
Unleash your
inner CPU, 28

Cracking
unreadable code

with style, 34

VOLUME 24,
NUMBER 4

MAY 2011

E M B E D D E D S Y S T E M S D E S I G N

Secrets of
safety-critical

C coding

The Official Publication of The Embedded Systems Conferences and Embedded.com

16

Introducing ZYNQ, the new element in processing.

Finally, the processor comes together with the FPGA in a fully extensible

processing platform called Zynq.™ More intuitive to program in the way

you already know. Fully customizable to your requirements. Faster to

implement and get to market. As a software engineer, if you know ARM® Cortex,™ you already

know Zynq. And if you know Xilinx, you already know this is innovation you can count on.

Visit us at www.xilinx.com

© Copyright 2011. Xilinx, Inc. XILINX, the Xilinx logo, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

ARM is the registered trademark of ARM Limited in the EU and other countries. Cortex is the trademark of ARM Limited in the EU and other countries.

Copyright © 2011 Green Hills Software, Inc. Green Hills, the Green Hills logo and INTEGRITY are trademarks of Green Hills Software, Inc. in the U.S.and/or
internationally. All other trademarks are the property of their respective owners.

The INTEGRITY RTOS is deployed and certified to:

Railway: EN 50128 SWSIL 4, certified: 2010

Security: EAL6+ High Robustness, certified: 2008

Medical: FDA Class III, approved: 2007

Industrial: IEC 61508 SIL 3, certified: 2006

Avionics: DO-178B Level A, certified: 2002

www.ghs.com

The INTEGRITY RTOS

Certified and Deployed Technology

®

Scan Here

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc.

mouser.com

The Newest Products for Your Newest Designs®

Find It Here. Faster.™

mouser.comm

Authorized distributor for the most advanced semiconductors
and electronic components.

Get What’s Next. Right now at mouser.com.

E M B E D D E D S Y S T E M S D E S I G N

THE OFF IC IAL PUBLICATION OF THE EMBEDDED SYSTEMS CONFERENCES AND EMBEDDED.COM

VOLUME 24, NUMBER 4
MAY 2011

COLUMNS
programming
pointers 11
Insights into member
initialization
BY DAN SAKS

Often when it seems that C++ is
generating bigger, slower code than C,
it may be that C++ is just distributing
generated code differently.

break points 46
A rumble, a wave, and
iPads dry up
BY JACK G. GANSSLE

The disaster in Japan makes you think
about the fundamental chemistry
behind all our modern smart devices.

DEPARTMENTS
#include 5
Languages and customs
BY RON WILSON

The multilingual culture of
embedded programming was
replaced by a stultifying sameness.
But from the ruins, a retrograde
movement has begun to stir.

parity bit 7

IN PERSON
ESC Silicon Valley—May 2–5, 2011
http://esc-sv.techinsightsevents.com/

ESC Brazil—May 24–25, 2011
www.escbrazil.com.br/

ESC Chicago—June 6–8, 2011
http://esc-chicago.techinsightsevents.com/

ESC India—July 20–22, 2011
www.esc-india.com/

ESC Boston—September 26–29, 2011
http://esc-boston.techinsightsevents.com/

ONLINE
www.embedded.com

EMBEDDED SYSTEMS DESIGN (ISSN 1558-2493) print; (ISSN 1558-2507 PDF-electronic) is published 10 times a year as follows: Jan/Feb, March, April, May, June,
July/August, Sept., Oct., Nov., Dec. by the EE Times Group, 600 Harrison Street, 5th floor, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial
inquiries to this address. SUBSCRIPTION RATE for the United States is $55 for 10 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with addi-
tional postage of $6 per year. All other foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year for
airmail. POSTMASTER: Send all changes to EMBEDDED SYSTEMS DESIGN, EE Times/ESD, PO Box #3609, Northbrook, IL 60065-3257, embedsys@omeda.com. For cus-
tomer service, telephone toll-free (847) 559-7597. Please allow four to six weeks for change of address to take effect. Periodicals postage paid at San Francisco, CA and additional
mailing offices. EMBEDDED SYSTEMS DESIGN is a registered trademark owned by the parent company, EE Times Group. All material published in EMBEDDED SYSTEMS
DESIGN is copyright © 2010 by EE Times Group. All rights reserved. Reproduction of material appearing in EMBEDDED SYSTEMS DESIGN is forbidden without permission.

28

16

Why your embedded controller may not need
a CPU
BY MARK AINSWORTH
Mark Ainsworth of Cypress Semiconductor explains how you can
free up your CPU by making smart peripheral devices from a
combination of programmable logic devices and datapaths.

Cover Feature:
Seventeen steps to safer C code
BY THOMAS HONOLD
Here are 17 tips for writing safety-critical C code
using methods adapted from C++ and Ada.

34
Adopting C programming conventions
BY JEAN J. LABROSSE
Gone is the Wild West era of programming. Today production
programmers have to follow the house style guide to get the job
done efficiently. This article from the author’s Embedded Systems
Conference course shows you some civilizing techniques.

INDUSTRIAL

MEDICAL

AEROSPACE

AVIATION

SYSTEM ON A CHIP

CONSUMER

Express Logic has completed 14 years
of successful business operation,
and our fl agship product, ThreadX,
has been used in over 800 million
electronic devices and systems,
ranging from printers to smartphones, from single-chip
SoCs to multiprocessors. Time and time again, when
leading manufacturers put their company on the line,
when their engineering team chooses an RTOS for their
next critical product, they choose ThreadX.

Our ThreadX RTOS is rock-solid, thoroughly fi eld-proven,
and represents not only the safe choice, but the most
cost-effective choice when your company’s product

ThreadX, FileX, and TraceX are registered trademarks, and NetX, USBX, PrismX, StackX, and Certifi cation Pack are trademarks of Express Logic, Inc.
All other trademarks are the property of their respective owners.

Copyright © 2010, Express Logic, Inc.

Express Logic has completed 14 years

When Your Company’s Success, And Your Job, Are On The Line -
You Can Count On Express Logic’s ThreadX® RTOS

REALLY COUNTS
THREADX: WHEN IT

simply must succeed. Its royalty-free
licensing model helps keep your BOM low,
and its proven dependability helps keep
your support costs down as well. ThreadX
repeatedly tops the time-to-market results

reported by embedded developers like you. All the while,
Express Logic is there to assist you with enhancements,
training, and responsive telephone support.

Join leading organizations like HP, Apple, Marvell, Philips, NASA,
and many more who have chosen ThreadX for use in over 800
million of their products – because their products are too
important to rely on anything but the best. Rely on ThreadX,
when it really counts!

Contact Express Logic to fi nd out more about our ThreadX RTOS, FileX® fi le system, NetX™ Dual IPv4/IPv6 TCP/IP stack, USBX™
USB Host/Device/OTG stack, and our new PrismX™ graphics toolkit for embedded GUI development. Also ask about our TraceX®
real-time event trace and analysis tool, and StackX™, our patent-pending stack size analysis tool that makes stack overfl ows a
thing of the past. And if you’re developing safety-critical products for aviation, industrial or medical applications, ask
about our new Certifi cation Pack™ for ThreadX.

For a free evaluation copy, visit www.rtos.com • 1-888-THREADX

ThreadX, FileX, and TraceX are registered trademarks, and NetX, USBX, PrismX, StackX, and Certifi cation Pack are trademarks of Express Logic, Inc.

, our patent-pending stack size analysis tool that makes stack overfl ows a

Edward L. Lamie

With ThreadX

Second Edition

Now with appendices for ARM, Coldfi re,

MIPS and PowerPC architectures

Newnes

INCLUDED
INCLUDED
INCLUDED
CD-ROM

REAL-TIME

EMBEDDED

MULTITHREADING

Express Logic has completed 14 years
of successful business operation,
and our fl agship product, ThreadX,
has been used in over 800 million
electronic devices and systems,

Express Logic has completed 14 years simply simply
licensing model helps keep your BOM low,
and its proven dependability helps keep
your support costs down as well. ThreadX
repeatedly tops the time-to-market results

T H R E A D

There was a time when we were mul-
tilingual. Assembly language was the
only alternative to machine code,

and each microprocessor and micro-
controller family had its own language,
reflecting its own distinct instruction set
architecture. There were similarities, of-
ten artifacts of the limitations that small
transistor budgets imposed on silicon
architects. And there were differences,
arising from those architects’ determi-
nation to create a better instruction set
from their meager materials.

Master programmers fought against
the complexity of assembly-language
programming, and against the entropy
that complexity engendered. Receiving
no help from language structures, which
only reflected the underlying chip hard-
ware, they turned to styles, practices, and
customs. They adapted notions such as
structured programming and strong
type-checking from the big-computer
world—not as elements of some new
language, but as manual practices. Above
all, they relied on documentation to
make their code comprehensible to
those who would come after them.

Eventually, high-level-language
compilers began to appear for MPUs:
PLM from Intel, and then formal lan-
guages—Pascal and even Ada. These
latter two languages from the big-ma-
chine world brought, inherent in them-
selves, ideas: strong type-checking,
structure, some degree of readability,
and the underpinnings of formal proofs.
The foundations were coming together
upon which we could build a reliable
software development methodology.

Then something went wrong. Like
barbarian hordes from the North, doc-
trinaire disciples of Unix swept out of
the universities, bearing with them the

sacred language C. It became incorrect
to criticize the Unix cult of individual
expression, or the fundamental rightness
of exhibitionistic coding, or to raise
questions about the language of the new
secular gospel. Pascal and Ada retreated
before the onslaught, first to remote
fastnesses, and eventually to near obliv-
ion. With them went the multilingual
culture of embedded programming, re-
placed by a stultifying sameness. With
them too went the idea that a language
could enforce good programming prac-
tice, driven out by a language that rev-
eled in conciseness and actively encour-
aged practices we knew to be bad.

Eventually, from the ruins a retro-
grade movement has begun to stir—a
turn toward the days when, unassisted
by their languages, master programmers
imposed type, structure, and even prov-
ability on their code through their own
practices. As our cover story author this
month, Thomas Honold, argues, C may
not encourage good practices, but it
can’t suppress them. In another article,
Jean Labrosse uses C to express some
universal techniques adaptable to any
code production line.

And what of the future? A new gen-
eration of programmers is emerging for
whom C is ancient, irrelevant history.
Many have used only Java. At the same
time, and not coincidentally, develop-
ment platforms such as Android are ap-
pearing, enabling Java programmers to
patch together embedded systems with-
out resort to less-abstract languages.
Will this new wave again engulf all that
we have learned about creating reliable,
maintainable systems? Will quality in
embedded code sink to the level of Web
code? Or will the experience of several
generations in developing mission-crit-
ical systems, meeting requirements, and
simply writing good code survive?
Though languages change, will customs
endure?

Languages and customs

 www.embedded.com | embedded systems design | MAY 2011 5

BY Ron Wilson #include
E M B E D D E D S Y S T E M S D E S I G N

Editorial Director
Ron Wilson
(415) 947-6317
ron.wilson@ubm.com

Managing Editor
Susan Rambo
(415) 947-6675
susan.rambo@ubm.com

Acquisitions/Newsletter Editor,
ESD and Embedded.com
Bernard Cole
(928) 525-9087
bccole@acm.org

Contributing Editors
Michael Barr
Jack W. Crenshaw
Jack G. Ganssle
Dan Saks

Art Director
Debee Rommel
debee.rommel@ubm.com

Production Director
Donna Ambrosino
dambrosino@ubm-us.com

Article submissions
After reading our writer’s guidelines, send
article submissions to Bernard Cole at
bccole@acm.org

Subscriptions/RSS Feeds/Newsletters
www.eetimes.com/electronics-subscriptions

Subscriptions Customer Service (Print)
Embedded Systems Design
PO Box # 3609
Northbrook, IL 60065- 3257
embedsys@omeda.com
(847) 559-7597

Article Reprints, E-prints, and
Permissions
Mike Lander
Wright’s Reprints
(877) 652-5295 (toll free)
(281) 419-5725 ext.105
Fax: (281) 419-5712
www.wrightsreprints.com/reprints/index.cfm
?magid=2210

Publisher
David Blaza
(415) 947-6929
david.blaza@ubm.com

Associate Publisher/
Sales North America
Bob Dumas
(516) 562-5742
bob.dumas@ubm.com

Corporate—UBM Electronics
Paul Miller Chief Executive Officer
David Blaza Vice President
Karen Field Senior Vice President, Content
Felicia Hamerman Vice President, Marketing
Brent Pearson Chief Information Officer
Jean-Marie Enjuto Vice President, Finance
Amandeep Sandhu Director of Audience Engagement &

Analytics
Barbara Couchois Vice President, Partner Services &

Operations

Corporate—UBM LLC
Marie Myers Senior Vice President,

Manufacturing
Pat Nohilly Senior Vice President, Strategic

Development and Business
Administration

E M B E D D E D S Y S T E M S D E S I G N

Ron Wilson is the
editorial director of
design publications at
UBM Electronics. You
may reach him at
ron.wilson@ubm.com.

INNOVATors build networks with explosive speed

and exceptional INTELLIGENCE.

How do innovators build networks of stunning speed and intelligence, while keeping costs squarely under control?

They work with Wind River. Our advanced networking solutions give leading network equipment manufacturers the

packet acceleration, hardware optimization, and system reliability they need to deliver breakthrough performance and

greater value—from the core to the consumer and everywhere in between. All while reducing their costs and cutting

their time-to-market so they can focus on innovation to create a truly competitive edge.

INNOVATORS START HERE.
Please visit www.windriver.com/customers to see how Wind River
customers have delivered breakthrough performance and greater value.

The title of this article is irresponsible
(“Unintended acceleration and other
embedded software bugs,” Michael Barr,

April 2011, www.eetimes.com/4214602). No
bug in Toyota / Denso’s module has
been found yet that causes unintended
acceleration, while at least three me-
chanical and/or user errors have been
identified (sticky pedals, floor mats, hit-
ting the wrong pedal). —JDT

So this [investigation by NASA and
NHTSA] was considered to have been
an adequate “safety review” and yet no
one even thought to attempt to verify
whether these “CPUs” as actually imple-
mented in the ASIC even faithfully exe-
cuted the instruction set of the V850E1
(as would have been required by RTCA
DO-254 if the code had been written for
avionics instead of an automobile)? This
is all just a sham and a whitewash de-
signed to fatten the wallets of the attor-
neys and appease the car-buying public.
It has nothing to do with an orderly
safety review. —JeffL_#2

The other reason for simple tools for
critical code is that the device needs to
work even if some powerful radar
chirps a worse-case code on any regis-
ter (visible, invisible like TLA for
cache, or virtual). Practically this
means separate hardware to compare
results with.

When my life depends on safety de-
vices, I want reliably EMP-resistant,
1,000-year solar-storm–resistant, radar-
and jammer-resistant, typo-resistant,
sensor-plugging–resistant, final-actua-
tor error-resistant safety systems. When
we know how IC scaling affects EMP
and other RF assaults on our safety sys-
tems, then we’ll know how to write sta-
ble standards. Until then, we need to
keep thinking and making [systems] as
simple as possible. —FluidCamp

Sure you want these things, but are you
prepared to pay for them? Every car
could have a titanium alloy roll cage
and racing bucket seats with a five-
point harness. Would you pay for that?

We might go on and on about the
safety of the code, but even in the worst
offenders the most dangerous part in a
car is the lump of meat behind the
steering wheel. —cdhmanning

Multiprocessing hype or hope
Wow, finally someone is talking about the
real issues and not just the hype (“Multi-
processing in your future,” Ron Wilson,
April 2011, www.eetimes.com/4214767).
My whole career was involved with sys-
tems and debug. The whole notion of

multicore, multithreading, RTOS, inter-
rupts, shared data, mutexes, etc., creates
an infinite number of states in the SoC
and debug complexity gets to be over-
whelming. I understand that multicore
shares a lot of hardware resources and
that it’s too expensive to have multiple
independent conventional CPUs.

Looking at high-level languages, I
found that it’s possible to design a gen-
eral purpose hardware accelerator that
is very small, very fast, and programma-
ble using if/else, for, while, call state-
ments. Unfortunately everyone seems
so caught up in the “multi” hype that
they don’t think it’s credible. —KarlS

Interface is very important and very
time consuming but that’s not my focus
on the multiprocessors. I add another
micro whenever there is any time
crunch, set that micro up to do the pre-
processing, then have the main proces-
sor (sometimes called the housekeeper)
just ask for the results—usually a “true
or false” answer. —ccrican1

Recent literature tends to focus on the
challenges and hassles of multicore but
rarely dwell on the advantages. My own
experience with (usually wildly het-
erogenous) multicore has been that the
overall job was simplified, with a clean-
er design, and shockingly easier debug-
ging. The time spent up-front on sys-
tem partitioning was more than repaid
by rapid development of reliable high-
quality code. —vapats

A new trick for watchdog timers
As always, Jack Ganssle’s article on watch-
dog timers (“Watchdogs redux” March
2011, www.eetimes.com/4213592) was in-
teresting. In particular, I thought the dis-
cussion of the ST processor doing an in-
terrupt call before resetting the processor
on a WDT timeout was interesting.

parity bit

We might go on and on
about code safety, but even
in the worst offenders, the
most dangerous part in a
car is the lump of meat
behind the steering wheel.

!
!
!

 www.embedded.com | embedded systems design | MAY 2011 7

Barr on unintended
acceleration

9

Programming lock-
free for multicore

23

New Agilent MSOs
33

VOLUME 24,
NUMBER 3

E M B E D D E D S Y S T E M S D E S I G N

APRIL 2011

The Official Publication of The Embedded Systems Conferences and Embedded.com

The minutiae
of fingerprint

analysis
14

Debating NASA’s report on unintended acceleration

A full featured development solution for

ARM Powered® Linux and Android platforms.

1-800-348-8051
www.arm.com/ds5

@ARM Ltd. | AD280 03.11

Leading Embedded

Development Tools

 www.embedded.com | embedded systems design | MAY 2011 9

From the very beginning of my work with microproces-
sors (using the Motorola MC6802), I’ve seen a similarity be-
tween hardware interrupts and a reset. Both cause the system
to vector to an address, but the interrupt pushes the current
PC on the stack. Why could a system reset not also do that?
Startup code could, after determining the reset was caused by
the WDT, pull the offending address from the stack and make
it available for debug.

In a recent project on a PIC32, I wrote my own WDT
function that, along with resetting the hardware WDT, reset
another timer. That timer was set to generate an interrupt a

little before the WDT timed out. If that timer ever times out,
the ISR logs the PC, pulled from the stack, then goes into a
loop waiting for the WDT to time out and do a hardware re-
set of the system. On reset, the system also logs the cause of
the reset (from the RCON register) to further help in trou-
bleshooting the system.

Years ago, I had to drive for several hours to push a reset
button at a remote radio station transmitter site. Since then,
everything includes a WDT. —Harold Hallikainen

NASA’S REPORT: A DISCUSSION ON C

I’m skeptical about The Power Of Ten [mentioned in “Unintended acceleration
and other embedded software bugs,” Michael Barr, April 2011, www.ee-
times.com/4214602]. Some of it is self contradictory:
• Rule 1: Simple control structures. Don’t use goto and recursion.
 Sometimes the simplest flow control is to use gotos and recursion. Used cor-

rectly, both of these can be used to generate very clean code that is far easi-
er to read and verify than convoluted flow control that excludes them.

