S/

I'N TR O Dy € I 1 O N 1T40

ROBOTICS

MECHANICS AND CONTROL SECOND EDITION

JOHN J. CRAIG

Silma, Inc.

Addison
Wesley

Longman

Reading, Massachusetts « Menlo Park, California * New York
Don Mills, Ontario e Wokingham, England e Amsterdam Bonn _

Sydney ¢ Singapore ® Tokyo ® Madrid ¢ San Juan 3

; SRR TR R AP AA GV AN = URY

}

Sk S

BIBLIOTECA

- N° DE REGISTRO | DATA

*DE OBRA

(4 A4C

{

Library of Congress Cataloging-in-Publication Data

Craig, John J., 1955-

Introduction to robotics: mechanics and control / John J. Craig.—
2nd ed.

B em

Bibliography: p.

Includes index.

ISBN 0-201-09528-9

1. Robotics 1. Title
TJ211.C67 1989

629.8'92—dc19 88-37607
CIP

Copyright © 1989, 1986 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

2324 MA 0504 03 02

s

This book is in the Addison-Wesley Series in Electrical and
Computer Engineering: Control Engineering.

Consulting Editor: John J. Craig, Robotic Systems

Adaptive Control, 09720 Karl J. Astrém and
Bjorn Wittenmark

Introduction to Robotics, Second John J. Craig
Edition, 09528

Modern Control Systems, Fifth Richard C. Dorf
Edition, 14278

Digital Control of Dynamic Gene F. Franklin,
Systems, Second Edition, 11938 J. David Powell, and
Michael L. Workman

Computer Control of Machines John G. Bollinger and
and Processes, 10645 Neil A. Duffie

Feedback Control of Dynamic Gene F. Franklin,
Systems, 11540 J. David Powell, and
Abbas Emami-Naeini

Adaptive Control of Mechanical John J. Craig
Manipulators, 10490

Modern Control System Theory Stanley M. Shinners
and Application, Second
Edition, 0749/

PREFACE

Scientists often have the feeling that through their work they are learning
about some aspect of themselves. Physicists see this connection in their
work, as do the psychologists, or chemists. In the study of robotics, the
connection between the field of study and ourselves is unusually obvious.
And, unlike a science that seeks only to analyze, robotics as presently
pursued takes the engineering bent toward synthesis. Perhaps it is for
these reasons that the field fascinates so many of us.

The study of robotics concerns itself with the desire to synthesize
some aspects of human function by the use of mechanisms, sensors,
actuators, and computers. Obviously, this is a huge undertaking which
seems certain to require a multitude of ideas from various “classical”
fields.

Presently different aspects of robotics research are carried out by
experts in various fields. It is usually not the case that any single indi-
vidual has the entire area of robotics in his or her grasp. A partitioning
of the field is natural to expect. At a relatively high level of abstraction,
splitting robotics into four major areas seems reasonable: mechanical
manipulation, locomotion, computer vision, and artificial intelligence.

This book introduces the science and engineering of mechanical
manipulation. This subdiscipline of robotics has its foundations in

Vi Preface

several classical fields. The major relevant fields are mechanics, control
theory, and computer science. In this book, Chapters 1 through 8
cover topics from mechanical engineering and mathematics, Chapters
9 through 11 cover control theoretical material, and Chapters 12 and
13 might be classed as computer science material. Additionally, the
book emphasizes computational aspects of the problems throughout; for
example, each chapter which is predominantly concerned with mechanics
has a brief section devoted to computational considerations.

This book has evolved from class notes used to teach “Introduction
to Robotics” at Stanford University during the autumns of 1983 through
1985, and the first edition used at Stanford and many other schools from
1986 through 1988. The present edition has benefited from this use and
incorporates corrections and improvements due to feedback from many
sources. At Stanford, the introductory robotics course is the first in a
three quarter sequence where the second quarter covers computer vision
and the third covers artificial intelligence, locomotion, and advanced
topics.

This book is appropriate for a senior undergraduate or first year
graduate level course. It is helpful if the student has had one basic
course in statics and dynamics, a course in linear algebra, and can
program in a high level language. Additionally it is helpful, though not
absolutely necessary, that the student have completed an introductory
course in control theory. One aim of the book is to present material in
a simple, intuitive way. Specifically, the audience need not be strictly
mechanical engineers, though much of the material is taken from that
field. At Stanford, many electrical engineers, computer scientists, and
mathematicians found the first edition quite readable.

While this book is directly of use to those engineers developing
robotic systems, the material should be viewed as important background
material for anyone who will be involved with robotics. In much the
same way that software developers have usually studied at least some
hardware, people not directly involved with the mechanics and control
of robots should have some background such as that offered by this text.

The second edition is organized as 13 chapters. While the material
will fit comfortably into an academic semester, teaching the material
within an academic quarter will probably require the instructor to choose
a couple of chapters to omit. Even at that pace, all of the topics cannot
be covered in great depth. In somez-ways, the book is organized with
this in mind; for example, most chapters present only one approach
to solving the problem at hand. One of the challenges of writing this
book has been in trying to do justice to the topics covered within the
time constraints of usual teaching situations. One method employed to
this end was to consider only the material which directly impacts on
the study of mechanical manipulation. At the end of Chapter 1 several

references are listed, including a listing of research oriented journals
that publish in the robotics area.

At the end of each chapter is a set of exercises. Each exercise has been
assigned a difficulty factor, indicated in square brackets following the
exercise’s number. Difficulties vary between [00] and [50], where [00] is
trivial and [50] is an unsolved research problem.* Of course, what one
person finds difficult, another may find easy, so some readers may find
them misleading in some cases. Nevertheless, an effort has been made
to appraise the difficulty of the exercises.

Additionally, at the end of each chapter there is a programming
assignment in which the student applies the subject matter of the
corresponding chapter to a simple three-jointed planar manipulator.
This simple manipulator is complex enough to demonstrate nearly all the
principles of general manipulators, while not bogging down the student
with too much complexity. Each programming assignment builds upon
the previous ones, until, at the end of the course, the student has an
entire library of manipulator software.

Chapter 1 is an introduction to the field of robotics. It introduces
some background material, the adopted notation of the book, a few
fundamental ideas, and previews the material in following chapters.

Chapter 2 covers the mathematics used to describe positions and
orientations in 3-space. This is extremely important material since, by
definition, mechanical manipulation concerns itself with moving objects
(parts, tools, the robot itself) around in space. We need ways to deseribe
these actions in a way which is easily understood and as intuitive as
possible.

Chapters 3 and 4 deal with the geometry of mechanical manipu-
lators. They introduce the branch of mechanical engineering known as
kinematics, the study of motion without regard to the forces that cause
it. In these chapters we deal with the kinematics of manipulators but
restrict ourselves to only static positioning problems.

Chapter 5 expands our investigation of kinematics to velocities and
static forces.

In Chapter 6 we deal for the first time with the forces and moments
required to cause motion of a manipulator. This is the problem of
manipulator dynamics.

Chapter 7 is concerned with describing motions of the manipulator
in terms of trajectories through space. y

Chapter 8 many topics related to the mechanical design of a ma-
nipulator. For example, how many joints are appropriate, of what type
should they be, and how should they be arranged?

* 1 have adopted the same scale as in The Art of Computer Progamming by
D. Knuth (Addison-Wesley).

vii

\M Preface

In Chapters 9 and 10 we study methods of controlling a manipulator
(usually with a digital computer) so that it will faithfully track a desired
position trajectory through space. Chapter 9 restricts attention to linear
control methods, and Chapter 10 extends these considerations to the
nonlinear realm.

Chapter 11 covers the relatively new field of active force control
with a manipulator. That is, we discuss how to control the application
of forces by the manipulator. This mode of control is important when the
manipulator comes into contact with the environment around it, such
as when washing a window with a sponge.

Chapter 12 overviews methods of programming robots, specifically
the elements needed in a robot programming system, and the particular
problems associated with programming industrial robots.

Chapter 13 introduces off-line simulation and programming systems
which are now beginning to appear and represent the latest extension
to the man-robot interface.

I would like to thank the many people who have contributed their
time to helping me with this book. First, my thanks to the students of
Stanford’s ME219 in the autumn of 1983 through 1985 who suffered
through the first drafts and found many errors, and provided many
suggestions. Professor Bernard Roth has contributed in many ways, both
through constructive criticism of the manuscript and by providing me
with an environment in which to complete the first edition. At SILMA
Inc. I have enjoyed a stimulating environment as well as the resources
that aided in completing the second edition. Dr. Jeff Kerr wrote the
first draft of Chapter 8. His expertise as a mechanical designer of robot
systems has strengthened this edition. I owe a debt to my previous
mentors in robotics: Mare Raibert, Carl Ruoff, and Tom Binford.

Many others around Stanford, SILMA, and elsewhere have helped in
various ways—my thanks to John Mark Agosta, Mike Ali, Lynn Balling,
Al Barr, Stephen Boyd, Chuck Buckley, Joel Burdick, Jim Callan,
Monique Craig, Subas Desa, Tri Dai Do, Karl Garcia, Ashitava Ghosal,
Chris Goad, Ron Goldman, Bill Hamilton, Steve Holland, Peter Jackson,
Eric Jacobs, Johann Jéger, Paul James, Jeff Kerr, Oussama Khatib, Jim
Kramer, Dave Lowe, Jim Maples, Dave Marimont, Dave Meer, Kent
Ohlund, Madhusudan Raghavan, Richard Roy, Ken Salisbury, Donalda
Speight, Bob Tilove, Sandy Wells, and Dave Williams. I only wish I had
had time to more fully use all of their suggestions.

Finally I wish to thank Tom Robbins and Don Fowley at Addison-
Wesley, and several anonymous reviewers.

Palo Alto, California J-J.C

CONTENTS

pe o g e n
1L

INTRODUCTION 1
175 Background 1
12 The mechanics and control of mechanical manipulators 4
155 Notation 16
2
SPATTAL DESCRIPTIONS AND TRANSFORMATIONS 19
25 Introduction 19
252 Descriptions: positions, orientations, and frames 20
253 Mappings: changing descriptions from frame to frame 25
2.4 Operators: translations, rotations, transformations 32
2.5 Summary of interpretations 37
2.6 Transformation arithmetic ; 37
247 Transform equations 40
2.8 More on representation of orientation 43
2.9 Transformation of free vectors 56

2.10 Computational considerations 59

L’ Contents

3
MANIPULATOR KINEMATICS 68
31 Introduction 68
3:2 Link description 69
3.3 Link connection description 72
34 Convention for affixing frames to links 75
3.5 Manipulator kinematics 83
3.6 Actuator space, joint space, and Cartesian space 85
S Examples: kinematics of two industrial robots 86
3.8 Frames with standard names 99
3.9 WHERE is the tool? 102
3.10 Computational considerations 102
4
INVERSE MANIPULATOR KINEMATICS 113
4.1 Introduction 113
4.2 Solvability 114
4.3 The notion of manipulator subspace when n < 6 120
44 Algebraic vs. geometric 122
4.5 Algebraic solution by reduction to polynomial 128
4.6 Pieper’s solution when three axes intersect 129
4.7 Examples of inverse manipulator kinematics 131
4.8 The standard frames 141
4.9 SOLVE-ing a manipulator 143
4.10 Repeatability and accuracy 143
411 Computational considerations 144
53
JACOBIANS: VELOCITIES AND STATIC FORCES 152
5.1 Introduction 152
52 Notation for time-varying position and orientation 153
5.3 Linear and rotational velocity of rigid bodies 156
5.4 More on angular velocity 159
5.5 Motion of the links of a robot 164
5.6 Velocity “propagation” from link to link 165
5.7 Jacobians 169
5.8 Singularities " 173
5.9 Static forces in manipulator 175
5.10 Jacobians in the force domain 179
el Cartesian transformation of velocities and static forces 180
6
MANIPULATOR DYNAMICS 187
6.1 Introduction 187

6.2 Acceleration of a rigid body 188

6.3 Mass distribution

6.4 Newton's equation, Euler’s equation

6.5 Iterative Newton-Euler dynamic formulation

6.6 Iterative vs. closed form

6.7 An example of closed form dynamic equations

6.8 The structure of the manipulator dynamic equations
6.9 Lagrangian formulation of manipulator dynamics

6.10 Formulating manipulator dynamics in Cartesian space
6.11 Inclusion of nonrigid body effects

6.12 Dynamic simulation

6.13 Computational considerations

7
TRAJECTORY GENERATION

Tl Introduction

2 General considerations in path description and generation
73 Joint space schemes

7.4 Cartesian space schemes

7.5 Geometric problems with Cartesian paths

7.6 Path Generation at Run Time

7.7 Description of paths with a robot programming language

7.8 Planning paths using the dynamic model
7.9 Collision-free path planning

8
MANIPULATOR MECHANISM DESIGN
8.1 Introduction
8.2 Basing the design on task requirements
8.3 Kinematic configuration
8.4 Quantitative measures of workspace attributes
8.5 Redundant and closed chain structures
8.6 Actuation schemes
8.7 Stiffness and deflections
8.8 Position sensing
8.9 Force sensing

9
LINEAR CONTROL OF MANIPULATORS

9.1 Introduction

9.2 Feedback and closed loop control
9.3 Second-order linear systems

9.4 Control of second-order systems
9.5 Control law partitioning

9.6 Trajectory-following control

190
195
196
201
201
2056
207
211
214
215
216

227
227
228
230
246
249
252
255
255
256

262
262
263
267
273
277
280
283
289
290

299
299
300
302
310
312
315

Lﬂl Contents

93
9.8
9.9
9.10

10

Disturbance rejection

Continuous vs. discrete time control
Modeling and control of a single joint
Architecture of an industrial robot controller

NONLINEAR CONTROL OF MANIPULATORS

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

11
FORCE
1101
i
11.3
11.4
IS
11.6
11.7

12

Introduction

Nonlinear and time-varying systems
Multi-input, multi-output control systems
The control problem for manipulators
Practical considerations

Present industrial robot control systems
Lyapunov stability analysis
Cartesian-based control systems
Adaptive control

CONTROL OF MANIPULATORS

Introduction

Application of industrial robots to assembly tasks

A framework for control in partially constrained tasks
The hybrid position/force control problem

Force control of a mass-spring

The hybrid position/force control scheme

Present industrial robot control schemes

ROBOT PROGRAMMING LANGUAGES AND SYSTEMS

12.1
12.2
12.3
12.4
12.5
12.6

13

Introduction

The three levels of robot programming

A sample application

Requirements of a robot programming language
An example application coded in three RPLs
Problems peculiar to robot programming languages

OFF-LINE PROGRAMMING SYSTEMS

13.1
13.2
13.3
13.4
13.5

Introduction

Central issues in OLP systems
CimStation

Automating subtasks in OLP systems
Summary

316
318
319
326

332
332
333
338
338
340
346
348
353
359

365
365
366
367
373
374
378
384

390
390
391
394
396
401
407

414
414
417
423
435
437

Appendices

C

INDEX

TRIGONOMETRIC IDENTITIES
THE TWENTY-FOUR ANGLE SET CONVENTIONS
SOME INVERSE KINEMATIC FORMULAS

440
442
445

447

| xiii

INTRODUCTION

1.1 Background

The history of industrial automation is characterized by periods of rapid
change in popular methods. Either as a cause or, perhaps, an effect, such
periods of change in automation techniques seem closely tied to world
economics. Use of the industrial robot, which became identifiable
as a unique device in the 1960s, along with computer aided design
(CAD) systems, and computer aided manufacturing (CAM) systems,
characterizes the latest trends in the automation of the manufacturing
process [1]. These technologies are leading industrial automation through
another transition, the scope of which is still unknown.

Although growth of the robotics market has slowed compared to
the early 1980s (Fig. 1.1), according to some predictions the use of
industrial robots is in its infancy. Whether or not these predictions
are fully realized, it is clear that the industrial robot, in one form or
another, is here to stay.

Present use of industrial robots is concentrated in rather simple,
repetitive tasks which tend not to require high precision. Figure 1.2

_2.J 1 Introduction

600

SIR[[Op JO SUOI[[[UI ‘}9¥Je SI1J0qOY

Robotics market in millions of dollars.

rth American

No

FIGURE 1.1

e: Dataquest, Inc.

1985
] 1995

Inspection

r T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55

ch applications as

routing, drilling, grinding, etc.

cludes su

*In

of U.S. robot sales by

robot

ntage distribution

FIGURE 1.2 Perce

n. (3]

applicatio

1.1 Background l 3 l

reflects the fact that in the 1980s relatively simple tasks like machine
tending, material transfer, painting, and welding are economically viable
for robotization. Manufacturing market analysts predict that in the
1990s industrial robots will become increasingly viable in applications
which require more precision and sensory sophistication such as assembly
tasks.

Likewise, Fig. 1.3 indicates that the predicted increase in the
capabilities of industrial robots will cause a shift in which kinds of
industries employ them. The automotive industry, where robots have
been economically justified since the 1970s, will continue to be the
leading user. However, the major growth of the U.S. robot population
will occur in nonautomotive industries.

This book focuses on the mechanics and control of the most impor-
tant form of the industrial robot, the mechanical manipulator. Ex-
actly what constitutes an industrial robot is sometimes debated. Devices
such as that shown in Fig. 1.4 are always included, while numerically
controlled (NC) milling machines are usually not. The distinction lies
somewhere in the sophistication of the programmability of the device—if
a mechanical device can be programmed to perform a wide variety of
applications, it is probably an industrial robot. Machines which are
for the most part relegated to one class of task are considered fixed
automation. For the purposes of this text, the distinctions need not

Agriculture

Sy 1985

Mining and Extractive 1995
Construction
Electricity Generation
Consumer Nondurables
Nonmetal Primary
Commodities

Primary Metals

Nonmetal Fabricated
Commodities

Fabricated Metal Products %
Machinery %
Electronics/Precision El
Equipment :

A R

Aerospace %
S_I

Other Transport Equipment

U T 1 T

U T 1 1 T T
0 5 10 15 20 25 30 35 40 45 50 55

FIGURE 1.3 Percentage distribution of U.S. robot sales by industry.

B e dnciion

be debated as most material is of a basic nature that applies to a wide
variety of programmable machines.

By and large, the study of the mechanics and control of manipulators
is not a new science, but merely a collection of topics taken from
“classical” fields. Mechanical engineering contributes methodologies for
the study of machines in static and dynamic situations. Mathematics
supplies tools for describing spatial motions and other attributes of
manipulators. Control theory provides tools for designing and evaluating
algorithms to realize desired motions or force application. Electrical
engineering techniques are brought to bear in the design of sensors and
interfaces for industrial robots, and computer science contributes a basis
for programming these devices to perform a desired task.

1.2 The mechanics and control of mechanical
manipulators

The following sections introduce some terminology and briefly preview
each of the topics which will be covered in the text.

FIGURE 1.4 The Cincinnati Milacron 776 manipulator has six rotational
joints and is popular in spot welding applications. Courtesy of Cincinnati
Milacron.

1.2 The mechanics and control of mechanical manipulators ‘L

Description of position and orientation

In the study of robotics we are constantly concerned with the location
of objects in three-dimensional space. These objects are the links of
the manipulator, the parts and tools with which it deals, and other
objects in the manipulator’s environment. At a crude but important
level, these objects are described by just two attributes: their position
and their orientation. Naturally, one topic of immediate interest is the
manner in which we represent these quantities and manipulate them
mathematically.

In order to describe the position and orientation of a body in space
we will always attach a coordinate system, or frame, rigidly to the
object. We then proceed to describe the position and orientation of this
frame with respect to some reference coordinate system (see Fig. 1.5).

Since any frame can serve as a reference system within which
to express the position and orientation of a body, we often think
of transforming or changing the description of these attribufes of a
body from one frame to another. Chapter 2 discusses conventions
and methodologies for dealing with the description of position and
orientation, and the mathematics of manipulating these quantities with
respect to various coordinate systems.

zZ
Y
X
Z
Z
z 4
& y
X

FIGURE 1.5 Coordinate systems or “frames” are attached to the
manipulator and objects in the environment.

'E'_J 1 Introduction

Forward kinematics of manipulators

Kinematics is the science of motion which treats motion without regard
to the forces which cause it. Within the science of kinematics one studies
the position, velocity, acceleration, and all higher order derivatives of the
position variables (with respect to time or any other variable(s)). Hence,
the study of the kinematics of manipulators refers to all the geometrical
and time-based properties of the motion.

Manipulators consist of nearly rigid links which are connected with
joints which allow relative motion of neighboring links. These joints
are usually instrumented with position sensors which allow the relative
position of neighboring links to be measured. In the case of rotary
or revolute joints, these displacements are called joint angles. Some
manipulators contain sliding, or prismatic joints in which the relative
displacement between links is a translation, sometimes called the joint
offset.

The number of degrees of freedom that a manipulator possesses
is the number of independent position variables which would have to be
specified in order to locate all parts of the mechanism. This is a general
term used for any mechanism. For example, a four-bar linkage has only
one degree of freedom (even though there are three moving members). In
the case of typical industrial robots, because a manipulator is usually an
open kinematic chain, and because each joint position is usually defined

X

FIGURE 1.6 Kinematic equations describe the tool frame relative to the
base frame as a function of the joint variables.

1.2 The mechanics and control of mechanical manipulators w

with a single variable, the number of joints equals the number of degrees
of freedom.

At the free end of the chain of links which make up the manipulator
is the end-effector. Depending on the intended application of the robot,
the end-effector may be a gripper, welding torch, electromagnet, or other
device. We generally describe the position of the manipulator by giving
a description of the tool frame, which is attached to the end-effector,
relative to the base frame which is attached to the nonmoving base of
the manipulator (see Fig. 1.6).

A very basic problem in the study of mechanical manipulation is
that of forward kinematics. This is the static geometrical problem of
computing the position and orientation of the end-effector of the ma-
nipulator. Specifically, given a set of joint angles, the forward kinematic
problem is to compute the position and orientation of the tool frame
relative to the base frame. Sometimes we think of this as changing the
representation of manipulator position from a joint space description
into a Cartesian space description.* This problem will be explored in
Chapter 3.

Inverse kinematics of manipulators

In Chapter 4 we will consider the problem of inverse kinematics.
This problem is posed as follows: Given the position and orientation
of the end-effector of the manipulator, calculate all possible sets of joint
angles which could be used to attain this given position and orientation
(see Fig. 1.7). This is a fundamental problem in the practical use of
manipulators. ;

The inverse kinematic problem in not as simple as the forward
kinematics. Because the kinematic equations are nonlinear, their solution
is not always easy or even possible in a closed form. Also, the questions
of existence of a solution, and of multiple solutions, arise.

" The existence or nonexistence of a kinematic solution defines the
workspace of a given manipulator. The lack of a solution means that the
manipulator cannot attain the desired position and orientation because
it lies outside of the manipulator’s workspace.

Velocities, static forces, singularities

In addition to dealing with static positioning problems, we may wish to
analyze manipulators in motion. Often in performing velocity analysis
of a mechanism it is convenient to define a matrix quantity called

* By Cartesian space we mean the space in which the position of a point is
given with three numbers, and in which the orientation of a body is given with
three numbers. It is sometimes called task space or operational space.

IL‘ 1 Introduction

X

FIGURE 1.7 For a given position and orientation of the tool frame, values
for the joint variables can be caleulated using the inverse kinematics.

the Jacobian of the manipulator. The Jacobian specifies a mapping
from velocities in joint space to velocities in Cartesian space (see
Fig. 1.8). The nature of this mapping changes as the configuration of the
manipulator varies. At certain points, called singularities, this mapping
is not invertible. An understanding of the phenomenon is important to
designers and users of manipulators.

Manipulators do not always move through space; sometimes they
are also required to contact a workpiece or work surface and apply a.
static force. In this case the problem arises: Given a desired contact
force and moment, what set of joint torques are required to generate
them? Once again, the Jacobian matrix of the manipulator arises quite
naturally in the solution of this problem.

Dynamics

Dynamics is a huge field of study devoted to studying the forces
required to cause motion. In order to accelerate a manipulator from
rest, glide at a constant end-effector velocity, and finally decelerate to
a stop, a complex set of torque functions must be applied by the joint

1.2 The mechanics and control of mechanical manipulators I_L'

FIGURE 1.8 The geometrical relationship between joint rates and velocity
of the end-effector can be described in a matrix called the Jacobian.

v

¢
b)ﬂ

FIGURE 1.9 The relationship between torques applied by the actuators
and the resulting motion of the manipulator is embodied in the dynamic
equations of motion.

M 1 Introduction

actuators.” The exact form of the required functions of actuator torque
depend on the spatial and temporal attributes of the path taken by the
end-effector as well as the mass properties of the links and payload,
friction in the joints, etc. One method of controlling a manipulator to
follow a desired path involves calculating these actuator torque functions
using the dynamic equations of motion of the manipulator.

A second use of the dynamic equations of motion is in simulation.
By reformulating the dynamic equations so that acceleration is com-
puted as a function of actuator torque, it is possible to simulate how a
manipulator would move under application of a set of actuator torques
(see Fig. 1.9).

In Chapter 6 we develop dynamic equations of motion which may
be used to control or simulate the motion of manipulators.

Trajectory generation

A common way of causing a manipulator to move from here to there in
a smooth, controlled fashion is to cause each joint to move as specified
by a smooth function of time. Commonly, each joint starts and ends
its motion at the same time, so that the manipulator motion appears

FIGURE 1.10 In order to move the end-effector through space from point A
to point B we must compute a trajectory for each joint to follow.

* We use joint actuators as the generic term for devices which power a
manipulator, for example: electric motors, hydraulic and pneumatic actuators,
muscles, etc.

1.2 The mechanics and control of mechanical manipulators ILI

coordinated. Exactly how to compute these motion functions is the
problem of trajectory generation (see Fig. 1.10).

Often a path is described not only by a desired destination but
also by some intermediate locations, or via points, through which the
manipulator must pass en route to the destination. In such instances
the term spline is sometimes used to refer to a smooth function which
passes through a set of via points.

In order to force the end-effector to follow a straight line (or other
geometric shape) through space the desired motion must be converted
to an equivalent set of joint motions. This Cartesian trajectory
generation will also be considered in Chapter 7.

Manipulator design and sensors

Although manipulators are in theory universal devices applicable to
many situations, generally economics dictates that the intended task
domain influence the mechanical design of the manipulator. Along
with issues such as size, speed, and load capability, the designer must
also consider the number of joints and their geometric arrangement.
These considerations impact upon the manipulator’s workspace size and
quality, the stiffness of the manipulator structure, and other attributes.

N

FIGURE 1.11 The design of a mechanical manipulator must address
issues of actuator choice, location, transmission system, structural stiffness,
sensor location, and more.

i' 1 Introduction

Integral to the design of the manipulator are issues involving the
choice and location of actuators, transmission systems, and internal
position (and sometimes force) sensors (see Fig. 1.11). These and other
design issues will be discussed in Chapter 8.

Linear position control

Some manipulators are equipped with stepper motors or other actuators
which can directly execute a desired trajectory. However, the vast
majority of manipulators are driven by actuators which supply a force
or a torque to cause motion of the links. In this case, an algorithm is
needed to compute torques which will cause the desired motion. The
problem of dynamics is central to the design of such algorithms but
does not in itself constitute a solution. A primary concern of a position
control system is to automatically compensate for errors in knowledge
of the parameters of a system, and to suppress disturbances which tend
to perturb the system from the desired trajectory. To accomplish this,
position and velocity sensors are monitored by the control algorithm
which computes torque commands for the actuators (see Fig. 1.12). In
Chapter 9 we will consider control algorithms whose synthesis is based
on linear approximations to the dynamics of a manipulator. These linear
methods are prevalent in current industrial practice.

FIGURE 1.12 In order to cause the manipulator to follow the desired
trajectory, a position ccntrol system must be implemented. Such a system
uses feedback from joint sensors to keep the manipulator on course.

1.2 The mechanics and control of mechanical manipulators \i‘

Nonlinear position control

Although control systems based on approximate linear models are
popular in current industrial robots, it is important to consider the
complete nonlinear dynamics of the manipulator when synthesizing
control algorithms. Some industrial robots are now being introduced
which make use of nonlinear control algorithms in their controllers.
These nonlinear techniques of controlling a manipulator promise better
performance than do simpler linear schemes. Chapter 10 will introduce
nonlinear control systems for mechanical manipulators.

Force control

The ability for a manipulator to control forces of contact when it
touches parts, tools, or work surfaces seems to be of great importance
in applying manipulators to many real-world tasks. Force control is
complementary to position control in that we usually think of one or
the other as applicable in a certain situation. When a manipulator is
moving in free space, only position control makes sense, since there is
no surface to react against. When a manipulator is touching a rigid
surface however, position control schemes can cause excessive forces to
build up at the contact or may cause contact to be lost with the surface
when it was desired for some application. Since manipulators are rarely
constrained by reaction surfaces in all directions simultaneously, using a

/’\

SO

FIGURE 1.13 In order for a manipulator to slide across a surface while
applying a constant force, a hybrid position-force control system must be used.

&J 1 Introduction

mixed or hybrid control is required, with some directions controlled by
a position control law and remaining directions controlled by a force
control law (see Fig. 1.13). Chapter 11 introduces a methodology for
implementing such a force control scheme.

Programming robots

A robot programming language serves as the interface between the
human user and the industrial robot. Central questions arise such as:
How are motions through space described easily by the programmer?
How are multiple manipulators programmed so that they can work in
parallel? How are sensor-based actions described in a language?

Robot manipulators differentiate themselves from fixed automa-
tion by being “flexible,” which means programmable. Not only are the
movements of manipulators programmable, but through the use of sen-
sors and communications with other factory automation, manipulators
can adapt to variations as the task proceeds (see Fig. 1.14).

The sophistication of the user interface is becoming extremely
important as manipulators and other programmable automation are
applied to more and more demanding industrial applications. The
problem of programming manipulators encompasses all the issues of

N

FIGURE 1.14 Desired motions of the manipulator and end-effector, desired
contact forces, and complex manipulation strategies can be described in
a robot programming language.

1.2 The mechanics and control of mechanical manipulators \i/

“traditional” computer programming, and so is an extensive subject
in itself. Additionally, some particular attributes of the manipulator
programming problem cause additional issues to arise. Some of these
topics will be discussed in Chapter 12.

Off-line programming and simulation

An off-line programming system is a robot programming envi-
ronment which has been sufficiently extended, generally by means of
computer graphics, that the development of robot programs can take
place without access to the robot itself. A common argument raised
in their favor is that an off-line programming system will not cause
production equipment (i.e., the robot) to be tied up when it needs to be
reprogrammed; hence, automated factories can stay in production mode
a greater percentage of the time (see Fig. 1.15).

They also serve as a natural vehicle to tie computer aided design
(CAD) data bases used in the design phase of a product to the actual
manufacturing of the product. In some cases, this direct use of CAD data
can dramatically reduce the programming time required for the manu-
facturing process. Chapter 13 discusses the elements of an industrial
robot off-line programming system.

FIGURE 1.15 Off-line programming systems, generally providing a
computer graphic interface, allow robots to be programmed without access
to the robot itself during programming.

L’ 1 Introduction

1.3 Notation

Notation is always an issue in science and engineering. In this book, we
use the following conventions:

1. Usually variables written in uppercase represent vectors or matrices.
Lowercase variables are scalars.

2. Leading subscripts and superscripts identify which coordinate sys-
tem a quantity is written in. For example, 4P represents a position
vector written in coordinate system {A}, and £R is a rotation
matrix* which specifies the relationship between coordinate systems
{A} and {B}.

3. Trailing superscripts are used (as widely accepted) for indicating the
inverse or transpose of a matrix, e.g., R~', RT.

4. Trailing subscripts are not subject to any strict convention but may
indicate a vector component (e.g., z, y, or z) or may be used as a
description as in P, the position of a bolt.

5. We will use many trigonometric functions. Our notation for the
cosine of an angle §; may take any of the forms: cos#, = ¢y, = ¢;.

Vectors are taken as column vectors; hence row vectors will have
the transpose indicated explicitly.

A note on vector notation in general: Many mechanics texts treat
vector quantities at a very abstract level and routinely use vectors
defined relative to different coordinate systems in expressions. The
clearest example is that of addition of vectors which are given or known
relative to differing reference systems. This is often very convenient and
leads to compact and somewhat elegant formulas. For example, consider
the angular velocity, %w,, of the last body in a series connection of four
rigid bodies (as in the links of a manipulator) relative to the fixed base
of the chain. Since angular velocities sum vectorially, we may write a
very simple vector equation for the angular velocity of the final link:

O = Yy + Ywg + Zws+ duy. (1.1)

However, unless these quantities are expressed with respect to a common
coordinate system, they cannot be summed, and so while elegant,
equation (1.1) has hidden much of the “work” of the computation. For
the particular case of the study of mechanical manipulators, statements
like that of (1.1) hide the chore of bookkeeping of coordinate systems,
which is often the very idea which we need to deal with in practice.

* This term will be introduced in Chapter 2.

1.3 General reference journals and magazines |L|

Therefore, in this book, we carry frame-of-reference information in
the notation for vectors, and we do not sum vectors unless they are in
the same coordinate system. In this way, we derive expressions which
solve the “bookkeeping” problem, and may be applied directly to actual
numerical computation.

References

[1] B. Roth, “Principles of Automation,” Future Directions in Manufacturing
Technology, Based on the Unilever Research and Engineering Division
Symposium held at Port Sunlight, April 1983, Published by Unilever
Research, UK.

[2] R. Ayres, “Impact on Employment,” in The International Encyclopedia of
Robotics, R. Dorf and S. Nof, Editors, John Wiley and Sons, 1988.

[3] D. Smith and P. Heytler, “Industrial Robots Forecast and Trends,” Delphi
Study, 2nd edition, Society of Manufacturing Engineers, Dearborn, Mich.,
1985.

General reference books

[4] R. Paul, Robot Manipulators, MIT Press, 1981.

[5] M. Brady et al., Robot Motion, MIT Press, 1983.

[6] G. Beni and S. Hackwood, Editors, Recent Advances in Robotics, Wiley,
1985.

[7] R. Dorf, Robotics and Automated Manufacturing, Reston, 1983.

[8] A. Critchlow, Introduction to Robotics, Macmillan, 1985,

[9] W. Synder, Industrial Robots: Computer Interfacing and Control, Prentice-
Hall, 1985.

[10] Y. Koren, Robotics for Engineers, McGraw Hill, 1985.

[11] V. Hunt, Industrial Robotics Handbook, Industrial Press, 1983.

[12] J. Engelberger, Robots in Practice, AMACOM, 1980.

[13] W. Wolovich, Robotics: Basic Analysis and Design, Holt, Rinehart, and
Winston, 1987.

[14] K. Fu, R. Gonzalez and C.S.G. Lee, Robotics: Control, Sensing, Vision,
and Intelligence, McGraw-Hill, 1987.

[15] H. Asada and J.J. Slotine, Robot Analysis and Control, Wiley, 1986.

General reference journals and magazines

[16] Robotics Today.

[17] Robotics World.

[18] The Industrial Robot.

[19] IEEE Transactions on Robotics and Automation.

[20] IEEE Transactions on System, Man, and Cybernetics.

[21] IEEE Transactions on Automatic Control.

[22] International Journal of Robotics Research. (MIT Press)

(23] ASME Journal of Dynamic Systems, Measurement, and Control.
[24] International Journal of Rebotics & Automation. (IASTED)

[25] The Robotics Review. (MIT Press)

18

[

1 Introduction

Exercises

1.1 [20] Make a chronology of major events in the development of industrial
robots over the past 30 years. See References.

1.2 [20] Make a chart showing the major applications of industrial robots
(e.g., spot welding, assembly, etc.) and the percentage of installed robots
in use in each application area. Your figure should be similar to Fig. 1.2,
but be based on the most recent data you can find. See References.

1.3 [20] Make a chart of the major industrial robot vendors and their market
share, either in the U.S. or worldwide. See references section.

1.4 [10] In a sentence or two, define: kinematics, workspace, trajectory.

&n

[10] In a sentence or two, define: frame, degree of freedom, position

control.

1.6 [10] In a sentence or two, define: force control, robot programming lan-
guage.

1.7 [10] In a sentence or two, define: structural stiffness, nonlinear control,
and off-line programming.

1.8 [20] Make a chart indicating how labor costs have risen over the past 20
years.

1.9 [20] Make a chart indicating how the computer performance/price ratio
has increased over the past 20 years.

1.10 [20] Make a chart showing the major users of industrial robots (e.g.,

aerospace, automotive, etc.) and the percentage of installed robots in use

in each industry. Your figure should be similar to figure 1.3 but be based

on the most recent data you can find. See references section.

Programming Exercise (Part 1)

Familiarize yourself with the computer you will use to do the programming
exercises at the end of each chapter. Make sure you can create and edit files,
and compile and execute programs.

2 |

SPATIAL
DESCRIPTIONS AND

TRANSFORMATIONS

2.1 Introduction

Robotic manipulation, by definition, implies that parts and tools will be
moved around in space by some sort of mechanism. This naturally leads
to the need of representing positions and orientations of the parts, tools,
and of the mechanism itself. To define and manipulate mathematical
quantities which represent position and orientation we must define
coordinate systems and develop conventions for representation. Many
of the ideas developed here in the context of position and orientation
will form a basis for our later consideration of linear and rotational
velocities as well as forces and torques.

We adopt the philosophy that somewhere there is a universe
coordinate system to which everything we discuss can be referenced.

M 2 Spatial descriptions and transformations

We will describe all positions and orientations with respect to the
universe coordinate system or with respect to other Cartesian coordinate
systems which are (or could be) defined relative to the universe system.

2.2 Descriptions: positions, orientations, and frames

A description is used to specify attributes of various objects with
which a manipulation system deals. These objects are parts, tools, or
perhaps the manipulator itself. In this section we discuss the description
of positions, orientations, and an entity which contains both of these
descriptions, frames.

Description of a position

Once a coordinate system is established we can locate any point in the
universe with a 3 x 1 position vector. Because we will often define
many coordinate systems in addition to the universe coordinate system,
vectors must be tagged with information identifying which coordinate
system they are defined within. In this book vectors are written with
a leading superscript indicating the coordinate system to which they
are referenced (unless it is clear from context), for example, 4P. This
means that the components of 4 P have numerical values which indicate
distances along the axes of {A}. Each of these distances along an
axis can be thought of as the result of projecting the vector onto the
corresponding axis.

{a}

v
R
=

FIGURE 2.1 Vector relative to frame example.

2.2 Descriptions: positions, orientations, and frames &‘

Figure 2.1 pictorially represents a coordinate system, {A}, with
three mutually orthogonal unit vectors with solid heads. A point 4P
is represented with a vector and can equivalently be thought of as
a position in space, or simply as an ordered set of three numbers.
Individual elements of a vector are given subscripts z, ¥, and z:

Ps
Baiel - (2.1)
o

AP:

In summary, we will describe the position of a point in space with a
position vector. Other 3-tuple descriptions of the position of points, such
as spherical or cylindrical coordinate representations are discussed in the
exercises at the end of the chapter.

Description of an orientation

Often we will find it necessary not only to represent a point in space
but also to describe the orientation of a body in space. For example,
if vector #P in Fig. 2.2 locates the point directly between the fingertips
of a manipulator's hand, the complete location of the hand is still
not specified until its orientation is also given. Assuming that the
manipulator has a sufficient number of joints* the hand could be oriented
arbitrarily while keeping the fingertips at the same position in space. In
order to describe the orientation of a body we will attach a coordinate
system to the body and then give a description of this coordinate system
relative to the reference system. In Fig. 2.2, coordinate system {B} has
been attached to the body in a known way. A description of { B} relative
to {A} now suffices to give the orientation of the body.

Thus, positions of points are described with vectors and orientations
of bodies are described with an attached coordinate system. One way to
describe the body-attached coordinate system, { B}, is to write the unit
vectors of its three principal axes' in terms of the coordinate system {A}.

We denote the unit vectors giving the principal directions of co-
ordinate system {B} as Xg, Y5, and Z p- When written in terms of
coordinate system {A} they are called 4 X5, 4Yp, and 2Z. It will be
convenient if we stack these three unit vectors together as the columns
of a 3x 3 matrix, in the order X 5, 4Yy, 4 Z5. We will call this matrix a
rotation matrix, and because this particular rotation matrix describes
{B} relative to {4}, we name it with the notation 4 R. The choice of
leading sub- and superscripts in the definition of rotation matrices will

* How many are “sufficient” will be discussed in Chapters 3 and 4.

t It is often convenient to use three, although any two would suffice since
the third can always be recovered by taking the cross product of the two given.

&' 2 Spatial descriptions and transformations

{A}

FIGURE 2.2 Locating an object in position and orientation.

become clear in following sections.

x AT
A S
Zp | = |T21 Taz Taz|- (2.2)

Ta1 T3z T33

4R

I

kS
ba
w

S
&

In summary, a set of three vectors may be used to specify an orientation.
For convenience we will construct a 3 x 3 matrix which has these
three vectors as its columns. Hence, whereas the position of a point
is represented with a vector, the orientation of a body is represented
with a matrix. In Section 2.8 we will consider some other descriptions
of orientation which require only three parameters.

We can give expressions for the scalars r;; in (2.2) by noting that
the components of any vector are simply the projections of that vector
onto the unit directions of its reference frame. Hence, each component of
2R in (2.2) can be written as the dotproduct of a pair of unit vectors as

s] [Ea Ta-2a 25X,
§R= AXB AYB AZB =)fB'}fA }:’B'}jA gB'YA ; (2.3)
XB‘ZA YB‘ZA ZBZA

For brevity we have omitted the leading superscripts in the rightmost
matrix of (2.3). In fact the choice of frame in which to describe the unit
vectors is arbitrary as long as it is the same for each pair being dotted.

2.2 Descriptions: positions, orientations, and frames &J

Since the dot product of two unit vectors yields the cosine of the angle
between them, it is clear why the components of rotation matrices are
often referred to as direction cosines.

Further inspection of (2.3) shows that the rows of the matrix are
the unit vectors of {A} expressed in {B}; that is,

BX—;{
gR=[4Xp 4Yp '423 = ls?gjl‘
BZE,:

(2.4)

Hence, B R, the description of frame {A}'relative to {B} is given by the
transpose of (2.3); that is,

FE— (2.5)

This suggests that the inverse of a rotation matrix is equal to its
transpose, a fact which can be easily verified as

AXA-'JB"
Azg

where I, is the 3 x 3 identity matrix. Hence,
fR= ZR™' = §RT (2.7)

Indeed from linear algebra [1] we know that the inverse of a matrix
with orthonormal columns is equal to its transpose. We have just shown
this geometrically.

Description of a frame

The information needed to completely specify the whereabouts of the
manipulator hand in Fig. 2.2 is a position and an orientation. The point
on the body whose position we describe could be chosen arbitrarily,
however: For convenience, the point whose position we will describe
is chosen as the origin of the body-attached frame. The situation of a
position and an orientation pair arises so often in robotics that we define
an entity called a frame, which is a set of four vectors giving position and
orientation information. For example, in Fig. 2.2 one vector locates the
fingertip position and three more describe its orientation. Equivalently,
the description of a frame can be thought of as a position vector and
a rotation matrix. Note that a frame is a coordinate system, where in
addition to the orientation we give a position vector which locates its
origin relative to some other embedding frame. For example, frame {B}

[L‘r' 2 Spatial descriptions and transformations

)?U XB

FIGURE 2.3 Example of several frames.

is described by 4R and “Pgopg, where A Ppope is the vector which
locates the origin of the frame {B}:

{B} = {8R, “Pyorc}- (2.8)

In Fig. 2.3 there are three frames that are shown along with the universe
coordinate system. Frames {A} and {B} are known relative to the
universe coordinate system and frame {C} is known relative to frame
{A}.

In Fig. 2.3 we introduce a graphical representation of frames which
is convenient in visualizing frames. A frame is depicted by three arrows
representing unit vectors defining the principal axes of the frame. An
arrow representing a vector is drawn from one origin to another. This
vector represents the position of the origin at the head of the arrow in
terms of the frame at the tail of the arrow. The direction of this locating
arrow tells us, for example, in Fig. 2.3, that {C} is known relative to
{A} and not vice versa.

In summary, a frame can be used:as a description of one coordinate
system relative to another. A frame encompasses the ideas of repre-
senting both position and orientation, and so may be thought of as
a generalization of those two ideas. Positions could be represented by
a frame whose rotation matrix part is the identity matrix and whose
position vector part locates the point being described. Likewise, an
orientation could be represented with a frame whose position vector
part was the zero vector.

2.3 Mappings: changing descriptions from frame to frame IA,

2.3 Mappings: changing descriptions from frame
to frame

In a great many of the problems in robotics, we are concerned with
expressing the same quantity in terms of various reference coordinate
systems. The previous section having introduced descriptions of posi-
tions, orientations, and frames, we now consider the mathematics of
mapping in order to change descriptions from frame to frame.

Mappings involving translated frames

In Fig. 2.4 we have a position defined by the vector ZP. We wish to
express this point in space in terms of frame {A}, when {A} has the
same orientation as {B}. In this case, {B} differs from {A} only by a
translation which is given by “ Ppopg, a vector which locates the origin
of {B} relative to {A}.

Because both vectors are defined relative to frames of the same
orientation, we calculate the description of point P relative to {A},
AP, by vector addition:

AP: BP+ APBORG' (2‘9)

Note that only in the special case of equivalent orientations may we add
vectors which are defined in terms of different frames.

A A
ZAA Ap
e
s
~
o
-~
5
i 4Pporc
—{>
Yy

FIGURE 2.4 Translational mapping.
UN AR
IVERSIDADE POTIG
Sictarma 1., U

N R el ol

M 2 Spatial descriptions and transformations

In this simple example we have illustrated mapping a vector from
one frame to another. This idea of mapping, or changing the description
from one frame to another, is an extremely important concept. The
quantity itself (here, a point in space) is not changed; only its description
is changed. This is illustrated in Fig. 2.4, where the point described
by BP is not translated, but remains the same, and instead we have
computed a new description of the same point, but now with respect
to system {A}.

We say that the vector 4 Pgp, defines this mapping, since all the
information needed to perform the change in description is contained
in #Pgope (along with the knowledge that the frames had equivalent
orientation).

Mappings involving rotated frames

Section 2.2 introduced the notion of describing an orientation by three
unit vectors denoting the principal axes of a body-attached coordinate
system. For convenience we stack these three unit vectors together as
the columns of a 3 x 3 matrix. We will call this matrix a rotation matrix,
and if this particular rotation matrix describes {B} relative to {A}, we
name it with the notation §4R.

Note that by our definition, the columns of a rotation matrix all
have unit magnitude, and further, these unit vectors are orthogonal. As
we saw earlier, a consequence of this is that

B —apal (2.10)

Therefore, since the columns of 4R are the unit vectors of {B} written
in {A}, then the rows of 4R are the unit vectors of {A} written in {B}.

So a rotation matrix can be interpreted as a set of three column
vectors or as a set of three row vectors as follows:

BXT
AR= |4, AY; 47| = B (2.11)
BT

As in Fig. 2.5, the situation will arise often where we know the definition
of a vector with respect to some frame, { B}, and we would like to know
its definition with respect to another frame, {A}, where the origins of
the two frames are coincident. This computation is possible when a
description of the orientation of {B} is known relative to {A}. This
orientation is given by the rotation matrix gR, whose columns are the
unit vectors of {B} written in {A}.

In order to calculate “ P, we note that the components of any vector
are simply the projections of that vector onto the unit directions of its

2.3 Mappings: changing descriptions from frame to frame \L‘

{B} {A}

Fiisiagy ®

FIGURE 2.5 Rotating the description of a vector.

frame. The projection is calculated with the vector dot product. Thus
we see that the components of 4P may be calculated as

4p = BR, . 5p

S S e (2.12)

A==l Fe

In order to express (2.12) in terms of a rotation matrix multiplica-
tion, we note from (2.11) that the rows of 4R are 2X 4, BY,, and 2Z,.
So (2.12) may be written compactly using a rotation matrix as

“p= LR tE (2.13)

Equation (2.13) implements a mapping—that is, it changes the descrip-
tion of a vector—from ZP, which describes a point in space relative to
{B}, into 4P, which is a description of the same point, but expressed
relative to {A}.

We now see that our notation is of great help in keeping track of
mappings and frames of reference. A helpful way of viewing the notation
we have introduced is to imagine that leading subscripts cancel the
leading superscripts of the following entity, for example the Bs in (2.13).

28 |5 Spatial descriptions and transformations

T X AMPLE 2.1

Figure 2.6 shows a frame { B} which is rotated relative to frame {A}
about Z by 30 degrees. Here, 7 is pointing out of the page.

Writing the unit vectors of {B} in terms of {A} and stacking them
as the columns of the rotation matrix we obtain

0.866 —0.500 0.000
AR= {0500 0866 0.000 . (2.14)
0.000 0.000 1.000

Given

0.0

0.0
20| . (2.15)
We calculate AP as

-1.000]
dp = n e S e (2.16)
0.000

Here gR acts as a mapping which is used to describe ZP relative to
frame {A}, 4 P. As introduced in the case of translations, it is important
to remember that, viewed as a mapping, the original vector P is not
changed in space. Rather, we compute a new description of the vector

relative to another frame.]
Bp
{A}
{18 N A
Ygp ?A

M

v
b

FIGURE 2.6 {B} rotated 30 degrees about Z.

|
2.3 Mappings: changing descriptions from frame to frame 29

Mappings involving general frames

Very often we know the description of a vector with respect to some
frame, {B}, and we would like to know its description with respect to
another frame, {A}. We now consider the general case of mapping. Here
the origin of frame {B} is not coincident with that of frame {A} but
has a general vector offset. The vector that locates {B}'s origin is called
APgorg- Also {B} is rotated with respect to {A} as described by 4 R.
Given BP, we wish to compute 4P, as in Fig. 2.7.

We can first change PP to its description relative to an intermediate
frame which has the same orientation as {A}, but whose origin is
coincident with the origin of { B}. This is done by premultiplying by gR
as in Section 2.3. We then account for the translation between origins
by simple vector addition as in Section 2.3, yielding

Equation (2.17) describes a general transformation mapping of a vector
from its description in one frame to a description in a second frame. Note
the following interpretation of our notation as exemplified in (2.17): the
B’s cancel leaving all quantities as vectors written in terms of A, which
may then be added.

The form of (2.17) is not as appealing as the conceptual form,

Ap_iApSp (2.18)

That is, we would like to think of a mapping from one frame to another
as an operator in matrix form. This aids in writing compact equations as

. A{Al}

~
XA

FIGURE 2.7 General transform of a vector.

ﬁ 2 Spatial descriptions and transformations

well as being conceptually clearer than (2.17). In order that we can write
the mathematics given in (2.17) in the matrix operator form suggested
by (2.18), we define a 4 x 4 matrix operator, and use 4 x 1 position
vectors, so that (2.18) has the structure

|
e 2] AR AP 2
- B | BORG (2.19)
____________________ el e
1 [JESREE IR (T 1 1
That is,

1. A “1” is added as the last element of the 4 x 1 vectors.
A row “[0 0 0 1]” is added as the last row of the 4 x 4 matrix.

We adopt the convention that a position vector is 3 x 1 or 4 x 1
depending on whether it appears multiplied by a 3 x 3 matrix or by a
4 x 4 matrix. It is readily seen that (2.19) implements

AP= BRPP+ “Ppope

ol (2.20)

The 4 x 4 matrix in (2.19) is called a homogeneous transform.
For our purposes it can be regarded purely as a construction used to cast
the rotation and translation of the general transform into a single matrix
form. In other fields of study it can be used to compute perspective and
scaling operations (when the last row is other than “[0 0 0 1]”, or the
rotation matrix is not orthonormal). The interested reader should see [2].

Often we will write equations like (2.18) without any notation
indicating that this is a homogeneous representation, because it is
obvious from context. Note that while homogeneous transforms are
useful in writing compact equations, a computer program to transform
vectors would generally not use them because of time wasted multiplying
ones and zeros. Thus, this representation is mainly for our convenience
when thinking and writing equations down on paper.

Just as we used rotation matrices to specify an orientation, we will
use transforms (usually in homogeneous representation) to specify a
frame. Note that while we have introduced homogeneous transforms in
the context of mappings, they also serve as descriptions of frames. The
description of frame {B} relative to {A} is 4T

I [AMPLE 2.2

Figure 2.8 shows a frame { B} which is rotated relative to frame {A}
about Z by 30 degrees, and translated 10 units in X 4, and 5 units in
YA. Find 4P where BP = [3.0 7.0 0.0]7.

2.3 Mappings: changing descriptions from frame to frame [31 |

FIGURE 2.8 Frame {B} rotated and translated.

The definition of frame {B} is
0.866 —0.500 0.000 10.0

. 0.500 0.866 0.000 5.0
8T= 10000 0000 1.000 00]° (2.21)
0 0 0 |
Given
3.0
BE=—mal= (2.22)
0.0

We use the definition of {B} given above as a transformation,

9.098
Ap— 4T Bp— |12562|. = (2.23)

0.000

\i‘ 2 Spatial descriptions and transformations

2.4 Operators: translations, rotations, transformations

The same mathematical forms which we have used to map points
between frames can also be interpreted as operators which translate
points, rotate vectors, or both. This section illustrates this interpretation
of the mathematics we have already developed.

Translational operators

A translation moves a point in space a finite distance along a given
vector direction. Using this interpretation of actually translating the
point in space, only one coordinate system need be involved. It turns
out that translating the point in space is accomplished with the same
mathematics as mapping the point to a second frame. Almost always, it
is very important to understand which interpretation of the mathematics
is being used. The distinction is as simple as this: When a vector is
moved “forward” relative to a frame, we may consider either that the
vector moved “forward” or that the frame moved “backward.” The
mathematics involved in the two cases is identical, only our view of the
situation is different. Figure 2.9 indicates pictorially how a vector 4P,
is translated by a vector Q. Here the vector 4Q gives the information
needed to perform the translation.

Xa

FIGURE 2.9 Translation operator.

2.4 Operators: translations, rotations, transformations &J

The result of the operation is a new vector 4 P,, calculated as
AEN= AP (2.24)

To write this translation operation as a matrix operator, we use the
notation

4Py = Dolq) “Py, (2.25)

where ¢ is the signed magnitude of the translation along the vector
direction). The Dg operator may be thought of as a homogeneous
transform of the special simple form:

1 B g,
_Oquy

Do@=1g ¢ 1 ¥ (2.26)
0F DT

where ¢, g,, and g, are the components of the translation vector @
and g = ,/q2 + g2 + ¢2. Equations (2.9) and (2.24) implement the same

mathematics. Note that if we had defined BP,p (instead of 4 Ppppe)
in Fig. 2.4 and had used it in (2.9) then we would have seen a sign change
between (2.9) and (2.24). This sign change would indicate the difference
between moving the vector “forward” and moving the coordinate system
“backward.” By defining the location of {B} relative to {A} (with
APgore) we cause the mathematics of the two interpretations to be
the same. Now that the “Dg” notation has been introduced, we may
also use it to describe frames, and also as a mapping.

