secure the SCADA from
top to bottom. “We secure critical pow-
er infrastructures right down to secur-
ing the messaging within our architec-
ture to limit the conversations to only
the devices with appropriate creden-
tials and authorizations. We manage
site-site communication including In-

ternet security and encrypted messages
transmitted over secure channels. De-
vice level communications is managed
via 256-bit AES (FIPS-197 certified)
encryption.”

SECURITY CHECKS AND BALANCES
Any facility with a connection to the
SCADA system should conduct a physi-
cal security survey and inventory access
point check. It’s imperative to identify
and assess any source of information in-
cluding remote telephone, computer
network, and fiber optic cables that
could be tapped; radio and microwave
links that are exploitable; computer ter-
minals that could be accessed; and wire-
less local area network access points.
The goal is to identify and eliminate sin-
gle points of failure.

The National Infrastructure Protec-
tion Plan Program works with several
government agencies in the area of cy-
ber security to ensure the integrity and
availability of the nation’s cyber infra-
structure. In addition, the National Su-
pervisory Control and Data Acquisition
(SCADA) Test Bed is a DOE Office of
Electricity Delivery and Energy Reliabil-
ity (OE)-sponsored resource to help se-
cure our nation’s energy control sys-
tems. It combines state-of-the-art
operational system testing facilities with
research, development, and training to
discover and address critical security
vulnerabilities and threats to the energy
sector. ■

Eric Marks is the industry practice leader
for PricewaterhouseCoopers. He holds a
bachelor of mathematics in computer sci-
ence from the University of Waterloo and
an MBA in strategic management and
marketing from The Wharton School of
the University of Pennsylvania.

Not in Kansas anymore: Securing SCADA

analyst’s
corner

SCADA is not secure, but
what can be done to
establish security?

!

 www.embedded.com | embedded systems design | APRIL 2012 11

This excerpt is from a longer article at
www.eetimes.com/4238057.

12 APRIL 2012 | embedded systems design | www.embedded.com

ESC classroom

David Kalinsky is a teacher of
intensive short courses on embed-
ded systems and software develop-
ment for professional engineers.
One of his popular courses is
“Introduction to Software Security
for Embedded.” His courses are
presented regularly in open-class
format at technical training
providers in international locations
such as Munich, Singapore,
Stockholm, and Tel-Aviv, as well as
in his “home market” of the USA.
See www.kalinskyassociates.com.

Speaker

I
was preparing for a trip to the Eastern European city
where my parents had lived as children. I had never
been there. I googled the name of the city, and was
quickly led to a story that was surprising and chilling:
A high school student there had modified a TV remote
control so that it could control the city’s tram system—
thus converting the urban railways into his own

Even if your device is not connected to
the Internet, you need to protect it

from malicious attacks. Here are some
simple protections you can institute to
make your system more impenetrable.

BY DAVID KALINSKY

giant model train set. While switching
tracks using his infrared gadget, this kid
caused trams to derail. Twelve people
were injured in one derailment.1

Recently, new terms like Stuxnet
and Duqu have entered our lexicon.
Embedded systems including those that
do supervisory control and data acqui-
sition (SCADA) are under relentless se-
curity attacks.

Many embedded software develop-
ers feel that embedded systems securi-
ty should be handled at the systems-
engineering level or by the hardware
that surrounds their software. And in-
deed many things can be done at those

levels, including:

• Secure network communication
protocols.

• Firewalls.

• Data encryption.

• Authentication of data sources.

• Hardware-assisted control-flow
monitoring.

But these traditional techniques
aren’t enough, as was frighteningly de-
scribed at last year’s DesignCon East
2011 talk “Strong Encryption and Cor-
rect Design are Not Enough: Protecting
Your Secure System from Side Channel

Security fundamentals
for embedded software

 www.embedded.com | embedded systems design | APRIL 2012 13

Attacks.” The speaker outlined how
power consumption measurements,
electromagnetic leaks, acoustic emis-
sions, and timing measurements can
give attackers information they can
use to attack your embedded device.

Clearly then, system-level and
hardware defenses are not enough.
Most security attacks are known to ex-
ploit vulnerabilities within application
software. Vulnerabilities are intro-
duced into our embedded systems dur-
ing software design and development.
Since system-level and hardware defens-

es against security attacks are far from
perfect, we need to build a third line of
defense by dealing with vulnerabilities in
our application software.

While our software line of defense
will surely be less than perfect, we
need to work on that line of defense
with the immediate objective of reduc-
ing the size of the “attack windows”
that exist in our software. The very
first step in doing this is to try to think
like an attacker. Ask how an attacker
could exploit your system and your
software in order to penetrate it. You
might call this a threat analysis. Use
the results to describe what your soft-
ware should not do. You might call
those abuse cases. Use them to plan
how to make your software better re-
sist, tolerate or recover from attacks.

Don’t forget that our attackers have
a big advantage when it comes to em-
bedded systems: Most embedded soft-
ware has severe execution time con-
straints, often a mixture of hard
real-time and soft real-time tasks. This
coaxes us to design application software
that is “lean and mean,” by reducing to
a minimum intensive run-time limit
checking and reasonableness checking
(for example, invariant assertions) in
order to meet timing requirements.
Our attackers have no such execution
time constraints: They are perfectly
happy to spend perhaps weeks or
months researching, preparing, and
running their attacks—possibly trying
the same attack millions of times in the
hope that one of those times it might
succeed, or possibly trying a different
attack each day until one hits an open
“attack window.”

HOW CAN ATTACKERS ATTACK VIA
OUR OWN SOFTWARE ?
Quite often embedded software develop-
ers dismiss the issue of embedded soft-
ware security, saying: “Hey, our device
will never connect to the Internet or to
any other external communication link.
So we’re immune to attack.” Unfortu-
nately, this is naïve and untrue. I’d like
to present a counterexample:

Many embedded devices use analog-
to-digital-converters (ADCs) for data
acquisition. These ADCs may be sam-
pled on a regular timed basis, and the
data samples stored by application soft-
ware in an array. Application software
later processes the array of data. But an
attacker could view this in a totally dif-
ferent way: “What if I fed the ADC with
electrical signals that, when sampled,
would be exactly the hexadecimal repre-
sentation of executable code of a nasty
program I could write?” In that way, the
attacker could inject some of his soft-
ware into your computer. No network or
Internet needed.

Seems like a lot of work to build an
“ADC Code Injector” device just for this
purpose. But the attacker might not be
just a high-school kid. He might be a big
industrial espionage lab, or a large, well-
funded team working at the national
laboratory of a foreign government.

Now, how could he get your proces-
sor to execute his program that he’s in-
jected? He might gamble that your soft-
ware stores the ADC data array on a
stack (perhaps using alloca() or mal-
loca()). If his luck is good, he could
cause an array overflow, possibly by
toying with the hardware timer that
controls the ADC data sampling. A typ-
ical normal stack layout is shown in
Figure 1.

If the attacker succeeds in causing an
array overflow, the stack could become
corrupted, as shown in Figure 2 below.
Note that “return address” was stored on
the stack at a location beyond the end of
the array.

If the attacker plans the corruption
just right, the overflow will reach the lo-
cation on the stack where the current re-

14 APRIL 2012 | embedded systems design | www.embedded.com

ESC classroom

Typical normal stack layout.

Figure 1

Frame
pointer

(FP)

Stack
pointer

Memory
growth

Stack
growth

Previous
stack
frame

Arguments

Return address

Saved FP

ADCdata[256]

Stack is corrupted after array overflow.

Figure 2

Previous
stack
frame

Arguments

Corrupted
return address

Attack code

If an attacker succeeds in
breaking into software run-
ning at a high level of privi-
lege, immediately your
attacker will be operating at
a high level of privilege too.

!
!
!

 www.embedded.com | embedded systems design | APRIL 2012 15

turn address was stored. This can be
used to insert into this stack location a
pointer to his own code. As a result,
when “Return Address” is used by your
code, control will pass to the attacker’s
code. Suddenly his code is executing on
your processor, instead of your code.

This is called a stack smashing attack.
Please note that it was done in this ex-
ample without an Internet connection,
and without a connection to any exter-
nal communication line.

Of course, it could have been helpful
for our attacker to have the source code
for your embedded software—as a dis-
gruntled ex-employee might. But I think
a patient and resourceful attacker team
could develop this kind of attack even
without your source code.

Can you think of an easier way for
an attacker to develop an attack on
your current project ?

WHAT’S SW DEVELOPER TO DO?
During embedded systems software de-
sign, you can enhance software security
by keeping several fundamental ideas in
mind:2

Mindframe #1:
Distrustful decomposition
Separate the functionality of your soft-
ware into mutually untrusting chunks, so
as to shrink the attack windows into
each chunk. (In embedded software, we
sometimes call these chunks processes or
subsystems or CSCIs.)

Design each chunk under the as-
sumption that other software chunks
with which it interacts have been at-
tacked, and it is attacker software rather
than normal application software that is
running in those interacting chunks. Do
not trust the results of interacting
chunks. Do not expose your data to oth-
er chunks via shared memory. Use or-
derly inter-process communication
mechanisms instead, like operating sys-
tem message queues, sockets, or TIPC
(Transparent Inter-process Communica-
tion). Check the content you receive.

As a result of mutually untrusting
chunking, your entire system will not

be given into the hands of an attacker
if any one of its chunks has been com-
promised.

Mindframe #2: Privilege separation
Keep to a minimum the part of your
code that executes with special privilege.

Think about it for a moment: If an
attacker succeeds in breaking into soft-
ware that’s running at a high level of
privilege, immediately your attacker
will be operating at a high level of priv-
ilege too. That’ll give him an extra-
wide open “attack window” into your
system.

So let’s avoid running application
software in kernel mode, or master
mode, or supervisor mode, or whatever
your particular CPU architecture may

call it. Leave that mode for operating sys-
tem use only. Run your application soft-
ware strictly in user mode. This will en-
list your CPU hardware in efforts to limit
your software’s attack window.

Mindframe #3:
Clear sensitive information
Clear every reusable resource when
freeing it.

Think about it: After you’ve re-
leased the resource, be it a RAM buffer
or a software-hardware interface data
register, the next user of the very same
resource might be an attacker. Embed-
ded system attackers enjoy “phishing”
these resources, just as much as Inter-
net attackers enjoy phishing. Wouldn’t
they be overjoyed to read whatever data
you had been working on in the buffer,
or to read the data you’ve just given to
hardware for output!

Some of us would say these
are bugs. But I’d like to call
them vulnerabilities here . . .
Small vulnerabilities can
open the window to huge
attacks.

!
!
!

Most resource release services in
embedded environments simply mark
the newly freed resource as “available.”
They leave the old information con-
tained in the resource potentially visi-
ble to new users, trusting the new user
to over-write the old content rather
than reading it. This is done since it’s
much faster than explicitly nulling out
the resource.

So when an application is done with
a resource, it’s up to the application to
prepare for releasing the resource by first
zeroing out each and every:

• Heap buffer, memory pool buffer,
memory partition segment.