• Rule 2: Always use a fixed upper bound in loops.
That means we have to write code like:

for(i = 0; i less than n && i less than MAX_N; i++){...}

which is confusing and cluttering. It would be better to use an assert:

assert(n less-than-or-equal MAX_N);

for(i = 0; i less than n; i++){ }

The Zune bug used as an example is not justification enough. The Zune bug is ter-
rible code. —cdhmanning

And the rationale for rule 6 of the 10 (not such a bad rule in general) makes the
claim that “Clearly if an object is not in scope, its value cannot be referenced or cor-
rupted.” This statement is obviously false in the case of C. It all makes me wonder
about the inherent difficulty of this process. The dismay of the reviewers when pre-
sented with hundreds of thousands of lines of C code is quite understandable. The
language is so semantically impoverished that it’s intrinsically resistant to analysis,
so it’s hard to see how anyone can reasonably establish the correctness of some-
thing that large without immense effort. —willc2010

I’ve been doing embedded software for decades and am growing increasingly
concerned about quality. Having reviewed literally millions of lines of code, quality
ranges from excellent to horrific, with most in the barely acceptable range. One
single function I reviewed was over 1,000 lines long. Numerous times, large
chunks of code were cut and pasted with little or no change, rather than making
a function call.

Nothing replaces good, old common sense. C provides the opportunity to
create really obfuscated code. Resist the temptation. Follow the KISS principle.
And, above all, remind yourself that other people read your code far more often
than you write it. —Fuzzball

The problem with writing applications in C (especially real-time ones) is that
you’re at the mercy of the compiler and probably the RTOS. Gotchas can occur
that you have no control over and can’t anticipate. What’s wrong with interrupts
and assembly language? I’ve been doing that for 40+ years. —Jerry.Brittingham

While Jerry might have a point about RTOS vs. bare metal, I don’t believe his
C vs. assembler argument stacks up. These days compilers go through so
many validations that compiler bugs are very rare. The biggest source of soft-
ware errors is the programmer. C makes it easier to see what is going on and
thus makes it harder to hide bugs in C code vs. assembler.

Perhaps a larger issue is how the hell has critical software gotten so com-
plex? Why does an engine controller need hundreds of thousands of lines of
code? Surely critical code like that can be done in a thousand or two lines
tops. —cdhmanning

I don’t think that the issue is so much compiler
bugs as unexpected behavior. Even if one has a
bug-free C/C++ compiler, it’s often either am-
biguous or at least very unclear what the correct

behavior should be. This is made worse by the language’s predilection for con-
struing plausible interpretations and applying implicit conversions, as if the goal
were to do something, rather than do the right thing. On top of that is the fun-
damental weakness of the type system, primitive semantics and so on, but
those issues are mostly relevant in comparisons with higher-level languages.

It is true that the interpretation of C/C++ programs is highly dependent on
their execution environment (RTOS, threading library, etc.). That is the in-
evitable consequence of the bolt-on approach to issues like tasking that has al-
ways characterized that language family (compare with Ada, where the tasking
semantics are defined by the language itself and the compiler vendor has to
make the implementation comply, whether the target is an OS or a bare board).

However, I also don’t think that the solution in general is to code in assem-
bler. Even a C compiler takes care of a mass of mundane details about parame-
ter passing, expression evaluation, and so on (albeit with some ‘gotchas’), and
implementations for different targets are at least more-or-less similar to each
other. The problem with C is not that it is too high-level, but that it is not high-
level enough. It doesn’t allow the programmer to express precision of meaning.
It is more an assembler substitute than a high-level language. As such it de-
mands a great deal of checking and testing.

I agree that the size of the code quoted in some of these articles seems ex-
cessive on the face of it. Does a car really require more software than an airliner?

—willc2010

Send your comments to the editor, Ron Wilson, at ron.wilson@ubm.com
or enter them online under an article.

Read more comments online at
www.eetimes.com/4214602

By Dan Saks

Among the most common rea-
sons that C programmers of-
fer to explain why they’re dis-

inclined to use C++ is that C++
does too much behind the scenes.
A closely-related complaint is that
C++ compilers generate too much
code for seemingly simple expres-
sions. If you look online at the
reader comments on my columns
over the last few years,1 you’ll see
remarks to that effect now and
then.

Most of these complaints don’t
hold up well under scrutiny. Often,
the alleged excess code simply isn’t
there. For example, function over-
loading and friendship are strictly
translation-time facilities. They
don’t incur any run-time costs.

At other times, excess code ap-
pears only when targeting some
processors and not others. For ex-
ample, some processors are better
than others at calling virtual func-
tions. Even then, the code for calling
a virtual function in C++ is usually
about the same as calling a function
through a pointer in C.

When the complaints do have
merit, it’s often that C++ isn’t nec-
essarily generating bigger and slow-
er programs than C. It may be that C++ just distributes
the generated code differently. It generates more code in
some places and less in others. I believe that once you
understand why C++ does what it does, the resulting
code not only ceases to be surprising, but even becomes
predictable. Such is the case with constructors.

Insights into member initialization

Dan Saks is president of Saks & Associates, a C/C++
training and consulting company. For more informa-
tion about Dan Saks, visit his website at
www.dansaks.com. Dan also welcomes your feed-
back: e-mail him at dan@dansaks.com.

programming
pointers

 www.embedded.com | embedded systems design | MAY 2011 11

A constructor is a special
class member function that pro-
vides guaranteed initialization
for objects of its class type. Since
the beginning of the year, I’ve
been explaining what construc-
tors are in C++ and what kind
of code they generate.2, 3 This
month, I’ll continue by explain-
ing the interesting behavior of
constructors for classes with
members that have constructors
of their own. As I often do, I’ll
illustrate the behavior using
equivalent C code.

CLASS OBJECTS AS
MEMBERS
Just as a C structure can have
members that are themselves
structure objects, a C++ class
can have members that are
themselves class objects. For ex-
ample, let’s look at a class for
entries in some kind of symbol
table, where each entry stores a
name and some associated
information.

To keep this simple, let’s just
say an entry has a name, an id,
and a value. The name is the
textual spelling of the entry’s

name. The id is an unsigned integer value that uniquely
identifies each entry. The value is a sequence of one or
more signed integer values associated with the name. The
entry class definition looks in part like:

class entry

{

~~~

private:

string name;

unsigned id;

sequence value;

};

Often when it seems that C++
is generating bigger and
slower code than C, it may be
that C++ is actually just 
distributing generated code
differently.

!
!
!



Here, string is a class representing a variable-length
string of characters. It might be the string class from the
Standard C++ Library, or it might be a class custom built
for this application. The sequence class represents a se-
quence of signed integer values. It might be a typedef
name that’s an alias for a Standard Library class template
instantiation, such as:

typedef vector<int> sequence;

Then again, it might be a custom built class.
Now let’s examine the behavior of various construc-

tors for this entry class.

GENERATED DEFAULT CONSTRUCTORS
As I explained in my first article on constructors, a defini-
tion for a class object can specify a constructor argument
list, as in:

entry e (n, v);

This defines e as an entry object. In this case, the compil-
er generates code that initializes e by calling a constructor
that accepts n and v as arguments. If the entry class de-
clares no such constructor, the compiler will blurt out
nasty things.

In limited cases, the compiler may generate a con-
structor.  For example, a definition for an object with no
argument list, as in:

entry e;

invokes a particular constructor called the default con-
structor. The default constructor is special in that the com-
piler may generate it, but only if the class has no explicitly
declared constructors at all.

If the compiler generates a default constructor for
class entry, that default constructor calls the default
constructor for each member of class type. In this case,
the default string constructor would be called for

member name, and the default sequence constructor
would be called for member value. A C function that
performs the same initialization as the generated default
entry constructor might look like:

void construct_entry(entry *_this)

{

string_construct(&_this->name);

sequence_construct(&_this->value);

}

This function doesn’t initialize the entry’s id member,
which has a non-class type and thus can’t have a construc-
tor.  Generated default constructors leave such members 
uninitialized.

Most compilers don’t generate code for a default con-
structor unless the program actually uses that construc-
tor.  Calls to a generated default constructor may be ex-
panded inline.

USER-DEFINED DEFAULT CONSTRUCTORS
The generated default constructor doesn’t construct 
entry objects properly because it doesn’t initialize the id
member. Uninitialized objects have indeterminate values.

Each entry should have a unique id. An easy way to
implement unique ids is to obtain them from a counter
that increments at each constructor call. In C++, that
counter can and probably should be a private static data
member, declared as:

class entry
{
~~~

private:
static unsigned counter;
string name;
unsigned id;
sequence value;
};

In C, the counter might be a global object or a local static
object.

In C++, a default constructor that provides an appro-
priate id value might look like:

entry::entry()

{

id = ++counter;

}

On the surface, it looks like this constructor doesn’t
initialize the name and value members, but it actually
does. It applies a default constructor to each member, just
as a generated default constructor would. That’s why
they’re called “default” constructors—they’re the ones the

If the compiler generates a
default constructor for
class entry, that default
constructor calls the
default constructor for
each member of class type.

!
!
!

12 MAY 2011 | embedded systems design | www.embedded.com

programmer’s pointers

program calls by default. A C function that performs the same ini-
tialization as the default entry constructor defined just above
might look like:

void construct_entry(entry *_this)

{

string_construct(&_this->name);

sequence_construct(&_this->value);

_this->id = ++counter;

}

This user-defined default constructor still might not be very
useful. The default constructors for string and sequence proba-
bly create empty objects. If so, the default constructor for entry
produces an object with no name and no value. You might not want
such objects floating around in the application.

NON-DEFAULT CONSTRUCTORS
If you want to ensure that every entry has a non-empty name and
value, then you can define an entry constructor that requires argu-
ments for the name and value. You might declare that constructor
as:

class entry

{

public:

entry(string const &n, int v);

~~~

};

The corresponding constructor definition might look like:

entry::entry(string const &n, int v)

{

name = n;

value.push_back(v);

id = ++counter;

}

The first statement in the constructor body assigns parameter
n to entry member name using an assignment operator defined
in the string class. (It actually uses a particular assignment oper-

14 MAY 2011 | embedded systems design | www.embedded.com

programmer’s pointers

If you want to ensure that every
entry has a non-empty name
and value, then you can define
an entry constructor that
requires arguments for the
name and value.

!
!
!



ator known as the copy assignment. It’s in my queue of
things to discuss eventually. I’m also aware that the ar-
gument passed for parameter n could be an empty
string, so this constructor 
doesn’t ensure that the name
will be non-empty. That’s cur-
able, but I don’t want to get
sidetracked on that now.)

The second statement ap-
pends the value of parameter v
to the end of the sequence
stored in entry member val-
ue. The Standard C++ Library
containers use the name
push_back for this operation,
so I do, too.

Strictly speaking, the sequence’s push_back is not
an initialization. It modifies the value of a previously
constructed sequence object. That is, push_back oper-
ates on the assumption that sequence already has an
initial value. Calling push_back appends one more val-
ue to whatever’s already there.

Similarly, the string’s assignment operator is not
an initialization. It replaces the value of a previously
constructed string. It will likely fail if the string isn’t
already initialized.

Remember, entry’s members name and value have
class types. Those classes have constructors. Construc-
tors provide guaranteed initialization, meaning that
each object that has a type with a constructor must be
initialized by calling one of those constructors before
any operations may be performed. This is true for ob-
jects even when they’re members of other objects.

C++ preserves the guarantee by inserting default
constructor calls for entry’s members into the entry
constructor itself. Specifically, the compiler generates a
call that applies the default string constructor to en-
try’s member name, and another call that applies the
default sequence constructor to member value. A C

function that performs the same work as the entry
constructor might look like the code in Listing 1.

In effect, this constructor initializes the entry’s
name member to be empty, only to
immediately replace that value
with something else. Wouldn’t the
code be shorter and faster if it sim-
ply initialized the name member
with a copy of n? Similarly, the en-
try constructor initializes the
value member to be an empty se-
quence, only to immediately ap-
pend one value. Wouldn’t it be bet-
ter to just initialize the sequence
member to hold a copy of that sin-
gle value?

MEMBER INITIALIZERS
Some C programmers are disinclined to use C++ be-
cause they think it does too much behind the scenes.
When they see C++ compilers generating code like that
in Listing 1, they might feel their complaints are justi-
fied. If this were the end of the story, I’d agree. But it’s
not.

C++ extends constructors with an additional facility
called member initializers. Member initializers avoid the
inefficiency of unnecessary calls to default constructors
by initializing members directly. Member initializers will
be the subject of my next column.  ■

ENDNOTES:
1.      Programming Pointers colums are available at

www.eetimes.com/electronics-blogs/27/Programming-Pointers

2.      Saks, Dan, “Demystifying constructors,” Embedded Systems De-

sign, January/February 2011, p. 9.  www.eetimes.com/4212701

3.      Saks, Dan. “Constructors and object definitions,”

Embedded.com, March 2011.  www.eetimes.com/4213712

When they see C++ compilers
generating code like this, they
might feel their complaints
are justified. If this were the
end of the story, I’d agree.
But it’s not.

!
!
!

                                                    www.embedded.com | embedded systems design | MAY 2011      15

Listing 1   A C function that performs the same work as the entry constructor.

void construct_entry_nv(entry *_this, const string *n, int v)

{

string_construct(&_this->name);

sequence_construct(&_this->value);

string_copy(&_this->name, n);

sequence_push_back(&_this->value, v);

_this->id = ++counter;

}



I
n embedded systems design, many of us tend to write our software in C the
way our “grandfathers” did, which was appropriate before we had to worry
about ubiquitous connectivity and its security implications. Today, the program-
ming methods of the past must be adapted to a world in which safety-critical
design is required not only in military/aerospace applications but in ordinary
commercial applications as well. The C language is definitely not type safe,
and only by applying many good practices and self-imposed rules can it be 

The author gives 17 tips for writing safety-critical C code 
using methods adapted from C++ and Ada. 

16 MAY 2011 | embedded systems design | www.embedded.com

made a viable choice for safety-critical soft-
ware development.

I learned these rules and best practices
working for companies that were moving to
programming paradigms more amenable to
safety-critical software development. For ex-
ample, at one company we were developing In-
ternet banking and chip-card terminal applica-
tions, using C++ on Windows PCs. At the time,
we believed we were doing object-oriented pro-

gramming, but I now believe that what we
were writing was really C with C++ syntax.

Having seen it often enough, I

theorize that embedded systems developers
naturally fall into this type of hybrid coding
when migrating from procedural C programming
to the object-oriented C++ paradigm.

Later I moved on to what was, at the
time, a new domain of software engineering:
safety-critical embedded systems design.
My first project required me to learn Ada. At
the end of the project, I understood that
new hardware in the embedded systems
area also means new software and
firmware, and I learned from Ada what
type safety really means.

Seventeen 
steps to safer
C code

cover feature

BY THOMAS HONOLD



CONTENTS

New Supported Processors		            4

Tracing for Virtual Targets in Fast Models	           5

API for VM Debugging Awareness	           6

Extensions and New RTOS Versions	           8

Serial Trace Port Usage Growing		           9

Higher Transmission Rate for RTS	         10

Energy Profiling with the CombiProbe	         11

SMP Profiling				            12

www.lauterbach.com

DEBUGGER, REAL-TIME TRACE, LOGIC ANALYZER

NEWS 2011

Lauterbach has been developing tools for the embed-
ded industry for over 30 years advocating this slogan. 
For most new debug technologies Lauterbach is the 
world leader and trend setter.

This has allowed us to gain the recognition of all the big 
semiconductor manufacturers. For many years, those 
involved in developing and implementing new tech-
nologies have favored collaboration with Lauterbach.  
This collaboration has inspired many ground breaking 
ideas to be transformed into advanced products.

In addition, Lauterbach is very customer focused. The 
desires and suggestions of our TRACE32 users pro-
vide a valuable contribution to our product develop-
ment. In many cases, suggestions are put into practice 
immediately and are then included in the next released 
version of our debugger. 

From this vantage point what trends does Lauterbach 
currently see? What technologies are soon to emerge 
in the market?

Android Debugging

Android debugging is certainly an important topic. Ap-
plications for mobile phones are increasingly being 
written architecture-independent for virtual machines 

(VM). Google’s Android and its Dalvik VM are quite 
prevalent. Complex errors that will only appear with 
the interplay of application, virtual machine, operat-
ing system and the underlying hardware have to be 
debugged. To do this it is necessary to have transpar-
ency through all of the software layers, from the Java 
application down to the Linux hardware drivers.

At the request of some mobile phone manufacturers, 
Lauterbach started developing an API for VM Debug-
ging Awareness in the middle of 2010. Android is used 
here as a reference platform. The aim is to provide an 
open interface that allows providers of open-source 
and closed-source VMs to adapt their products for de-
bugging with TRACE32. For information on VM Debug-

Always a Few Steps Ahead



NEWS 2011 www.lauterbach.com2

ging Awareness and the current state of development, 
see the article “API for VM Debugging Awareness” on 
page 6.

Energy Profiling

Energy measurement for embedded systems has 
come more into focus with the increasing emphasis 
on global warming and “green” electronics systems. 
Every technical journal now contains many articles 
on battery-driven equipment and low-power microcon-
trollers. Prizes for innovation are increasingly being 
awarded for new technologies in this field.

However, in the mobile phone market standby and 
operating times have always been an important topic. 
For years, extensive energy reduction measures have 
been implemented in this area. But these measures 
only make sense if the software that controls an em-
bedded system consistently uses all the energy-saving 
features of the hardware.

Since the beginning of 2006, Lauterbach tools have 
supported measuring arrangements that allow the 
simple comparison and analysis of the interplay be-
tween software and power consumption in an embed-
ded system. This technology has also been available 
for the TRACE32 CombiProbe since mid 2010. For 
more information on “Energy Profiling with the Combi-
Probe”, see page 11.

Multicore Debugging

Although multicore chips have been used in embed-
ded systems for ten years and Lauterbach has had 
debuggers for them since 2001, this is still a highly dy-
namic topic. The current calls for greater visibility into 
the internal system operation are ensuring the integra-
tion of new trace cells within the debug infrastructure 
of the chips.

Originally, trace information was only generated for the 
individual cores, whereas today there are many other 
trace sources:

a) Trace sources that make transfers on chip-internal 
buses visible:

•	 ARM CoreSight with the AMBA AHB Trace Macro-
cell (HTM)

•	 MCDS with the System Peripheral Bus (SPB) and 
the Local Memory Bus (LMB) for the TriCore from 
Infineon

•	 RAM Trace Port for chips from Texas Instruments
•	 DMA and FlexRay trace for NEXUS Power Architec-

ture

b) Trace sources that generate trace information for 
chip-internal IP (Intellectual Property), such as special 
interrupt traces.

c) Trace sources that permit the output of software-
generated trace information, such as:

•	 Instrumentation Trace Macrocell (ITM) for ARM  
CoreSight

•	 System Trace Macrocell (STM) for ARM CoreSight

The continuous development of the TRACE32 debug-
ger ensures it is aware of these new trace sources and 
can provide easy configuration and a comprehensive 
analysis of the information provided.

Serial Trace Ports

Due to the extra trace data provided by this visibility 
into the internal chip processes, complex multicore 
chips and high-performance processors require more 
and more bandwidth and thus even faster trace ports.

In response chip manufacturers have developed serial 
trace ports as an important innovation in the last few 
years. Hard-disk manufacturers, who have been using 
serial interfaces for high-speed data exchange with 
the PC for years, used this technology for the first time 
in 2008 to export trace information via ARM’s High 
Speed Serial Trace Port (HSSTP). At the same time, 
Lauterbach launched trace tools for this technology.

In the meantime, there are other processor families 
with serial trace interfaces. For current developments 
in this area, see the article “Serial Trace Port Usage 
Growing” on page 9.

Bigger Trace Memory

Fast trace interfaces with their high data rates inevita-
bly require more trace memory. Without this, it is im-
possible to capture a sufficiently large program section 
for troubleshooting and the analysis of the time behav-
iour for an embedded system.



3

However, providing more and more trace memory only 
makes sense if the necessary infrastructure for fast 
processing of the trace information is available. This 
applies particularly to demanding trace analysis func-
tions such as Trace-based Debugging (see Fig. 1). The 
increasing capacity of SDRAM chips, fast PCs, and GB 
Ethernet interfaces enabled Lauterbach to launch the 
trace tool PowerTrace II with 4 GB memory in 2007.

In mid-2008, Lauterbach started developing a new 
method of trace recording and analysis, Real-time 
Streaming. This development was driven by custom-
ers’ demands for long-term code coverage analysis, 
for comprehensive system runtime analyses and for a 
much longer trace recording time to locate infrequent 
errors.

The new feature of Real-time Streaming is that the 
trace data is transferred to the host while it is being 
recorded. The trace information is then analyzed on 
the host as soon as it is received. Optionally, the trace 
information can also be saved to the hard-disk while it 
is being analyzed.

Real-time Streaming works only if all processing steps 
for the trace data run at optimal speed. This applies to 
transfer and analysis, as well as the systematic search 
for trace information in a file saved to the hard-disk.

Conventional tracing also profits from many of the new 
speed optimizations. For example, there are plans to 
implement the trace-data compression (developed for 

Real-time Streaming) also for conventional tracing. For 
details on the trace-data compression, see page 10.

Outlook

In addition to the current trends, there are a large num-
ber of new developments in debug technology. When 
you browse through our 2011 newsletter, you will prob-
ably discover one or two of these that might help with 
your project. We will be demonstrating several of them 
live at the upcoming ESC Silicon Valley, May 2-5, in 
San Jose, and also at many other shows in the US 
throughout the year.

Visit us: Booth # 1922

Trace-Based Debugging

Trace-based Debugging (also known as CTS = 
Context Tracking System) allows re-debuggging 
of a traced program section. TRACE32 makes 
this possible as it can reconstruct the state 
of the target system for each individual trace  
record in its PowerView GUI. This reconstruction 
includes the register and memory contents, vari-
able states, source and task listing, stack-frame, 
and much more.

After choosing a starting point for Trace-based 
Debugging, all of the debug commands can 
be used. These commands are executed by 
TRACE32 based upon the reconstruction from 
the trace recording. Many users of Trace-based 
Debugging appreciate the fact that they can also 
step backwards or return to the function start.

Trace-based Debugging also provides a series of 
other useful functions:

 •	Trace display in high-level language with all  
local variables

 •	Runtime analyses and function call tree
 •	Reconstruction of the trace gaps that can occur 

if more trace data is being generated than can 
be exported via the trace port

www.lauterbach.com/cts.html

Fig. 1:	 Even demanding 4-GB trace memory analysis for Trace-based  
Debugging can be performed quickly.



NEWS 2011 www.lauterbach.com4

New Supported Processors

Actel LA-7844 (Cortex-M) 
•  A2F060, A2F200, A2F500

AppliedMicro LA-7723 (PPC400) 
•  APM80186, APM821x1 
•  APM86290
LA-7752 (PPC44x) 
•  PPC460SX

ARM LA-7843 (Cortex-A/R) 
•  Cortex-A15 
•  Cortex-A15 MPCore
LA-7844 (Cortex-M) 
•  Cortex-M4 
•  SC000, SC300

Atmel LA-7844 (Cortex-M) 
•  AT91SAM3S, AT91SAM3N
LA-3779 (AVR32) 
•  AT32UC3A / B / C / D / L

Broadcom LA-7760 (MIPS32) 
•  BCM3549 / 35230 / 4748 
•  BCM5354 / 5358  / 5331X  
•  BCM6816 / 6328 / 6369 
•  BCM7407 / 7413 / 7420

Cavium LA-7761 (MIPS64) 
•  CN63XX

Ceva LA-3711 (CEVA-X) 
•  CEVA-X1643, CEVA-XC

Cortus LA-3778 (APS) 
•  APS3 / B / BS / S

Cypress LA-7844 (Cortex-M) 
•  PSoC5

Faraday LA-7742 (ARM9) 
•  FA726TE

Freescale LA-7736 (MCS12X) 
•  MCS9S12GC / GN / Q
LA-7732 (ColdFire) 
•  MCF5301x, MCF5441x
LA-7845 (StarCore) 
•  MSC8156
LA-7742 (ARM9) 
•  i.MX28
LA-7843 (Cortex-A/R) 
•  i.MX53
LA-7844 (Cortex-M) 
•  Kinetis

Freescale 
(Cont.)

LA-7753 (MPC55xx/56xx) 
•  MPC5602D / P 
•  MPC564XA / B / C / S 
•  MPC567XF / R

LA-7729 (PowerQUICC II) 
•  MPC830X
LA-7764 (PowerQUICC III) 
•  P10xx, P20xx, P40xx 
•  P3041 (2H/2011) 
•  P5010, P5020 (2H/2011)

Fujitsu LA-7844 (Cortex-M) 
•  FM3

Infineon LA-7756 (TriCore) 
•  TC1182, TC1184 
•  TC1782, TC1782ED 
•  TC1784, TC1784ED 
•  TC1791, TC1791ED 
•  TC1793, TC1793ED 
•  TC1798, TC1798ED

LA-7759 (XC2000/C166S V2) 
•  XC22xxH / I / L / U 
•  XC23xxC / D / E / S 
•  XC27x2 / x3 / x7 / x8 
•  XE16xFH / FU / FL

Intel® LA-3776 (Atom™/x86) 
•  E6xx, Z6xx, N470 
•  Core i3 / i5 / i7, Core2 Duo

Lantiq LA-7760 (MIPS32) 
•  XWAY xRX200

LSI LA-7765 (ARM11) 
•  StarPro2612, StarPro2716
LA-7845 (StarCore) 
•  StarPro2612, StarPro2716

Marvell LA-7742 (ARM9) 
•  88F6282, 88F6283, 88F6321 
•  88F6322, 88F6323
LA-7765 (ARM11) 
•  88AP510-V6

LA-7843 (Cortex-A/R) 
•  88AP510-V7

MIPS LA-7760 (MIPS32) 
•  MIPS M14K, MIPS M14KC

Netlogic LA-7761 (MIPS64) 
•  XLR, XLS

NXP LA-7844 (Cortex-M) 
•  LPC11xx 
•  EM773

New derivatives



5

Fig. 2:	 TRACE32 supports the debugging and tracing of virtual targets.

Lauterbach has supported tracing for ARM Fast 
Models since November 2010.

To avoid having to wait for the first hardware prototypes 
before starting software development, software mod-

els of the hardware are often used. With Fast Models, 
ARM offers its customers a software package for pro-
gramming models for ARM-based designs.

Since 2008, Lauterbach has supported the debugging 
of Fast Models over the CADI interface. It has now in-
troduced support for the Model Trace Interface, which 
was introduced for Fast Models with Version 5.1. To pre-
pare the trace information appropriately and buffer it in 

the virtual target, debug-
ger manufacturers can 
load a separate trace 
plug-in. Fig. 2 shows an 
overview of the interplay 
of TRACE32 and Fast 
Models.

For detailed information 
on debugging virtual tar-
gets, see:

www.lauterbach.com/
frontend.html

Tracing for Virtual Targets in Fast Models

Ralink LA-7760 (MIPS32) 
•  RT3052, RT3662

Renesas LA-3777 (78K0R / RL78) 
•  78K0R / Hx3 / Lx3 / Ix3 
•  78F804x, 78F805x 
•  RL78 / G12, RL78 / G13 

LA-3786 (RX) 
•  RX610 / 6108 / 621 / 62N / 630

STMicro- 
electronics

LA-7753 (MPC55xx/56xx) 
•  SPC560D/P, SPC56APxx 
•  SPC564Axx, SPC56ELxx

LA-7844 (Cortex-M) 
•  STM32F100, STM32L15x

ST-Ericsson LA-7843 (Cortex-A/R) 
•  DB5500, DB8500

Tensilica LA-3760 (Xtensa) 
•  LX3

Texas Instruments LA-3713 (MSP430) 
•  MSP430xG461x 
•  MSP430x20x1 / x2 / x3
LA-7742 (ARM9) 
•  AM1707 / 1808 / 1810
LA-7843 (Cortex-A/R) 
•  OMAP36xx
LA-7838 (TMS320C6x00) 
•  OMAP36xx

Toshiba LA-7742 (ARM9) 
•  TMPA900, TMPA910
LA-7844 (Cortex-M) 
•  TMPM330, TMPM370

Trident LA-7760 (MIPS32) 
•  HiDTV PRO-QX

Wintegra LA-7760 (MIPS32) 
•  WinPath3, WinPath3-SL

Zoran LA-7760 (MIPS32) 
•  COACH 12

New derivatives



NEWS 2011 www.lauterbach.com6

Since 2006, Lauterbach has supported the debug-
ging of Java applications for the Java Virtual Ma-
chines J2ME CLDC, J2ME CDC and Kaffe. Since 
virtual machines are increasing in popularity, the 
number of providers is growing. Nowadays not all 
of these virtual machines are open-source. To en-
able VM providers and their customers to adapt 
debugging flexibly for their VM, Lauterbach has 
been working on a solution since mid-2010.

The Android Dalvik Virtual Machine implemented for 
ARM cores is used as a reference for the development 
of a VM API for stop-mode debugging.

Two Debug Worlds

For developers, Android is an open-source software 
stack consisting of the following components (see 
Fig. 3):

•	 A Linux kernel with its hardware drivers.
•	 Android Runtime with Dalvik Virtual Machine and 

a series of libraries: classic Java core libraries, 
Android-specific libraries, and libraries written in 
C / C++.

•	 Applications programmed in Java and their support-
ing Application Framework.

Software for Android is written in various languages:

•	 The Linux kernel, some libraries, and the Dalvik  
Virtual Machine are coded in C, C++, or Assembler.

•	 VM applications and their supporting Application 
Framework are programmed in Java.

Each block of code is tested in its own separate debug 
world.

Debugging C / C++ and Assembler Code

The Android part coded in C / C++ and Assembler can 
be debugged on the target hardware over the JTAG 
interface in stop-mode. In stop-mode debugging, the 
TRACE32 debugger communicates directly with the 
processor of the Android hardware platform (see 
Fig. 4).

A characteristic of stop-mode debugging is that when 
the processor is stopped for debugging, the whole  
Android system stops.

Stop-mode debugging has some big advantages:

•	 It needs only a functioning JTAG communication be-
tween the debugger and the processor.

•	 It needs no debug server on the target and is there-
fore very suitable for testing release software.

•	 It permits testing under real-time conditions and 
therefore enables efficient troubleshooting for prob-
lems that only occur in such conditions.

API for VM Debugging Awareness

Fig. 3:	 The open-source Android software stack.

Fig. 4:	 In stop-mode debugging, the debugger communicates directly with 
the processor on the Android hardware platform.



7

At present, stop-mode debugging does not support 
the debugging of VM applications such as on the  
Dalvik VM. Therefore transparent debugging through 
all of the software layers is not yet possible.

Debugging Java Code

Java code for Android is usually tested with the  
Android Development Tools (ADT) integrated into 
Eclipse. The adb server – adb stands for Android De-
bug Bridge – on the host communicates over USB or 
Ethernet with the adb daemon on the target (Fig. 5).

Prerequisites for debugging with ADT are VM appli-
cations specially compiled for debugging and Android 
debug support (adb daemon) running on the hardware 
platform.

Debugging Java code with ADT is comfortable. How-
ever, there are a few cases in which ADT cannot help 
you. These are:

•	 Errors that first occur with the release code.
•	 Errors that first occur when the Java application  

interacts with a service offered in C / C++ or a Linux 
hardware driver.

•	 Debugging following a communication breakdown 
between adb server and adb daemon.

VM Aware Stop-Mode Debugging

To enable thorough testing of an Android system from 
the Java application down to the Linux hardware driver 
under real-time conditions, Lauterbach is currently 

adding VM debugging awareness to its stop-mode  
debugging.

The JTAG debugger communicates directly with the 
processor on the Android hardware platform. The  
debugger can therefore access all system information 
after the processor stops. The “fine art” for the debug-
ger is now to find the correct information and make it 
easy to understand for the user, abstracted from bits 
and bytes.

One abstraction level has given TRACE32 users the 
option of debugging operating system software even 
over several virtual address spaces. Another abstrac-
tion level, up to now independent of operating-system 
debugging, is Java debugging.

To debug applications running on VMs in systems 
like Android, where the VMs themselves are instanti-
ated within the operating-system processes, operating- 