Rotational operators

Another interpretation of a rotation matrix is as a rotational operator
which operates on a vector 4 P, and changes that vector to a new vector,
AP,, by means of a rotation, R. Usually, when a rotation matrix is shown
as an operator no sub- or superscripts appear since it is not viewed as
relating two frames. That is, we may write

4B —tHOB (2.27)

Again, as in the case of translations, the mathematics described in (2.13)
and in (2.27) is the same; only our interpretation is different. This fact
also allows us to see how to obtain rotational matrices which are to be
used as operators:

The rotation matriz which rotates vectors through some rotation, R,
is the same as the rotation matriz which describes a frame rotated by R
relative to the reference frame.

Ii, 2 Spatial descriptions and transformations

Although a rotation matrix is easily viewed as an operator, we
will also define another notation for a rotational operator which clearly
indicates which axis is being rotated about:

AP, = Ry () “P,. (2.28)

In this notation “Rg ()" is a rotational operator which performs a
rotation about the axis direction K by an amount 6 degrees. This
operator may be written as a homogeneous transform whose position
vector part is zero. For example, substitution into (2.11) yields the
operator which rotates about the Z axis by 6 as

cosf —sinf 0 0
sind cosf 0 0

Rz(8) = 0 0 s (2.29)
0 0 JE

Of course, to rotate a position vector we could just as well use the
3 x 3 rotation matrix part of the homogeneous transform. The “Rj”
notation, therefore, may be considered to represent a 3 x 3 or a 4 x 4
matrix. Later in this chapter we will see how to write the rotation matrix
for a rotation about a general axis, K.

T E X AMPLE 2.3

Figure 2.10 shows a vector API. We wish to compute the vector
obtained by rotating this vector about Z by 30 degrees. Call the new
vector 4P,

The rotation matrix which rotates vectors by 30 degrees about Z
is the same as the rotation matrix which describes a frame rotated
30 degrees about Z relative to the reference frame. Thus the correct
rotational operator is

0.866 —0.500 0.000

R;(30.0) = | 0.500 0.866 0.000 | . (2.30)
0.000 0.000 1.000
Given
0.0
Siz el A (2.31)
0.0
We calculate 4P, as
—1.000
AP, = Rz(30.0) 4P, = To732y | (2.32)

0.000

2.4 Operators: translations, rotations, transformations | 35

AP‘I

?Af{A}

>

v

FIGURE 2.10 The vector APl rotated 30 degrees about b

Equations (2.13) and (2.27) implement the same mathematics. Note
that if we had defined ZR (instead of 4R) in (2.13) then the inverse
of R would appear in (2.27). This change would indicate the difference
between rotating the vector “forward” versus rotating the coordinate
system “backward.” By defining the location of {B} relative to {A}
(with 4R) we cause the mathematics of the two interpretations to be
the same.

Transformation operators

As with vectors and rotation matrices, a frame has another interpre-
tation as a transformation operator. In this interpretation, only one
coordinate system is involved, and so the symbol T is used without
sub- or superscripts. The operator T rotates and translates a vector 4 P,
to compute a new vector, 4P,. Thus

Ape—_piip (2.33)

Again, as in the case of rotations, the mathematics described in (2.18)
and in (2.33) is the same, only our interpretation is different. This fact
also allows us to see how to obtain homogeneous transforms which are
to be used as operators:

&J 2 Spatial descriptions and transformations

The transform which rotates by R and translates by Q is the same
as the transform which describes a frame rotated by R and translated by
Q relative to the reference frame.

A transform is usually thought of as being in the form of a homoge-
neous transform with general rotation matrix and position vector parts.

I X AMPLE 2.4

Figure 2.11 shows a vector 4 P,. We wish to rotate it about Z by 30
degrees, and translate it 10 units in X 4, and 5 units in YA Find 4P,
where AP, = [3.0 7.0 0.0]T.

The operator T, which performs the translation and rotation, is

0.866 —0.500 0.000 10.0
0.500 0.866 0.000 5.0

T= 10000 0000 1.000 00 =
0 0 0 1
Given
3.0
Ap = |70]. (2.35)
0.0
We use T as an operator:
9.098
Ap — AP = 125604 . (2.36)
0.000
. 4
A
/7
/
P,/ RAP,
7
[] //

» X4

FIGURE 2.11 The vector 4 P; rotated and translated to form APg.

2.6 Transformation arithmetic |_37_

Note that this example is numerically exactly the same as Example 2.2,
but the interpretation is quite different. "

2.5 Summary of interpretations

We have introduced concepts first for the case of translation only, then
for the case of rotation only, and finally for the general case of rotation
about a point and translation of that point. Having understood the
general case of rotation and translation, we will not need to explicitly
consider the two simpler cases since they are contained within the general
framework.

As a general tool to represent frames we have introduced the
homogeneous transform, a 4 X 4 matrix containing orientation and
position information.

We have introduced three interpretations of this homogeneous trans-
form:

1. It is a description of a frame. 4T describes the frame {B} relative
to the frame {A}. Specifically, the columns of 4R are unit vectors
defining the directions of the principal axes of {B}, and “Pgopq
locates the position of the origin of {B}.

2. It is a transform mapping. 3T maps BP — AP.
3. It is a transform operator. T operates on 4P, to create 4P,.

From this point on the terms frame and transform will both be used
to refer to a position vector plus an orientation. Frame is the term favored
when speaking of a description, and transform is used most frequently
when use as a mapping or operator is implied. Note that transformations
are generalizations of translations and rotations, so we will often use the
term transform when speaking of a pure rotation (or translation).

2.6 Transformation arithmetic

In this section we look at the multiplication of transforms and the inver-
sion of transforms. These two elementary operations form a functionally
complete set of transform operators.

‘i‘ 2 Spatial descriptions and transformations

Compound transformations
In Fig. 2.12, we have € P and wish to find 4P.

Frame {C'} is known relative to frame { B}, and frame {B} is known
relative to frame {A}. We can transform ©P into PP as
Bp— BT Cp, (2.37)
And then transform ZP into 4P as
Ap— AT B (2.38)
Combining (2.37) and (2.38) we get the following, not unexpected result:
Ap— AT RSP (2.39)
from which we could define
SR = (2.40)
Again, note that familiarity with the sub- and superscript notation

makes these manipulations simple. In terms of the known descriptions
of {B} and {C}, we can give the expression for 27" as

BRER 1 5 R PPcorg + * Paong
. (2.41)

FIGURE 2.12 Compound frames: each is known relative to previous.

2.6 Transformation arithmetic li]

Inverting a transform

Consider a frame {B} which is known with respect to a frame {A};
that is, we know the value of #7. Sometimes we will wish to invert
this transform, in order to get a description of {A} relative to {B}; ie.,
E T. A straightforward way of calculating the inverse is to compute the
inverse of the 4 x 4 homogeneous transform. However, if we do so, we
are not taking full advantage of the structure inherent in the transform.
It is easy to find a computationally simpler method of computing the
inverse which does take advantage of this structure.

To find §T we must compute 5§ R and #P, ;i from 4 R and 4 Pppe-
First, recall from our discussion of rotation matrices that

Br= 4RT, (2.42)
Next, we change the description of 4 Pypp into {B} using Eq. (2.12):
B (4 Psorc) = AR *Psorc + © Paong- (2.43)
Since the left-hand side of Eq. (2.43) must be zero, we have
BPyorg = — AR *Pporg = — 5R" * Ppope- (2.44)
Using (2.42) and (2.44) we can write the form of §T as
—8RT 4 Ppopg

|

= : : (2.45)
|
|

Note that with our notation,
oy gt

Equation (2.45) is a general and extremely useful way of computing the
inverse of a homogeneous transform.

I X AMPLE 2.5

Figure 2.13 shows a frame {B} which is rotated relative to frame
{A} about Z by 30 degrees, and translated four units in X 4, and three
units in YA Thus, we have a description of BT Find BT.

The frame defining {B} is

0.866 —0.500 0.000 4.0
A |0.500 0.866 0.000 3.0
8T= 10000 0.000 1.000 00| (2.46)

0 0 0 1

LM 2 Spatial descriptions and transformations

{B}
% 5
B %
1A}
2
>
FIGURE 2.13 {B} relative to {A}.
Using (2.45) we compute
0.866 0.500 0.000 -—4.964
B | —0.500 0.866 0.000 —0.598
AT=1 0000 0000 1000 00 |- "™)
0 0 0 1

2.7 Transform equations

Figure 2.14 indicates a situation in which a frame {D} can be expressed
as products of transformations in two different ways. First,

LRt A (2.48)
but also as
U= UmEh oo (2.49)

We may set these two descriptions of $T" equal to form a transform
equation: _
P ST = Pn Emem (2.50)

Transform equations may be used to solve for transforms in the case of
n unknown transforms and n transform equations. Consider (2.50) in
the case that all transforms are known except gT‘ Here we have one
transform equation and one unknown transform; hence, we easily find
its solution as

SR e S Gl (2.51)

2.7 Transform equations I_4U

{u}

{B}

e

FIGURE 2.14 Set of transforms forming a loop.

Figure 2.15 indicates another similar situation.

Note that in all figures we have introduced a graphical representation
of frames as an arrow pointing from one origin to another origin. The
arrow’s direction indicates which way the frames are defined: in Fig. 2.14,
frame {D} is defined relative to {4}, but in Fig. 2.15 frame {A} is
defined relative to {D}. In order to compound frames when the arrows
line up, we simply compute the product of the transforms. If an arrow
points the opposite way in a chain of transforms, we simply compute its
inverse first. In Fig. 2.15 two possible descriptions of {C} are

R R R (2.52)
and
U — U B (2.53)
Again, we might equate (2.52) and (2.53) to solve for, say, {7
Up_ Up By -1 Dp (2.54)

&! 2 Spatial descriptions and transformations

1A}

. .

FIGURE 2.15 Example of a transform equation.

}

T [X AMPLE 2.6

Assume we know the transform 2T in Fig. 2.16, which describes
the frame at the manipulator’s fingertips {T'} relative to the base of the
manipulator, {B}. Also, we know where the tabletop is located in space
relative to the manipulator's base because we have a description of the
frame {S} which is attached to the table as shown, ZT'. Finally, we know
the location of the frame attached to the bolt lying on the table relative
to the table frame, that is, gT. Calculate the position and orientation
of the bolt relative to the manipulator’s hand, ZT.

Guided by our notation (but, it is hoped, also by our understanding)
we compute the bolt frame relative to the hand frame as

et M (2.55)

2.8 More on representation of orientation |43

4 1S}

BiEel

FIGURE 2.16 Manipulator reaching for a bolt.

2.8 More on representation of orientation

So far, our only means of representing an orientation is by giving a
3 x 3 rotation matrix. As shown, rotation matrices are special in that all
columns are mutually orthogonal and have unit magnitude. Further, we
will see that the determinant of a rotation matrix is always equal to +1.
Rotation matrices may also be called proper orthonormal matrices
where “proper” refers to the fact that the determinant is +1 (nonproper
orthonormal matrices have a determinant of —1).

It is natural to ask whether it is possiblé to describe an orientation
with fewer than nine numbers. A result from linear algebra known as
Cayley’s formula for orthonormal matrices (3] states that for any
proper orthonormal matrix, R, there exists a skew-symmetric matrix,
S, such that

R

(=St = 8, (2.56)

\i‘ 2 Spatial deseriptions and transformations

where I is a 3 x 3 unit matrix. Now a skew-symmetric matrix (i.e.,
S = —8T) of dimension 3 is specified by three parameters (s,, 8y:8;) as

Ul
Si—3| WY W = (2.57)
=Ah, & 0

Therefore, an immediate consequence of formula (2.56) is that any 3 x 3
rotation matrix can be specified by just three parameters.

Clearly, the nine elements of a rotation matrix are not all indepen-
dent. In fact, given a rotation matrix, R, it is easy to write down the
six dependencies between the elements. Imagine R as three columns, as
originally introduced:

R (2.58)

- As we know from Section 2.2, these three vectors are the unit axes of
some frame written in terms of the reference frame. Since each is a unit
vector, and since all three must be mutually perpendicular, we see that
there are six constraints on the nine matrix elements:

X =1,

[elp=

2] =1,
ey (2.59)
X.Z=o,

Y .Z=0

It is natural then to ask whether representations of orientation can be
devised such that the representation is conveniently specified with three
parameters. This section will present several such representations.

Whereas translations along three mutually perpendicular axes are
quite easy to visualize, rotations seem less intuitive. Unfortunately,
people have a hard time describing and specifying orientations in
three-dimensional space. One difficulty is that rotations don’t generally
commute. That is, 4R ZR is not the same as 2R 4R.

2.8 More on representation of orientation &J

e X AMPLE 2.7

_ Consider two rotations, one about Z by 30 degrees and one about -
X by 30 degrees.

[0.866 —0.500 0.000]
R,(30) = | 0.500 0.866 0.000 (2.60)
[0.000 0.000 1.000 |

[1.000 0.000 0.000]
Ry (30)= | 0.000 0.866 —0.500 (2.61)
0.000 0.500 0.866 |

0.00 050 0.87
0.87 —0.50 O.DO}

DET —D43 D25
R7(30) Rx(30)= | 050 0.75 —0.43

(2.62)

R, (30)R;(30) = | 043 075 —0.50
025 043 087

This is not surprising since we use matrices to represent rotations and
multiplication of matrices is not commutative in general. m

Because rotations can be thought of either as operators or as descrip-
tions of orientation, it is not surprising that different representations
are favored for each of these uses. Rotation matrices are useful as
operators. Their matrix form is such that when multiplied by a vector
they perform the rotation operation. However, rotation matrices are
somewhat unwieldy when used to specify an orientation. A human
operator at a computer terminal who wishes to type in the specification
of the desired orientation of a robot’s hand would have a hard time to
input a nine-element matrix with orthonormal columns. A representation
which requires only three numbers would be simpler. The following
sections introduce several such representations.

X-Y-Z fixed angles

One method of describing the orientation of a frame {B} is as follows:

Start with the frame coincident with a known reference frame {A}.
First rotate {B} about X 4 by an angle ~, then rotate about Y, by an
angle 3, and then rotate about Z 4 by an angle a.

Each of the three rotations takes place about an axis in the fixed
reference frame, {A}. We will call this convention for specifying an ori-
entation X-Y-Z fixed angles. The word “fixed” refers to the fact that
the rotations are specified about the fixed (i.e., non-moving) reference
frame (Fig. 2.17). Sometimes this convention is referred to as roll, pitch,

\i‘ 2 Spatial descriptions and transformations

X

FIGURE 2.17 X-Y-Z fixed angles. Rotations are performed in the order
Rx(v), Ry(B), Rz(e).

yaw angles, but care must be used, as this name is often given to other
related but different conventions.

The derivation of the equivalent rotation matrix, 4 Ryy (v, 8, @), is
straightforward because all rotations occur about axes of the reference
frame:

ngvz(%ﬁﬂ)z Rz(a) Ry (8) Rx(v)

coe —sa 0 cHE (S 5 1] 0
=|sa ca 0 (i 0=y — o]
0 D] —gd e L0 ey ey

where ca is shorthand for cosa and sa for sina, etc. It is extremely
important to understand the order of rotations used in (2.63). Thinking
in terms of rotations as operators, we have applied the rotations (from
the right) of Rx(v), then Ry (3), and then Rj;(c). Multiplying (2.63)
out, we obtain

cacf casfsy — sacy casfey + sasy
BRxyz(7,8,0) = | sacB sasBsy+cacy sasfey—casy|. (2.64)
—sf cfsy cley

Keep in mind that the definition given here specifies the order of the
three rotations. Equation (2.64) is correct only for rotations performed
in the order: about XA by v, about YA by 3, about ZA by a.

The inverse problem, that of extracting equivalent X-Y-Z fixed
angles from a rotation matrix is often of interest. The solution depends
on solving a set of transcendental equations: there are nine equations and

2.8 More on representation of orientation |i?._|

three unknowns if (2.64) is equated to a given rotation matrix. Amongst
the nine equations are six dependencies, so essentially we have three
equations and three unknowns. Let

- T11 iz Tia
BRxvz(7.B,a) = |1o1 Taz Tz |- (2.65)
Ts1 Tsz Taa

From (2.64) we see that by taking the square root of the sum of
the squares of r;; and r,, we can compute cos 3. Then, we can solve
for 8 with the arc tangent of —ry, over the computed cosine. Then, as
long as cf # 0 we can solve for o by taking the arc tangent of r,, /c3
over 71, /c8, and we can solve for v by taking the arc tangent of 73,/c3

over rg3/c.
In summary:

8 = Atan2(—rs,, ?'%1 + 'rgl)u

a = Atan2(ry; /cf, ri1/cB), (2.66)

v = Atan2(rs, /e, ras/c8),

where Atan2(y,z) is a two-argument arc tangent function.*

Although a second solution exists, by using the positive square root
in the formula for 3, we always compute the single solution for which
—90.0° < 8 < 90.0°. This is usually a good practice, since we can then
define one-to-one mapping functions between various representations of
orientation. However, in some cases, calculating all solutions is important
(more on this in Chapter 4). If 3 = +90.0° (so that ¢8 = 0), the solution
of (2.66) degenerates. In those cases, only the sum or the difference of o
and v may be computed. One possible convention is to choose a = 0.0
in these cases, which has the results given below.

If 3 = 90.0°, then a solution may be calculated as

8 =90.0°,

a = 0.0. (2.67)

7 = Atan2(ry5,T22),

* Atan2(y,z) computes tan” (%) but uses the signs of both z and y
to determine the quadrant in which the resulting angle lies. For example,
Atan2(-2.0,—2.0) = —135°; whereas Atan2(2.0,2.0) = 45°, a distinction
which would be lost with a single-argument arc tangent function. As we are
frequently computing angles which can range over a full 360°, we will make
use of the Atan2 function regularly. Note that Atan2 becomes undefined when
both arguments are zero. It is sometimes called a “4-quadrant arc tangent,”
and some programming language libraries have it predefined.

\i‘ 2 Spatial descriptions and transformations

If 3 = —90.0°, then a solution may be calculated as
A= —-90.0°,

v = —Atan2(ryq, 732},

Z-Y-X Euler angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A}. First rotate
{B} about Zg by an angle o, then rotate about Yz by an angle 3, and
then rotate about X g by an angle ~.

In this representation, each rotation is performed about an axis of
the moving system {B}, rather than the fixed reference, {A}. Such a
set of three rotations are called Euler angles. Note that each rotation
takes place about an axis whose location depends upon the preceding
rotations. Because the three rotations occur about the axes Z, Y, and
X, we will call this representation Z-Y-X Euler angles.

Figure 2.18 shows the axes of { B} after each Euler angle rotation is
applied. Rotation a about 7 causes X to rotate into X’ ,and Y to rotate
into Y and so on. An additional “prime” gets added to each axis with
each rotation. A rotation matrix which is parameterized by Z-Y-X Euler
angles will be indicated with the notation 4R v/ x/(a, 3,7). Note that
we have added “primes” to the subscripts to indicate that this rotation
is described by Euler angles.

Xz

FIGURE 2.18 Z-Y-X Euler angles.

2.8 More on representation of orientation \i‘

With reference to Fig. 2.18, we can use the intermediate frames {B'}
and {B"} in order to give an expression for 4 Rz/y x:(, 3,7). Thinking
of the rotations as descriptions of these frames, we can immediately write

dp_ SR DR - R (2.69)

where each of the relative descriptions on the right-hand side of (2.69)
is given by the statement of the Z-Y-X Euler angle convention. Namely,
the final orientation of {B} is given relative to {A} as

gRZ’Y’X’z Rz(a) Ry(8) Rx(y)

ca —sa 0 el] : s i) 0 (2.70)
sa ca 0 ()i (] 0 ey —sv|.
0 0 1 —s8 0 ¢f) e ey

where ca = cos e and s = sin @, etc. Multiplying out, we obtain

cacfl casfsy — sacy casfey + sasy
ARyivixr(a, 8,7) = [sacﬁ sasfsy + cacy sasfey —ecasy|. (2.71)
—sf cOsy cey
Note that the result is exactly the same as that obtained for the same
three rotations taken in the opposite order about fixed axes! This
somewhat nonintuitive result holds in general: three rotations taken
about fixed axes yield the same final orientation as the same three
rotations taken in opposite order about the axes of the moving frame.
Since (2.71) is equivalent to (2.64), there is no need to repeat
the solution for extracting Z-Y-X Euler angles from a rotation matrix.
That is, (2.66) can also be used to solve for Z-Y-X Euler angles which
correspond to a given rotation matrix.

Z-Y-Z Euler angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A}. First rotate
{B} about Zz by an angle a, then rotate about Yz by an angle 3,
and then rotate about Z5 by an angle 4.

Note that since rotations are described relative to the frame we are
moving, {B}, this is an Euler angle descriptioni. Because the three rota-
tions occur about the axes Z, Y, and Z, we will call this representation
Z-Y-Z Euler angles.

Following a development exactly as in the last section we arrive at
the following equivalent rotation matrix:

caecfey — sasy —cacfBsy — sacy casf
ARziyvizi(a,8,7) = | sacBey + casy —sacBsy + cacy sas8 | . (2.72)
—sfley sfsy cf

M 2 Spatial descriptions and transformations

The solution for extracting Z-Y-Z Euler angles from a rotation
matrix is stated below.
Given

4 Ti1 Tiz Taig
sRziyiz(0,8,7) = |21 Taz Taz |- (2.73)
Ta1 Taz Tas

If sin3 £ 0, then

3= Atan2(\/m, T33);

a = Atan2(rg3/sB, r13/58), (2.74)

v = Atan2(rsy/s8, —7r31/58).

Although a second solution exists, by using the positive square root
in the formula for g, we always compute the single solution for which
0.0 < 3 < 180.0°.If 8 = 0.0 or 180.0°, the solution of (2.74) degenerates.
In those cases, only the sum or the difference of @ and v may be
computed. One possible convention is to choose a = 0.0 in these cases,
which has the results given below.

If 3 = 0.0, then a solution may be calculated as

B=0.0,

a= 0.0, (2‘75)
v = Atan2(—r;5,711).

If 8 = 180.0°, then a solution may be calculated as
8 =180.0°,

=00, (2.76)

v = Atan2(rip, —r11)-

Other angle set conventions

In the preceding subsections we have seen three conventions for specify-
ing orientation, X-Y-Z fixed angles, Z-Y-X Euler angles, and Z-Y-Z Euler
angles. Each of these conventions requires performing three rotations
about principal axes in a certain order. These conventions are examples
of a set of 24 conventions which we will call angle set conventions. Of
these, 12 conventions are for fixed angle sets, and 12 are for Euler ahgle
sets. Note that because of the duality of fixed angle sets and Euler angle
sets, there are really only 12 unique parameterizations of a rotation

2.8 More on representation of orientation [

matrix using successive rotations about principal axes. While there is
often no particular reason to favor one convention over another, since
various authors adopt different ones, it is useful to list the equivalent
rotation matrices for all 24 conventions. Appendix B (in the back of the
book) gives the equivalent rotation matrices for all 24 conventions.

Equivalent angle-axis

With the notation Ry (30.0) we give the description of an orientation
by giving an axis, X, and an angle, 30.0 degrees. This is an example
of an equivalent angle-axis representation. If the axis is a general
direction (rather than one of the unit directions) any orientation may be
obtained through proper axis and angle selection. Consider the following
description of a frame {B}:

Start with the frame coincident with a known frame {A}. Then rotate
{B} about the vector “K by an angle @ according to the right-hand
rule.

Vector K is sometimes called the equivalent axis of a finite rotation.
A general orientation of { B} relative to {A} may be written as 4 R(K, §)
or Ry () and will be called the equivalent angle-axis representation.*
The specification of the vector 4K requires only two parameters because
its length is always taken to be one. The angle specifies a third param-
eter. Often we will multiply the unit direction, K, with the amount of
rotation, 8, to form a compact 3 x 1 vector description of orientation,
denoted by K (no “hat”). See Fig. 2.19.

When the axis of rotation is chosen as one of the principal axes of
{A}, then the equivalent rotation matrix takes on the familiar form of
planar rotations:

[@ 0
Rx(8)= |0 cosf —sind |, (2.77)
| 0 sinf cosf |

[cos@ 0 sind]
Bi=F o1 o | (2.78)
| —sind 0 cos6 |

[cos® —sin@ 0]
R;(6)= |sinf cosf 0. (2.79)
e

* That such a K and @ exist for any orientation of {B} relative to {A} was
shown originally by Euler, and is known as Euler’s theorem on rotation [3].

52‘ 2 Spatial descriptions and transformations

FIGURE 2.19 Equivalent angle-axis representation.

If the axis of rotation is a general axis, it can be shown (see Exercise
2.6) that the equivalent rotation matrix is
kokovd+cl k kvl —k,s8 k k,v8+k, s0
Ry (0) = | kpky vl +k, s kkv0+cf kkv0—k,s6|. (2.80)
kok,vl —k,s0 k kv +k,s0 k. k vl ch
]

Where cf = cos 6, s = sin6, v§ = 1 —cos, and AK = [k, k, k,]T. The
sign of § is determined by the right-hand rule with the thumb pointing
along the positive sense of 4K.

Equation (2.80) converts from angle-axis representation to rotation
matrix representation. Note that given any axis of rotation and any
angular amount, we can easily construct an equivalent rotation matrix.

The inverse problem, namely that of determining K and 6 from
a given rotation matrix, is left as an exercise (Exercises 2.6, 2.7). A
partial result is given below [3]. If

T Tanl Tras g
BRi(0) = | rar Ta0 Taz |,
Ts1 T3z Taa

(2.81)

then

B ('-'"11 hillzeshilsa s 1)
2

s (2.82)
el l l ‘

- Tig —T
2sinf 3 2l
Tay = Tig

2.8 More on representation of orientation ‘il

This solution always computes a value of § between 0 and 180 degrees.
For any axis-angle pair (4K, 6) there is another pair, namely (—4 K, —6),
which results in the same orientation in space, with the same rotation
matrix describing it. Therefore in converting from a rotation matrix into
angle-axis representation, we are faced with choosing between solutions.
A more serious problem is that for small angular rotations, the axis
becomes ill-defined. Clearly, if the amount of rotation goes to zero, the
axis of rotation becomes completely undefined. The solution given by
(2.82) fails if @ = 0° or § = 180°. See Exercise 2.7.

T X AMPLE 2.8

A frame {B} is described as follows: initially coincident with {A} we
rotate {B} about the vector 4K = [0.707 0.707 0.0]T (passing through
the origin) by an amount # = 30 degrees. Give the frame description
of {B}.

Substituting into (2.80) yields the rotation matrix part of the frame
description. Since there was no translation of the origin the position
vector is [0 0 0]7. So:

0933 0.067 0354 0.0
4 0067 B9gsC 03l g
5L = 15 SEl bibd Db 0ol ™ (Zs)

0.0 0.0 0.0 1.0

Up to this point, all rotations we have discussed have been about
axes which pass through the origin of the reference system. If we
encounter a problem for which this is not true, we may reduce the
problem to the “axis through the origin” case by defining additional
frames whose origins lie on the axis, and then solving a transform
equation.

T [X AMPLE 2.9

A frame {B} is described as follows: initially coincident with {A} we
rotate {B} about the vector 4K = [0.707 0.707 0.0], passing through
the point AP = [1.0 2.0 3.0], by an amount # = 30 degrees. Give the
frame description of {B}.

Before performing the rotation, {A} and {B} are coincident. As
shown in Fig. 2.20, we define two new frames, {A’} and {B'}, which are
coincident with each other and have the same orientation as {A} and
{B} respectively, but are translated relative to {A} by an offset which
places their origins on the axis of rotation. We will choose

1.0 0.0 0.0 1.0
A |00 D0 L0200
A 0.0 00 10 3.0
0.0 00 0.0 1.0

(2.84)

ﬂj 2 Spatial descriptions and transformations

=

(B} {A%}

Ap

{A}
{B}

FIGURE 2.20 Rotation about an axis which does not pass through the
origin of {A}. Initially, {B} was coincident with {A}.

Similarly the description of {B} in terms of {B’} is

1.0 00 00 -1.0
00 1.0 00 =20
0.0 0.0 1.0 -3.0
ME0F=0:0 = DS)

B'T = (2.85)

Now, keeping other relationships fixed, we can rotate {B'} relative to
{A’}. This is a rotation about an axis which passes through the origin, so
we may use (2.80) to compute {B’} relative to {A’}. Substituting into
(2.80) yields the rotation matrix part of the frame description. Since
there was no translation of the origin, the position vector is [0 0 0]7.
So we have

0.933 0.067 0.354 0.0
0.067 0.933 -0.354 0.0
—0.354 0.354 0.866 0.0
0.0 0.0 0.0 1.0

i (2.86)

Finally, we can write a transform equation to compute the desired frame,

do Ani by (2.87)

2.8 More on representation of orientation [55 |

which evaluates to

0933 0.067 0354 -1.13
0.067 0.933 —0.354 1.13
—0.354 0.354 0.866 0.05
0.000 0.000 0.000 1.00

e (2.88)

A rotation about an axis which does not pass through the origin causes
a change in position, plus the same final orientation as if the axis had
passed through the origin. Note that we could have used any definition
of {A'} and {B’} such that their origins were on the axis of rotation.
Our particular choice of orientation was arbitrary, and our choice of the
position of the origin was one of an infinity of possible choices lying along
the axis of rotation. Also, see Exercise 2.14.]

Euler parameters

Another representation of orientation is by means of four numbers called
the Euler parameters. Although complete discussion is beyond the
scope of the book, we state the convention here for reference.

In terms of the equivalent axis K = [k k, kz]T and the equivalent
angle 6, the Euler parameters are given by

€, =k, sin 3

€2 =k, sin g

P (2.89)
=k_sin -

€3 » 8in 5

€4 = COS —
= 2

It is then clear that these four quantities are not independent, but that
2+ tei+e2=1 (2.90)

must always hold. Hence, an orientation might be visualized as a point
on a unit hypersphere in four-dimensional space.

Sometimes, the Euler parameters are viewed as a 3 x 1 vector plus
a scalar. However, viewing them as a 4 x 1 vector, the Euler parameters
are also known as a unit quaternion.

The rotation matrix, R_, which is equivalent to a set of Euler
parameters is given as

1 —9e2 — 22 Sfeics —cieil 2eieq - eaey)
R, = | 2(e1€5 + €acy) 1 —2e3 — 262 2(eze5 —€16,) | . (2.91)
2(ere3 — €264) 2(ezez +e1€q) 11— 2] —2¢3

|Ll 2 Spatial descriptions and transformations

Given a rotation matrix, the equivalent Euler parameters are

e Tag — Ta3

, =223
464

s D1z = Tan

e
de

- (2.92)

= Tica mitao

g= — 12
464

1
€4 = 5\/14""’11 + Tap + T3

Note that (2.92) is not useful in a computational sense if the rotation
matrix represents a rotation of 180 degrees about some axis, since ¢, goes
to zero. However, it can be shown that in the limit all the expressions in
(2.92) remain finite even for this case. In fact, by noting the definitions
in (2.89), it is clear that all ¢; remain on the interval [—1, 1].

Taught and predefined orientations

In many robot systems it will be possible to “teach” positions and
orientations using the robot itself. The manipulator is moved to a desired
location and this position is recorded. A frame taught in this manner
need not necessarily be one to which the robot will be commanded to
return; it could be a part location or a fixture location. In other words,
the robot is used as a measuring tool having six degrees of freedom.
Teaching an orientation like this completely obviates the need for the
human programmer to deal with orientation representation at all. In the
computer the taught point is stored as a rotation matrix, or whatever,
but the user never has to see or understand it. Robot systems which
allow teaching of frames using the robot are thus highly recommended.

Besides teaching frames some systems might have a set of predefined
orientations like “pointing down” or “pointing left.” These specifications
are very easy for humans to deal with. However, if this were the only
means of describing and specifying orientation, the system would be
very limited.

2.9 Transformation of free vectors

We have been concerned mostly with position vectors in this chapter. In
later chapters we will discuss velocity and force vectors as well. These
vectors will transform differently because they are a different type of
vector.

In mechanics one makes a distinction between the equality and the
equivalence of vectors. Two vectors are equal if they have the same

2.9 Transformation of free vectors \i]

dimensions, magnitude, and direction. Two vectors which are considered
equal may have different lines of actions, for example, the three equal
vectors in Fig 2.21. These velocity vectors have the same dimensions,
magnitude, and direction, and so are equal according to our definition.

Two wvectors are equivalent in a certain capacity if each produces
the very same effect in this capacity. Thus, if the criterion in Fig. 2.21
is distance traveled, all three vectors give the same result and are
thus equivalent in this capacity. If the criterion is height above the zy
plane, then the vectors are not equivalent despite their equality. Thus,
relationships between vectors and notions of equivalence depend entirely
on the situation at hand. Furthermore, vectors which are not equal may
cause equivalent effects in certain cases.

We will define two basic classes of vector quantities which may be
helpful.

A line vector refers to a vector which, along with direction and
magnitude, is also dependent on its line of action as far as determining
its effects is concerned. Often the effects of a force vector depend upon
its line of action (or point of application), and so it would be considered
a line vector.

A free vector refers to a vector which may be positioned anywhere
in space without loss or change of meaning provided that magnitude
and direction are preserved.

For example, a pure moment vector is always a free vector. If we
have a moment vector, ZN, which is known in terms of {B}, then we

V.
Vg i

Vi

» o

B

FIGURE 2.21 Equal velocity vectors.

Ii, 2 Spatial descriptions and transformations

calculate the same moment in terms of frame {A} as
AN= 4REN. (2.93)

That is, since all that counts is the magnitude and direction (in the case
of a free vector), only the rotation matrix relating the two systems is
used in transforming. The relative locations of the origins does not enter
into the calculation.

Likewise, a velocity vector written in {B}, PV, is written in {A} as

e (2.94)

The velocity of a point is a free vector, so all that is important is its
direction and magnitude. The operation of rotation (as in (2.94)) does
not affect the magnitude, and accomplishes the rotation which changes
the description of the vector from {B} to {A}. Note that, Pgyps which
would appear in a position vector transformation, does not appear in
a velocity transform. For example, in Fig. 2.22, if 5V = 5X, then
g

Velocity vectors and force and moment vectors will be more fully
introduced in Chapter 5.

{B} {4 -
YB YA

Vv

—eine

2,

» Xy {A)
T
Zs

FIGURE 2.22 Transforming velocities.

2.10 Computational considerations l 99 I

2.10 Computational considerations

The availability of inexpensive computing power is largely responsible
for the growth of the robotics industry; yet for some time to come,
efficient computation will remain an important issue in the design of a
manipulation system.

While the homogeneous representation is useful as a conceptual
entity, typical transformation software used in industrial manipulation
systems does not make use of them directly since the time spent multi-
plying by zeros and ones is wasteful. Usually, the computations shown
in (2.41) and (2.45) are performed, rather than the direct multiplication
or inversion of 4 x 4 matrices.

The order in which transformations are applied can make a large
difference in the amount of computation required to compute the same
quantity. Consider performing multiple rotations of a vector, as in

Ap— 4RERERCP (2.95)

One choice is to first multiply the three rotation matrices together, to
form 4R in the expression

A NiR e (2.96)

Forming 4 R from its three constituents requires 54 multiplications and
36 additions. Performing the final matrix-vector multiplication of (2.96)
requires an additional 9 multiplications and 6 additions, bringing the
total to 63 multiplications, 42 additions.

If instead we transform the vector through the matrices one at a
time, i.e.,

AP R E e

Ap— SRERYP
2.97
4p= ARBp G

AP= AP,

the total computation requires only 27 multiplications and 18 additions,
less than half the computations required by the other method.

Of course, in some cases, the relationships ﬁR, BR, and gR may
be constant, and there may be many © P; which need to be transformed
into 4 P;. In this case, it is more efficient to calculate 4 R once, and then
use it for all future mappings. See also Exercise 2.16.

Iﬂl 2 Spatial descriptions and transformations

T X AMPLE 2.10

Give a method of computing the product of two rotation matrices,
AR 2 cR, usmg less than 27 multiplications and 18 additions.

Where L are the columns of CR and C are the three columns of
the result, compute

él = E‘R f‘l?
02 = BR L, (2.98)
éa 7 01 S (j'zs

which requires 24 multiplications and 15 additions.]

References

[1] B. Noble, Applied Linear Algebra, Prentice-Hall, 1969.

[2] D. Ballard, and C. Brown, Computer Vision, Prentice-Hall, 1982.

[3] O. Bottema, and B. Roth, Theoretical Kinematics, North Holland, Ams-
terdam, 1979.

(4] R.P. Paul, Robot Manipulators, MIT Press, 1981.

[5] I Shames, Engineering Mechanics, 2nd edition, Prentice-Hall, 1967.

[6] Symon, Mechanics, 3rd edition, Addison-Wesley, 1971.

[7] B. Gorla, and M. Renaud, Robots Manipulateurs, Cepadues-Editions,
Toulouse, 1984.

Exercises

2.1 [15] A vector A:P is rotated about Z, by # degrees and is subsequently
rotated about X 4 by ¢ degrees. Give the rotation matrix which accom-
plishes these rotations in the given order.

2.2 [15] A vector AAP is rotated about ¥y by 30 degrees and is subsequently
rotated about X 4 by 45 degrees. Give the rotation matrix which accom-
plishes these rotations in the given order.

2.3 [16] A frame {B} is located as follows: initially coincident with a frame
{A} we rotate { B} about Zp by 0 degrees and then we rotate the resulting
frame about X g by ¢ degrees. Give the rotation matrix which will change
the description of vectors from BP to 4 P.

2.4 [16] A frame {B} is located as follows: initially coincident with a frame
{A} we rotate {B} about Zz by 30 degrees and then we rotate the
resulting frame about X 5 by 45 degrees. Give the rotation matrix which
will change the description of vectors from ZP to 4P.

2.5 [13] #R is a 3 x 3 matrix with eigenvalues 1, et*?, and e~* where
i = y/—1. What is the physical meaning of the eigenvector of gR
associated with the eigenvalue 17

2.10 Exercises IL]

2.6 [21] Derive equation (2.80).

2.7 [24] Describe (or program) an algorithm which extracts the equivalent
angle and axis of a rotation matrix. Equation (2.82) is a good start,
but make sure your algorithm handles the special cases of # = 0° and
i=11802.

2.8 [29] Write a subroutine which changes representation of orientation from
rotation matrix form to equivalent angle-axis form. A Pascal-style proce-
dure declaration would begin:

Procedure RMTOAA(VAR R:mat33; VAR K:vec3; VAR theta: real);

Write another subroutine which changes from equivalent angle-axis
representation to rotation matrix representation:

Procedure AATORM(VAR K:vec3; VAR theta: real: VAR R:mat33);

Run these procedures on several cases of test data back-to-back and

verify that you get back what you put in. Include some of the difficult
cases!

2.9 [27] Do Exercise 2.8 for roll, pitch, yaw angles about fixed axes.
2.10 [27] Do Exercise 2.8 for Z-Y-Z Euler angles.

2.11 [10] Under what condition do two rotation matrices representing finite
rotations commute? A proof is not required.
2.12 [14] A velocity vector is given by
10.0
By = (200
30.0
Given
0.866 —0.500 0.000 11.0
0.500 0.866 0.000 —3.0
0.000 0.000 1.000 9.0
0 0 0 1l

e
=
Il

compute 4V,

2.13 [21] The following frame definitions are given as known. Draw a frame dia-
gram (like that of Fig. 2.15) which qualitatively shows their arrangement.
Solve for ET.

[0.866 —0.500 0.000 11.0]
yp_ [0500 0866 0.000 -10
A+~ [0.000 0.000 1.000 8.0 |°

L0 0 0 e

[1.000 0.000 0.060 0.07
B _ [0.000 0.866 -0500 10.0
A< = 10.000 0500 0.866 —20.0]"’

| 0 0 0 1

[0.866 —0.500 0.000 —3.0
cp_ |0433 0750 -0.500 -3.0
US ™~ 10250 0433 0866 3.0

L0 0 0 1

M 2 Spatial descriptions and transformations

2.14

2.15

2.16

2,17

[31] Develop a general formula to obtain ET, where, starting from initial

coincidence, {B} is rotated by # about K where K passes through the
point AP (not through the origin of {A} in general).

[34] {A} and {B} are frames differing only in orientation. {B} is attained
as follows: starting coincident with {A}, {B} is rotated by 6 radians about
unit vector K. That is,

Show that
§R = ei?,
where
0 oy
=Nk 0 -k,
—ky ke 0

[22] A vector must be mapped through three rotation matrices:
S m ERE RSE

One choice is to first multiply the three rotation matrices together, to
form 4R in the expression:

P i e

Another choice is to transform the vector through the matrices one at a
time; that is,

AP= GRERGRPP
AP-— "RCRCP
“p— SR ER

Ap =i Ap

Because P P is changing at 100 Hz, we must recalculate P at this rate.
However, the three rotation matrices are also changing as determined by
a vision system which gives us new values for 4R, ER, and §R at 30
Hz. What is the best way to organize the computation to minimize the
calculation effort (multiplications and additions)?

[16] Another familiar set of three coordinates which can be used to
describe a point in space is cylindrical coordinates. The three coordinates
are defined as illustrated in Fig. 2.23. The coordinate £ gives a direction in
the zy plane along which to radially translate by an amount 7. Finally, z
is given to specify the height above the zy-plane. Determine the Cartesian
coordinates of the point 4P in terms of the cylindrical coordinates 6, r,
and z.

2.10 Exercises 1_,63

FIGURE 2.23 Cylindrical coordinates.

2.18

2,19

[18] Another set of three coordinates which can be used to describe a point
in space are spherical coordinates. The three coordinates are defined as
illustrated in Fig. 2.24. The angles o and 3 can be thought of as describing
azimuth and elevation of a ray projecting into space. The third coordinate,
r, is the radial distance along that ray to the point being described.
Determine the Cartesian coordinates of the point 4P in terms of the
spherical coordinates «, 3, and r.

[24] An object is rotated about its X axis by an amount ¢, and then it is
rotated about its new Y axis by an amount 1. From our study of Euler
angles, we know that the resulting orientation is given by:

Ry (¢)Ry (¢).

Whereas if the two rotations had occurred about axes of the fixed reference
frame, the result would be

Ry (¥)Rx ()

It appears that the order of multiplication depends upon whether rotations
are deseribed relative to fixed axes, or those of the frame being moved.
It is more appropriate, however, to realize that in the case of specifying
a rotation about an axis of the frame being moved, we are specifying a
rotation in the fixed system given by (for this example)

Rx (8)Ry (¥)Rx'(9)-

ﬂ_’ 2 Spatial descriptions and transformations

{A}
&
Za TAP
e l
|
|
|
B
eeNl
i |
TS A8 I
tx e |
R]
~

FIGURE 2.24 Spherical coordinates.

2.20

2.21

2.22

2.23

This similarity transform [1], multiplying the original R (¢) on the left
reduces to the resulting expression in which it looks as if the order of
matrix multiplication has been reversed. Taking this viewpoint, give a
derivation for the form of the rotation matrix which is equivalent to the
Z-Y-Z Euler angle set (a, 3,7) (the result is given by (2.72)).

[20] Imagine rotating a vector Q about a vector K by an amount 6 to
form a new vector, @’. That is,

Q' = R (0)Q.
Use (2.80) to derive Rodriques’ formula, which is
Q' = Qcosf +sind(K x Q) + (1 — cos6)(K - QK.

[15] For sufficiently small rotations so that the approximations sin 6 = 6,
cosf = 1, and 6% = 0 hold, deri\:e the rotation matrix equivalent to a
rotation of # about a general axis, K. Start with (2.80) for your derivation.
[20] Using the result from Exercise 2.21, show that two infinitesimal
rotations commute (i.e., the order in which the rotations are performed
is not important).
[25] Give an algorithm to construct the definition of a frame YT from
three points Y P, YP,, and Y P;, where the following is known about
these points:

1) YP, is at the origin of {A}.

2) YP, lies somewhere on the positive X axis of {A}.

3) YP; lies near the positive ¥ axis in the XY plane of {A}.

166 s Spatial descriptions and transformations

2.30
2.31

[15] Referring to Fig. 2.25, give the value of §T.
[15] Referring to Fig. 2.26, give the value of 47.

2.32 [15] Referring to Fig. 2.26, give the value of AT
2.33 [15] Referring to Fig. 2.26, give the value of ET.
2.34 [15] Referring to Fig. 2.26, give the value of §T.

2.35

2.36

2.37

2.38

2.39

2.40

2.41

[20] Prove that the determinant of any rotation matrix is always equal
to 1.
[36] A rigid body moving in a plane (i.e., in 2-space) has three degrees of
freedom. A rigid body mcwin% in 3-space has 6 degrees of freedom. Show
that a body in N-space has 3 (N? + N) degrees of freedom.
[15] Given
025 043 08 5.0
Ap 0.87 —0.50 0.00 -4.0
= = lnaal 0.5 =060 % 30|
0 0 0 1

what is the (2,4) element of BT7

[25] Imagine two unit vectors, v; and v, embedded in a rigid body. Note
that no matter how the body is rotated, the geometric angle between these
two vectors is preserved (i.e., rigid body rotation is an “angle-preserving”
operation). Use this fact to give a concise (four- or five-line) proof that the
inverse of a rotation matrix must equal its transpose, and that a rotation
matrix is orthonormal.

[37] Give an algorithm (perhaps in the form of a Pascal program) which
computes the unit quaternion corresponding to a given rotation matrix.
Use (2.91) as starting point.

[33] Give an algorithm (perhaps in the form of a Pascal program) which
computes the Z-X-Z Euler angles corresponding to a given rotation matrix.
See Appendix B.

[33] Give an algorithm (perhaps in the form of a Pascal program) which
computes the X-Y-X fixed angles corresponding to a given rotation matrix.
See Appendix B.

Programming Exercise (Part 2)

1.

2.

If your function library does not include an Atan2 function subroutine,
write one. =

To make a friendly user interface, we wish to describe orientations in the
planar world with a single angle, €, instead of a 2 x 2 rotation matrix. The
user will always communicate in terms of angle €, but internally we will
need the rotation matrix form. For the position vector part of a frame, the
user will specify an and a y value. So, we want to allow the user to specify
a frame as a 3-tuple: (z, y, 6). Internally, we wish to use a 2 x 1 position
vector and a 2 x 2 rotation matrix, so we need conversion routines. Write a
subroutine whose Pascal definition would begin:

L!i‘ 2 Spatial descriptions and transformations

2.30 [15] Referring to Fig. 2.25, give the value of §T.

2.31

[15] Referring to Fig. 2.26, give the value of 4T.

2.32 [15] Referring to Fig. 2.26, give the value of AT.
2.33 [15] Referring to Fig. 2.26, give the value of 2T.
2.34 [15] Referring to Fig. 2.26, give the value of 7.
2.35 [20] Prove that the determinant of any rotation matrix is always equal

2.36

2.37

2.38

2.39

to 1.
[36] A rigid body moving in a plane (i.e., in 2-space) has three degrees of
freedom. A rigid body movin‘% in 3-space has 6 degrees of freedom. Show
that a body in N-space has 5(N? + N) degrees of freedom.
[15] Given
0.25 0.43 0.86 5.0
A _ 0.87 —0.50 0.00 —4.0
He S das Oag =050t 30
0 0 0 1

what is the (2,4) element of ET?

[25] Imagine two unit vectors, v; and v,, embedded in a rigid body. Note
that no matter how the body is rotated, the geometric angle between these
two vectors is preserved (i.e., rigid body rotation is an “angle-preserving”
operation). Use this fact to give a concise (four- or five-line) proof that the
inverse of a rotation matrix must equal its transpose, and that a rotation
matrix is orthonormal.

[37] Give an algorithm (perhaps in the form of a Pascal program) which
computes the unit quaternion corresponding to a given rotation matrix.
Use (2.91) as starting point.

2.40 [33] Give an algorithm (perhaps in the form of a Pascal program) which

2.41

computes the Z-X-Z Euler angles corresponding to a given rotation matrix.
See Appendix B.
[33] Give an algorithm (perhaps in the form of a Pascal program) which
computes the X-Y-X fixed angles corresponding to a given rotation matrix.
See Appendix B.

Programming Exercise (Part 2)

1.

If your function library does not include an Atan2 function subroutine,
write one. 23

To make a friendly user interface, we wish to describe orientations in the
planar world with a single angle, @, instead of a 2 x 2 rotation matrix. The
user will always communicate in terms of angle #, but internally we will
need the rotation matrix form. For the position vector part of a frame, the
user will specify an z and a y value. So, we want to allow the user to specify
a frame as a 3-tuple: (z, y, #). Internally, we wish to use a 2 x 1 position
vector and a 2 x 2 rotation matrix, so we need conversion routines. Write a
subroutine whose Pascal definition would begin:

2.10 Programming Exercise (Part 2) 67|

Procedure UTOI(VAR uform: vec3; VAR iform: frame);

Where “UTOI” stands for “User form TO Internal form.” The first argument
is the 3-tuple (z, y, #), and the second argument is of type frame. The type
“frame” consists of a (2x1) position vector and a (2x2) rotation matrix. If
you wish, you may represent the frame with a (3x3) homogeneous transform
in which the third row is [0 0 1]. The inverse routine will also be necessary:

Procedure ITOU(VAR iform: frame; VAR uform: vec3);

Write a subroutine to multiply two transforms together. Use the following
procedure heading:

Procedure TMULT(VAR brela, crelb, crela: frame);

The first two arguments are inputs, and the third is an output. Note that the
names of the arguments document what the program does (brela = 27T).

Write a subroutine to invert a transform. Use the following procedure
heading:

Procedure TINVERT(VAR brela, arelb: frame);

The first argument is the input, the second the output. Note that the names
of the arguments document what the program does (brela =2 T).

The following frame definitions are given as known. These frames are input
in the user representation of [z y 6] (where @ is in degrees). Draw a
frame diagram (like Fig. 2.15, only in 2-D) which qualitatively shows their
arrangement. Write a program which calls TMULT and TINVERT (defined in
3 and 4 above) as many times as needed to solve for ZT.

UT=[z y 6 =[110 -1.0 300,
BT =[x y 6=[00 7.0 45.0],

$T=[y 6=[-3.0 —-30 -300].

Print out 27 in both internal and user representation.

MANIPULATOR
KINEMATICS

3.1 Introduction

Kinematics is the science of motion which treats motion without regard
to the forces that cause it. Within the science of kinematics one studies
the position, velocity, acceleration, and all higher order derivatives of
the position variables (with respect to time or any other variable(s)).
Hence, the study of the kinematics of manipulators refers to all the
geometrical and time-based properties of the motion. The relationships
between these motions and the forces and torques which cause them is
the problem of dynamics and is the subject of Chapter 6.

In this chapter, we consider po#ition and orientation of the manip-
ulator linkages in static situations. In Chapters 5 and 6 we will consider
the kinematics when velocities and accelerations are involved.

In order to deal with the complex geometry of a manipulator we will
affix frames to the various parts of the mechanism and then describe the
relationship between these frames. The study of manipulator kinematics

3.2 Link description \&l

involves, among other things, how the locations of these frames change as
the mechanism articulates. The central topic of this chapter is a method
to compute the position and orientation of the manipulator’s end-effector
relative to the base of the manipulator as a function of the joint variables.

3.2 Link description

A manipulator may be thought of as a set of bodies connected in a chain
by joints. These bodies are called links. Joints form a connection between
a neighboring pair of links. The term lower pair is used to describe
the connection between a pair of bodies when the relative motion is
characterized by two surfaces sliding over one another. Figure 3.1 shows
the six possible lower pair joints.

Due to mechanical design considerations, manipulators are generally
constructed from joints which exhibit just one degree of freedom. Most
manipulators have revolute joints or have sliding joints called pris-
matic joints. In the rare case that a mechanism is built with a joint
having n degrees of freedom, it can be modeled as n joints of one degree

Revolute Prismatic
|
Cylindrical Planar
Screw Spherical

FIGURE 3.1 The six possible lower pair joints.

\M 3 Manipulator kinematics

of freedom connected with n — 1 links of zero length. Therefore, without
loss of generality, we will consider only manipulators which have joints
with a single degree of freedom.

The links are numbered starting from the immobile base of the
arm, which might be called link 0. The first moving body is link 1,
and so on, out to the free end of the arm, which is link n. In order to
position an end-effector generally in 3-space, a minimum of six joints
is required.” Typical manipulators have five or six joints. Some robots
may actually not be as simple as a single kinematic chain—they may
have parallelogram linkages or other closed kinematic structures. We
will consider one such manipulator later in this chapter.

A single link of a typical robot has many attributes which a
mechanical designer had to consider during its design. These include the
type of material used, the strength and stiffness of the link, the location
and type of the joint bearings, the external shape, the weight and inertia,
etc. However, for the purposes of obtaining the kinematic equations of
the mechanism, a link is considered only as a rigid body which defines the
relationship between two neighboring joint azes of a manipulator. Joint
axes are defined by lines in space. Joint axis i is defined by a line in space,
or a vector direction, about which link i rotates relative to link i — 1. It
turns out that for kinematic purposes, a link can be specified with two
numbers which define the relative location of the two axes in space.

For any two axes in 3-space there exists a well-defined measure of
distance between them. This distance is measured along a line which is
mutually perpendicular to both axes. This mutual perpendicular always
exists and is unique except when both axes are parallel, in which case
there are many mutual perpendiculars of equal length. Figure 3.2 shows
link 4 — 1 and the mutually perpendicular line along which the link
length, a,_,, is measured. Another way to visualize the link parameter
a;_; is to imagine an expanding cylinder whose axis is the joint 7 — 1
axis — when it just touches joint axis 7 the radius of the cylinder is
equal to a,_;.

The second parameter needed to define the relative location of the
two axes is called the link twist. If we imagine a plane whose normal
is the mutually perpendicular line just constructed, we can project both
axes ¢ — 1 and ¢ onto this plane and measure the angle between them.
This angle is measured from axis ¢ — 1 to axis 7 in the right-hand sense
about a;_;. We will use this definition of the twist of link i —1, a,_,. In
Fig. 3.2, o;_, is indicated as the angle between axis i — 1 and axis i (the
lines with the triple hash marks are parallel). In the case of intersecting
axes, twist is measured in the plane containing both axes, but the sense

* This makes good intuitive sense as the description of an object in space
requires six parameters—three for position and three for orientation.

T In this case a;—1 is given a direction as pointing from axis i — 1 to axis 4.

3.2 Link description |

Axis i —1 Axis i
Link i — 1

FIGURE 3.2 The kinematic function of a link is to maintain a fixed
relationship between the two joint axes it supports. This relationship can be
described with two parameters, the link length, a, and the link twist, a.

of a;_; is lost. In this special case, one is free to assign the sign of a; 4
arbitrarily.

You should convince yourself that these two parameters, length and
twist, as defined above, can be used to define the relationship between
any two lines (in this case axes) in space.

I X AMPLE 3.1

Figure 3.3 shows the mechanical drawings of a robot link. If this link
is used in a robot with bearing “A” used for the lower numbered joint,
give the length and twist of this link. Assume that holes are centered
in each bearing.