• Statically-allocated memory buffer.

• Released stack area.

• Memory cache.

• File in a file system.

• Hardware interface data register,
status register, control register.

WHAT CAN BE DONE DURING
CODING?
During embedded systems program-
ming, developers can augment software
security by avoiding a number of com-
mon software security vulnerabilities.

Some of us would say these are
bugs. But I’d like to call them vulnera-
bilities here, to emphasize that some
tiny software “defect” that might be
too minor even to be called a bug—
might be just what an attacker is look-
ing for in order to mount his attack on
your embedded system. Small vulnera-
bilities can open the window to huge
attacks.

Vulnerability #1: Buffer overflow
Far and away, the most widespread secu-
rity vulnerability in C-language coding
is buffer overflow. It could be as simple
as writing into element number 256 of a
256-element array.

Compilers don’t always identify
out-of-bounds buffer access as a soft-
ware defect. Yet buffer overflow can
lead to more serious consequences,
such as stack smashing that was dis-
cussed earlier, code injection, or even
arc injection—by which an attacker
changes the control flow of your pro-
gram by modifying the return address
on stack. In arc injection, an attacker
doesn’t even have to inject any code,
and he can jump to an arbitrary func-
tion in existing code, or bypass validity
checks or assertions.

Here’s an example of a buffer over-
flow attack: An embedded device is re-
quired to measure the temperature of
water in a swimming pool and to display
a histogram showing the percentage of
time that the water is at various temper-
atures. The software developer creates an
array of 100 positive integers, each ele-
ment corresponding to one degree Cel-
sius. Element 0 for 0°C. Element 1 for
1°C, etc. Each time the temperature sen-
sor makes a water temperature measure-
ment, the corresponding element of the
array is incremented by 1.

Remember, this is a swimming pool
to be used by humans. So the program-

mer feels safe and secure in designing
his temperature array with lots and lots
of room beyond the range of water
temperature values that a human body
can tolerate.

Until one day, an attacker pulls the
temperature sensor out of the water
and heats it up using a cigarette lighter.
As soon as the sensor measures a value
greater than 100°C, the histogram up-

date software corrupts an address in
memory beyond the end of the temper-
ature array. If there’s data there, the at-
tacker will have corrupted the data. If
there’s machine code there, the attacker
will have corrupted the executable soft-
ware. In either case, this is a damaging
attack. Please note (once again) that it
was done without an Internet connec-
tion, and without a connection to any
external communication line. Just a cig-
arette lighter.

How can we avoid buffer overflows?
This vulnerability is so widespread (and
so widely sought-after by attackers),
that a multipronged approach is best:
prevent, detect, and recover. Prevent
buffer overflows by careful input vali-
dation: check that a temperature sensor
is reporting a value within bounds. In
our swimming pool example, explicitly
check that it’s not reporting a tempera-
ture that corresponds to ice or to super-
heated vapor (> 100°C).

Prevent buffer overflows also by
avoiding dangerous library functions
(like gets()) and exercising extra care
with others (like memcpy()).

Detect buffer overflows by using the
idea of “paint”: Extend the buffer
slightly at both ends. Fill the extension

16 APRIL 2012 | embedded systems design | www.embedded.com

ESC classroom

Please note (once again)
that it was done without an
Internet connection, and
without a connection to any
external communication
line. Just a cigarette lighter.

!
!
!

ESC 2012 CLASSES
DAVID KALINSKY

Dave Kalinsky will teach four
classes at ESC/DESIGN West in
March, 2012. Also look for class-
es he will be teaching at
ESC/DESIGN East in Boston this
year.

ESC-101: Software Design for
Multicore Systems—
2012 EDITION
8:00 AM to 12:00 PM,
March 26

ESC-402: Is Static Code
Analysis Ready for Real-time?
3:15 PM–4:15 PM,
March 29

Speaker

areas with unusual content I call
“paint”; for example, a trap instruction
in your processor’s machine language.
Then check the paint repeatedly at run
time. If the paint has been over-written,
you’ve detected a buffer overflow.

Vulnerability #2: Pointer shenanigans
If an attacker can modify a data pointer,
then the attacker can point to wherever
he likes and write whatever he likes. If an
attacker can over-write a function point-
er, the attacker is well on his way to exe-
cuting his code on your processor.

Vulnerability #3: Dynamic memory al-
location flaws
It’s so easy to write defective code for
dynamic memory allocation, that the
use of dynamic memory allocation is
forbidden in many embedded aero-
space and safety-critical systems. Of
course, attackers are eager to search
out these defects, as they also represent
golden opportunities for them to
violate the security of an embedded
system.

Common flaws include double-free-
ing, referencing of freed memory, writ-
ing to freed memory, zero-length alloca-
tions, and buffer overflows (again).

A flaw that is particularly sensitive
in embedded software, is neglecting to
check the success or failure of a mem-
ory allocation request. Some memory
allocators will return a zero instead of
a pointer to a memory buffer, if they
run out of available memory. If appli-
cation software treats this zero as a
pointer, it will then begin writing to
what it thinks is a buffer starting at
memory address zero.

Many an attacker would be happy
to have your software do this. Attackers
know that embedded systems tend to
be tightly memory constrained. They
will try to make a system run out of
memory by doing whatever they can to
force your memory allocator to allocate
more memory than usual—perhaps by
leaking memory, possibly leaking it into
some code they’ve injected. They may
also try to flood your data-acquisition

system with higher than normal vol-
umes of data or higher rates of data—
in the hope that the avalanche of data
will exhaust your memory capacity.
And then … if your software asks for a
buffer but neglects to check for alloca-
tion failure, it will begin writing a
buffer at address zero—trampling upon
whatever was there. For example, if
your interrupt enable/disable flags hap-
pen to be at that address, this could

turn off the connection between soft-
ware and peripheral hardware inter-
faces. Essentially, this could dis-embed
your embedded system.

Vulnerability #4: Tainted data
Data entering an embedded system
from the outside world must not be
trusted. Instead, it must be “sanitized”
before use.

This is true for all kinds of data
streams as well as even the simplest of
integers. Attackers are on the lookout for
extreme values that will produce abnor-
mal effects. In particular they’re looking
for unexpected values, like situations
where a digital microprocessor would
give a different result from what a hu-
man would calculate using pencil and
paper. For example, an integer ‘i’ hap-
pens to have the value 2,147,483,647. If I
were to add 1 to this value in a back-of-
the-envelope calculation, I’d get
+2,147,483,648. But if my microproces-

 www.embedded.com | embedded systems design | APRIL 2012 17

ESC classroom

Free Evaluation Kits: www.smxrtos.com/eval
Free Demos: www.smxrtos.com/demo

You’ve found it. Our software is built to
run right out of the box—no integration
required—and we provide full support for
popular tools. With Micro Digital you have
low-cost, no-royalty licensing, full source
code, and direct programmer support. So
get your project off to the right start. Visit
www.smxrtos.com/processors today.

Looking for the
right software for
your processor?

SMX® RTOS
BSPs
Device Drivers
Kernel Awareness
Simulator

TCP/IP
FAT File System
Flash File System
GUI
C++ Support

USB Device
USB Host
USB OTG
WiFi
Floating Point

www.smxrtos.com
R T O S I N N O V A T O R S

ARM • Cortex • ColdFire • PowerPC • x86 • IAR EWARM • CrossWorks • GCC • CodeWarrior

Data entering an embedded
system from the outside
world must not be trusted.
It must be “sanitized”
before use. This is true
for even the simplest of
integers.

!
!
!

sor were to execute i++, it would get
-2,147,483,648 (a large negative num-
ber). It wouldn’t take long for a clever
attacker to leverage this kind of quirk
into some kind of havoc in an embed-
ded system.

A useful technique for data saniti-
zation is called white listing. It involves

describing all possible valid values for a
given piece of data and then writing
code that only accepts those values. All
unexpected values are viewed as “taint-
ed” and are not used.

MORE TO EXPLORE
Clearly the concepts of software securi-
ty for embedded systems are not limit-
ed to three design “mindframes” and

four coding “vulnerabilities.” Attackers
are a creative bunch, always finding
new ways to threaten the security of
our software and systems. The story of
software security is incessantly chang-
ing. One way to keep up is to visit a
website called CWE—Common Weak-
ness Enumeration (http://cwe.mitre.
org/) that keeps a continually updated
list of software weaknesses for
security.3 Most of them are as relevant
for embedded software as for non-em-
bedded software. I’d start at their “Top
25 Most Dangerous Software Errors”
list, which is updated each year.

We’ve seen several ways that a de-
termined attacker can undermine an
embedded system—even one without
an Internet connection, and without a
connection to any external communi-
cation line. We’ve also seen that embed-
ded software designers and program-
mers can contribute an additional layer
of defense against malicious attacks, be-
yond what can be done at system-level
and in hardware. The embedded soft-
ware community needs to be alert to
the special “mindframes” and “vulnera-
bilities” involved in this new challenge
to our embedded systems. ■

David Kalinsky is director of customer
education at D. Kalinsky Associates—

Technical Training, a provider of inten-
sive short courses on embedded systems
and software development for profes-
sional engineers. He is a popular lectur-
er and seminar leader on technologies
for embedded software in North Ameri-
ca, Europe, and Israel. In recent years,
David has built high-tech training pro-
grams for a number of Silicon Valley
companies, on various real-time operat-
ing systems and other aspects of soft-
ware engineering for the development
of real-time and embedded systems. Be-
fore that, he was involved in the design
of many embedded medical and aero-
space systems. David holds a Ph.D. in
nuclear physics from Yale University.
Contact him through www.kalinskyasso-
ciates.com.

ENDNOTES
1. “Daily Telegraph” newspaper London

UK, “Schoolboy hacks into city’s tram
system.” The city: Lodz, Poland. The
date: 11 Jan. 2008.

2. Dougherty, C., K. Sayre, R.C. Seacord, D.
Svoboda, and K. Togashi. “Secure Design
Patterns,” CERT Program, Software En-
gineering Institute, Carnegie Mellon
University, Pittsburgh PA, Technical Re-
port CMU/SEI-2009-TR-101, ESC-TR-
2009-010.

3. CWE’s “Common Weakness Enumera-
tion,” The MITRE Corporation, Bedford
MA, cwe.mitre.org.

18 APRIL 2012 | embedded systems design | www.embedded.com

ESC classroom

TRACE32®

A determined attacker
can undermine an
embedded system—even
one without an Internet
connection, and without a
connection to any external
communication line.

!
!
!

Embedded systems designers can protect sensitive data that’s on
a device’s hard drive (data-at-rest) by using encryption techniques.

Enhance system security
with better data-at-rest

encryption
BY DAVID KLEIDERMACHER, GREEN HILLS SOFTWARE

I

www.embedded.com | embedded systems design | APRIL 2012 19

feature

targets, architectural design plans, per-
sonal identification information (name,
address, Social Security number), and
medical records—including blood-test
results and a cancer diagnosis.

When asked whether this could be
prevented, one copier company said that
customers could purchase a $500 option
that will erase copied images from the
hard drive after use. Give the guy who
wrote those couple lines of code a bonus!