system debugging and Java debugging now have to be 
combined. To implement this new complexity, Lauter-
bach is developing a new, open, and easy-to-expand 
solution.

The Open Solution

In the future, stop-mode debugging from Lauterbach 
will support the following abstraction levels:

•	 High-level language debugging
•	 Target OS debugging awareness
•	 VM debugging awareness

High-level language debugging is a fixed compo-
nent of the TRACE32 software and is configured for 
a program with the loading of the symbol and debug 
information.

Dalvik is the name of the virtual machine used in 
Android. The Dalvik Virtual Machine is a software 
model of a processor that executes byte code 
derived from Java. Virtual machines permit the 
writing of processor-independent software. If you 
switch to a new hardware platform, you only have 
to port the virtual machine.

Software compiled for a VM runs automatically 
on any platform to which this VM is ported.

Dalvik Virtual Machine

Fig. 5:	 The Android Development Tools (ADT) integrated in Eclipse for  
debugging Java code.



NEWS 2011 www.lauterbach.com8

Target-OS debugging awareness must always be 
configured by the TRACE32 user. There are example 
configurations available for all common operating sys-
tems. The RTOS API provides an option to be custom-
ized for proprietary operating systems.

VM debugging awareness is a fixed component of the 
TRACE32 software for J2ME CLDC, J2ME CDC and 
Kaffe. All other virtual machines have to be adapted 
individually with the VM API. A ready-to-use configu-
ration is available for the very popular Android Dalvik 
VM.

The open solution, both for the operating system and 
for the virtual machine, enables providers of closed-
source VMs to write a TRACE32 VM awareness for 
their product and offer it to their customers.

The Reference Implementation

To be able to debug thoroughly on an ARM-based  
Android target from the Java applications right down 
to the Linux hardware drivers, TRACE32 requires the 
following extensions (see Fig. 6):

•	 A Linux OS-awareness as provided by Lauterbach 
since 1998.

•	 A Dalvik VM-awareness, which can be downloaded 
from the Lauterbach homepage. This just has to be 
configured for the platform used.

www.lauterbach.com/vmandroid.html

It is now possible to identify and list all Java applica-
tions now being run (EXTension.VMList in Fig. 6) and 
to analyze and view the VM stack for a selected Java 
application (EXTension.VMView in Fig. 6). 

The next step planned is to display the source code 
currently being run by the VM. The aim of the develop-
ment is of course stop-mode debugging for VM appli-
cations with all the functions of a modern debugger.

DSP / BIOS for ARM Q2/2011

OSEK / ORTI SMP Q2/2011

T-Kernel for ARM available

Windows Embedded Compact 7 
for ARM

available

mC / OS-III for ARM available

New Supported RTOS

Extensions and New RTOS Versions

•	 TRACE32 scripts were adapted for Timesys embed-
ded Linux.

•	 OSEK / ORTI now ensures that NEXUS ownership 
trace messages are generated for task changes. 
This enables TRACE32 to make task-aware run-
time measurements for the MPC55xx / MPC56xx, 
even if NEXUS generates no data trace messages.

The following version adaptations have been made or 
are planned:

•	 OSEck 4.0
•	 QNX 6.5.0
•	 Symbian^3 for ARM
•	 Symbian^4 planned for Q1/2011
•	 Windows CE6 for Atom™

Fig. 6:	 For the reference implementation, Linux OS-awareness and Dalvik 
VM-awareness have to be loaded in TRACE32.



9

Faster, higher, stronger! Not only is this the motto of 
many sports – it has even been raised to a core princi-
ple in microelectronics. Ever faster clock speeds and a 
greater parallelization of processing steps have given 
us an astonishingly constant increase in processing 
speed for decades. It is no wonder that designers have 
also followed this motto for the transmission of trace 
information.

The trace interface, over which the processors deliver 
the detailed information on the operation of their inner 
processes, has struggled to keep up with the growing 
flood of information. For many developers of embed-
ded systems it would be unthinkable to undertake a 
development without this important information, so all 
sorts of efforts have been made to increase the data 
throughput of the trace interface. For many years the 
increase in clock frequency and a greater bus-width 
at the trace port were an effective way of increasing 
data volumes.

However, these measures have their price. Not only 
does a wider trace port take up highly coveted package 
pins but poor signal quality at higher clock frequencies 
requires compensation on all signals from the trace 
bus. Thanks to the sophisticated algorithms of its Auto-
Focus technology, Lauterbach is able to ensure error-
free recording of high-frequency trace signals.

As processor architectures continue to gain in speed 
and complexity through parallelization, the trace in-
terfaces are starting to use a high-speed data trans-
fer method that has been in use in other areas for a 
long time. A high-speed serial transmission is used 
in SATA, Fibre Channel, PCI Express, and USB3.0  
(SuperSpeed USB). The extremely high data rates 
more than compensate for the disadvantage of only a 
few differential data lines.

The integration of high-speed serial interfaces on the 
chip is expensive and can initially cause problems. As 
just one example, the I/O pads have to be operated at 
a much higher speed. But with the increasing experi-
ence in the implementation of serial interfaces in the 
gigahertz range the knowledge gained can be used 
to solve many of the problems arising with the serial 
trace ports.

In 2008, ARM implemented this technology with its 
High Speed Serial Trace Port – HSSTP for short. This 

was quickly followed by AMCC with the Titan, Free-
scale with the QorIQ processors P4040 and P4080, as 
well as Marvell with the SETM3.

Lauterbach had designed a hardware interface for the 
serial trace in 2008. A universal preprocessor was 
developed on the basis of the Aurora protocol. Only 
the firmware and software have to be changed to  
record any of the alternative protocols. This means 
that our system is already prepared for further variants 
of serial trace protocols.

Serial Trace Port Usage Growing

Fig. 7:	 Following firmware and software adaptations, a universal hardware 
supports the most varied protocols of serial trace interfaces.

AMCC APM83290

Program flow

2009

ARM-HSSTP ETMv3, PTM, 
CoreSight ETMv3, 
CoreSight PTM

Program flow, 
Data flow and Context-ID

2008

Freescale NEXUS QorIQ 
P4040 and P4080

Branch Trace and Owner-
ship Trace Messages, 
Data Write Messages 

2010

Marvell-SETM3 CoreSight ETMv3

Program flow, 
Data flow and Context-ID

2009

Supported Serial Trace Ports



NEWS 2011 www.lauterbach.com10

“Real-time Streaming” means transferring trace 
data to the host whilst it is being recorded and ana-
lyzing it there immediately. This requires the trans-
mission of large volumes of data from the trace 
tool to the host, especially for CPU-intensive appli-
cations and multicore systems. To make TRACE32 
fit for these application scenarios, the trace data 
is compressed by the trace tool, PowerTrace II, be-
fore being transferred to the host. This feature has 
been supported by the TRACE32 software since 
December 2010.

Real-time Streaming is currently implemented for the 
ARM trace protocols ETMv3 and PTM.

Hardware Compression

The maximum transmission rate to the host is still the 
bottle-neck for Real-time Streaming. Even with a peer-
to-peer GB Ethernet interface between the trace tool 
and the host, the maximum is currently only about 
500 MBit/s net. This maximum transmission rate has 
to be sufficient to transfer all data at the trace port 
without loss to the host.

To be able to estimate the actual data volume to be 
transmitted, it is important to know the conditions of 
Real-time Streaming:

1.	The main applications for Real-time Streaming are 
code coverage and run-time measurements. For 
both functions, it is sufficient if only the program 

trace information is exported. To get a very accurate 
run-time measurement, cycle-accurate tracing can 
be enabled.

2.	For a realistic estimate of the necessary data rate, 
you just have to consider the average load at the 
trace port. Peak loads at the trace port are intercept-
ed by PowerTrace II, which can be considered as a 
large FIFO (up to 4 GB). Fig. 8 shows an overview 
of the average / maximum load at the trace port for 
Cortex cores. The application running on the Cortex 
core ultimately determines the actual load.

By implementing FPGA-based hardware compression 
in PowerTrace II, the transmission rate to the host was 
raised to 3.2 GBit/s.

Pure Long-Time Trace

If trace data is analyzed and also saved to the hard-
disk during Real-time Streaming, Lauterbach consid-
ers this a Long-time Trace.

To provide long-time tracing for other trace protocols 
such as Nexus, Lauterbach is now offering pure stream-
ing onto the hard-disk without simultaneous analysis. 
This means that trace recording of up to 1 tera-frames 
is possible for a 64-bit host operating system.

For detailed information on Real-time Streaming and 
Long-time Trace, go to the Lauterbach homepage at:
www.lauterbach.com/tracesinks.html

Higher Transmission Rate for Real-Time Streaming

Fig. 8:	 A transmission rate of 3.2 GBit/s is usually enough to transfer program trace information to the host while it is being recorded.



11

The TRACE32 CombiProbe can now also be used 
for measuring the energy used by applications.

The following analyses are possible:

•	 The current/voltage profile at up to three measure-
ment points can be displayed directly linked to the 
code running on the processor.

•	 The energy consumption of the entire system can 
be analysed for the individual functions.

Which part of a program uses the most energy? What 
influence does a program modification have on the 
energy requirements of an embedded system? These 
are the questions that can now be dealt with by the 
CombiProbe.

To determine the energy consumption for every point 
of the program, the following measurement data has 
to be collected:

•	 The program flow being exported via the trace port 
of the processor.

•	 The current and voltage profile measured at suitable 
measurement points on the target hardware.

The current and voltage development for up to three 
power domains can now be identified by connecting a 
TRACE32 Analog Probe to the CombiProbe.

Since all measurement data is time-stamped by the 
global timer of the CombiProbe, you can quickly and 
easily see the direct connection between executed 
program code and the power consumption as well as 
the voltage profile of the system.

Fig. 9 shows that a program section running from  
external memory instead of cache not only needs 
much more processing time but also uses more power 
at the external memory. 

Fig. 10 shows the energy consumption as a statistical 
analysis. 

Energy Profiling with the CombiProbe

CombiProbe

The CombiProbe is a debug cable that also con-
tains a 128 MB trace memory. The CombiProbe 
was specially developed for processors with a 
4-bit trace port. Program flow recording is cur-
rently supported for the following trace proto-
cols:

 •	 ARM-ETMv3 in continuous mode (ARM)
 •	 IFLOW Trace for PIC32 (Microchip)
 •	 MCDS Trace for X-GOLD102 and X-GOLD110 
(Infineon)

www.lauterbach.com/cobstm.html

Fig. 9:	 A program section not running from the cache needs more time and 
uses more current.

Fig. 10:	 The minimum, maximum, and average energy consumption of  
individual functions.



WORLDWIDE BRANCHES

  •  USA
  •  Germany

  •  France
  •  UK
  •  Italy
  •  China
  •  Japan

Represented by experienced 
partners in all other countries

www.lauterbach.com12

Sample-based profiling was completely reworked in 
2010. Important innovations include a new operating 
concept for measuring, a self-calibrating sampling rate 
and an extension for SMP systems.

SMP Profiling for Functions

From October 2010, profiling data for SMP systems 
can now be collected. To create function level profiling, 
TRACE32 cyclically reads the program counters of the 
individual cores and saves them in a database. The 
profiling can then be shown for the individual cores 
and also as a total for all cores. 

Since many chips provide the capability of reading the 
program counter whilst the processor is executing, this 
measurement can be made in real-time for the follow-
ing architectures:

•	 ARM / Cortex: ARM11 MPCore, Cortex-A5  
MPCore, Cortex-A9 MPCore, Cortex-A15 MPCore

•	 MIPS32: MIPS34K, MIPS1004K
•	 MIPS64: Broadcom BCM7420

If the chip’s debug logic does not permit non-intrusive 
reading of this information, the individual cores will 
have to be briefly stopped periodically to obtain this 
information.

SMP Profiling for Tasks

To create a task profile, the task ID for the individual 
cores has to be read cyclically from the memory. Many 
chips allow the physical memory to be read at program 
run-time. If the on-chip debug logic supports this fea-
ture, the measurement can be made in real-time:

•	 ARM / Cortex: ARM11 MPCore, Cortex-A5  
MPCore, Cortex-A9 MPCore, Cortex-A15 MPCore

•	 Power Architecture: MPC8641D, MPC8572, QorIQ

Otherwise, the individual cores have to be briefly 
stopped to read the data required.

SMP Profiling

KEEP US INFORMED

If your address has changed or if you no longer 
want to be on our mailing list, please send us an 
e-mail to info_us@lauterbach.com.

Fig. 11:	 Sample-based profiling shows the ratio of individual code sections 
compared to the overall run-time as a percentage. The result can 
be displayed both for the individual cores of the SMP system (here 
for core 1) as well as for the total of all cores. 

Sample-Based Profiling

For Sample-based Profiling, the program counter 
or the variable containing the ID of the current 
task is periodically read. On the basis of this infor-
mation, the ratio of a function or task compared to 
the overall run-time is shown as a percentage. 

Symmetrical Multiprocessing  (SMP)

A multicore chip consisting of identical cores can 
be configured as an SMP system. An SMP op-
erating system distributes the pending processes 
(tasks) dynamically to individual cores at program 
run-time (but not before). For debugging SMP 
systems, a single TRACE32 instance is opened 
from which all cores are monitored. 



From this and other experiences,
I’ve come up with a set of 17 tips
summarizing the lessons I’ve learned
as a software engineer in the embed-
ded systems environment, particular-
ly as they relate to C programming, as
a way to help others avoid the same
potholes I encountered. In the
process, I had a lot of help, particular-
ly with the many tips on safe C in ar-
ticles at EmbeddedGurus.com and
Embedded.com.

TIP #1—FOLLOW THE RULES
YOU’VE READ A HUNDRED TIMES
There are three things you must do
each time you start writing your code.
You’ve read these rules many times
before and resolved to do them the
next time you started code develop-
ment. This time, do them—they will
help you to avoid many long hours of
debugging:

•     Initialize variables before use.

•     Do not ignore compiler warn-
ings.

•     Check return values.

Listing 1  Declaring an object in the header, initializing it with an init flag, and describing it with two function pointers. 

typedef struct
{

bool is_initialized;
symb_model_error_t ( *update ) ( display_data_t const * const hud_data );
symb_model_error_t ( *read )   ( display_data_t * const hud_data );

} symbol_model_t;

Three things you must do
each time you start writ-
ing your code: initialize
variables before use, do
not ignore compiler warn-
ings, check return values.

!
!
!

Accessing objects before they have
a defined state can lead to strange ef-
fects. Not only does avoiding these ef-
fects require that you make sure
you’ve set all your ints and floats to
a defined state, you also have to make
sure that your complex type func-
tions, such as typedefed structs,
are initialized first.

For instance, declare an object like
the one in Listing 1 in the header. In
Listing 1, the object has the typical
init flag and two function pointers
for reading and updating data.

Then, in the C module, initialize
the object to a level for first usage. In
this case, the init flag was set to false.
The variable is static here, since I have
only one instance of it:

static symbol_model_t 

g_symbol_model =

{

false,/* is initialized */

NULL, /* update function */

NULL  /* read function */

};

Later on during construction of



In programming, it’s
safer to assume that 
the failure is not the
exception in a string of
successes but exactly 
the opposite.

!
!
!

cover feature

18 MAY 2011 | embedded systems design | www.embedded.com

the object, you can check if things
were not initialized, such as shown in 
Listing 2. 

Even though they finally compile
the code, modern compilers are always
complaining about strange constructs.
Do not ignore these complaints. More
often than not, they are right. Also do
not ignore return values since they in-

dicate the first time something has
gone wrong. If you ignore such warn-
ings, you’ll have a ticking time bomb
in your system that will explode at a
later point.

If you follow these procedures,
you’ll have more time left at the end of
the project. After all, the end of the
project is the point at which money and

time are running out and people are
overstressed, especially if the product
isn’t working and is shipping late. Now
you’ll have time to help them set things
right.

TIP #2—USE ENUMS AS ERROR
TYPES
Every module should have a specific
error return type that explains what
the problem is in detail, at the time it
occurs. Often you receive error codes
like “-1” or “an error occurred.” If
there is a run-time error detected and
you know exactly what it is, document
this for your later reference and for
those who maintain the software. 
For example, consider the code in 
Listing 3. 

Such an error type already has
been decoded and the cause deter-
mined. The last entry, called
<XYZ>_LAST_ERROR, makes it possible
to iterate over the content of the enum.
That means you only have to know
what the first element in the chain is.
No matter how many more errors you
add between the first and the last, all
you have to do is check the range or it-
erate. Also, this last enum value gives
you the total number of entries. More
on this later.

TIP #3—EXPECT TO FAIL
Failures happen. Often. So plan for it
and use it to your advantage. It’s good
practice to set the default return value
of an operation to something like 
UNNOWN_ERROR. Only in the case of a

Listing 2   Check if objects were not initialized.

symbol_model_t * const symbol_model_instance ( void )
{

if ( g_symbol_model.is_initialized == false )
{

g_symbol_model.update = symbol_model_update;
g_symbol_model.read = symbol_model_read;

g_symbol_model.is_initialized = true;
}

return &g_symbol_model;
}

Free Evaluation Kits: www.smxrtos.com/eval
Free Demos: www.smxrtos.com/demo

Save time – and money – with embedded 
software solutions built to run right out of 
the box. Get development started quickly, 
with no integration required and full support
for popular tools. With Micro Digital you have 
low-cost, no-royalty licensing, full source 
code, and direct programmer support. So 
get your project off to a great start. Visit us
at www.smxrtos.com today.

Your solution
is here.

www.smxrtos.com

BOOTH 939

R T O S  I N N O V A T O R S

ARM • ColdFire • Cortex • PowerPC • x86 
CodeWarrior • CrossWorks • GCC • IAR EWARM



>> Find out how LabVIEW can make you better at ni.com/labview/better 800 453 6202

©2010 National Instruments. All rights reserved. LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments. 
Other product and company names listed are trademarks or trade names of their respective companies.  2781

NI LabVIEW

Name
Dr. Dennis Hong

Job Title
Associate Professor of 
Mechanical Engineering,
Virginia Tech

Area of Expertise
Robotics

LabVIEW Helped Me
Convey and respond to 
vast amounts of data in 
real time

Latest Project
Design and prototype a
car that can be driven by
the blind in just 4 months

CODE REUSE
LabVIEW makes me better because

saves time and effort



good result should you set it to 
SUCCESS, for instance, as in Listing 4.

This pessimistic approach is safer
than expecting all things to go well and
setting the default to _SUCCESS. In
programming, it’s safer to assume that
the failure is not the exception in a
string of successes but exactly the op-
posite: The good case is the only ex-
ception in a string of more commonly
occurring error cases.

TIP #4—CHECK INPUT VALUES:
NEVER TRUST A STRANGER
If your modules expect input data from
other modules, you should never trust
a stranger. That is, at the outmost layer
of your software architecture, check all
input values for consistency. The check
has to be at the outmost layer since it
must be detected as soon as possible.
Otherwise you could, for instance,
dereference an invalid pointer given to
you at one of your lower layers. The re-
sult: The crash dump reports that it
was your software’s problem, but later,
after many hours of debugging, you
find out that someone has given you
invalid input.

Here is an example using an enum
error type mapped to a string represen-

Listing 3   The last entry <XYZ>_LAST_ERROR makes it possible to iterate
over the content of the enum. No matter how many more errors you add
between the first and the last, all you have to do is check the range or iterate.

typedef enum
{

SYMB_MODEL_SUCCESS = 0,
SYMB_MODEL_UNKNOWN_ERROR,
SYMB_MODEL_NOT_INITIALIZED_ERROR,
SYMB_MODEL_INITIALIZATION_ERROR,
SYMB_MODEL_SYSTEM_UNAVAILABLE,
SYMB_MODEL_WRONG_INPUT_VALUE,

/* the last entry is just for looping over the enum */
SYMB_MODEL_LAST_ERROR

} symb_model_error_t;

Listing 4   Only in the case of a good result should you set the default return value of an operation to SUCCESS.

symb_model_error_t symbol_model_read (display_data_t * const data )
{

symb_model_error_t status = SYMB_MODEL_UNKNOWN_ERROR;
if ( data != NULL )
{

memcpy ( data, &g_display_data, sizeof ( display_data_t ) );
status = SYMB_MODEL_SUCCESS;

}
else
{

status = SYMB_MODEL_WRONG_INPUT_VALUE;
}

return status;
}

cover feature

This pessimistic
approach is safer than
expecting all things to
go well. 

!
!

WHAT IS TYPE SAFETY
I generally define type safety as Wikipedia defines it: “In computer sci-
ence, type safety is the extent to which a programming language dis-
courages or prevents type errors. A type error is erroneous or undesir-
able program behaviour caused by a discrepancy between differing
data types.”*

If you define a type, this means nothing more than saying there are
a certain number of bits that represent a predefined data type. For in-
stance, uint32_t number_of_bytes defines 32 bits, which hold an un-
signed scalar value ranging from 0 to 4.294.967.295. If you would
assign a negative value to the number_of_bytes variable, a type-safe
language would raise an exception during run time or a compile-time
error at compile time. The Ada language does this, but C does not. In
C, you could also assign a floating-point value like 3.456 to the vari-
able, which makes some compilers complain at compile time and pro-
duces undefined behavior during run time.

*Wikipedia entry on type safety, from April 20, 2011. http://en.wikipedia.org/wiki/Type_safety

20 MAY 2011 | embedded systems design | www.embedded.com



>> Find out how LabVIEW can make you better at ni.com/labview/better 800 453 6202