By inspection, the common perpendicular lies right down the middle
of the metal bar connecting the bearings, so the link length is 7 inches.
The end view actually shows a projection of the bearings onto the plane
whose normal is the mutual perpendicular. Link twist is measured in
the right-hand sense about the common perpendicular from axis ¢ — 1
to axis ¢, so in this example, it is clearly +45 degrees. [

L&J 3 Manipulator kinematics

Bearing “A”)\ N /«

Bearing “B” 2 in, ~

s — s 2 in,
P) bt
3in, i : : : :
l I k=~
-
(T

|2 in. e} t— 5 in. —]e-2 in.|

==
1515

o

Q

FIGURE 3.3 A simple link which supports two revolute axes.

3.3 Link connection description

The problem of connecting the links of a robot together is again
one filled with many questions for the mechanical designer to resolve.
These include the strength of the joint, lubrication, bearing and gearing
mounting, etc. However, for the investigation of kinematics, we need
only worry about two quantities which will completely specify the way
in which links are connected together.

Intermediate links in the chain

Neighboring links have a common joint axis between them. One param-
eter of interconnection has to do with the distance along this common
axis from one link to the next. This parameter is called the link offset.
The offset at joint axis 7 is called d;. The second parameter describes
the amount of rotation about this common axis between one link and
its neighbor. This is called the joint angle, 6,.

Figure 3.4 shows the interconnection of link 7 — 1 and link 7. Recall
that a,_, is the mutual perpendicular between the two axes of link 7 — 1.
Likewise a; is the mutual perpendicular defined for link i. The first
parameter of interconnection is the link offset, d;, which is the signed
distance measured along the axis of joint 7 from the point where a;_,
intersects the axis to the point where a; intersects the axis. The offset d;
is indicated in Fig. 3.4. The link offset d, is variable if joint i is prismatic.

3.3 Link connection description \L‘

Axisi — 1 Axis i

Linki — 1

FIGURE 3.4 The link offset, d, and the joint angle, f, are two parameters
which may be used to describe the nature of the connection between
neighboring links.

The second parameter of interconnection is the angle made between an
extension of a;_; and a; measured about the axis of joint 7. This is
indicated in Fig. 3.4, where the lines with the double hash marks are
parallel. This parameter is named 6;, and is variable for a revolute joint.

First and last links in the chain

Link length, a;, and link twist, c;, depend on joint axes i and i-+1. Hence
a, through a,_,; and o, through a,_, are defined as discussed above in
this section. At the ends of the chain, it will be our convention to assign
zero to these quantities. That is, ag = a, = 0.0 and oy = o, = 0.0.”
Link offset, d;, and joint angle, 8,, are well defined for joints 2 through
n — 1 according to the conventions discussed above in this section. If
joint 1 is revolute, the zero position for #; may be chosen arbitrarily and
d,; = 0.0 will be our convention. Similarly, if joint 1 is prismatic, the

* In fact, a, and a, do not need to be defined at all.

‘&l 3 Manipulator kinematics

zero position of d; may be chosen arbitrarily, and #; = 0.0 will be our
convention. Exactly the same statements apply to joint n.

These conventions have been chosen so that in a case where a
quantity could be assigned arbitrarily, a zero value is assigned so that
later calculations will be as simple as possible.

Link parameters

Hence any robot can be described kinematically by giving the values
of four quantities for each link. Two describe the link itself, and two
describe the link's connection to a neighboring link. In the usual case
of a revolute joint, #; is called the joint variable, and the other
three quantities would be fixed link parameters. For prismatic joints,
d; is the joint variable and the other three quantities are fixed link
parameters. The definition of mechanisms by means of these quantities
is a convention usually called the Denavit-Hartenberg notation [1}.*
Other methods of describing mechanisms are available but are not
presented here.

At this point we could inspect any mechanism and determine the
Denavit-Hartenberg parameters which describe it. For a six-jointed robot
18 numbers would be required to completely describe the fixed portion of
its kinematies. In the case of a six-jointed robot with all revolute joints,
the 18 numbers are in the form of six sets of (a;, @;, d;).

S [X AMPLE 3.2

Two links, as described in Fig. 3.3, are connected as links 1 and 2
of a robot. Joint 2 is composed of a “B” bearing of link 1 and an “A”
bearing of link 2 arranged so that the flat surfaces of the “A” and “B”
bearings lie flush against each other. What is d,?

The link offset d, is the offset at joint 2, which is the distance,
measured along the joint 2 axis, between the mutual perpendicular of
link 1 and that of link 2. From the drawings in Fig. 3.3, this is 2.5
inches. m

Before introducing more examples we will define a convention for
attaching a frame to each link of the manipulator.

* Note that many related conventions go by the name of Denavit-Hartenberg
but differ in a few details. For example, the version used in this book differs
from some of the robotic literature in the manner of frame numbering. Unlike
some other conventions, in this book frame {i} is attached to link i and has
its origin lying on joint axis 1.

3.4 Convention for affixing frames to links lﬂ

3.4 Convention for affixing frames to links

In order to describe the location of each link relative to its neighbors
we define a frame attached to each link. The link frames are named by
number according to the link to which they are attached. That is, frame
{z} is attached rigidly to link i.

Intermediate links in the chain

The convention we will use to locate frames on the links is as follows:
The Z-axis of frame {i}, called Z;, is coincident with the joint axis 7. The
origin of frame {} is located where the a, perpendicular intersects the
joint 7 axis. X ; points along a; in the direction from joint 7 to joint i+ 1.

In the case of a; = 0, X; is normal to the plane of Z; and Zi+1' We
define a; as being measured in the right-hand sense about X;, and so we
see that the freedom of choosing the sign of a; in this case corresponds
to two choices for the direction of X;. Y; is formed by the right-hand
rule to complete the ith frame. Figure 3.5 shows the location of frames
{i — 1} and {i} for a general manipulator.

Axisi - 1 Axis i

-1

/
R

FIGURE 3.5 Link frames are attached so that frame {i} is attached
rigidly to link i.

L% T 5 Manipulator kinematics

First and last links in the chain

We attach a frame to the base of the robot, or link 0, called frame {0}.
This frame does not move and for the problem of arm kinematics can
be considered the reference frame. We may describe the position of all
other link frames in terms of this frame.

Since frame {0} is arbitrary, it always simplifies matters to choose
Z, along axis 1 and to locate frame {0} so that it coincides with frame
{1} when joint variable 1 is zero. Using this convention we will always
have ay = 0.0, oy = 0.0. Additionally, this ensures that d; = 0.0 if joint
1 is revolute, or 6, = 0.0 if joint 1 is prismatic.

For joint n revolute, the direction of X is chosen so that it aligns
with X,y _, when 6, = 0.0, and the origin of frame {N} is chosen so
that d, = 0.0. For joint n prismatic, the direction of X is chosen so
that 6,, = 0.0, and the origin of frame {/N} is chosen at the intersection
of Xy_, and joint axis n when d,, = 0.0.

Summary of the link parameters in terms of the link frames

If the link frames have been attached to the links according to our
convention, the following definitions of the link parameters are valid:

a; = the distance from Z; to Z, ;41 measured along G

1
o; = the angle between Z; and Z, ;+1 measured about X;:

d;

(]

6.

1

= the distance from X;_, to X; measured along Z and
= the angle between X;_, and X, measured about Z,.

‘We usually choose a; > 0 since it corresponds to a distance; however,
a;, d;, and §; are signed quantities.

A final note on uniqueness is warranted. The convention outlined
above does not result in a unique attachment of frames to links. First
of all, when we first align the ZE- axis with joint axis i, there are two
choices of direction in which to point Z;. Furthermore, in the case
of intersecting joint axes (i.e., a; = 0), there are two choices for the
direction of X, corresponding to the choice of signs for the normal to
the plane containing Z; and Z; +1° When axes i and i+ 1 are parallel, the
choice of origin Iocatlon for {i} is arbitrary (though generally chosen in
order to cause d; to be zero). Also when prismatic joints are present there
is quite a bit of freedom in frame assignment. (See also Example 3.5.)

3.4 Convention for affixing frames to links]

Summary of link frame attachment procedure

The following is a summary of the procedure to follow when faced with
a new mechanism in order to properly attach the link frames:

1. Identify the joint axes and imagine (or draw) infinite lines along
them. For steps 2 through 5 below, consider two of these neighboring
lines (at axes i and i + 1).

2. Identify the common perpendicular between them, or point of
intersection. At the point of interscction, or at thc poiné where the
common perpendicular meets the sth axis, assign the link frame
origin.

3. Assign the é‘- axis pointing along the ith joint axis

4. Assign the JYA} axis pointing along the common perpendicular, or if
the axes intersect, assign }2'1- to be normal to the plane containing
the two axes.

5. Assign the Y axis to complete a right-hand coordinate system.

6. Assign {0} to match {1} when the first joint variable is zero. For {N}
choose an origin location and X direction freely, but generally so
as to cause as many linkage parameters as possible to become zero.

S X AMPLE 3.3

Figure 3.6a shows a vhree-link planar arm. Decause all rhree Jolnis
are revolute, this manipulator is sometimes called an “RRR (or 3R)
mechanism.” Fig. 3.6b is a schematic representation of the same manip-
ulator. Note the double hash marks indicated on each of the three axes
which indicate that these axes are parallel. Assign link frames to the
mechanism and give the Denavit-Hartenberg parameters.

We start by defining the reference frame, frame {0}. It is fixed to
the base and aligns with frame {1} when the first joint variable (6,)
is zero. Therefore we position frame {0} as shown in Fig. 3.7 with Z,
aligned with the joint 1 axis. For this arm, all joint axes are oriented
perpendicular to the plane of the arm. Since the arm lies in a plane with
all Z axes parallel, there are no link offsets (all d; are zero). Since all
joints are rotational, when they are at zero degrees, all X axes must
align.

With these comments in mind it is easy to find the frame assign-
ments shown in Fig. 3.7. The corresponding link parameters are shown
in Fig. 3.8.

Note that since the joint axes are all parallel and all the Z axes
are taken to point out of the paper, all a; are zero. This is obviously a
very simple mechanism. Note that our kinematic analysis always ends

\il 3 Manipulator kinematics

(a) (b)

FIGURE 3.6 A three-link planar arm. On the right we show the same
manipulator by means of a simple schematic notation. Hash marks on the
axes indicate that they are mutually parallel.

at a frame whose origin lies on the last joint axis, therefore I3 does not
appear in the link parameters. Such final offsets to the hand are dealt
with separately later. L

X AMPLE 3.4

Figure 3.9a shows a robot having three degrees of freedom and one
prismatic joint. This manipulator can be called an “RPR mechanism,”
a notation which specifies the type and order of the joints. It is a “cylin-
drical” robot whose first two joints are analogous to polar coordinates
when viewed from above. The last joint (joint 3) provides “roll” for the
hand. Figure 3.9b shows the same manipulator in schematic form. Note
the symbol used to represent prismatic joints, and that a “dot” is used
to indicate the point at which two adjacnet axes intersect. Also the fact
that axes 1 and 2 are orthogonal has been indicated.

Figure 3.10a shows the manipulator with the prismatic joint at
minimum extension, and the assignment of link frames are shown in
Fig. 3.10b.

Note that frame {0} and frame {1} are shown as exactly coincident
in this figure because the robot is drawn for the position ¢, = 0. Note
that frame {0}, although not at the bottom of the flanged base of the

3.4 Convention for affixing frames to links | imeE|

3

[}

X;
)
% 5
¥y
2

%
o

FIGURE 3.7 Link frame assignments.

i apeg [has d; 8;
1 0 0 0 [0
2 0 Ly 0 B
3 0 Ly 0 LiES

FIGURE 3.8 Link parameters of the three-link planar manipulator.

robot, is nonetheless rigidly affixed to link 0, the nonmoving part of the
robot. Just as our link frames are not used to describe the kinematics
all the way out to the hand, they need not be attached all the way back
to the lowest part of the base of the robot. It is sufficient that frame {0}

L&‘ 3 Manipulator kinematics

Joint 2 Joint 3
e

=F

Joint 1

i 8

>

(a) : (b)

FIGURE 3.9 Manipulator having three degrees of freedom and one
prismatic joint.

{a) (b)

FIGURE 3.10 Link frame assignments.

be attached anywhere to the nonmoving link 0, and that frame { N}, the
final frame, be attached anywhere to the last link of the manipulator.
Other offsets can be handled later in a general way.

Note that while rotational joints rotate about the Z axis of the
associated frame, prismatic joints slide along Z. In the case where joint
i is prismatic, ¢; is a fixed constant and d; is the variable. If d; is zero
at minimum extension of the link, then frame {2} should be attached
where shown so that d, gives the true offset. The link parameters are
shown in Fig. 3.11.

Note that 8, is zero for this robot and d, is a variable. Axes 1 and
2 intersect, so a, is zero. Angle a; must be 90 degrees in order to rotate
Z, so as to align with Z, (about X,).]

3.4 Convention for affixing frames to links |8_1|

i o~ q ;-1 d; f;
1 0 0 0 6y
2 90° 0 dy 0
3 0 0 Ly B3

FIGURE 3.11 Link parameters for the RPR manipulator of Example 3.4.

l-q-—— L,—>|

FIGURE 3.12 Three-link, nonplanar manipulator.

I X AMPLE 3.5

Figure 3.12a shows a three-link, 3R manipulator for which joint
axes 1 and 2 intersect, and axes 2 and 3 are parallel. Figure 3.12b shows
the kinematic schematic of the manipulator.:Note that the schematic
includes annotations indicating that the first two axes are orthogonal
and that the last two are parallel.

Demonstrate the nonuniqueness of frame assignments and of the
Denavit-Hartenberg parameters by showing several possible correct as-
signments of frames {1} and {2}.

Figure 3.13 shows two possible frame assignments and corresponding
parameters for the two possible choices of direction of 22‘

ErEE Manipulator kinematics

ay = 0
o = —90° ag =10 6= -90° a; = 90° ag =0 8y = 90°
d1=0 d2=L1 d1=0 d2=—L1

FIGURE 3.13 Two possible frame assignments.

G1=0 a2=L2 ap =10 CE2=L2
C.'£1=90° D‘.gzﬂ 92=90° a; = —90° ag =0 Oz = -90°
di=0 dy =Ly di-o dz = —L

FIGURE 3.14 Two more .possible frame assignments.

In general when Z; and Z,,, intersect, there are two choices for X;.
In this example joint axes 1 and 2 intersect, so there are two choices
for the direction of)2'1‘ Figure 3.14 shows two more possible frame
assignments corresponding to the second choice of X S

In fact, there are four more possibilities corresponding to the above
four choices but with Z; pointing downward.]

3.5 Manipulator kinematics | 83 |

3.5 Manipulator kinematics

In this section we derive the general form of the transformation which
relates the frames attached to neighboring links. We then concatenate
these individual transformations to solve for the position and orientation
of link n relative to link 0.

Derivation of link transformations

We wish to determine the transform which defines frame {i} relative to
the frame {¢ — 1}. In general, this transformation will be a function of
the four link parameters. For any given robot, this transformation will be
a function of only one variable, the other three parameters being fixed by
mechanical design. By defining a frame for each link we have broken the
kinematics problem into n subproblems. In order to solve each of these
subproblems, namely E_lT, we will further break the problem into four
sub-subproblems. Fach of these four transformations will be a function
of one link parameter only, and will be simple enough that we can write
down its form by inspection. We begin by defining three intermediate
frames for each link, namely: {P}, {Q}, and {R}.

Axisi—1 Axisi

Linki -1

FIGURE 3.15 Location of intermediate frames {P}, {Q}, and {R}.

‘i‘ 3 Manipulator kinematics

Figure 3.15 shows the same pair of joints as before with frames
{P}, {Q}, and {R} defined. Note that only the X and Z axes are
shown for each frame to make the drawing clearer. Frame {R} differs
from frame {i — 1} only by a rotation of ;_;. Frame {Q} differs from
{R} by a translation a;_,. Frame {P} differs from {Q} by a rotation
0,, and frame {¢} differs from {P} by a translation d;. If we wish to
write the transformation which transforms vectors defined in {4} to their
description in {i — 1} we may write

Slpe el e AEEG A p) (3.1)
or
LS e LR (3.2)
where
Sl iy (3.3)
Considering each of these transformations, we see that (3.3) may be
written:
o 1T Rx(a;—1) Dx(a;—1) Rz(0:) Dz(d,), (3-4)
or
71T = Serew x (@51, @;) Screw z(d;, 6;), (3.5)

where the notation Screw(r, ¢) stands for a translation along an axis
Q by a distance r, and a rotation about the same axis by an angle ¢.
Multiplying out (3.4) we obtain the general form of {~'T"

cfl —sf,; 0 a

i i i—1
i—1p _ sfca;_y cbea;_y —say_y —sa;_qd; (3.6)
i 50 aert) et sl S co;_1d;
0 0 0 1

. [X AMPLE 3.6

Using the link parameters shown in Fig. 3.11 for the robot of Fig. 3.9,
compute the individual transformations for each link.
Substituting the parameters into (3.6) we obtain

-(ﬁl _361 0 D
ek Wt Len=ti @)
LG (R

L 0 C__l_ 0 1

Fii 0

0 0 —1 d
2l ~ | g W)

|0 0 1

093 _563 O O
2 — 893 C93 O O
sli=iiey [RSSSES

L 0 me

3.6 Actuator space, joint space, and Cartesian space |ﬂ|

Having derived these link transformations, it is a good idea to check them
using common sense. For example the elements of the fourth column of
each transform should give the coordinates of the origin of the next
higher frame. L]

Concatenating link transformations

Once the link frames have been defined and the corresponding link pa-
rameters found, developing the kinematic equations is straightforward.
Using the values of the link parameters the individual link transforma-
tion matrices can be computed. Then, the link transformations can be
multiplied together to find the single transformation that relates frame
{N} to frame {0}:

R B G i (3.8)

This transformation, T, will be a function of all n joint variables. If
the robot’s joint position sensors are queried, the Cartesian position and
orientation of the last link may be computed by 7.

3.6 Actuator space, joint space, and Cartesian space

The position of all the links of a manipulator of n degrees of freedom
can be specified with a set of n joint variables. This set of variables is
often referred to as the n x 1 joint vector. The space of all such joint
vectors is referred to as joint space. Thus far in this chapter we have
been concerned with computing the Cartesian space description from
knowledge of the joint space description. We use the term Cartesian
space when position is measured along orthogonal axes, and orientation
is measured according to any of the conventions outlined in Chapter 2.
Sometimes the terms task-oriented space or operational space are
used for what we will call Cartesian space.

So far we have implicitly assumed that each kinematic joint is
actuated directly with some sort of actuator. However, in the case of
many industrial robots, this is not so. For example, sometimes two
actuators work together in a differential pair to move a single joint, or
sometimes a linear actuator is used to rotate a revolute joint through the
use of a four-bar linkage. In these cases it is helpful to consider the notion
of actuator positions. Since the sensors which measure the position of
the manipulator are often located at the actuators, some computations
must be performed to compute the joint vector as a function of a set of
actuator values, or actuator vector.

Li, 3 Manipulator kinematics

As indicated in Fig. 3.16, there are three representations of a
manipulator’s position and orientation: descriptions in actuator space,
joint space, and Cartesian space. In this chapter we are concerned
with the mappings between representations as indicated by the solid
arrows in Fig. 3.16. In Chapter 4, we will consider the inverse mappings
indicated by the dashed arrows.

The manner in which actuators might be connected to move a joint
is quite varied and, although they might be catalogued, we will not do
so here. For each robot we design or seek to analyze, the correspondence
between actuator positions and joint positions must be solved. In the
following section we will solve an example problem for an industrial
robot.

3.7 Examples: kinematics of two industrial robots

Current industrial robots are available in many different kinematic
configurations [2], [3]. In this section we work out the kinematics of two
typical industrial robots. First we consider the Unimation PUMA 560,
a rotary joint manipulator with six degrees of freedom. We will solve for
the kinematic equations as functions of the joint angles. For this example
we will skip the additional problem of the relationship between actuator
space and joint space. Second, we consider the Yasukawa Motoman L-3,
a robot with five degrees of freedom and rotary joints. This example
is done in detail, including the actuator-to-joint transformations. This
example may be skipped on first reading of the book.

—— e —

o 5 e =
¥ \ ¥ \
Actuator Joint Cartesian
space space space

P

FIGURE 3.16 Mappings between kinematic descriptions.

3.7 Examples: kinematics of two industrial robots | 87 I

The PUMA 560

The Unimation PUMA 560 (Fig. 3.17) is a robot with six degrees of
freedom and all rotational joints (i.e., it is a 6 R mechanism). It is shown
in Fig. 3.18 with link frame assignments in the position corresponding
to all joint angles equal to zero.* Figure 3.19 shows detail of the forearm
of the robot.

Note that the frame {0} (not shown) is coincident with frame {1}
when 6, is zero. Note also that for this robot, as with many industrial
robots, the joint axes of joints 4, 5, and 6 all intersect at a common
point, and this point of intersection coincides with the origin of frames

FIGURE 3.17 The Unimation PUMA 3560.
Courtesy of Unimation Incorporated, Shelter Rock Lane, Danbury, Conn.

* Unimation has used a slightly different assignment of zero location of the
joints, such that 65 = f3 — 180° where 63 is the position of joint 3 using
Unimation’s convention.

& 3 Manipulator kinematics

FIGURE 3.18 Some kinematic parameters and frame assignments for
the PUMA 560 manipulator.

{4}, {5} and {6}. Furthermore, the joint axes 4, 5, and 6 are all
mutually orthogonal. This wrist mechanism is illustrated schematically
in Fig. 3.20. '

The link parameters corresponding to this placement of link frames
are shown in Fig. 3.21. In the case of the PUMA 560 a gearing arrange-
ment in the wrist of the manipulator couples together the motions of
joints 4, 5, and 6. What this means is that for these three joint, we must
make a distinction between joint space and actuator space and solve
the complete kinematics in two steps. However, in this example, we will
consider only the kinematics from joint space to Cartesian space.

3.7 Examples: kinematics of two industrial robots [89]

FIGURE 3.19 Kinematic parameters and frame assignments for the forearm
of the PUMA 560 manipulator.

Using (3.6) we compute each of the link transformations:

-Cel _391 0 0
0. |EEt ety ORE0
i 0 0 (=

| 0 0 @ 1

cd, —s0, 0 0
1o 0 0 %50
2E =l st o 01!

0 0)l

cl; —sf; 0 ay
2 3'93 693 () 1]
== 0 0 I8 o

L DESSDE] (3.9)

Bl —ddy G @ g
A 0 0 1 d,
4T_ _394 _C94 0 4} ¢

== [l (s

I-095 ""365 0 0-
P |l 0 -1 0
ST_ 395 C€5 0 0’

=0 0 0 L]

i 695 —396 0 0-
s 0 0 10
sl e S i

L 0 0 =0k

M 3 Manipulator kinematics

05

04

FIGURE 3.20 Schematic of a 3R wrist in which all three .a.xes intersect at
a point and are mutually orthogonal. This design is used in the PUMA 560
manipulator and many other industrial robots.

We now form 27" by matrix multiplication of the individual link matrices.
While forming this product we will derive some subresults which will be
useful when solving the inverse kinematic problem in Chapter 4. We
start by multiplying T and 37T

CgCg —Cgf —8p 0

4 _ 4 5 _ | S e 0

el = 5T gT = e .(310)
0 0 (S

where c5 is shorthand for cosfs, s5 for sin 05, and so on.* Then we have

C4C5Cg — 545 —C4C555 — S4Cg —C4S5 O3
S5C, —8:8 ¢ d
8T = 3T §T = g B S T
—84C5Cg — C48g 840585 — C4Cg 8485 0
0 0 0 1

* Depending on the amount of space available to show expressions, we use
any of the three forms: cos s, c¢fs, or cs.

3.7 Examples: kinematics of two industrial robots T

i @ -1 | @G- d; 0;
1 0 0 0 0,
2 -90° 0 0 8y
3 0 ag d3 B3
4 —90° as dy B4
5 90° 0 0 05
6 =90° 0 0 bg

FIGURE 3.21 Link parameters of the PUMA 560.

Because joints 2 and 3 are always parallel, multiplying 37" and 27T first
and applying sum of angle formulas will yield a somewhat simpler final
expression. This can be done whenever two rotational joints have parallel
axes, and we have
€az —Sz3 0 agc
0 D vy
=833 —C3 0 —ags; |’
0 0 0 1

where we have used the sum of angles formulas (from Appendix A):

(3.12)

Cas =0t 0 8a
893 = €983 + 85C3.

Then we have

1 1 1 1
11 T12 Tz Pz
1 1 1
1 _ 1 3 _ o1 SN Eog S Selioar s wilhy
el = 3T T = |, 1 1 1 :

Tl lsn aigs D
0 0 0 1

\i‘ 3 Manipulator kinematics

where

T11 = Ca3 [C4C5Ce — S456] — S235536,

T21 = —84C5Ce — C4%6
3 i

Ta1 = —S23 [04‘3506 — 8486] — Ca385Ce,
1 L

Tig = —Ca3 [C4C556 + 54Cq] + 5235556,

1

Tgz = 84C58g — C4Cg;
Ta2 = 823 [C4C586 + 84Cs] + C2355 36,

(3.13)

T13 = —C23C485 — S23Cp»
Tag = 5455,
Tl

T3z = S23C485 — Ca3Cs,
Py = g0 + a5Ca5 — dySyg,

lpy = d3a

T
P, = —Q3Sy3 — ApS; — dyCag.

Finally, we obtain the product of all six link transforms

e linots Byal D

Op = Oplp — Pz idiae ilon 1y
Tsy Tsz Tsz De |’
OSSN DR 0=]

where

11 = €1 [e23(CsCsCe — 8486) — 52355C6] + 51(s4¢5¢6 + €a56),
T21 = 81 [€a3(caCsCe — 5456) — 33335%] —c1(8465C6 + €45¢):

Ta1 = —823(C4C5Ce — 5456) — C2355C6

12 = €1 [coa(—CaC586 — 54C6) + 5238536] + 51(cace — 54C536):
Tag = 81 [Cag(—CaC586 — 84C5) + 5238586] — €1(CaCs — 84C556),

T3z = —833(—C4C586 — 54Cg) + C235556,

3.7 Examples: kinematics of two industrial robots g3 |

T13 = —C1(Ca3CeS5 + 523C5) — 518455,
Ta3 = —81(C23Ca85 + 823C5) + €1 8455,

Taz = 823C455 — C23C5;

Do = €1 [9Cy + 3Cos — dgSg3] — d3sy,

Py = 81 [a3¢; +azcys — dysas] + dsey,

P, = —G3Sp3 — Gg85 — dgCa3. (3.14)

Equations (3.14) constitute the kinematics of the PUMA 560. They
specify how to compute the position and orientation of frame {6} relative
to frame {0} of the robot. These are the basic equations for all kinematic
analysis of this manipulator.

The Yasukawa Motoman L-3

The Yasukawa Motoman L-3 is a popular industrial manipulator with
five degrees of freedom (Fig. 3.22). Unlike the examples we have seen
thus far, the Motoman is not a simple open kinematic chain, but rather
makes use of two linear actuators coupled to links 2 and 3 with four-bar
linkages. Also, through a chain drive, joints 4 and 5 are operated by two
actuators in a differential arrangement.

In this example we will solve the kinematics in two stages. First we
will solve for joint angles from actuator positions; and second, we will
solve for Cartesian position and orientation of the last link from joint
angles. In this second stage, we can treat the system as if it were a
simple open kinematic chain 5R device.

Figure 3.23 shows the linkage mechanism which connects actuator
number 2 to links 2 and 3 of the robot. The actuator is a linear one
which directly controls the length of the segment labeled DC'. Triangle
ABC is fixed, as is the length BD. Joint 2 pivots about point B, and the
actuator pivots slightly about point C as the linkage moves. We give the
following names to the constants (lengths and angles) associated with
actuator 2:

o= AB: ¢’2 = AC: Gy = BC:
4 —FBD'Q, —/JHD | BT

and the following names to the variables:
6,=—£JBQ, v,=LCBD, g,=DC.

Figure 3.24 shows the linkage mechanism which connects actuator
number 3 to links 2 and 3 of the robot. The actuator is a linear one

M 3 Manipulator kinematics

FIGURE 3.22 The Yasukawa Motoman [-3.
Courtesy of Machine Intelligence Corporation.

which directly controls the length of the segment labeled HG. Triangle
EFG is fixed, as is the length F'H. Joint 3 pivots about point J, and the
actuator pivots slightly about point G as the linkage moves. We give the
following names to the constants (lengths and angles) associated with
actuator 3:

73 = EF, ¢3= .:%'G, ag = GF,
g —hr

and the following names to the variables:
B =" B SSha — G H Sy — (G,

This arrangement of actuators and linkages has the following func-
tional effect. Actuator 2 is used to position joint 2, and while doing so,

3.7 Examples: kinematics of two industrial robots \i_‘

M,

FIGURE 3.23 Kinematic details of the Yasukawa actuator 2 linkage.

link 3 remains in the same orientation relative to the base of the robot.
Actuator 3 is used to adjust the orientation of link 3 relative to the base
of the robot (rather than relative to the preceding link as in a serial
kinematic chain robot). One purpose of such a linkage arrangement is
to increase the structural rigidity of the main linkages of the robot.
This often pays off in terms of an increased ability to position the robot
precisely.

The actuators for joints 4 and 5 are attached to link 1 of the robot
with their axes aligned with that of joint 2 (points B and F in Figs. 3.23
and 3.24). They operate the wrist joints through two sets of chains—one
set located interior to link 2, and the second set located interior to link 3.
The effect of this transmission system along with its interaction with the
actuation of links 2 and 3 is described functionally as follows: Actuator
4 is used to position joint 4 relative to the base of the robot, rather than
relative to the preceding link 3. This means that holding actuator 4
constant will keep link 4 at a constant orientation relative to the base of

\ﬁj 3 Manipulator kinematics

@\ K

H
¥a
e
G E

FIGURE 3.24 Kinematic details of the Yasukawa actuator 3 linkage.

the robot, regardless of the positions of joints 2 and 3. Finally, actuator
5 behaves as if directly connected to joint 5.

We now state the equations which map a set of actuator values (A;)
to the equivalent set of joint values (6;). In this case, these equations were
derived by straightforward plane geometry—mostly just application of
the “law of cosines.”* Appearing in these equations are scale (k;) and
offset (A;) constants for each actuator. For example, actuator 1 is directly
connected to joint axis 1, and so the conversion is simple; it is just a
matter of a scale factor plus an offset. Thus

By =kid; + Aq,

2G0T
62=cos“1((k2A2+A2} = ﬁz)+t:m'1(¢—2)—i—Q.g—QTD':',
20503 Y2

* If a triangle’s angles are labeled a, b, and ¢, where angle a is opposite side
A, and so on, then A2 = B? + C? — 2BC cosa.

3.7 Examples: kinematics of two industrial robots Iil

(ksAz + A3)2 — a3 — 63
_20333

) — 0, +tan"! (%) - 90°,
Ta

f; = cos_l(

Oy, =—kyAy — 05— 65+ Ay + 180°, (3.15)

T S W

Figure 3.25 shows the attachment of the link frames. In this figure
the manipulator is shown in a position corresponding to the joint vector
© = (0, -90°,90°,90°,0). Figure 3.26 shows the link parameters for this
manipulator. The resulting link transformation matrices are

_C81 —591 0 D
o _ |88y cf; 0 0
= 0 0 1 0
| 0 0 01
[(392 _582 0 0
17— 0 0 10
227 | —s6, —cf, 0 O
L 0 0 01
E C|93 _563 0 12 1
sf cfl 0 0
iT= 03 03 1 0 (3.16)
L 0 0 0 1]
B C64 _334 0 I3]
ST _ 564 C64 0 0
4= 71 10 0 1 0
| 0 0 0 1]
(cf; —-sf; 0 O
O 0 -1 0
5= s s 0 0
| 0 0 0 1

Forming the product to

obtain T we obtain

Tii Tiz Tiz Po
gT — | T21 T2z T3 Py
Tz1 Ta2 Taz D:

0 0 0 1

where

T11 = C1C234C5 — 5155,

T21 = 81€234%5

Ta1 = —8234C5:

+ ¢, 85,

\&J 3 Manipulator kinematics

FIGURE 3.25 Assignment of link frames for the Yasukawa L-3.

T12 = —C1C23485 — 81C5,
Tz = —51C23485 + C1C5,

T2 = 823495,

T13 = C18234:
T2z = 818234;

Taz = Ca34,

Pz = ¢4 (laez +15c23),
Py =581 (locg +13¢03),
P, = —l38; —l3523. (3.17)

We have developed the kinematic equations for the Yasukawa Mo-
toman in two steps. In the first step we compute a joint vector from
an actuator vector, and in the second step we compute a position and
orientation of the wrist frame from the joint vector. If we wish to

3.8 Frames with standard names \i]

i - a; - d; 8
1 0 0 0 6,
2 -90° 0 0 B2
3 0 Ly 0 3
4 0 Ly 0 L
5 90° 0 0 5

FIGURE 3.26 Link parameters of the Yasukawa L-3 manipulator.

compute only Cartesian position and not joint angles, it is possible to
derive equations which map directly from actuator space to Cartesian
space which are somewhat simpler computationally than the two-step
approach (see Exercise 3.10).

3.8 Frames with standard names

As a matter of convention it will be helpful if we assign specific names
and locations to certain “standard” frames associated with a robot
and its workspace. Figure 3.27 shows a typical situation in which a
robot has grasped some sort of tool and wishes to position the tool
tip to a user-defined location. The five frames indicated in Fig. 3.27 are
so often referred to that we will define names for them. The naming
and subsequent use of these five frames in a robot programming and
control system facilitates providing general capabilities in an easily
understandable way. All robot motions will be described in terms of
these frames.
Brief definitions of the frames shown in Fig. 3.27 are listed below.

\L‘O’ 3 Manipulator kinematics

{W}

FIGURE 3.27 The standard frames.

The base frame, {B}

{B} is located at the base of the manipulator. It is merely another name
for frame {0}. It is affixed to a nonmoving part of the robot, sometimes
called link 0.~

The station frame, {S}

{S} is located in a task relevant location. In Fig. 3.28, it is at the corner
of a table upon which the robot is to work. As far as the user of this
robot system is concerned, {S} is the universe frame and all actions of
the robot are made relative to it. It is sometimes called the task frame,
the world frame, or the universe frame. The station frame is always
specified with respect to the base frame, that is, £7.

The wrist frame, {W}

{W} is affixed to the last link of the manipulator. It is another name
for frame {N}, the link frame attached to the last link of the robot.
Very often {W} has its origin fixed at a point called the wrist of the
manipulator, and {WW} moves with the last link of the manipulator. It

is defined relative to the base frame. That is, {W} = §T = .7,

3.8 Frames with standard names

Camera
>

\

Tool frame

Wrist frame

Station
frame

Base frame

FIGURE 3.28 Example of the assignment of standard frames.

The tool frame, {T}

{T} is affixed to the end of any tool the robot happens to be holding.
When the hand is empty, {T'} is usually located with its origin between
the fingertips of the robot. The tool frame is always specified with respect
to the wrist frame. In Fig. 3.28 the tool frame is defined with its origin
at the tip of a pin that the robot is holding.

The goal frame, {G}

{G} is a description of the location to which the robot is to move the
tool. Specifically this means that at the end of the motion, the tool
frame should be brought to coincidence with the goal frame. {G} is
always specified relative to the station frame. In Fig. 3.28 the goal is
located at a hole into which we want the pin to be inserted.

All robot motions may be described in terms of these frames without
loss of generality. Their use helps to give us a standard language for
talking about robot tasks.

101

102 | 3 Manipulator kinematics

3.9 WHERE is the tool?

One of the first capabilities a robot must have is to be able to calculate
the position and orientation of the tool it is holding (or of its empty
hand) with respect to a convenient coordinate system. That is, we wish
to calculate the value of the tool frame, {T'}, relative to the station, {S}.
Once ﬁ,—T has been computed using the kinematic equations we can use
Cartesian transforms, as studied in Chapter 2, to calculate {T'} relative
to {S}. Solving a simple transform equation leads to

= ST 2P HT (3.18)

Equation (3.18) implements what is called the WHERE function in some
robot systems. It computes “where” the arm is. For the situation in
Fig. 3.28, the output of WHERE would be the position and orientation of
the pin relative to the table top.

Equation (3.18) can be thought of as generalizing the kinematics. T
computes the kinematics due to the geometry of the linkages along with
a general transform (which might be considered a fixed link) at the base
end (£7) and another at the end-effector (V' T). These extra transforms
allow us to include tools with offsets and twists, and to operate with
respect to an arbitrary station frame.

3.10 Computational considerations

In many practical manipulator systems, the time required to perform
kinematic calculations is a consideration. In this section we briefly
discuss various issues involved in computing manipulator kinematics as
exemplified by (3.14) for the case of the PUMA 560.

One choice to be made is the use of fixed- or floating-point repre-
sentation of the quantities involved. Many implementations use floating
point for ease of software development, since the programmer does
not have to be concerned with scaling operations due to the relative
magnitude of the variables. However, when speed is crucial, fixed-point
representation is quite possible because the variables do not have a
large dynamic range, and these ranges are fairly well known. Rough
estimations of the number of bits needed in fixed-point representation
seem to indicate that 24 are sufficient [4].

By factoring equations such as (3.14), it is possible to reduce the
number of multiplications and additions at the cost of creating local
variables, which is usually a good trade-off. The point is to avoid com-
puting common terms over and over throughout the computation. There

Exercises

has been some application of computer assisted automatic factorization
of such equations [5].

The major expense in calculating kinematics is often the calcula-
tion of the transcendental functions, i.e., sine and cosine. When these
functions are available as part of a standard library, they are often
computed from a series expansion at the cost of many multiply times.
At the expense of the required memory, many manipulation systems
employ table lookup implementations of the transcendental functions.
Depending on the scheme, this reduces the amount of time required to
calculate a sine or cosine to two or three multiply times or less [6].

The computation of the kinematics as in (3.14) is redundant in that
nine quantities are calculated to represent orientation. One means which
usually reduces computation is to calculate only two columns of the
rotation matrix and then compute a cross product (requiring only six
multiplications and three adds) to compute the third column. Obviously,
one chooses the two least complicated columns to compute.

References

[1] J. Denavit and R.S. Hartenberg, “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices,” Journal of Applied Mechanics, pp.
215-221, June 1955.

[2] J. Lenar¢i¢, “Kinematics,” in The International Encyclopedia of Robotics,
R. Dorf and S. Nof, Editors, John C. Wiley and Sons, 1988.

[3] J. Colson and N.D. Perreira, “Kinematic Arrangements Used in Industrial
Robots,” 13th Industrial Robots Conference Proceedings, April 1983.

[4] T. Turner, J. Craig, and W. Gruver, “A Microprocessor Architecture for
Advanced Robot Control,” 14th ISIR, Stockholm, Sweden, October 1984.

[5] W. Schiehlen, “Computer Generation of Equations of Motion” in Computer
Aided Analysis and Optimization of Mechanical System Dynamics, E.J.
Haug, Editor, Springer-Verlag, 1984.

[6] C.Ruoff, “Fast Trigonometric Functions for Robot Control,” Robotics Age,
November 1981.

Exercises

3.1 [15] Compute the kinematics of the planar arm from Example 3.3.

3.2 [37] Imagine an arm like the PUMA 560 except that joint 3 is replaced
with a prismatic joint. Assume the prismatic joint slides along the direc-
tion of X, in Fig. 3.18; however, there is still an offset equivalent to dj
to be accounted for. Make any additional assumptions needed. Derive the
kinematic equations.

3.3 [25] The arm with three degrees of freedom shown in Fig. 3.29 is like the
one in Example 3.3 except that joint 1’s axis is not parallel to the other
two. Instead, there is a twist of 90 degrees in magnitude between axes 1

103

I&J 3 Manipulator kinematics

3.4

3.5

3.6

and 2. Derive link parameters and the kinematic equations for 2 T. Note
that no I3 need be defined.

[22] The arm with three degrees of freedom shown in Fig. 3.30 has joints
1 and 2 perpendicular, and joints 2 and 3 parallel. As pictured, all joints
are at their zero location. Note that the positive sense of the joint angle
is indicated. Assign link frames {0} through {3} for this arm—that is,
sketch the arm showing the attachment of the frames. Then derive the
transformation matrices 97, 1T, and 27.

[26] Write a subroutine to compute the kinematics of a PUMA 560. Code
for speed, trying to minimize the number of multiplications as much as
possible. Use the procedure heading

Procedure KIN(VAR theta: vec6; VAR wrelb: frame);

Count a sine or cosine evaluation as costing 5 multiply times. Count
additions as costing 0.333 multiply times, and assignment statements as
0.2 multiply times. Count a square root computation as 4 multiply times.
How many multiply times do you need?

[20] Write a subroutine to compute the kinematics of the cylindrical arm
in Example 3.4. Use the procedure heading

Procedure KIN(VAR jointvar: vec3; VAR wrelb: frame);

Count a sine or cosine evaluation as costing 5 multiply times. Count
additions as costing 0.333 multiply times, and assignment statements as
0.2 multiply times. Count a square root computation as 4 multiply times.
How many multiply times do you need?

FIGURE 3.29 The 3R nonplanar arm (Exercise 3.3).

Exercises

FIGURE 3.30 Two views of a 3R manipulator (Exercise 3.4).

3.7

3.8

3.9

[22] Write a subroutine to compute the kinematics of the arm in Exer-
cise 3.3. Use the procedure heading

Procedure KIN(VAR theta: vec3; VAR wrelb: frame);

Count a sine or cosine evaluation as costing 5 multiply times. Count
additions as costing 0.333 multiply times, and assignment statements as
0.2 multiply times. Count a square root computation as 4 multiply times.
How many multiply times do you need?

[13] In Fig. 3.31 the location of the tool, ' T, is not accurately known.
Using force control, the robot feels around with the tool tip until it inserts
it into the socket (or Goal) at location £7. Once in this “calibration”
configuration (in which {G} and {T} are coincident), the position of
the robot, £.T, is determined by reading the joint angle sensors and
computing the kinematics. Assuming 2T and 2T are known, give the
transform equation to compute the unknown tool frame, ¥ T.

[11] For the two-link manipulator shown in Fig. 3.32a, the link transfor-
mation matrices, 97 and T, were determined. Their product is

chicly, —chis6, s, lich,
sf,cly —sflys0, —cf; [yst
56, chly 0
0 0 0 1

0
21 =

105

106

3 Manipulator kinematics

v

AN

FIGURE 3.31 Determination of the tool frame (Exercise 3.8).

Tip

Ly

(a) (b)

FIGURE 3.32 Two-link arm with frame assignments (Exercise 3.9).

Exercises

FIGURE 3.33 3R non-orthogonal axis robot (Exercise 3.11).

’ By

e e
-

FIGURE 3.34 Schematic of a 2RP2R manipulator (Exercise 3.13).

3.10

The link frame assignments used are indicated in Fig. 3.32b. Note that
frame {0} is coincident with frame {1} when §; = 0. The length of the
second link is . Find an expression for the vector C’P“-P which locates
the tip of the arm relative to the {0} frame.

[39] Derive kinematic equations for the Yasukawa Motoman robot (see
Section 3.7) which compute the position and orientation of the wrist frame
directly from actuator values, rather than first computing the joint angles.

107

ﬂ] 3 Manipulator kinematics

FIGURE 3.35 Schematic of 2 3R manipulator (Exercise 3.15).

A solution is possible which requires only 33 multiplications, 2 square
roots, and 6 sine or cosine evaluations.

3.11 [17] Figure 3.33 shows the schematic of a wrist with three intersecting
axes, but where the axes are not orthogonal. Assign link frames to this
wrist (as if it was a 3-DOF manipulator), and give the link parameters.

3.12 [08] Can an arbitrary rigid body transformation always be expressed with
four parameters (a, @, d,f) using the form of equation (3.6)7

B3

d “
/

)

6,

FIGURE 3.36 RPR planar robot (Exercise 3.16).

Exercises

S
-
— ! |
—
—
Az
8

FIGURE 3.37 Three-link RRP manipulator (Exercise 3.17).

A
o A
Q
01

FIGURE 3.38 Three-link RRR manipulator (Exercise 3.18).

3.13

3.14

[15] Show the attachment of link frames for the 5-DOF manipulator shown
schematically in Fig. 3.34.

[20] As was stated, the relative position of any two lines in space can be
given with two parameters, a and «, where a is the length of the common
perpendicular jointing the two, and « is the angle made by the two axes
when projected onto a plane whose normal is the common perpendicular.
Given a line defined as passing through point p with unit vector direction
7, and a second passing through point ¢ with unit vector direction 7,
give expressions for a and a.

109

M 3 Manipulator kinematics

dy

FIGURE 3.39 Three-link RPP manipulator (Exercise 3.19).

dy

FIGURE 3.40 Three-link PRR manipulator (Exercise 3.20).

3.15 [15] Show the attachment of link frames for the three degrees-of-freedom
(DOF) manipulator shown schematically in Fig. 3.35.

3.16 [15] Assign link frames to the RPR planar robot shown in Fig. 3.36 and
give the linkage parameters.

3.17 [15] Show the attachment of link frames on the three-link robot shown
in Fig. 3.37.

3.18 [15] Show the attachment of link frames on the three-link robot shown
in Fig. 3.38.

Exercises

111

ds
dy

FIGURE 3.41 Three-link PPP manipulator (Exercise 3.21).

| I
A
i

ANR\N

FIGURE 3.42 Schematic of a P3R manipulator (Exercise 3.22).

3.19 [15] Show the attachment of link frames on the three-link robot shown

in Fig. 3.39.

3.20 [15] Show the attachment of link frames on the three-link robot shown

in Fig. 3.40.

3.21 [15] Show the attachment of link frames on the three-link robot shown

in Fig. 3.41.

3.22 [18] Show the attachment of link frames on the P3R robot shown in
Fig. 3.42. Given your frame assignments, what are the signs of d,, ds,

2
and a5’

M 3 Manipulator kinematics

Programming Exercise (Part 3)

1.

Write a subroutine to compute the kinematics of the planar 3R robot in
Example 3.3. That is, a routine with the joint angles’ values as input, and
a frame (the wrist frame relative to the base frame) as output. Use the
procedure heading

Procedure KIN(VAR theta: vec3; VAR wrelb: frame);
where “wrelb” is the wrist frame relative to the base frame, &, 7. The type
“frame” consists of a 2 x 2 rotation matrix and a 2 x 1 position vector. If
desired, you may represent the frame with a 3 x 3 homogeneous transform
in which the third row is [0 0 1]. (The manipulator data are l; =1, = 0.5
meters.)
Write a routine which calculates where the tool is relative to the station
frame. The input to the routine is a vector of joint angles:

Procedure WHERE(VAR theta: vec3; VAR trels: frame);
Obviously, WHERE must make use of descriptions of the tool frame and the
robot base frame in order to compute the location of the tool relative to the
station. The value of W T and BT should be stored in global memory (or,
as a second choice, you may pass them as arguments in WHERE).
A tool frame and a station frame are defined by the user for a certain task
as below:

¥T=[z y 6=[01 02 30.0],
Br=[z y 6 =[-01 03 0.0].
Calculate the position and orientation of the tool relative to the station
frame for the following three configurations (in units of degrees) of the arm:
6, 6, 65]=[0.0 90.0 —290.0],
6, 6, 65)=[-236 —30.3 48.0],
6, 6, 65]=[130.0 40.0 12.0].

INVERSE
MANIPULATOR
KINEMATICS

4.1 Introduction

In the last chapter we considered the problem of computing the position
and orientation of the tool relative to the user’s workstation given the
joint angles of the manipulator. In this chapter we investigate the more
difficult problem: Given the desired position and orientation of the tool
relative to the station, how do we compute the set of joint angles which
will achieve this desired result? Whereas Chapter 3 focused on the direct
kinematics of manipulators, here the focus is the inverse kinematics
of manipulators.

Solving the problem of finding the required joint angles to place
the tool frame, {T'}, relative to the station frame, {S}, is split into two
parts. First, frame transformations are performed to find the wrist frame,
{W}, relative to the base frame, {B}, and then the inverse kinematics
are used to solve for the joint angles.

l1_4_1 4 Inverse manipulator kinematics

4.2 Solvability

The problem of solving the kinematic equations of a manipulator is a
nonlinear one. Given the numerical value of 4T we attempt to find
values of 6;, 05, ..., 6,. Consider the equations given in (3.14). In the
case of the PUMA 560 manipulator, the precise statement of our current
problem is: Given T as sixteen numeric values (four of which are trivial),
solve (3.14) for the six joint angles §; through 6.

For the case of an arm with six degrees of freedom (like the one
corresponding to the equations in (3.14)) we have twelve equations and
six unknowns. However, among the nine equations arising from the
rotation matrix portion of gT, only three equations are independent.
These added with the three equations from the position vector portion of
9T give six equations with six unknowns. These equations are nonlinear,
transcendental equations which can be quite difficult to solve. The
equations of (3.14) are those of a robot which had very simple link
parameters—many of the @, were 0 or 90 degrees. Many link offsets
and lengths were zero. It is easy to imagine that for the case of a
general mechanism with six degrees of freedom (with all link parameters
nonzero) the kinematic equations would be much more complex than
those of (3.14). As with any nonlinear set of equations, we must concern
ourselves with the existence of solutions, multiple solutions, and the
method of solution.

Existence of solutions

The question of whether solutions exist or not raises the question of the
manipulator’s workspace. Roughly speaking, workspace is that volume
of space which the end-effector of the manipulator can reach. For a
solution to exist, the specified goal point must lie within the workspace.
Sometimes it is useful to consider two definitions of workspace: Dex-
trous workspace is that volume of space which the robot end-effector
can reach with all orientations. That is, at each point in the dextrous
workspace, the end-effector can be arbitrarily oriented. The reachable
workspace is that volume of space which the robot can reach in at
least one orientation. Clearly, the déxtrous workspace is a subset of the
reachable workspace.

Consider the workspace of the two-link manipulator in Fig. 4.1.
If Iy = [, then the reachable workspace consists of a disc of radius
21,. The dextrous workspace consists of only a single point, the origin.
If I, # [, then there is no dextrous workspace, and the reachable
workspace becomes a ring of outer radius [; +1, and inner radius |I; — I3].
Inside the reachable workspace there are two possible orientations of

4.2 Solvability

FIGURE 4.1 Two-link manipulator with link lengths {1 and I.

the end-effector. On the boundaries of the workspace there is only one
possible orientation.

These considerations of workspace for the two-link manipulator have
all assumed that the joints can rotate 360 degrees. This is rarely true
for actual mechanisms. When joint limits are a subset of the full 360
degrees, then the workspace is obviously correspondingly reduced, either
in extent, or in the number of possible orientations attainable. For
example, if the arm in Fig. 4.1 has full 360 degree motion for 6,, but
only 0 <, < 180°, then the reachable workspace has the same extent,
but only one orientation is attainable at each point.

When a manipulator has less than six degrees of freedom, it cannot
attain general goal positions and orientations in 3-space. Clearly, the
planar manipulator in Fig. 4.1 cannot reach out of the plane so any
goal point with a nonzero Z-coordinate value can be quickly rejected as
unreachable. In many realistic situations, manipulators with four or five
degrees of freedom are employed which operate out of a plane, but clearly
cannot reach general goals. Each such manipulator must be studied to
understand its workspace. In general, the workspace of such a robot is a
subset of a subspace which can be associated with any particular robot.
Given a general goal frame specification, an interesting problem arises in
connection with manipulators of less than six degrees of freedom: What
is the nearest attainable goal frame?

Workspace also depends on the tool frame transformation, since it is
usually the tool-tip which is discussed when we speak of reachable points
in space. Generally, the tool transformation is performed independently
of the manipulator kinematics and inverse kinematics, so we are often
led to consider the workspace of the wrist frame, {W}. For a given
end-effector, a tool frame, {T'}, is defined; given a goal frame, {G},

115

M 4 Inverse manipulator kinematics

the corresponding {W} frame is calculated, and then we ask: Does this
desired position and orientation of {I¥} lie in the workspace? In this way
the workspace which we must concern ourselves with (in a computational
sense) is a different one than the one imagined by the user, who is
concerned with the workspace of the end-effector (the {T'} frame).

If the desired position and orientation of the wrist frame is in the
workspace, then at least one solution exists.

Multiple solutions

Another possible problem encountered in solving kinematic equations is
that of multiple solutions. A planar arm with three revolute joints has
a large dextrous workspace in the plane (given “good” link lengths and
large joint ranges) since any position in the interior of its workspace can
be reached with any orientation. Figure 4.2 shows a three-link planar
arm with its end-effector at a certain position and orientation. The
dashed lines indicate a second possible configuration in which the same
end-effector position and orientation are achieved.

The fact that a manipulator has multiple solutions may cause
problems because the system has to be able to choose one. The criteria
upon which to base a decision vary, but a very reasonable choice would
be the closest solution. For example, if the the manipulator is at point
A as in Fig. 4.3, and we wish to move it to point B, a good choice
would be the solution which minimizes the amount that each joint is
required to move. Hence, in the absence of the obstacle, the upper
dashed configuration in Fig. 4.3 would be chosen. This suggests that one
input argument to our kinematic inverse procedure might be the present
position of the manipulator. In this way, if there is a choice, our algorithm
can choose the closest solution in joint-space. However, the notion of
“close” might be defined in several ways. For example, typical robots

FIGURE 4.2 Three-link manipulator. Dashed lines indicate a second
solution.

4.2 Solvability

FIGURE 4.3 One of the two possible solutions to reach point B causes
a collision.

may have three large links followed by three smaller, orienting links near
the end-effector. In this case, weights might be applied in the calculation
of which solution is “closer” so that the selection favors moving smaller
joints rather than moving the large joints when a choice exists. The
presence of obstacles may force the “farther” solution to be chosen in
cases where the “closer” solution would cause a collision—in general, we
need to be able to calculate all the possible solutions. Thus, in Fig. 4.3
the presence of the obstacle implies the lower dashed configuration is to
be used to reach point B.

The number of solutions depends upon the number of joints in the
manipulator but is also a function of the link parameters (e;, a;, and
d; for a rotary joint manipulator) and the allowable range of motion of
the joints. For example, the PUMA 560 can reach certain goals with
eight different solutions. Figure 4.4 shows four solutions which all place
the hand with the same position and orientation. For each solution
pictured, there is another solution in which the last three joints “flip”
to an alternate configuration according to the formulas:

8} = 0, +180°,
05 = —0s, (4.1)
05 = 06 + 180°.

So in total there can be eight solutions for a single goal. Because of limits
on joint ranges, some of these eight may not be accessible.

In general, the more nonzero link parameters there are, the more
ways there will be to reach a certain goal. For example, consider
a manipulator with six rotational joints. Figure 4.5 shows how the
maximum number of solutions is related to how many of the link length
parameters (the a;) are zero. The more that are nonzero, the bigger the
maximum number of solutions. For a completely general rotary-jointed

117

M 4 Inverse manipulator kinematics

FIGURE 4.4 Four solutions of the PUMA 560.

manipulator with six degrees of freedom, there are up to sixteen solutions
possible [1], [6].