Another obvious solution to this
problem is data-at-rest protection.
Data-at-rest protection is a when data
stored on a device and not in transit,
known as data at rest, is either encrypt-
ed or follows certain protocols that in-
clude encryption to protect the data
from unauthorized access. The storage

media for an embedded system may in-
clude hard disk drives, flash memory,
and attached USB thumb drives. As wit-
nessed by the photo copier story, seem-
ingly benign, mundane office equip-
ment is often vulnerable and not
protected. On the other hand, many
modern embedded systems do have en-
crypted storage-protection require-
ments, driven by intellectual property
protection, digital rights management,
sensitive customer information, and
more. Compliance regulations in certain
industries require that sensitive stored
data be protected with appropriate data-
protection protocols that include en-
cryption. See sidebar for examples.

This article discusses approaches for
protecting data-at-rest.

n 2010, the television network CBS aired a program demonstrat-
ing how discarded office copiers are gold mines for private infor-
mation, trivially harvested from disk drives within the machines.1

From copiers randomly selected from a used copier warehouse,
investigators recovered lists of wanted sex offenders, drug-raid

CHOOSING THE STORAGE LAYER
As shown in Figure 1, developers may
choose from multiple layers in the data-
storage stack to apply data-at-rest pro-
tection protocols.

Hardware layer: With full-disk en-
cryption (FDE), the entire medium used
for storage is encrypted. All the data
that goes on the storage medium is en-
crypted, including certain hidden files,
such as the operating system’s tempo-
rary files and swap space. The advan-
tage is such files are not exposed. How-
ever, the drive itself is not encrypted,
leaving the master boot record exposed.

When FDE is handled within the
medium peripheral itself, it’s referred to
as a self-encrypting drive (SED). SEDs are
common in the laptop market. The ad-
vantage of SEDs for the embedded sys-
tems developer is that little or no new

software must be written to take advan-
tage of the data-protection facilities. En-
cryption is performed with specialized
hardware within the storage device, of-
floading the main embedded applica-
tions processor. If self-encrypting stor-
age media is feasible, it’s an excellent
choice due to ease of use, excellent per-
formance, and the ability to hide the
storage encryption key from the main
applications processor and memory. Un-
fortunately, many embedded systems
will be unable to use the available stand-
alone SED products due to form-factor
limitations.

Block manager layer: Encryption
can be performed at the next level up,
the device-management layer, typically
a block-oriented driver. Protection at
this level may cover the entire managed
device (FDE). The performance impli-
cations of this approach vary. If the em-
bedded platform contains a symmetric
encryption accelerator, the overhead is
likely to be reasonable, while a purely
software cryptographic implementation
may cause a dramatic loss in perform-
ance. Embedded systems developers can
architect the encryption facilities such
that the device driver calls out to generic
medium block encryption routines, en-
suring that software is easier to main-
tain across different generations of the
embedded product that may use differ-
ent types of storage.

File system layer: The next candi-
date for data-at-rest protection is the
file system. The major advantage of im-
plementing storage protection at the
file system layer is to provide finer
granularity over the choice of informa-
tion that requires storage confidentiali-
ty. This is especially important if en-

cryption is performed in software with
minimal or no hardware acceleration.
Depending on the file system imple-
mentation, developers may be provided
options for encryption at the volume
level or at the individual file level.

Applications layer: Finally, applica-
tions can add their own data protec-
tion, either using underlying file-system
encryption features or a custom imple-
mentation. For example, an audit log-
ging application can encrypt its audit
records prior to calling the standard file
system output functions.

For volume, file, or application-lev-
el data protection, developers can em-
ploy separate keys for these groups of
data rather than a single key for the en-
tire system. This is a sensible applica-
tion of “least privilege” principles.

Developers resorting to custom, ap-
plication-level approaches will also need
to design their own key-management
system, whereas users of encrypting file
systems or SEDs can use the key-man-
agement framework provided by the
product supplier.

WHICH ENCRYPTION ALGORITHM?
Data-at-rest presents some unique
challenges for encryption algorithms
relative to network security protocols.

For data-at-rest protection, an en-
cryption algorithm must be performed
without adding additional storage space:
A plaintext media block is encrypted in
place, generating a ciphertext block of
the same size. The most basic encryption
mode, electronic code book (ECB),
would provide this memory conserva-
tion but is not suitable for data-at-rest
encryption since any two same plaintext
blocks will encrypt to the same cipher-

20 APRIL 2012 | embedded systems design | www.embedded.com

feature

Data-at-rest protection choices by layer.

Figure 1

Example: Encrypted mail folders

Example: Encrypted file system (EFS)

Encrypting device driver

Self-encrypting drive

Data-at-rest protection choic

Application

File system

Block manager

Figure 1

Hardware

 Tweakable block cipher overview.

Figure 2

Block encryption algorithm
e.g. AES-ECB

TweakKey

Plaintext block

Ciphertext block

COMPLIANCE REGULATIONS

• Medical sector: the Health
Industry Portability and Ac-
counting Act (HIPAA) requires
that patient data stored within
medical devices is protected.

• Financial sector: the Pay-
ment Card Industry (PCI) data
security standard (PCI DSS) re-
quires the protection of credit
card information within finan-
cial processing systems.

• Government and security-
conscious enterprises:
Data-at-rest protection within
smartphones and tablets is a re-
quirement if handhelds are
used for the processing of sen-
sitive information.

text, making it easy for an attacker to
find patterns in the data and potentially
derive information. We must consider
other modes, most of which require an
initialization vector (IV). However, to
avoid space expansion, the data-protec-
tion system must include a means for
implicitly deriving this IV.

Implicit IV derivation poses a sur-
prisingly difficult challenge for common
encryption modes. Many modes require
uniqueness: The same IV must never be
reused for a particular key. For example,
with counter mode, a predictable counter
can be used, but the same number can
never be repeated for a given key. For ci-
pher block chaining (CBC) mode, a
unique and unpredictable number must
be used. Network security protocols have
the freedom to generate the IV and send
it along as part of the transmitted data;
for the Advanced Encryption Standard
with CBC (AES-CBC), each transmission
can generate a new random number for
the IV and transmit this IV to the receiv-
er. But for data-at-rest, we have no room
to store the IV for subsequent decryption.

The obvious source for an implicit
IV would be the sector number and off-
set for a particular data block. Using this
combination provides every disk block
with a unique input value. However, as
data is read and written over time, the
same sector and offset are reused for the
same key. This implies a serious weak-
ness in the applicability of common en-
cryption modes for data-at-rest protec-
tion. Numerous other weaknesses of
common modes, especially CBC, have
been identified when applied to data-at-
rest protection protocols. Clemens
Fruhwirth has written an excellent pa-
per discussing these weaknesses.2

TWEAKABLE CIPHERS
The good news is that cryptographers
have worked diligently to address this
encryption mode challenge. Liskov,
Rivest, and Wagner introduced the con-
cept of a tweakable block cipher in
2002.3 The basic idea of a tweakable ci-
pher is to apply the IV concept to the
single-block cipher itself rather than to a
chaining mode built on top of the block

cipher. As shown Figure 2, the block ci-
pher converts a plaintext block to a ci-
phertext block, using both the tradition-
al key as well as the tweak as inputs.

The practical application of tweak-
able ciphers for the data-at-rest protec-
tion problem is the property that the ci-
pher’s security doesn’t preclude reuse of
the IV; thus, media sector number and
block offset within the sector provide a
perfect fit for tweak selection.

XTS-AES
In 2007, IEEE’s Security in Storage
Working Group (SISWG) published
standard P1619.4 The IEEE P1619 stan-
dard defines the XTS-AES cipher mode
as a result of a thorough study of nu-
merous potential tweak-based algo-
rithms for use in data-at-rest protection.

This choice is further bolstered by
NIST in “Special Publication 800-38E”,
which approves the XTS-AES cipher
mode and references its definition in
IEEE P1619-2007.5 NIST has also
amended FIPS 140-2 to include XTS-AES
as an approved cipher for validation.6

The tweak algorithm found in XTS-
AES is based on and almost identical to
the one originally created by noted
cryptographer Phillip Rogaway, called
XEX.7 In addition to strong security,
XEX (and hence XTS-AES) are also de-
signed for efficiency when applied to
storage of many sequential data blocks
(as is common with file storage).

The XTS-AES block cipher is depict-
ed in Figure 3. Oddly this cipher requires
twice the keying material; for 128-bit se-
curity, 256 bits of key must be used. The
first half of the key is used to process the
plaintext; the second half is used to en-
crypt a 128-bit representation of the sec-
tor number, which acts as the primary
tweak, as shown in Figure 3. The result
of this encryption is fed to a function
that performs a Galois field multiplica-
tion (implemented as a sequence of shifts
and XORs) of the encryption result with
a Galois constant derived from the sec-
ondary tweak, the numeric index of the
data block within the sector.

The result of this Galois multiplica-
tion is used twice. First it’s added (XOR)

to the plaintext block, which is then en-
crypted with the first key half. The Ga-
lois result is added (XOR) again to the
plaintext block encryption result to cre-
ate the final ciphertext block.

Decryption is similar; however,
while the AES-ECB decryption algo-
rithm is used to process the ciphertext,
the tweak cipher remains the same, us-
ing the AES-ECB encryption algorithm.

In practice, data is stored to media
in sectors. Therefore, the block encryp-
tion algorithm shown earlier must be
executed in a loop across the entire sec-
tor. Note that while XTS-AES handles
partial blocks, that part of the algorithm
is often unnecessary. For example, the
common sector size of 512 bytes will re-
sult in 32 block encryptions, and most
media-management layers will access a
full sector at a time. For such a system,
given a function, xts_encrypt, which
takes the sector number and size in
bytes, plaintext block, and encryption
key as input, the simple code sequence in
Listing 1 handles the sector encryption.

It’s also easy to see from this code se-
quence that XTS-AES is parallelizable. If
the embedded system contains an AES
hardware accelerator (especially one that
has direct support for XTS mode), this
implementation should be modified to
take advantage of the accelerator’s ability
to process multiple AES blocks at once.
Furthermore, if the media allows for sec-
tor size configurability, developers may
want to vary the sector size to see if bet-

www.embedded.com | embedded systems design | APRIL 2012 21

feature

The XTS-AES data-at-rest encryption cipher.

Figure 3

GFmul

AES-ECB

Ciphertext block

Plaintext
block

+

Sector number (Tweak1)

GFmul

AES-ECB

Block offset
(Tweak2)

AES-ECB

+

Key1

Key2

ter throughput (potentially at the ex-
pense of slightly reduced space efficien-
cy) can be achieved.

When selecting data-at-rest protec-
tion products, avoid legacy approaches
that use weaker modes (numerous CBC-
based implementations have been com-
mercialized). Employ the NIST- and
FIPS-approved standards instead.