©2010 National Instruments. All rights reserved. LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments. 
Other product and company names listed are trademarks or trade names of their respective companies.  2812

NI LabVIEW

Name
Peter Simonsen

Job Title
Design Engineer,
Embedded Software

Area of Expertise
Renewable Energy

LabVIEW Helped Me
Perform real-world
simulations with total 
control of the application

Latest Project
Develop a test architecture
for verifi cation of wind 
turbine control systems

SIMULATE
LabVIEW makes me better because I can

real-world systems



tation for trace output to a console
window, shown in Listing 5.

The lookup table representing the
strings is defined as shown in Listing 6.
Safe access to the string map that does
not allow any out of bounds access is
shown in Listing 7.

Unfortunately enums in C are inte-
gers. That means you could hand over
any value of integer to the interface ac-
cessing the array, an error that can be
avoided.

By the way, if you define the
lookup table with the _LAST enum as a
size parameter, it will have the right
size and keep you from indexing out of
bounds. Also getting the string out of
the string array is a very simple offset
addressing operation, which is really
fast in C.

So, that was range checking. You
should also check for NULL pointers if
someone gives you an address value. You
cannot check pointers for anything other

than the NULL value, but this is better
than nothing.

TIP #5—WRITE ONCE, READ MANY
TIMES
When we read other people’s code, we’re
thankful for any good line of comment or
more readable code; most of the time,
however, the original coder hasn’t been so
kind to us. If the variables are called i, j,
and k, you’ll soon have a mental break
down. Often the longest variable name is
pbuf. What can happen when code is dif-
ficult to decipher is that even though the
next programmer should only slightly
change the software, he or she says, “I
can’t understand this hacker’s code. It will
be faster to rewrite it.” The rewrite results
in extra work and possibly new bugs.

So what can you do? First of all, if
you write code, write it to be as read-
able as a newspaper. Well-written code
requires only a few lines of comments.
Also consider that although code is
nothing for compilers, it needs to be
readable by human beings.

Don’t be lazy at typing new variable
names and, if required, add the unit to
the name. For example, do not call pa-
rameters Size, Length, Temperature,
or Angle. Instead, since all those param-
eters have a unit, call them:

•     number_of_bytes

•     length_in_meters

•     temperature_in_celsius

•     angle_in_radians

cover feature

22 MAY 2011 | embedded systems design | www.embedded.com

Listing 7   Safe access to the string map that does not allow any out of bounds access.

const char * symbol_view_screen_name ( const symb_view_screen_t screen )

{

const char * screen_name = “”;

/* check array index */

if ( ( screen >= SYMBOL_VIEW_SCREEN_OFF ) && ( screen < SYMBOL_VIEW_SCREEN_LAST ) )

{

screen_name = symb_view_screen_string_map[screen];

}

return screen_name;

}

Listing 5    An example using an enum error type mapped to a string represen-
tation for trace output to a console window.

typedef enum
{
    SYMBOL_VIEW_SCREEN_OFF = 0,
    SYMBOL_VIEW_SCREEN_PILOT,
    SYMBOL_VIEW_SCREEN_NO_DATA,

/* the last entry is just for looping over the enum */
SYMBOL_VIEW_SCREEN_LAST

} symb_view_screen_t;

Listing 6   The lookup table representing the strings is defined.

static const char *
symb_view_screen_string_map[SYMBOL_VIEW_SCREEN_LAST] =
{

“SYMBOL_VIEW_SCREEN_OFF”,
“SYMBOL_VIEW_SCREEN_PILOT”,
“SYMBOL_VIEW_SCREEN_NO_DATA”

};



>> Find out how LabVIEW can make you better at ni.com/labview/better 800 453 6202

©2010 National Instruments. All rights reserved. LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments. 
Other product and company names listed are trademarks or trade names of their respective companies.  2796

NI LabVIEW

Name
Dr. Laurel Watts

Job Title
Principal Software
Engineer

Area of Expertise
Chemical Engineering

LabVIEW Helped Me
Control multiple
instruments operating in 
harsh conditions

Latest Project
Engineer the ultimate 
 storm chaser

INTEGRATION
LabVIEW makes me better because the

with hardware is so seamless



There are famous examples of errors
coming from wrong unit conversions, such
as the loss of a Mars climate orbiter (see
http://mars.jpl.nasa.gov/msp98/news/mco99
0930.html). Not using units in your ap-
plication programming interface’s defi-
nitions can also cause major design fail-

ures. See How To Design A Good API
and Why it Matters (Joshua Bloch’s
Google TechTalks video from 2007) at
www.youtube.com/watch?v=aAb7hSCtvGw.

If you’ve written code that requires
some renaming, I recommend the use
of the open-source Eclipse Develop-

ment Environment (www.eclipse.org).
It has a great feature called Refactoring
that renames any kind of object every-
where in the code. For instance if you
want to change a function parameter’s
name from number_of_bytes to num-
ber_of_floats, just mark it, press
ALT-SHIFT-R, and change the name.

Documenting the source code is
helpful not only for your future refer-
ence but for those who come after you.
For instance, if you’re working on an
embedded system, you need to have a
memory map indicating where all the
memory-mapped devices can be found.
Listing 8 shows an example of a mem-
ory map. 

It’s useful to have diagrams of all
the software layers in your application
as well as diagrams of the overall soft-
ware architecture, preparing them in a
format that allows you to simply cut
and paste them to a word processing
program. Remember that if you write it
down, you don’t have to keep it in
mind.

TIP #6—WHEN IN DOUBT, LEAVE
IT OUT
I’ve already mentioned the API design
tutorial from Joshua Bloch, a guru in
the Java community. He brings up a
good point in his API-design tutorial
on YouTube (URL mentioned earlier).

And that is: If you design an API
that is nothing other than the external
interface of your modules, consider the
need of an operation. If you are not
sure anyone will ever need an opera-
tion, leave it out. If someone does use
your API and you later remove an oper-
ation, you’ll break his code. So Josh
says, “When in doubt, leave it out. You
can always add, but you can never re-
move.”

TIP #7—USE THE RIGHT TOOLS
Everyone has a favorite editor, debug-
ger, and compiler. But sometimes it’s
worth looking for something new since
“the better is the enemy of the good.”
Here is what I use (many of which you
may already use):

cover feature

24 MAY 2011 | embedded systems design | www.embedded.com

Listing 8   Memory map of an embedded system.

/*———————————————————-
Memory map of the project XYZ

————————————————————-

0000_0000  +———————————————+
               |         APSW Code RAM          |
               |     16 MByte = I-/D-BAT0       |
               |      I-/D-Cache enabled        |

00FF_FFFF  |        User/Supervisor         |
0100_0000  +———————————————+

               |            BSP RAM             |
               |       16 MByte = D-BAT1        |
               |        D-Cache enabled         |

01FF_FFFF  |          Supervisor            |
0200_0000  +———————————————+

               |          General RAM           |
               |            96 MByte            |
               |   D-BAT2[16MB]+D-BAT3[64MB]     |
               |        D-Cache Enabled         |

07FF_FFFF  |        User/Supervisor         |
0800_0000  +———————————————+

               |                                 |
               |           Reserved             |

1FFF_FFFF  |                                 |
2000_0000  +———————————————+

               |     Host bridge Registers      |
               |   516 kByte = D-BAT4[1MB]      |
               |       Cache Inhibited          |

200F_FFFF  |          Supervisor            |
2010_0000  +———————————————+

               |                                 |
               |           Reserved             |

7FFF_FFFF  |                                 |
8000_0000  +———————————————+

               |        PCI Interface           |
               |      256 MByte = D-BAT5        |
               |       Cache Inhibited          |

8FFF_FFFF  |       User/Supervisor          |
9000_0000  +———————————————+

               |                                 |
               |           Reserved             |

FBFF_FFFF  |                                 |
FC00_0000  +———————————————+

               |          Boot Flash            |
               |       64 MByte = D-BAT6        |
               |   1 MByte (FFF...) = I-BAT6    |

FFF0_0000  + - -  I-/D-Cache enabled  - -  +
               |          Supervisor            |

FFFF_FFFF  +———————————————+
*/



•    Eclipse: Has a good editor, is good
at refactoring code, also good for
prototyping architectures on the
PC (for example, with Cygwin on
Windows). www.eclipse.org.

•     Astyle: Artistic Style 2.01 is a great
code formatter that can be config-
ured in many ways to beautify the
code. http://astyle.sourceforge.net/.

•     Cygwin: For PC-based prototypes
and for architectural studies, you
can use the GNU tool chain of 
cygwin. Make sure you install the
make, binutils, and gcc from the
development package. 
www.cygwin.com/.

•     GNU tool suite: Many embedded
systems tool chains use this set of
tools. Even if you don’t have hard-
ware at the beginning of the proj-
ect (your hardware developers
may not have finished their work),
you can start writing prototypes
for your architecture. Eclipse to-
gether with Cygwin using the
GNU tools is worth trying.
www.gnu.org.

•     Tortoise SVN: This is a nice add-on
for Windows Explorer to access the
subversion versioning system.
http://tortoisesvn.tigris.org/.

All these software packages are
available for free.

TIP #8—DEFINE THE SOFTWARE 
REQUIREMENTS FIRST
Defining the requirements for the soft-
ware you write is the first step for a
successful product. I mean the soft-
ware requirements for the final prod-
uct, not those for the quick hacked
throwaway prototype you’re working
on as a first step to the final product.
And this, of course, requires defining
the goal to be reached.

If you don’t define the requirements,
you can’t test your final software proper-
ly—you’ll have nothing to use to define
a useful test case. In other words, how
can you determine if you’ve finished the
development? Here’s a helpful multiple-
choice software quiz along these lines: 

How can you determine if you have
finished the development?
1.    There is no more money left; 
2.    There is no more time left; or 
3.    All the requirements are imple-

mented and tested successfully.

To properly finish development (you
should all know which answer is the cor-
rect one above), I define the following
on every project: 

1.     Requirements for the OK case—
that is, what is required to fulfill the
main functionality.

2.     Requirements for the ERROR case,
important for the safety-critical design
since you also need to define what
has to be done if things go wrong.
Remember that the good case is of-
ten the exception in a string of more
commonly occurring error cases.

3.     Tests that check if the above de-
fined requirements are implement-
ed correctly.

If you do testing on the code base
directly (white-box testing), you may
tend to test what the code does and not
what it’s supposed to do. Here’s where
requirement-based testing can improve
your end product: You’re forced to do
black-box testing.

TIP #9—DURING BOOT PHASE,
DUMP ALL AVAILABLE VERSIONS
If you’re the one who implements the
boot loader on new hardware, you
would normally do the following:

•     Initialize the hardware according to
the required memory map.

•     Execute a hardware self test.

•     Start booting the application.

Nothing new here: That is what
your PC typically does every time you
boot up.

But in embedded systems develop-
ment in the era of FPGAs and CPLDs,
the hardware is as modifiable and sub-
ject to change as the software. Dump all
programmable logic devices version

registers onto a console window or file
before starting the application. This
step is important since hardware devel-
opers nowadays use programmable de-
vices to quickly change the behavior of
their hardware, with the result that
VHDL code can be changed as fast as
software code can be changed.

To circumvent such messages as
“this error is only on your system” or
“we cannot reproduce the problem,”
you should dump at least all the version
registers of the hardware devices. Also
your software should say what version it
is. For a real product, there must be a
matrix telling you which hardware
works with what software version.

If you do this, you’ll find out that
often people are operating illegal com-
binations that can cause some super-
strange effects. Such versioning infor-
mation is very helpful for your product
hotline or test staff, as well as to pro-
duction people who can use it to check
if what they’ve produced is the right
configuration.

TIP #10—USE A SOFTWARE VER-
SION STRING FOR EVERY RELEASE
If you’ve finished development of a
particular stage in a project in order to
do tests on it or to release a software
version, be sure you take the following
steps in exactly the order written:

1.    Update the version string and date.
2.    Check the software version in to

your versioning system.
3.    Update the version string right after

check-in for the next version.
4.    Test the software.
5.    Fix the bugs.
6.    Continue developing the next 

version.

The most important step is 3.
I know of several instances where

developers have given their software to
testers or customers without increment-
ing the software version string. The re-
sult: Several software versions were out
there with the same version string. It
can take days before you realize this in-

cover feature

                                                    www.embedded.com | embedded systems design | MAY 2011      25



consistency and resolve it. (By the way,
in the era of programmable devices, this
also applies to the hardware engineers.
So, if you meet some of them in the
breakroom, remind them).

TIP #11—DESIGN FOR REUSE: USE
STANDARDS
Don’t try to reinvent the wheel, believing
your wheel will be better than all the mil-
lions that have already been invented. I’ve
read so many times things like Listing 9.

Since the C99 language standard has
defined the stdbool.h and stdint.h
headers, things have become portable
and there is absolutely no need to define
your own int or boolean types.

TIP #12—EXPOSE ONLY WHAT IS
NEEDED
When I read other programmers’ code, I
wonder if they’ve ever heard about “in-
formation hiding.” I find many externally
declared variables that can be accessed
from several modules. The practice is
both pointless and sometimes dangerous.

Module internal operations and
variables are often not declared static,
which allows them to be accessible from
other modules. This accessibility results
in a design that is not modular because
when operations and variables are not

declared static, they’re interdependent
and not modular (since one thing can-
not live without the other).

Also C doesn’t have any syntax for
anything like namespaces, common in

other object-oriented languages. Or to
be more precise, C knows only one, the
global namespace. This means that all
nonstatic operations or variables are
visible globally unless you hide them.
This global visibility could result—and
often does—in a name clash detected at
linking the software. As long as you
have all the source code for the project,
you can easily resolve this issue. If you
have only a library in binary format
and some function headers, the situa-
tion is more complicated.

Another related topic: Parameters
have to be declared as const if the im-
plementer of the interface doesn’t want
this object to be changed. The difference
between C and C++ is that in C++ const
means constant, whereas C defines con-

stant to be interpreted as read-only. To
illustrate this, Listing 10 shows a declara-
tion of a read operation reading data into
a specified buffer called display_data,
which is at a constant address. 

A write operation that is creating
constant data located at a constant
buffer address requires const two
times, shown in Listing 11. 

If you later try to modify constant
objects, your compiler will correct you.

You should let your compiler help
you develop your software in a safe way.
What you need to do is to provide the
compiler the information on how the
objects are to be treated.

TIP #13—MAKE SURE YOU’VE
USED “VOLATILE” CORRECTLY
In embedded software development you
sometimes have to do things that your
host-based colleagues are often not con-
cerned about. One of those things is de-
claring variables to be volatile, which
keeps the compiler from optimizing read
or write operations for this variable. How
to do this is well described by Michael
Barr’s blog posting “Firmware-Specific
Bug #3: Missing Volatile Keyword”
found at http://embeddedgurus.com/barr-
code/2010/02/firmware-specific-bug-3-
missing-volatile-keyword/

TIP #14—DON’T START WITH 
OPTIMIZATION AS THE GOAL
Some developers are intent on writing
“fast code,” even though they cannot de-
fine what “fast” means in the context of
their application. It sounds good as an
objective, but what I’ve seen is that often
under the cover of writing fast code, they
want to move beyond the existing sys-

cover feature

26 MAY 2011 | embedded systems design | www.embedded.com

Don’t reinvent the wheel,
believing your wheel will
be better than all the 
millions already invented. 

!
!

Listing 10   A declaration of a read operation reading data into a specified buffer called display_data, which is at a
constant address.

display_error_t display_data_read ( display_data_t * const display_data );

Listing 11   A write operation that is creating constant data located at a constant buffer address requires const two times.

display_error_t display_data_write ( const display_data_t * const display_data );

Listing 9   An example of a wheel reinvented. Don’t be that bore who reinvents
the int and boolean wheels. Use standards instead.

typedef enum
{

MY_GREAT_BOOLEN_FALSE   = 0,
MY_GREAT_BOOLEN_TRUE

} my_great_boolean_t;

my_great_boolean_t is_wheel_re_invented = MY_GREAT_BOOLEN_TRUE;



tem definition and move to a nonexist-
ing architecture. 

To account for this and other sys-
tem-redefining goals, you should think
seriously about developing a flexible ar-
chitecture capable of adapting to various
exigencies. First, this means developing a
set of software requirements for the
product being planned. Then you
should assume that once developed,
your software architecture will no doubt
be extended, so consider how you can
design it to be flexible enough to incor-
porate new features into the existing
platform without scrapping the code
base you’ve already developed. 

If you’re concerned about perform-
ance, wait until your project’s first inte-
gration phase, at which point you can de-
termine how fast the system is. This
doesn’t have to be the last milestone in
the project. As proof of concept, you can
plan to produce several interim “proof of
concept” implementations and measure
performance. Working from that known
value, consider what you need to do to
achieve the necessary performance goals.

If you then detect that your code is
not fast enough, you have to check
which parts are responsible for the main
time consumption. Then you profile the
software and determine what loops and
routines are consuming all the time.

The rule with optimization is that
you first have to know where you are be-
fore considering what you need to opti-
mize in order to get where you want to
be. And don’t forget that the software
must still be maintainable.

TIP #15—DON’T WRITE 
COMPLEX CODE
Complex code is error-prone code. I
think most of you already know this. But
the question is, what does complex really
mean in the context of your particular
design?

A good metric for defining this is the
McCabe or cyclomatic complexity algo-
rithm. See also this well-written article
by Jack Ganssle (“Taming software com-
plexity,” Embedded.com, 2008) at
www.eetimes.com/4007519.

My opinion is that if you write safe-
ty-critical code, the best rules are:

•     Max. cyclomatic complexity per
function: 10

•     In a few exceptions, such as use of
switch-case constructs: 15

Many good tools exist for measuring
the complexity of your code. “Under-
stand for C,” at www.scitools.com is a
good tool, but many others are available.

You shouldn’t just think about
writing code during the initial software
development phase. You need to think
about all the stages of the code’s life.

The code of a product will be changed
and extended many times during the
product’s life cycle. And the people who
have to do this are pretty often not the
ones who have written the code initial-
ly. In other words, do not just think
about your own needs: many others are
coming after you.

TIP #16—USE A STATIC CODE
CHECKER
If you write safety-critical code, you
surely have a coding guideline. Even if
your guideline contains only 10 rules,
you must have a tool to help you check
those rules. If your team doesn’t have a
tool for checking, you can be sure that
things won’t be checked.

Many tools, such as PC-Lint, are
available to accomplish this task. You
should check your code at every signifi-
cant milestone in your project to be
sure that the code quality is good.

Remember, software testing is a
multistage process, of which static code

checking is one part. The other stages
include: 

•     Functional tests.

•     Requirements-based tests.

•     Coverage tests (such as MC/DC).

All these tests have one general pur-
pose: to reduce the number of bugs in
your code.

No software code base exists on this
planet that can be considered to be er-
ror-free. But there are many good soft-
ware code-base products that do what
they’re supposed to do. Unfortunately,
there are also many that do not.

TIP #17—MYTHS AND SAGAS
Many myths and sagas persist in the
world of safety-critical embedded sys-
tems. One of the most common is that
dynamic memory allocation is forbid-
den. This myth, however, is only half of
the truth. Every application has an ini-
tialization phase. This phase is followed
by the operational one. It’s no risk at all
to do dynamic memory allocation dur-
ing the initialization phase. But to avoid
memory fragmentation, during the op-
erational phase, you aren’t allowed to
change those allocations.

AVOID THE POTHOLES
With this article, I’ve identified some
potholes on the road to safety-critical
software development and how you can
avoid them. When you come to the part
of your job where you tell a computer
what you want it to do, I hope these tips
will be helpful. At that time, remember
this one sentence summary I came
across once about our common job do-
main: “Computers have the strange
habit of doing what you say, not what
you mean.”  ■

Thomas Honold is a software architecture
designer, specializing in safety-critical
DO-178B software development in the
defence/aerospace industry. He has a
master in electronic engineering and has
worked 15 years on software architec-
tures and design for banking software, In-
ternet banking, chip-card readers, avion-
ics, and bootloader driver software.

cover feature

                                                    www.embedded.com | embedded systems design | MAY 2011      27

You need to think about
all the stages of the
code’s life. Do not just
think about your own
needs: many others are