Method of solution

Unlike linear equations, there are no general algorithms which may be
employed to solve a set of nonlinear equations. In considering methods
of solution it will be wise to define what constitutes the “solution” of
a given manipulator.

4.2 Solvability | 119

a; Number of solutions
ap=ag=as=20 =4
a3 =a5=10 =8
ag=0 =16
Allg;#0 = 16

FIGURE 4.5 Number of solutions vs. nonzero a;.

A manipulator will be considered solvable if the joint variables can
be determined by an algorithm which allows one to determine all the sets
of joint variables associated with a given position and orientation [2].

The main point of this definition is that we require, in the case of
multiple solutions, that it be possible to calculate all solutions. Hence,
we do not consider some numerical iterative procedures as solving the
manipulator since some of these methods are not guaranteed to find all
the solutions.

We will split all proposed manipulator solution strategies into two
broad classes: closed form solutions and numerical solutions.
Because of their iterative nature, numerical solutions generally are much
slower than the corresponding closed form solution; in fact, so much so
that for most uses, we are not interested in the numerical approach
to solution of kinematics. Iterative numerical solution to kinematic
equations is a whole field of study in itself (see [6,11,12]), and is beyond
the scope of this text.

We will restrict our attention io closed form solution methods. In
this context “closed form” means a solution method based on analytic
expressions or on the solution of a polynomial of degree 4 or less, such
that noniterative calculations suffice to arrive at a solution. Within the
class of closed form solutions we distinguish two methods of obtaining the
solution: algebraic and geometric. These distinctions are somewhat
hazy, since any geometric methods brought to bear are applied by means
of algebraic expressions, so both methods are similar. The methods differ
perhaps in approach only.

A major recent result in kinematics is that, according to our
definition of solvability, all systems with revolute and prismatic joints
having a total of siz degrees of freedom in a single series chain are
now solvable. However, this general solution is a numerical one. Only
in special cases may robots with six degrees of freedom be solved
analytically. These robots for which an analytic or closed form solution
exists are characterized by several intersecting joint axes, and/or many
a; equal to 0 or £90 degrees. Since numerical solutions are generally time

[120] 4 Inverse manipulator kinematics

consuming relative to evaluating analytic expressions it is considered
very important to design a manipulator such that a closed form solution
exists. Manipulator designers discovered this very soon and now virtually
all industrial manipulators are designed sufficiently simply so that a
closed form solution may be developed.

A sufficient condition that a manipulator with six revolute joints
will have a closed form solution is that three neighboring joint axes
intersect at a point. Section 4.6 discusses this condition. Almost every
manipulator with six degrees of freedom built today has three axes
intersecting. For example, axes 4, 5, and 6 of the PUMA 560 intersect.

4.3 The notion of manipulator subspace when n < 6

The set of reachable goal frames for a given manipulator constitutes
its reachable workspace. For a manipulator with n degrees of freedom
where n < 6, this reachable workspace can be thought of as a portion
of an n degree of freedom subspace. In the same manner in which the
workspace of a six degree of freedom manipulator is a subset of space,
the workspace of a simpler manipulator is a subset of its subspace. For
example, the subspace of the two-link robot of Fig. 4.1 is a plane, but
the workspace is a subset of this plane, namely a circle of radius [; + [,
for the case that I} = I,.

One way to specify the subspace of an n degree of freedom manipu-
lator is to give an expression for its wrist or tool frame as a function of
n variables which locate it. If we consider these n variables to be free,
then as they take on all possible values, the subspace is generated.

e © X AMPLE 4.1

Give a description of the subspace of & T for the three-link manip-
ulator from Chapter 3, Fig. 3.6.
The subspace of &7 is given by

Cpoudy 0T
Spmacy a0 0y

() () () SR () ()
0)) 1

(4.2)

where = and y give the position of the wrist, and ¢ describes the
orientation of the terminal link. As z, y, and ¢ are allowed to take on
arbitrary values, the subspace is generated. Any wrist frame which does
not have the structure of (4.2) lies outside the subspace (and therefore
lies outside the workspace) of this manipulator. Link lengths and joint
limits restrict the workspace of the manipulator to be a subset of this
subspace.]

4.3 The notion of manipulator subspace when n < 6 |_12LF

FIGURE 4.6 A polar two-link manipulator.

I X AMPLE 4.2

Give a description of the subspace of 9T for the polar manipulator
with two degrees of freedom shown in Fig. 4.6. We have

x

DP20R6‘= Rl (4.3)
0

where x and y can take any values. The orientation is restricted because
the °Z, axis must point in a direction which depends on z and y. The
0?2 axis always points down, and the 0)2.'2 axis can be computed as the
cross product °Y, x °Z,. In terms of z and y we have

T

3 Vit
07, = v 5 (4.4)

0

The subspace can therefore be given as

T

e
Vzity? g yizEfed &
-z

oT = T = 45
2 24y Vet Y. (4.5)
0 —1 0 0
0 0 0 1

Usually in defining a goal for a manipulator with n degrees of
freedom we use n parameters to specify the goal. If, on the other hand, we
give a specification of a full six degrees of freedom, we will not in general
be able to reach the goal with an n < 6 manipulator. In this case, we may

\ﬂ2_| 4 Inverse manipulator kinematics

be interested instead in reaching a goal which lies in the manipulator’s
subspace and is as “near” as possible to the original desired goal.

Hence, when specifying general goals for a manipulator with less
than six degrees of freedom, a solution strategy is

1. Given a general goal frame, é,T, compute a modified goal frame, 2, T,
such that g, 7 lies in the manipulator’s subspace and is as “near” to
2T as possible. A definition of “near” must be chosen.

2. Compute the inverse kinematics to find joint angles using g,T as
the desired goal. Note that a solution still may not be possible if the
goal point is not in the manipulator’s workspace.

It generally makes sense to position the tool frame origin to the
desired location and then choose an attainable orientation which is
near the desired orientation. As we saw in Examples 4.1 and 4.2,
computation of the subspace is dependent on manipulator geometry.
Each manipulator must be individually considered to arrive at a method
of making this computation.

Section 4.7 gives an example of projecting a general goal into the
subspace of a manipulator with five degrees of freedom in order to
compute joint angles which will result in the manipulator reaching the
nearest attainable frame to the desired.

4.4 Algebraic vs. geometric

As an introduction to solving kinematic equations, we will consider
two different approaches to the solution of a simple planar three-link
manipulator.

Algebraic solution

Consider the three-link planar manipulator introduced in Chapter 3. It
is shown with its link parameters in Fig. 4.7.

Following the method of Chapter 3, we may use the link parameters
easily to find the kinematic equations of this arm:

€123 —S123 0.0 lLicy +1seq,
S123 Cizz 0.0 lys; +1l38q,
0.0 0.0 1.0 0.0

0 0 0 1

S i — (4.6)

To focus our discussion on inverse kinematics, we will assume that the
necessary transformations have been performed so that the goal point

4.4 Algebraic vs. geometric

i i a; -1 d; b;
1 0 0 0 64
2 0 Ly 0 B2
3 0 Ly 0 B3

FIGURE 4.7 Three-link planar manipulator and its link parameters.

is a specification of the wrist frame relative to the base frame, that is,
B T. Because we are working with a planar manipulator, specification
of these goal points can be most easily accomplished by specifying three
numbers: z, y, and ¢, where ¢ is the orientation of link 3 in the plane
(relative to the +X axis). Hence, rather than giving a general o liasa
goal specification, we will assume a transformation with the structure

Cp —S8g 0.0 I

|
il QIR0 ORI O])
0 0 Wl

All attainable goals must lie in the subspace implied by the structure
of equation (4.7). By equating (4.6) and (4.7) we arrive at a set of four
nonlinear equations which must be solved for 8,, 6,, and 8;:

Cp = C123, (4.8)
Sp = S123, (4.9)

123

IM 4 Inverse manipulator kinematics

z=1¢; +ls¢99, (4.10)
y=1131 +12312< (411}

We now begin our algebraic solution of equations (4.8) through
(4.11). If we square both (4.10) and (4.11) and add them, we obtain

o2 +y? =12 + 12 + 20 L5y, (4.12)

where we have made use of

Ci2 = C1Cp — 8182,

(4.13)
819 = L1895 o 81Cq.

Solving (4.12) for ¢, we obtain

2B

cy = L (4.14)

In order for a solution to exist, the right-hand side of (4.14) must
have a value between —1 and 1. In the solution algorithm, this constraint
would be checked at this time to determine if a solution exists. Physically,
if this constraint is not satisfied, then the goal point is too far away for
the manipulator to reach. :

Assuming the goal is in the workspace, we write an expression for

S, as
5y =44/1—c2. (4.15)

Finally, we compute 6, using the two-argument arctangent routine*
6, = Atan2(s,,cy). (4.18)

The choice of signs in (4.15) corresponds to the multiple solution in
which we can choose the “elbow-up” or the “elbow-down”™ solution. In
determining 6, we have used one of the recurring methods for solving
the type of kinematic relationships that often arise, namely to determine
both the sine and cosine of the desired joint angle, and then apply the
two-argument arctangent. This ensures that we have found all solutions,
and that the solved angle is in the proper quadrant.

Having found 6, we may solve (4.10) and (4.11) for 6,. We write
(4.10) and (4.11) in the form

xz=kic; — kasq, (4.17)
y=kis; +Fkyeq, (4.18)

* See Section 2.8.

4.4 Algebraic vs. geometric

where
ki=1 +1ze,,

419
=l ()
In order to solve an equation of this form, we perform a change of
variables. Actually, we are changing the way in which we write the

constants k; and ks.
If

T=+/k3+ k3
and (4.20)
v = Atan2(ky, k,),

then
ky =r7cos7,
i (4.21)
ky = rsin~y.
Equations (4.17) and (4.18) can now be written
— =cosycosf, —sinysind,, (4.22)
g = cosysin#, + sinycosd,, (4.23)
or
€T
cos(y +6,) = —, (4.24)
: B
sin(y+6,) = = (4.25)
Using the two-argument arctangent we get
2 L
v+ 6; = Atan2 (’r : r) = Atan2 (y,z), (4.26)
and so
0, = Atan2(y, z) — Atan2(k,, k). (4.27)

Note that when a choice of sign is made in the solution of 6, above,
it will cause a sign change in k,, thus affecting ¢,. The substitutions
used, (4.20) and (4.21), constitute a method of solution of a frequently
appearing form in kinematics, namely that of (4.10) or (4.11). Note also
that if z = y = 0 then (4.27) becomes undefined—in this case 6, is
arbitrary.

125

M 4 Inverse manipulator kinematics

Finally, from (4.8) and (4.9) we can solve for the sum of ¢, through
83:

B, + 8, + 03 = Atan2(s,,c5) = ¢, (4.28)

from which we can solve for 85 since we know the first two angles. It is
typical with manipulators that have two or more links moving in a plane
that in the course of solution, expressions for sums of joint angles arise.

In summary, an algebraic approach to solving kinematic equations is
basically one of manipulating the given equations into a form for which a
solution is known. It turns out that for many common geometries, there
are several forms of transcendental equations which commonly arise. We
have encountered a couple of them in this preceding section. In Appendix
C (in the back of the book) several more are listed.

Geometric solution

In a geometric approach to finding a manipulator’s solution, we try to
decompose the spatial geometry of the arm into several plane geometry
problems. For many manipulators (particularly when the o; = 0 or £90)
this can be done quite easily. Joint angles can then be solved for using the
tools of plane geometry [7]. For the arm with three degrees of freedom
shown in Fig. 4.7, since the arm is pianar, we can apply plane geometry
directly to find a solution..

Figure 4.8 shows the triangle formed by [;, l;, and the line joining
the origin of frame {0} with the origin of frame {3}. The dashed lines
represent the other possible configuration of the triangle which would
lead to the same position of the frame {3}. Considering the solid triangle,

FIGURE 4.8 Plane geometry associated with a three-link planar robot.

4.4 Algebraic vs. geometric [127

we can apply the “law of cosines” to solve for 6,:
a? +y? =12 +12 — 21,1, cos(180 + 8,). (4.29)
Since cos(180 + #,) = —cos(f,), we have

2 2 2 2
e = "’—“’lelz (4.30)
In order for this triangle to exist, the distance to the goal point 1/z? + 2
must be less than or equal to the sum of the link lengths, [, + [5. This
condition would be checked at this point in a computational algorithm
to verify existence of solutions. This condition is not satisfied when the
goal point is out of reach of the manipulator. Assuming a solution exists,
this equation is solved for that value of 8, which lies between (0 and —180
degrees since only for these values does the triangle in Fig. 4.8 exist. The
other possible solution (the one indicated by the dashed line triangle)
may be found by symmetry to be 65, = —0,.
To solve for ; we find expressions for angles ¢ and 3 as indicated
in Fig. 4.8. First, 8 may be in any quadrant depending on the signs of
z and y. So we must use a two-argument arctangent:

B = Atan2(y, x). (4.31)

We again apply the law of cosines to find :
(4.32)

where the arccosine must be solved so that 0 < ¢ < 180° in order that
the geometry which leads to (4.32) is preserved. These considerations are
typical when using a geometric approach—we must apply the formulas
we derive only over a range of variables such that the geometry is
preserved. Then we have

8, =8 L1, (4.33)
where the plus sign is used if §, < 0 and the minus sign if 6, > 0.
We know that angles in a plane add, so the sum of the three joint
angles must be the orientation of the last link:

61+ 0, +6; =9, (4.34)

which is solved for §; to complete our solution.

M 4 Inverse manipulator kinematics

45 Algebraic solution by reduction to polynomial

Transcendental equations are difficult to solve because, although there
may be just one variable, say 8, it generally appears as sin@ and cosé.
Making the following substitutions, however, yields an expression in
terms of a single variable, u:

=t —
u a.ng,
= 2
cosfl = ﬁ% (4.35)
2.
sinf = u2_
14+u

This is a very important geometric substitution used often in solving
kinematic equations. Using these substitutions, transcendental equations
are converted into polynomial equations in u. Appendix A lists these
and other trigonometric identities.

R - X AMPLE 4.3
Convert the transcendental equation
acosf + bsind = ¢, (4.36)

into a polynomial in the tangent of the half angle and solve for 4.
Substituting from (4.35) and multiplying through by 1+ u? we have

a(l — u?) + 2bu = ¢(1 + u?). (4.37)
Collecting powers of u yields

(a+c)u® — 2bu + (¢ —a) =0, (4.38)
which is solved by the quadratic formula to be

b+ Vb% —a® -2
u= :

4.
a+c s
Hence,
b+ Vb —a®—c2
8 =2tan—1 (: e (4.40)
a+tc

Should the solution for u from (4.39) be complex, there is no real solution
to the original transcendental equation. Note that if ¢ + ¢ = 0 the
argument of the arctangent becomes infinity, and hence, § = 180°. In
a computer implementation this potential division by zero should be
checked for ahead of time. This situation results from the quadratic
term of (4.38) vanishing so that the quadratic degenerates into a linear
equation.]

4.6 Pieper’s solution when three axes intersect \&‘

Since polynomials up to degree four possess closed form solutions
[8, 9], manipulators which are sufficiently simple so that they may be
solved by algebraic equations of this degree {or lower) are called closed
form solvable manipulators.

4.6 Pieper's solution when three axes intersect

As mentioned earlier, although a completely general robot with six de-
grees of freedom does not have a closed form solution, certain important
special cases can be solved. Pieper [3, 4] studied manipulators with six
degrees of freedom in which three consecutive axes intersect at a point.”
In this section, we outline the method he developed for the case of all six
joints revolute, with the last three axes intersecting. His method applies
to other configurations which include prismatic joints as well, and the
interested reader should see [4]. Pieper’s work applies to the majority of
commercially available industrial robots. _

When the last three axes intersect, the origins of link frames {4},
{5}, and {6} are all located at this point of intersection. This point is
given in base coordinates as

DP&ORG = ?T %T gT 3P40RG (4-41)

or, using the fourth column of (3.6) for ¢ = 4,

23
—dysa
°Piorg = T 3T 3T a'.;rass ; (4.42)
1
or
f1E93§
7
op _ opip | F208) 4.43
40 RG ALt fS{BB) ()
1
where
bl s
o [—dss0
2= (4.44)
it 1
Using (3.6) for 2T in (4.44) yields the following expressions for f;:
f1 = ageg + dysogsg + ag,
fo = ageagyss — dysageascy — dysagcas — dysas, (4.45)

fa = azs0,85 — dysazsagcs + dycageag + daycos.

* Included in this family of manipulators are those with three consecutive
parallel axes, since they meet at a point at infinity.

&l 4 Inverse manipulator kinematics

Using (3.6) for {T and 4T in (4.43) we obtain

€191 — 8192
8101 +¢192 (4.46)

9a
1

0 =
P4ORG S

where
g1 =tz fr — s2fa +aq,
92 =sz00 f1 + cacon fo — 501 f3 — dpsay, (4.47)
gs =880 i + cgs0y fa + cay fa + dacay.
We now write an expression for the magnitude squared of ° P, p, which
is seen from (4.46) to be
r=gi+g5+93 (4.48)
or, using (4.47) for the g,, we have
r=f1+f3+f5+ad +d5+2dyf3 + 201 (2 fs — 52.12)- (4.49)
We now write this equation, along with the Z component equation from
(4.46), as a system of two equations in the form

r =(kycy + knsg)2aq + ks,

4.50
2z =(kysy — koeg)say + ky, ()

where
kl = fl!

k2 = _.f27

4.51
k=2t +ad + 2y, @A)

ks = facoq + doea;.

Equation (4.50) is useful because dependence on 6, has been eliminated,
and dependence on 8, takes a simple form. '

Now let us consider the solution of (4.50) for ;. We distinguish
three cases: :

1. If a; = 0 then we have r = kg where r is known. The right-hand side
(k3) is a function of 65 only. After making the substitution (4.35), a

quadratic equation in tan %3 may be solved for 6;.

2. TIf sa; = 0 then we have z = k; where z is known. Again, after
substituting (4.35) a quadratic equation arises which may be solved
fOI' 93

3. Otherwise, eliminate s, and ¢, from (4.50) to obtain
(r= k) | (2= ka)?

i ey B2+ k2. (4.52)

4.7 Examples of inverse manipulator kinematics

This equation, after the (4.35) substitution for 5, results in an
equation of degree 4, which may be solved for ;.

Having solved for 5, we may solve (4.50) for ,, and (4.46) for 6;.

To complete our solution, we need to solve for 8, f5, and 8. Since
these axes intersect, these joint angles affect the orientation of only the
last link. We can compute them based only upon the rotation portion of
the specified goal, SR. Having obtained 6,, 6,, and 85, we can compute
R| 9,0 the orientation of link frame {4} relative to the base frame when
6, = 0. The desired orientation of {6} differs from this orientation by
only the action of the last three joints. Since the problem was specified
given R, we can compute

- (1]
2R|94=0 = 1|e‘1=0 Gl (4.53)

For many manipulators, these last three angles can be solved for by
using exactly the Z-Y-Z Euler angle solution given in Chapter 2 applied
to §R|94=0‘ For any manipulator (with intersecting axes 4, 5, and 6), the
last three joint angles can be solved for as a set of appropriately defined
Euler angles. Since there are always two solutions for these last three
joints, the total number of solutions for the manipulator will be twice
the number found for the first three joints.

4.7 Examples of inverse manipulator kinematics

In this section we work out the inverse kinematics of two industrial
robots. One manipulator solution is done purely algebraically, while the
second solution is partially algebraic and partially geometric. While the
following solutions do not constitute a cookbook method of solving ma-
nipulator kinematics, they do show many of the common manipulations
which are likely to appear in most kinematic solutions.

The Unimation PUMA 560

As an example of the algebraic solution technique applied to a manipu-
lator with six degrees of freedom, we will solve the kinematic equations
of the PUMA 560 which were developed in Chapter 3. This solution is
in the style of [5].

* Tt is helpful to note that f7 + f3 + f3 = a2 + dj + d3 + o3 + 2dsdscasz +
2azaszcs + 2asdgsazss

131

|_1_32_‘ 4 Inverse manipulator kinematics

We wish to solve

i1 Taz T3 Py

o _ | Tax Taz Taz P
st Tar Taz Va3 Pf-
g2 s Wyt {4.54)

= AT(Ey) ey ST ST ETg,)

for &, when £T is given as numeric values.
A restatement of (4.54) which puts the dependence on 8, on the
left-hand side of the equation is

[87(0,)] " 8T = 3T(8,) 3T(65) $T(6,) 2T(85) 3T(0e). (4.55)

Inverting J7 we write {4.55) as

er & 0.0 Tia T2 ¥Tia Pa

=81 6y 0 0 a1 Yoo Toa Py | _ 2
R s sl darl il b §ib)
0 O 0 1 1] 1] i 1

where ¢ T is given by equation (3.13) developed in Chapter 3. This simple
technigue of multiplying each side of a transform equation by an inverse
is often used to advantage in separating out variables in search of a
solvable equation.

Equating the (2,4) elements from both sides of (4.56), we have

—81Py + 1Py = d. (4.57)

To solve an equation of this form, we make the trigonometric substi-

tutions
P = prosd,
A (4.58)
By = psing,

p=10i+pd,

¢ = Atanl I:py'pz}'

where

(4.59)
Substituting (4.58) into (4.57), we obtain
€184 — §Cy = %3. (4.60)
Using the difference of angles formula:

Mg bl e i: (4.61)

4.7 Examples of inverse manipulator kinematics

d
cos(@ —6,) = +4/1 — ?, (4.62)

Hence

and so

d3 d%
¢ — 6, = Atan2 g . (4.63)
1 . 2

Finally, the solution for #; may be written:

6, = Atan2 (p,,p,) — Atan2 (ds, +1/p2 +p2 - d%) : (4.64)

Note that we have found two possible solutions for #; corresponding to
the plus-or-minus sign in (4.64). Now that #, is known, the left-hand
side of (4.56) is known. If we equate the (1,4) elements from both sides
of (4.56) and also the (3,4) elements, we obtain

C1Pgz + 81Dy = @3€33 — dgSa3 + Apcy,

(4.65)
—Ps = G353 + dsCa3 + @283

If we square equations (4.65) and (4.57) and add the resulting equations,
we obtain

a3C3 — d433 == K, (466)

where

L sepn b sk
2a, i

K (4.67)

Note that dependence on 6, has been removed from (4.66). Equa-
tion (4.66) is of the same form as (4.57) and so may be solved by the
same kind of trigonometric substitution to yield a solution for f,:

6, = Atan2(a,,d,) — Atan2 (K‘:t\fag +d2 — K") ; (4.68)

133

M 4 Inverse manipulator kinematics

The plus-or-minus sign in (4.68) leads to two different solutions for 5.
If we consider (4.54) again, we can now rewrite it so that all the
left-hand side is a function of only knowns and 8,:

=
[3T(6,)] 8T = $T(04) 5T(0s) 8T (0s), (4.69)
or
C1C23 81Ca3 —823 —laC3 Lig Tgo Fya Dy
—Cy1833 —83833 ~—Cag 0383 Ta; Taoz Ta3 Py e gT, (4.70)
=i 51 0 —dg Eg1elinn et Dy
0 0 0 1 0 0 0 1

where 27" is given by equation (3.11) developed in Chapter 3. Equating
the (1,4) elements from both sides of (4.70), as well as the (2, 4) elements,
we get

€1Ca3P; + 51Co3Py — S23P, — Q€3 = a3,
(4.71)

—C1823Py — S1523Py — C23P + G283 = dy,

These equations may be solved simultaneously for s,5 and c,3, resulting
in
(—as — aycs)p; +(c1Ps + 51P,)(a85 — dy)

P2 + (e1P, + 510,)°

8ag =

(4.72)
(0‘233 FE d4)pz = (—{13 = E"‘QCSJ(C]});E + slpy)
Cog = 5 5 ?
Pz + (e1p, + 510y)
Since the denominators are equal and positive, we solve for the sum of
6, and 65 as

053 = Atan2[(—a3 — azes)p, — (e1p; + 519,)(dy — @583),
. (4.73)
(azs3 — dy)p, — (a3 + azes)(c1p, + Slpy)]

Equation (4.73) computes four values of 6,; according to the four
possible combinations of solutions for #;, and 6;. Then, four possible
solutions for #, are computed as

0 = 633 — 03, (4.74)

where the appropriate solution for 6, is used when forming the difference.
Now the entire left side of (4.70) is known. Equating the (1,3)
elements from both sides of (4.70), as well as the (3, 3) elements, we get

T13C1Ca3 + T2351Ca3 — 33823 = —C485,
(4.75)

—Ty381 T Ta3C] = 5485-

4.7 Examples of inverse manipulator kinematics

As long as s; # 0, we can solve for 6, as
By = Atan2 (—ry58; + 72361, —T13C1Co5 — T'2381C23 + T33523) - (4.76)

When 6; = 0 the manipulator is in a singular configuration in which
joint axes 4 and 6 line up and cause the same motion of the last link
of the robot. In this case, all that matters (and all that can be solved
for) is the sum or difference of 8, and ;. This situation is detected by
checking whether both arguments of the Atan2 in (4.76) are near zero.
If so, 6, is chosen arbitrarily,* and when @y is computed later, it will be
computed accordingly.

If we consider (4.54) again, we can now rewrite it so that all the
left-hand side is a function of only knowns and 8, by rewriting it as

BT]=" 3T= 2T(6:) 3T (6s), (4.77)

where [ET(-%)]_I is given by

€1Ca3Cs + 5184 S1Ca3€4 — €184 —53304 —QpC3C4 +d3sy — agCy
—C1Cp384 + 8104 —81C2384 — C1Cq Sa384 Q€384 +d3Cy + agsy (4.78)
—C1833 —S1523 —Ca3 @83 —d4 : '
0 0 0 1

and ¢7T is given by equation (3.10) developed in Chapter 3. Equating the
(1,3) elements from both sides of (4.77), as well as the (3,3) elements,
we get

T13(C1C23C4 + 8154) + T23(81C23C4 — €184) — T33(523¢4) = — 35,
T13(—C1823) + r23(—51323) + T33(—cg3) = c5. 4.19)
So we can solve for 65 as:
6 = Atan2 (ss, ¢5), (4.80)

where s; and ¢; are given by (4.79) above.
Applying the same method one more time, we compute (gT)_l and
write (4.54) in the form

Cmyus Sm= gT(e;). (4.81)

Equating the (3,1) elements from both sides of (4.77), as well as the
(1,1) elements as we have done before, we get

B = Atan2 (sg, cg) , (4.82)

* It is usually chosen to be equal to the present value of joint 4.

135

_135_1 4 Inverse manipulator kinematics

where
S = —T11(C1C2384 — 81€4) — T21(51C2384 + €1C4) + 731 (82354),
6 = T11 [(01‘32354 + 8184)c5 — C152335] + Ta3 [(31823'34 —€184)C5 — 3132355]
— 731 (823€4C5 + C2385)-
Because of the plus-or-minus signs appearing in (4.64) and (4.68), these
equations compute four solutions. Additionally, there are four more

solutions obtained by “flipping” the wrist of the manipulator. For each
of the four solutions computed above, we obtain the flipped solution by

g, = 6, +180°,
5 = —0, (4.83)
85 = 6 + 180°.

After all eight solutions have been computed, some or all of them may
have to be discarded because of joint limit violations. Of the remaining
valid solutions, usually the one closest to the present manipulator
configuration is chosen.

The Yasukawa Motoman L-3

As a second example we will solve the kinematic equations of the Ya-
sukawa Motoman L-3 which were developed in Chapter 3. This solution
will be partially algebraic and partially geometric. The Motoman L-3
has three features which make the inverse kinematic problem quite
different than that of the PUMA. First, because the manipulator has
only five joints, it is not able to position and orient its end-effector in
order to attain general goal frames. Second, because of the four-bar type
of linkages and chain drive scheme, motion at one actuator moves two
or more joints. Third, the actuator position limits are not constants
but depend on the position of the other actuators, and so determining
whether a computed set of actuator values is in range or not is not trivial.

If we consider the nature of the subspace of the Motoman manip-
ulator (and the same applies to many manipulators with five degrees
of freedom), we quickly realize that this subspace can be described
by giving one constraint on the attainable orientation: The pointing
direction of the tool, that is, the ZT axis, must lie in the “plane of the
arm.” This plane is the vertical plane which contains the axis of joint 1,
and the point where axes 4 and 5 intersect. The nearest orientation to
a general orientation is the one obtained by rotating the tool’s pointing
direction so that it lies in the plane using a minimum amount of rotation.
Without developing an explicit expression for this subspace, we will

4.7 Examples of inverse manipulator kinematics

“Plane of the arm”

FIGURE 4.9 Rotating a goal frame into the Motoman's subspace.

determine a method of projecting a general goal frame into it. Note
that this entire discussion is for the case that the wrist frame and tool
frame differ only by a translation along Zy .

In Fig. 4.9 we indicate the plane of the arm by its normal, M and
the desired pointing direction of the tool by ZT‘ This pointing direction
must be rotated by angle 6 about some vector K in order to cause the
new pointing direction, ZT, to lie in the plane. It is clear that the K
which minimizes @ lies in the pla.ne and is orthogonal to both ZT and Z

For any given goal frame, M is defined as

1 Py
M=———|p, |, (4.84)

e |

where p, and p,, are the X and Y coordinates of the desired tool position.
Then K is given by

»

E—0 (4.85)
The new Zj is
2L =K xM. (4.86)
The amount of rotation, #, is given by

cosb = Zop - Zip,
s N (4.87)
sinf =(Zr x Z27) - K.

137

\ﬁy 4 Inverse manipulator kinematics

Using Rodriques’ formula (see Exercise 2.20) we have
Vi = Y + s0(K x) + (1 — e8)(K - Y)K. (4.88)

Finally, we compute the remaining unknown column of the new rotation
matrix of the tool as

R=¥l 2. (4.89)
Equations (4.84) through (4.89) describe a method of projecting a given
general goal orientation into the subspace of the Motoman robot.
Assuming that the given wrist frame, ﬁ,T, lies in the manipulator’s
subspace, we solve the kinematic equations as follows. In deriving the
kinematic equations for the Motoman L-3, we formed the product of
link transformations:
an_ Uiy S dn (4.90)
If we let
P fipg STaai D
o — UBE Ul A (4.91)

Ta1 Taz Taz D
0 0 0 1

and premultiply both sides by {71, we have
e e I e (4.92)
where the left-hand side is

€711 + 8179 C1T1g + 81792 C1T13 + 81723 C1Pe + 81Dy,

—Ta1 —Tag —Taz —P-
—81T11 T €171 —81T1o T G122 —81T13 T C1T2z —81Pp +C1Py
1
(4.93)
and the right-hand side is

S
* * —(3234 *

4.94
85 Cp 0 0|’ ()
0 0 0 1

where several of the elements have not been shown. Equating the (3, 4)
elements, we get

—8;1p, + ¢1p, =0, (4.95)

4.7 Examples of inverse manipulator kinematics 139

Pz

A

FIGTURE 4.10 The plane of the Motoman manipulator,

which gives us*
f; = Atan2{p,, p.)- (4.96)

Equating the (3,1} and (3, 2) elements we get

Fg = —81711 T E1Ta1
{4.97)
£5 = —#3T12 + €172z,
from which we calculate 85 as
f; = Atan2 (ry ¢y — r1181, 72261 — T1281)- (4.98)
Equating the {2,3) and (1,3) elements we get
Cagq = Tass
(4.99)
S234 = €1713 + 51723,
which leads fo
9234 = ﬁmn‘z{?'”c] + 7'23511'?'33:]- {4100}

To solve for the individual angles 85, 85, and 8, we will take a geometric
approach, Figure 4,10 shows the plane of the arm with point A at joint
axis 2, point B at joint axis 3, and point ' at joint axis 4.

* For this manipulator, a second solution would violate joint limits and so
ia not calculated.

\ﬂ! 4 Inverse manipulator kinematics

From the law of cosines applied to triangle ABC we have

piiet e B U

cosfly = Syl

(4.101)

Then we have'

f; = Atan2 (\z 1 — cos® f,, cos 93) ; (4.102)

From Fig. 4.10 we see that 6, = —¢ — § or

f, = —Atan2 (2 A/ P2 +p§) — Atan2 (Izsin 6, 1 + lzcos63). (4.103)
Finally we have

0y = Oy — 0y — 0. (4.104)

Having solved for joint angles we must perform the further compu-

tation to obtain the actuator values. Referring to Section 3.7, we solve
equation (3.15) for A,

1
A1=E(91_)\1):

1
A, = E \/—2a2g32 cos(ﬂ;, -0, — tan_l(%) + 270°) +aZ 62— Az) i

Ay = é (\/-2(1363 cos(92 + 65 — tan_l(i—:) +90°) +ad+02 -)\3) ;

Ao Lt a0 ot
ks

At b0 (4.105)
ks

Since the actuators have limited ranges of motion, we must check
that our computed solution is in range. This “in range” check is com-
plicated by the fact that due to the mechanical arrangement, actuators
interact and affect each other’s allowed range of motion. For the Mo-
toman robot, actuators 2 and 3 interact in such a way that the following

= o~ = e

T e e
Ts 2 and 2 : Bt ol Sy
dl.j.d 3 inter : .mtl.on, For the nia

0 Vo G RO TACt in enel .. .

4.8 The standard frames

That is, the limits of actuator 2 are a function of the position of actuator
3. Similarly:

32,000 — A4 < Ag < 55,000. (4.107)

Since one revolution of joint 5 corresponds to 25,600 actuator counts,
when Ay > 2600 there are two possible solutions for A;. This is the
only situation in which the Yasukawa Motoman L-3 has more than one
solution.

4.8 The standard frames

The ability to solve for joint angles is really the central element in
many robot control systems. Again, consider the paradigm indicated
in Fig. 4.11, which shows the standard frames.

The way these frames are used in a general robot system is as follows:

1. The user specifies to the system where he wishes the station frame
to be located. This might be at the corner of a work surface as in
Fig. 4.12 or even affixed to a moving conveyor belt. The station
frame, {5}, is defined relative to the base frame, {B}.

2. The user specifies the description of the tool being used by the robot
by giving the {T'} frame specification. Each tool the robot picks up

FIGURE 4.11 Location of the “standard” frames.

141

ﬁ‘ 4 Inverse manipulator kinematics

may have a different {T'} frame associated with it. Note that the
same tool grasped in different ways requires different {T'} frame
definitions. {T'} is specified relative to {W}, that is, ¥ T

The user specifies the goal point for a robot motion by giving the
description of the goal frame, {G}, relative to the station frame.
Often the definitions of {T'} and {S} remain fixed for several motions
of the robot. In this case, once they are defined the user simply gives
a series of {G} specifications.

In many systems, the tool frame definition (¥ T') is constant (for
example, it is defined with its origin at the center of the fingertips).
Also, the station frame may be fixed, or easily taught by the user
with the robot itself. In such systems, the user need not be aware
of the five standard frames—he or she simply thinks in terms of
moving the tool to locations (goals) with respect to the work area
specified by station frame.

The robot system calculates a series of joint angles to move the joints
through in order that the tool frame moves from its initial location
in a smooth manner until {T'} = {G} at the end of motion.

Wrist frame

b
Station
frame
Goal
frame

Base frame

FIGURE 4.12 Example workstation.

4.10 Repeatability and accuracy @

4.9 SOLVE-ing a manipulator

The SOLVE function implements Cartesian transformations and calls the
inverse kinematics function. Thus, the inverse kinematics are generalized
so that arbitrary tool frame and station frame definitions may be used
with our basic inverse kinematics, which solves for the wrist frame
relative to the base frame.

Given the goal frame specification, §1T, SOLVE uses the tool and
station definitions to calculate the location of {W} relative to { B}, & T

EL i B g (4.108)

Then the inverse kinematics take &7 as an input and calculate 6,
through 4.

410 Repeatability and accuracy

Many industrial robots today move to goal points which have been
taught. A taught point is one that the manipulator is moved to phys-
ically, and then the joint position sensors are read, and the joint angles
stored. When the robot is commanded to return to that point in space,
each joint is moved to the stored value. In simple “teach and playback”
manipulators such as these, the inverse kinematic problem never arises
because goal points are never specified in Cartesian coordinates. When
a manufacturer specifies how precisely a manipulator can return to a
taught point, he is specifying the repeatability of the manipulator.

Any time a goal position and orientation are specified in Cartesian
terms, the inverse kinematics of the device must be computed in order
to solve for the required joint angles. Systems which allow goals to be
described in Cartesian terms are capable of moving the manipulator to
points which were never taught, points in its workspace to which it has
perhaps never gone before. We will call such points computed points.
Such a capability is necessary for many manipulation tasks. For example,
if a computer vision system is used to locate a part which the robot must
grasp, the robot must be able to move to the Cartesian coordinates
supplied by the vision sensor. The precision with which a computed
point can be attained is called the accuracy of the manipulator.

The accuracy of a manipulator is lower bounded by the repeatability.
Clearly accuracy is affected by the precision of parameters appearing
in the kinematic equations of the robot. Errors in knowledge of the
Denavit-Hartenberg parameters will cause the inverse kinematic equa-
tions to calculate joint angle values which are in error. Hence, while

Jﬂ‘ 4 Inverse manipulator kinematics

the repeatability of most industrial manipulators is quite good, the
accuracy is usually much worse and varies quite a bit from manipulator
to manipulator. Calibration techniques can be devised which allow the
accuracy of a manipulator to be improved through estimation of that
particular manipulator’s kinematic parameters [10].

4.11 Computational considerations

In many path control schemes which we will consider in Chapter 7,
it is necessary to calculate the inverse kinematics of a manipulator at
fairly high rates, for example 30 Hz or faster. Therefore, computational
efficiency is an issue. These speed requirements rule out the use of
numerical solution techniques which are iterative in nature, and for this
reason, we have not considered them.

Most of the general comments of Section 3.10, made for forward
kinematics, also hold for the problem of inverse kinematics. For the
inverse kinematic case, a table-lookup Atan2 routine is often used to
attain higher speeds.

Structure of the computation of multiple solutions is also important.
It is generally fairly efficient to generate all of them in parallel, rather
than pursuing one after another serially. Of course, in some applica-
tions, when all solutions are not required, substantial time is saved by
computing only one.

When a geometric approach is used to develop an inverse kinematic
solution, it is sometimes possible to calculate multiple solutions by
simple operations on the various angles solved for in obtaining the first
solution. That is, the first solution is moderately expensive computa-
tionally, but the other solutions are found very quickly by summing and
differencing angles, subtracting m, and so on.

References

[1] B. Roth, J. Rastegar, and V. Scheinman, “On the Design of Computer
Controlled Manipulators,” On the Theory and Practice of Robots and
Manipulators, Vol. 1, First CISM-IFToMM Symposium, September 1973,
pp. 93-113.

[2] B. Roth, “Performance Evaluation of Manipulators from a Kinematic
Viewpoint,” Performance Evaluation of Manipulators, National Bureau
of Standards, special publication, 1975.

[3] D. Pieper and B. Roth, “The Kinematics of Manipulators Under Computer
Control,” Proceedings of the Second International Congress on Theory of
Machines and Mechanisms, Vol. 2, Zakopane, Poland, 1969, pp. 159-169.

[4] D. Pieper, “The Kinematics of Manipulators Under Computer Control,”
Unpublished Ph.D. Thesis, Stanford University, 1968.

4.11 Exercises

[5] R.P. Paul, B. Shimano, and G. Mayer, “Kinematic Control Equations
for Simple Manipulators,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-11, No. 6, 1981.

[6] L. Tsai and A. Morgan, “Solving the Kinematics of the Most General
Six- and Five-degree-of-freedom Manipulators by Continuation Methods,”
Paper 84-DET-20, ASME Mechanisms Conference, Boston, October 7-10,
1984.

[7] C.8.G. Lee and M. Ziegler, “Geometric Approach in Solving Inverse Kine-
matics of PUMA Robots,” IEEE Transactions on Aerospace and FElec-
tronic Systemns, Vol. AES-20, No. 6, November 1934,

8] W. Beyer, CRC Standard Mathematical Tables, 25th edition, CRC Press,
Inc., Florida, 1980.

[9] R. Burington, Handbook of Mathematical Tables and Formulas, 5th edition,
McGraw-Hill, 1973.

[10] S. Hayati, “Robot Arm Geometric Link Parameter Estimation,” Proceedings
of the 22nd IEEE Conf. on Decision and Control, December 1983.

[11] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions with Sin-
gularity Robustness for Robot Manipulator Control,” ASME Journal of
Dynamic Systems, Measurement, and Control, Vol. 108, 1986.

[12] D. Baker and C. Wampler, “On the Inverse Kinematics of Redundant
Manipulators,” International Journal of Robotics Research, Vol. 7, No.
2, 1988.

Exercises
4.1 [15] Sketch the fingertip workspace of the three-link manipulator of Chap-
ter 3, Exercise 3 for the case [, = 15.0, [, = 10.0, and I3 = 3.0.

4.2 [26] Derive the inverse kinematics of the three-link manipulator of Chap-
ter 3, Exercise 3.

4.3 [12] Sketch the fingertip workspace of the 3-DOF manipulator of Chap-
ter 3, Example 3.4.

4.4 [24] Derive the inverse kinematics of the 3-DOF manipulator of Chapter 3,
Example 3.4,

4.5 [38] Write a Pascal subroutine that computes all possible solutions for the
PUMA 560 manipulator which lie within the following joint limits:

—170.0 < 6, < 170.0,
—225.0 < 8, < 45.0,
—250.0 < 5 < 75.0,
—135.0 < 6, < 135.0,
—100.0 < 85 < 100.0,
—180.0 < 6 < 180.0.

145

\LG‘ 4 Inverse manipulator kinematics

4.6

4.7

4.8

4.9

Use the equations derived in Section 4.7 with the numerical values (in
inches):

a, = 17.0,
az = 0.8,
dy = 4.9,
ds = 17.0.

[15] Describe a simple algorithm for choosing the nearest solution from a
set of possible solutions.

[10] Make a list of factors which might affect the repeatability of a
manipulator. Make a second list of additional factors which affect the
accuracy of a manipulator.

[12] Given a desired position and orientation of the hand of a three-link
planar rotary jointed manipulator, there are two possible solutions. If we
add one more rotational joint (in such a way that the arm is still planar),
how many solutions are there?

[26] Figure 4.13 shows a two-link planar arm with rotary joints. For this
arm, the second link is half as long as the first, that is: [; = 2I,. The joint
range limits in degrees are

0 <6, <180,
—90 < #, < 180.

FIGURE 4.13 Two-link planar manipulator.

4.10

4.12

4.11 Exercises

Sketch the approximate reachable workspace (an area) of the tip of link 2.

[23] Give an expression for the subspace of the manipulator of Chapter 3,
Example 3.4.

[24] A 2-DOF positioning table is used to orient parts for arc-welding.
The forward kinematics which locate the bed of the table (link 2) with
respect to the base (link 0) are

c1C; —C18p 8; g8 +1
OT = Sq Coy 0 0
2 —81Cq 81849 Cy 1261 +hu1
0 0 0 1

Given any unit direction fixed in the frame of the bed (link 2), 2V, give
the inverse kinematic solution for 8;,6, such that this vector is aligned
with °Z (i.e., upward). Are there multiple solutions? Is there a singular
condition for which a unique solution can not be obtained?

[22] In Fig. 4.14 two 3R mechanisms are pictured. In both cases, the three
axes intersect at a point (note that over all configurations, this point
remains fixed in space). The mechanism in Fig. 4.14a has link twists (a;)
of magnitude 90 degrees. The mechanism in Fig. 4.14b has one twist of ¢
in magnitude and the other of 180 — ¢ in magnitude.

The mechanism in Fig. 4.14a can be seen to be in correspondance with
Z-Y-Z Euler angles, and therefore we know that it suffices to orient link 3
(with arrow in figure) arbitrarily with respect to the fixed link 0. Because ¢
is not equal to 90 degrees, it turns out that the other mechanism cannot
orient link 3 arbitrarily.

(]

(a) (b)

FIGURE 4.14 Two 3R mechanisms (Exercise 4.12).

147

% 4 Inverse manipulator kinematics

4.13

b 4.14

4.15

4.16

4.17

Describe the set of orientations which are unattainable with the second
mechanism. Note that we assume that all joints can turn 360 degrees (i.e.
no limits) and we assume that the links may pass through each other if
need be (i.e., workspace not limited by self-collisions).

[13] Name two reasons why closed form analytic kinematic solutions are
preferred over iterative solutions.

[14] There exist 6-DOF robots for which the kinematics are NOT closed-
form solvable. Does there exist any 3-DOF robot for which the (position)
kinematics are NOT closed-form solvable?

[38] Write a subroutine which solves quartic equations in closed form (see
8,9]).

[25] A 4R manipulator is shown schematically in Fig. 4.15. The nonzero
link parameters are a; = 1, oy = 45°, d3 = /2, and a; = V2,
and the mechanism is pictured in the configuration corresponding to
© = [0,90°,—90°,0]”. Each joint has limits of +180°. Find all values
of f5 such that

°Piore = [1.1,15,1.707]" .

[25] A 4R manipulator is shown schematically in Fig. 4.16. The nonzero
link parameters are a; = —90°, dy = 1, @y = 45°, d3 = 1, and a3 = 1,
and the mechanism is pictured in the configuration corresponding to
© = [0,0,90°,0]". Each joint has limits of +180°. Find all values of
fl3 such that

°Piore = [0.0,1.0,1.414]7 .

e
1 Z3/’

FIGURE 4.15 A 4R manipulator shown in the position
® = [0,90°, —90°,0]" (Exercise 4.16).

411 Exercises | 149

P -,

k<

Zo,1

Sow
N
L&)

FIGURE 4.16 A 4R manipulator shown in the position
6 = {0,900,—QO°,O]T (Exercise 4.17).

4.18 [15] Consider the RRP manipulator shown in Fig. 3.37. How many
solutions do the (position) kinematic equations possess?

4.19 [15] Consider the RRR manipulator shown in Fig. 3.38. How many
solutions do the (position) kinematic equations possess?

4.20 [15] Consider the RPP manipulator shown in Fig. 3.39. How many
solutions do the (position) kinematic equations possess?

4.21 [15] Consider the PRR manipulator shown in Fig. 3.40. How many
solutions do the (position) kinematic equations possess?

4.22 [15] Consider the PPP manipulator shown in Fig. 3.41. How many
solutions do the (position) kinematic equations possess?

4.23 [38] The following kinematic equations arise in a certain problem:

siné = asiné + b,
sing = ccosf + d,

Y=E(+9.

Given a, b, ¢, d, and 1, show that in the general case there are four solutions
for 0. Give a special condition under which there are just two solutions
for 4.

@ 4 Inverse manipulator kinematics

4.24 [20] Given the description of link frame {i} in terms of link frame {i — 1},

ﬁnd_ the four Denavit-Hartenberg parameters as functions of the elements
of =

Programming Exercise (Part 4)

1.

Write a subroutine to caleulate the inverse kinematics for the three-link
manipulator (see Section 4.4). The routine should pass arguments as shown
below:

Procedure INVKIN(VAR wrelb: frame; VAR current,near,far: vec3;
VAR sol:boolean);

where “wrelb,” an input, is the wrist frame specified relative to the base
frame; “current,” an input, is the current position of the robot (given as a
vector of joint angles); “near” is the nearest solution; “far” is the second
solution; and “sol” is a flag which indicates whether solutions were found or
not. (sol = FALSE if no solutions were found). The link lengths (meters) are

The joint ranges of motion are
—170° < 0, < 170°.

Test your routine by calling it back-to-back with KIN to test whether they
are indeed inverses of one another.

A tool is attached to link 3 of the manipulator. This tool is described by
WT, the tool frame relative to the wrist frame. Also, a user has described
his work area, the station frame relative to the base of the robot, as E7T.
Write the subroutine

Procedure SOLVE(VAR trels: frame; VAR current,near,far: vec3;
VAR sol:boolean);

where “trels” is the {T'} frame specified relative to the {S} frame. Other
parameters are exactly as in the INVKIN subroutine. The definitions of {T'}
and {5} should be globally defined variables or constants. SOLVE should use
calls to TMULT, TINVERT, and INVKIN.

Write a main program which accepts a goal frame specified in terms of z,
y, and ¢. This goal specification is {T} relative to {S}, which is the way
the user wants to specify goals.

The robot is using the same tool in the same working area as in
Programming Exercise (Part 2), so {T} and {S} are defined as

Pr_—[y d=[Nt 02 300,

2r=[x y 4 =01 03 0.0

Calculate the joint angles for each of the three goal frames given below.
Assume that the robot will start with all angles equal to 0.0 and move to

4.11 Programming Exercise (Part 4) [151

these three goals in sequence. The program should find the nearest solution
with respect to the previous goal point.

[z, » ¢]=[00 00 -900],
[z ¥ ¢2]=[06 -03 450],
[z3 s ¢s]=[-04 03 120.0],
[zs va ¢4 =[08 14 30.0].

You should call SOLVE and WHERE back to back to make sure they are truly
inverse functions.

JACOBIANS:
VELOCITIES AND
STATIC FORCES

5.1 Introduction

In this chapter we expand our consideration of robot manipulators
beyond static positioning problems. We examine the notions of linear
and angular velocity of a rigid body and use these concepts to analyze
the motion of a manipulator. We also will consider forces acting on a
rigid body, and then use these ideas to study the application of static
forces with manipulators.

It turns out that the study of both velocities and static forces leads
to a matrix entity called the Jacobian™ of the manipulator, which will
be introduced in this chapter.

* Mathematicians call it the “Jacobian matrix,” but roboticists usually
shorten it to simply “Jacobian.”

5.2 Notation for time-varying position and orientation

The field of kinematics of mechanisms is not treated in great depth
here. For the most part, the presentation is restricted to only those
ideas which are fundamental to the particular problem of robotics. The
interested reader is urged to study further from any of several texts on
mechanics [1-3].

5.2 Notation for time-varying position and orientation

Before investigating the description of the motion of a rigid body, we
briefly discuss some basics: the differentiation of vectors, representation
of angular velocity, and notation.

Differentiation of position vectors

As a basis for our consideration of velocities (and in Chapter 6, acceler-
ations), we need the following notation for the derivative of a vector:
d

BVQ EO it 8Q= lim BQ(t"i'Af) . BQ(tJ‘

% 5
dt At—0 At ()

The velocity of a position vector can be thought of as the linear velocity
of the point in space represented by the position vector. From (5.1) we
see that we are calculating the derivative of Q relative to frame {B}. For
example, if Q is not changing in time relative to {B}, then the velocity
calculated is zero—even if there is some other frame from which Q is
varying. Thus it is important to indicate the frame in which the vector
is differentiated.

As with any vector, a velocity vector may be described in terms of
any frame, and this frame of reference is noted with a leading superseript.
Hence, the velocity vector calculated by (5.1) when expressed in terms
of frame {A} would be written:

Ayq 2

A (BVQ) = E Q {52}

So we see that in the general case, a velocity vector is associated with a
point in space, but the numerical values describing the velocity of that
point depend on two frames: one with respect to which the differentiation
was done, and one in which the resulting velocity vector is expressed.

In (5.1) the calculated velocity is written in terms of the frame
of differentiation, so the result could be indicated with a leading B
superscript, but for simplicity, when both superscripts are the same,
we needn’t indicate the outer one; that is, we write

B (BVy) = BVp. (5.3)

153

154

5 Jacobians: velocities and static forces

Finally, we can always remove the outer, leading superscript by explicitly
including the rotation matrix which accomplishes the change in reference
frame (see Section 2.10); that is, we write

4 (BVy) =8R BVy,. (5.4)

We will usually write expressions in the form of the right-hand side
of (5.4) so that the symbols representing velocities always mean the
velocity in the frame of differentiation, and do not have outer, leading
superscripts.

Rather than considering a general point’s velocity relative to an
arbitrary frame, we will very often consider the velocity of the origin of
a frame relative to a some understood universe reference frame. For this
special case we define a shorthand notation:

ve = “Voore: (5.5)

where the point in question is the origin of frame {C} and the reference
frame is {U}. For example, we can use the notation v, to refer to the
velocity of the origin of frame {C}, and v is the velocity of the origin
of frame {C} expressed in terms of frame {A} (though differentiation
was done relative to {U}).

I - AMPLE 5.1

Figure 5.1 shows a fixed universe frame, {U}, a frame attached to a
train traveling at 100 mph, {T'}, and a frame attached to a car traveling
at 30 mph, {C}. Both vehicles are heading in the X direction of {U}.
The rotation matrices, ¥R and %R, are known and constant.

&
V‘ hat is E PCORG

u d s "
3 UYPoore = YVoore = ve =30X.
What is € (YVrogre)?

= (L'L"]_ORG) = cl"lr — DR‘I’T = LR(J.OUX) CR i].OOX

- . s s s 5 5 |~
5.2 Notation for time-varying position and orientation 155

-

U

FIGURE 5.1 Example of some frames in linear motion.

FIGURE 5.2 Frame {B} is rotating with angular velocity #Qp relative
to frame {A}.

The angular velocity vector

We now introduce an angular velocity vector using the symbol 2.
Whereas linear velocity describes an attribute of a point, angular velocity
describes an attribute of a body. Since we always attach a frame to the
bodies we consider, we can also think of angular velocity as describing
rotational motion of a frame.

156

5 Jacobians: velocities and static forces

In Fig. 5.2, 40y describes the rotation of frame {B} relative to
{A}. Physically, at any instant, the direction of #Qg indicates the
instantaneous axis of rotation of { B} relative to { A}, and the magnitude
of #Q g indicates the speed of rotation. Again, like any vector, an angular
velocity vector may be expressed in any coordinate system, and so
another leading superscript may be added; for example, © (4Qg) is the
angular velocity of frame {B} relative to {A} expressed in terms of
frame {C}.

Again. we introduce a simplified notation for an important special
case. This is simply the case in which there is an understood reference
frame, so that it need not be mentioned in the notation

where w, is the angular velocity of frame {C} relative to some under-
stood reference frame, {U}. For example, 4w, is the angular velocity
of frame {C} expressed in terms of {A} (though the angular velocity is
with respect to {U}).

5.3 Linear and rotational velocity of rigid bodies

In this section we investigate the description of motion of a rigid body,
at least as far as velocity is concerned. These ideas extend the notions of
translations and orientations described in Chapter 2 to the time-varying
case. In Chapter 6 we will further extend our study to considerations
of acceleration.

As in Chapter 2, we attach a coordinate system to any body which
we wish to describe. Then, motion of rigid bodies can be equivalently
studied as the motion of frames relative to one another.

Linear velocity

Consider a frame {B} attached to a rigid body. We wish to describe the
motion of BQ relative to frame {A}, as in Fig. 5.3. We may consider
{A} to be fixed.

Frame {B} is located relative to {A} as described by a position
vector, *Pgore, and a rotation matrix, 4R. For the moment we will
assume that the orientation, ;'B‘R_. is not changing with time. That is,
the motion of point @ relative to {A} is due to “Pgppe and/or 2Q
changing in time.

Solving for the linear velocity of point @ in terms of {A} is quite
simple. Just express both components of the velocity in terms of {A}

5.3 Linear and rotational velocity of rigid bodies

{A}

A
Prore

FIGURE 5.3 Frame {B} is translating with velocity AVoorc relative
to frame {A4}.

and sum:
ARy e A e AR B (5.7)

Equation (5.7) is only for the case in which relative orientation of {B}
and {A} remains constant.