MANAGING THE KEY
The primary purpose of data-at-rest pro-
tection is to ensure that information re-
siding on lost or stolen media cannot be
accessed by unauthorized parties who
must be assumed to have complete phys-
ical access to the disk. Thus, the symmet-
ric storage encryption key must never be
stored in the clear on the disk. However,
it’s often necessary to store an encrypted
copy of the symmetric key on the disk
(or perhaps an attached Trusted Platform
Module, if available). The key is un-
wrapped for active use while the system
is executing in an authorized manner.
For personal computers such as laptops
and smartphones, unwrapping is trig-
gered by successful authentication of the
user (such as using a password, smart-
card, biometric, or multiple factors).

GENERATING THE KEY
A typical method of storage encryption
key establishment is to convert user cre-
dentials into a key using a key derivation
function (KDF). A popular KDF used to
convert passwords is the password-based
key derivation function, version 2
(PBKDF2). PBKDF2 is defined in the
RSA Laboratories’ specification PKCS #5
and duplicated in RFC 2898.8,9 PBKDF2
applies a hash function to the password
concatenated with a salt (random bit-
string). To make password cracking more
difficult, the standard recommends that
the hash output be rehashed multiple

times. The recommended minimum
hash iteration count is 1,000, although
the number is expected to increase over
time. Apple’s iOS 4.0 uses 10,000 itera-
tions. In 2010, RIM BlackBerry’s en-
crypted backup service was determined
to be vulnerable due to faulty application
of PBKDF2. Instead of following the
standard, the BlackBerry software used
an iteration count of one.10

When the password is used to di-
rectly generate the storage encryption
key, a change in password changes the
encryption key, thereby forcing re-en-
cryption of the entire protected media.
To avoid this problem, a permanent,
unique encryption key is created when
the media is initially provisioned, and
the key is wrapped (encrypted) with the
password-derived key. With this two-
level keying scheme, a periodic pass-
word change only requires rewrapping
of the encryption key.

The user-authentication approach
may be sufficient for limited types of
attended embedded systems that can
tolerate user intervention whenever the
protected volumes must be unlocked.
Nevertheless, this approach is not suffi-
cient for large classes of unattended
embedded systems. If the embedded
system encounters a fault and automat-
ically reboots, the encrypted volumes
must be able to get back online without
manual credential input.

REMOTE KEY PROVISIONING
We can consider two classes of unattend-
ed embedded systems: those that have a
remote management network interface
and those that do not. For the latter, the
embedded system lacks any mechanism
for dynamic interaction that can unlock
an encryption key. In this case, if infor-
mation value demands data-at-rest pro-
tection, the designer is advised to incor-

porate a cryptographic coprocessor that
provides physical tamper-resistant key
storage and internal execution of the
data encryption algorithm. The device
driver sends plaintext to this encryptor
and receives ciphertext for storage on
disk and similarly requests decryption of
disk blocks as needed.

For network-enabled embedded sys-
tems, a remote management server holds
a database of the provisioned data-en-
cryption keys. A server connection is ini-
tiated by the embedded system whenever
a data-encryption key must be unlocked
(such as at boot time). The embedded
system and server mutually authenticate,
and the server provides a copy of the em-
bedded system’s provisioned data-en-
cryption key over the secured channel.

KEY ESCROW
When implementing a data-at-rest pro-
tection system, developers must consider
key escrow to guard against the possibili-
ty that the authentication information
used to unlock the storage encryption
key will be lost.

There are situations where the sys-
tem owner may need to extract the data
from storage, such as after a system fail-
ure. In most system designs, holding a
copy of the data encryption key in an
off-site secure location is advisable in or-
der to prevent loss of data when the data
encryption key is no longer accessible. If
the embedded system lacks a network
management interface, the internally-
stored key must be exportable onto me-
dia for off-site escrow storage (such as in
a secure vault). If the system supports
network management and remote key
provisioning, developers need to ensure
that remotely provisioned keys are re-
tained on a secure server or copied to
protected offline media.

ADVANCED THREATS
The authentication software that runs to
unlock the encrypted media must itself
be trustworthy and tamper-protected.
For example, the embedded operating
system may incorporate the authentica-
tion function directly. The embedded op-
erating system image (and any preceding

22 APRIL 2012 | embedded systems design | www.embedded.com

Listing 1
sector_encrypt(uint8_t *sector, uint32_t sector_num, uint32_t

sector_size, uint8_t key[])
{

uint32_t i;
assert((sector_size % AES_BLOCK_SIZE) == 0); /* 512 % 16 */
for (i = 0; i < sector_size/AES_BLOCK_SIZE; i++) /* 32x */

xts_encrypt(sector+i*AES_BLOCK_SIZE, key, sector_num, i);
}

feature

boot loaders) is not encrypted; only the
rest of the medium, which contains sen-
sitive files, is protected. If the embedded
operating system is not trusted (such as
at risk of containing malware or vulnera-
bilities that would permit the loading of
malware), the authentication process
could be subverted. For example, a key
logger could record the user’s password,
enabling recovery of the storage encryp-
tion key and all of the encrypted data.

If we assume the embedded operat-
ing system is trustworthy, we still must
ensure that anything executing prior to
launch of the operating system is trust-
ed. This is a good example of the need
for secure boot.

In some cases, the designer may
want the embedded operating system
image to be encrypted. When FDE is in
use and a sophisticated operating system
(such as Linux) resides on the encrypted
disk, pre-boot authentication may be em-
ployed: a small portion of the encrypted
disk contains a mini-operating system
that is booted for the sole purpose of
performing the authentication and un-
locking the medium prior to booting the
full operating system. If the embedded
operating system is a secure microker-
nel, a separate pre-boot authentication
module is not required.

Attacks against pre-boot authentica-
tors have been successfully perpetrated.
For example, the system is booted to a
malicious operating system (such as a al-
ternative booting from an external USB
drive) that tampers with the pre-boot
code to steal the authentication creden-
tials as they are input.11 Secure boot can
prevent this attack as well; the signature
of the modified authenticator will fail to
match the known good version, aborting
the boot process.

Another example of advanced threat
is the cold-boot attack. Unless the embed-
ded system is using a self-encrypting
hard drive where the keys are stored
within the media and never exposed to
the main processor, disk encryption re-
quires that the storage encryption key be
kept in memory (in the clear) while the
system is operational, invoking the en-
cryption and decryption algorithm to ac-

cess data. When the system is turned off,
RAM is unavailable, and the only copy of
the encryption key is itself encrypted. Or
is it? In some systems, RAM is not imme-
diately cleared. An attacker boots the sys-
tem using a malicious operating system
that grabs the plaintext key in RAM. This
attack has been performed successfully.12

Data-at-rest protection within an
embedded system equipped with secure
boot and a trusted operating system im-
pervious to remote attack can still be de-
feated by removing the protected media
and booting it on a different computer
that lacks this secure environment. Bind-
ing the storage encryption key to its in-

tended embedded system platform can
prevent this attack. In this case, the per-
manent storage encryption key is de-
rived (in whole or in combination with
user credentials) from a platform-specif-
ic key, such as a fused one-time pro-
grammable key or TPM key (if applica-
ble). Even if the user’s credentials are
stolen, the storage encryption key can-
not be derived outside of the targeted
embedded platform. The downside of
this extra level of defense is that a hard-
ware failure that prevents access to the
platform credential will render the data
permanently inaccessible (unless the de-
rived storage encryption key itself is se-
curely escrowed).

PROTECT YOUR CUSTOMERS
Embedded systems developers looking
to incorporate data-at-rest protection
into their next designs are faced with a
plethora of design choices and con-
straints. This article provides designers
with an overview of the key issues to
consider. Special considerations for
data-at-rest protection include the use
of government-approved symmetric
encryption algorithms designed specifi-

cally for such applications and proper
management of the long-term keys typ-
ically used for this purpose. ■

Dave Kleidermacher is CTO of Green
Hills Software. He writes a column on
Embedded.com about security issues
and he teaches at the Embedded Sys-
tems Conference.

ENDNOTES
1. Keteyian, Armen. “Digital Photocopiers Loaded

With Secrets” CBSnews.com, dated April 20,

2010 9:35 PM, www.cbsnews.com/2100-18563_

162-6412439.html

2. Fruhwirth, Clements. “New Methods in Hard

Disk Encryption.” Institute for Computer Lan-

guages Theory and Logic Group, Vienna Univer-

sity of Technology, July 18, 2005.

3. Liskov, M., R. Rivest, and D. Wagner. “Tweakable

Block Ciphers,” 2002. MIT and UC Berkeley.

www.cs.berkeley.edu/~daw/papers/tweak-crypto

02.pdf

4. Security in Storage Working Group of the IEEE

Computer Society Committee. IEEE P1619,

Standard for Cryptographic Protection of Data On

Block-Oriented Storage Devices, 2007.

5. National Institute of Standards and Technology

(NIST). “NIST Special Publication 800-38E, Rec-

ommendation for Block Cipher Modes of Oper-

ation: The XTS-AES Mode for Confidentiality

on Storage Devices.” January 2010. csrc.nist.gov/

publications/nistpubs/800-38E/nist-sp-800-38E.pdf

6. Information Technology Laboratory, NIST.

“FIPS Pub 140-2: Security Requirements For

Cryptographic Modules.” csrc.nist.gov/

publications/fips/fips140-2/fips1402.pdf

7. Rogaway, Phillip. “Efficient Instantiations of

Tweakable Blockciphers and Refinements to

Modes OCB and PMAC,” September 24, 2004.

www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

8. RSA Laboratories. PKCS #5 v2.0: Password-Based

Cryptography Standard. March 25, 1999.

9. PKCS #5: Password-Based Cryptography Specifi-

cation Version 2.0; Internet Engineering Task

Force, Request for Comments: 2898; September

2000.

10. NIST National Vulnerability Database, CVE-

2010-3741. http://web.nvd.nist.gov/view/vuln/

detail?vulnId=CVE-2010-3741

11. Turpe, Sven, et al. “Attacking the BitLocker Boot

Process,” Proceedings of the 2nd International

Conference on Trusted Computing (TRUST

2009), Oxford, UK, April 6-8; LNCS 5471,

Springer, 2009.

12. Halderman, J. Alex, et al. “Lest We Remember:

Cold Boot Attacks on Encryption Keys,” Pro-

ceedings of USENIX Security ’08, pp. 45-60.

 www.embedded.com | embedded systems design | APRIL 2012 23

We still must ensure that
anything executing prior
to launch of the operating
system is trusted.

!
!

BY IRFAN CHAUDHRY, MAXIM INTEGRATED PRODUCTS

Here’s a less time-consuming way to maintain magnetic card reader

and card reliability in a variety of noisy electronic environments.

24 APRIL 2012 | embedded systems design | www.embedded.com

feature

in maintaining the reliability of their MCR-based
systems, especially in the face of various levels
and types of electronic noise.

ONE SIZE DOES NOT FIT ALL
One of the most crucial parts of any MCR system
is the magnetic read head (MRH). When a card is
swiped, the MRH converts the stored data in the
card’s magnetic stripe to a voltage. Other MCR
blocks process the converted voltage to extract
the stored data. Large differences in magnetic
field strengths from one card to another and
differences in swipe speeds from one person to
another make designing an MCR a challenging
task.