coming after you.

!
! 
!



28 MAY 2011 | embedded systems design | www.embedded.com

Do you really need that CPU in your microcontroller? Here’s a way to free up
your CPU using a combination of programmable logic devices and data-

paths. Mark Ainsworth of Cypress Semiconductor explains how. 

Why your embedded
controller may not

need a CPU
BY MARK AINSWORTH

In most microcontroller architectures, a “smart” CPU is surround-
ed by a set of relatively “dumb” peripherals. The peripherals have
limited functions; usually they just convert data from one form 
to another. For example, an I2C peripheral basically converts 
data between serial and parallel formats, while an ADC converts 

signals between analog and digital. The
CPU has to perform all of the work to
process the data and actually do some-
thing useful with it. This, plus close
management of the peripherals, can
result in a lot of complexity in the
CPU’s firmware and may require a fast
and powerful CPU to execute that
firmware within real-time timing con-

straints. This in turn can lead to more
obscure bugs and thus to more com-
plex and expensive debugging equip-
ment, and so on.

But what if the peripherals were
complex enough, flexible enough, and
ultimately “smart” enough to effective-
ly relieve the CPU of many of its tasks?
A complex design could then be re-

feature



www.embedded.com | embedded systems design | MAY 2011 29

Example PLD with 12 inputs, eight product terms, and four macrocells.

Figure 1

IN0 T C

PT0

T C

PT1

T C

PT2

T C

PT3

T C

PT4

T C

PT5

T C

PT6

T C

PT7

IN1 T C T C T C T C T C T C T C T C

IN2 T C T C T C T C T C T C T C T C

IN3 T C T C T C T C T C T C T C T C

OUT0 T T T T T T T T

 OUT1 T T T T T T T T

OUT2 T T T T T T T T

OUT3

OR Array

AND Array

T

MC0

MC1

MC2

MC3 T T T T T T T

IN4 T C T C T C T C T C T C T C T C

IN5 T C T C T C T C T C T C T C T C

IN6 T C T C T C T C T C T C T C T C

IN7 T C T C T C T C T C T C T C T C

IN8 T C T C T C T C T C T C T C T C

IN9 T C T C T C T C T C T C T C T C

IN10 T C T C T C T C T C T C T C T C

IN11 T C T C T C T C T C T C T C T C

H

S
IG

H
PEED

RO
BUST

FLEXIB
LE

TriCore Power Architecture•

XC2000/XE166 SH-2A XScale• •

Cortex M0/M3/M4 Cortex R4 Cortex A8• •

ARM7/9/11

structured as a group of simple designs distributed among
the CPU and the peripherals. The CPU would ultimately
have fewer tasks and perhaps fewer interrupts to handle, in
turn making bugs easier to find and fix. The overall design
would become more robust, and portions of the design
more easily reused. Finally, a CPU with less to do may be
run at a slower speed to save power, or that available band-
width could be used for the additional tasks that the mar-
keting department dreams up for the next-generation prod-
uct. However, the peripherals would still need to be
designed in a cost-effective manner or the overall micro-
controller might become too expensive. This article shows
how a set of smart, flexible, low-cost, custom digital periph-
erals can be designed into a microcontroller and configured
to help implement a robust distributed system design.

SMART LOGIC OPTIONS—PLD OR DATAPATH?
There are two general ways to construct a smart config-
urable peripheral. The first is to use a programmable logic
device (PLD). As shown in Figure 1, a PLD has a sum-of-
products logic gate array driving a number of macrocells.
The “T” and “C” notations indicate that each product term
can generate either a true or complement (inverted) output,
so that both positive and negative logic can be supported.

Figure 1 shows a simple example of a PLD. PLDs can
have hundreds of macrocells with up to 16 product terms
driving each macrocell. The AND and OR gates within the
product terms can be interconnected to form highly-flexible



custom logic functions. The macrocells
are typically clocked, and their outputs
can be fed back into the product term
array. This allows state machines to be
created.

Large-scale PLDs can be used to
form complex logic functions, even full
CPUs, and thus can certainly be used to
make smart digital peripherals. Howev-
er, a lot of gates may be needed to im-
plement even simple logic functions
like counters or adders, and it can be-
come expensive to scale up a PLD-
based solution for more complex func-
tions. At some point, it makes more
sense to just use an actual CPU. 

A very simple form of such a CPU
is a datapath based on an arithmetic
logic unit (ALU), also known as a

nano-processor. A datapath implements
just a few common functions but does
so more efficiently than an implemen-

tation using PLDs. Figure 2 shows a
simple datapath with an ALU. A typical
ALU can do a variety of operations,
usually on 8-bit operands: count up

(increment), count down (decrement),
add, subtract, logical AND, logical OR,
logical XOR, shift left, and shift right.
There are two 8-bit accumulators that
can act as either input data registers or
storage for ALU output. A single oper-
ation takes place on the edge of an in-
put clock signal. A function select reg-
ister is used to control:

•     What operation takes place.

•     The source register(s) for that 
operation.

•     The destination register for the 
output.

Depending on the specific design of
the datapath, it is possible to do a series
of complex operations, as shown in
Table 1.

The function select block can actu-
ally be a small SRAM, preloaded with
the desired function select bits, and the
SRAM’s address lines can be used to se-
lect which operation is to be done. Fi-
nally, multiple datapaths can be
chained together with carry and shift
signals so that operations can be done
on multibyte operands.

Since a datapath does only a few
specific functions, it’s possible to opti-
mize its design so that it is inexpensive
to build. However, a datapath is not
nearly as flexible as a PLD for imple-
menting complex logic. So which
method is better for creating smart,
flexible, low-cost digital peripherals—
PLDs or datapaths?  The answer is that
separately neither one works well but
together they can work very well. Let’s
take a look at a practical example of
how this is done.

UNIVERSAL DIGITAL BLOCKS
An example of a system utilizing both
PLD and datapath components is Cy-
press Semiconductor’s PSoC 3 and
PSoC 5 ICs. Each system contains up to
24 general-purpose digital logic subsys-
tems called Universal Digital Blocks
(UDBs) constructed as shown in
Figure 3. A UDB contains two PLDs of
the type shown in Figure 1. It also con-

30 MAY 2011 | embedded systems design | www.embedded.com

feature

Which method is better
for creating smart, low-
cost digital peripherals—
PLDs or datapaths?
Separately neither, but
together they work well. 

!
!
!

A simple example of an ALU-based datapath, with accumulators, 
function select, clock, and carry and shift chaining signals.

Figure 2

Function select

A0 A1

ALUC0
SOL
SIL

Clock

CI
SIR
SOR

Examples of datapath functions implemented by function select bits.

Function select bits                                   Function
Operation: increment
Source: A0                                        A1 = A0 + 1
Destination: A1
Operation: subtract A0 – A1
Sources: A0, A1                               A0 = A0 – A1
Destination: A0
Operation: right shift
Source: A0                                       A0 = A0 >> 1
Destination: A0

Table 1



tains a datapath as well as status and
control registers. There are two chain-
ing paths, one for the PLDs and one for
the datapath. Finally, a routing channel
exists to connect signals between each
of the UDB’s sub-blocks as well as be-
tween UDBs. Configuration of the
PLD, datapath, and routing is done by
writing to UDB configuration registers
(not shown).

The UDB’s PLD design was de-
scribed in Figure 1. As shown in Fig-
ure 4, the UDB datapath is similar to
the basic datapath concept shown in
Figure 2 but is more sophisticated—it
has more registers and more features:

•     The 8-bit ALU can do all seven ba-
sic functions—increment, decre-
ment, add, subtract, AND, OR,

feature

                                                    www.embedded.com | embedded systems design | MAY 2011      31

Block diagram of UDB datapath.

Figure 4

F1

F0

FIFOs

System bus

R/W access to
all registers

D1

D0

A1

A0

Input from
programmable

routing

Parallel input/output
(to/from programmable routing)

PI

A0
A1
D0
D1

To/from prev
datapath

To/from next
datapath

Output to
programmable
routing

PO

ALU

Shift

Mask

Datapath  control

Control Store RAM
8 w

ord X 16 bit

Conditions
2 Com

peres
2 Zero detect, 2 Ones Detect

OverflowDetect

Data registers

Chaining
Accumulators

6

Block diagram of a Universal Digital Block (UDB).

Figure 3

PLD chaining

Datapath chaining

Clock and reset
control

PLD
12C4

(8 PTs)

PLD
12C4

(8 PTs)

Status and
control

Datapath

Routing channel



XOR—and has separate shift and
bit-mask blocks for post-process-
ing the ALU result. (An eighth
ALU function, pass, just passes a
value through the ALU to the
shifter and bit-mask blocks.) The
shift block can do shift left, shift
right, nibble-swap, and pass. The
mask block does a bitwise AND
with the contents of a separate
mask register (not shown).

•     Operations can be done using two
accumulators (A0, A1) and two
data registers (D0, D1). Two FIFO
registers (F0, F1) are available for

passing data between the datapath
and the CPU. The FIFOs are up to
4-bytes deep. This structure en-

ables simple multitasking; at dif-
ferent times separate operations
can be done on subsets of the reg-
isters. So for example A0, D0, and
F0 could be used for one task and
A1, D1, and F1 could be used for a
different task. 

•     A broad set of status conditions—
compare, zero detect, all ones de-
tect, and overflow detect—can be
applied to the accumulators and
data registers and routed elsewhere
in the device. 

FLEXIBLE ROUTING
Although the UDBs have a lot of fea-
tures in both the PLD and datapath
subsystems, what makes them espe-
cially useful is the extensive digital
routing that is also offered. Signals can
be routed among the PLDs and data-
paths throughout the entire set of
UDBs, and elsewhere in the device, to
form a complex fabric called the Digi-
tal System Interconnect (DSI). 

EXAMPLES
In a basic example, we can use one
UDB datapath to create an 8-bit
counter with reload capability. To do
this we connect one status condition
back to a control store SRAM address
line, as shown in Figure 5.

In this design, A0 is the counter
register and D0 is the reload register.
We need two functions, one to decre-
ment the counter and one to reload
the counter from the period register;
these functions are preloaded in the
Control Store RAM.

The logic is as follows. When A0 is
not zero, the condition output will be
low and the decrement operation at
address 0 will be executed. When A0 is
zero, the condition output will be high
and the reload operation at address 1
will be executed.

All operations take place on the
rising edge of the clock input, allowing
the number of clock edges to be
counted. The clock input can be rout-
ed from a variety of sources. The con-
dition output can be routed through-

32 MAY 2011 | embedded systems design | www.embedded.com

feature

UDB datapath configured as a counter with reload.

Figure 5

A0 = = 0

Datapath

A0: counter
D0: reload value

Clock Condition outputs

Control store RAM
0: A0 = A0 _ 1
1: A0 = D0

Block diagram of a traffic-light controller using UDB PLDs and 
datapaths.

Figure 6

A0 = = 0

Traffic light drives 

Datapath

PLD

A0: counter
D0: “green” and “red” reload value
D1: ”yellow” reload value

2

2

3

Condition outputs

Clock

Control store RAM
0: A0 = A0 _ 1
1: A0 = D0
2: A0 = D1

State
machine

Logic

This structure enables
simple multitasking; 
at different times 
separate operations 
can be done on subsets
of the registers. 

!
!
!



out the DSI, including to DMA and in-
terrupt request inputs. Using datapath
chaining and the mask block, the size
of this counter can be any number of
bits, and is not limited to a multiple of
eight bits.

The counter shown in Figure 5 is a
down counter. It can easily be convert-
ed to an up counter by using a differ-
ent condition output (A0 == D0) and
different functions in the control store
SRAM: A0 = A0 + 1, and A0 = A0 XOR
A0. Exclusive-or’ing any value with it-
self yields a zero result.

This simple design can be expand-
ed, with the use of PLDs, to create a
more complex application. To illus-
trate this, consider a traffic-light con-
troller. A traffic-light controller cycles
through three states—green, yellow,
and red—so a state machine is re-
quired. Each state lasts for a certain
amount of time before changing to the
next state, so a counter is also re-
quired. For simplicity, assume that 
the “green” time is the same as the
“red” time but that the “yellow” time
is different. 

Only one datapath is needed (as-
suming an 8-bit count value) to imple-
ment this timing structure, and three
of the datapath registers are used. A0 is
the count register, D0 contains the
counter reload value for the “green”
and “red” states, and D1 contains the
counter reload value for the “yellow”
state. The block diagram is shown in
Figure 6.

The operations to be saved in the
Control Store RAM are:

A0 = A0 – 1 // count
A0 = D0 // reload “green” or “red” 

// count value
A0 = D1 // reload “yellow” value

The state machine is implemented
in the PLD. The datapath condition
output is fed back to the PLD to indi-
cate that it’s time to change state. The
PLD also has logic that, based on the
current state and the signal fed back

from the datapath, controls which data-
path operation to perform and which
traffic light to activate.

BEYOND THE BASICS
A traffic-light controller is a simple ap-
plication of a type that is commonly
programmed using a CPU. However, we
have seen that, except for initialization
code, this function can be completely
dissociated from the CPU and in fact
has been encapsulated as a smart con-
figurable peripheral. The functionality
can be easily expanded to support addi-
tional requirements such as turn sig-

nals, pedestrian WALK signals, vehicle
detect sensors, and transit/emergency
transponders.

WHAT’S A CPU TO DO?
By using an efficient combination of
PLDs and datapaths, you can create
smart, flexible, low-cost peripherals
that take the load off the CPU. Howev-
er, if so much functionality can be of-
floaded to peripherals, what’s left for
the CPU to do? In many cases, not
much—in some cases after system ini-
tialization, the CPU can be turned off!
However, a more realistic solution is to
use the CPU to do what CPUs do best,
such as:

•    Complex calculations.

•    String and text processing.

•    Database management.

•    Communications management.

•    System management.

For example, in our traffic-light
application, the CPU could be used to:

•    Detect when a vehicle goes
through a red light, 

•    Use the camera to photograph the
license plate, 

•    Extract the license plate’s text from
the photo, 

•    Look up the owner in the state
database, and

•    Send a ticket to the owner. 

By offloading tasks to smart sup-
port peripherals, the CPU is freed up
to do other, maybe more lucrative
tasks.   ■

Mark Ainsworth is a applications engi-
neer principal at Cypress Semiconductor.
He has a BS in computer engineering
from Syracuse University and an MSEE
from the University of Washington. 

feature

                                                    www.embedded.com | embedded systems design | MAY 2011      33

By offloading tasks 
to smart support 
peripherals, the CPU 
is freed up to do other,
maybe more lucrative
tasks.

!
!
!



T
his paper (from the Embedded Systems Conference class of the
same name) discusses some of the problems found in a lot of code
today and suggests how they can be avoided. There are many ways
you and your embedded development team can improve code quality
and in the process, become significantly more productive. Tech-
niques are presented to organize project directories, naming files,
laying out code, naming variables, functions, and more. Examples are
presented for C but most of the concepts apply to other languages.

If you like going it alone or bucking convention, programming embedded systems
may not be for you. Rarely is it a solo job anymore. Brilliant as we are, we embedded
systems developers need to code using production-oriented mindset, which means

following the same house style guide and rules to get the job done right. 

BY JEAN J. LABROSSE

34 MAY 2011 | embedded systems design | www.embedded.com

Today’s competitive world forces us
to introduce products at an increasing-
ly faster rate due to one simple fact of
business life: having a product out first
may mean acquiring a major share of
the market. One way to help make this
possible is to assure that the mechanics
of writing code become second nature.
All project members should clearly un-
derstand where each file resides on the
company’s file server, what each file

should be named, what style to use, and
how to name variables and functions. 

The topic of coding conventions is
controversial because we all have our
own ways of doing things. One way is
not necessarily better than the other.
However, it’s important that all team
members adopt a single set of rules and
that these rules are followed religiously
and consistently by all participants. The
worse thing that you can do is to leave

Adopting C 
programming 
conventions

feature



each programmer to do his or her own
thing. Such an undisciplined activity
will certainly lead to chaos. When you
consider that close to half of the devel-
opment effort of a software-based sys-
tem comes after its release, why not
make the sometimes unpleasant task
of supporting code less painful?  

In this paper, I’ll share some of
the conventions I’ve been using for
years and I hope that you’ll find some
of them useful for your own organi-
zation. I urge you to document your
own conventions because it makes
life easier for everyone, especially
when it comes to supporting some-
one else’s code.

DIRECTORY STRUCTURES
One of the first rules to establish is
how files are organized. Do you place
all the source files in a single directory
or do you create different directories
for different pieces? I like to use a
structure similar to that shown in
Table 1.

Each product (such as ProdName)
has its own directory under PROD-
UCTS\. If a product requires more
than one microprocessors then each
has its own directory under Prod-
Name\. All products that contain a mi-
croprocessor has a SOFTWARE\ direc-
tory. The SOURCE\ directory contains
all the source files that are specific to
the product. If you have highly modu-
lar code and strive to reuse as much
code as possible from product to
product, the SOURCE\ directory
should generally only contain about
10% to 20% of the software which
makes the product unique. The re-
maining 80% to 90% of the code
should be located in the \SOFTWARE
directory (discussed later). The DOC\
directory contains documentation
files specific to the software aspects of
the product (such as specifications,
state diagrams, flow diagrams, and
software description). The TEST\ di-
rectory contains product build files
(such as batch files, make files, and
IDE project) for creating a test version

of the product. A test version will
build the product using the source
files located in the SOURCE\ directory
of the product, any reusable code
(building blocks), and any test-specif-
ic source code you may want to in-
clude to verify the proper operation of
the application. The latter files gener-
ally reside in the TEST\ directory be-
cause they don’t belong in the final
product. The PROD\ directory con-
tains build files for retrieving any re-
leased versions of your product. The
other directories under ProdName\
are provided to show you where other
disciplines within your organization
can store their product-related files.
In fact, this scheme makes it easy to

backup or archive all the files related
to a given product whether they’re re-
lated to software or not.

The \SOFTWARE\ directory is
where you could store all reusable,
non-product specific files. I call these
building blocks, and each contains its
own documentation.

SOURCE FILES
It’s well known that coding is the
only aspect of programming that
must be done to have a product. All
the documentation in the world is
useless if it doesn’t reflect what the
code does. C has been called a write-
only language because once you have
written the code, it’s difficult to read

                                                    www.embedded.com | embedded systems design | MAY 2011      35

It’s important that all team members adopt a single set
of rules and follow them religiously and consistently.
The worse thing you can do is to leave each program-
mer do his or her own thing. 

!
!

An example directory structure for source files.
     Directory contents                                                                          Directory name
      PRODUCTS                                                                                                   (PRODUCTS)
     ProductName
                              Manual                                                         (MANUALS)
                              Software     
                                                Documentation                           (DOC)
                                                Source                                       (SOURCE)
                                                Object Code                               (OBJ)
                                                Listings                                       (LST)
                                                Test                                            (TEST)
                                                Product Build                             (PROD)
                              Hardware   
                                                Design and Analysis                   (DESIGN)
                                                Schematics                                (SCH)
                                                PCB layouts                                (PCB)
                                                BOM (Parts List)                         (BOM)
                              Mechanical

     SOFTWARE (reusable components)                                           (SOFTWARE)
     ModuleName    
                              Source                                                          (SOURCE)
                              Documentation                                             (DOC)
                              Releases                                                       (RELEASES)
Table 1



2011 EE TIMES ACE AWARDS

ASSOCIATION MEDIA SPONSOR

NOMINATION BASED:
DESIGN TEAM OF THE YEAR:
Advanced Micro Devices
IBM
Intel Corporation
Nordic Semiconductor
PrimeSense 
INNOVATOR OF THE YEAR:
Adapteva Inc.–Andreas Olofsson 
Cirrus Logic–John Melanson 
Intel–Mario Paniccia 
NuPGA Corporation–Zvi Or-Bach 
Wave Systems Corp.
–Robert Thibadeau 
EXECUTIVE OF THE YEAR:
ARM–Warren East 
Cirrus Logic–Jason Rhode 
GLOBALFOUNDRIES
–Douglas Grose 
Maxim Integrated Products
–Tunc Doluca 
Spansion–John Kispert 
STARTUP OF THE YEAR:
Dynamics Inc. 
GLOBALFOUNDRIES 
Lunera Lighting Inc. 
Pixtronix 
Semitech Semiconductor Pte Ltd 

COMPANY OF THE YEAR:
Altera Corporation 
ARM 
Maxim Integrated Products 
NetLogic Microsystems, Inc. 
TriQuint Semiconductor, Inc.
MOST PROMISING NEW 
TECHNOLOGY:
Hillcrest Labs 
InvenSense, Inc. 
InVisage Technologies Inc. 
Lyric Semiconductor 
Tilera