Rotational velocity

Now let us consider two frames with coincident origins and with zero
linear velocity so that the origins will remain coincident for all time.
One or both could be attached to rigid bodies, but for clarity the rigid
bodies are not shown in Fig. 5.4.

The orientation of frame {B} with respect to frame {A} is changing
in time. As indicated in Fig. 5.4, rotational velocity of {B} relative to
{A} is described by a vector called *Q 5. We also have indicated a vector
BQ which locates a point which is fixed in {B}. Now we consider the
all important question: How does a vector change with time as viewed
from {A} when it is fixed in {B} and the systems are rotating?

Let us consider that the vector @ is constant as viewed from frame
{B}; that is,

By =0 (5.8)

Even though it is constant relative to {B}, it is clear that point Q will
have a velocity as seen from {4} due to the rotational velocity #Qp.

157

158

5 Jacobians: velocities and static forces

fq
A0g {B}

FIGURE 5.4 Vector 2Q, fixed in frame {B}. is rotating with respect to
frame {A} with angular velocity *Qp.

To solve for the velocity of point @ we will use an intuitive approach.
Figure 5.5 shows two instants of time as vector Q rotates around 4.
This is what an observer in {A} would observe.

By examining Fig. 5.5 we can determine both the direction and the
magnitude of the change in the vector as viewed from {A}. First, it is
clear that the differential change in “Q must be perpendicular to both
405 and “Q. Second, from Fig. 5.5 we see that the magnitude of the
differential change is

1AQ| = (|*Q

sinf) (|4Qg|At). (5.9)

These conditions on magnitude and direction immediately suggest the
vector cross product. Indeed, our conclusions about direction and mag-
nitude are satisfied by the computational form

AW =405 x 4Q. (5.10)

In the general case, the vector Q may also be changing with respect to
frame {B}, so adding this component we have

e Rl el B e I R 4 (5.11)

Using a rotation matrix to remove the dual-superscript, and since the
description of 4Q at any instant is 4R 2Q, we have

M = f BTV 2 AR 50 (5.12)

5.4 More on angular velocity

FIGURE 5.5 The velocity of a point due to an angular velocity.

Simultaneous linear and rotational velocity

We can very simply expand (5.12) to the case where origins are not
coincident by adding on the linear velocity of the origin to (5.12) to
derive the general formula for velocity of a vector fixed in frame {B} as
seen from frame {A}:

Vo = “Vaore + R ®Vo +*05 x 3R 5Q (5.13)

Equation (5.13) is the final result for the derivative of a vector in a
moving frame as seen from a stationary frame.

5.4 More on angular velocity

In this section we take a deeper look at angular velocity, and in
particular, the derivation of (5.10). Whereas the previous section took
a geometric approach in showing the validity of (5.10), here we take a
mathematical approach. This section may be skipped by the first time
reader.

159

160 | 5 Jacobians: velocities and static forces

A property of the derivative of an orthonormal matrix

We can derive an interesting relationship between the derivative of an
orthonormal matrix and a certain skew symmetric matrix as follows. For
any n X n orthonormal matrix, R, we have

RET =T, (5.14)
where I, is the n x n identity matrix. Our interest, by the way, is for
the case n = 3 and R a proper orthonormal matrix, or rotation matrix.
Differentiating (5.14) yields

RRT + RRT =0, (5.15)
where 0,, is the n x n zero matrix. Eq. (5.15) may also be written

RRT + (RRT)T =0,,. (5.16)

Definin
¢ S =RRT (5.17)

we have from (5.16) that
S+8T =0,. (5.18)

So. we see that S is a skew-symmetric matrix. Hence, a property relating
the derivative of orthonormal matrices with skew-symmetric matrices
exists and may be stated as

S=RE" (5.19)

Velocity of a point due to rotating reference frame

Consider a fixed vector 2P unchanging with respect to frame {B}. It’s
description in another frame {A} is given as

Ap= 4R BP (5.20)

If frame { B} is rotating (i.e., the derivative ’B}‘R is nonzero) then 4 P will
be changing even though P is constant; that is

Ap=—2REBP (5.21)
or, using our notation for velocity,

Ay, =4REP (5.22)

5.4 More on angular velocity

Now, rewrite (5.22) by substituting for P to obtain
AVp =AR AR AP. (5.23)
Making use of our result (5.19) for orthonormal matrices, we have
AVp= £S5 4P, (5.24)
where we have adorned S with sub- and superscripts to indicate that
it is the skew-symmetric matrix associated with the particular rotation
matrix gR. Because of its appearance in (5.24) and for other reasons to

be seen shortly, the skew-symmetric matrix we have introduced is called
the angular velocity matrix.

Skew-symmetric matrices and the vector cross product

If we assign the elements in a skew-symmetric matrix, S, as

60 -2, 9
s=lq, o -9, (5.25)
—Q, 9, 0
and define the 3 x 1 column vector
Q.
a=|q,|, (5.26)
QZ
then it is easily verified that
SP=QxP, (5.27)

where P is any vector, and x is the vector cross product.

The 3 x 1 vector, (), which corresponds to the 3 x 3 angular
velocity matrix, is called the angular velocity vector, and was already
introduced in Section 5.2.

Hence. our relation (5.24) may be written

AVp = 4Qg x 4P, (5.28)
where we have shown the notation for € which indicates that it is the

angular velocity vector which specifies the motion of frame {B} with
respect to frame {A}.

161

Lﬂl 5 Jacobians: velocities and static forces

Gaining physical insight concerning the angular velocity vector

Having determined that there exists some vector {2 such that (5.28) is
true, we now wish to gain some insight as to its physical meaning. Derive
by direct differentiation of a rotation matrix; that is,

B nm EE+AH-RE

At—D At (5:29)

Now, write R(t + At) as the composition of two matrices, namely
R(t + At) = Ry (AO)R(t), (5.30)

whereA over the interval At a small rotation of A#f has occurred about
axis K. Using (5.30) write (5.29) as

R= dim (Wﬁl(tj) _. (5.31)
or,
R= (AltirEO %) R(2), (5.32)

Now, from small angle substitutions in (2.77) we have

1 —k,A9 kA0

Rp(08) = | kA8 1 kA8 (5.33)

—k, A0 kA6 1

So, (5.32) may be written
0 —k,A8 E,Af
k,Af 0 —k,Af
i -k, A8 kAl 0
—_ 3 v €T

R=| lim_ = R(#) (5.34)

Finally, dividing the matrix through by At and then taking the limit,

we have
_ 0 -k k0
R=| k06 0 —k 0| R(). (5.35)
—kb k6 0

Hence, we see

‘ 0 -0, Q
BR =] Q 0 -Q.. (5.36)
-Q, Q

5.4 More on angular velocity @

where ;
Q] [k6]
Q=|Q,|=|k0| =0K. (5.37)
Q, k.6

The physical meaning of the angular velocity vector, €2, is that at any
instant the change in orientation of a rotating frame can be viewed as
a rotation about some axis K. This instantaneous axis of rotation
taken as a unit vector and then scaled by the speed of rotation about
that axis (#) vields the angular velocity vector.

Other representations of angular velocity

Other representations of angular velocity are possible; for example,
imagine that the angular velocity of a rotating body is available as rates
of the set of Z-Y-Z Euler angles:

G
O,y = |8]. (5.38)

Given this style of description, or any other using one of the twentyfour
angle sets. we would like to derive the equivalent angular velocity
vector.

We have seen that

_ i 0 %
RRT=|Q, o0 -0, (5.39)
-, Q, 0

From this matrix equation one may extract three independent equations,

namely
iz =T31T21 T T32T22 +T33T23:

Q, =T1173; +T12T32 + T13T33: (5.40)

Q, =7g17T11 + FaaT12 + TaaT1s-

From (5.40) and a symbolic description of R in terms of an angle set,
one may derive the expressions which relate the angle set velocities to
the equivalent angular velocity vector. The resulting expressions can be
cast in matrix form, for example. for Z-Y-Z Euler angles,

Q=Ezryz (ez'wz’)éz’y'z’- (5.41)

That is, E(-) is a Jacobian relating an angle set velocity vector and the
angular velocity vector, and is a function of the instantaneous values of
the angle set. The form of E(-) depends on the particular angle set it is
developed for; hence the subscript is added to indicate this.

164

5 Jacobians: velocities and static forces

I [A\ MPLE 5.2

Determine the F matrix which relates Z-Y-Z Euler angles to the
angular velocity vector. That is, find E.y. 5 in (5.41).

Using (2.72) and (5.40) and doing the required symbolic differenti-
ations yields

0 —so casd

Ezivigr =10 ca sas8|. (] (5.42)
1 0 e

5.5 Motion of the links of a robot

In considering the motion of robot links we will always use link frame
{0} as our reference frame. Hence, v, is the linear velocity of the origin
of link frame {i}, and w, is the angular velocity of link frame {i}.

At any instant. each link of a robot in motion has some linear and
angular velocity. Figure 5.6 indicates these vectors for link . In this case,
it is indicated that they are written in frame {i}.

FIGURE 5.6 The velocity of link 7 is given by vectors v; and w; which
may be written in any frame, even frame {i}.

5.6 Velocity “propagation” from link to link 165

5.6 Velocity “propagation” from link to link

We now consider the problem of calculating the linear and angular
velocities of the links of a robot. A manipulator is a chain of bodies,
each one capable of motion relative to its neighbors. Because of this
structure we can compute the velocities of each link in order starting
from the base. The velocity of link i + 1 will be that of link 7. plus
whatever new velocity components were added by joint ¢ + 1.7

As indicated in Fig. 5.6, let us now think of each link of the
mechanism as a rigid body with linear and angular velocity vectors
describing its motion. Further, we will express these velocities with
respect to the link frame itself rather than with respect to the base
coordinate system. Figure 5.7 shows links ¢ and ¢ 4+ 1 along with their
velocity vectors defined in the link frames.

Rotational velocities may be added when both w vectors are written
with respect to the same frame. Therefore, the angular velocity of link
i+ 1 is the same as that of link 7 plus a new component caused by
rotational velocity at joint i + 1. This can be written in terms of frame

{i} as

L R T R (5.43)

FIGURE 5.7 Velocity vectors of neighboring links.

* Remember that linear velocity is associated with a point, and angular
velocity is associated with a body. Hence, the term “velocity of a link” here
means the linear velocity of the origin of the link frame, and the rotational
velocity of the link.

166

5 Jacobians: velocities and static forces

Note that

A i+1 0
= A8 ifls (5.44)
Bt

é

i+1

We have made use of the rotation matrix relating frames {i} and {i + 1}
in order to represent the added rotational component due to motion at
the joint in frame {i}. The rotation matrix rotates the axis of rotation of
joint i + 1 into its description in frame {i} so that the two components
of angular velocity may be added.

By premultiplying both sides of (5.43) by {*'R we can find the
description of the angular velocity of link i + 1 with respect to frame

{i+1}:

i_l.b'i:_l = zle zw% o o 9'3'__1 i+12£+1‘ (545}

The linear velocity of the origin of frame {i + 1} is the same as that
of the origin of frame {i} plus a new component caused by rotational
velocity of link i. This is exactly the situation described by (5.13), with
one term vanishing because ‘P, ; is constant in frame {¢}. Therefore
we have

Syss =Yyt Rk P (5.46)
Premultiplving both sides by E';'IR_. we compute
o = §+1R(i1’s + fw; % iPif—l)' (5.47)

Equations (5.45) and (5.47) are perhaps the most important results of
this chapter. The equivalent relationships for the case that joint 7 + 1
is prismatic are

i=1 — i1 i,
Wi+l T R i

. - : y : . o (5.48
1'Llrz'—&l ::_IR(%}":‘&*’«; X LP«;-;—l)_:d:;—;—lz_'lza;+1- }

Applying these equations successively from link to link, we can compute
Nwy and Vv, the rotational and linear velocities of the last link. Note
that the resulting velocities are expressed in terms of frame {N}. This
turns out to be useful, as we will see later. If the velocities are desired
in terms of the base coordinate system, they can be rotated into base
coordinates by multiplication with & R.

5.6 Velocity “propagation” from link to link Iﬂ[

FIGURE 5.8 A two-link manipulator.

I, | AMPLE 5.3

A two-link manipulator with rotational joints is shown in Fig. 5.8.
Calculate the velocity of the tip of the arm as a function of joint rates.
Give the answer in two forms—in terms of frame {3} and also in terms
of frame {0}. .

Frame {3} has been attached at the end of the manipulator as shown
in Fig. 5.9, and we wish to find the velocity of the origin of this frame
expressed in frame {3}. As a second part of the problem, we will express
these velocities in frame {0} as well. We will start by attaching frames
to the links as we have done before (see Fig. 5.9)

We will use Egs. (5.45) and (5.47) to compute the velocity of
the origin of each frame starting from the base frame {0}, which
has zero velocity. Since (5.45) and (5.47) will make use of the link
transformations, we compute them as:

L

I--.]

Il

n

s

o

Lt
oo o
-0 oo

Ca —8g 0 El

1~ |82 e 0 0

=T T (5.49)
0 0 0 1

ILS" 5 Jacobians: velocities and static forces

FIGURE 5.9 Frame assignments for the two-link manipulator.

o O O -

OO = O

o= OO

—
(5]

= ==

Note that these correspond to the manipulator of Example 3.3 with joint
3 permanently fixed at zero degrees. The final transformation between
frames {2} and {3} need not be cast as a standard link transformation
(though it may be helpful to do so). Then using (5.45) and (5.47)
sequentially from link to link, we calculate

0
loy=10
_6.1
[0
111 =@
| 0
[0
2(.4."2 = 0
6, + 6,
Co 8g 0
21‘2 . —83 (g 0
0 0 1

0
1,6,
0

(5.50)
(5.51)
(5.52)
115291
= |l c58, (5.53)

0

5.7 Jacobians | 169

3;}{}3 = 2&»'2_. {554)
1!1329.1
3?.,'3 = 51C29-1 + 12(8.1 + 92} # (5<55)
0

Equation (5.55) is the answer. Also the rotational velocity of frame {3}
is found in Eq. (5.54).

To find these velocities with respect to the nonmoving base frame,
we rotate them with the rotation matrix 3R, which is

c12 —812 0

OR=9R IR 2R= |81z ¢ 0]. (5.56)

This rotation yields

—315191 - JE2512(91 am 92)
Opg = | licr6y +lpcin(f+62) |. ® (5.57)
0

It is important to point out the two distinct uses for Egs. (5.45)
and (5.47). First, they may be used as a means of deriving analytical
expressions as in Example 5.2 above. Here, we manipulate the symbolic
equations until we arrive at a form such as (5.55), which will be evaluated
with a computer in some application. Second, they may be used directly
to compute (5.45) and (5.47) as they are written. They can easily be
written as a subroutine which is then applied iteratively to compute
link velocities. As such they could be used for any manipulator without
the need of deriving the equations for a particular manipulator. However,
the computation then yields a numeric result with the structure of the
equations hidden. We are often interested in the structure of an analytic
result such as (5.55). Also, if we bother to do the work (that is, (5.50)
through (5.57)), we generally will find that there are fewer computations
left for the computer to perform in the final application.

5.7 Jacobians

The Jacobian is a multidimensional form of the derivative. Suppose, for
example, that we have six functions, each of which is a function of six

UNIVER QIR AME B

170 5 Jacobians: velocities and static forces

independent variables:

v1 = filzy, 29,75, 24,25, 26),

Y2 = f2{591a$2:3€3-.934s$5:36)=

(5.58)
Us = folT1.22.23.24. 25, 26).
‘We could also use vector notation to write these equations as
Y = F(X). (5.59)

Now, if we wish to calculate the differentials of y; as a function of
differentials of z;, we simply use the chain rule to calculate, and we get

_0h 0f1 8f
éyl - 62‘:1 é‘rl + 51_2 6$2 + . x & Fos 8:176 5336.-
_0fs 8fs 8fs
§y2 = axl C<.$1 -+ %6{32 + + —3336 535._
(5.60)
8 af, 8
éys—afscﬁ asér2+ g B afﬁéﬁ,

which again might be written more simply using vector notation as

aF
oY = == 6X. (5.61)
The 6 x 6 matrix of partial derivatives in (5.61) is what we call
the Jacobian, J. Note that if the functions f;(X) through fi(X) are
nonlinear, then the partial derivatives are a function of z;. So we use
the notation

§Y = J(X) 6X. (5.62)

By dividing both sides by the differential time element, we can think of
the Jacobian as mapping velocities in X to those in V:

Y = J(X) X. (5.63)

At any particular instant, X has a certain value, and J(X) is a linear
transformation. At each new time instant, X has changed and therefore

5.7 Jacobians

so has the linear transformation. Jacobians are time-varying linear
transformations.

In the field of robotics, we generally speak of Jacobians which relate
joint velocities to Cartesian velocities of the tip of the arm. For example:

%y =2j(®) 8, (5.64)

where O is the vector of joint angles of the manipulator, and V is a vector
of Cartesian velocities. In (5.64) we have added a leading superscript to
our Jacobian notation to indicate in which frame the resulting Cartesian
velocity is expressed. Sometimes this superscript is omitted when the
frame is obvious or when it is unimportant to the development. Note that
for any given configuration of the manipulator, joint rates are related to
velocity of the tip in a linear fashion. This is only an instantaneous
relationship, since in the next instant the Jacobian has changed slightly.
For the general case of a six-jointed robot, the Jacobian is 6 x 6, © is
6x1, and °V is 6 x 1. This 6x 1 Cartesian velocity vector is the 3x1 linear
velocity vector and the 3 x 1 rotational velocity vector stacked together:

0.,
0y = {01’} . (5.65)
Jacobians of any dimension (including nonsquare) may be defined. The
number of rows equals the number of degrees of freedom in the Cartesian
space being considered. The number of columns in a Jacobian is equal
to the number of joints of the manipulator. In dealing with a planar
arm, for example, there is no reason for the Jacobian to have more than
three rows, although for redundant planar manipulators, there could be
arbitrarily many columns (one for each joint).

In the case of a two-link arm, we can write a 2 x 2 Jacobian which
relates joint rates to end-effector velocity. From the result of Example 5.2
we can easily determine the Jacobian of our two-link arm. The Jacobian
written in frame {3} is seen (from (5.55)) to be

1189 0

3 -
J(©) = |:Il'52 L) (5.66)
and the Jacobian written in frame {0} is (from (5.57))
07(0) = [_3131 — 3819 —g2512}) (5.67)
Lhep+len e

Note that in both cases, we have chosen to write a square matrix which
relates joint rates to end-effector velocity. We could also consider the 3x2
Jacobian which would include the angular velocity of the end-effector.

171

172

5 Jacobians: velocities and static forces

Considering Egs. (5.58) through (5.62), which define the Jacobian,
we see that the Jacobian might also be found by directly differentiat-
ing the kinematic equations of the mechanism. However, while this is
straightforward for linear velocity, there is no 3 x 1 orientation vector
whose derivative is w. Hence, we have introduced a method to derive
the Jacobian using successive application of (5.45) and (5.47). There
are several other methods which may be used (see, for example, [4]),
one of which will be introduced shortly in Section 5.8. One reason for
deriving Jacobians using the method presented is that it helps prepare
us for material in Chapter 6, in which we will find that similar techniques
apply to calculating the dynamic equations of motion of a manipulator.

Changing a Jacobian’s frame of reference

Given a Jacobian written in frame {B}, that is,

e

[jﬂ =2y =24(0)8, (5.68)

we may be interested in giving an expression for the Jacobian in another
frame {A}. First, note that a 6 x 1 Cartesian velocity vector given in
{B} is described relative to {A} by the transformation

4R 0

A 5 I B 1

[Aﬂ . ot [Bj;] . (5.69)

0 i 4R
So, we may write

4R 0

'4?.;‘ : B 5

ag| =] Ptz J(©) 6, (5.70)
0 | 4R

Hence, it is clear that changing the frame of reference of a Jacobian is
accomplished according to

AJO) = |----- Loz BJ(@). (5.71)

5.8 Singularities

5.8 Singularities

Given that we have a linear transformation relating joint velocity
to Cartesian velocity, a reasonable question to ask is: Is this matrix
invertible? That is, is it nonsingular? If the matrix is nonsingular then
we can invert it to calculate joint rates given Cartesian velocities:

e=J"1e) V. (5.72)

This is an important relationship. For example, say we wish the hand
of the robot to move with a certain velocity vector in Cartesian space.
Using (5.72) we could calculate the necessary joint rates at each instant
along the path. The real question of invertibility is: Is the Jacobian
invertible for all values of ©7 If not, where is it not invertible?

Most manipulators have values of © where the Jacobian becomes
singular. Such locations are called singularities of the mechanism
or singularities for short. All manipulators have singularities at the
boundary of their workspace, and most have loci of singularities inside
their workspace. An in-depth study of the classification of singularities
is beyond the scope of this book—for more information see [5]. For
our purposes, and without giving rigorous definitions, we will class
singularities into two categories:

1. Workspace boundary singularities are those which occur when
the manipulator is fully streched out or folded back on itself such
that the end-effector is near or at the boundary of the workspace.

2. Workspace interior singularities are those which occur away
from the workspace boundary and generally are caused by two or
more joint axes lining up.

When a manipulator is in a singular configuration, it has lost one
or more degrees of freedom as viewed from Cartesian space. This means
that there is some direction (or subspace) in Cartesian space along which
it is impossible to move the hand of the robot no matter which joint rates
are selected. It is obvious that this happens at the workspace boundary
of robots.

I [AMPLE 5.4

Where are the singularities of the simple two-link arm of Exam-
ple 5.27 What is the physical explanation of the singularities? Are
they workspace boundary singularities or are they workspace interior
singularities?

173

174

5 Jacobians: velocities and static forces

To find the singular points of a mechanism we must examine the
determinant of its Jacobian. Where the determinant is equal to zero,
the Jacobian has lost full rank, and is singular.

5152 0

DEL J{@}] W 3162 + 32 lg

=1Ilys, = 0. (5.73)

Clearly, a singularity of the mechanism exists when 6, is 0 or 180
degrees. Physically, when 6, = 0 the arm is stretched straight out. In
this configuration, motion of the end-effector is possible only along one
Cartesian direction (the one perpendicular to the arm). Therefore, the
mechanism has lost one degree of freedom. Likewise when ¢, = 180
the arm is folded completely back on itself, and motion of the hand is
again only possible in one Cartesian direction instead of two. We will
class these singularities as workspace boundary singularities because
they exist at the edge of the manipulator's workspace. Note that the
Jacobian written with respect to frame {0}, or any other frame, would
have yielded the same result. =

The danger in applying (5.72) in a robot control system is that at a
singular point, the inverse Jacobian blows up! This results in joint rates
approaching infinity as the singularity is approached.

I © X AMPLE 5.5

Consider the two-link robot from Example 5.2 moving its end-
effector along the X axis at 1.0 m/s as in Fig. 5.10. Show that joint
rates are reasonable when far from a singularity, but as a singularity is
approached at 8, = 0, joint rates tend to infinity.

We start by calculating the inverse of the Jacobian written in {0}:

: 1
°7-1(0) = { le1s l3815 _ (5.74)
Lilpsy [—liey —lze1 =118y — 1389

FIGURE 5.10 A two-link manipulator moving its tip at a constant
linear velocity.

5.9 Static forces in manipulators

Then using Eq. (5.74) for a velocity of 1 m/s in the X direction we can
calculate joint rates as a function of manipulator configuration:

= Bz
A llszf
(5.75)
: c Cq-
fy = ——— — 2=
EQSQ 3132

Clearly, as the arm stretches out toward 6, = 0 both joint rates go to
infinity.]

BT, X AMPLE 5.6

For the PUMA 560 manipulator, give two examples of singularities
which can occur.

There is singularity when 63 is near —90.0 degrees. Calculation of the
exact value of f; is left as an exercise (see Exercise 5.14). In this situation,
links 2 and 3 are “stretched out” just like the singular location of the
two-link manipulator in Example 5.3. This is classed as a workspace
boundary singularity.

Whenever 85 = 0.0 degrees the manipulator is in a singular config-
uration. In this configuration joint axes 4 and 6 line up—both of their
actions would result in the same end-effector motion, so it is as if a degree
of freedom has been lost. Because this can occur interior to the workspace
envelope, we will class it as a workspace interior singularity. L]

5.9 Static forces in manipulators

The chainlike nature of a manipulator leads us quite naturally to
consider how forces and moments “propagate” from one link to the next.
Typically the robot is pushing on something in the environment with the
chain’s free end (the end-effector) or is perhaps supporting a load at the
hand. We wish to solve for the joint torques which must be acting to
keep the system in static equilibrium.

In considering static forces in a manipulator we first lock all the
joints so that the manipulator becomes a structure. We then consider
each link in this structure and write a force-moment balance relationship
in terms of the link frames. Finally, we compute what static torque must
be acting about the joint axis in order for the manipulator to be in static
equilibrium. In this way, we solve for the set of joint torques needed to
support a static load acting at the end-effector.

We define special symbols for the force and torque exerted by a
neighbor link:

175

176

5 Jacobians: velocities and static forces

f; = force exerted on link ¢ by link 7 — 1,
n; = torque exerted on link ¢ by link 7 — 1.

We will use our usual convention for assigning frames to links. Figure
5.11 shows the static forces and moments acting on link . Summing the
forces and setting them equal to zero we have

if«' & it1 =0 (5.76)

Summing torques about the origin of frame {i} we have
"y = 'nips = Py X fig =0 (5.77)
If we start with a description of the force and moment applied by
the hand, we can calculate the force and moment applied by each link
working from the last link down to the base, link 0. To do this, we
formulate the force-moment expressions (5.76) and (5.77) such that they

specify iterations from higher numbered links to lower numbered links.
The result may be written:

ifi = if:'—l: (5‘78)

g ="ng1 + P X figa (5.79)

In order to write these equations in terms of only forces and moments
defined within their own link frames, we transform with the rotation

FIGURE 5.11 Static force-moment balance for a single link.

5.9 Static forces in manipulators

matrix describing frame {i + 1} relative to frame {i}. This leads to our
most important result for static force “propagation” from link to link:

fi=1a R i, (5.80)

iy = 1R g + PPy x Pl (5.81)

T

Finally, the important question arises: What torques are needed at the
joints in order to balance the reaction forces and moments acting on
the links? All components of the force and moment vectors are resisted
by the structure of the mechanism itself, except for the torque about
the joint axis. Therefore, to find the joint torque required to maintain
the static equilibrium, the dot product of the joint axis vector with the
moment vector acting on the link is computed:

r='nT iZ,. (5.82)
In the case that joint i is prismatic, we compute the joint actuator force

as
n=3fT 2, (5.83)

Note that we are using the symbol 7 even for a linear joint force.

As a matter of convention we generally define the positive direction
of joint torque as the direction which would tend to move the joint in
the direction of increasing joint angle.

Equations (5.80) through (5.83) give us a means to compute the
joint torques needed to apply any force or moment with the end-effector
of a manipulator in the static case.

. - AMPLE 5.7

The two-link manipulator of Example 5.2 is applying a force vector
3F with its end-effector (consider this force to be acting at the origin of
{3}). Find the required joint torques as a function of configuration and
of the applied force. See Fig. 5.12.

We apply Egs. (5.80) through (5.82) starting from the last link and
going toward the base of the robot:

fa
ZfZ = fy s (584}
0
fa 0
,=LX, x| f,|=] 0 |, (5.85)

177

_178 | 5 Jacobians: velocities and static forces

FIGURE 5.12 A two-link manipulator applying a force at its tip.

ez —sy 0 fz Cfe _Sny
fi=1]s; ¢ O fo| = | s2fz +C2fy : (5.86)
0 0 1 0 0
0 0
ny=| 0 |+LX, x = 0 ; (5.87)
2 f, lisafe tlieaf, +1af,

Therefore we have

= Lsofr + (I +1ica)fy, (5.88)

3 =bf,- (5.89)

This relationship may be written as a matrix operator as

T =

{3132 EQ ‘%‘IICQ.‘
0 L,

_ ij ® (5.90)

It is not a coincidence that this matrix is the transpose of the Jacobian
that we found in (5.66)!

5.10 Jacobians in the force domain

5.10 Jacobians in the force domain

We have found joint torques that will exactly balance forces at the hand
in the static situation. When forces act on a mechanism, work (in the
technical sense) is done if the mechanism moves through a displacement.
Work is defined as a force acting through a distance and is a scalar
with units of energy. The principle of virtual work allows us to make
certain statements about the static case by allowing the amount of this
displacement to go to an infinitesimal. Since work has units of energy
it must be the same measured in any set of generalized coordinates.
Specifically, we can equate the work done in Cartesian terms with the
work done in joint space terms. In the multidimensional case, work is
the dot product of a vector force or torque and a vector displacement.
Thus we have

F.6X =100, (5.91)
where F is a 6 x 1 Cartesian force-moment vector acting at the end-
effector, 6X is a 6 x 1 infinitesimal Cartesian displacement of the
end-effector, 7 is a 6 x 1 vector of torques at the joints, and 60 is a
6 x 1 vector of infinitesimal joint displacements. Expression (5.91) can
also be written

FTsx =1760. (5.92)
The definition of the Jacobian is

5X = JO, (5.93)
and so we may write

FTjse =7760, (5.94)
which must hold for all 6@, and so we have

FrIr=1T, (5.95)
Transposing both sides yields the result

et . (5.96)
Equation (5.96) verifies in general what we saw in the particular case of

the two-link manipulator in Example 5.6: The Jacobian transpose maps
Cartesian forces acting at the hand into equivalent joint torques. When

179

180

5 Jacobians: velocities and static forces

the Jacobian is written with respect to frame {0}, then force vectors
written in {0} may be transformed, as made clear by the notation

r=0JT OF, (5.97)

When the Jacobian loses full rank, there are certain directions in which
the end-effector cannot exert static forces as desired. That is, in (5.97)
if the Jacobian is singular, F could be increased or decreased in certain
directions (those defining the null-space of the Jacobian [6]) with no
effect on the value calculated for 7. This also means that near singular
configurations, mechanical advantage tends toward infinity such that
with small joint torques large forces could be generated at the end-
effector.* Thus, singularities manifest themselves in the force domain as
well as in the position domain.

Note that (5.97) is a very interesting relationship in that it allowa
us to convert a Cartesian quantity into a joint space quantity without
calculating any inverse kinematic functions. We will make use of this
when we consider the problem of control in later chapters.

5.11 Cartesian transformation of velocities and
static forces

We may wish to think in terms of 6 x 1 representations of general velocity
of a body:

e

V= {L] , (5.98)
Likewise we may consider 6 x 1 representations of general force vectors:

F= {ﬂ (5.99)

where F is a 3 x 1 force vector and N is a 3 x 1 moment vector. It is
then natural to think of 6 x 6 transformations which map these quantities
from one frame to another. This is exactly what we have already done
in considering the propagation of velocities and forces from link to link.
Here we write (5.45) and (5.47) in matrix operator form to transform
general velocity vectors in frame {A} to their description in frame {B}.

* Consider a two-link planar manipulator nearly outstretched with the
end-effector in contact with a reaction surface. In this configuration arbitrarily
large forces could be exerted with “small” joint torques.

5.11 Cartesian transformation of velocities and static forces

Since the two frames involved here are rigidly connected, Qiﬂ appearing
in (5.45) is set to zero in deriving the following:

|iBUB:| . [ER —4iR APBORGX} r‘l’.a]
0 ER Awy]’

Wa

o (5.100)
e

where the cross product is understood to be the matrix operator

0 Pz Dy
Px=| p, 0 —p.|. (5.101)
—Py Pr 0

Now, (5.100) relates velocities in one frame to those in another, so the
6 x 6 operator will be called a velocity transformation and we will
use the symbol T,. In this case, it is a velocity transformation which
maps velocities in {A} into velocities in {B}, so we use the following
notation to compactly express (5.100):

Byg =21 AV (5.102)

We may invert (5.100) in order to compute the description of velocity
in terms of {4} when given the quantities in {B}:

Av, _ [8R “Pporc x 5R][Pvs 5103
a] =[P} PeomexBRI[Me] (5109
W L B B
or
V4 = 3T, BVs. (5.104)

Note that these mappings of velocities from frame to frame depend on
;gT (or its inverse) and so must be interpreted as instantaneous results,
unless the relationship between the two frames is static. Similarly, from
(5.80) and (5.81) we write the 6 x 6 matrix which transforms general force
vectors written in terms of {B} into their description in frame {A}:

[AFAE { 5 f } [BFB}, (5.105)

ANal |*Psorc X8R #R|[ZNg
which may be written compactly as
e i R (5.106)

where T is used to denote a force-moment transformation.

Velocity and force transformations are similar to Jacobians in that
they relate velocities and forces in different coordinate systems. Similarly
to Jacobians we have that

o Ay (5.107)

oA
F=E
as can be verified by examining (5.105) and (5.103).

181

182

5 Jacobians: velocities and static forces

Sensor frame

FIGURE 5.13 Frames of interest with a force sensor.

I O AMPLE 5.8

Figure 5.13 shows an end-effector holding a tool. Located at the
point where the end-effector attaches to the manipulator, there is a
force-sensing wrist. This is a device which can measure the forces and
torques which are applied to it.

Consider the output of this sensor to be a 6 x 1 vector, °F, composed
of three forces and three torques expressed in the sensor frame, {S}.
Qur real interest is to know the forces and torques applied at the tip
of the tool, TF. Find the 6 x 6 transformation which transforms the
force-moment vector from {S} to the tool frame, {T'}. The transform
relating {T} to {S}, 3T, is known. (Note that {S} here is the sensor
frame, not the station frame as usual.)

This is simply an application of (5.106). First, from 57T we calculate
the inverse, £T, which is composed of LR, and 7 Pz Then we apply
(5.106) to obtain

Trr =37, 5%, (5.108)

where

=l T 5 (5.109)

184

5 Jacobians: velocities and static forces

5.12

5.13

5.14

5.16

5.17

[7] For the two-link manipulator of Example 5.2 give the transformation
which would map joint torques into a 2 x 1 force vector, 3F, at the hand.
[14] Given
0.866 -0.500 0.000 10.0
0.500 0.866 0.000 0.0
0.000 0.000 1.000 3.0

0 0 0 1

AT=

if the velocity vector at the origin of {4} is

0.0
2.0
-3.0
1.414
1.414
0.0

Av:

find the 6 x 1 velocity vector with reference point the origin of {B}.

[15] For the three-link manipulator of Exercise 3.3, give a set of joint
angles for which the manipulator is at a workspace boundary singularity,
and another set of angles for which the manipulator is at a workspace
interior singularity.

[9] A certain two-link manipulator has the following Jacobian:

—ly8, — 58 —l,s
0 181 — l2812 2512
J(e —[
& lie; +15e15 [y¢19

Ignoring gravity, what are the joint torques required in order that the
manipulator apply a static force vector °F = 1DX’O,

(18] If the link parameter ag of the PUMA 560 were zero, a workspace
boundary singularity would occur when 65 = —90.0°. Give an expression
for the value of #; where the singularity occurs and show that if a5 were
zero, the result would be 6; = —90.0°. Hint: In this configuration a
straight line passes through joint axes 2, 3, and the point where axes
4, 5, and 6 intersect.

[24] Give the 3 x 3 Jacobian which calculates linear velocity of the tool tip
from the three joint rates for the manipulator of Example 3.4 in Chapter 3.
Give the Jacobian in frame {0}.

[20] A 3R manipulator has kinematics that correspond exactly to the set
of Z-Y-Z Euler angles (i.e., the forward kinematics are given by (2.72) with
a=4#8,, 3=48,, and v = #3). Give the Jacobian relating joint velocities
to angular velocity of the final link.

[31] Imagine that for a general 6-DOF robot we have available ®Z; and
OP; ., for all i. That is, we know the values for the unit Z vectors of each
link frame in terms of the base frame, and also the locations of the origins
of all link frames in terms of the base frame. Let us also say that we are
interested in the velocity of the tool point (fixed relative to link n) and

Y - - . .
&J 5 Jacobians: velocities and static forces

5.10

5.11

5.14

5.15

5.17

7] For the two-link manipulatar of Example 5.2 give the transformation
which would map joint torques into a 2 x 1 force vector, 3F, at the hand.
[14] Given
0.866 —0.500 0.000 10.0
0.500 0.866 0.000 0.0
0.000 0.000 1.000 5.0

0 0 0 1

a7=

if the velocity vector at the origin of {A} is

0.0
2.0
-3.0
1.414
1.414
0.0

sz

find the 6 x 1 velocity vector with reference point the origin of {B}.

[15] For the three-link manipulator of Exercise 3.3, give a set of joint
angles for which the manipulator is at a workspace boundary singularity,
and another set of angles for which the manipulator is at a workspace
interior singularity.

[9] A certain two-link manipulator has the following Jacobian:

GJ{G} - =181 — 3815 —l381,
lieg + 15612 le19

Ignoring gravity, what are the joint torques required in order that the
manipulator apply a static force vector °F = 10X.

[18] If the link parameter a; of the PUMA 560 were zero, a workspace
boundary singularity would occur when #; = —90.0°. Give an expression
for the value of 85 where the singularity occurs and show that if a; were
zero, the result would be 63 = —90.0°. Hint: In this configuration a
straight line passes through joint axes 2, 3, and the point where axes
4.5, and 6 intersect.

[24] Give the 3 x 3 Jacobian which calculates linear velocity of the tool tip
from the three joint rates for the manipulator of Example 3.4 in Chapter 3.
Give the Jacobian in frame {0}.

[20] A 3R manipulator has kinematics that correspond exactly to the set
of Z-Y-Z Euler angles (i.e., the forward kinematics are given by (2.72) with
a=46,, =40, and v = 03). Give the Jacobian relating joint velocities
to angular velocity of the final link.

[31] Imagine that for a general 6-DOF robot we have available °Z; and
OP;,,, for all i. That is, we know the values for the unit Z vectors of each
link frame in terms of the base frame, and also the locations of the origins
of all link frames in terms of the base frame. Let us also say that we are

interested in the velocity of the tool point (fixed relative to link n) and

Programming Exercise (Part 5)

we know " P, ,,,, also. Now, for a revolute joint, the velocity of the tool tip
due to the velocity of joint i is given by

Supmt; Y2 RO Booi= T Biorp); (5.110)

and the angular velocity of link n due to the velocity of this joint is given
by
0u. =6,°Z,. (5.111)

The total linear and angular velocity of the tool is given by the sum of the
Oy, and %w, respectively. Give equations analogous to (5.110) and (5.111)
for the case of joint i prismatic. and write the 6 x 6 Jacobian matrix of
an arbitrary 6-DOF manipulator in terms of the Z,, Piorg and Py).

5.18 [18] The kinematics of a 3R robot are given by

€103 —C18a3 81 Loy +1zcie
07 = §1Ca3 —81525 —c1 [181 T 1810y
S23 €23 0 I3,
0 0 0 1

Find °.J(®) which, when multiplied by the joint velocity vector, gives the
linear velocity of the origin of frame {3} relative to frame {0}.

5.19 [15] The position of the origin of link 2 for an RP manipulator is given by

5.20

Pro

1.

5 a,6; — dasy
Prore = | @181 T+ da0g
0

Give the 2 x 2 Jacobian that relates the two joint rates to the linear
velocity of the origin of frame {2}. Give a value of © where the device
is at a singularity.

[20] Explain what might be meant by the statement: “An n-DOF manip-
ulator at a singularity can be treated as a redundant manipulator in a
space of dimensionality n — 1.”

gramming Exercise (Part 5)

Two frames, {A} and {B} are not moving relative to one another: that is,
57 is constant. In the planar case, we define the velocity of frame {A} as

A‘i"A
Ay | A
Vy= Ya
Af
64

Write a routine which, given 47 and #V 4, computes BVg. Hint: This is
the planar analog of (5.100). Use a procedure heading something like:

Procedure Veltrans(VAR brela: frame; VAR vrela, vrelb: vec3);

185

\1_86.J 5 Jacobians: velocities and static forces

where “vrela” is the velocity relative to frame {4}, or 4V, and “vrelb” is
the output of the routine (the velocity relative to frame {B}), or Vg.

2. Determine the 3 x 3 Jacobian of the 3-link planar manipulator (from
Example 3.3). In order to derive the Jacobian vou should use velocity
propagation analysis (as in Example 5.2) or static force analysis (as in
Example 5.6). Hand in your work showing how vou derived the Jacobian.

Write a routine to compute the Jacobian in frame {3}, that is, 2J(0©), as
a function of the joint angles. Note that frame {3} is the standard link frame
with origin on the axis of joint 3. Use a procedure heading something like:

Procedure Jacobian(VAR theta: vec3; Var Jac: mat33);
The manipulator data are [; = [, = 0.5 meters.

3. A tool frame and a station frame are defined by the user for a certain task
as below (units are meters and degrees):

¥Tr=[z y 6=[0.1 02 30.0],

ET=[z y 6=[0.0 0.0 0.0].
At a certain instant, the tool tip is at the position
2T =[ry6]=[06 —0.345.0].
At the same instant, the joint rates (in deg/sec) are measured to be

& = [0, 6, 6;] =200 —10.0 12.0].
Calculate the linear and angular velocity of the tool tip relative to its own
frame, that is, T V. If there is more than one possible answer calculate all
possible answers.

MANIPULATOR
DYNAMICS

6.1 Introduction

Our study of manipulators so far has focused on kinematic considerations
only. We have studied static positions, static forces, and velocities; but
we have never considered the forces reguired to cause motion. In this
chapter we consider the equations of motion for a manipulator—the
way in which motion of the manipulator arises from torques applied by
the actuators, or from external forces applied to the manipulator.

Dynamics of mechanisms is a field in which many books have been
written. Indeed, one can spend years studying the field. Obviously, we
cannot cover the material in the completeness it deserves. However, cer-
tain formulations of the dynamics problem seem particularly well suited
to application to manipulators. In particular, methods which make use
of the serial chain nature of manipulators are natural candidates for our
study.

ﬁ] 6 Manipulator dynamics

There are two problems related to the dynamics of a manipulator
that we wish to solve. In the first problem we are given a trajectory point,
©, ©, and O, and we wish to find the required vector of joint torques,
7. This formulation of dynamics is useful for the problem of controlling
the manipulator (Chapter 10). The second problem is to calculate how
the mechanism will move under application of a set of joint torques.
That is, given a torque vector, 7, calculate the resulting motion of the
manipulator, ®, ©, and ©. This is useful for simulating the manipulator.

6.2 Acceleration of a rigid body

We now extend our analysis of rigid body motion to the case of
accelerations. At any instant, the linear and angular velocity vectors
have derivatives which are called the linear and angular accelerations,
respectively, That is,

. d BVt + A1) — BV,(H)
By _ % By _ g Q Q :
Vo = dt Y=, At ')
and = V= AL ()
. d , Qgt+ Af)— “Qg(t
A _ A — B B
S g R At ' (6:2)

As with velocities, when the reference frame of the differentiation is
understood to be some universal reference frame, {U}, we will use the
notation

Vg = ” vAO RG (6.3)

and
Ga =0 (6.4)

Linear acceleration

We start by restating an important result from Chapter 5, (5.12), which
describes the velocity of a vector BQ as seen from frame {A} when the
origins are coincident:

Vo =8R BV, +40s x 3R BQ. (6.5)

The left-hand side of this equation describes how 4@ is changing in time.
So, since origins are coincident, we could rewrite (6.5) as

d

= (BREQ) =48R BV, +405 x 3R Q. (6.6)

6.2 Acceleration of a rigid body

This form of the equation will be useful when deriving the corresponding
acceleration equation.
By differentiating (6.5). we can derive expressions for the accelera-
tion of BQ as viewed from {A} when origins of {A} and {B} coincide:
Avr d A B ; 4 E A d A =)
Now we apply (6.6) twice—once to the first term, and once to the last
term. The right-hand side of equation (6.7) becomes

(6.8)

Combining two terms. we get
AR BVo+240xAR BV +20p xR PQ+2 05 x ("5 x R 5Q) . (6.9)

Finally, to generalize to the case in which the origins are not coincident,
we add one term which gives the linear acceleration of the origin of { B},
resulting in the final general formula:

AVpore + BRBVo +240s x 8RBV + 405 x SR 5Q
(6.10
i {2 Qs W EEC0).)

A particular case that is worth pointing out is when B(Q is constant,
or
BV =PV5=0i (6.11)

In this case. (6.10) simplifies to
AVo =*Veore + %05 x (105 x B8R 2Q) + 405 x §RFQ. (6.12)

We will use this result in calculating the linear acceleration of the links of
a manipulator with rotational joints. When a prismatic joint is present,
the more general form of (6.10) will be used.

Angular acceleration

Consider the case of {B} rotatmc relative to {A} with 4Qp, and {C}
rotating relative to { B} with Q. To calculate Q. we sum the vectors
in frame {A}:

40, =405+ B8R PQ. (6.13)

189

\M 6 Manipulator dynamics

1A} Z

ey

FIGURE 6.1 The inertia tensor of an object describes the object’s mass
distribution. Here a vector ** P locates the differential volume element, du.
By differentiating, we obtain
A(“) A.(:) d A BQ 6.14
g =" llgray (B8R °Qc). (6.14)
Now, applying (6.6) to the last term of (6.14), we obtain
A= AR 0 +40. x 2R 0, (6.15)

We will use this result to calculate the angular acceleration of the links
of a manipulator.

6.3 Mass distribution

In systems with a single degree of freedom, we often talk about the mass
of a rigid body. In the case of rotational motion about a single axis,
the notion of the moment of inertia is a familiar one. For a rigid body
which is free to move in three dimensions there are an infinite number of
possible rotation axes. In the case of rotation about an arbitrary axis, we
need a complete way of characterizing the mass distribution of a rigid
body. Here we introduce the inertia tensor, which for our purposes
can be thought of as a generalization of the scalar moment of inertia
of an object.

‘We shall now define a set of quantities which give information about
the distribution of mass of a rigid body relative to a reference frame.

6.3 Mass distribution

Figure 6.1 shows a rigid body with an attached frame. While inertia
tensors may be defined relative to any frame, we will always consider
the case of an inertia tensor defined for a frame attached to the rigid
body. Where it is important we will indicate, with a leading superscript,
the frame of reference of a given inertia tensor. The inertia tensor relative
to frame {A} is expressed in the matrix form as the 3 x 3 matrix:

I:r:.\: _'Imy _I::z
o) [SR S (6.16)
_Imz _Iyz Izz

where the scalar elements are given by

L= [[[62+
L= [[[@+
Lo= [[[@+
Ly=[[[zvsdv
Lo= [[[200,
e f [o

where the rigid body is composed of differential volume elements, dv,
containing material of density p. Each volume element is located with a
vector, 4P = [z y 2|7, as shown in Fig. 6.1.

The elements I, I, and I, are called the mass moments of in-
ertia. Note that in each case we are integrating the mass elements, pdv,
times the square of the perpendicular distance from the corresponding
axis. The elements with mixed indices are called the mass products
of inertia. This set of six independent quantities will, for a given body,
depend on the position and orientation of the frame in which they are
defined. If we are free to choose the orientation of the reference frame,
it is possible to cause the products of inertia to be zero. The axes of the
reference frame when so aligned are called the principal axes and the
corresponding mass moments are the principal moments of inertia.

(6.17)

I (A MPLE 6.1

Find the inertia tensor for the rectangular body of uniform density
p with respect to the coordinate system shown in Fig. 6.2.

191

\M 6 Manipulator dynamics

2

FIGURE 6.2 A body of uniform density.

First, we compute I__. Using volume element dv = dz dy dz, we get

h i w
:f f / (y* + 2%)pdzdydz
o Jo Jo
/ / Nwpdydz
h 3
= f (E— + 22E> wpdz (6.18)
o \3

_ hiau.'_'_hsf-w
=3 g

(2 +12).

I
w3

where m is the total mass of the body. Permuting the terms, we can get

I, and I,, by inspection:

I,,=— (w?+h? (6.19)

and

=T (@ +v?). (6.20)

6.3 Mass distribution

We next compute [,

R i w
T :/] f zypdrdydz
o Jo Jo
h TR
=_/ / u'—ypdydz
o Jo 2

(6.21)
h ., .,272
=f w*l sk
0 4
— ?uf
Permuting the terms, we get
I, = %hw (6.22)
and "
I = Thi. (6.23)
Hence the inertia tensor for this object is
3 (2 +42) - Zwl - S hw
Al=| -Twl F(w?+h?) -Zh |, = (6.24)
—%hu' —%hf %{fz-l-u'z}

As noted, the inértia tensor is a function of the location and
orientation of the reference frame. A well-known result, the parallel
axis theorem., is one way of computing how the inertia tensor changes
under translations of the reference coordinate system. The parallel axis
theorem relates the inertia tensor in a frame with origin at the center
of mass to the inertia tensor with respect to another reference frame.
Where {C} is located at the center of mass of the body, and {4} is an
arbitrarily translated frame, the theorem can be stated [1] as

AL, =L, +mz? + 7).
(6.25)
‘_‘I:c'y = CI.ry — MTYc»
where P, = [-.rc_.,t,rc,zc]’1r locates the center of mass relative to {A}.

The remaining moments and products of inertia are computed from
permutations of z, y, and z in (6.25). The theorem may be stated in
vector-matrix form as

AI= CL4m[PTRL, - P.PT, (6:26)

where I3 is the 3 x 3 identity matrix.

193

IM 6 Manipulator dynamics

T A MPLE 6.2

Find the inertia tensor for the same solid body described for Exam-
ple 6.1 when it is described in a coordinate system with origin at the
body’s center of mass.

We can apply the parallel axis theorem, (6.25), where

T w
= 1
Ye - 5 l
2z h
Then we find
Or . = %(w? +12),
(6.27)

cfm, = 0.

The other elements are found by symmetry. The resulting inertia tensor
written in the frame at the center of mass is

5 (R2+12) 0 0
CIs 0 = (w? + h?) 0 : (6.28)
0 0 o (12 +w?)

Since the result is diagonal, frame {C} must represent the principal
axes of this body. =
Some additional facts about inertia tensors are as follows:

1. If two axes of the reference frame form a plane of symmetry for the
mass distribution of the body, the products of inertia having as an
index the coordinate which is normal to the plane of symmetry will
be zero.

2. Moments of inertia must always be positive. Products of inertia
may have either sign.

3. The sum of the three moments of inertia are invariant under orien-
tation changes in the reference frame.

4. The eigenvalues of an inertia tensor are the principal moments for
the body. The associated eigenvectors are the principal axes.

Most manipulators have links whose geometry and composition
is somewhat complex so that the application of (6.17) is difficult in
practice. A pragmatic option is actually to measure rather than to

6.4 Newton's equation, Euler’s equation

calculate the moments of inertia of each link using a measuring device
(e.g., an inertia pendulum).

6.4 Newton's equation, Euler's equation

We will consider each link of a manipulator as a rigid body. If we know
the location of the center of mass and the inertia tensor of the link, then
its mass distribution is completely characterized. In order to move the
links, we must accelerate and decelerate them. The forces required for
such motion are a function of the acceleration desired and of the mass
distribution of the links. Newton’s equation along with its rotational
analog, Euler’s equation, describe how forces, inertias, and accelerations
relate.

Newton’s equation

Figure 6.3 shows a rigid body whose center of mass is accelerating with
acceleration 0. In such a situation, the force, F, acting at the center of
mass which causes this acceleration is given by Newton's equation,

F = mic. (6.29)

where m is the total mass of the body.

FIGURE 6.3 A force F acting at the center of mass of a body causes
the body to accelerate at U¢.

195

\ﬁ_J 6 Manipulator dynamics

Euler’s equation

Figure 6.4 shows a rigid body rotating with angular velocity, w, and with
angular acceleration, w. In such a situation, the moment N, which must
be acting on the body to cause this motion, is given by Euler’s equation

N=Flo+wx Iw, (6.30)

where I is the inertia tensor of the body written in a frame, {C'}, whose
origin is located at the center of mass.

6.5 lterative Newton-Euler dynamic formulation

‘We now consider the problem of computing the torques that correspond
to a given trajectory of a manipulator. We assume we know the position,
velocity, and acceleration of the joints, (O, C;),_ E)) With this knowledge,
and with knowledge of the kinematics and mass distribution information
of the robot, we can calculate the joint torques required to cause this
motion. The algorithm presented is based upon the method published
by Luh, Walker, and Paul in [2].

Outward iterations to compute velocities and accelerations

In order to compute inertial forces acting on the links it is necessary to
compute the rotational velocity and linear and rotational acceleration of
the center of mass of each link of the manipulator at any given instant.

FIGURE 6.4 A moment N is acting on a body, and the body is rotating
with velocity w and accelerating at .

6.5 Tterative Newton-Euler dynamic formulation

These computations will be done in an iterative nature starting with
link 1 and moving successively, link by link, outward to link n.

The “propagation” of rotational velocity from link to link was
discussed in Chapter 5, and is given (for joint ¢ + 1 rotational) by

o= i_:lR w; + 9<+1H1Zé+1- (6.31)

From (6.15) we obtain the equation for transforming angular acceleration
from one link to the next,

gy = PR + T Ry x 6,0 2 + 0,07 204, (8.32)
When joint i + 1 is prismatic, this simplifies to

Wl = :&13 751 (6.33)

The linear acceleration of each link frame origin is obtained by appli-
cation of (6.12):

g = TR [fy x PPy + fwy x (g X P) +19;], (6.34)
which, for prismatic joint i + 1, becomes (from 6.10):

i:—li‘g—e—l = EHR (t*’z X ""P,;+1 + i;*'-"z' (T P‘Tl) I{;i]
i G o (6.35)
+2F w0 xdi P 2 4 dia T 2

We also will need the linear acceleration of the center of mass of each
link, which also can be found by applying (6.12):

Yo =, X Pp +w; X (*-,-,ui x "Pc‘_) + g, (6.36)

where we imagine a frame, {C;}, attached to each link with its origin
located at the center of mass of the link, and with the same orientation
as the link frame, {i}. Equation (6.36) doesn’t involve joint motion at
all, and so is valid for joint 7 + 1 revolute or prismatic.

Note that the application of the equations to link 1 is especially
simple since %wy = %y = 0.

The force and torque acting on a link

Having computed the linear and angular accelerations of the mass center
of each link, we can apply the Newton-Euler equations (Section 6.4) to

197

\ﬁ_‘ 6 Manipulator dynamics

compute the inertial force and torque acting at the center of mass of
each link. Thus we have

F; =mig ,

(6.37)

T C, r- c
N; = ST +w; x Cilwy,

where {C;} has its origin at the center of mass of the link, and has the
same orientation as the link frame, {i}.

Inward iterations to compute forces and torques

Having computed the forces and torques acting on each link, it now
remains to calculate the joint torques which will result in these net forces
and torques being applied to each link.

We can do this by writing a force balance and moment balance
equation based on a free body diagram of a typical link (see Fig. 6.5).
Each link has forces and torques exerted on it by its neighbors, and
in addition experiences an inertial force and torque. In Chapter 5 we
defined special symbols for the force and torque exerted by a neighbor
link, which we repeat here:

force exerted on link ¢ by link 7 — 1,

1

fi

n;

; torque exerted on link 7 by link i — 1.