Adding to the MCR design difficulty are the
MRH data sheets, which do not fully specify the
frequency-dependent components and are often
vague when specifying other key parameters. In
some cases the data-sheet specifications of two

similar heads from two different manufacturers
differ significantly in the list of parameters speci-
fied and those omitted. These differences are es-
pecially troublesome when you are trying to
minimize noise issues in an MCR system and
make designing an optimum card-reading sys-
tem difficult and time-consuming.

This article outlines a strategy to resolve
these specification issues, and then explains how
to overcome the noise issues in an MCR using a
secure microcontroller optimized for the task.
One can certainly use Maxwell’s field equations,
the geometry of the MRH, and the boundary
conditions to predict the MRH output-voltage
behavior. However, this approach is complicated
and provides limited insights for circuit analysis,
design, and debugging. Instead, we propose char-
acterizing the MRH first and then using basic
circuit theory and a simple circuit simulator to
analyze MCR behavior.

Make magnetic card readers

more reliable in noisy

environments

Plastic magnetic swipe cards are the principal means of estab-
lishing personal identity, processing financial transactions,
and proving security level for access to secure corporate and
military installations. Given the ubiquity of magnetic card
readers (MCRs) and the harsh environments in which they’re
used, embedded systems designers face daunting challenges

 www.embedded.com | embedded systems design | APRIL 2012 25

MAGNETIC-STRIPE CARD BASICS
Figure 1 shows a magnetic stripe card
with three tracks. Several ISO/IEC
standards define important card prop-
erties such as the physical size, exact
location of the stripes, magnetic prop-
erties, and magnetic track data struc-
tures.1 Track 1 standards were created
by the International Air Transporta-
tion Association (IATA). Track 2 stan-
dards were created by the banking industry (American Bankers
Association, ABA), and Track 3 standards were created by the
thrift-savings industry.

A two-frequency coherent phase (F2F) technique is used
for encoding the data on magnetic stripe cards. As shown in
Figure 2, the binary data is encoded along the track by magnet-
izing stripe areas with different polarities. The polarity of the
transitions is arbitrary, since only the relative space between the
transitions implies a binary 1 or a binary 0.

A binary 0 is encoded with a two-unit bar magnet, while a
pair of one-unit bars represents a binary 1. Each bit occupies
the same physical length on the stripe. A bit with an additional
flux transition in the middle of its length is a binary 1.

The spectrum of a continuous signal with F2F coding con-
tains two fundamental frequencies, f0 and f1, where f0 is the
fundamental of the square wave for binary 0 and f1 = 2f0 is the
fundamental of the square wave for binary 1, hence the name
F2F. The average amplitude of the binary 0 waveform is twice
that of the binary 1 waveform, A0 = 2A1.

Figure 3 shows the combined spectrum of F2F encoded bi-
nary 0s and 1s normalized to f0. Note that most of the signal
energy resides between f0 and 3 f0. Thus, to get a good approxi-
mation of a rectangular waveform containing a series of F2F
encoded binary 1s and 0s, it is enough to recover the two fun-
damentals (f0 and f1) and the 3rd harmonic of f0.

Moreover, due to varying binary patterns there will be other
components below f0. However, we can see from Fourier analysis
that the amplitudes of these components decrease quickly for
decreasing frequencies. Thus, a bandwidth from 0.5f0 to 3f0 is ad-
equate for recovering an F2F-encoded rectangular waveform.2

To estimate the minimum and maximum bit rates for f0

and f1, we need to know the swipe speed range and the track
recording density. From ISO/IEC standards, the recording den-
sity of Tracks 1 and 3 is 210 bits/in (8.27 bits/mm), while that
of Track 2 is 75 bits/in (2.95 bits/mm).

For calculating f0,min we take the slowest swipe speed sup-
ported and multiply it by the Track 2 density numbers. For
f1,max we pick the fastest swipe speed supported and multiply it
by the density of Tracks 1 or 3.

For target swipe rates of 2in/s to 100 in/s (5cm/s to
254cm/s), the range of f0 and f1 values is calculated as:

Tracks 1 and 3: f0,min = 0.42kbps and f1,max = 42kbps
Track 2: f0,min = 0.15kbps and f1,max = 15kbps

The importance of knowing f0,min

and f1,max will become clear once we
have the MRH model and study its
transfer function.

FUNDAMENTALS OF MAGNETIC
READ HEADS AND CARD READERS
Swiping a magnetic stripe card past a
stationary MRH results in a changing
magnetic flux that produces a moving

electric field. Thus, a voltage is induced at the MRH’s output.
Figure 2 can be used to study the reading process. Starting
from the top, a magnetic stripe moving past an MRH results in
changing flux events that induce a voltage at the MRH’s output
terminals. The open-circuit readback voltage without any elec-
trical losses is given by the well-known expression:3

Where:

• E(–x) = open-circuit voltage.

• K = a constant relating the effects of magnetic-stripe ve-
locity, head width, and the number of coil turns in the
MRH.

• H(x, y) = field function of the read head.

• M[(x-–x), y] = magnetic-stripe material magnetization.

• y1 = spacing from the head to the top of the magnetic-
stripe.

• y2 = spacing from the head to the bottom of the magnetic-
stripe.

E(x) = K
d

dt
H(x, y) M x- x , y dx dy

1

2

y

y

∫ ∫ ()⋅ ⋅ ⎡⎣ ⎤⎦
−∞

+∞

 A magnetic stripe card.

Figure 1

Magnetic Stripe Card

Track-1: IATA, 210 bits/in
Track-2: ABA, 75 bits/in

Track-3: THRIFT, 210 bits/in

S N N S S NS N N S N S S N N S S N

F2F encoding and decoding waveforms.

Figure 2

Writing Reading

Magnetic flux

Magnetic stripe Swipe direction

F2F Form

Binary data
0 0

T T/2 T/2

f1 = 2f0f0

1 0 1 1

Figure 3

Spectrum of F2F-encoded binary 0 and 1.

Binary 0

Binary 1

0 1 2 3 4
ω/ω0

S(
ω

)

5 6 7

1.0

0.75

0.5

0.25

0

Native Parallelism for High-Performance Reduced-Energy Computing

It all Rides On the
Right Technology

TM
Get Pattern Recognition
Right with CogniMem!

$995

Technical Training

Sensor Input

Classification

Identification

Anomaly Detection

Nothing to Declare

The
Cloud

!

Data Mining/Analytics

1,024
cognitive

memories CogniBloxTM
4 - CM1K chips/board

(4,096 cognitive memories)
Stack for unlimited performance

ADC
Act

Clearly, this equation is highly complicated and
not intuitive for circuit analysis and design, but we
can use the basic principles to determine a model as
follows:

The MRH transfers magnetic energy to electric
energy. Since the MRH’s input is a changing magnetic
field and its output is a changing electric field, the
model should contain at least one inductive element,
Lh, and one capacitive element, Ch. In real systems
some energy is always spent during the transforma-
tion. Thus, the model must also contain a resistive ele-
ment, Rh. In practice, an MRH will not only have Ch

across its two terminals, but it will also have an exter-
nal impedance, Zo. from, for example, connecting
wires, PCB traces, IC pins, probes, etc.

A model corresponding to the nth harmonic fre-
quency, fn, is shown in Figure 4a, which then is simpli-
fied as Figure 4b.3,4,5 The transfer function of the 2nd-
order circuit in Figure 4b is easily calculated as:

Note that the above transfer function does not
contain any mechanical or magnetic terms, e.g., the
swipe speed, head geometry, head and stripe separa-
tion, or the stripe magnetic properties. Thus, the
transfer function is more intuitive for circuit design.

To further simplify things, we propose using a
lumped model characterized at the highest system fre-
quency instead of limiting the model to the swipe
speeds.

Next we compare the electrical specifications of
MRHs from some leading manufacturers. Table 1 lists
the key specifications that are needed for the model of
Figure 4b. Notice the different amount of detail. While
both Manufacturers A and C specify several electrical
parameters, Manufacturer B specifies only one: peak-
to-peak head readout level.

The following questions may arise about the miss-
ing information.

• Head inductance (Lh). How does Lh behave over a
larger frequency range? How does Lh behave when
carrying currents other than what is specified?

• Head DC resistance (Rh). What voltage level is ap-
plied across the head terminals?

• Head read output level (VO(P-P)). What type of test
card is used? What is the card swipe speed? What is
the load across the head?

• Head capacitance (Ch). What is the capacitance be-
tween the two head terminals? Does it change with
frequency?

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

Tn(s) =
V (s)

E (s)
=

1

C L (f)

s + s
R (f)

L (f)
+

1

R C
+

1

L (f)C

R (f)

R
+1

n

n

o h n

2 h n

h n o o h n o

h n

o

To appreciate the importance of the above parame-
ters, we examine the transfer function’s denominator
and find its roots by setting it to zero:

To keep expressions simple and better understand the
second-order behavior, several network analysis books
use standard forms to write equations.6,7 One standard
uses the form:

whose roots are:

Where α is the damping attenuation:

ωo is the resonance frequency:

Therefore, depending on the values of α and ωo, the
roots of the natural response can be real, complex, or
imaginary. For readers who are familiar with other stan-
dard forms, we now define the damping factor as ζ
=α/ωo (note: quality factor Q = 1/2ζ) and use the other
standard form:

whose roots are:

When a nonzero forcing function (such as a step, a
ramp, or an impulse) is applied to the system, the loca-
tion of the roots in the s-plane directly affects the set-
tling behavior. Figure 5 shows the settling behavior for
various ζ values when a step is applied at t = 0. Specifi-
cally, the settling behavior is categorized as:

ζ > 1 → overdamped
ζ < 1 → underdamped
ζ = 1 → critically damped
ζ = 0 → undamped or oscillatory

From Figure 5 we observe that in an underdamped sys-
tem, ringing occurs that can cause reading errors due to
false peaks and false zero crossings. However, if the system
is drastically overdamped, timing errors can occur from
slow settling and reading errors can occur from shifts in
the peaks. After analyzing an MRH’s time-domain behav-
ior, we next look at its frequency-domain behavior.

s + s
R (f)

L (f)
+

1

R C
+

1

L (f)C

R (f)

R
+1 02 h n

h n o o h n o

h n

o

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

+ 2 02 2s s oα ω⋅ + =

,1 2
2 2s s oα α ω= − ± −

2

1

2

R

L R C
h

h o
α = +

⋅

⎛

⎝⎜
⎞

⎠⎟

1
1

L C

R

Ro
h

h

o
ω =

⋅
+

⎛

⎝⎜
⎞

⎠⎟

2 02 2s so oζω ω+ ⋅ + =

ζω ω ζ= − ± −s s o o, 11 2
2

www.embedded.com | embedded systems design | APRIL 2012 27

Equivalent MRH model.

Figure 4

Equivalent magnetic record head circuit
for the nth harmonic

(a)

Rh(fn)

Ch(fn)

Lh(fn)

En CL RL Vn

External load

(b)

Rh(fn)

Co = Ch+CL

Lh(fn)

En Co Ro Vn

MRH output voltage for various ζ values.