ENERGY TECHNOLOGY AWARD:
Effi cient Power Conversion 
Corporation 
Freescale Semiconductor 
SolarBridge Technologies 
SPD Control Systems Corporation
Freescale Semiconductor  

IEEE AWARD CATEGORIES:
IEEE SPECTRUM TECHNOLOGY 
IN THE SERVICE OF SOCIETY & 
THE IEEE SPECTRUM EMERGING 
TECHNOLOGY AWARD 
Laster Technologies 
(Smart Spectacles)
Seabed Rig (Robotic Oil Driller)
IBM (Watson)

ClariPhy Communications 
(Digital Processor)
Willow Garage 
(Personal Robotics)
EE TIMES SELECTED 
CATEGORIES:
MOST POPULAR PRODUCT OF THE 
YEAR (7 CATEGORIES)
-Digital logic
-Analog-mixed signal
-Memories
-Interconnects
-Electro-mechanical
-Software/IP
-Test & Measurement

LIFETIME ACHIEVEMENT AWARD
EDITOR’S CHOICE AWARD
CONTRIBUTOR OF THE YEAR 
MOST ENGAGED MEMER OF
THE EE TIMES COMMUNITY 
OF THE YEAR
BEST STUDENT DESIGN/
DESIGN CHALLENGE WITH 
PUBLIC SCHOOLS
EE LIFE CONTRIBUTOR OF 
THE YEAR
STUDENT OF THE YEAR

2011 UBM Electronics Celebrates the Industry and its Innovation 
through the EE Times ACE Awards and EDN Innovators Awards

The Gallery of Innovation

Lifetime Achievement 
Award Honoree

Tuesday, May 3rd 2011
5:30pm-7:00pm

Fairmont San Jose
Club Regent Room
Tickets available: 

www.eetimes-ace.com

The Annual Creativity in 
Electronics (ACE) Awards 
celebrates the creators of 
technology who demonstrate 
leadership and innovation in 
the global electronics industry 
and shape the world we live in.

Finalists and winners will be 
recognized by EE Times editors, 
a distinguished judging panel 
and the global electronics industry.   

Good Luck Finalists!

GOLD SPONSORS

Irwin Mark Jacobs
Co-Founder, 
Former Chairman, 
Qualcomm



and understand what it does. I believe
that any language can be made write-
only because this depends more on
your attitude than the language you
use. I always say that, if you hate writ-
ing (or typing) then you’re in the
wrong business. Many programmers
write for themselves and are not con-
cerned with the life of a product. An-
other sign that you’re in the wrong
business is if you believe that your job
is done once the code works. A major
portion of a product’s life consist of
maintenance. In fact, in most cases,
maintenance accounts for the majority
of a product’s development cost and
thus, you should write source code to
facilitate maintenance. 

One of the easiest ways I found to
accomplish this goal is to adopt a clean
and consistent coding style. Which
style you decide to use doesn’t matter,
as long as you and others in your or-
ganization follow a common guide. To
that end, somebody should document
the style used in your organization and
have everyone follow it religiously. A
few years ago, I read an article in the
Hewlett-Packard Journal that stated that
the product development manager de-
cided to have the team adopt a com-
mon coding style (a potentially danger-
ous management decision!).1 The team
members were initially reluctant about
having to conform to the style guide,
but at the completion of the project
everybody was impressed by the pro-
ductivity gains. Team members were
able to help each other because they
didn’t have to adjust themselves to oth-
er members’ coding styles to find bugs.

Source files should be grouped by
modules with each module having its
own directory. Taking C as an example,
a directory may contain as few as two
files (a .C and a .H file) or as many files
as needed to perform the functions of
the module. In some cases, lookup ta-
bles are placed in the .C file along with
the module’s code while in other cases,
large tables are located in their own
files. All files within a module share a
common file name prefix. For example,

a display module may consist of three
files: DISP.C contains code and vari-
ables, DISP.H contains function proto-
types and DISP_TC.C contains tables
(the _TC means Tables written in C). If
you have multiple types of display
modules (such as LCD and LED), each
can be located in its own directory. For
example, the LCD module can be
placed in \SOFTWARE\LCD while the
LED module in \SOFTWARE\LED. Also,
the name of the files can be the same in
both cases. In fact, you should try to

provide the same functionality (such as
function names and variable names)
whether you have an LCD-based dis-
play or an LED-based display. Where
the application code is concerned, it
only knows that it has a display, and the
product requirements dictate which
type is used.

I don't like to limit the width of
source code to 80 characters. In fact, I
still don’t know why some program-
mers limit themselves to 80 columns.
Deciding on the width of a source file
can become controversial. I believe that
you should not limit your source code
to 80 columns even if you never print
your source code. The reason is simple.
I like to put executable statements on
the left and comments on the right.
This simple technique makes it easier to
follow your code—your mind doesn’t
continuously have to “filter” the code
from the comments if the comments
are interleaved with your code (more
on this later). The 80-column rule
comes from old text-based monitors
that allowed you to display only 80-

characters wide and was useful for code
reviews when code was printed. Today’s
large monitors can easily display 200-
columns wide and quite frankly, I don’t
recall the last time I actually printed
code. 

A source file should contain the fol-
lowing sections and these sections
should always be in the same order.
Header files should never contain code
except for macros.

1.    File heading.
2.    Revision history.
3.    #defines and macros.
4.    #includes.
5.    Variables.
6.    Function prototypes.
7.    Functions.

The file heading section is a com-
ment block that contains your compa-
ny name, address, copyright notice, file
name, author’s name, and a description
of the module. 

The revision history section is
also a comment block that describes
what changes were made to the mod-
ule over time. This section can auto-
matically be filled in by your version
control software when the module is
released (assuming you’re using ver-
sion control software—hopefully you
do). I have seen cases where the revi-
sion history section is actually at the
end of the file so that the line numbers
are not affected as much each time re-
vision comments are inserted. Either
way is acceptable.

#defines and macros are located
in three different places. First, if #de-
fines and macros are only applicable
to the module, they’re placed in the
module’s .C file (for example, equat-
ing the different states of a state ma-
chine). There is no point of extending
the scope of something that is used lo-
cally. If used by multiple .C files in a
given module, #defines and macros
can be placed in the module’s .H file to
make them globally visible to the
module. Finally, if the #defines are
meant to be product specific, they’re

feature

                                                    www.embedded.com | embedded systems design | MAY 2011      37

Team members were able
to help each other
because they didn’t have
to adjust themselves to
other members’ coding
styles to find bugs.

!
!
!



placed in a file called APP.H (you can certainly use a differ-
ent name) in the product’s directory. For example, the size
of a module’s buffer can be specified in APP_CFG.H (appli-
cation configuration) instead of the module itself. Also, you
can #define a constant to enable/disable compilation of a
feature in a module. This allows your code/data size to be
reduced in case you don’t need all the functionality of a
module. 

In other cases, conditional compilation is used to enable
a version of an algorithm. For example, a CRC (cyclic re-
dundancy check) module can contain two versions. The
first version can be slow but require very little ROM while
the other can be very fast but require the use of a 512-bytes
table and thus consumes more ROM. In
this case, setting the #define
CRC_CFG_FAST_EN to 1 selects the
faster version. Where the application is
concerned, it doesn’t know the differ-
ence. #defines and macros are always
written using uppercase characters with
an underscore character separating
words. This agrees with the conventions
established by Kernighan and Ritchie.2

Every .C file whether product specif-
ic or part of a reusable module contains
a #include section that always consists of
a single statement as follows:

#include “INCLUDES.H”

I like to use a single “master” include file called INCLUDES.H
whose contents is defined in the product’s directory. I use a
single master header file because it prevents you from having
to remember which header file goes with which source file,
especially when new modules are added. When you design
reusable modules, you will never have to remember which
header files are needed with which module—they are always
all included. If you add a new module, you simply include its
header file in INCLUDES.H. The only inconvenience that I
found is that it takes a little bit longer to compile each file
but, this is barely perceptible with today’s fast computers.
Some people hate the idea of exposing all the header files to
all the .C files because they believe programmers will then
start accessing everything that the headers are exposing. I be-
lieve that can easily be controlled. Using a single include file
is a matter of preference.

VARIABLES
Most of today’s C compilers conform to the ANSI X3J11
standard, which allows up to 32 characters for identifiers.
Descriptive variables can be formulated using this 32-char-
acter feature and the use of acronyms, abbreviations, and
mnemonics (see section on acronyms, abbreviations, and

mnemonics). Variable names should reflect what the vari-
able is used for. I like to use a hierarchical method when
creating a variable. For instance, the array KeyBufIn[] in-
dicates that it is part of the keyboard module (Key), it is a
buffer (Buf)—and specifically the input buffer (In). Upper-
case characters are used to separate words in a variable, but
this rule only applies to global variables. This is called
Camel Back.

In C, you can have two types of global variables: global to
a file (also called local globals) and global to the rest of the
world (such as the product). I personally don’t think that
globals are bad and thus should be avoided. Having globals
doesn’t mean that you should not encapsulate their access

through interface functions. Hav-
ing variables globally accessible
may be beneficial when debugging
and at run time to visualize what
your product is doing. 

All global variables (variables
seen by other modules) are placed
in the .H file of the module and
not in the .C file. In C, however,
the .H file generally contains an
extern statement so, the question
is: “How do you extern a variable
and allocate storage for it at the

same time?” The answer is that you use conditional compila-
tion through the C preprocessor as shown in the following
statements that are placed at the beginning of the .H file:

#ifdef  xxx_GLOBALS

#define xxx_EXT

#else

#define xxx_EXT extern

#endif

Where, xxx is the name of the module. Each variable that
needs to be declared global will be prefixed with xxx_EXT in
the .H file. The module’s .C file will contain the following
declarations:

#define   xxx_GLOBALS

#includes “INCLUDES.H”

When the compiler processes the .C file, it forces
xxx_EXT (found in the corresponding .H file) to “nothing”
(because xxx_GLOBALS is defined) and thus each global vari-
able will be allocated storage space. When the compiler
processes the other .C files, xxx_GLOBALS will not be defined
for that module and thus xxx_EXT will be set to extern al-
lowing you to reference the global variables. To illustrate this
concept, let’s suppose you need to create the following global
variables:

38 MAY 2011 | embedded systems design | www.embedded.com

feature

I don’t think that globals are
bad. Having variables global-
ly accessible may be benefi-
cial when debugging and at
run time to visualize what
your product is doing. 

!
!
!



CPU_INT08U CtrlState;

CPU_FP32   CtrlLevel;

CPU_INT16U CtrlCtr;

CTRL.H would look like this:

#ifdef  CTRL_GLOBALS

#define CTRL_EXT

#else

#define CTRL_EXT extern

#endif

CTRL_EXT  CPU_INT08U CtrlState;

CTRL_EXT  CPU_FP32   CtrlLevel;

CTRL_EXT  CPU_INT16U CtrlCtr;

CTRL.C would look like this:

#define   CTRL_GLOBALS

#includes “INCLUDES.H”

The nice thing about this technique is that you don’t
have to declare global variables in the .C file and duplicate
the statements with the addition of the extern attribute in
the .H file. You not only save a lot of time but you also reduce
the chances of introducing an error in the process. Once you
use this technique, you’ll never want to declare globals any
other way.

Variable names should be declared on separate lines
rather than combining them on a single line. Separate lines
make it easy to provide a descriptive comment for each vari-
able. You should also explicitly declare the data type of every
variable instead of relying on the default, int.

By convention, all variables are prefixed with the mod-
ule’s name. This convention makes it quite easy to know
where variables are declared when you’re dealing with large
applications. Furthermore, a file scope global should have the
underscore character (in other words, ‘_’) after the module
name. For example, a local global variable in the file CTRL.C
would be prefixed by Ctrl_. Because CTRL.C will most likely

manipulate Ctrl variables you will be able to know whether
the variables are declared at the top of CTRL.C (Ctrl_ prefix)
or in CTRL.H (Ctrl prefix).

Formal arguments to a function and local variables with-
in a function are declared in lowercase. The lowercase con-
vention makes it obvious that such variables are local to a
function because, also by convention, global variables will
contain a mixture of upper- and lowercase characters. To
make local variables or function arguments readable, you can
use the underscore character (in other words, _ ). Within
functions, certain variable names can be reserved to always
have the same meaning. Some examples are given below but
others can be used as long as consistency is maintained.

i, j, and k for loop counters. 
p1, p2 ... pn for pointers. 
c, c1  ... cn for characters.
s, s1  ... sn for strings.
ix, iy, and iz for intermediate integer variables
fx, fy, and fz for intermediate floating-point variables

Structures are typedef since this allows a single name to
represent the structure. The structure type is declared using
all uppercase characters with underscore characters used to
separate words, shown in Listing 1.

I find it very useful to include the name of the structure
in the suffix of a pointer as shown below. This allows the
reader to know what structure the element being referenced
belongs to.

p_line->>Color;

feature

                                                    www.embedded.com | embedded systems design | MAY 2011      39

You not only save a lot of time but you also
reduce the chances of introducing an error.
Once you use this technique, you’ll never
want to declare globals any other way.

!
!

Listing 1   

typedef struct {            /* Structure that defines a LINE */

CPU_INT16U  StartX;     /* 'X' & 'Y' starting coordinate */

CPU_INT16U  StartY;

CPU_INT16U  EndX;       /* 'X' & 'Y' ending   coordinate */

CPU_INT16U  EndY;

CPU_INT16U  Color;      /* Line color                   */

} LINE;



Full day technical seminar and workshop 

This hands-on event is created for design engineers 
and systems architects who need to learn and explore 
drive electronics and thermal management options 
for the newest generation of energy-effi cient, high-
brightness LEDs. Get practical training on how new HB 
LED devices, packages, control electronics and thermal 
devices combine to revolutionize lighting for consumer 
and medical devices, automotive, architectural, and 
signage applications. Spend the day with us and learn!

     Keynote Address: Cary Eskow, Director, Lightspeed

     Solid-state lighting enabled by high-brightness LEDs will
creep into every facet of daily life within a few short years.
Cary Eskow, renowned LED industry expert will identify
how the latest technology advances will usher in a new
light-enabled view of tomorrow. 

TECHNICAL TRACKS:
•  Power management

•  Thermal management

•  Optics and light measurement

•  Beyond the light: Networking and Solar Power

HIGHLIGHTS:
•    Plenary LED manufacturers’ panel, featuring 

representatives from Cree, Lumileds, and Osram,
will focus on the relationship between LED drive 
current and lifetime.

•   Lightening talks, and ample networking 
opportunites.

Check our web site for the latest agenda and updates. 
e.ubmelectronics.com/LED

MAY 4, 2011 
San Jose, CA

SEPTEMBER 27, 2011 
Boston, MA

Unlock the new world of energy-effi cient 
solid–state lighting at 
EDN’s Designing with LEDs Workshop

Register Today and Save 10% with Promo Code EDNAD
e.ubmelectronics.com/LED

CORNERSTONE SPONSORS GOLD SPONSORS SILVER SPONSORS

Produced By:



To summarize, global variables should use the file/mod-
ule name (or a portion of it) as a prefix and should make use
of upper-/lowercase characters. File scope globals should
have an underscore character following the module’s prefix.
Function arguments and local variables should use only low-
ercase characters. #define constants and macros are always
written in uppercase with underscore characters separating
words for sake of legibility.

ACRONYMS, ABBREVIATIONS, AND MNEMONICS
When creating names for variables and functions, it’s often
useful to use acronyms (such as OS, ISR, TCB), abbrevia-
tions (such as buf and doc), and mnemonics (such as clr and
cmp). Their use allows an identifier to be descriptive while
requiring fewer characters. Unfortunately, if the terms are
not used consistently, they may add confusion. To ensure
consistency, you should create a list of acronyms, abbrevia-
tions, and mnemonics that you will use in all your projects. I
call this list the Acronyms, Abbreviations, and Mnemonic Dic-
tionary. Once it is assigned, an acronym, abbreviation, or
mnemonic is used throughout. As we need more terms, we
simply add them to the list. Once everyone has agreed that
Buf means buffer, all project members should use that in-
stead of having some individuals use Buffer and others use
Bfr. To further this concept, you should always use Buf even
if your identifier can accommodate the full name. In other
words, stick to Buf even if you can fully write the word
Buffer.

There might be instances where one list for all products
doesn’t make sense. For instance, if you are an engineering
firm working on a project for different clients and the prod-
ucts that you develop are totally unrelated, a different list for
each project would be more appropriate; the vocabulary for
the farming industry is not the same as the vocabulary for the
defense industry. My rule is that if all products are similar,
they use the same dictionary.

DATA TYPES
While we’re on the subject of variables, you may have noticed
that I don’t use the standard C types in variable declarations.
In fact, unless you have to use the C standard library, you
should avoid using C’s data types because they’re inherently
not portable. An int can either be 8, 16, 32, or even 64 bits.
Similarly, a float is either a 32-bit, a 64-bit or 80-bit value de-
pending on the target processor and compiler. To resolve the

portability issue, we create a header file (I call it CPU.H) that
defines the following data types:

typedef unsigned char CPU_INT08U;

typedef signed char CPU_INT08S;

typedef unsigned int CPU_INT16U;

typedef signed int CPU_INT16S;

typedef unsigned long CPU_INT32U;

typedef signed long CPU_INT32S;

typedef float CPU_FP32;

typedef double CPU_FP64;

The current version of the C standard “resolved” the is-
sue of data type sizes by introducing data types that speci-
fies the resolution of each type. However, I still contend that
an all UPPERCASE data type makes code much more read-
able. That being said, you could declare the new data types
while still using the C99 types as the base types as shown
below:

typedef uint8_t CPU_INT08U;

typedef int8_t CPU_INT08S;

typedef uint16_t CPU_INT16U;

typedef int16_t CPU_INT16S;

typedef uint32_t CPU_INT32U;

typedef int32_t CPU_INT32S;

typedef float CPU_FP32;

typedef double CPU_FP64;

By convention, CPU_INT08S is always used to declare 8-
bit signed variables, similarly, CPU_INT16U declares 16-bit
unsigned variables, and so forth. Your application code as
well as the reusable modules can now assume the appropriate
range for each variable in a portable fashion. If you then de-
cide to port your code to a different target, you’ll only need
to look up the definition of various data-type sizes in your
compiler literature and change the above definitions.

FUNCTIONS
Function naming follow the same convention as with global
variables. Every function is prefixed with the module name;
again, I use acronyms, abbreviations, and mnemonics. The
first letter of each word is capitalized and local functions (file
scope) have an underscore after the module name. I found
that indenting four spaces works out well, but you should use
whatever you are comfortable with. 

Whatever you do, use spaces instead of tabs to indent
your code. Tabs are interpreted differently on different edi-
tors and printers. Avoiding tab characters doesn’t mean that
you can't use the tab key on your keyboard. A good editor
will give you the option to replace tabs with spaces (in this
case, four spaces). If you have a lot of legacy code that con-
tain tab characters, you can write a simple utility that scans

feature

                                                    www.embedded.com | embedded systems design | MAY 2011      41

Unless you have to use the C standard
library, you should avoid using C’s data
types because they’re inherently not
portable. 

!
!



your source code for tab characters and replaces each one
with the number of spaces you decided to adopt.

Functions that are only used within the file should be de-
clared static to hide them from other functions in different
files. Each local variable name should be declared on its own
line, an action that allows the programmer to comment each
one as needed. Actual code statements should start after
adding two blank lines after local variable declarations. This
makes the delineation between variables and executable
statements clear. A function should be declared as follows:

void  CommRx (CPU_INT08U ch, CPU_INT08U c)

{

}

I even like the following style, which allows you to isolate
the arguments onto its own line. When you have many argu-
ments, it’s a lot easier to see how many arguments there are,
what their type is, and so on:

void

CommRx (CPU_INT08U  ch, 

CPU_INT08U  c)

{

}

You should note that I included a single space between the
function name and the open parenthesis. This convention al-
lows you to quickly locate where a function is actually declared
when using your editor’s search capability or even a grep utili-
ty. When you actually invoke the function, you should not in-
clude a space between the function name and the open paren-
thesis. This “feature” may not be necessary anymore if you use
advanced editors that can jump to the function declaration
when you “hover” over the name of the function or variable. 

Your style guide should also specify how every C con-
struct should be written. A space follows the keywords if,
for, while, and do. The keyword else has the privilege of
having one before and one after it if curly braces are used. We
write if (condition) on its own line and the statement(s)
to execute on the next following line(s):

if (y > 2) {

z =  10; 