FIGURE 6.5 The force balance, including inertial forces, for a single
manipulator link.

6.5 Iterative Newton-Euler dynamic formulation

By summing forces acting on link ¢ we arrive at a force balance rela-
tionship,

iF«' = if-;’ _::+1Ri:_lfi—:1- (638)

By summing torques about the center of mass and setting them
equal to zero we arrive at the torque balance equation:

Ny ="n; - iﬂar+1 2% (_ipc‘.) 20 fy— (épi+1 - iPci.) ~ Yifae+1- (6.39)

Using the result from the force balance relation (6.38) and adding
a few rotation matrices, we can write (6.39) as

T 7

SN =tny —§p R gy —Po, X F =Py XELR L. (8.40)

Finally, we can rearrange the force and torque equations so that
they appear as iterative relationships from higher-numbered neighbor
to lower-numbered neighbor.

o= R P R (6.41)

g, = N, +i R¥tln, , + iPC‘_ R P B R T e, (B4D)

These equations are evaluated link by link starting from link n
and working inward toward the base of the robot. These inward force
iterations are analogous to the static force iterations introduced in
Chapter 5, except that inertial forces and torques are now considered
at each link.

As in the static case, the required joint torques are found by taking
the Z component of the torque applied by one link on its neighbor:

;=T 17, (6.43)

For joint ¢ + 1 prismatic, we use
Tt Lz, (6.44)

where we have used the symbol 7 for a linear actuator force.

Note that for a robot moving in free space, Y71 fy..; and Y lny_
are set equal to zero, and so the first application of the equations for link
n is very simple. If the robot is contacting the environment, the forces
and torques due to this contact may be included in the force balance by
having nonzero V*1fy.; and YFlny, .

199

ILD? 6 Manipulator dynamics

The iterative Newton-Euler dynamics algorithm

The complete algorithm for computing joint torques from the motion
of the joints is composed of two parts. First, link velocities and ac-
celerations are iteratively computed from link 1 out to link n and
the Newton-Euler equations are applied to each link. Second, forces
and torques of interaction and joint actuator torques are computed
recursively from link n back to link 1. The equations are summarized
below for the case of all joints rotational.

Outward iterations: i:0 — 5

o=t R b g B Do (6.45)
o =R+ TR x 000" 2y 40,007 200, (6.46)
Sl = TR oy % Py 410, R (P00 % Py) %9, (6.47)
i-j-lT:,Ci_l P i"-l"‘-“i-é-l % i--lpci_l

+iFly,,) x (i_.l;"'é-i—l « i—'lPCifl) R T (6.48)
Hlp = My Tlic (6.49)
AN = e T Flwig X c°_”r~:f—1i;_1'#'*'@'—:1- (6.50)

Inward iterations: 1 :6 — 1

o=t R + R, (6.51)
tny =*N;+i R o+ iPCE. x 'F,

+ %Py X ;E—elR P (6.52)

=" nliZ,. (6.53)

Inclusion of gravity forces in the dynamics algorithm

The effect of gravity loading on the links can be included quite simply
by setting %, = G. where G is the gravity vector. This is equivalent
to saying that the base of the robot is accelerating upward with 1 G
acceleration. This fictitious upward acceleration causes exactly the same
effect on the links as gravity would. So, with no extra computational
expense, the gravity effect is calculated.

6.7 An example of closed form dynamic equations

6.6 Iterative vs. closed form

Equations (6.45) through (6.53) give a computational scheme whereby
given the joint positions, velocities, and accelerations, we can compute
the required joint torques. As with our development of equations to
compute the Jacobian in Chapter 5, these relations can be used in two
ways: as a numerical computational algorithm, or as an algorithm used
analytically to develop symbolic equations.

Use of the equations as a numerical computational algorithm is
attractive because the equations apply to any robot. Once the inertia
tensors, link masses, Pg, vectors, and {7'R matrices are specified for
a particular manipulator, the equations may be applied directly to
compute the joint torques corresponding to any motion.

However, we often are interested in obtaining better insight to the
structure of the equations. For example, what is the form of the gravity
terms? How does the magnitude of the gravity effects compare with
the magnitude of the inertial effects? To investigate these and other
questions, it is often useful to write closed form dynamic equations.
These closed form equations can be derived by applying the recursive
Newton-Euler equations symbolically to ©, ©, and ©. This is analogous
to what we did in Chapter 5 to derive the symbolic form of the Jacobian.

6.7 An example of closed form dynamic equations

Here we compute the closed form dynamic equations for the two-link
planar manipulator shown in Fig. 6.6. For simplicity, we assume that
the mass distribution is extremely simple: All mass exists as a point
mass at the distal end of each link. These masses are m; and ms.

First we determine the value of the various quantities which will
appear in the recursive Newton-Euler equations. The vectors which
locate the center of mass for each link are

lpcl = EIl‘XA?EI_.'
2ch - EQXQ.
Because of the point mass assumption, the inertia tensor written at the
center of mass for each link is the zero matrix:
G =0,

Cz-trg — O

201

202 I 6 Manipulator dynamics

FIGURE 6.6 Two-link with point masses at distal end of links.

There are no forces acting on the end-effector, and so we have

JF3=O.-

ng = 0.

The base of the robot is not rotating, and hence we have

To include gravity forces we will use

D'l'{r'o = g?o

The rotation between successive link frames is given by
iv1 0.0

is1R= 801 g 00
0.0 0.0 1.0

Civ1 —5

Cisa S 00-
TR = —8;41 Ciy1 0.0].
0.0 00 1.0]

We now apply equations (6.45) through (6.53).

6.7 An example of closed form dynamic equations

The outward iterations for link 1 are as follows:

0
lwl = 91121 = 0
-él-
Mo
Yy =62, = |0
..él-
[(ST 0 g5
Yy=|-s1 ¢ 0 g1 = [18c
| 0 0 0 0
['8 _319% g8y —flﬁ.?f—f—gsl
Ii’cl = |05,6, | + 0 + | gey | = | L6+ g
| 0 0 0 0
[—m 11,62 + m,gs,
1F1 . 'mlflél +my0¢y
| 0
[0
IN;=|0
0
' (6.54a—f)

The outward iterations for link 2 are as follows:

0

2&.«72 — 0)

0, + 6,

© oo T
3, =] 0

6, +6,

[ez s O ~1,6% + gs, 11618, — 116%3¢, + g5y,
2hg=| -85 ¢ O 16, +ge; | = | Li61cp + 1,625, + geog

L0 o0 1 0 0

[0 —l5(6; + 6,)? 116,55 — 1,6%¢c; + gsi1o
e, = | L6 +6,) | + 0 + | Lficy + 1,635, + geyn

0 0 0

(6.55a—d)

203

\% 6 Manipulator dynamics

-mZIlé_Z_ISQ - mzflé%‘cz + Mgygs;p — m'zlz(él + 92)2
2F, = | myly8ycp +myl 625, + mogey, + maly (6, +6,)
L 0
) (6.55e—f)
0
IN,=|0
_0
Inward iterations for link 2 are as follows:
2f2 = 2F2
0 (6.56a—b)
Zn, = 0

mglylyealy + molyly8,62 + mylygeys +mal3(6; +6,)
Inward iterations for link 1 are as follows:
g —sz 0 'm2313251 == mzhczgf + Mogsi — mZIZ(él + 32)2
fi= s e 0 malycaby +maly 8563 + magers + maly(6; +65)
0 0 1 0

_mlzlé? +Mm;§s;
- mlflgl + mqgc,
0

0
ln, = ' 0

'm211220251 + nglfzﬁzé% +m-2E29C12 + mglg(gl + 92)

0
- 0
_mll%él +mylige,
i 0
0

mal20;, — mylylps,(6; + 62)? +myly 982812

+malylyey (6 + 62) + maligescs,

. (6.5Ta—b)
Extracting the Z components of the 'n;, we find the joint torques:
71 = mol2(0; + 85) + malylocy (26, + 5) + (my +my)I26, — mylyly5,62
— 2myl, 15850, 05 + malagess + (my + ma)lige,

T2 = Malylacafy +malylp8,6% + malagess + mal3(6; +65).
(6.58a—-b)

6.8 The structure of the manipulator dynamic equations

Equations (6.58) give expressions for the torque at the actuators as
a function of joint position, velocity, and acceleration. Note that these
rather complex functions arose from one of the simplest manipulators
imaginable. Obviously, the closed form equations for a manipulator with
six degrees of freedom are quite complex.

6.8 The structure of the manipulator dynamic
equations

It is often convenient to express the dynamic equations of a manipulator
in a single equation which hides some of the details but shows some of
the structure of the equations.

The state space equation

When the Newton-Euler equations are evaluated symbolically for any
manipulator, they yield a dynamic equation which can be written in
the form

r=M(B)0+V(0.8)+G(O). (6.59)

where M(©) is the n x n mass matrix of the manipulator, V (0, ©)
is an n x 1 vector of centrifugal and Coriolis terms, and G(@®) is an
n x 1 vector of gravity terms. We use the term state space equation
because the term L‘"(@,@), appearing in (6.59) has both position and
velocity dependence [3].

Each element of M(©) and G(©) is a complex function which
depends on @, the position of all the joints of the manipulator. Each
element of V(©,0) is a complex function of both © and ©.

We may separate the various types of terms appearing in the
dynamic equations and form the mass matrix of the manipulator, the
centrifugal and Coriolis vector, and the gravity vector.

I A MNPLE 6.3

Give M(0), V(©,0), and G(O) for the manipulator of Section 6.7.

Equation (6.59) defines the manipulator mass matrix, M(©): it is
composed of all those terms which multiply ©, and is a function of ©.
Therefore we have

IBmg + 2l omaes + 12(my +my) [Bmg + 1 1ymae,

M(©) = (6.60)

BBmgy + 1 lomacs 12m,

Any manipulator mass matrix is symmetric and positive definite., and
is, therefore. always invertible.

205

\ﬂi_J 6 Manipulator dynamics

The velocity term, V (0, ©), contains all those terms which have any
dependence on joint velocity. Therefore we have

""mQE-lli-QSQég . 2m2£1£2529192

V(©,0) = (6.61)

'mzziizszéf
A term like —myl 18,02 is caused by a centrifugal force, and is
recognized as such because it depends on the square of a joint velocity.
A term such as —2m,l,155,6,6, is caused by a Coriolis force and will
always contain the product of two different joint velocities.

The gravity term, G(@), contains all those terms in which the
gravitational constant, g, appears. Therefore we have

G(6) = malagess + (Mg +'m2)glgc!} : (6.62)
malage; s
Note that the gravity term depends only on ©, and not on its deriva-

tives. a

The configuration space equation

By writing the velocity dependent term, V(©,8), in a different form,
we can write the dynamic equations as

r=M(©)6 + B(©) {ee} +0(0) [eﬂ +G(O), (6.63)

where B(©) is a matrix of dimensions n x n(n — 1)/2 of Coriolis
coefficients, [@6} is an n(n — 1)/2 x 1 vector of joint velocity products
given by

Pl fne 50 = ol : . A

iee} = [9192 G0y - = en_len] _. (6.64)
C(©) is an n x n matrix of centrifugal coefficients, and {@2} isann x1
vector given by

6243 - - gg]T. (6.65)

We will call (6.63) the configuration space equation since the
matrices are functions only of manipulator position [3].

In this form of the dynamic equations, the complexity of the compu-
tation is seen to be in the form of computing various parameters which
are a function of only the manipulator position, @. This is important
in applications (such as computer control of a manipulator) in which
the dynamic equations must be updated as the manipulator moves.
(Equation (6.63) gives a form in which parameters which are only a
function of joint position, and can be updated at a rate related to
how fast the manipulator is changing configuration.) We will consider
this form again with regard to the problem of manipulator control in
Chapter 10.

6.9 Lagrangian formulation of manipulator dynamics

N (A MPLE 6.4

Give B(@) and C(©) (from (6.63)) for the manipulator of Sec-
tion 6.7.
For this simple two-link manipulator, we have

[06] = 16:6,],
Y 060
N 1
[= M
So we see that
—2msly
B(©) = { mzol 282} (6.67)
and 5 r
—MgatylaSa
; = : 6.68
c(© {m-gfﬂgs'z 0] ()

6.9 Lagrangian formulation of manipulator dynamics

The Newton-Euler approach is based on the elementary dynamic formu-
las (6.29) and (6.30), and on an analysis of forces and moments of con-
straint acting between the links. As an alternative to the Newton-Euler
method, in this section we briefly introduce the Lagrangian dynamic
formulation. Whereas the Newton-Euler formulation might be said to
be a “force balance” approach to dynamics, the Lagrangian formulation
is an “energv-based” approach to dynamics. Of course, for the same
manipulator, both will give the same equations of motion. Our statement
of Lagrangian dynamics will be brief and somewhat specialized to the
case of a serial chain mechanical manipulator with rigid links. For a more
complete and general reference, see [4].

We start by developing an expression for the kinetic energy of a
manipulator. The kinetic energy of the ith link, k;, can be expressed as

‘wi “I ey, (6.69)

where the first term is kinetic energy due to linear velocity of the link’s
center of mass, and the second term is kinetic energy due to angular
velocity of the link. The total kinetic energy of the manipulator is the
sum of the kinetic energy in the individual links; that is,

k=

i

k;. (6.70)
1

™

207

208 | 6 Manipulator dynamics

Since the v, and w; in (6.69) are functions of © and O, we see that
the kinetic energy of a manipulator can be described by a scalar formula
as a function of joint position and velocity, k(©, @). In fact, the kinetic
energv of a manipulator is given by

k(©,0) = %@TM{E)}@, (6.71)

where M (©) is the n x n manipulator mass matrix already introduced
in Section 6.8. An expression of the form of (6.71) is known as a
quadratic form [5], since when expanded out, the resulting scalar
equation is composed solely of terms whose dependence on the 8, is
quadrati¢c. Further, because the total kinetic energy must always be
positive, the manipulator mass matrix must be a so-called positive
definite matrix. Positive definite matrices are those with the property
that their quadratic form is always a positive scalar. Equation (6.71)
can be seen to be analogous to the familiar expression for the kinetic
energy of a point mass,

1
k= Emvz, (6.72)

The fact that a manipulator mass matrix must be positive definite is
analogous to the fact that a scalar mass is always a positive number.
The potential energy of the ith link, u;, can be expressed as

T

u; = —m; %g7 UPCI. + Uref s (6.73)

where %g is the 3 x 1 gravity vector, UPCE_ is the vector locating the
center of mass of the ith link, and u,y, is a constant chosen so that the
minimum value of u; is zero.™ The total potential energy stored in the
manipulator is the sum of the potential energy in the individual links;
that is,

u= Zui‘ (6.74)

Since the P, in (6.73) are functions of ©, we see that the potential
energy of a manipulator can be described by a scalar formula as a
function of joint position, u(®).

The Lagrangian dynamic formulation provides a means of deriving
the equations of motion from a scalar function called the Lagrangian,
which is defined as the difference between the kinetic and potential

* Actually, since only the partial derivative of the potential energy with
respect to © will appear in the dynamics, this constant is arbitrary. This
corresponds to defining the potential energy relative to an arbitrary zero
reference height.

6.9 Lagrangian formulation of manipulator dynamics

energy of a mechanical system. In our notation, the Lagrangian of a
manipulator is

£(©,0) = k(6,0) — u(0). (6.75)
The equations of motion for the manipulator are then given by

dac ac

—— - — =T 6.76

dt g6 99 ()
where 7 is the n x 1 vector of actuator torques. In the case of a
manipulator, this equation becomes

d 8k Ok Ou

e i i i

; = 6.77
dtae 0 70 ()

where the arguments of k(-) and u(-) have been dropped for brevity.

I AN PLE 6.5

e

The links of an RP manipulator shown in Fig. 6.7 have inertia
tensors

Ix:l 0 0
Cil= Lz 0
B 0 Ty (8.78)
I:cz? 0
S| 0 L @
0 0 [zz:2

FIGURE 6.7 The RP manipulator of Example 6.5

209

l_2m_J 6 Manipulator dynamics

and total mass m; and m,. As shown in Fig. 6.7, the center of mass of
link 1 is located at a distance {; from the joint 1 axes, and the center
of mass of link 2 is at the variable distance d, from the joint 1 axis.
Use Lagrangian dynamics to determine the equation of motion for this

manipulator.
Using (6.69) we write the kinetic energy of link 1 as
1 g 1 .
ky = 5my 1307 + 51,007, (6.79)
and the kinetic energy of link 2 as
1 : : 1 :
ky = 5my (dgaf + dg) + 512002, (6.80)

Hence, the total kinetic energy is given by
k(6,6) = % (M2 + 1,1 + 1., +mydd) 63 + %deg. (6.81)
Using (6.73) we write the potential energy of link 1 as
uy = mylygsin(f;) +m,l g, (6.82)
and the potential energy of link 2 as
Uy = Magds sin(fy) + me9damaz, (6.83)
where ds,,,, is the maximum extension of joint 2. Hence, the total
potential energy is given by
u(@) = g (mqly + mady)sin(f,) + mylig + magds gz (6.84)
Next we take partial derivatives as needed for (6.77).
Ok _ [(myl3+1..1+1,.2+md3) él]

(6.85)

50 L mods

dk T

90 _m2d2éf]

du [g(myly +m2d2)c05{91)]

(6.86)
30 ~ L gmg sin(6,)
Finally, substituting into (6.77) we have

= (mlff + 1.1+ I..p +madi) 8, +2mydy6,d,

(6.87)

+ (myly + mady) g cos(6,), (6.88)
g m;,de - mzdgéf + mpgsin(f,).

From (6.88) we can see that

_[mlzg ag Izzl RS Izz? + mZd%} 0

L 0 my |’
-szdzél‘d:z

T | (6.89)

G(O) = [(myl, + mde)gcos(Bl}} . »

magsin(f,;)

6.10 Formulating manipulator dynamics in Cartesian space l 211 l

6.10 Formulating manipulator dynamics in Cartesian
space

Our dynamic equations have been developed in terms of the position
and time derivatives of the manipulator joint angles, or in joint space,
with the general form:

r=M(©)6+V(0,0)+G(O). (6.90)

We developed this equation in joint space because we could use the serial
link nature of the mechanism to advantage in deriving the equations. In
this section we discuss the formulation of the dynamic equations which
relate acceleration of the end-effector expressed in Cartesian space to
Cartesian forces and moments acting at the end-effector.

The Cartesian state space equation

As exlained in Chapters 10 and 11, it may be desirable to express the
dynamics of a manipulator with respect to Cartesian variables in the
general form [6]

F=M/(0)X +V,(0,0)+G,(O), (6.91)

where F is a force-torque vector acting on the end-effector of the
robot, and X is an appropriate Cartesian vector representing position
and orientation of the end-effector [7]. Analogous to the joint space
quantities, M, (©) is the Cartesian mass matrix, V, (0, ©) is a vector
of velocity terms in Cartesian space, and G_(©) is a vector of gravity
terms in Cartesian space. Note that the fictitious forces acting on the
end-effector, F, could in fact be applied by the actuators at the joints
using the relationship

= JT(e) F, (6.92)

where the Jacobian, J(©), is written in the same frame as F and X,
usually the tool frame, {T}.

We can derive the relationship between the terms of (6.90) and those
of (6.91) in the following way. First, we premultiply (6.90) by the inverse
of the Jacobian transpose to obtain

J Tr=J"TM(©)6+J-TV(0,0)+J - TG(©), (6.93)

or,
F=J"TM®©)0+J-TV(0,0)+J-TG(O). (6.94)

LM 6 Manipulator dynamics
We next develop a relationship between joint space and Cartesian
acceleration, starting with the definition of the Jacobian,
X =J6, (6.95)
and diﬁerentiating to obtain
X =Jo+Je. (6.96)
Solving (6.96) for joint space acceleration leads to
O=J"x-Jtje. (6.97)
Substituting (6.97) into (6.94) we have
F=J"TM@O)J 1 X-J TMO)J rJ6+J"TV(O,0)+J-TG(O), (6.98)

from which we derive the expressions for the terms in the Cartesian
dynamics as

M, (©)=J"T(0) M(©) J~1(©),
V,(0.8)=J"T(©) (V(e,e) - M(©) J~L(®) J(©) e) ,, (6.99)
G.(8)=J"T(8) G(e).

The Jacobian appearing in equations (6.99) is written in the same
frame as F and & in (6.91) though the choice of this frame is arbitrary.*
Note that when the manipulator approaches a singularity, certain quan-
tities in the Cartesian dynamics become infinite.
I - X AMPLE 6.6

Derive the Cartesian space form of the dynamics for the two-link
planar arm of Section 6.7. Write the dynamics in terms of a frame
attached to the end of the second link.

For this manipulator we have already obtained the dynamics (in
Section 6.7), and the Jacobian (equation (5.66)), which we restate here:

_ 3132 0
J(6)= {llcg .9 EJ : (6.100)

First compute the inverse Jacobian:

J7H©e) - [—11 bz g } (6.101)

T Llas, ex—ly 118,

* Certain choices may facilitate computation.

6.10 Formulating manipulator dynamics in Cartesian space

and the time derivative of the Jacobian:

ey 31029’3 1]
Jj(e) = {_113282 o1 (6.102)

Using (6.99) and the results of Section 6.7 we obtain

) "
me =" |
0 Mg
V.(0,0) = —(mglycy + maly)8F — mylyf3 — (2maly +malicy +myly ;;,'}91.92

mzflszéf +11m2328_192

G {e} mlgs + mMagsio
= L ngcu '

213

(6.103)

When s, = 0 the manipulator is in a singular position and some of
the dynamic terms go to infinity. For example, when 6, = 0 (arm
stretched straight out), the effective Cartesian mass of the end-effector
becomes infinite in the X, direction of the link 2 tip frame, as expected.
In general, at a singular configuration there is a certain direction, the
singular direction in which motion is impossible, but general motion in
the subspace “orthogonal” to this direction is possible [8]. =

The Cartesian configuration space torque equation

Combining (6.91) and (6.92) we can write equivalent joint torques with
the dynamics expressed in Cartesian space:

7= 77(0) (M.(0)X +V.(8,6) + G, {e)) (6.104)

We will find it usefull= to write this equation in the form
= JT(0)M,(0)& + B,(0) [68] + C,(6) {92 +G©), (6.105)
where B.(©) is a matrix of dimensions n x n(n — 1)/2 of Coriolis
coefficients, (;)C;)} is an n(n —1)/2 x 1 vector of joint velocity products

given by
o | Fa a0 e 4 e o M

[ee_;i = (66,0205 - - - b0nbn] (6.106)

C.(©) is an n x n matrix of centrifugal coefficients, and [92} isannx1
vector given by
T

[éf I (6.107)

Note that in (6.105), G(©) is the same as in the joint space equation,
but in general B,(©) # B(0©) and C,(©) # C(9).

LM_J 6 Manipulator dynamics

I X AMPLE 6.7

Determine B_(0) and C,(©) (from (6.105)) for the manipulator of
Section 6.7. ‘
If we form the product J7(©)V,(©,0) we find that

mil232 — iy lss
B.(©) = { e Wi Q} (6.108)
molils8,
and 0 T
—Maglylads
C = . 6.109
=(®) [m211£232 0 } ()

6.11 Inclusion of nonrigid body effects

It is important to realize that the dynamic equations we have derived do
not encompass all the effects acting on a manipulator. They include just
those forces which arise from rigid body mechanics. The most important
source of forces that are not included is friction. All mechanisms are, of
course, affected by frictional forces. In present day manipulators in which
significant gearing is typical, the forces due to friction can actually be
quite large—perhaps equaling 25% of the torque required to move the
manipulator in typical situations.

In order to make dynamic equations reflect the reality of the physical
device, it is important to model (at least approximately) these forces of
friction. A very simple model for friction is viscous friction, in which
the torque due to friction is proportional to the velocity of joint motion.
Thus we have

Tfriction = 1':‘9- (61 10)

where v is a viscous friction constant. Another possible simple model
for friction, Coulomb friction, is sometimes used. Coulomb friction is
constant except for a sign dependence on the joint velocity:

“-_-‘."'!cf;::r: =c 39“(8) (6111}

where ¢ is a Coulomb friction constant. The value of ¢ is often taken
at one value when 8 = 0, the static coefficient, and at a lower value,
the dynamic coefficient, when # # 0. Whether a joint of a particular
manipulator exhibits viscous or Coulomb friction is a complicated issue
of lubrication and other effects. A reasonable model is to include both,
since both effects are likely:

Tiriction = € sgn(é) + 8. (6.112)

6.12 Dynamic simulation [215 |

It turns out that in many manipulator joints, friction also displays
a dependence on the joint position. A major cause of this effect might
be gears which are not perfectly round—their eccentricity would cause
friction to change according to joint position. So a fairly complex friction
model would have the form

Tjn'r:tian = f('g‘ 9} (6113}

These friction models are then added to the other dynamic terms derived
from the rigid body model, yielding the more complete model

r=M(©)8+V(0,0)+G(0)+F(0,0). (6.114)

There are other effects which are also neglected in this model. For
example, the assumption of rigid body links means that we have failed to
include bending effects (which give rise to resonances) in our equations
of motion. However, these effects are extremely difficult to model, and
are beyond the scope of this book (see [9,10]).

6.12 Dynamic simulation

To simulate the motion of a manipulator we must make use of a model
of the dynamics, such as we have just developed. Given the dynamics
written in closed form as in (6.59), simulation requires solving the
dynamic equation for acceleration:

&=M"1(0) [T—V{e,e) —G(@}-F(e,ey}. (6.115)
We may then apply any of several known numerical integration
techniques to integrate the acceleration to compute future positions and
velocities.

Given initial conditions on the motion of the manipulator, usually

in the form:

(6.116)

we numerically integrate (6.115) forward in time by steps of size At.
There are many methods of performing numerical integration [11]. Here
we introduce the simplest integration scheme, called Euler integration,
which is accomplished as follows: Starting with ¢ = 0, iteratively
compute
O(t + At) = O(t) + 6(t)At,
: T (6.117)
Ot + At) = O(t) + B(t)At + §e(t)At2._

l&‘ 6 Manipulator dynamics

where for each iteration, (6.115) is computed to calculate 6. In this way,
the position, velocity, and acceleration of the manipulator caused by a
certain input torque function can be computed numerically.

While Euler integration is conceptually simple, other more sophisti-
cated integration techniques are recommended for accurate and efficient
simulation [11]. The selection of At is an issue that is often discussed.
It should be sufficiently small that breaking continuous time into these
small increments is a reasonable approximation. It should be sufficiently
large that an excessive amount of computer time is not required to
compute a simulation.

6.13 Computational considerations

Because the dynamic equations of motion for typical manipulators are
so complex, it is important to consider computational issues. In this
section we restrict our attention to joint space dynamics. Some issues of
computational efficiency of Cartesian dynamics are discussed in [7,8].

A historical note concerning efficiency

Counting the number of multiplications and additions for the equations
(6.45)—(6.53) when taking into consideration the simple first outward
computation and simple last inward computation we get

126n — 99 multiplications,
106n — 92 additions,

where n is the number of links (here, at least two). While still somewhat
complex, the formulation is tremendously efficient in comparison with
some previously suggested formulations of manipulator dynamics. The
first formulation of the dynamics for a manipulator [12,13] was done
using a fairly straightforward Lagrangian approach whose required com-
putations came out to be approximately [14]:

32n* + 86n% + 171n? + 53n — 128 multiplications,
25n* + 66n° + 129n2 + 42n — 96 additions.

For the typical case of n = 6, the iterative Newton-Euler scheme is
about 100 times more efficient! The two approaches must of course yield
equivalent equations, and numeric calculations would yield exactly the
same results, but the structure of the equations is quite different. This
is not to say that a Lagrangian approach cannot be made to produce
efficient equations. Rather, this comparison indicates that in formulating

6.13 Computational considerations

a computational scheme for this problem, care must be taken as regards
efficiency. The relative efficiency of the method we have presented stems
from posing the computations as iterations from link to link, and in the
particulars of how the various quantities are represented [15].

Renaud [16], and Liegois et al. [17] made early contributions concern-
ing formulating the mass-distribution descriptions of the links. While
studying the modeling of human limbs, Stepanenko and Vukobratovic
[18] began investigating a “Newton-Euler” approach to dynamics in-
stead of the somewhat more traditional Lagrangian approach. This work
was revised for efficiency by Orin et al. [19] in an application to the
legs of walking robots. Orin’s group improved the efficiency somewhat
by writing the forces and moments in the local link reference frames
instead of the inertial frame. They also noticed the sequential nature of
calculations from one link to the next, and speculated that an efficient
recursive formulation might exist. Armstrong [20] and Luh, Walker, and
Paul [2] paid close attention to details of efficiency and published an
algorithm that is O(n) in complexity. This was accomplished by setting
up the calculations in an iterative (or recursive) nature and by expressing
the velocities and accelerations of the links in the local link frames.
Hollerbach [14] and Silver [15] further explored various computational
algorithms. Hollerbach and Sahar [21] showed that for certain specialized
geometries the complexity of the algorithm would further reduce.

Efficiency of closed form vs. iterative form

While the iterative scheme introduced in this chapter is quite efficient
as a general means of computing the dynamics of any manipulator,
closed form equations derived for a particular manipulator will usually be
more efficient. Consider the two-link planar manipulator of Section 6.7.
Plugging in n = 2 into the formulas given in Section 6.13, we find that
our iterative scheme would require 153 multiplications and 120 additions
to compute the dynamics of a general two-link. However, our particular
two-link arm happens to be quite simple since it is planar and the masses
are considered point masses. So if we consider the closed form equations
which we worked out in Section 6.7, we see that computation of the
dynamics in this form requires about 30 multiplications and 13 additions.
This is an extreme case, because the particular manipulator is so simple,
but it illustrates the point that symbolic closed form equations are likely
to be the most efficient formulation of dynamics. Several authors have
published articles showing that for any given manipulator, customized
closed form dynamics are more efficient than even the best of the general
schemes [22-27].

Hence if manipulators are designed to be simple in the kinematic
and dynamic sense, they will have dynamic equations which are simple.

217

@l 6 Manipulator dynamics

We might define a kinematically simple manipulator to be one which
has many (or all) link twists equal to 0°, 90°, or —90°, and many
link lengths and offsets equal to zero. We might define a dynamically
simple manipulator as one for which each link inertia tensor is diagonal
in frame {C,}.

The drawback of formulating closed form equations is simply that
it currently requires a fair amount of human effort. However, symbolic
manipulation programs which can derive the closed form equations of
motion of a device and automatically factor common terms and perform
trigonometric substitutions have been developed [25, 28-30].

Efficient dynamics for simulation

When dynamics are to be computed for the purpose of performing a
numerical simulation of a manipulator, we are interested in solving
for the joint accelerations given the manipulator’s current position,
velocity, and the input torques. An efficient computational scheme must
therefore address the computation of the dynamic equations studied in
this chapter, as well as efficient schemes for solving equations (for joint
accelerations) and performing numerical integration. Several efficient
methods for dynamic simulation of manipulators are reported in [31].

Memorization schemes

In any computational scheme there can be a trade-off made between
computations and memory usage. In the problem of computing the
dynamic equation of a manipulator, (6.59), we have implicitly assumed
that when a value of 7 is needed, it is computed as quickly as possible
from ©,0, and © at run time. If we wish, we can trade off this
computational burden at the cost of a tremendously large memory
by precomputing (6.59) for all possible ©,0, and © values (suitably
quantized). Then, when dynamic information is needed, the answer is
found by table lookup.

The size of the memory required is large. Assume that each joint
angle range is quantized to ten discrete values; likewise, assume that
velocities and accelerations are quantized to ten ranges each. For a
six-jointed manipulator, the number of cells in the (©, e, é) quantized
space is (10 x 10 x 10)°. In each of these cells, there are six torque values.
Assuming each torque value requires one computer word, this memory
size is 6 x 10'® words! Also, note that the table needs to be recomputed
for a change in the mass of the load, or another dimension can be added
to account for all possible loads.

There are many intermediate solutions which trade off memory for
computation in various ways. For example, if the matrices appearing

References

in equation (6.63) were precomputed, the table would only have one
dimension (in ©) rather than three. After the functions of @ are looked
up. a modest amount of computation (given by (6.63)) is done. For more
details, and other possible parameterizations of this problem, see [3], [6].

References

[1] I Shames, Engineering Mechanics, 2nd edition, Prentice-Hall, 1967.

[2] J.Y.S. Luh, M.W. Walker, and R.P. Paul. “On-Line Computational Scheme
for Mechanical Manipulators,” Transactions of the ASME Journal of
Dynamic Systems, Measurement. and Control, 1980.

[3] M. Raibert, “Mechanical Arm Control Using a State Space Memory,” SME
paper MS77-750, 1977.

[4] K.R. Symon, Mechanics. 3rd edition, Addison-Wesley, Reading, Mass.,
1971.

5] B. Noble, Applied Linear Algebra, Prentice-Hall, 1969.

6] O. Khatib, “Commande Dynamique dans L’Espace Operationnel des
Robots Manipulateurs en Presence d’Obstacles,” These de Docteur-
Ingenieur. Ecole Nationale Superieure de I’Aeronautique et de L’Espace
(ENSAE). Toulouse.

[7]1 0. Khatib, “Dynamic Control of Manipulators in Operational Space,” Sixth
IFTOMM Congress on Theory of Machines and Mechanisms, New Delhi,
December 15-20, 1983.

[8] O. Khatib, “The Operational Space Formulation in Robot Manipulator
Control,” 15th ISIR, Tokyo, September 11-13, 1985.

[9] E. Schmitz, “Experiments on the End-Point Position Control of a Very
Flexible One-Link Manipulator,” Unpublished Ph.D. Thesis, Department
of Aeronautics and Astronautics, Stanford University, SUDAAR No. 547,
June 1985.

[10] W. Book, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,”
International Journal of Robotics Research, Vol. 3, No. 3, 1984.

[11] S. Conte and C. DeBoor, Elementary Numerical Analysis: An Algorithmic
Approach, 2nd edition, McGraw-Hill, 1972.

[12] J. Uicker, “On the Dynamic Analysis of Spatial Linkages Using 4 x 4 Matri-
ces,” Unpublished Ph.D dissertation, Northwestern University, Evanston,
IIl.. 1965.

[13] J. Uicker, “Dynamic Behaviour of Spatial Linkages,” ASME Mechanisms,
Vol. 5, No. 68, pp. 1-15.

[14] J.M.Hollerbach, “A Recursive Lagrangian Formulation of Manipulator Dy-
namics and a Comparative Study of Dynamics Formulation Complexity,”
in Robot Motion, M. Brady et al., Editors, MIT Press, 1983.

[15] W. Silver, “On the Equivalence of Lagrangian and Newton-Euler Dynamics
for Manipulators,” International Journal of Robotics Research, Vol. 1,
No. 2, pp. 60-T0.

[16] M. Renaud, “Contribution & I'Etude de la Modélisation et de la Commande
des Systémes Mécaniques Articulés” These de Docteur Ingénieur. Univer-
sité Paul Sabatier. Toulouse, December 1975.

219

\% 6 Manipulator dynamics

[17] A. Liegois, W. Khalil, J.M. Dumas, and M. Renaud, “Mathematical and
Models of Interconnected Mechanical Systems,” Symposium on the The-
ory and Practice of Robots and Manipulators, Poland, 1976.

[18] Y. Stepanenko and M. Vukobratovie, “Dynamics of Articulated Open-Chain
Active Mechanisms.” Math-Biosciences Vol. 28, 1976, pp. 137-170.

[19] D.E. Orin et al, “Kinematic and Kinetic Analysis of Open-Chain Link-
ages Utilizing Newton-Euler Methods,” Math-Biosciences Vol. 43, 1979,
pp- 107-130.

[20] W.W. Armstrong, “Recursive Solution to the Equations of Motion of an
N-Link Manipulator,” Proceedings of the 5th World Congress on the
Theory of Machines and Mechanisms, Montreal, July 1979.

[21] J.M. Hollerbach and G. Sahar, “Wrist-Partitioned Inverse Accelerations and
Manipulator Dynamics,” MIT AI Memo No. 717, April 1983.

[22] T.K. Kanade, P.K. Khosla, and N. Tanaka, “Real-Time Control of the CMU
Direct Drive Arm II Using Customized Inverse Dynamics,” Proceedings of
the 23rd IEEE Conference on Decision and Control, Las Vegas, Nevada,
December 1984,

[23] A. Izaguirre and R.P. Paul. “Computation of the Inertial and Gravitational
Coefficients of the Dynamic Equations for a Robot Manipulator with a
Load,” Proceedings of the 1985 International Conference on Robotics and
Automation, pp. 1024-1032, St. Louis, March 1985.

[24] B. Armstrong, O. Khatib, and J. Burdick, “The Explicit Dynamic Model
and Inertial Parameters of the PUMA 560 Arm.” Proceedings of the
1986 IEEE International Conference on Robotics and Automation, San
Francisco, April 1986, p. 510-518.

[25] J.W. Burdick, “An Algorithm for Generation of Efficient Manipulator
Dynamic Equations.” Proceedings of the 1986 IEEE International Con-
ference on Robotics and Automation, San Francisco, April 7-11, 1986,
pp. 212-218,

[26] T.R. Kane, and D.A. Levinson, “The Use of Kane’s Dynamical Equations
in Robotics,” The International Journal of Robotics Research, Vol. 2, No.
3. Fall 1983, pp. 3-20.

[27] M. Renaud, “An Efficient Iterative Analytical Procedure for Obtaining a
Robot Manipulator Dynamic Model,” First International Symposium of
Robotics Research, N.H., August 1983.

[28] W. Schiehlen, “Computer Generation of Equations of Motion” in Computer
Aided Analysis and Optimization of Mechanical System Dynamics, E.J.
Haug, Editor, Springer-Verlag, 1984.

[29] G. Cesareo, F. Nicolo and S. Nicosia, “DYMIR: A Code for Generating
Dynamic Model of Robots,” in Advanced Software in Robotics, Elsevier
Science Publishers, North-Holland, 1984.

[30] J. Murray, and C. Neuman. “ARM: An Algebraic Robot Dynamic Modelling
Program.” IEEE International Conference on Robotics, Atlanta, March
1984.

[31] M. Walker and D. Orin, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms,” ASME Journal of Dynamic Systems, Measure-
ment, and Control, Vol. 104, 1982,

Exercises | 221

Exercises

6.1 [12] Find the inertia tensor of a right cylinder of homogeneous density
with respect to a frame with origin at the center of mass of the body.

6.2 [32] Determine the dynamic equations for the two-link manipulator in Sec-
tion 6.7 when each link is modeled as a rectangular solid of homogeneous
density. Each link has dimensions [;, w;, and h;, and total mass m,.

6.3 [43] Determine the dynamic equations for the three-link manipulator of
Chapter 3, Exercise 3.3. Consider each link to be a rectangular solid of
homogeneous density with dimensions [;, w;, and h;, and total mass m,.

6.4 [13] Write the set of equations which correspond to (6.45)-(6.53) for the
case where the mechanism may have sliding joints.

6.5 [30] Determine the dynamic equations for the two-link nonplanar manip-
ulator shown in Fig. 6.8. Assume that all the mass of the links can be
considered as a point mass located at the distal (outermost) end of the
link. The mass values are m,; and m, and the link lengths are !, and
l5. This manipulator-is like the first two links of the arm in Exercise 3.3.
Also assume that viscous friction is acting at each joint with coefficients
v; and v,.

6.6 [32] Derive the Cartesian space form of the dynamics for the two-link
planar manpulator of Section 6.7 in terms of the base frame. Hint: See
Example 6.5 but use the Jacobian written in the base frame.

6.7 [18] How many memory locations would be required to store the dynamic
equations of a general three-link manipulator in a table? Quantize each
joint’s position, velocity. and acceleration into sixteen ranges. Make any
assumptions needed.

FIGURE 6.8 Two-link with point masses at distal end of links.

\ﬂQ_I 6 Manipulator dynamics

6.8

6.9

6.10

6.11

6.12

[32] Derive the dynamic equations for the two-link manipulator shown in
Fig. 4.6. Link 1 has an inertia tensor given by

Loy D 09
= 0 W A
0 0 I,

Assume that link 2 has all its mass, m,, located at a point at the
end-effector. Assume that gravity is directed downward (opposite Z,).

[37] Derive the dynamic equations for the three-link manipulator with one
prismatic joint shown in Fig. 3.9. Link 1 has an inertia tensor given by

Lex 0 @
Cir=1 0 Ly O
R R

Link 2 has point mass m, located at the origin of its link frame. Link 3
has an inertia tensor given by

Las 0 0
Br=| 0 By 0
0 0 L.

Assume that gravity is directed opposite Zl, and viscous friction of
magnitude v; is active at each joint.

[35] Derive the dynamic equations in Cartesian space for the manipulator
of Exercise 6.8. Write the equations in frame {2}.

[20] A certain one-link manipulator has

I..., 0O 0
“if=| 0 Ly B
0 0 Izzl

Assume that this is just the inertia of the link itself. If the motor armature
has a moment of inertia I,, and the gear ratio is 100, what is the total
inertia as seen from the motor shaft [1]7

[20] The single degree of freedom “manipulator” in Fig. 6.9 has total mass
m = 1 with the center of mass at

2
ch = O
0
and inertia tensor
1 0 0
CII =10 2 0
0 0 2

From rest at £ = 0, the joint angle &, moves following the time function
6,(t) = bt + ct?

in radians. Give the angular acceleration of the link and the linear
acceleration of the center of mass in terms of frame {1} as a function
of ¢.

Exercises

FIGURE 6.9 One-link “manipulator” of Exercise 6.12.

6.13 [40] Determine the Cartesian dynamic equations for the two-link nonpla-
nar manipulator shown in Fig. 6.8. Assume that all the mass of the links
can be considered as a point mass located at the distal (outermost) end of
the link. The mass values are m, and m, and the link lengths are [; and
[,. This manipulator is like the first two links of the arm in Exercise 3.3.
Also assume that viscous friction is acting at each joint with coefficients
vy and v,. Write the Cartesian dynamics in frame {3} which is located at
the tip of the manipulator with the same orientation as link frame {2}.

6.14 [18] The equations below were derived for a 2-DOF RP manipulator.
However, some of the terms are obviously incorrect. Indicate the incorrect
terms.

71 = my(d? + d)f; + mad26, + 2maydadab,

gcos(#y) |mq(d; + rJl2‘91) + my(ds + dz)J

..}

Ty = mlégél ~ m2¢f2 - mldldz - mgdgég + mqy(dy + 1)gsin(6,)

"
|

6.15 [28] Derive the dynamic equations for the RP manipulator of Example 6.5
using the Newton-Euler procedure instead of the Lagrangian technique.

6.16 [25] Derive the equations of motion for the PR manipulator shown in
Fig. 6.10. Neglect friction, include gravity (here, X, is upward). The
inertia tensors of the links are diagonal with moments I ;1,1 ,1.1.21

223

224 | 6 Manipulator dynamics

20 A Xl
y X2
Oz 2,

my ; ; mg

FIGURE 6.10 PR manipulator of Exercise 6.16.

and I, .5,1, 2.1, .2. The centers of mass for each link are given by

0
l_Pcl: O
_ll
0
2
PC _— O
* o

6.17 [40] The velocity-related terms appearing in the manipulator dynamic
equation can be written as a matrix-vector product; that is,

V(9,0)=1,.(0.0)6,

where the m subscript stands for “matrix form.” Show that an interesting
relationship exists between the time derivative of the manipulator mass
matrix and V,, (), namely,

M(®)=2V,,(0,8) -8,

where S is some skew-symmetric matrix.

6.18 [15] Give a couple of properties that any reasonable friction model (i.e.,
the term F(©,©) in (6.114)) would possess.

6.19 [28] Do Exercise 6.5 using Lagrange’s equations.

Programming Exercise (Part 6)

6.20 [28] Derive the dynamic equations of the 2-DOF manipulator of Sec-
tion 6.7 using a Lagrangian formulation.

Programming Exercise (Part 6)

1. Derive the dynamic equations of motion for the three-link manipulator
(from Example 3.3). That is, expand Section 6.7 for the three-link case.
The following numerical values describe the manipulator:

m, =4.6Kg

my =2.3Kg

ms = 1.0Kg
g= Q.Smjsz,

For the first two links, we assume that the mass is all concentrated at the
distal end of the link. For link 3, we assume that the center of mass is
located at the origin of frame {3}, that is, at the proximal end of the link.
The inertia tensor for link 3 is

005 0 0
Cr=| 0 01 0 |Kgm®
0 0 01

The vectors which locate each center of mass relative to each link frame are

1P01 = glxp
2PC2 =12X‘2‘
3Pc3 =L

2. Write a simulator for the three-link manipulator. A simple Euler-integration
routine is sufficient for performing the numerical integration (see Sec-
tion 6.12). To keep your code modular, it may be helpful to define a routine:

Procedure UPDATE(VAR tau: vec3; VAR period: real; VAR theta,
thetadot: vec3);

where “tau” is the torque command to the manipulator (always zero for
this assignment), “period” is the length of time you wish to advance time
(in seconds), and “theta” and “thetadot™ are the state of the manipulator.
Theta and thetadot are updated by “period” seconds each time you call
UPDATE. Note that “period” would typically be longer than the integration
step size, At, used in the numerical integration. For example, although the
step size for numerical integration might be 0.001 second, you might wish
only to print out the manipulator position and velocity each 0.1 seconds.

225

[226 | 6 Manipulator dynamics

To test your simulation, set the joint torque commands to zero (for all
time) and perform these tests:

a) Set the initial position of the manipulator to
6, 6, 65] =[-9000].

Simulate for a few seconds. Is the motion of the manipulator what you
would expect?

b) Set the initial position of the manipulator to
6, 63 83] = [30 30 10].

Simulate for a few seconds. Is the motion of the manipulator what you
would expect?

¢) Introduce some viscous friction at each joint of the simulated manip-
ulator. That is, add a term to the dynamics of each joint in the form

7¢ = v, where v = 5.0 Newton-meter seconds for each joint. Repeat test
(b) above. Is the motion what you would expect?

TRAJECTORY
GENERATION

7.1 Introduction

In this chapter, we concern ourselves with methods of computing a
trajectory in multidimensional space which describes the desired motion
of a manipulator. Here, trajectory refers to a time history of position,
velocity, and acceleration for each degree of freedom.

This problem includes the human interface problem of how we wish
to specify a trajectory or path through space. In order to make the
description of manipulator motion easy for a human user of a robot
system, the user should not be required to write down complicated
functions of space and time to specify the task. Rather, we must allow
the capability of specifying trajectories with simple descriptions of the
desired motion, and let the system figure out the details. For example,
the user may just specify the desired goal position and orientation of the
end-effector, and leave it to the system to decide on the exact shape of
the path to get there, the duration, the velocity profile, and other details.

228

7 Trajectory generation

We also are concerned with how trajectories are represented in the
computer after they have been planned. Finally, there is the problem
of actually computing the trajectory from the internal representation,
or generating the trajectory. Generation occurs at run time and, in the
most general case, position, velocity, and acceleration are computed.
Since these trajectories are computed on digital computers, the trajec-
tory points are computed at a certain rate, called the path update rate.
In typical manipulator systems this rate lies between 20 and 200 Hz.

7.2 General considerations in path description
and generation

For the most part, we will consider motions of a manipulator as motions
of the tool frame, {T'}, relative to the station frame, {S}. This is the
same manner in which an eventual user of the system would think, and
designing a path description and generation system in these terms will
result in a few important advantages.

When we specify paths as motions of the tool frame relative to the
station frame, we decouple the motion description from any particular
robot, end-effector, or workpieces. This results in a certain modularity,
and would allow the same path description to be used with a different
manipulator, or with the same manipulator with a different tool size.
Further, we can specify and plan motions relative to a moving work-
station (perhaps a conveyor belt) by planning motions relative to the
station frame as always, and at run time causing the definition of {S}
to be changing with time.

As shown in Fig. 7.1, the basic problem is to move the manipulator
from an initial position to some desired final position. That is, we wish
to move the tool frame from its current value, {T},,,;.}, to a desired
final value, {Tﬁm}. Note that this motion in general involves a change
in orientation as well as a change in position of the tool relative to the
station.

Sometimes it is necessary to specify the motion in much more detail
than simply stating the desired final configuration. One way to include
more detail in a path description is to give a sequence of desired via
points or intermediate points between the initial and final positions.
Thus, in completing the motion, the tool frame must pass through a
set of intermediate positions and orientations as described by the via
points. Each of these via points is actually a frame which specifies both
the position and orientation of the tool relative to the station. The
name path points includes all the via points plus the initial and final
points. Remember that although we generally use the term “points,”

7.2 General considerations in path description and generation

FIGURE 7.1 In executing a trajectory, a manipulator moves from its initial
position to a desired goal position in a smooth manner.

these are actually frames which give both position and orientation. Along
with these spatial constraints on the motion, the user may also wish to
specify temporal attributes of the motion. For example, the time elapsed
between via points might be specified in the description of the path.

Usually, it is desirable for the motion of the manipulator to be
smooth. For our purposes, we will define a smooth function as one
which is continuous and has a continuous first derivative. Sometimes,
a continous second derivative is also desirable. Rough, jerky motions
tend to cause increased wear on the mechanism, and cause vibrations by
exciting resonances in the manipulator. In order to guarantee smooth
paths, we must put some sort of constraints on the spatial and temporal
qualities of the path between the via points.

At this point there are many choices that may be made, and
consequently a great variety in the ways that paths might be specified
and planned. Any smooth functions of time which pass through the via
points could be used to specify the exact path shape. In this chapter
we will discuss a couple of simple choices for these functions. Other
approaches may be found in [1], [2], [13-19].

229

\&‘ 7 Trajectory generation

7.3 Joint space schemes

In this section we consider methods of path generation in which the
path shapes (in space and in time) are described in terms of functions
of joint angles.

Each path point is usually specified in terms of a desired position
and orientation of the tool frame, {T}, relative to the station frame,
{S}. Each of these via points is “converted” into a set of desired joint
angles by application of the inverse kinematics. Then a smooth function
is found for each of the n joints which pass through the via points and
end at the goal point. The time required for each segment is the same
for each joint so that all joints will reach the via point at the same
time, thus resulting in the desired Cartesian position of {7} at each
via point. Other than specifying the same duration for each joint, the
determination of the desired joint angle function for a particular joint
does not depend on the functions for the other joints.

Hence, joint space schemes achieve the desired position and orien-
tation at the via points. In between via points the shape of the path,
while rathe)r simple in joint space, is complex if described in Cartesian
space. Joint space schemes are usually the easiest to compute, and,
because we make no continuous correspondence between joint space and
Cartesian space, there is essentially no problem with singularities of the
mechanism.

Cubic polynomials

Consider the problem of moving the tool from its initial position to a goal
position in a certain amount of time. Using the inverse kinematics the
set of joint angles that correspond to the goal position and orientation
can be calculated. The initial position of the manipulator is also known
in the form of a set of joint angles. What is required is a function for each
joint whose value at ¢, is the initial position of the joint, and whose value
at t; is the desired goal position of that joint. As shown in Fig. 7.2, there
are many smooth functions, #(¢), which might be used to interpolate the
joint value.

In making a single smooth motion, at least four constraints on 8(t)
are evident. Two constraints on the function’s value come from the
selection of initial and final values:

0(0) = 6,, -

7.3 Joint space schemes

A Bit) 1

FIGURE 7.2 Several possible path shapes for a single joint.

An additional two constraints are that the function is continuous in
velocity, which in this case means the the initial and final velocity are
ZETO: !

6(0) = 0,

: (7.2)

6(t;) = 0.

These four constraints can be satisfied by a polynomial of at least
third degree. Since a cubic polynomial has four coefficients, it can be
made to satisfy the four constraints given by (7.1) and (7.2). These
constraints uniquely specify a particular cubic. A cubic has the form

8(t) = ap + a,t + aqt? + agt?, (7.3)
and so the joint velocity and acceleration along this path are clearly

8(t) = a; + 2a,t + 3a;t?,
’ (7.4)
#(t) = 2a, + 6ast.

Combining (7.3) and (7.4) with the four desired constraints yields four
equations in four unknowns:
Oy = ag,

s = ag +at; + agt? + asty,
(7.5)

02&11

0 = a, + 2a5t; + 3a,t}.

231

_2@ 7 Trajectory generation

Solving these equations for the a, we obtain

g = 90,

4 = 0,
3

a3 = = (65 — bo), (7.6)
¥

2
Qg = ‘-—'g(gf = 60)

Using (7.6) we can calculate the cubic polynomial that connects any
initial joint angle position with any desired final position. This solution
is for the case when the joint starts and finishes at zero velocity.

I [AMPLE 7.1

A single-link robot with a rotary joint is motionless at # = 15
degrees. It is desired to move the joint in a smooth manner to § = 75
degrees in 3 seconds. Find the coefficients of a cubic which accomplishes
this motion and brings the manipulator to rest at the goal. Plot the
position, velocity, and acceleration of the joint as a function of time.

Plugging into (7.6) we find

ay = 15.0,
a; = 0.0,
a, = 20.0, ()
Ga = _—4,44,
Using (7.3) and 7.4) we obtain
6(t) = 15.0 + 20.0t* — 4.44¢%,
9(t) = 40.0t — 13.33t2, (7.8)

f(t) = 40.0 — 26.66¢.

Figure 7.3 shows the position, velocity, and acceleration functions for
this motion sampled at 40 Hz. Note that the velocity profile for any
cubic function is a parabola, and the acceleration profile is linear.]

Cubic polynomials for a path with via points

So far we have considered motions described by a desired duration and
a final goal point. In general, we wish to allow paths to be specified
which include intermediate via points. If the manipulator is to come to
rest at each via point, then we can use the cubic solution of Section 7.3.

7.3 Joint space schemes

75 Degrees
i
65—

55 -
50 1~
45
40 —
35 —
30
25 =
20 -
15 | 1 | |

30

25

15

10

6 1.2 1.8 2.4

Position

Deglsec

| | | |

B 1.2 18 2.4
Velacity

Deg/sec”

|2 e e L

| |]

3.0

.6 1.2 1.8 24

Acceleration

3.0

| Seconds

Seconds

Seconds

FIGURE 7.3 Position, velocity, and acceleration profiles for a single cubic
segment which starts and ends at rest.

Usually, we wish to be able to pass through a via point without stopping,
and so we need to generalize the way in which we fit cubics to the path

constraints.

233

\ﬁ‘ 7 Trajectory generation

As in the case of a single goal point, each via point is usually specified
in terms of a desired position and orientation of the tool frame relative
to the station frame. Each of these via points is “converted” into a set
of desired joint angles by application of the inverse kinematics. We then
consider the problem of computing cubics which connect the via point
values for each joint together in a smooth way.

If desired velocities of the joints at the via points are known, then
we can determine cubic polynomials as before, but now the velocity
constraints at each end are not zero, but rather, some known velocity.
The constraints of (7.3) become

9(0) = 6‘0 1

. ‘ (7.9)
Bt ;) = 6.