Figure 5

0 2 4 6 8 10 12

Time (s)

14 16 18 20 22 24

O
ut

pu
t

1.75

1.5

1.25

1

0.75

0.5

0.25

0

-0.25

ζ = 0.125
ζ = 0.25
ζ = 0.5
ζ = 1
ζ = 2
ζ = 4
ζ = 8

Manufacturer specifications for a magnetic head.
Parameter Manufacturer
 A B C
VO,P-P (mV) 20 19 35
Lh (mH) 25 – 110
Ch (pF) – – –
Rh (Ω) 110 – 280

Table 1

Transfer function’s frequency response.

Figure 6

0.01 0.1 1 10
ω/ωo

T(s)

T(
s)

 [
V/

V]

1x103

100

10

1

0.1

0.01

Figure 6 shows the frequency response of the transfer
function, Tn(s), which is normalized to its resonance frequen-
cy, ωo. We observe peaking as we approach the system reso-
nance frequency. This is due to the intrinsic nature of the cir-
cuit shown in Figure 4b, in other words, a parallel RLC.
Depending on the swipe speed, this peaking can also cause
reading errors.

Recall that when trying to recover F2F-encoded binary
data, we need the two fundamental frequencies, f0 and f1, and
at least the 3rd harmonic of f0. From Figure 3 we see that most
of the signal energy is in the vicinity of 0.5f0 to 3.5f0, while a
small portion is around 6f0.

What will happen to the recovered F2F waveform if higher

harmonics were gained up? From Fourier analysis we know
that the recovered waveform shape will change as the magni-
tudes of the higher harmonic coefficients change. Thus, for
some cases the gain peaking shown in Figure 5 can reach a
point where the 3rd and the 6th harmonics are amplified to
such a level that the recovered signal is severely distorted. Any
distortion that results in false peaks and zero crossings will lead
to reading errors.

The above point is emphasized in Figure 7, which mathe-
matically shows MRH output voltage for two different gains at
higher harmonics: solid blue for the unity gain and orange for
a gain of two. The dotted black lines are the zero crossing de-
tector hysteresis limits. Clearly, as the gain doubles, the MRH
output signal in red shows more distortion, false peaks, and
zero crossings.

Furthermore, the MRH will not only experience distur-
bances due to varying card-swipe speeds, it will also see dis-
turbances at much higher frequencies that might be present
in the overall system, for example, a high-frequency system
clock. Because of gain peaking, this too can result in signal
distortion and possible reading errors. Thus, for designing an
optimum card-reading system, it is crucial to know the fre-
quency behavior of the MRH beyond the swipe rates. One
must characterize the MRH frequency behavior at least to the
highest system frequency.

CHARACTERIZING VARIOUS READ HEADS
We used a commercially available impedance/gain-phase ana-
lyzer to find the equivalent circuits of several MRHs from dif-
ferent manufacturers. The characterization included single-,
double-, and triple-track MRHs that were used in the MCR
based on a MAXQ1740 secure microcontroller. As 12MHz is
the maximum system clock frequency for the MAXQ1740,
each MRH was characterized from 100Hz to 12MHz (100Hz is
analyzer’s limit). Table 2 shows parameter averages for triple-
track MRHs.

28 APRIL 2012 | embedded systems design | www.embedded.com

feature

Distortion in MRH output voltage due to gain peaking.

Figure 7

0 0.01-0.01-0.02 0.02
Time (s)

M
RH

 O
ut

pu
t (

V)

1.6

2

0.8

1.2

0

-0.4

-0.8

-1.2

-1.6

-2

0.4

A = 1 @ 3fo
A = 2 @ 3fo
+ ZX Hyst
- ZX Hyst

MRH transfer function vs. frequency with a 1GΩ external load (ζ = 0.03).

Figure 8

MRH-1 (ζ=0.03)
MRH-2 (ζ=0.03)
MRH-3 (ζ=0.03)
MRH-4 (ζ=0.03)

10 10010.1 1x103

(kHz)

|T
(s

)|

1x103

10

100

1

0.1

0.01

1x104 1x105

MRH transfer function vs. 3rd and 6th harmonic frequency range .

Figure 9

100
(kHz)

|T
(s

)|

1x103

10

100

1

0.1

0.01

1x103

MRH-1 (ζ=0.03)
MRH-2 (ζ=0.03)
MRH-3 (ζ=0.03)
MRH-4 (ζ=0.03)

CKT-B parameters for triple-track MRHs.
Parameter MRH-1 MRH-2 MRH-3 MRH-4
Lh (mH) 13.67 58.09 13.20 57.43

Ch (pF) 22.15 31.11 20.60 16.97

Rh (Ω) 146.78 234.57 145.72 214.51

Table 2

ANALYZING THE MEASURED PARAMETERS
Comparing the parameters in Table 2, we see that MRH 1
and MRH 3 are similar. The relative differences between
their parameters are ΔLh ~ 3.6%, ΔRh ~ 0.7%, and ΔCh ~
7.5%. For MRH 2 and MRH 4, the relative differences in
their parameters are ΔLh ~ 1.2%, ΔRh ~ 9.4%, and ΔCh ~
83%.

Since Ch affects both α and ωo, for similar conditions we
can expect the behavior of MRHs 1 and 3 to be similar. We
can expect the behavior of MRHs 2 and 4 to track below
their resonance frequencies, but then change as the frequen-
cies reach close to, and beyond, their respective resonance
points.

The last two points become obvious when we plot the
transfer function’s frequency response for the characterized
MRHs as shown in Figure 8. The load in Figure 8 is 1G,
which results in a damping ratio of 0.03. The plots for
MRHs 1 and 3 are virtually the same, while the plots for
MRHs 2 and 4 show increasing differences around the reso-
nance frequencies. The increase in magnitude could result in
reading errors, as described earlier.

Figure 9 shows MRH transfer functions for the frequen-
cy range of 150kHz to 300kHz, i.e., 3rd and 6th harmonics
corresponding to the maximum card-swipe rate of 100in/s
(254cm/s). We can see that as the swipe rates increase, so do
the MRH transfer-function magnitude values. The main
concern here is that if higher harmonics are gained up be-
yond a point, false zero crossings and peaks can occur, as
shown in Figure 7. Also, if signals larger than the maximum
allowed appear at the interface between the head and the
card reader’s inputs, then reading errors can occur.

Two factors cause a larger signal. First, a faster swipe in-
creases the rate of magnetic flux change. This, according to
Faraday’s law, induces a larger inductor voltage, resulting in
a larger inductor current. Second, a larger current flowing
through a larger impedance results in a larger output volt-
age, in accordance with Ohm’s law.

Within the card swipe-rate range we need to limit the
peaking to less than or equal to 20, which is the ratio be-
tween the maximum and minimum gains of the
MAXQ1740 magnetic card reader. Figure 9 shows that the
impedance change for MRHs 1 and 3 is less than 20, but the
change for MRH 2 and MRH 4 is nearly 30 and exceeds the
limit of 20.

What will happen if a damping resistor is added at the
output of the MRH? Figure 10 shows the transfer function
plots for three arbitrarily different external loads values:
100kΩ, 10kΩ, and 1kΩ. We see in Figure 10 that for lower-
value external resistors, the peaking is reduced compared
to that shown in Figure 9. Note that for 1kΩ loads the gain
at the 3rd harmonic is severely reduced for all four MRHs.
This can be a problem. With 100k loads, for MRHs 2 and 3,
the gains peaks at the 3rd harmonic, while for MRHs 2 and
3, the gain peaks at the 6th harmonic. The main point is

 www.embedded.com | embedded systems design | APRIL 2012 29

MRH transfer function for different external load values.

Figure 10
100

(kHz)

|T
(s

)|

10

1

0.1

0.01
1,000

MRH-1 (100Ω)
MRH-1 (10Ω)
MRH-1 (1Ω)
MRH-2 (100Ω)
MRH-2 (10Ω)
MRH-2 (1Ω)
MRH-3 (100Ω)
MRH-3 (10Ω)
MRH-3 (1Ω)
MRH-4 (100Ω)
MRH-4 (10Ω)
MRH-4 (1Ω)

MRH damping factors(ζ) vs. external resistor(Ro).

Figure 11

101

Ro (kΩ)

Da
m

pi
ng

 fa
ct

or
 ζ

10

100

1

100x10-3

100

ζ MRH-1
ζ MRH-2
ζ MRH-3
ζ MRH-4

MRH transfer functions for optimal external loads.

Figure 12

100
(kHz)

|T
(s

)|

1

0.1

1,000

MRH-1 (13kΩ)
MRH-2 (22kΩ)
MRH-3 (13kΩ)
MRH-4 (28kΩ)

that we cannot arbitrarily pick the Ro

values.
When using external resistor Ro

across the MRH terminals, it’s impor-
tant to ensure that the damping ratio, ζ,
stays as close to the unity as possible.
Figure 11 plots ζ vs. Ro for the four char-
acterized MRHs. For ζ =1, we need Ro ≈
12kΩ for both MRHs 1 and 3; Ro ≈
22kΩ for MRH 2; and Ro ≈ 28kΩ for
MRH 4. Figure 12 shows that transfer
function with optimum load values.
Comparing Figure 12 to Figure 10, we
note that the gain does not peak at the
3rd harmonic and stays close to unity.

While the maximum Ro is set by
ζ=1, the minimum Ro value depends on
the minimum signal supported and the
head DC resistance, Rh. As a general rule,
keep Ro ≥ 5Rh so that Ro in parallel with
Rh will not attenuate the head output
signal by more than 20%.

There are several key points to re-
member. First, due to parallel RLC, the
transfer function peaks around the reso-
nance frequency, ωo. Therefore, limit this
peaking for the range corresponding to
the 3rd and the 6th harmonics of card
swipe rate, e.g., 150kH to 300kHz for the
card swipe-rate range of 42kH to 50kHz.
Second, the system behavior can be ad-
justed by placing Ro across the head
reader’s terminals. Changing Ro changes
the damping ratio, ζ. Finally, select Ro

value to make the system critically
damped and let the lead wiring and PCB
routing set the Co value.

OPTIMIZING CARD READING
With a method now to resolve the dis-
crepancies in MRH specifications, we
can improve card reading perform-
ance. Our focus will be on reducing
the effects of noise, which mostly af-
fect the zero crossings (ZX). After
characterizing the MRH model for the
entire frequency range (note: the char-

acterization must include lead wires
and the PCB routing), we follow these
steps:

Step 1. Choose an Ro value to get an ap-
propriate damping ratio and limit the
gain peaking.

• In general, the target should be criti-
cally damped to slightly over-
damped. As an exception, if for
some cases the gain at the 3rd har-
monic drops below half, we can
equalize the gain by a slightly under-
damped system.

• An underdamped system can intro-
duce noise from ringing of the input

signal. Ringing noise adversely af-
fects the zero crossing detector, but
may also result in false peaks due to
gain peaking.

• Keep Ro ≥ 5Rh with the maximum
Ro set by ζ =1.