x = 100; 

p++;

} else {

z =  5;

}

I always fully enclose statements within the if (condi-
tion) with curly braces even though the condition executes a
single statement. This makes it convenient to add additional

statements and prevents you from forgetting to add the curly
braces when you add these extra statements. Also, the place-
ment of curly braces follows the K&R style, but obviously you
should adopt the style your organization is comfortable with.

Treat switch statements as you would any other condi-
tional statement. Note that the case statements are lined up
with the case label. The important point here is that switch
statements must be easy to follow. Cases should also be sepa-
rated from one another by a blank line.

switch (key) {

case KEY_BS:

if (cnt > 0) {

p--;

cnt--;

}

break;

case KEY_CR:

*p = NUL;

break;

case KEY_LINE_FEED:

p++;

break;

default: 

*p++ = key;

cnt++;

break;

}

By convention, I use for loops when I know ahead of time
the number of iterations the loop will perform. On the other
hand, I use while and do-while loops when the number of
iterations is only known at run time as shown below.

for (i = 0; i < MAX_ITER; i++) {

*p2++ = *p1++;

xx[i] = 0;

}

while (*p1 != 0) {

*p2++ = *p1++;

cnt++;        

}                     

do {

cnt--;

*p2++ = *p1++; 

} while (cnt > 0); 

42 MAY 2011 | embedded systems design | www.embedded.com

feature



You should avoid multiple assignments on the same line.

x = y = z = 1;

I also like to break up a long statement into multiple lines
(as long as it’s one statement). Note how the ‘+’ sign lines up
with the equal signs. This makes the code much more read-
able.

x2    = x   * x;

x3    = x2  * x;

x4    = x3  * x;

x5    = x4  * x;

x6    = x5  * x;

temp  = b0  * x

     + b1  * x2;

     + b2  * x3;

     + b3  * x4;

     + b4  * x5;

     + b5  * x6;

The following operators are written with no space
around them:

->>   Structure pointer operator          p->>m
.     Structure member operator         s.m
[]    Array subscripting                 a[i]

As previously mentioned, you declare a function with
one space following its name and the open parenthesis
while you invoke the function with no space after the func-
tion name. A space should be introduced after each comma
to separate each actual argument in a function. Expressions
within parentheses are written with no space after the open-
ing parenthesis and no space before the closing parenthesis.
Commas and semicolons should have one space after them.

strncat(t, s, n);        

for (i = 0; i < n; i++)

The unary operators are written with no space between
them and their operands as shown in Listing 2.

The binary operators are preceded and followed by one
or more spaces, as is the ternary operator, in Listing 3.

The keywords if, while, for, switch and return are
followed by one space.

For assignments, numbers are lined up in columns as if
you were to add them. This allows you to quickly spot errors.
The equal signs are also lined up. “Magic numbers” are
shown here only for sake of illustration to show how the
“weight” of the numbers should line up. Magic numbers
must be avoided and, in fact, replaced with #define constants
so they are more legible. 

x        = 100.567;

temp     =  12.700;

var5     =   0.768;

variable =  12;

storage  = &array[0];

COMMENTS
Comments should be meaningful and help you and others
understand how the code works. Don’t just state the obvious
or what a reasonable programmer would conclude by simply
looking at the code.

Each function should be preceded with a comment block
to describe what the function does, what arguments are
passed, what the function returns, and any other notes about
the function. 

I find it very difficult to mentally separate code from com-
ments when code and comments are interleaved. Because of
this, I avoid using this practice. Comments should go to the
right of the actual C code. When large comments are neces-
sary, they’re written in the function description header or in a
comment block before the actual code. Comments are lined
up as shown in Listing 4. The comment terminators (*/)
does not need to be lined up, but for neatness I prefer to do
so. It is not necessary to have one comment per line since a
comment could apply to a few lines. 

feature

                                                    www.embedded.com | embedded systems design | MAY 2011      43

Listing 3    

c1 = c2      x + y      i += 2      n > 0 ? n : -n;   

Listing 2    
!p   ~b   ++i   --j   (long)m   *p   &x   sizeof(k)



FINAL WORDS
You may not agree with some of the conventions that I adopt
but what’s important is that you recognize that you’ll in-
crease productivity and increase the quality of your code by
having your organization work from a common set of rules.
Programmers will certainly resist this kind of change but, the
long-term benefits will be worth the struggle. I have conclud-
ed over the years that I much rather fight to have things done
correctly the first time than spend double the effort when a
programmer moves on to greener pastures and leaves the rest
of us holding the proverbial bag!  ■

Jean Labrosse is founder, CEO, and president of Micrium. He is
a regular speaker at the Embedded Systems Conferences and is
the author of three books: MicroC/OS-II, The Real-Time Kernel,
Embedded Systems Building Blocks, Complete and Ready-to-Use
Modules in C and MicroC/OS-III, The Real-Time Kernel. Jean
has also written numerous articles for magazines. He has an
MSEE and has been designing embedded systems for many
years. 

ENDNOTES:
1.      Long, David W. and Christopher P. Duff. “A Survey of Processes Used

in the Development of Firmware for a Multiprocessor Embedded Sys-
tem.” Hewlett-Packard Journal, October 1993, p.59-65.

2.      Kernighan, Brian W. and Dennis M. Ritchie.  The C Programming
Language. Prentice Hall, Englewood Cliffs, NJ, 1988 ISBN 0-13-
110362-8.

FURTHER READING:
3.      Labrosse, Jean J. µC/OS-III, The Real-Time Kernel. Weston, FL Mi-

crium Press, 2009, ISBN 978-0-9823375-3-0.

4.      Maguire, Steve. Writing solid code. Microsoft Press, Redmond, WA
1993.

5.      McConnell, Steve. Code Complete. Microsoft Press, Redmond, WA,
1993, ISBN 1-55615-484-4.

6.      Straker, David. C-Style, Standards and Guidelines. Prentice Hall, 1992,
ISBN 0-13-116898-3.

7.      Barr, Michael. Embedded C Coding Standard. Netrino Institute, 2008,
ISBN 978-1442164826.

44 MAY 2011 | embedded systems design | www.embedded.com

feature

Listing 4  

/*
*************************************************************************************************
*                                        UPDATE THE TIME-OF-DAY
*
* Description : This function is called to update the time (i.e. hours, minutes and seconds) or a 
*     software managed clock.
* Arguments : None.
* Returns : TRUE     if we have completed one day.
*     FALSE    otherwise
* Notes : This function updates the global variables: ClkSec, ClkMin and ClkHr.
*************************************************************************************************
*/

static CPU_BOOLEAN ClkUpdateTime (void)
{

CPU_BOOLEAN newday;

newday = FALSE;                   /* Assume that we haven't completed one whole day yet */
if (ClkSec >= 59) {               /* See if we have completed one minute yet */

ClkSec = 0;                   /* Yes, clear seconds */
if (ClkMin >= 59) {           /*    See if we have completed one hour yet */

ClkMin = 0;              /*    Yes, clear minutes */
if (ClkHr >= 23) {       /*        See if we have completed one day yet */

ClkHr  = 0;          /*        Yes, clear hours ... */
newday = TRUE;       /*        ... change flag to indicate we have a new day */

} else {
ClkHr++;             /*        No,  increment hours */

}
} else {

ClkMin++;                 /*    No,  increment minutes */
}

} else {
ClkSec++;                     /* No,  increment seconds */

}
return (newday);

}



2011 EE TIMES ACE AWARDS

ASSOCIATION MEDIA SPONSOR

NOMINATION BASED:
DESIGN TEAM OF THE YEAR:
Advanced Micro Devices
IBM
Intel Corporation
Nordic Semiconductor
PrimeSense 
INNOVATOR OF THE YEAR:
Adapteva Inc.–Andreas Olofsson 
Cirrus Logic–John Melanson 
Intel–Mario Paniccia 
NuPGA Corporation–Zvi Or-Bach 
Wave Systems Corp.
–Robert Thibadeau 
EXECUTIVE OF THE YEAR:
ARM–Warren East 
Cirrus Logic–Jason Rhode 
GLOBALFOUNDRIES
–Douglas Grose 
Maxim Integrated Products
–Tunc Doluca 
Spansion–John Kispert 
STARTUP OF THE YEAR:
Dynamics Inc. 
GLOBALFOUNDRIES 
Lunera Lighting Inc. 
Pixtronix 
Semitech Semiconductor Pte Ltd 

COMPANY OF THE YEAR:
Altera Corporation 
ARM 
Maxim Integrated Products 
NetLogic Microsystems, Inc. 
TriQuint Semiconductor, Inc.
MOST PROMISING NEW 
TECHNOLOGY:
Hillcrest Labs 
InvenSense, Inc. 
InVisage Technologies Inc. 
Lyric Semiconductor 
Tilera
ENERGY TECHNOLOGY AWARD:
Effi cient Power Conversion 
Corporation 
Freescale Semiconductor 
SolarBridge Technologies 
SPD Control Systems Corporation
Freescale Semiconductor  

IEEE AWARD CATEGORIES:
IEEE SPECTRUM TECHNOLOGY 
IN THE SERVICE OF SOCIETY & 
THE IEEE SPECTRUM EMERGING 
TECHNOLOGY AWARD 
Laster Technologies 
(Smart Spectacles)
Seabed Rig (Robotic Oil Driller)
IBM (Watson)

ClariPhy Communications 
(Digital Processor)
Willow Garage 
(Personal Robotics)
EE TIMES SELECTED 
CATEGORIES:
MOST POPULAR PRODUCT OF THE 
YEAR (7 CATEGORIES)
-Digital logic
-Analog-mixed signal
-Memories
-Interconnects
-Electro-mechanical
-Software/IP
-Test & Measurement

LIFETIME ACHIEVEMENT AWARD
EDITOR’S CHOICE AWARD
CONTRIBUTOR OF THE YEAR 
MOST ENGAGED MEMER OF
THE EE TIMES COMMUNITY 
OF THE YEAR
BEST STUDENT DESIGN/
DESIGN CHALLENGE WITH 
PUBLIC SCHOOLS
EE LIFE CONTRIBUTOR OF 
THE YEAR
STUDENT OF THE YEAR

2011 UBM Electronics Celebrates the Industry and its Innovation 
through the EE Times ACE Awards and EDN Innovators Awards

The Gallery of Innovation

Lifetime Achievement 
Award Honoree

Tuesday, May 3rd 2011
5:30pm-7:00pm

Fairmont San Jose
Club Regent Room
Tickets available: 

www.eetimes-ace.com

The Annual Creativity in 
Electronics (ACE) Awards 
celebrates the creators of 
technology who demonstrate 
leadership and innovation in 
the global electronics industry 
and shape the world we live in.

Finalists and winners will be 
recognized by EE Times editors, 
a distinguished judging panel 
and the global electronics industry.   

Good Luck Finalists!

GOLD SPONSORS

Irwin Mark Jacobs
Co-Founder, 
Former Chairman, 
Qualcomm



46 MAY 2011 | embedded systems design | www.embedded.com

                   By Jack G. Ganssle

Anything I write about the recent
tragedy in Japan will surely be su-
perseded by events before this

goes to press. But as of this writing,
iSuppli reports that Shin-Etsu Chemi-
cal Company has stopped operations
at their Shirakawa plant. The Shi-
rakawa facility, which is about 100 km
by air from the stricken Fukushima I
Nuclear Power Plant, produces 20% of
the global supply of 300-mm silicon
wafers.

A press release from Shin-Etsu dat-
ed March 26, two weeks after the disas-
ter, states they have not even been able
to conduct an inspection of the facility
and remain concerned that rolling
blackouts will hinder operations for
some time to come.1

Various reports in the press shrilly
claim that 300-mm wafers are used for
“all” processors and memory. That is
simply not true; many vendors like Mi-
crochip and Atmel are still using 200-
mm wafers.

It’s impossible to predict what this
will mean for our electronics industry.
IC Insights claims that manufacturing
capacity of chips went from 57% uti-
lization in the first quarter of 2009 to
93% a year later, so the fabs are run-
ning nearly at capacity.2 Other sources
suggest that most fabs keep only a
month’s worth of wafers on-hand. A
shortage could have significant effects.

We all know how bunny-suited
technicians in ultra-clean rooms turn
wafers into ICs. But where do the
wafers come from?

BIGGER IS BETTER
First, silicon wafers are the substrate on
which semiconductor vendors build
most of their chips. They look like
highly-polished flat disks. In ancient
times, say 1975, state-of-the-art wafers

were 100 mm in diameter. Today it’s
300 mm, netting an order of magni-
tude more chips per wafer. The reality
is much better, since process shrinks
have shrunk feature sizes a hundred-
fold from the 3 µm used in 1975.

More chips on a wafer means
higher profits for the semiconductor

companies so they have strong motiva-
tion to increase diameters while
shrinking feature sizes. But the jump
from 200- to 300-mm wafers was a dis-
aster. Costs far exceeded anyone’s ex-
pectations. The next increment is the
truly enormous 450 mm. Vendors have
been long gun-shy due to the 300-mm
debacle but are starting to invest the
vast sums that will be necessary. Some
expect first production next year.3

Currently there are about a hun-
dred 300-mm fabs in the world, each
costing a whopping $3 to $4 billion a
pop. You could actually buy a handful
of F-22s for that. 450-mm fabs will run
a staggering $6 to $10 billion each.

TSMC has two 300-mm fabs with
a combined capacity three million
wafers per year. That’s a lot of silicon.
One source figures a 300-mm wafer
costs about $250, or four times as
much as a 200-mm wafer.4

Fabs don’t make their own wafers,
instead buying them from a handful of
suppliers like Shin-Etsu.

14 PROTONS
Weird Al thought it was all about the
Pentiums, but the story of semicon-
ductors is all about the silicon (though
other elements are used for some ap-
plications). I cringe when the unin-
formed so often talk about the “sili-
cone” in semiconductors. Silicone is a
complex polymer found in augmented
breasts, not in integrated circuits.

Silicon, atomic weight 14, is in
Group 14 in the periodic table. Car-

A rumble, a wave, and iPads dry up
break points

Jack G. Ganssle is a lecturer and consultant on embedded
development issues. He conducts seminars on embedded systems
and helps companies with their embedded challenges.
Contact him at jack@ganssle.com.

The disaster in Japan
makes you think about
the fundamental 
chemistry that makes 
all our modern smart
devices possible. 

!
!
!

P
h

ot
o:

 S
to

ck
by

te



bon is directly above and germanium,
tin, and lead below. It’s somehow ap-
propriate that carbon, the stuff of life,
shares Group 14 with silicon, the stuff
of electronics and smart products.
Silicon is indeed life in some critters,
like diatoms and radiolarians, which
build their skeletons from silicon
molecules. Silicon has been proposed
as an alternative “organic” molecule,
and there is some speculation that the
earliest living proto-life was based on
element 14.

Silicon exists mostly in the form
of silica in nature, which is more ap-
propriately known as silicon dioxide,
or SiO2. Our windows are mostly of
silica, and they’re made by floating the
glass on molten tin, another member
of Group 14.

In electronics, we need pure sili-
con, not SiO2. It starts with sand,
which is silica, usually extracted from
quarries rather than the Copacabana.
Some sources suggest that the beaches
of Australia supply sand to our indus-
try, which sounds like a great reason
for an electronics engineer to visit Oz.

To extract the silicon, the sand and
carbon-rich coal coke or wood are
heated to 2,000ºC, which “reduces”
(removes the oxygen) from the silica:

SiO2 + C → Si + CO2

That step takes on the order of 12
to 14 KWh/Kg of silicon. That’s a lot
of energy. The result is about 98%
pure “metallurgical grade” silicon,
which is useless for making ICs. The
wafer-makers can only tolerate about
one foreign atom per billion silicons, a
purity so absurd it just shouts about
the hubris of engineers. But if one part
per billion is what’s needed, well, engi-
neers deliver.

The 98% pure result is ground and
converted into trichlorosilane by react-
ing it with hydrochloric acid at 300ºC:

Si + 3 HCL → HSiCl3 + H2

Trichlorosilane breaks down at
1,150ºC:

2HSiCl3 → Si + 2HCL + SiCl4

At this point it’s very pure and is
called electronics grade silicon. (Note
that sometimes other very similar reac-
tions are used to get the same result.)

IGNOTS
Silicon has to be in crystalline form for
use in semiconductors. To make the job
harder, it has to be monocrystalline—
the crystal lattice must be unbroken and
continuous. (Polycrystalline silicon,
which is a jumble of crystals, is also used
in electronics. About half of all polycrys-
talline Si goes into solar cells.)

Though there are a number of ways
to create a monocrystalline silicon in-
got, the Czochralski process is the most
commonly used. The purified Si is
heated in a quartz crucible (quartz is it-
self mostly SiO2) to 1,420ºC, which is
close to the melting point of steel. 

Dopants may be added. An element
replaces one silicon atom in the lattice
structure. Phosphorous has five valance
electrons (one more than Si); four re-
place the covalent bonds that hold the

lattice together and the fifth is an extra
charge that’s free to roam. Doping with
phosphorous yields an N-type material.
Boron, with three electrons in its outer
ring, creates a “hole” and a P-type
semiconductor.

A little doping goes a long way.
Typically one dopant atom per 106 to
109 Si atoms is enough.

A single seed crystal of silicon at-
tached to a puller rod is dipped into the
molten Si with the crystal aligned in the
same orientation required for the fin-
ished ingot. It’s then pulled, ever so
gently, back from the material. Surface
tension causes some of the molten sili-
con to adhere to the crystal. Cooling,
the atoms orient themselves to the crys-
tal structure of the seed. The puller rod
rotates in one direction and the cru-
cible in the other.

For the large ingots that produce
300-mm wafers, the puller rod is ex-
tracted at a few cm/hr. Extreme care is

Silicon is indeed life 
in some critters, like
diatoms and radiolarians,
which build their 
skeletons from silicon
molecules. 

!
!
!

                                                    www.embedded.com | embedded systems design | MAY 2011      47

Radiolaria shown in an
artificially-colored photo
from nasa.gov that was
posted on from Wikipedia
(http://en.wikipedia.org/wiki/F
ile:Radiolaria3434.JPG).

Diatom: Pimularia novelie
© Getty Images; Credit:
Comstock Images.

�

�



needed to avoid having the forming
monocrystalline silicon break off. I
imagine that if Shin-Etsu was pulling
ingots during the earthquake they all
would have failed.

The result is a single ingot somewhat
over 300 mm in diameter and about 2-m
tall. The lattice spacing is on the order of
half a nanometer, or about twice the size
of the Si atom.

SLICE AND DICE
The ingot is cleaned and a notch or flat
is milled in it to indicate the crystal ori-
entation. Now it’s a long cylinder. But we
want wafers, so a wire saw cuts the ingot.

The saw uses a single piece of wire
that is threaded into a web that makes
500 or more slices per cut using an abra-
sive slurry (typically silicon carbide—yet
another use of silicon).

About half the material is lost to the
saw’s kerf.

The finish is rough due to saw
marks and other imperfections, so a

lapping process smoothes the surface,
thins the wafer, and relieves stress. It’s
etched a bit to alleviate microscopic
cracks and lapping damage, and the
edges are rounded to reduce the chance
of breakage during later handling.

But the wafer is still far from perfect,
and, when working at the crazy-small
process nodes now common (32 nm to-
day; 22 soon), perfection is required.
The wafer goes through an extensive
polishing process. Unlike smaller wafers,
those in the 300-mm class are polished
on both sides, producing a mirror finish.
The use of polishing pads and slurry of
increasing fineness eventually yields a
finish roughness of under 0.5 nm.

Let’s put that in perspective. Half a
nanometer is the size of a pair of silicon
atoms. Have you ever ground a tele-
scope mirror? I made the mistake of do-
ing that once, in college when money
was especially scarce. Desired accuracy
was a quarter wavelength of light, which
is around 150 nm.

No wonder chipmakers wear bunny
suits when handling wafers.

The wafer is cleaned and then in-
spected by an interferometer that may
take several million data points. The fi-
nal thickness is about 0.775 mm, and
flatness is better than 40 µm.

Prime wafers are those that pass
rigorous inspections and that are suit-
able for state-of-the art lithography.

Test wafers are those that didn’t make
the grade but that are still useable for
nonproduction work. Typically they
have no flatness specification, may be
scratched, and might be unpolished.

The proto-chemists of the Middle
Ages yearned to turn common materi-
als into gold. But if there was ever
alchemy, wafer production is it. Worth-
less sand becomes a $250 wafer, which
in turn is transformed into integrated
circuits. A single wafer could produce
$200,000 worth of Pentium processors.

JAPAN, RISING
Two Kamikazes blew 100 feet of the bow
off of the ship my dad served on during
World War II, so we kids grew up in a
household that did not hold the Japan-
ese in high regard. But when I first went
to Japan, less than 30 years after that na-
tion had been reduced to ruins, I was
amazed to find Tokyo a completely re-
built, vibrant hub of commerce. Since
then I’ve been privileged to work with a
number of brilliant Japanese engineers
and managers, and have not the slight-
est doubt the people there will recover
from the devastation. Shin-Etsu will—
sooner than we can imagine—resume
their miracle of turning sand into semi-
conductor gold. And I’m sure the rest of
that blighted region will also rise from
the ashes at a pace that will astonish us
all.  ■

ENDNOTES:
1.      Shin-Etsu Chemical Co., Ltd. “Shin-Etsu

Group current situation impacted by the
2011 off the Pacific Coast of Tohoku Earth-
quake (6th report).” Press release, March 26,
2011. Available at:
www.shinetsu.co.jp/e/news/s20110325.shtml.

2.      IC Insights. “IC Industry Consolidation Is
Here!” June 3, 2010. Available at:  
www.icinsights.com/news/bulletins/IC-Indus-
try-Consolidation-Is-Here/

3.      Stokes, Jon. “Intel, Samsung, TSMC to hold
hands, jump to new wafer size.” Last updat-
ed 2 years ago: http://arstechnica.com/hard-
ware/news/2008/05/intel-samsung-tsmc-to-
hold-hands-and-jump-to-new-wafer-size.ars

4.      Sage Concepts. “Report I Silicon Industry
2008 Summary: Consolidation”
www.sageconceptsonline.com/docs/report1.pdf

break points

The proto-chemists of the
Middle Ages yearned to
turn common materials
into gold. But if there 
was ever alchemy, wafer
production is it. 

!
!
!

48 MAY 2011 | embedded systems design | www.embedded.com

P
h

ot
o:

 iS
to

ck
ph

ot
o





for R&D PRototyPes

AAPCB.com/aa3 

1.800.838.5650

Advanced Assembly specializes in the machine assembly of low 

volume and prototype PCBs in 5 days or less. It is our only focus 

and we do it better and faster than CEM’s, board fabricators, or 

your local assembly shops. Our assembly process and professional 

service have established a higher industry standard for quality in 

PCB assembly. Let us earn your business today.

$50 in 5-Days

R&D Assembly Pricing — Includes free tooling and programming

Number of SMT 1st 2nd Boards Stencil 

parts per board Board Board 3-5 each per side

1 through 25 $50 $35 $30 $75

26 through 50 $95 $65 $45 $75

51 through 100 $125 $85 $60 $75

101 through 150 $180 $120 $85 $75

151 through 200 $225 $150 $120 $100

201 through 250 $275 $190 $145 $100

251 through 400 Call Call Call Call

Machine-placed SMTs

Parts in bulk, cut tape or reels

Full turn-key or consignment

 Free digital image of your board before assembly

the new  

standard  

for pcb  

assembly