The four equations describing this general cubic are

By = ag,

9f:ar0+a1tf +a2t%+a3t?,
i 7.10
90 =Gl ()

éf =a; + 2a2tf +3a3t§.

Solving these equations for the a; we obtain

a0=901
ar - 0o
3 2. 1 711
(12=t—2(9f—80)—t—30—t—9f, ()
f 57 f

2 1 ;

Using (7.11) we can calculate the cubic polynomial that connects any
initial and final positions with any initial and final velocities.

If we have the desired joint velocities at each via point, then we
simply apply (7.11) to each segment to find the required cubics. There
are several ways in which desired velocity at the via points might be
specified.

7.3 Joint space schemes

1. The user specifies the desired velocity at each via point in terms
of a Cartesian linear and angular velocity of the tool frame at that
instant.

2. The system automatically chooses the velocities at the via points by
applying a suitable heuristic in either Cartesian space or joint space.

3. The system automatically chooses the velocities at the via points
in such a way as to cause the acceleration at the via points to be
continuous.

In the first option, Cartesian desired velocities at the via points
are “mapped” to desired joint rates using the inverse Jacobian of the
manipulator evaluated at the via point. If the manipulator is at a singular
point at a particular via point, then the user is not free to assign an
arbitrary velocity at this point. While it is a useful capability of a path
generation scheme to be able to meet a desired velocity which the user
specifies, it would be a burden to require that the user always make
these specifications. Therefore, a convenient system should include either
option 2 or 3 (or both).

In option 2, the system automatically chooses reasonable intermedi-
ate velocities using some kind of heuristic. Consider the path specified
by the via points shown for some joint, 6, in Fig. 7.4.

In Fig. 7.4 we have made a reasonable choice of joint velocities at the
via points, as indicated with small line segments representing tangents
to the curve at each via point. This choice is the result of applying
a conceptually and computationally simple heuristic. Imagine the via
points connected with straight line segments—if the slope of these lines
changes sign at the via point, choose zero velocity, if the slope of these

A
()
Ba 7_0
——
s Y b
// 3 //
7 G /
// \\ /,/ﬁ.
L] ot
—«%ﬂ N
| I I B
ty fa tp te tn

FIGURE 7.4 Via points with desired velocities at the points indicated
by tangents.

235

1&' 7 Trajectory generation

lines does not change sign, choose the average of the two slopes as the via
-velocity. In this way, from specification of the desired via points alone,
the system can choose the velocities at each point.

In option 3, the system chooses velocities such that acceleration is
continuous at the via point. To do this, a new splining solution is needed.
In this kind of spline, we replace the (two) velocity constraints at the
connection of two cubics with the (two) constraints that a) velocity be
continuous and b) acceleration be continuous.

I X AMPLE 7.2

Solve for the coefficients of two cubics which are connected in a
two-segment spline with continuous acceleration at the intermediate via
point. The initial angle is §,, the via point is 8, and the goal point is 8,

The first cubic is

B(t) = G1p + a1t + ayot2 + ayats, (7.12)
and the second is
A=t Lot aaoti anatty (7.13)

Each cubic will be evaluated over an interval starting at ¢ = 0 and
ending at ¢ = t;, where i = 1 or i = 2.
The constraints we wish to enforce are

b = @10,
0, = @19 +antyy + alztﬁl + algt?}l,
0, = aso,
b, = ago + :'5-"21 ta + Gootts + agat}s,
0 dyys (7.14)
0=az; +2a55ts5 + 3&23@2‘
ayy +2a12t sy +3a13tF; = agy,

20,12 -+ ﬁalatfl = 20.22.

7.3 Joint space schemes [237

These constraints specify a linear equation problem of eight equations
and eight unknowns. Solving for the case t; =t = t;; we obtain

a9 = by,
a;p =0,

_ 126, — 30, — 96,

o= 2 *
4t5
—86, + 360, + 56,
higy = T
agy = by, {7 16)
30, — 30,
= —4tf—““v
—126, + 60, + 66,
Qg3 = 4tf«)
86, — 50, — 36,
Ggz = 4@ 3

For the general case of n cubic segments the equations which arise
from insisting on continuous acceleration at the via points may be cast in
matrix form which is solved to compute the velocities at the via points.
The matrix turns out to be tridiagonal and easily solved [4].

Higher order polynomials

Higher order polynomials are sometimes used for path segments. For
example, if we wish to be able to specify the position, velocity, and
acceleration at the beginning and end of a path segment, a quintic
polynomial is required:

8(t) = ag + ayt + ast® + agt® + at* +agt®, (7.16)
where the constraints are given as

ty = aq,

0 = ag + arty + agt} + agt} + st} + asty,

90 =y
b = ay + 2a,t; + 3azt; + 4ayt] + Sast}, (7.17)

Is,"” - 2(12\

Iﬁ.8_| 7 Trajectory generation

These constraints specify a linear set of six equations with six unknowns
whose solution is

Qg = 601
a = éOJ
_
Qg = 2]
200, — 200, — (80 + 120,)t ; — (36, — 6)2 (7.18)
Qg— 2t3 L]
f
o 300, — 300, + (146 + 160,)t + (36, — 20 ;)2
= 214 :
£
120, — 126, — (60, + 60,)t; — (6, — 0,)t2
Qg = 2t? 2

Various algorithms are available for computing smooth functions
(polynomial or otherwise) which pass through a given set of data points
[3], [4]. Complete coverage is beyond the scope of this book.

Linear function with parabolic blends

Another choice of path shape is linear. That is, we simply linearly
interpolate to move from the present joint position to the final position
as in Fig. 7.5. Remember that although the motion of each joint in this
scheme is linear, the end-effector in general does not move in a straight
line in space.

However, straightforward linear interpolation would cause the veloc-
ity to be discontinous at the beginning and end of the motion. To create
a smooth path with continous position and velocity, we start with the
linear function but add a parabolic blend region at each path point.

|
|
[
|
I
i

Iy £

FIGURE 7.5 Linear interpolation requiring infinite acceleration.

7.3 Joint space schemes

During the blend portion of the trajectory, constant acceleration is used
to change velocity smoothly. Figure 7.6 shows a simple path constructed
in this way. The linear function and the two parabolic functions are
“gplined” together so that the entire path is continuous in position and
velocity.

In order to construct this single segment we will assume that the
parabolic blends both have the same duration, and therefore the same
constant acceleration (modulo a sign) is used during both blends. As
indicated in Fig. 7.7, there are many solutions to the problem—but note
that the answer is always symmetric about the halfway point in time,
t;,, and about the halfway point in position, #,,. The velocity at the end
of the blend region must equal the velocity of the linear section, and
so we have

0, — 0,

bt, =
T =t

(7.19)

where @, is the value of ¢ at the end of the blend region, and 0 is the
acceleration acting during the blend region. The value of 8, is given by

6, =0y + %étg‘ (7.20)
Combining (7.19) and (7.20) and ¢t = 2t;, we get
9t2 — ity + (05 — 6p) = 0, (7.21)

where t is the desired duration of the motion. Given any 6, 6, and t,
we can follow any of the paths given by choice of § and t, which satisfy
(7.21). Usually, an acceleration, 8, is chosen and (7.21) is solved for the
corresponding t,. The acceleration chosen must be sufficiently high, or a

bl L
o tr— 1y

FIGURE 7.6 Linear segment with parabolic blends.

239

\&10_‘ 7 Trajectory generation

FIGURE 7.7 Linear segment with parabolic blends.

solution will not exist. Solving (7.21) for ¢, in terms of the acceleration
and other known parameters, we obtain

6242 — 46(8, — 6,)
tb=3-\/ R (7.22)
2 26
The constraint on the acceleration used in the blend is
. ()
g > % (7.23)

When equality occurs in (7.23) the linear portion has shrunk to zero
length and the path is composed of two blends which connect with
equivalent slope. As the acceleration used becomes larger and larger, the
length of the blend region becomes shorter and shorter. In the limit of
infinite acceleration we are back to the simple linear interpolation case.

T X AMPLE 7.3

For the same single segment path discussed in Example 7.1, show
two examples of a linear path with parabolic blends.

Figure 7.8a shows one possibility where 6 was chosen quite high. In
this case we quickly accelerate, then coast at constant velocity, and then
decelerate. Figure 7.8b shows a trajectory where acceleration is kept
quite low, so that the linear section almost disappears. m

Linear function with parabolic blends for a path with via points

We now consider the case of linear paths with parabolic blends for the
case in which there are an arbitrary number of via points specified.
Figure 7.9 shows a set of joint space via points for some joint . Linear

7.3 Joint space schemes 241 I

e
o
| [i PR e) L

15 1 | 1 1

| Seconds

1.8 24
Position

Deg/sec
20+

10+

3.0

Seconds

1.8 24
Velocity

36 Deg/sec’
24

12

—12
—24 -

3.0

Seconds

& 12 18 24
Acceleration

fa)

3.0

| 3 T e e e e L

Degrees

1 L 1 Seconds

el bRl L)
Position

Seconds

25
20
15
10

-5
-10
=15
—20
=k

| s O L O

o2 R 24 3.0

Deg/sec?

Velocity

| 1 L Seconds

1.2 18 24 3.0
Acceleration
ib}

FIGURE 7.8 Position, velocity, and acceleration profiles for linear
interpolation with parabolic blends. The set of curves on the left are based on
a higher acceleration during the blends than those on the right.

functions connect the via points, and parabolic blend regions are added

around each via point.

We will use notation as follows. Consider three neighboring path
points which we will call points 7, k, and [. The duration of the blend
region at path point k is ¢,. The duration of the linear portion between
points j and k is t;;. The overall duration of the segment connecting

I
Lﬁ&' 7 Trajectory generation

Iﬂ— tig —---bld»——- L ——

FIGURE 7.9 Multisegment linear path with blends.

points j and k is ¢ ;. The velocity during the linear portion is 9j iy and
the acceleration during the blend at point j is 9 See Fig. 7.9 for an
example.

As with the single-segment case, there are many possible solutions
depending on the value of acceleration used at each blend. Given all
the path points 6, the desired durations tgy, and the magnitude of
acceleration to use at each path point |6, |, we can compute the blend
times ¢;. For interior path points this follows simply from the equations

8, — 6;

ik =

6 = SGN (B —6,0) |64,
.] (7.24)
el
by

1 1
tjk = tdjk = -2't3 = -z'fk.
The first and last segments must be handled slightly differently since an
entire blend region at one end of the segment must be counted in the
total segment’s time duration.
For the first segment, we solve for ¢; by equating two expressions
for the velocity during the linear phase of the segment:

0, —0 %
—2 1 =4t (7.25)

7.3 Joint space schemes

This can be solved for ¢,, the blend time at the initial point, and then
5 and t,, are easily computed:

b, = SGN (6, - 0,) |6,
2068, -6
ty =tg1z — 4/th12 — %‘
1
(7.26)
, —8
912 =4 82 11
tarz — 3t
1

Likewise, for the last segment (the one connecting points n — 1 and
n) we have

0 -0

n—1

— = 0 (7.27)
td(n—l)n == Etn

which leads to the solution

6, = SGN(@,_, —8.) ‘én‘ :

2(9n = e'n,—)
tn = td(n—l)n 7 \/ti(n—l)n bz —é_Lﬁ
n
(7.28)
: B0
fcifn == —s ==

Y Dn ain

1
i"('ﬂ.—l)ﬂ = td(n—l)n T tn &i §tn—l'

Using (7.24) through (7.28) we can solve for the blend times and
velocities for a multisegment path. Usually, the user specifies only the
via points and the desired duration of the segments. In this case, the
system uses default values for acceleration for each joint. Sometimes, to
make things even simpler for the user, the system will calculate durations
based on default velocities. At all blends, sufficiently large acceleration
must be used so that there is sufficient time to get into the linear portion
of the segment before the next blend region starts.

T X AMPLE 7.4

The trajectory of a particular joint is specified as follows: Path points
in degrees: 10, 35, 25, 10. The duration of these three segments should be

243

%I 7 Trajectory generation

2, 1, 3 seconds, respectively. The magnitude of the default acceleration
to use at all blend points is 50 degrees/second?. Calculate all segment
velocities, blend times, and linear times.

For the first segment we apply (7.26a) to find

b, = 50.0. (7.29)
Applying (7.26b) to calculate the blend time at the initial point, we get

~ 2(35—10)

t, =2—
Lo 50.0

= 0.27. (7.30)

The velocity, 6,,, is calculated from (7.26¢) as

35-10

The velocity, fy3, is calculated from (7.24a) as

Bog = 0 o (7.32)
Next, we apply (7.24b) to find
b, = —50.0. (7.33)

Then t, is calculated from (7.24c), and we get

_ —10.0 - 13.50

t, = = 0.47. 7.34
2 —50.0 it (s

The linear portion length of segment 1 is then calculated from (7.26d)
and we get

tip =2—027— %(0.47) = 1.50. (7.35)
Next, from (7.28a) we have
6, =50.0. (7.36)
So for the last segment (7.28Db) is used ‘to compute ty, and we have

2(10 — 25)

ty=3—14/9+ 500

=0.102. (7.37)
The velocity, s, is calculated from (7.28¢) as

10 — 25
=——— = -5.10. .
034 3-0.050 5.10 (7.38)

7.3 Joint space schemes | 245 :

Pseudo via points

i N

Original via

t Iy i3
FIGURE 7.10 Use of pseudo via points to create a “through” point.
Next, (7.24b) is used to obtain
05 = 50.0. (7.39)
Then t; is calculated from (7.24c¢), and we get
—5.10 — (-10.
ty = 2 Ve G WU (7.40)
a0
Finally, from (7.24d) we compute
1 1
tag = 1 = 5(0.47) - -(0.098) = 0.716, (7.41)
1
tos =3~ 5(0.098) — 0.102 = 2.849. (7.42)

The results of these computations constitutea “plan” for the trajectory.
At execution time, these numbers would be used by the path generator
to compute values of 6, 6, and 6 at the path update rate. =

In these hnear—parabollc blend splines, note that the via points are
not actually reached unless the manipulator comes to a stop. Often, when
acceleration capability is sufficiently high, the paths will come quite close
to the desired via point. If we wish to pass through a point by coming
to a stop, the via point is simply repeated in the path specification.

\ﬂ‘ 7 Trajectory generation

If the user wishes to specify that the manipulator pass ezactly
through a via point without stopping, this specification can be accommo-
dated using the same formulation as before with the following addition:
The system automatically replaces the via point through which we wish
the manipulator to pass with two pseudo via points on either side of the
original (see Fig. 7.10). Then path generation takes place as before. The
original via point will now lie in the linear region of the path connecting
the two pseudo via points. In addition to requesting that the manipulator
pass exactly through a via point, the user can also request that it pass
through with a certain velocity. If the user does not specify this velocity
the system chooses it based on a suitable heuristic. The term through
point might be used (rather than via point) to specify a path point
through which we force the manipulator to pass exactly.

/.4 Cartesian space schemes

As mentioned in Section 7.3, paths computed in joint space can ensure
that via and goal points are attained, even when these path points were
specified by means of Cartesian frames. However, the spatial shape of the
path taken by the end-effector is not a straight line through space, but
rather, it is some complicated shape which depends on the particular
kinematics of the manipulator being used. In this section we consider
methods of path generation in which the path shapes are described in
terms of functions which compute Cartesian position and orientation as
functions of time. In this way, we can also specify the spatial shape of the
path between path points. The most common path shape is a straight
line; but circular, sinusoidal, or other path shapes could be used.

Each path point is usually specified in terms of a desired position and
orientation of the tool frame relative to the station frame. In Cartesian-
based path generation schemes, the functions which are splined together
to form a trajectory are functions of time which represent Cartesian
variables. These paths can be planned directly from the user’s definition
of path points which are {T'} specifications relative to {S} without
first performing inverse kinematics. However, Cartesian schemes are
more computationally expensive to execute since at run time, inverse
kinematics must be solved at the path update rate. That is, after the
path is generated in Cartesian space, as a last step the inverse kinematic
calculation is performed to calculate desired joint angles.

Several schemes for generating Cartesian paths have been proposed
in literature from the research and industrial robotics community [1],
2]. In the following section we introduce one scheme as an example. In
this scheme, we are able to use the same linear /parabolic spliner which
we developed for the joint space case.

7.4 Cartesian space schemes

Cartesian straight line motion

Often we would like to be able easily to specify a spatial path which
causes the tip of the tool to move through space in a straight line.
Obviously, if we specify many closely separated via points which lie on
a straight line, then the tool tip will appear to follow a straight line
regardless of the choice of smooth function which interconnects the via
points. However, it is much more convenient if the tool follows straight
line paths between even widely separated via points. This mode of path
specification and execution is called Cartesian straight line motion.
Defining motions in terms of straight lines is a subset of the more
general capability of Cartesian motion in which arbitrary functions
of Cartesian variables as functions of time could be used to specify a
path. In a system which allowed general Cartesian motion, path shapes
such as ellipses or sinusoids could be executed.

In planning and generating Cartesian straight line paths, a spline of
linear functions with parabolic blends is appropriate. During the linear
portion of each segment, since all three components of position change
in a linear fashion, the end-effector will move along a linear path in
space. However, if we are specifying the orientation as a rotation matrix
at each via point, we cannot linearly interpolate its elements as this
would not result in a valid rotation matrix at all times. A rotation
matrix must be composed of orthonormal columns, and this condition
would not be guaranteed if it was constructed by linear interpolation of
matrix elements between two valid matrices. Instead, we will use another
representation of orientation.

As stated in Chapter 2, the so-called angle-axis representation can
be used to specify an orientation with three numbers. If we combine
this representation of orientation with the 3 x 1 Cartesian position
representation, we have a 6 x 1 representation of Cartesian position
and orientation. Consider a via point specified relative to the station
frame as 3T. That is, the frame {A} specifies a via point with position
of the end-effector given by P, rq, and orientation of the end-effector
given by ﬁR. This rotation matrix can be converted to the angle-axis
representation ROT(°K 4,05,) or simply 5K 4. We will use the symbol
& to represent this 6 x 1 vector of Cartesian position and orientation.
Thus we have

8Pionc|
1 (7-43)

g

XA = {
S K_A

where 5K 4 1s formed by scaling the unit vector SK 4 by the amount

of rotation, fg,. If every path point is specified in this representation,

we then need to describe spline functions which smoothly move these

six quantities from path point to path point as functions of time. If

247

\ﬁl 7 Trajectory generation

linear splines with parabolic blends are used, the path shape between
via points will be linear. When via points are passed, the linear and
angular velocity of the end-effector are smoothly changed.

Note that unlike some other Cartesian straight line motion schemes
that have been proposed, this method does not guarantee that rotations
occur about a single “equivalent axis” in moving from point to point.
Rather, our scheme is a simple one which provides smooth orientation
changes and allows the use of the same mathematics we have already
developed for planning joint interpolated trajectories.

One slight complication arises from the fact that the angle-axis
representation of orientation is not unique:

(CR.,P-.0= k0 +nib0°), (7.44)

where 7 is any positive or negative integer. In going from a via point {A}
to a via point {B} the total amount of rotation should be minimized.
Assuming that our representation of the orientation of {A} is given as
K 4, we must choose the particular K such that |SKy — K| is
minimized. For example, Fig. 7.11 shows four different possible 5K 's
and their relation to the given K ,. The difference vectors (broken
lines) are compared to determine the 9K z which will result in minimum
rotation—in this case, Kp_,).

Once we select the six values of X for each via point, we can use
the same mathematics we have already developed for generating splines

s
Kpi-2

FIGURE 7.11 Choosing angle-axis representation to minimize rotation.

7.5 Geometric problems with Cartesian paths

which are composed of linear and parabolic sections. However, we must
add one more constraint: The blend times for each degree of freedom
must be the same. This will ensure that the resultant motion of all the
degrees of freedom will be a straight line in space. Since all blend times
must be the same, the acceleration used during the blend for each degree
of freedom will differ. Hence, we specify a duration of blend, and using
(7.24c) we compute the needed acceleration (instead of the other way
around). The blend time can be chosen so that a certain upper bound
on acceleration is not exceeded.

‘Many other schemes for representing and interpolating the orienta-
tion portion of a Cartesian path may be used. Among these are the use
of some of the other 3 x 1 representations of orientation introduced in
Section 2.8. For example, the Intelledex 605T manipulator (Fig. 7.12)
moves along Cartesian straight line paths in which interpolation of
orientation is done using a represenation similar to Z-Y-Z Euler angles.

7.5 Geometric problems with Cartesian paths

Because a continuous correspondence is made between a path shape
described in Cartesian space and joint positions, Cartesian paths are
prone to various problems relating to workspace and singularities.

FIGURE 7.12 The Intelledex model 6057 robot featuring six axes, +0.001
inch repeatability, and 4+0.002 inch accuracy.

Photo courtesy of Intelledex, Inc.

249

_QM T Trajectory generation

FIGURE 7.13 Cartesian path problem type 1

Problems of type 1: intermediate points unreachable

Although the initial location of the manipulator and the final goal point
are both within the manipulator workspace, it is quite possible that
not all points lying on a straight line connecting these two points are
in the workspace. As an example, consider the planar two-link robot
shown in Fig. 7.13 and its associated workspace. In this case, link 2 is
shorter than link 1, so the workspace contains a hole in the middle whose
radius is the difference between link lengths. Drawn on the workspace
is a start point A, and a goal point B. Moving from A to B would be
no problem in joint space, but if a Cartesian straight line motion were
attempted, intermediate points along the path would not be reachable.
This is an example of a situation in which a joint space path could easily
be executed, but a Cartesian straight line path would fail.*

Problems of type 2: high joint rates near singularity

We saw in Chapter 5 that there are locations in the manipulator’s
workspace where it is impossible to choose finite joint rates that yield
the desired velocity of the end-effector in Cartesian space. It should
not be surprising, therefore, that there are certain paths (described in

* Some robot systems would notify the user of a problem before moving the
manipulator, while in some, motion would start along the path until some joint
reaches its limit, at which time manipulator motion is halted.

7.5 Geometric problems with Cartesian paths [251

FIGURE 7.14 Cartesian path problem type 2

Cartesian terms) which are impossible for the manipulator to perform. If,
for example, a manipulator is following a Cartesian straight line path and
approaches a singular configuration of the mechanism, one or more joint
velocities may increase toward infinity. Since velocities of the mechanism
are upper bounded, this situation usually results in the manipulator
deviating from the desired path.

As an example, Fig. 7.14 shows a planar two-link (with equal link
lengths) moving along a path from point A to point B. The desired
trajectory is to move the end tip of the manipulator at constant linear
velocity along the straight line path. In the figure several intermediate
positions of the manipulator have been drawn to help visualize its
motion. All points along the path are reachable, but as the robot goes
past the middle portion of the path, the velocity of joint one is very
high. The closer the path comes to the joint one axis, the faster this rate
will be. One approach is to scale down the overall velocity of the path
to a speed where all joints stay within their velocity capabilities. In this
way, although the desired temporal attributes of the path may be lost,
at least the spatial aspect of the trajectory definition is adhered to.

Problems of type 3: start and goal reachable in different solutions

A third kind of problem that may arise is shown in Fig. 7.15. Here a
planar two-link with equal link lengths has joint limits which restrict the
number of solutions with which it can reach a given point in space. In

Iﬂ, 7 Trajectory generation

L/ T T DG T

FIGURE 7.15 Cartesian path problem type 3

particular, a problem will arise if the goal point cannot be reached in the
same physical solution as the robot is in at the start point. In Fig. 7.15
the manipulator can reach all points of the path in some solution, but
not in any one solution. In this situation, the manipulator trajectory
planning system can detect this problem without ever attempting to
move the robot along the path, and signal an error to the user.

Due to these problems with paths specified in Cartesian space, most
industrial manipulator control systems support both joint space and
Cartesian space path generation. The user quickly learns that because
of the difficulties with Cartesian paths, joint space paths should be used
as the default, with Cartesian paths used only when actually needed by
the application.

/.6 Path generation at run time

At run time the path generator routine constructs the trajectory,
usually in terms of 6, 4, and 6, and feeds this information to the ma-
nipulator’s control system. This path generator computes the trajectory
at the path update rate.

7.6 Path generation at run time

Generation of joint space paths

The result of having planned a path using any of the splining methods
mentioned in Section 7.3 is a set of data for each segment of the
trajectory. These data are used by the path generator at run time to
calculate @, 8, and 6.

In the case of cubic splines, the path generator simply computes (7.3)
as t is advanced. When the end of one segment is reached, a new set of
cubic coefficients is recalled, ¢ is set back to zero, and the generation
continues.

In the case of linear splines with parabolic blends, the value of time,
t, is checked on each update to determine whether we are currently in
the linear or the blend portion of the segment. In the linear portion, the
trajectory for each joint is calculated as

f=0,

where ¢ is the time since the jth via point and éjk was calculated at
path planning time from (7.24a). In the blend region, the trajectory for
each joint is calculated as

1
tinp =t — (Etj +tjk)]

; 1l
0=6.+0..(t—t, =gl
J+ jk(?,ﬂ.b)+2 klinbk (746)

0 =04 + Orting,

9=ék)

where éjk, ék} t;, and t;, were calculated at path planning time by
equations (7.24) through (7.28). This continues with ¢ being reset to %t :
when a new linear segment is entered, until we have worked our way
through all the data sets representing the path segments.

Generation of Cartesian space paths

For the Cartesian path scheme presented in Section 7.4, we use the path
generator for the linear spline with parabolic blends path. However,
the values computed represent the Cartesian position and orientation
rather than joint variable values, so we rewrite (7.45) and (7.46) with
the symbol z representing a component of the Cartesian position and

253

% 7 Trajectory generation

orientation vector. In the linear portion of the segment, each degree of
freedom in X is calcuated as

X =.’J3J- +$_‘H€t1

== (7.47)

z =0

where ¢ is the time since the jth via point and z;; was determined at
path plan time using an equation analogous to (7.24a). In the blend
region, the trajectory for each degree of freedom is calculated as

1

E 19
& =2; + &5t — tiny) + sErtinn

2 (7.48)

T =i + Exting,

;‘I-::i'k,!

where the quantities #,,, &, t;, and t;, were determined at plan time
just as in the joint space case.

Finally, this Cartesian trajectory (X, e , and %) must be converted
into equivalent joint space quantities. A complete analytical solution
to this problem would use the inverse kinematics to calculate joint
positions, the inverse Jacobian for velocities, and the inverse Jacobian
plus its derivative for accelerations [5]. A simpler way often used in
practice is as follows: At path update rate we convert X into its
equivalent frame representation, &7. We then use the SOLVE routine (see
Section 4.8) to calculate the required vector of joint angles, ©. Numerical
differentiation is then used to compute © and ©.* Thus, the algorithm is

X - 2T,

©(t) = SOLVE(ZT),

: e (7.49)
o = &0 gt&h
éM=em-ghay

Then, ©, ©, and © are supplied to the manipulator’s control system.

* This differentiation can be done noncausally for preplanned paths, result-
ing in better quality © and ©. Also, many control systems do not require a ©
input, and so it would not be computed.

7.8 Planning paths using the dynamic model [255 |

7.7 Description of paths with a robot progrémming
language

In Chapter 10 we will discuss robot programming languages in some
detail. Here, we will illustrate how various types of paths that we have
discussed in this chapter might be specified in a robot language. In these
examples, we use the syntax of AL, a robot programming language
developed at Stanford University [6].

The symbols A, B, C, and D stand for variables of type “frame” in
the AL language examples below. These frames specify path points which
we will assume have been taught or described textually to the system.
Assume the manipulator begins in position A. To move the manipulator
in joint space mode along linear—parabolic-blend paths we could say

move ARM to C with duration = 3*seconds;

To move to the same position and orientation in a straight line we could
say

move ARM to C linearly with duration = 3*seconds;
where the clause “linearly” denotes that Cartesian straight line motion
is to be used. If duration is not important, the user can omit this
specification and the system will use a default velocity, that is,

move ARM to C;

A via point can be added, and we can write

move ARM to C via B;
or a whole set of via points might be specified by

|

move ARM to C via B,A,D; |

Note that in

move ARM to C via B with duration = 6*seconds;
the duration is given for the entire motion. The system decides how to
split this duration between the two segments. [t is possible in AL to
specify the duration of a single segment; for example by

move ARM to C via B where duration = 3*seconds;

The first segment which leads to point B.will have a duration of 3
seconds.

7.8 Planning paths using the dynamic model

Usually when paths are planned we use a default or a maximum
acceleration at each blend point. Actually, the amount of acceleration

@ 7 Trajectory generation

that the manipulator is capable of at any instant is a function of the
dynamics of the arm and the actuator limits. Most actuators are not
characterized by a fixed maximum torque or acceleration, but rather by
a torque-speed curve.

When we plan a path assuming there is a maximum acceleration at
each joint or along each degree of freedom, we are making a tremendous
simplification. In order to be careful not to exceed the actual capabilities
of the device, this maximum acceleration must be chosen conservatively.
Therefore, we are not making full use of the speed capabilities of the
manipulator in paths planned by the methods introduced in this chapter.

We might ask the following question: Given a desired spatial path of
the end-effector, find the timing information (which turns a description
of a spatial path into a trajectory) such that the manipulator reaches
the goal point in minimum time. Such problems have been solved by
numerical means [7,8]. The solution takes the rigid body dynamics into
account as well as actuator speed-torque constraint curves.

7.9 Collision-free path planning

It would be extremely convenient if we could simply tell the robot system
what the desired goal point of the manipulator motion is, and let the
system determine where and how many via points are required so that
the goal is reached without the manipulator hitting any obstacles. In
order to do this, the system must have models of the manipulator, the
work area, and all potential obstacles in the area. A second manipulator
may even be working in the same area and hence each arm must be
considered as a moving obstacle for the other.

Systems that plan collision-free paths are not available commercially.
Research in this area has led to two competing techniques, and several
variations and combinations thereof. One class of methods solves the
problem by forming a connected graph representation of the free space
and then searching the graph for a collision-free path [9-11]. Unfor-
tunately these techniques have exponential complexity in the number
of joints in the device. A second approach is based on creating artificial
potential fields around obstacles which cause the manipulator(s) to avoid
the obstacles while they are drawn toward an artificial attractive pole at
the goal point [12]. Unfortunately, these methods generally have a local
view of the environment and are subject to becoming “stuck” at local
minima of the artificial field.

References

References

[1] R.P. Paul and H. Zong, “Robot Motion Trajectory Specification and Gen-
eration,” 2nd International Symposium on Robotics Research, Kyoto,
Japan, August 1984.

[2] R. Taylor, “Planning and Execution of Straight Line Manipulator Trajec-
tories,” in Robot Motion, Brady et al., Editors, MIT Press, 1983.

[3] C.DeBoor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

[4] D. Rogers and J.A. Adams, Mathematical Elements for Computer Graphics,
McGraw-Hill, 1976.

[5] B. Gorla and M. Renaud, Robots Manipulateurs, Cepadues-Editions, Toulouse,

1984.

[6] R. Goldman, Design of an Interactive Manipulator Programming Environ-
ment, UMI Research Press, Ann Arbor, Mich., 1985.

[7] J. Bobrow, S. Dubowsky, and J. Gibson, “On the Optimal Control of
Robotic Manipulators with Actuator Constraints,” Proceedings of the
American Control Conference, June 1983.

[8] K. Shin and N. McKay, “Minimum-Time Control of Robotic Manipulators
with Geometric Path Constraints,” IEEE Transactions on Automatic
Control, June 1985.

[9] T. Lozano-Perez, “Spatial Planning: A Configuration Space Approach,” Al
Memo 605, MIT Artificial Intelligence Laboratory, Cambridge, Mass.,
1980.

[10] T. Lozano-Perez, “A Simple Motion Planning Algorithm for General Robot
Manipulators,” IEEE Journal of Robotics and Automation, Vol. RA-3,
No. 3, June 1987.

[11] R. Brooks, “Solving the Find-Path Problem by Good Representation of
Free Space,” IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13:190-197, 1983.

[12] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” The International Journal of Robotics Research, Vol. 5, No. 1,
Spring 1986.

[13] R.P. Paul, “Robot Manipulators: Mathematics, Programming, and Con-
trol,” MIT Press, Cambridge, Mass., 1981.

[14] R. Castain and R.P. Paul, “An Online Dynamic Trajectory Generator,” The
International Journal of Robotics Research, Vol. 3, 1984.

[15] C.S. Lin and P.R. Chang, “Joint Trajectory of Mechanical Manipulators for
Cartesian Path Approximation,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. SMC-13, 1983.

[16] S. Chand and K. Doty, “Online Polynomial Trajectories for Robot Manip-
ulators,” The International Journal of Robotics Research, Vol. 4, 1985.

[17] S. Thompson and R. Patel, “Formulation of Joint Trajectories for Industrial
Robots Using B-Splines,” IEEE Transactions on Industrial Electronics,
Vol. TE-34, 1987.

[18] C.S. Lin, P.R. Chang, and J.Y.S. Luh, “Formulation and Optimization
of Cubic Polynomial Joint Trajectories for Industrial Robots,” IEEFE
Transactions on Automatic Control, Vol. AC-28, 1983.

257

\ﬁl 7 Trajectory generation

[19] M. Vukobratovic and N. Kircanski, “Method for Optimal Synthesis of

Manipulation Robot Trajectories,” ASME Journal of Dynamic Systems,
Measurements, and Control, Vol. 104, 1982.

Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

[8] How many individual cubics are computed when a six-jointed robot
moves along a cubic spline path through two via points and stops at a
goal point? How many coeflicients are stored to describe these cubics?

[13] A single-link robot with a rotary joint is motionless at § = —5°. It
is desired to move the joint in a smooth manner to # = 80° in 4 seconds.
Find the coefficients of a cubic which accomplishes this motion and brings
the arm to rest at the goal. Plot the position, velocity, and acceleration
of the joint as a function of time.

[14] A single-link robot with a rotary joint is motionless at § = —5°.
It is desired to move the joint in a smooth manner to # = 80° in 4
seconds and stop smoothly. Compute the corresponding parameters of a
linear trajectory with parabolic blends. Plot the position, velocity, and
acceleration of the joint as a function of time.

[30] Write a path planning routine which implements (7.25) through
(7.30) in a general way for paths described by an arbitrary number of path
points. For example, this routine could be used to solve Example 7.4.

[18] Sketch graphs of position, velocity, and acceleration for the two-
segment continuous acceleration spline given in Example 7.2. Sketch them
for a joint for which 8 = 5.0°, 0, = 15.0°, 6, = 40.0°, and each segment
lasts 1.0 second.

[18] Sketch graphs of position, velocity, and acceleration for a two-segment
spline where each segment is a cubic, using the coefficients as given in
(7.11). Sketch them for a joint where #, = 5.0° for the initial point,
f, = 15.0° is a via point, and 6, = 40.0° is the goal point. Assume each
segment has a duration of 1.0 second, and the velocity at the via point
is to be 17.5 degrees/second.

[20] Calculate 6,5, 6,3, £, t,, and ts for a two-segment linear spline with
parabolic blends (use (7.24) through (7.28)). For this joint, 8, = 5.0°,
f; = 15.0°, §; = 40.0°. Assume t;,, = t4o3 = 1.0 second, and the
default acceleration to use during blends is 80 degrees/second?. Sketch
plots of position, velocity, and acceleration of 8.

[18] Sketch graphs of position, velocity, and acceleration for the two-
segment continuous acceleration spline given in Example 7.2. Sketch them
for a joint for which 8, = 5.0°, 8, = 15.0°, #, = —10.0°, and each
segment lasts 2.0 seconds.

[18] Sketch graphs of position, velocity, and acceleration for a two-segment
spline where each segment is a cubic, using the coefficients as given in
(7.11). Sketch them for a joint where #; = 5.0° for the initial point,
6, = 15.0° is a via point, and 6, = —10.0° is the goal point. Assume each

7.10

Tkl

7.14

7.15
7.16

.17

7.19

Exercises

segment has a duration of 2.0 seconds, and the velocity at the via point
is to be 0.0 degrees/second.

[20] Calculate 6,4, 853, t1, t5, and t; for a two-segment linear spline with
parabolic blends (use (7.24) through (7.28)). For this joint, #; = 5.0°,
0, = 15.0°, ; = —10.0°. Assume ;4,5 = t423 = 2.0 seconds, and the
default acceleration to use during blends is 60 degrees/second?. Sketch
plots of position, velocity, and acceleration of .

[6] Give the 6x1 Cartesian position and orienfation representation, SN
which is equivalent to T where SR = ROT(Z,30°) and *Pgopc =
[10.0 20.0 30.0]7.

[6] Give £T, which is equivalent to the 6 x 1 Cartesian position and
orientation representation SXg5 = [5.0 —20.0 10.0 450 0.0 0.0]".
[30] Write a program which uses the dynamic equations from Section 6.7
(the two-link planar manipulator) to compute the time history of torques
needed to move the arm along the trajectory of Exercise 7.8. What are the
maximum torques required and where do they occur along the trajectory?
[32] Write a program which uses the dynamic equations from Section 6.7
(the two-link planar manipulator) to compute the time history of torques
needed to move the arm along the trajectory of Exercise 7.8. Make
separate plots of the joint torques required due to inertia, velocity terms,
and gravity.

[22] Do Example 7.2 when t;y # tgs.

[25] We wish to move a single joint from 6 to 6, starting from rest,
ending at rest, in time ¢ ;. The values of f; and 0 are given, but we wish
to compute ¢, so that [|0(t)]| < 8,4, and 168)]| < Bz for all ¢, where
8, .. and émw are given positive constants. Use a single cubic segment,
and give an expression for ¢; and for the cubic’s coefficients.

[10] A single cubic trajectory is given by
8(t) = 10 + 90t* — 60t°

and is used over the time interval from t = 0 to ¢ = 1. What are the
starting and final positions, velocities, and accelerations?

[12] A single cubic trajectory is given by
8(t) = 10 + 90t2 — 60>

and is used over the time interval from #'= 0 to t = 2. What are the
starting and final positions, velocities, and accelerations?

[13] A single cubic trajectory is given by
8(t) = 10 + 5t + 70t — 45¢°

and is used over the time interval from ¢ = 0 to t = 1. What are the
starting and final positions, velocities, and accelerations?

259

\ﬂl 7 Trajectory generation

7.20 [15] A single cubic trajectory is given by

6(t) = 10 + 5¢ + 70t2 — 45¢3

and is used over the time interval from ¢ = 0 to ¢ = 2. What are the
starting and final positions, velocities, and accelerations?

Programming Exercise (Part 7)

1L

Write a joint space, cubic splined path planning system. One routine which
your system should include is

Procedure CUBCOEF(VAR thO,thf,thdot0,thdotf: real;
VAR cc: vecd);

where
thD = initial postion of # at beginning of segment,
thf = final position of # at segment end,
thdot0 = initial velocity of segment,

thdotf = final velocity of segment.

These four quantities are inputs, and “cc”, an array of the four cubic
coefficients, is the output.

Your program should accept up to (at least) five via point specifications
in the form of tool frame, {T}, relative to station frame, {S}, in the usual
user form of (z,y, ¢). To keep life simple, all segments will have the same
duration. Your system should solve for the coefficients of the cubics using
some reasonable heuristic for assigning joint velocities at the via points.
Hint: See option 2 in Section 7.3.

Write a path generator system which calculates a trajectory in joint space
based on sets of cubic coeflicients for each segment. It must be able to
generate the multisegment path you planned in Problem 1. A duration
for the segments will be specified by the user. It should produce position,
velocity, and acceleration information at the path update rate, which will
also be specified by the user.

The manipulator is the same three-link as always. The definition of the {T'}
and {S} frames are the same as before:

S = = (DR 0.6
ET=[z y 0]=[0.0 00 00].

Using a duration of 3.0 seconds per segment, plan and execute the path
which starts with the manipulator at position

[z1 y1 ¢4] = [0.758 0.173 0.0];

Programming Exercise (Part 7)

moves through the via points
[22 2 ¢2]=[06 —0.3 450],

[zs w3 9s]=[-04 03 120.0];

and ends at the goal point (in this case same as initial point)
[€4 y4 ¢4] = [0.758 0.173 0.0].

Use a path update rate of 40 Hz, but print the position only every 0.2
seconds. Print the positions out in terms of Cartesian user form. You don’t
have to print out velocities or accelerations, though you might be interested
to do so.

261

MANIPULATOR
MECHANISM
DESIGN

8.1 Introduction

In previous chapters we have seen that the particular structure of a
manipulator influences kinematic and dynamic analysis. For example,
some kinematic configurations will be easy to solve while others may
have no closed form kinematic solution. Likewise, the simplicity of the
dynamic equations can varv greatly with the kinematic configuration
and the mass distribution of the links. In coming chapters we will see
that manipulator control depends not only on the rigid body dynamics
but also upon the friction and flexibility of the drive systems.

The tasks that a manipulator can perform will also vary greatly with
the particular design. Although we have generally dealt with the robot
manipulator as an abstract entity. its performance is ultimately limited
bv pragmatic factors such as load capacity. speed, size of workspace,
and repeatability. For certain applications, the overall manipulator size,
weight, power consumption, and cost will be significant factors.

8.2 Basing the design on task requirements

This chapter discusses some of the issues involved in the design of
the manipulator. In general, methods of design and even the evaluation
of a finished design are partially subjective topics. It is difficult to narrow
the spectrum of design choices with many hard and fast rules.

The elements of a robot system fall roughly into four catagories:

1) The manipulator, including its internal or proprioceptive sen-
sors,

2) the end-effector, or end of arm tooling,

3) external sensors and effectors such as vision systems, part feeders,
ete., and

4) the controller.

Given the breadth of engineering disciplines encompassed, we will
restrict our attention only to the design of the manipulator itself.

In developing a manipulator design, we will start by examining
the factors likely to have the greatest overall effect on the design and
then consider more detailed questions. Ultimately, however, designing
a manipulator is an iterative process. More often than not, problems
which arise while solving a design detail will force rethinking of previous
higher level design decisions.

8.2 Basing the design on task requirements

Although robots are nominally “universally programmable” machines
capable of performing a wide variety of tasks, economies and practi-
calities dictate different manipulators be designed for particular types
of tasks. For example, large robots capable of handling payloads of
hundreds of pounds do not generally have the capability to insert
electronic components into circuit boards. As we shall see, not only the
size, but the number of joints, the arrangement of joints, the types of
actuation, sensing and control will all vary greatly with the sort of task
to be performed.

Number of degrees of freedom

The number of degrees of freedom in a manipulator should match the
number required by the task. Not all tasks require a full six degrees of
freedom.

The most common of these circumstances occurs when the end
effector has an axis of symmetry. Figure 8.1 shows a manipulator
positioning a grinding tool in two different ways. In this case, the

263

ﬁ] 8 Manipulator mechanism design

orientation of the tool with respect to the axis of the tool, ZT, is
immaterial since the grinding wheel is spinning at several hundred RPM.
Since we can position this 6-DOF robot in an infinity of ways for this
task (rotation about ZT is a free variable), we say that the robot is
redundant for this task. Arc welding, spot welding. deburring, glueing,
and polishing provide other examples of tasks which often employ end
effectors with an axis of symmetry.

In analyzing the symmetric tool situation, it is sometimes helpful
to imagine a fictitious joint whose axis lies along the axis of symmetry.
In positioning any end-effector to a specific pose, we need a total of
six degrees of freedom. Since one of these six is our fictitious joint, the
actual manipulator need only have five degrees of freedom. If a 5-DOF
robot were used in the application of Fig. 8.1, then we would be back
to the usual case in which only a finite number of different solutions are
avaliable for positioning the tool. Quite a large percentage of existing
industrial robots are 5-DOF due to the relative prevalence of symmetric
tool applications.

Some tasks are performed in a domain which, fundamentally, has
fewer than six degrees of freedom. Placement of components on circuit
boards provides a common example of this. Circuit boards are generally
planar and contain parts of various heights. Positioning parts on a planar
surface requires three degrees of freedom (z. y, and), and in order to lift
and insert the parts, a fourth motion normal to the plane is added (z).

Robots with fewer than six degrees of freedom can also perform
tasks in which some sort of active positioning device presents the parts.
In welding pipés, for example, a tilt/roll platform, shown in Fig. 8.2,
often presents the parts to be welded. In counting the number of degrees

FIGURE 8.1 A 6-DOF manipulator with a symmetric tool contains a
redundant degree of freedom.

8.2 Basing the design on task requirements

of freedom between the pipes and the end-effector, the tilt/roll platform
accounts for two. This, together with the fact that arc welding is a
symmetric tool task, means that in theory, a 3-DOF manipulator could
be used. In practice, realities such as the need to avoid collisions with
the workpiece generally dictate the use of a robot with more degrees of
freedom.

Parts with an axis of symmetry also reduce the required degrees
of freedom for the manipulator. For example, cylindrical parts can in
many cases be picked up and inserted independent of the orientation of
the gripper with respect to the axis of the cylinder. Note, however, that
after the part is grasped, the orientation of the part about its symmetric
axis must not matter for all subsequent operations, since its orientation
is not guaranteed.

Workspace

In performing tasks, a manipulator has to reach a number of workpieces
or fixtures. In some cases, these can be positioned as needed to suit the
workspace of the manipulator. In other cases, a robot may be installed
in a fixed environment with rigid workspace requirements. Workspace
is also sometimes called work volume or work envelope.

FIGURE 8.2 A tilt/roll platform provides two degrees of freedom to the
overall manipulator system.

265

!ﬂ[8 Manipulator mechanism design

The overall scale of the task sets the required workspace of the
manipulator. In some cases the details of the shape of the workspace and
the location of workspace singularities may be important considerations.

The intrusion of the manipulator itself in the workspace can some-
times be a factor. Depending on the kinematic design, operating a
manipulator in a given application may require more or less space around
the fixtures in order to avoid collisions. Restricted environments may
affect the choice of kinematic configuration.

Load capacity

The load capacity of a manipulator depends upon the sizing of its
structural members, power transmission system, and actuators. The load
placed on actuators and drive system is a function of the configuration
of the robot, the percentage of time supporting a load, and dynamic
loading due to inertial and velocity-related forces.

Speed

An obvious goal in design has been for faster and faster manipulators.
High speed offers advantages in many applications when a proposed
robotic solution must compete on economic terms with hard automation
or human workers. For some applications, however, the process itself
limits the speed rather than the manipulator. This is the case with many
welding and spray painting applications.

An important distinction is that between the maximum end-effector
speed and the overall cycle time for a particular task. For pick-and-
place applications, the manipulator must accelerate and decelerate to
and from the pick and place locations within some positional accuracy
bounds. Often. the acceleration and deceleration phases take up most of
the cycle time. Hence, acceleration capability, and not just peak speed,
is very important.

Repeatability and accuracy

High repeatability and accuracyv. while desirable in any manipulator
design. are expensive to achieve. For example, it would be absurd to
design a paint spraying robot to be accurate to within 0.001 inches when
the spray spot diameter is 8 inches =2 inches. To a large extent, accuracy
of a particular model of industrial robot depends upon the details of their
manufacture rather than of their design. High accuracy is achieved by
having good knowledge of the link (and other) parameters. Accurate

8.3 Kinematic configuration

measurements after manufacture, or careful attention to tolerances
during manufaturing make this possible.

8.3 Kinematic configuration

Once the required number of degrees of freedom has been decided upon,
a particular configuration of joints must be chosen to realize those
freedoms. For serial kinematic linkages, the number of joints equals the
required number of degrees of freedom. Most manipulators are designed
so that the last n — 3 joints orient the end-effector and have axes that
intersect at the wrist point, and the first three joints position this wrist
point. Manipulators with this design could be said to be composed of a
positioning structure followed by an orienting structure or wrist.
As we saw in Chapter 4, these manipulators always have closed form
kinematic solutions. Although other configurations exist which possess
closed form kinematic solutions, almost every industrial manipulator
belongs to this wrist-partitioned class of mechanisms. Furthermore,
the positioning structure is almost without exception designed to be
kinematically simple, with link twists equal to 0° or £90°, and many of
the link lengths and/or offsets equal to zero.

It has become customary to classify manipulators of the wrist-
partitioned, kinematically simple class according to the design of their
first three joints (the positioning structure). The following paragraphs
briefly describe the most common of these classifications.

Cartesian

A Cartesian manipulator has perhaps the most straightforward
configuration. As shown in Fig. 8.3, joints 1 through 3 are prismatic,
mutually orthogonal, and correspond to the X, ¥, and Z Cartesian
directions. The inverse kinematic solution for this conﬁguratlon is trivial.

This configuration produces robots with very stiff structures. As a
consequence, very large robots can be built. These large robots, often
called gantry robots, resemble overhead gantrv cranes. Gantry robots
sometimes manipulate entire automobiles or inspect entire aircraft.

The other advantages of Cartesian manipulators stem from the fact
that the first three joints are decoupled. This makes them simpler to
design and does not produce anyv kinematic singularities due to the first
three joints.

Their primary disadvantage is that all of the feeders and fixtures
associated with an application must lie “inside” the robot. Consequently,
application workcells for Cartesian robots become very machine de-

267

Q@ & Manipulator mechanism design

Side view

FIGURE 8.3 A Cartesian manipulator.

pendent. The size of the robot’s support structure limits the size and
placement of fixtures and sensors. These limitations make retrofitting
Cartesian robots into existing workeells extremely difficult.

Articulated

Figure 8.4 shows an articulated manipulator, sometimes also called
a jointed, elbow, or anthropomorphic manipulator. They typically
consist of two “shoulder” joints, one for rotation about a vertical axis
and one for elevation out of the horizontal plane, an “elbow” joint whose
axis is usually parallel to the shoulder elevation joint, and two or three
wrist joints at the end of the manipulator. Both the PUMA 560 and the
Motoman L-3 that we have studied in earlier chapters fall into this class.

Articulated robots provide the least intrusion of the manipulator
structure into the workspace, making them capable of reaching into
confined spaces. They require much less overall structure than Cartesian
robots, making them less expensive for applications needing smaller
workspaces.

SCARA

The SCARA" configuration, shown in Fig. 8.5, has three parallel
revolute joints allowing it to move and orient in a plane, with a fourth
prismatic joint for moving the end-effector normal to the plane. The
chief advantage is that the first three joints don’t have to support any

* SCARA stands for selectively compliant assembly robot arm.

8.3 Kinematic configuration | 269

-

Side view Top view

FIGURE 8.4 An articulated manipulator.

AT

Side view

FIGURE 8.5 A SCARA manipulator.

of the weight of the manipulator or the load. In addition, link 0 can
easily house the actuators for the first two joints. The actuators can
be made very large, so the robot can move very fast. For example, the
Adept One SCARA manipulator can move at up to 30 feet per second,
about ten times faster than most articulated industrial robots [1]. This
configuration is best suited to planar tasks.

@J 8 Manipulator mechanism design

Spherica

The spherical configuration in Fig. 8.6 has many similarities to the
articulated manipulator, but with the elbow joint replaced by a prismatic
joint. This design is better suited to some applications than the elbow
design. The link that moves prismatically may telescope, or may “stick
out the back” when retracted.

Cylindrical

Cylindrical manipulators (Fig. 8.7) consist of a prismatic joint for
translating the arm vertically, a revolute joint with a vertical axis,
another prismatic joint orthogonal to the revolute joint axis, followed
by a wrist of some sort.

Wrists

The most common wrist configurations consist of either two or three
revolute joints with orthogonal, intersecting axes. The first of the wrist
joints usually forms joint 4 of the manipulator.

A configuration of three orthogonal axes will guarantee that any
orientation can be achieved (assuming no joint angle limits) [2]. As
stated in Chapter 4, any manipulator with three consecutive intersecting
axes will possess a closed form kinematic solution. Therefore, a three
orthogonal axis wrist can be located at the end of the manipulator in
any desired orientation with no penalty. Figure 8.8 is a schematic of one

Side view

FIGURE 8.6 A spherical manipulator.

8.3 Kinematic configuration

ds

I‘
|
|
|
|
s

—

Side view

FIGURE 8.7 A cylindrical manipulator.

.

i

b
2 TN
=

:

5

FIGURE 8.8 An orthogonal axis wrist driven by remotely located actuators
via three concentric shafts.

possible design of such a wrist which uses several sets of bevel gears to
drive the mechanism from remotelv located actuators.

In practice it is difficult to build a three orthogonal axis wrist not
subject to rather severe joint angle limitations. An interesting design
used in several robots manufactured by Cincinatti Milacron (Fig. 1.4)
employs a wrist which has three intersecting but nonorthogonal axes.
In this design (called the “three roll wrist”), all three joints of the wrist
can rotate continuously without limits. The nonorthogonality of the axes

271

1272 | g Manipulator mechanism design

creates a set of orientations which are impossible to reach with this wrist.
This set of unattainable orientations is described by a cone within which
the third axis of the wrist cannot lie (see Exercise 8.11). However, the
wrist can be mounted to link 3 of the manipulator so that link structure
occupies this cone and so would be unavailable anyway. Figure 8.9 shows
two drawings of such a wrist [24].

Some industrial robots have wrists which do not have intersecting
axes. This implies that a closed form kinematic solution may not exist. If,
however, the wrist is mounted on an articulated manipulator such that
the joint 4 axis is parallel to the joint 2 and 3 axes as in Fig. 8.10, there
will be a closed form kinematic solution. Likewise, a nonintersecting
axis wrist mounted on a Cartesian robot yields a closed form solvable
manipulator.

Typically, 5-DOF welding robots use two axis wrists oriented as
shown in Fig. 8.11. Note that if the robot has a symmetric tool, this
“fictitious joint” must follow the rules of wrist design. That is, in order
to reach all orientations. the tool must be mounted with its axis of
symmetry orthogonal to the joint 5 axis. In the worst case, when the

05

(I

(a)

\
y
04

(b)

FIGURE 89 Two views of a nonorthogonal axis wrist [24]. From
International Encyclopedia of Robotics, by R. Dorf and S. Nof, (editors). From
“Wrists”"by M. Rosheim, John C. Wiley and Sons, Inc., New York, NY
(©1988. Reprinted by permission.

8.4 Quantitative measures of workspace attributes [273

\&8 q
A

/, -
\Y) w "

6
~

~

—~—— O

FIGURE 8.10 A manipulator with a wrist whose axes do not intersect.
However, this robot does possess a closed form kinematic solution.

axis of symmetry is parallel to the joint 5 axis, the fictitious sixth axis
is in a permanently singular configuration.

8.4 Quantitative measures of workspace attributes

Manipulator designers have proposed several interesting quantitative
measures of various workspace attributes.

Efficiency of design in terms of generating workspace

Some designers noticed that it seemed to take more material to build
a Cartesian manipulator than to build an articulated manipulator of
similar workspace volume. To get a quantitative handle on this we first

e

L274] 8 Manipulator mechanism design

FIGURE 8.11 Typical wrist design of a 5-DOF welding robot.

define the length sum of a manipulator as

L= Z a1+ (8.1)

i=1

where a;_; and d; are the link length and joint offset as defined in
Chapter 3. Thus, the length sum of a manipulator gives a rough measure
of the “length” of the complete linkage. Note for prismatic joints, d; must
here be interpreted as a constant equal to the length of travel between
the joint travel limits.

In [3] the structural length index, @, is defined as the ratio of
the manipulator length sum to the cube root of the workspace volume,
ie.