Step 2. On noisier printed circuit boards
(PCBs) it helps to make the system over-
damped, especially Track 2 (T2).

• T2 has 40 numeric digits, as op-
posed to 79 alphanumeric characters
for T1/T3.

• On T2 longer gaps exist between the
peaks where noise can affect ZX.

• Overdamping integrates the T2 sig-
nal. The signal approaches a saw-
tooth waveform, as shown in Figure
13. Overdampening helps the ZX by
filtering out high-frequency glitches.

• Keep Ro ≥ 5Rh so that the head at-
tenuation stays under 20%.

• A note of caution: an excessively
overdamped system can lead to er-
rors due to slow settling and peak
shifts.

Step 3. If using less expensive but noisier
read heads, overcome the noise by re-
ducing the input signal without affecting
the damping ratio.

• Choose an appropriate Ro.

• Divide Ro into smaller segments so
that the total Ro remains the same as
in Step 1.

• Use the appropriate tap to get the re-
quired signal division.

30 APRIL 2012 | embedded systems design | www.embedded.com

feature

Overdamped response. T2 for a manual swipe with 40% card and
Ro =1.5kΩ.

Figure 13

Critically damped behavior. T2 for a manual swipe with 40% card and
Ro =13.5kΩ.

Figure 14

If using less expensive
but noisier read heads,
overcome the noise by
reducing the input signal
without affecting the
damping ratio.

!
!
!

• Several ways to do this are described
under Practical Examples below.

Step 4. When the read head output on
the MAXQ1740 exceeds 300mVP-P, in-
ternal clipping of the signal occurs. This
clipping can also cause reading errors.

• Use the method described in Step 3
to reduce the signal.

PRACTICAL EXAMPLES
Input signal and noise reduction
Suppose the optimized output resistor
value is Ro.

Goal: achieve a 25% reduction in the
signal.

• Use one 0.25 Ro and one 0.75 Ro in
series across the head. Then 0.75 Ro

is tied to the head common-pin
side. Tie the midpoint to the input.

• Use four 0.25 Ro in series across the
head. Tie the midpoint to the input.

Goal: achieve a 75% reduction in the
signal.

• Use one 0.25 Ro and one 0.75 Ro in
series across the head. Then 0.25 Ro

is tied to the head common-pin side.
Tie the midpoint to the input.

• Use four 0.25 Ro in series across the
head. Tie one tap above midpoint to
the input.

EFFECTS OF DAMPING FACTORS
We next consider various damping fac-
tors and their effects on the actual sig-
nal behavior when test magnetic cards
are swiped using an MCR based on the
MAXQ1740. MRH 2 was used in the
tests. There are two important things to
note about the test cards used. First,
cards are commercially available from
Q-Card and follow ISO/IEC 7811
through 7816 standards. Second, the
card signal amplitudes are specified as a
percentage of the nominal level. Thus, a
40% card implies a maximum output
level that is 40% of the nominal ISO
level.

Before we had the MRH model
available, it took time-consuming and
frustrating guesswork to determine the

right value of external resistors. With the
model available here, we solved the noise
issues by using a 13.5kΩ external resistor
that matched our model prediction. Fig-
ure 13 shows the overdamped behavior,
while Figure 14 shows the critically
damped behavior. Comparing Figures
11 and 12, we note the slow settling and
peak shifts for the overdamped case

compared to the critically damped be-
havior. Both slow settling and peak shifts
can cause timing errors resulting in
reading errors as described earlier.

TAKE OUT DA NOISE
Using methods presented in this article,
one can predict and prevent potential
problems early in the design phase or
when deciding which MRH to pick. For
example, designers can now anticipate
that in an underdamped system, reading
errors can occur due to false peaks and
false zero crossings. Both ringing and ex-
cessive gain peaking (around the 3rd and
5th harmonics of the swipe speed) can
produce false peaks and zero crossing.
Conversely, if the system is drastically
overdamped, timing errors can occur
because of peak shifts.

The methods presented here are also
useful for improving the performance of
an existing card-reader system that uses
a specific read head. For example, in a
noisy system one can first use several se-
ries external resistors to make the system
critically damped and then tap the MRH
output from an appropriate node to di-
vide down the MRH output level. Final-
ly, the methods were verified in an actual
card-reader system based on the
MAXQ1740 microcontroller. ■

Irfan A. Chaudhry was a principal mem-
ber of the technical staff for IC design at
Maxim Integrated Products at the time this
article was written but is no longer with
the company. He joined Maxim in 2009
with over 16 years of mixed-mode IC de-
sign experience in data converters, hard
disk drive controllers, nuclear weapon
testers, and power management. He has
more than two dozen designs in produc-
tion and holds four U.S. patents. He at-
tended the University of Idaho and Wash-
ington State University for his
undergraduate and graduate studies, re-
spectively.

ACKNOWLEDGEMENTS
Our methods are the result of rediscovering

the elegant methods developed by A. S.

Hoagland in the late 1950s and published in

his 1963 book.3

Many thanks are due to Maxim engi-

neers: Steve Grider who provided the most

help; Bryan Taylor, Stephen Umfleet, and

Lonnie Hornsby for their help in the lab;

Kevin Kwak, Don Pearce, Mark Weldele, Gary

Zanders, Brandon Priddy, Nadeem Mirza,

Mark Lovell, Kathy Vehorn, Aaron Minor,

and Jeff Owens for their design, test, and sys-

tem-level contributions and suggestions.

ENDNOTES
1. ISO/IEC 7810, ISO/IEC 7811, ISO/IEC

7812, ISO/IEC 7813. www.iso.org/iso/
search.htm?qt=identification+cards&search-
Submit=Search&sort=rel&type=simple&pu
blished=on.

2. Cuccia, C. L. Harmonics, Sidebands and
Transients in Communication Engineering.
McGraw-Hill, New York, 1952.

3. Hoagland, Albert. Digital Magnetic Record-
ing, Wiley, New York, 1963.

4. Chu, W. W. “Computer Simulations of
Waveform Distortions in Digital Magnetic
Recordings,” IEEE Transactions on Elec-
tronic Computers, Vol. 15, pp. 328–336, Jun.
1966.

5. Chu, W. W. “A Computer Simulation of
Electrical Loss and Loading Effect in Mag-
netic Recording,” IEEE Transactions on
Electronic Computers, Vol. EC-16, No. 4, pp.
430–434, Aug. 1967.

6. Nilsson, J.W. Electric Circuits, 3rd ed.,
(Reading, MA, Addison-Wesley Publishing
Co.), 1990.

7. VanValkenger, M.E. Network Analysis, 3rd
ed., (Englewood Cliffs, NJ Prentice-Hall),
1974.

feature

 www.embedded.com | embedded systems design | APRIL 2012 31

With the model available
here, we solved the noise
issues by using a 13.5kΩ
external resistor that
matched our model
prediction.

!
!
!

L ast month I gave a mostly theoret-
ical overview of the effect
probes—like scope and logic ana-

lyzer probes—have on the nodes being
tested. The most important effects stem
from the capacitance of the probe tip.
To reiterate, the reactance, or resistance
to AC, at the tip is:

This reactance loads the node and
can alter a device’s operation—or
worse.

To explore this, I built a circuit on a
printed circuit board with ground and
power planes, keeping all wires very
short. A 50-MHz oscillator drives two
AND gates. The 74AUC08 is spec’d
with a propagation delay between 0.2
and 1.6 nsec at the 2.5 volts I used for
the experiment. The second gate is a
slower 74LVC08 whose propagation de-
lay is 0.7 to 4.4 nsec. Still speedy, but
slower than the first gate. I was not able
to find rise-time specifications but as-
sumed the faster AUC would switch
with more alacrity and thought it would
be interesting to compare effects with
differing rise times. Alas, it was not to
be; the LVC wasn’t much slower than
the AUC. So I’ll generally report on the
slower gate’s results

These parts are in miniscule SOT-
23 packages, which keeps inductances
very low but means one solders under a
microscope, sans coffee.

I wanted to see the effect that
probes have on nodes, but that posed a
meta-problem: if probing causes distor-
tion, how can one see the undistorted
signal? Thankfully there’s a simple solu-
tion. I made a pair of meter-long probes
from RG-58/U coax cable. A BNC con-

nector on one end goes to the scope. A
short bit of braid is exposed and sol-
dered to the ground plane very close to
the node being probed, and a ¼-watt
1K resistor goes from the inner conduc-
tor to the node. I used an Agilent MSO-
X-3054A scope with selectable input
impedance, set to 50 ohms. This is criti-
cal for the shop-made probe; the nor-
mal 1 MΩ simply will not work. If your
scope doesn’t have a 50-Ω mode, use a
series attenuator such as the 120082
from Test Products International (this
part doesn’t seem to be on their web
page, but Digikey resells them). Agi-

lent’s N5442A is a more expensive but
better-quality alternative.

RG/58U is 50-Ω cable; add the re-
sistor and the total is 1,050 ohms. The
scope’s 50-Ω input forms a 21:1 di-
vider, but the resistor’s very low capaci-
tance (remember, a ¼-watt resistor
runs only 0.5 pf) means the probe’s tip
looks extremely resistive, with little re-
actance. The scope thinks a 1X probe is
installed, so to accommodate the odd-
ball 21:1 ratio one multiplies the dis-
played readings by 21.

The first experiment showed Fouri-
er at work. The blue trace in Figure 1
shows the output of the fastest gate us-
ing a 21X probe. Note that it’s far from
perfect since the circuit had its own re-
active properties. The rise time (mea-
sured with a faster sweep rate than
shown) is about 690 psec (picosec-
onds). “About” is the operative word, as
the scope has a 500-MHz bandwidth
(though samples at 4 GS/sec). I found
that having the instrument average
readings over 128 samples gave very
consistent results.

The pink trace is the Fourier Trans-
form of the gate’s output. Unlike the
blue trace, this one is not in the time
domain (e.g., time across the horizontal
axis) but is in the frequency domain.
From left to right spans 2 GHz, with
500 MHz at the center. The vertical axis
is dBm, so is a log scale. Each peak cor-
responds to a term in the Fourier series.
Point “A” is exactly 50 MHz, the fre-
quency of the oscillator. Most of the en-

π
=X

fCc
1

2

32 APRIL 2012 | embedded systems design | www.embedded.com

 By Jack G. Gansslebreak points

Jack G. Ganssle is a lecturer and consultant on embedded
development issues. He conducts seminars on embedded systems
and helps companies with their embedded challenges.
Contact him at jack@ganssle.com.

Probing pointers, take 2

Jack tests several
probes to see how
different probes change
the results.

!
!

ergy is concentrated there. Peak “B” is
48 dBm down from “A.” That’s on the
order of 100,000 times lower than “A.”

“B” is at 900 MHz. Remembering
that little energy remains in frequencies
above

with F=900 MHz the rise time is
555 psec, close enough to the 690
measured. The same experiment using
the slower 74LVC08 gate yielded
48 dBm down at 450 MHz, or a rise
time of 1.1 nsec. That’s close to the
0.95 nsec reported by the scope.

Next, I connected a decent-quality
$200 Agilent N2890A 500-MHz probe
(11-pf tip capacitance) on the 74LVC08’s
output. The 21X probe saw an addition-
al third of a nanosecond in rise time due
to the N2890A’s capacitance. In other
words, connect a probe and the circuit’s
behavior changes.

In Figure 2 the orange trace is the
gate’s output measured, as usual, with
the 21X probe, although now there’s

10 inches of wire dangling from it. That
trace is stored as a reference, and the
green one is the same point, with the
same probe, but the N2890A is con-
nected to the end of that 10 inches of
wire. Note that the waveform has
changed—even though that other
probe is almost a foot away—and the
signal is slightly delayed. This is proba-
bly not going to cause much trouble.

Gates typically have a very low out-
put impedance, so it’s unsurprising
there’s so little effect. Often, though,
we’re sensing signals that go to more
than one place. For instance, the “read”

control line probably goes from the
CPU to quite a few spots on the board.
To explore this situation, I put the 21X
probe five inches down that wire, cap-
tured the waveform into the reference
(orange in Figure 3), and then connect-
ed the same N2890A at the end of the
10 inches of wire. The signal (green) at
the 5-inch point shifted right and was
distorted.

Consider the clock signal: On a typi-
cal board, it runs all over the place. The
impedance at the driver is very low, but
the long PCB track will have a varying
reactance. Probe it and the distortion
can be enough to cause the system to
fail.

The ringing is caused by an imped-
ance mismatch. The N2890A has
changed the node’s impedance, so it no
longer matches that of the driver. Part of
the signal is reflected back to the driver,
and this reflection is the bounciness on
the top and bottom of the pulses.

I didn’t have any X1 probes around,
so put a 100-pf capacitor on the node to

=F
Tr

0.5

Rise time spiked to 5.5
nsec, more than a five
times increase; I suggest
immediately combing your
lab for X1 probes and
donating them to Goodwill.

!
!
!

 www.embedded.com | embedded systems design | APRIL 2012 33

A node’s signal changes when a probe is attached 10 inches away.

Figure 2

Distortion 5 inches down the wire due to a probe at the 10-inch point.

Figure 3

Distortion at the output of the gate with a 30-pf simulated probe.

Figure 4

Fourier Transform of fast edges.

Figure 1

simulate a really crappy probe. Rise time
spiked to 5.5 nsec, more than a five times
increase, and the signal was delayed by
almost a nsec. I suggest immediately
combing your lab for X1 probes and do-
nating them to Goodwill. And be very
wary of ad hoc connections—like clip
leads and soldered-in wires—whose
properties you haven’t profiled.

But 100 pf is a really crummy probe.
I soldered a 30 pf cap on the node to
simulate one that’s somewhat like an ad
hoc connection or a moderately-cheap
probe. In Figure 4, the orange trace is
the gate’s output with no load—just the
21X probe. The green is with the addi-
tional 30 pf. The distortion is significant.

So a 30-pf probe grossly reshapes
the node’s signal. What effects could that
cause?

First, everything this signal goes to
will see a corrupt input. If it goes to a
flip flop’s clock input the altered rise
time could cause data to be incorrectly
latched. Or, if the flop’s data input(s) are
changing at roughly the same time, the
flop’s output could become metastable
—it’ll oscillate for a short time and then
settle to a random value.

If it goes to a processor’s non-mask-
able interrupt input the leading-edge
bounce could cause the CPU to execute
two or more interrupts rather than one.
(Generally this is not a problem for nor-
mal maskable interrupts since the first
one disables any others).

But wait, there’s more. Note that the
signal extends from well below ground

(about -600 mV) to 3.7 volts (be sure to
factor in the attenuation of the 21X
probe), which is much higher than the
2.5-volt Vcc. Depending on the logic
family this signal goes to, those values
could exceed the absolute maximum rat-
ings. It’s possible the driven device will
go into SCR latchup, where it internally
tries to connect power to ground, de-

stroying the device. I have seen this hap-
pen: the chips explode. Really. It’s cool.

So far I haven’t shown any signals
acquired by the N2890A. The yellow
trace in Figure 5, is the gate’s output us-
ing that probe. It’s pretty ugly! The dis-
tortion is entirely in the probe, and not
on the board, so does not represent the
signal’s true shape. In this case the probe
is grounded using the normal 3-inch clip
lead. Using the formula from last month,
that loop has 61 nH of inductance.

In orange the same signal is dis-
played, but in this case I removed the
probe’s grabber and connected a very
short, about 5 mm, ground wire to the
metal band that encircles the tip. The

signal is still not
displayed correct-
ly—it extends be-
low ground and
has a total magni-
tude of about
four volts, much
more than the 2.5
Vcc. But the bet-
ter grounding did
clean up the
shape. The point
is that poor
grounding can
cause the scope to
display wave-

forms that don’t reflect the node’s real
state.

ELECTRONICS MATTERS
Many in the digital world find them-
selves divorced from electronics. We
think in ones and zeroes, simple ideas
that brook little subtlety. A one is a one,
a zero a zero, and in between is a no-
man’s land as imponderable as the
“space” that separates universes in the
multiverse.

But electronics remains hugely im-
portant to digital people. Ignore it at
your peril. Power supplies have crawled
below a volt so the margin between a
one and a zero is ever-tighter. On some
parts the power supply must be held
±0.06 volts or the vendor makes no
promises about correct operation. On a
74AUC08, typical fast logic, at 0.8 Vcc
there’s only a quarter volt between a
high and a low. Improper probing can
easily skew the node’s behavior by that
much. And, as we’ve seen, capacitance
and inductance are so vital to digital en-
gineering that we dare not ignore their
effects when troubleshooting.

Reactance, impedance, and electro-
magnetics are big subjects that I’ve only
lightly touched on. They’re pretty inter-
esting, too! I highly recommend the
book High-Speed Digital Design for a
deep and dirty look at working with
high-speed systems.1 The ARRL Hand-
book from the American Radio Relay
League is possibly the best introduction
to electronics available. It doesn’t skimp
on the math, but never goes beyond
complex numbers. The focus is decided-
ly on radios, since this is the bible of
ham radio, but the basics of electronics
are covered here better than any other
book I’ve found. There’s a new edition
every year; my dad bought me a copy in
1966, and since then I’ve “upgraded”
every decade or so. ■

ENDNOTES
1. Johnson, Howard and Martin Graham.

High-Speed Digital Design 1993 PTR Pren-
tice-Hall Inc, Englewood Cliffs, NJ.

2. The ARRL Handbook, American Radio Re-
lay League. Published afresh every year.
www.arrl.org.

break points

The driven device will go
into SCR latchup, where it
internally tries to connect
power to ground, destroy-
ing the device. The chips
explode. It’s cool.

!
!
!

The N2890A’s result, with proper and poor grounds.

Figure 5

34 APRIL 2012 | embedded systems design | www.embedded.com

DO
N’

T
M

IS
S

TH
E

LA
RG

EST
 CELEBRATION OF SCIEN

CE IN
 THE U.S.

USASCIENCEFESTIVAL.ORG

PROUD SPONSOR:

LOCKHEEDIUM / FESTIVAL HOST EINSTEINIUM

K&L GATESIUM

KRYPTON

PLATINUM

Vertex Pharmaceuticals, Celestron, Baxter International, American Nuclear Society,
Association of Science-Technology Centers, Xconomy, You Can Do the Rubik's Cube, Amgen,
U.S. Environmental Protection Agency, U.S. Department of Defense, Society for Maintenance and
Reliability Professionals (SMRP), Johns Hopkins University Applied Physics Laboratory, Raytheon,
Center for America, U.S. Army RDECOM and eCYBERMISSION, Purdue University, Project Lead The Way (PLTW),
The Scripps Foundation for Science and the Environment, Northern Virginia Technology Council, 3M,
Aldebaran Robotics Inc., Center for Biotechnology Education at Johns Hopkins University

TAKE THE METROBUS OR METRORAIL TO THE USA SCIENCE & ENGINEERING FESTIVAL

BOCKIUM

NOBELIUM

LEGO Education, CrazyEngineers.com, The Kavli Foundation, Medimmune, Sigma Xi, Illumina Inc.,
American Scientist, Physics Today, Forbes/Wolfe, SchoolTube, Washington Family Magazine,
National Aeronautics and Space Administration, The Planetary Society, PBS Kids, ABC7/WJLA-TV,
WAMU 88.5 - American University Radio, The George Washington University - School of Engineering
and Applied Science (SEAS)

THE USA SCIENCE &
ENGINEERING FESTIVAL

IS PROUD TO HOST THE 2012

“NATIONAL ROBOT FEST
AND DIY EXPO -

WHERE CREATIVITY &
TECHNOLOGY MEET”

OVER 3000 FUN HANDS-ON ACTIVITIES AND MORE THAN 100 STAGE SHOWS
MEET AWARD-WINNING AUTHORS AND SCIENCE CELEBRITIES LIKE
BILL NYE THE SCIENCE GUY AND ADAM SAVAGE & JAMIE HYNEMAN
NEW THIS YEAR: CAREER PAVILION & BOOK FAIR | A FREE EVENT

EXPO & BOOK FAIR
APRIL 28 & 29, 2012

GRAND FINALE

WALTER E. WASHINGTON CONVENTION CENTER, WASHINGTON, D.C.

DOWNLOAD THE FREE FESTIVAL APP (STARTING APRIL10)

INNOVATIVE PRODUCT

DEVELOPMENT, ON DEMAND

>> We’ve spent 25 years building a superior ecosystem for innovation. If you need a full

systems engineering team or a specialized area of expertise, Stratos is here to help.

VISIT US AT BOOTH #2314 AT DESIGN WEST 2012

TO LEARN MORE AND ENTER TO WIN A

3RD GENERATION IPAD™.March 26-29, 2012
McEnery Convention Center

San Jose, CA

	EMP_04012012_000C1
	EMP_04012012_000C2
	EMP_04012012_00003
	EMP_04012012_00004
	EMP_04012012_00005
	EMP_04012012_00006
	EMP_04012012_00007
	EMP_04012012_00008
	EMP_04012012_00009
	EMP_04012012_00010
	DIGITALLauterbach_NEWS_2012
	EMP_04012012_00011
	EMP_04012012_00012
	EMP_04012012_00013
	EMP_04012012_00014
	EMP_04012012_00015
	EMP_04012012_00016
	EMP_04012012_00017
	EMP_04012012_00018
	EMP_04012012_00019
	EMP_04012012_00020
	EMP_04012012_00021
	EMP_04012012_00022
	EMP_04012012_00023
	EMP_04012012_00024
	EMP_04012012_00025
	EMP_04012012_00026
	EMP_04012012_00027
	EMP_04012012_00028
	EMP_04012012_00029
	EMP_04012012_00030
	EMP_04012012_00031
	EMP_04012012_00032
	EMP_04012012_00033
	EMP_04012012_00034
	EMP_04012012_000C3
	EMP_04012012_000C4