=L/VW, (8.2)

where L is given in (8.1) and W is the volume of the manipulator’s
workspace. Hence, (J; attempts to summarize the relative amount of
structure (linkage length) required by different configurations to generate
a given work volume. Thus, a good design would be one in which
a manipulator with a small length sum nonetheless possessed a large
workspace volume. Good designs have a low Q.

Considering just the positioning structure of a Cartesian manipu-
lator (and therefore the workspace of the wrist point), the value of @}
is minimized when all three joints have the same length of travel. This
minimal value is @; = 3.0. On the other hand, an ideal articulated
manipulator such as the one in Fig. 8.4 has Q; = /4w /3 = 0.62. This
helps quantify our earlier statement that articulated manipulators are
superior to other configurations in that they have minimal intrusion into

8.4 Quantitative measures of workspace attributes

their own workspace. Of course, in any real manipulator structure the
figure given above would be somewhat larger due to the effects of joint
limits reducing the workspace volume.

I AN PLE 8.1

A SCARA manipulator like that of Fig. 8.5 has links 1 and 2 of equal
length /2, and the range of motion of the prismatic joint 3 is given by
d5. Assume for simplicity that the joint limits are absent and find Q.
What value of dy minimizes @; and what is this minimal value?

The length sum of this manipulator is L = [/2 +1/2 + d3 = [+ d3,
and the workspace volume is that of a right cylinder of radius I and
height dy; therefore,

Q

I

(8.3)

Minimizing Q; as a function of the ratio dg /I gives d3 = /2 as optimal
[3]. The corresponding minimal value of Q is 1.29. "

Designing well-conditioned workspaces

At singular points a manipulator effectively loses one or more degrees
of freedom, which may mean that certain tasks cannot be performed
at that point. In fact, in the neighborhood of singular points (including
workspace boundary singularities) actions of the manipulator may no
longer be well-conditioned. In some sense, the farther the manipulator
is away from singularities, the better able it is to move uniformly
and apply forces uniformly in all directions. Several measures have
been suggested for quantifying this effect. Use of such measures at
design time might yield a manipulator design with a maximally large
well-conditioned workspace.
Since singular configurations are given by

det(J(@)) = 0, (8.4)

it is natural to use the determinant of the Jacobian in a measure of
manipulator dexterity. In [4] the manipulability measure, w is defined
as
R T
w = y/det (J(©)J7(8)), (8.5)

which for a nonredundant manipulator reduces to
w = |det (J(©))]. (8.6)

A good manipulator design has large areas of its workspace characterized
by high values of w.

275

276 | g Manipulator mechanism design

Whereas velocity analysis motivated (8.6). other researchers have
proposed manipulability measures based on acceleration analysis or force
application ability. Asada [5] suggested examination of the eigenvalues
of the Cartesian mass matrix

M, (©)=J"T(0) M(©) J-1(9), (8.7)

as a measure of how well the manipulator can accelerate in various Carte-
sian directions. He suggests a graphic representation of this measure as
an inertia ellipsoid given by

XTM (@)X =1, (8.8)

the equation of an n-dimensional ellipse, where n is the dimension of
X. The axes of the ellipsoid given in (8.8) lie in the directions of the
eigenvectors of M_(©) and the reciprocals of the square root of the
corresponding eigenvalue provides the lengths of the axes of the ellipsoid.
Well-conditioned points in the manipulator workspace are characterized
by inertia ellipsoids which are spherical or nearly so.

Figure 8.12 shows ‘graphically the properties of a planar two-link
manipulator. In the center of the workspace the manipulator is well
conditioned as indicated by nearly circular ellipsoids. At workspace
boundaries, the ellipses flatten, indicating the manipulator’s difficulty
in accelerating in certain directions.

w\
\@ I&@
é?@]9
A g@@
\@ %/

-I'

FIGURE 8.12 Workspace of a 2-DOF planar arm showing inertia ellipsoids,
from [5] (©1984 IEEE). The dashed line indicates a locus of isotropic points
in the workspace. Reprinted by permission.

8.5 Redundant and closed chain structures

Other measures of workspace conditioning have been proposed in
[6-8].

8.5 Redundant and closed chain structures

In general, the scope of this book is limited to manipulators which are
serial chain linkages of six or fewer joints. However, in this section we
brieflv discuss manipulators outside of this class.

Micromanipulators and other redundancies

While general spatial positioning capability requires six degrees of
freedom, there are advantages to having even more controllable joints.

One use for these extra freedoms which is already finding some
practical application [9,10], and is of growing interest in the research
community is for a micromanipulator. A micromanipulator is gener-
ally formed by several fast, precise degrees of freedom located near the
distal end of a “conventional” manipulator. The conventional manipula-
tor takes care of large motions, and the micromanipulator, whose joints
generally have a small range of motion, accomplishes fine motion and
force control.

Additional joints can also help a mechanism avoid singular config-
urations, as suggested in [11,12]. For example, while any three degree
of freedom wrist will suffer from singular configurations (when all three
axes lie in a plane), a four degree of freedom wrist can effectively avoid
such configurations [13-13].

Figure 8.13 shows two configurations suggested [11,12] for seven
degree of freedom manipulators.

A major potential use of redundant robots is in avoiding collisions
while operating in cluttered work environments. As we have seen, a six
degree of freedom manipulator can reach a given position and orientation
in only a finite number of ways. The addition of a seventh joint allows
an infinity of ways, where the desire to avoid obstacles can influence
the choice.

Closed loop structures

Although we have considered only serial chain manipulators in our
analysis, some manipulators contain closed loop structures. For
example, the Motoman L-3 robot described in Chapters 3 and 4 possesses
closed loop structures in the drive mechanism of joints 2 and 3. Closed
loop structures offer the benefit of increased stiffness of the mechanism

277

278

8 Manipulator mechanism design

B4

ei 96

A~

<o

FIGURE 8.13 Two suggested seven degree of freedom manipulator
designs [3].

[16]. On the other hand, closed loop structures generally reduce the
allowable range of motion of the joints and thus decrease the workspace
size.

Figure 8.14 depicts a Stewart mechanism. a closed loop alterna-
tive to the serial 6-DOF manipulator. The position and orientation of
the “end-effector” is controlled by the lengths of the six linear actuators
which connect it to the base. At the base end, each actuator is connected
by a two degree of freedom universal joint. At the end-effector, each
actuator is attached with a three degree of freedom ball and socket joint.
It exhibits characteristics common to most closed loop mechanisms: it
can be made very stiff, but the links have a much more limited range of
motion than do serial linkages. The Stewart mechanism, in particular,
demonstrates an interesting reversal in the nature of the forward and
inverse kinematic solutions: the inverse solution is quite simple, whereas
the forward solution is typically quite complex, sometimes lacking a
closed form formulation (see Exercises 8.7 and 8.12).

In general, the number of degrees of freedom of a closed loop
mechanism it is not readily obvious. The total number of freedoms can

8.5 Redundant and closed chain structures

“End-effector”

FIGURE 8.14 The Stewart mechanism is a six degree of freedom fully
parallel manipulator.

be computed with Griibler’s formula [17],

F=6l-n-1)+) fi (8.9)

i=1

where F is the total number of degrees of freedom in the mechanism, [is
the number of links (including the base). n is the total number of joints,
and f; is the number of degrees of freedom associated with the ith joint.
A planar version of Griibler’s formula (when all objects are considered to
have three degrees of freedom if unconstrained) is obtained by replacing
the 6 in (8.9) with a 3.

I [X AMPLE 8.2

Use Griibler’s formula to verify that the Stewart mechanism (Fig.
8.14) indeed has six degrees of freedom.

The number of joints is 18 (6 universal, 6 ball and socket, and

6 prismatic in the actuators). The number of links is 14 (2 parts for
each actuator, the end-effector, and the base). The sum of all the joint

279

Q@ 8 Manipulator mechanism design

freedoms is 36. Using Griibler’s formula, we verify that the total number
of freedoms is six, computed as

F=6(14—18—1)+36=6. = (8.10)

8.6 Actuation schemes

Once the general kinematic structure of a manipulator has been chosen,
the next most important matter of concern is the actuation of the joints.
Typically the actuator, reduction, and transmission are closely coupled
and must be designed together.

Actuator location

The most straightforward choice of actuator location is at or near the
joint it drives. If the actuator can produce enough torque or force, its
output can attach directly to the joint. This arrangement, known as
a direct drive configuration [18], offers the advantages of simplicity
in design and superior controllability. That is, with no transmission or
reduction elements between the actuator and the joint, the joint motions
can be controlled with the same fidelity as the actuator itself.

Unfortunately, many actuators are best suited to relatively high
speeds and low torques and therefore require a speed reduction sys-
tem. Furthermore, actuators tend to be rather heavy. If they can be
located remotely from the joint and toward the base of the manipulator,
the overall inertia of the manipulator can be reduced considerably. This,
in turn, reduces the size needed for the actuators. To realize these
benefits, a transmission system is needed to transfer the motion from
the actuator to the joint.

In a joint drive system with a remotely mounted actuator, the
reduction system may be placed at the actuator, or at the joint. Some
arrangements combine the functions of transmission and reduction.
Aside from added complexity, the major disadvantage of reduction
and transmission systems is that they introduce additional friction and
flexibility into the mechanism. When the reduction is at the joint, the
transmission will be working at higher speeds and lower torques. Lower
torque means that flexibility will be less of a problem. However, if the
weight of the reducer is significant, some of the advantage of remotely
mounted actuators is lost.

In Chapter 3 details were given for the actuation scheme of the
Yasukawa Motoman L-3, which is typical of a design in which actuators

8.6 Actuation schemes

are mounted remotely and resulting joint motions are coupled. Equations
(3.15) show explicitly how actuator motions cause joint motions. Note
for example that motion of actuator 2 causes motion of joints 2, 3, and 4.

The optimal distribution of reduction stages throughout the trans-
mission will ultimately depend on the flexibility of the transmission, the
weight of the reduction system, the friction associated with the reduction
system, and the ease of incorporating these components into the overall
manipulator design.

Reduction and transmission systems

Gears are the most common element used for reduction. They can
provide for large reductions in relatively compact configurations. Gear
pairs come in various configurations for parallel shafts (spur gears),
orthogonal intersecting shafts (bevel gears), skew shafts (worm gears
or cross helical gears), and other configurations. Different types of gears
have different load ratings, wear characteristics, and frictional properties.

The major disadvantages of using gearing is that of added backlash
and friction. Backlash, which arises from imperfectly meshed gears, can
be defined as the maximum angular motion of the output gear when the
input gear remains fixed. If the gear teeth are meshed tightly to eliminate
backlash, there can be excessive amounts of friction. Very precise gears
and very precise mounting minimize these problems but also increase
cost.

The gear ratio, 17, describes the speed reducing and torque increas-
ing effects of a gear pair. For speed reduction systems we will define
1 > 1 so that the relationships between input and output speeds and
torques are given by

b, = (1.-’{7?)'9-1;
(8.11)

T = N7;.

where 90 and 92- are output and input speeds respectively, and 7, and 7;
are output and input torques.

The second broad class of reduction elements includes flexible bands,
cables, and belts. Because all of these elements must be flexible enough
to bend around pulleys, they also tend to be flexible in the longitudinal
direction. The flexibility of these elements is proportional to their length.
Because these systems are flexible, there must be some mechanism for
preloading the loop to ensure that the belt or cable stays engaged on
the pulley. Large preloads can add undue strain to the flexible element
and introduce excessive friction.

Cables or flexible bands can be used either in a closed loop or as
single-ended elements which are always kept in tension by some sort of

281

\% 8 Manipulator mechanism design

preload. In a joint which is spring loaded in one direction, a single-ended
cable could be used to pull against it. Alternately, two active single-ended
systems can oppose each other. This arrangement eliminates the problem
of excessive preloads but adds more actuators.

Roller chains are similar to flexible bands but can bend around
relatively small pulleys while retaining a high stiffness. As a result of
wear and high loads on the pins connecting the links, toothed belt
systems may be more compact than roller chains for certain applications.

Band, cable, belt, and chain drives have the ability to combine
transmission with reduction. As in Fig. 8.15, the input pulley has
radius r; and the output pulley has radius r,, the “gear” ratio of the
transmission system is

n="2. (8.12)

Ty

Lead screws or ball bearing screws provide another popular method
of getting a large reduction in a compact package (Fig. 8.16). Lead
screws are very stiff and can support very large loads, and have the
property that they transform rotary motion into linear motion. Ball
bearing screws are similar to lead screws, but instead of having the nut
threads riding directly on the screw threads, a recirculating circuit of
ball bearings rolls between the sets of threads. Ball bearings screws have
very low friction and are usually backdrivable.

2

Input Output

FIGURE 8.15 Band. cable, belt, and chain drives have the ability to

TUMIDME LTansmission witn Teduction.

R.7 Stiffness and deflections

A
IAZANAN
Z
g
OYO
@)

(a) (b)

Race

FIGURE 8.16 Lead screws (a) and ball bearing screws (b) combine a large

reduction and transformation from rotary to linear motion.

8.7 Stiffness and deflections

An important goal for design of most manipulators is overall stiffness
of the structure and the drive system. Stiff systems provide two main

benefits. First, because typical manipulators do not have sensors to
measure the tool frame location directly, it is calculated using the

forward kinematics based on sensed joint positions. For an accurate

calculation, the links cannot sag under gravity or other loads. In other
words, we wish our Denavit-Hartenberg description of the linkages
to remain fixed under various loading conditions. Second, flexibilities

in the structure or drive train will lead to resonances which have
an undesirable effect on manipulator performance. In this section we
consider issues of stiffness and the resulting deflections under loads. We

postpone further discussion of resonances until Chapter 9.

Flexible elements in parallel and series

As can be easily shown (see Exercise 8.21), the combination of two

flexible members of stiffness k; and k, when “connected in parallel”

produces the net stiffness

k I:'I“l_-_kQ‘

paralle

and when “connected in series” produces the net stiffness

(8.13)

283

@4_1 8 Manipulator mechanism design

1

1 1
A = k_l + k_g (8.14)

series

In considering transmission systems we often have the case of one
stage of reduction or transmission in series with a following stage of
reduction or transmission: hence (8.14) becomes useful.

Shafts

A common method for transmitting rotary motion is through shafts.
The torsional stiffness of a round shaft can be calculated [19] as

_ Grd*
EFT

(8.15)

where d is the shaft diameter. [is the shaft length, and G is the shear
modulus of elasticity (about 7.5 x 10° Nt/m? for steel, and about a
third as much for aluminum).

Gears

Gears. although typically quite stiff, introduce compliance into the drive
svstem. An approximate formula to estimate the stiffness of the output
gear (assuming the input gear is fixed) is given in [20] as

k=", (8.16)

where b is the face width of the gears, r is the radius of the output gear,
and C, = 1.34 x 10!°Nt/m? for steel.

Gearing also has the effect of changing the effective stiffness of the
drive system by a factor of n?. If the stiffness of the transmission system
prior to the reduction (i.e., on the input side) is k;, that is,

7 = k;66,, (8.17)
and the stiffness of the output side of the reduction is k,, that is,

7, =k, 86, (8.18)
then we can compute the relationship between k; and k, assuming a
perfectly rigid gear pair as

T, k; 00,
k o S TJT i i _I?Qk

e A \p19)

i

Hence, a gear reduction has the effect of increasing the stiffness by the
square of the gear ratio.

8.7 Stiffness and deflections

I X AMPLE 8.3

A shaft with torsional stiffness of 500.0 Nt m/radian is connected to
the input side of a gear set with n = 10 and whose output gear (when
input gear is fixed) exhibits a stiffness of 5000.0 Nt m/radian. What is
the output stiffness of the combined drive system?

Using (8.14) and (8.19) we have

1 1 : 1

= + s 8.20
Eoories 9000.0 107(500.0) 520)

or,

500
=2 100 & 4545.4 Nt m/radian. (8.21)

series 1

When a relatively large speed reduction is the last element of a multi-
element transmission system, the stiffnesses of the preceding elements
can generally be ignored. "

Belts
In a belt drive such as that of Fig. 8.15, stiffness is given by

k= 4—;5 (8.22)
where A is the cross sectional area of the belt, E is the modulus of
elasticity of the belt, and [is the length of the free belt between pulleys

plus one third of the length of the belt in contact with the pulleys [19].

Links

As a rough approximation of the stiffness of a link, we might model a
single link as a cantilever beam, and calculate the stiffness at the end
point, as in Fig. 8.17. For a round hollow beam, this stiffness is given
by [19]

_ 3nE(d% - df)

k
6413

(8.23)
where d; and d,, are the inner and outer diameters of the tubular beam,
| is the length, and E is the modulus of elasticity (about 2 x 101! Nt/m?
for steel, and about a third as much for aluminum). For a square cross
section hollow beam, this stiffness is given by

B(ut — w})

k=
478

(8.24)

where w; and w, are the outer and inner widths of the beam (i.e., the
wall thickness is w, — w;).

285

1286 | g Manipulator mechanism design

L | afee—

A
 J

s e e o

FIGURE 8.17 Simple cantilever beam used to model the stiffness of a
link to an end load.

. X AMPLE 8.4

A square cross section link of dimensions 5 x 5 x 50 cm with a wall
thickness of 1cm is driven by a set of rigid gears with n = 10 with the
input of the gears driven by a shaft of diameter 0.5 cm and length 30 cm.
What deflection is caused by a force of 100 Nt at the end of the link?

Using (8.24) we calculate the stiffness of the link as

(2 x 1011)(0.05% — 0.044 "
b= D 0.3) o 3.69 x 10°. (8.25)
4(0.5)

Hence for a load of 100 Nt, there is a deflection in the link itself of

- 100
0T =

kiink

>~92.7x10"%m, (8.26)

or 0.027 cm.

Additionally, 100 Nt at the end of a 50 cm link is placing a torque
of 50Ntm on the output gear. The gears are rigid, but the flexibility
of the input shaft is

(7.5 x 10%9)(3.14)(5 x 10—3)*

kshase = - 32(0.3) = 15.3 Nt m/radian, (8.27)
which viewed from the output gear is
Elpase = (15.3)(10%) = 1530.0 Nt m/radian. (8.28)

Loaded with 50 Ntm, this causes an angular deflection of

= (0.0326 radian, (8.29)

8.7 Stiffness and deflections

which means the total linear deflection at the tip of the link is
8z = 0.027 + (0.0326)(50) = 0.027 + 1.630 = 1.657 cm. (8.30)

In our solution we have assumed that the shaft and link are made of steel.
Since stiffness of both members is linear in E, the modulus of elasticity,
for aluminum elements we can multiply our result by about 3. =

In this section we have examined some simple formulas for esti-
mating the stiffness of gears, shafts, belts, and links. They are meant
to give some guidance in sizing structural members and transmission
elements. However, in practical applications, many sources of flexibility
are very difficult to model. Often, the drive train introduces significantly
more flexibility than the link of a manipulator. Furthermore, many
sources of flexibility in the drive system have not been considered here
(bearing flexibility, flexibility of the actuator mounting, etc). Generally,
any attempt to analytically predict stiffness results in an overly stiff
prediction because many sources are not considered.

Finite element techniques can be used to predict more accurately
the stiffness (as well as other properties) of more realistic structural
elements. This is an entire field in itself [21] and beyond the scope of
this book. :

Actuators

Among various actuators, hydraulic cylinders or vane actuators
were originally the most popular for use in manipulators. In a relatively
compact package, they can produce enough force to drive joints without
a reduction system. The speed of operation depends upon the pump and
accumulator system usually located remotely from the manipulator. The
position control of hydraulic systems is well understood and relatively
straightforward. All of the early industrial robots and many modern
large industrial robots use hydraulic actuators.

Unfortunately, hydraulics require a great deal of equipment such
as pumps. accumulators, hoses, and servo valves. Hydraulic systems
also tend to be inherently messy. making them unsuitable for some
applications. With the advent of more advanced robot control strategies,
in which actuator forces must be accurately applied, hydraulics proved
disadvantageous due to the friction of the seals.

Pneumatic cylinders share the same favorable attributes as hy-
draulics, and they are cleaner than hydraulics (air seeps out instead of
hydraulic fluid). However, pneumatic actuators have proven difficult to
control accurately due to the compressibility of air and high friction of
the seals.

Electric motors are the most popular actuator for manipulators.
Although they don’t have the power-to-weight ratio of hydraulics or

287

288 | 8 Manipulator mechanism design

Stator magnet

Rotor windings

Stator magnet

Commutator

FIGURE 8.18 DC brush motors are among the most frequently occurring
actuators used in manipulator design. Franklin, Powell, Emami-Naeini,
Feedback Control of Dynamic Systems, ©1988, Addison-Wesley, Reading, MA.
Reprinted with permission.

pneumatics, their controllablity and ease of interface makes them at-
tractive for small to medium sized manipulators.

Direct currént (DC) brush motors (Fig. 8.18) are the most straight-
forward to interface and control. The current is conducted to the
windings of the rotor via brushes which make contact with the revolving
commutator. Brush wear and friction can be problems. New magnetic
materials have made high peak torques possible. The limiting factor
on the torque output of these motors is the overheating of the windings.
For short duty cycles, high torques can be achieved, but only much lower
torques can be sustained over long periods of time.

Brushless motors solve brush wear and friction problems. Here,
the windings remain stationary and the magnetic field piece rotates. A
sensor on the rotor detects the shaft angle and is then used by external
electronics to perform the commutation. Another advantage of brushless
motors is that the winding is on the outside attached to the motor case,
affording it much better cooling. Sustained torque ratings tend to be
somewhat higher than similar sized brush motors.

Alternating current (AC) motors and stepper motors have been used
infrequently in industrial robotics. Difficulty of control of the former and
low torque ability of the latter have limited use.

8.8 Position sensing [289 |

8.8 Position sensing

Virtually all manipulators are servo controlled mechanisms. That is, the
force or torque command to an actuator is calculated based on the error
between the sensed position of the joint and the desired position. This
requires that each joint have some sort of position sensing device.

The most common approach is to locate a position sensor directly on
the shaft of the actuator. If the drive train is stiff and has no backlash,
the true joint angles can be calculated from the actuator shaft positions.
Such co-located sensor and actuator pairs are easiest to control.

The most popular position feedback device is the incremental
rotary optical encoder. As the encoder shaft turns, the device outputs
two square wave pulse trains 90 degrees out of phase. The shaft angle
is determined by counting the number of pulses, and the direction of
rotation is determined by the relative phase of the of the two square
waves. Standard incremental encoders come with anywhere from 16 lines
per revolution to 10,000 lines. Each line produces four pulse edges, so
that with standard counting electronics, a resolution of 0.01 degrees
is readily attainable. New encoder technologies and new interpolating
techniques continue to improve this resolution dramatically.

Resolvers are devices which output two analog signals—one the
sine of the shaft angle and the other the cosine. The shaft angle
is determined from the relative magnitude of the two signals. The
resolution is a function of the quality of the resolver and the amount
of noise picked up in the electronics and cabling. Resolvers are perhaps
more reliable than optical encoders, but the resolution is lower. Typically
resolvers cannot be placed directly at the joint without additional
gearing to improve the resolution.

Potentiometers provide the most straightforward form of position
sensing. Connected in a bridge configuration, they produce a voltage
proportional to the shaft position. Difficulties with resolution, linearity,
and noise susceptibility limit their use.

Tachometers are sometimes used to provide an analog signal
proportional to the shaft velocity. Lacking velocity sensors, the velocity
feedback is derived from taking differences over time of sensed position.
This numerical differentiation can introduce noise, as well as a time
lag. Despite these potential problems, most manipulators are without
direct velocity sensing.

290

8 Manipulator mechanism design

8.9 Force sensing

A variety of devices have been designed to measure forces of contact
between a manipulator’'s end-effector and the environment which it
contacts. Most such sensors make use of sensing elements called strain
gauges, of either the semiconductor or the metal foil variety. These
strain gauges are bonded to a metal structure and produce an output
proportional to the strain in the metal. In this type of force sensor design
the issues the designer must address include

How many sensors are needed to resolve the desired information?

How are the sensors mounted relative to each other on the structure?

What structure allows good sensitivity while maintaining stiffness?

B

How can protection against mechanical overload be built into the
device?

There are three places where such sensors are usually placed on a
manipulator:

1. At the joint actuators. These sensors measure the torque or force
output of the actuator/reduction itself. These are useful for some
control schemes but usually do not provide good sensing of contact
between the end-effector and the environment.

2. Between the end-effector and last joint of the manipulator. These
sensors are usually referred to as wrist sensors. They are a mechan-
ical structure instrumented with strain gauges which can measure
the forces and torques acting on the end-effector. Typically, these
sensors are capable of measuring from three to six components of
the force/torque vector acting on the end-effector.

3. At the “fingertips” of the end-effector. Usually, these force-sensing
fingers have built-in strain gauges to measure from one to four
components of force acting at each fingertip.

As an example, Fig. 8.19 is a drawing of the internal structure of a
popular style of wrist force sensor designed by Scheinman [22]. Bonded
to the cross-bar structure of the device are eight pairs of semiconductor
strain gauges. Each pair is wired in a voltage divider arrangement. Each
time the wrist is queried, eight analog voltages are digitized and read into
the computer. Calibration schemes have been designed with which to
arrive at a constant 6 x 8 calibration matriz that maps these eight strain
measurements into the force-torque vector, F. acting on the end-effector.

8.9 Force sensing |291

Instrumented
with strain
gauges

FIGURE 8.19 The internal structure of a typical force-sensing wrist.

The sensed force—torque vector can be transformed to a reference frame
of interest as we saw in Example 5.8.

Force sensor design issues

Use of strain gauges to measure force relies on measuring the deflection
of a stressed flexure. Therefore, one of the primary design trade-offs is
between the stiffness and the sensitivity of the sensor. A stiffer sensor
is inherently less sensitive.

The stiffness of the sensor also affects the construction of overload
protection. Strain gauges can be damaged upon impact loading and
therefore must be protected against such overloads. Transducer damage
can be prevented by having limit stops which prevent the flexures
from deflecting past a certain point. Unfortunately, a very stiff sensor
may only deflect a few ten-thousandths of an inch. Manufacturing limit
stops with such small clearances is very difficult. Consequently, for many
types of transducers, a certain amount of flexibility maust be built in in
order to achieve effective limit stops.

Eliminating hysteresis is one of the most cumbersome restrictions
in the sensor design. Most metals used as flexures, if not over-strained,
have very little hysteresis. However, bolted, press fit, or welded joints
near the flexure introduce hysteresis. Ideally, the flexure and the material
near the flexures are made from a single piece of metal.

\M 8 Manipulator mechanism design

Tt is also important to use differential measurements to increase the
linearity and disturbance rejection of torque sensors. Different physical
configurations of transducers can eliminate influences due to tempera-
ture effects and off-axis forces.

Foil gauges are relatively durable but they produce a very small
resistance change at full strain. Eliminating noise in the strain gauge
cabling and amplification electronics is of crucial importance for a good
dynamic range.

Semiconductor strain gauges are much more susceptible to damage
through overload. In their favor, they produce a resistance change about
seventy times that of foil gauges for a given strain. This makes the task
of signal processing much simpler for a given dynamic range.

References

[1] W. Rowe, Editor, Robotics Technical Directory 1986, Instrument Society of
America, Research Triangle Park, N.C., 1986.

[2] R. Vijaykumar and K. Waldron, “Geometric Optimization of Manipulator
Structures for Working Volume and Dexterity,” International Journal of
Robotics Research, Vol. 5, No. 2, 1986.

[3] K. Waldron, “Design of Arms,” in The International Encyclopedia of
Robotics, R. Dorf and S. Nof, Editors, John Wiley and Sons, 1988. .

[4] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” The International
Journal of Robotics Research, Vol. 4, No. 2, MIT Press, 1985.

[5] H. Asada,“Dynamic Analysis and Design of Robot Manipulators Using
Inertia Ellipsoids,” Proceedings of the IEEE International Conference on
Robotics. Atlanta, March 1984.

[6] J.K. Salisbury and J. Craig, “Articulated Hands: Force Control and Kine-
matic Issues,” The International Journal of Robotics Research, Vol. 1,
No. 1, 1982.

0. Khatib and J. Burdick, “Optimization of Dynamics in Manipulator
Design: The Operational Space Formulation,” International Journal of
Robotics and Automation, Vol. 2, No. 2, IASTED, 1987.

[8] T. Yoshikawa, “Dynamic Manipulability of Robot Manipulators”, Proceed-

ings of the IEEE International Conference on Robotics and Automation,
St. Louis, March 1985.

[9] J. Trevelyan, P. Kovesi, and M. Ong, “Motion Control for a Sheep Shearing
Robot,” The Ist International Symposium of Robotics Research, MIT
Press, 1984.

[10] P. Marchal, J. Cornu, and J. Detriche, “Self Adaptive Arc Welding Opera-
tion by Means of an Automatic Joint Following System,” Proceedings of
the 4th Symposium on Theory and Practice of Robots and Manipulators,
Zaburow, Poland, September 1981.

[11] J.M. Hollerbach, “Optimum Kinematic Design for a Seven Degree of Free-
dom Manipulator,” Proceedings of the 2nd International Symposium of
Robotics Research, Kyoto, Japan, August 1984,

o

=1

7

4

Exercises

[12] K. Waldron and J. Reidy, “A Study of Kinematically Redundant Manip-
ulator Structure,” Proceedings of the IEEE Robotics and Automation
Conference, San Francisco, April 1986,

[13] V. Milenkovic, “New Nonsingular Robot Wrist Design,” Proceedings of the
Robots 11 / 17th ISIR Conference, SME, 1987.

[14] E. Rivin, Mechanical Design of Robots, McGraw-Hill, 1988.

[15] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” in Proceedings of
the 2nd International Symposium on Robotics Research, Kyoto, Japan,
1984.

[16] M. Leu, V. Dukowski, and K. Wang. “An Analytical and Experimental
Study of the Stiffness of Robot Manipulators with Parallel Mechanisms,”
in Robotics and Manufacturing Automation, M. Donath and M. Leu,
editors, ASME, New York, 1985.

[17] K. Hunt, Kinematic Geometry of Mechanisms, Cambridge University Press,
Cambridge, 1978.

[18] H. Asada and K. Youcef-Toumi, Design of Direct Drive Manipulators, MIT
Press, 1987.

[19] J. Shigley, Mechanical Engineering Design, 3rd edition, McGraw-Hill, 1977.

[20] D. Welbourne, “Fundamental Knowledge of Gear Noise—A Survey,” Pro-
ceedings of the Conference on Noise and Vibrations of Engines and
Transmissions, Institute of Mechanical Engineers, Cranfield, UK, 1979.

[21] O. Zienkiewicz, The Finite Element Method, 3rd edition, McGraw-Hill,
1977.

[22] V. Scheinman, “Design of a Computer Controlled Manipulator,” M.S.
Thesis, Mechanical Engineering Department, Stanford University, 1969.

[23] K. Lau, N. Dagalakis, and D. Meyers, “Testing,” in The International
Encyclopedia of Robotics, R. Dorf and S. Nof, Editors, John Wiley and
Sons, 1988.

[24] M. Roshiem, “Wrists;” in The International Encyclopedia of Robotics, R.
Dorf and S. Nof, Editors, John Wiley and Sons, 1988.

Exercises

8.1 [15] A robot is to be used for positioning a laser cutting device. The laser
produces a pinpoint, nondivergent beam. For general cutting tasks, how
many degrees of freedom does the positioning robot need? Justify your
answer.

8.2 [15] Sketch a possible joint configuration for the laser positioning robot of
Exercise 8.1 assumming that it will be used primarily for cutting at odd
angles through 1 inch thick, 8 x 8 foot plates.

8.3 [17] For a spherical robot like that of Fig. 8.6, if joints 1 and 2 have no
limits, and joint 3 has lower limit [and upper limit u, find the structural
length index, @ . for the wrist point of this robot.

8.4 [25] A steel shaft of length 30cm and diameter 0.2cm drives the input
gear of a reduction of 7 = 8. The output gear drives a steel shaft of length
30cm and diameter 0.3 cm. If the gears introduce no compliance of their
own, what is the overall stiffness of the transmission system?

293

\% 8 Manipulator mechanism design

FIGURE 8.20 A link actuated through a shaft after a gear reduction.

8.5

8.6

8.7

8.8

8.9

[20] In Fig. 8.20 a link is driven through a shaft after a gear reduction.
Model the link as rigid with mass of 10 Kg located at a point 30 cm from
the shaft axis. Assume the gears are rigid and the reduction, 7 is large.
The shaft is steel and must be 30 cm long. If the design specifications call
for the center of link mass to undergo accelerations of 2.0 g, what should
the shaft diameter be to limit dynamic deflections to 0.1radian at the
joint angle?

[15] If the output gear exhibits a stiffness of 1000 Nt m/radian with input
gear locked. and the shaft has stiffness of 300 Nt m/radian, what is the
combined stiffness of the drive system in Fig. 8.207

[43] Pieper’s criteria for serial link manipulators states that the manipu-
lator will be solvable if three consectutive axes intersect at a single point
or are parallel. This is based on the idea that inverse kinematics can be
decoupled by looking at the position of the wrist point independently from
the orientation of the wrist frame. Propose a similar result for the Stewart
mechanism in Fig. 8.14 which will allow the forward kinematic solution
to be similarly decoupled.

[20] In the Stewart mechanism of Fig. 8.14, if the 2-DOF universal joints
at the base were replaced with 3-DOF ball and socket joints, what would
the total number of degrees of freedom of the mechanism be? Use Griibler’s
formula.

[22] Figure 8.21 shows a simplified schematic of the drive system of joint
4 of the PUMA 560 [23]. The torsional stiffness of the couplings are
100 Nt m/radian, the shaft is 400 Nt m/radian, and each of the reduction
pairs have been measured to have output stiffness of 2000 Nt m/radian
with their input gears fixed. Both the first and second reductions have
n = 6. Assuming the structure and bearing are perfectly rigid, what is

* None of the numerical values in this exercise are meant to be realistic!

Exercises

Electric motor

#1 Coupling

Connecting rod
#2 Coupling
#2 Gear

#4 Gear

FIGURE 8.21 Simplified version of the drive train of joint 4 of the

PUMA 560 manipulator (from [23]). From International Encyclopedia of

Robotics, by R. Dorf and S. Nof, (editors). From “Testing” by K. Law,
N. Dagalakis, and D. Myers.

8.10

8.11

8.12

8.13

the stiffness of the joint (i.e., when the motor’s shaft is locked)?

[25] What is the error if one approximates the answer to Exercise 8.9 by
just considering the stiffness of the final speed reduction gearing?

[20] Figure 4.14 shows an orthogonal axis wrist and a nonorthogonal wrist.
The orthogonal axis wrist has link twists of magnitude 90°, while the
nonorthogonal wrist has link twists of ¢ and 180° — ¢ in magnitude.
Describe the set of orientations which are unattainable with the nonorthog-
onal mechanism. Assume that all axes can turn 360° and that links can
pass through one another if need be (i.e., workspace is not limited by
self-collision).

[18] Write down a general inverse kinematic solution for the Stewart
mechanism shown in Fig. 8.22. Given the location of {T'} relative to the
base frame {B}, solve for the joint position variables d, through dg. The
Bp, are 3 x 1 vectors which locate the base connections of the linear
actuators relative to frame {B}. The Tg; are 3 x 1 vectors which locate
the upper connections of the linear actuators relative to the frame {T}.

[20] The planar two-link of example 5.3 has the determinant of it Jacobian
given by

det(J(©)) = I 155,. (8.31)

If the sum of the two link lengths, [, + [,. is constrained to be equal to
a constant, what should the relative lengths be in order to maximize the
manipulator’s manipulability as defined by (8.6)7

295

\ﬂf & Manipulator mechanism design

FIGURE 8.22 Stewart mechanism of Exercise 8.12

8.14

8.16

8.17

8.18

8.19

8.20

(28] For a SCARA robot, given that the sum of the link lengths of link 1
and link 2 must be constant, what is the optimal choice of relative length
based on the manipulability index given in (8.6)7 Solving Exercise 8.13
first may be helpful.

[35] Show that the manipulability measure defined in (8.6) is also equal
to the product of the eigenvalues of J(©).

[15] What is the torsional stiffness of a 40 cm aluminum rod with radius
0.1cm?

[5] What is the effective “gear” reduction, 7, of a belt system with input
pulley of radius 2.0em and output pulley of radius 12.0cm?

[10] How many degrees of freedom are required in a manipulator used to
place cylindrical shaped parts on a flat plane? The cylindrical parts are
perfectly symmetrical about their main axes.

[25] Figure 8.23 shows a three-fingered hand grasping an object. Each
finger has three single degree of freedom joints. The contact points between
fingertips and the object are modeled as “point contact”—that is, the
position is fixed. but the relative orientation is free in all three degrees
of freedom. Hence, these point contacts can be replaced by 3-DOF ball
and socket joints for the purposes of analysis. Apply Griibler’s formula to
compute how many degrees of freedom the overall system possesses.

(23] Figure 8.24 shows an object connected to the ground with three rods.
Each rod is connected to the object with a 2-DOF universal joint, and to

Exercises

FIGURE 8.23 A three-fingered hand in which each finger has three degrees
of freedom grasps an object with “point contact.”

%

FIGURE 8.24 Closed loop mechanism of Exercise 8.20

8.21

the ground with a 3-DOF ball and socket joint. How many degrees of
freedom does the system possess?

[18] Verify that if two transmission systems are connected serially, then
the equivalent stiffness of the overall system is given by (8.14). It is perhaps
simplest to think of the serial connection of two linear spring of stiffness

297

lﬁl & Manipulator mechanism design

coefficients k, and k5, and the resulting equations:
f=kybzq,

f=kbz,, (8.32)
f = ksum(éxl i 51‘2)

8.22 [20] Derive a formula for stiffness of a belt drive system in terms of the

pulley radii (r; and r,) and the center to center distance between pulleys,
d.. Start from (8.22).

Programming Exercise (Part 8)

1.

Write a program to compute the determinant of a 3 x 3 matrix.

Write a program to move the simulated three-link robot in twenty steps in
a straight line and constant orientation from

[0.257
ST =1 0.0
| 0.0 |

to - -
0.95

9T =1 0.0

| 0.0 |

in increments of 0.05 meter. At each location compute the manipulability
measure for the robot at that configuration (i.e., the determinant of the
Jacobian). List, or better vet, make a plot of the values as a function of the
position along the XU axis.

Generate the above data for two cases:

1) {; = Il = 0.5 meter, and

(2]
!

o
o

Il

0.625 meter, I, = 0.375 meter.

Which manipulator design do you think is better? Explain your answer.

LINEAR CONTROL
OF MANIPULATORS

9.1 Introduction

Based on previous material, we now have the means to calculate joint-
position time histories that correspond to desired end-effector motions
through space. In this chapter we begin to discuss how to cause the
manipulator actually to perform these desired motions.

The control methods that we will discuss in this chapter fall into
the class of linear control systems. Strictly speaking, the use of linear
control techniques is only valid when the system being studied can
be mathematically modeled by linear differential equations. For the
case of manipulator control, such linear methods must essentially be
viewed as approximate methods, since as we have seen in Chapter 6, the
dynamics of a manipulator are more properly represented by a nonlinear
differential equation. However, we will see that it is often reasonable
to make such approximations, and it also is the case that these linear
methods are the ones most often used in current industrial practice.

\ﬂ‘ 9 Linear control of manipulators

Finally, consideration of the linear approach will serve as a basis for
the more complex treatment of nonlinear control systems in Chapter
10. Although we approach linear control as an approximate method
for manipulator control, the justification for using linear controllers is
not only empirical. In Chapter 10 we will prove that a certain linear
controller leads to a reasonable control system even without resorting to
a linear approximation of manipulator dynamics. Readers familiar with
linear control systems may wish to skip the first four sections of this
chapter.

9.2 Feedback and closed loop control

We will model a manipulator as a mechanism which is instrumented
with sensors at each joint to measure the joint angle, and an actuator
at each joint to apply a torque on the neighboring (next higher) link.*
Although other physical arrangements of sensors are sometimes used, the
vast majority of robots have a position sensor at each joint. Sometimes
velocity sensors (tachometers) are also present at the joints. Various
actuation and transmission schemes are prevalent in industrial robots,
but many of these can be modeled by supposing there is a single actuator
at each joint.

Since we wish to cause the manipulator joints to follow prescribed
position trajectories, but the actuators are commanded in terms of
torque, we must use some kind of control system to compute appropri-
ate actuator commands which will realize this desired motion. Almost
always these torques are computed by using feedback from the joint
sensors to compute the torque required.

Figure 9.1 shows the relationship between the trajectory generator
and the physical robot. The robot accepts a vector of joint torques, T,
from the control system. The manipulator’s sensors allow the controller
to read the vector of joint positions, ©, and joint velocities, ©. All signal
lines in Fig. 9.1 carry N x 1 vectors (where N is the number of joints
in the manipulator).

Let’s consider what algorithm might be implemented in the block
labeled “control system” in Fig. 9.1. One possibility is to use the dynamic
equation of the robot (as studied in Chapter 6) to calculate the torques
required for a particular trajectory. Since we are given ©,, ©, and 0,
by the trajectory generator, we could use (6.59) to compute

T=M(0,)0,+V(0,6,)+GO,). (9.1)

* Remember, all remarks made concerning rotational joints hold analogously
for linear joints and wvice versa.

9.2 Feedback and closed loop control [301 |

Oq4(t)

Trajectory Qd ® Control T
generator O 2(8) system

-t Robot

12D

IP &

FIGURE 9.1 High-level block diagram of a robot control system.

This computes the torques that our model dictates would be required to
realize the desired trajectory. If our dynamic model were complete and
accurate and no “noise” or other disturbances were present, continuous
use of (9.1) along the desired trajectory would realize the desired
trajectory. Unfortunately, due to imperfection in the dynamic model,
and the inevitable presence of disturbances, such a scheme is not
practical for use in real applications. Such a control technique is termed
an open loop scheme because there is no use made of the feedback from
the joint sensors (i.e., (9.1) is a function only of the desired trajectory,
O, and its derivatives, and not a function of @, the actual trajectory).

Generally the only way to build a high-performance control system
is to make use of feedback from joint sensors as indicated in Fig. 9.1.
Typically, this feedback is used to compute servo error by finding
the difference between the desired position and the actual position, and
likewise between desired and actual velocity:

=g, 0

1 a oo 9.2
E=6,-0 e

The control system can then compute how much torque to send to
the actuators as some function of the servo error. Obviously, the basic
idea is to compute actuator torques which would tend to reduce servo
errors. A control system which makes use of feedback is called a closed
loop system. The “loop” closed by such a control system around the
manipulator is apparent in Fig. 9.1.

The central problem in designing a control system is to ensure that
the resulting closed loop system meets certain performance specifica-
tions. The most basic such criterion is that the system remain stable.
For our purposes, we will define a system to be stable if the errors remain

1302 | 9 Linear control of manipulators

“small” when executing various desired trajectories even in the presence
of some “moderate” disturbances. It should be noted that an improperly
designed control system can sometimes result in unstable performance,
in which servo errors are enlarged instead of reduced. Hence, the first
task of a control engineer is to prove that his or her design yields a
stable system, and second to prove that the closed loop performance
of the system is satisfactory. In practice, such “proofs” may range
from mathematical proofs based on certain assumptions and models,
to more empirical results such as those obtained through simulation or
experimentation.

Figure 9.1, in which all signals lines represent N x 1 vectors, summa-
rizes the fact that the manipulator control problem is a multi-input,
multi-output (MIMO) control problem. In this chapter we take a sim-
ple approach to constructing a control system by treating each joint as a
separate system to be controlled. Hence, for an N-jointed manipulator,
we will design N independent single-input, single-output (SISO)
control systems. This is the design approach presently adopted by most
industrial robot suppliers. This independent joint control approach
is an approximate method in that the equations of motion (developed in
Chapter 6) are not independent, but rather are highly coupled. Later,
this chapter will present justification for the linear approach, at least for
the case of highly geared manipulators.

9.3 Second-order linear systems

Before considering the manipulator control problem, let’s step back and
start by considering a simple mechanical system. Figure 9.2 shows a
block of mass m attached to a spring of stiffness k and subject to friction
of coefficient b. Figure 9.2 also indicates the zero position and positive
sense of z, the block’s position. Assuming a frictional force which is
proportional to the block’s velocity, a free body diagram of the forces
acting on the block leads directly to the equation of motion

mi +bi + kx = 0. (9.3)

Hence, the open loop dynamics of this one degree of freedom system
are described by a second-order linear constant coefficient differential
equation [1]. The solution to the differential equation (9.3) is a time
function, z(t), which specifies the motion of the block. This solution will
depend on the block’s initial conditions, that is, its initial position
and velocity.

We will use this simple mechanical system as an example for which
to review some basic control system concepts. Unfortunately, it is

9.3 Second-order linear systems

NN R R

FIGURE 9.2 Spring-mass system with friction.

impossible to do justice to the field of control theory with only a brief
introduction here. We will discuss the control problem only assuming
that the student is familiar with simple differential equations. Hence, we
will not use many of the popular tools of the control engineering trade.
For example, Laplace transforms and other common techniques are
neither a prerequisite nor are they introduced here. A good reference
for the field is [4].

Intuition permits that the system of Fig. 9.2 might exhibit several
different characteristic motions. For example, in the case of a very weak
spring (i.e., k small) and very heavy friction (i.e., b large) one imagines
that if the block were perturbed, it would return to its resting position
in a very slow, sluggish manner. However, with a very stiff spring and
very low friction, the block might oscillate several times before coming
to rest. These different possibilities arise because the character of the
solution to (9.3) depends upon the parameter values: m, b, and k.

From the study of differential equations [1], we know that the form
of the solution to an equation of the form of (9.3) depends on the roots
of its characteristic equation,

ms® +bs+k =0, (9.4)
which has the roots

b b% — dmk
+ S

S T 3
2m, 2m (9.5)

gl _i 7 b% — dmk

B e 2m :

The location of s; and s, (sometimes called the poles of the system)
in the real-imaginary plane dictate the nature of the motions of the
system. If s; and s, are real, then the behavior of the system is sluggish
and nonoscillatory. If s, and s, are complex (i.e., have an imaginary

303

&U 9 Linear control of manipulators

component) then the behavior of the system is oscillatory. If we include
the special limiting case between these two behaviors, we have three
classes of response to study:

1. Real and Unequal Roots. This is the case when b? > 4mk; that
is, friction dominates, and sluggish behavior results. This response
is called overdamped.

2. Complex Roots. This is the case when b% < 4 mk; that is, stiffness
dominates, and oscillatory behavior results. This response is called
underdamped.

3. Real and Equal Roots. This is the special case when b? = 4 mk;
that is, friction and stiffness are “balanced,” yielding the fastest
possible nonoscillatory response. This response is called critically
damped.

The third case (critical damping) is generally a desirable situation
since the system nulls out nonzero initial conditions and returns to its
nominal position as rapidly as possible without oscillatory behavior.

Real and unequal roots.

It can easily be shown (by direct substitution into (9.3)) that the
solution, z(t), giving the motion of the block in the case of real, unequal
roots has the form

z(t) = cre’t’ 4 cye’2’, (9.6)

where s; and s, are given by (9.5). The coefficients ¢; and ¢, are
constants which can be determined for any given set of initial conditions
(i.e., initial position and velocity of the block).

Figure 9.3 shows an example of pole locations and the corresponding
time response to a nonzero initial condition. When the poles of a
second-order system are real and unequal, the system exhibits sluggish
or overdamped motion.

In cases where one of the poles has a much greater magnitude than
the other, the pole of larger magnitude can be neglected, as the term
corresponding to it will decay to zero rapidly in comparison to the other,
more dominant pole. This same notion of dominance extends to higher
order systems, for example, often a third-order system can be studied
as a second-order system by considering only two dominant poles.

e X AMPLE 9.1

Determine the motion of the system in Fig. 9.2 if parameter values
arem =1, b= 25, and k = 6 and the block (initially at rest) is released
from the position z = —1.

9.3 Second-order linear systems 305

Im{s} & x(t) A

81 S Re {?}

FIGURE 9.3 Root location and response to initial conditions for an
overdamped system.
The characteristic equation is
24+ 55+6=0 (9.7)
which has roots s; = 2 and s, = 3. Hence, the response has the form
w(l) = cher bt enei ot (9.8)

We now use the given initial conditions, z(0) = —1 and £(0) = 0 to
determine ¢, and c,. To satisfy these conditions at ¢ = 0 we must have

¢y t+ep = -1,
9.9
—2¢) — 3¢y =0, =Y
which is satisfied by ¢; = —3 and ¢, = 2. So, the motion of the system
for t > 0 is given by
z(t) = —3e %" +2e7%. = (9.10)

Complex roots

For the case where the characteristic equation has complex roots of the
form g
8 = A o Ju"“!

9.11
89 = A — i, ()

‘ﬂl 9 Linear control of manipulators

it is still the case that the solution has the form
2(t) = ¢ e”1? 4 cpe®alt. (9.12)

However, equation (9.12) is difficult to use directly since it involves
imaginary numbers explicitly. It can be shown (see Exercise 9.1) that
using Euler’s formula,

e'® = cosx +isinz, (9.13)

the solution (9.12) can be manipulated into the form

A

z(t) = ¢;e™ cos(ut) + coe™t sin(put). (9.14)
1

As before, the coefficients ¢, and ¢, are constants which can be deter-
mined for any given set of initial conditions (i.e., initial position and
velocity of the block). If we write the constants ¢; and ¢, in the form

¢; =rcoséd,
¢y = 7siné, Sl
then (9.14) can be written in the form
z(t) = re*t cos(ut — 8), (9.16)
where
o ETS
e (9.17)

8 = Atan2(cs, ¢;).

In this form, it is easier to see that the resulting motion is an oscillation
whose amplitude is exponentially decreasing toward zero.

Another common way of describing oscillatory second-order systems
is in terms of damping ratio and natural frequency. These terms are
defined by the parameterization of the characteristic equation given by

$ 4+ Cuw,s+wl =0, (9.18)

where ¢ is the damping ratio (a dimensionless number between 0 and
1), and w,, is the natural frequency.” Relationships between the pole
locations and these parameters are

(9.19)

* The terms damping ratio and natural frequency can also be applied to over-
damped systems, in which case ¢ > 1.0.

9.3 Second-order linear systems

In this terminology u, the imaginary part of the poles, is sometimes
called the damped natural frequency. For a damped spring-mass
system such as in Fig. 9.2, the damping ratio and natural frequency are
given by

o
2vkm' (9.20)
wy, = Vk/m.

When no damping is present (b = 0 in our example) the damping ratio
becomes zero, and when critically damped (b?> = 4km) the damping
ratio is 1.

Figure 9.4 shows an example of pole locations and the corresponding
time response to a nonzero initial condition. When the poles of a
second-order system are complex, the system exhibits oscillatory or
underdamped motion.

S ©X AMPLE 9.2

Determine the motion of the system in Fig. 9.2 if parameter values
arem =1,b=1,and k = 1 and the block (initially at rest) is released
from the position z = —1.

The characteristic equation is

2 +s+1=0, (9.21)
which has roots s; = —1 + -‘é—ga Hence, the response has the form]
)= e”3 (cl cos ?t + ¢, 8in ?t) s (9.22)
Im{s} 4; x(t) {i
» 81 [

s \r\,-_,_
T

Re{s}

X 52

FIGURE 9.4 Root location and response to initial conditions for an
underdamped system.

307

@8_1 9 Linear control of manipulators

We now use the given initial conditons, z(0) = —1 and %(0) = 0 to
determine ¢; and c,. To satisfy these conditions at ¢ = 0 we must have

C1.= "'1,
e (9.23)
_§C1 = 7(:2 =l
which is satisfied by ¢; = —1 and ¢, = \/Tg . So, the motion of the system
for t = 0 is given by
a:(t)=e*% (— cos \/—gt—- ﬁsin ﬁt) ; (9.24)
2 3 2
This result can also be put in the form of (9.16) as
z(t) = %qe-% oos(";t +120°). = (9.25)

Real and equal roots.

By substitution into (9.3) it can be shown that in the case of real and
equal (i.e., repeated roots) the solution has the form

z(t) = ¢;e°1° + cyte’2?, (9.26)
where in this case s; = s, = —% so that (9.26) can be written
z)= Hien ok ot = 3%, (9.27)

In case it is not clear, a quick application of ’Hépital’s rule [2]
shows that for any c¢,, c;, and a,

tlim (cy + cot) et = 0. (9.28)

Figure 9.5 shows an example of pole locations and the corresponding
time response to a nonzero initial condition. When the poles of a
second-order system are real and equal, the system exhibits critically
damped motion, the fastest possible nonoscillatory response.

9.3 Second-order linear systems 309

Im{s} A x(t) A

N oy
Fa Ny s
512 Re {S } t

FIGURE 9.5 Root location and response to initial conditions for a
critically damped system.

EEEEEE—— X AMPLE 9.3

Determine the motion of the system in Fig. 9.2 if parameter values
aren =1, b =4, and k = 4 and the block (initially at rest) is released
from the position z = —1.

The characteristic equation is

s244s+4=0 (9.29)
which has roots s; = s, = 2. Hence, the response has the form
z(t) = (ey + cpt) e 2E. ' (9.30)

We now use the given initial conditons, z(0) = —1 and £(0) = 0 to
determine ¢, and ¢,. To satisfy these conditions at ¢ = 0 we must have

(B _11
(9.31)
—2¢; +e; =0,
which is satisfied by ¢; = —1 and ¢; = —2. So, the motion of the system
for ¢ = 0 is given by
et)=(-1-2t)e"?*. = (9.32)

In Examples 9.1 through 9.3 all the systems were stable. For any
passive physical system like that of Fig. 9.2 this will be the case. Such
mechanical systems always have the properties

M 9 Linear control of manipulators

m > 0,

b>0, (9.33)
k> 0.

In the next section we will see that the action of a control system is to
effectively change the value of one or more of these coefficients. It will
then be necessary to consider whether the resulting system is stable or
not.

9.4 Control of second-order systems

Suppose that the natural response of our second-order mechanical
system is not as we wish it to be. Perhaps it is underdamped and
oscillatory and we would like it to be critically damped. Or perhaps
the spring is missing altogether (k = 0) and so the system never returns
to z = 0 if disturbed. Through the use of sensors, an actuator, and a
control system we can modify the system’s behavior as desired.

Figure 9.6 shows a damped spring-mass system with the addition of
an actuator with which it is possible to apply a force f to the block. A
free body diagram leads to the equation of motion

mi + bi + kz = f. (9.34)

Let’s also assume that we have sensors which are capable of detecting
the block’s position and velocity. We now propose a control law which
computes the force which should be applied by the actuator as a function
of the sensed feedback as

f=—k,x—k,i. (9.35)
Jiin /)
A %
; /)
; %
7

FIGURE 9.6 A damped spring-mass system with an actuator.

9.4 Control of second-order systems

Figure 9.7 is a block diagram of the closed loop system, where the portion
to the left of the dashed line is the control system (usually implemented
in a computer) and to the right of the dashed line is the physical system.
Implicit in the figure are interfaces between the control computer and
the output actuator commands and the input sensor information.

The control system we have proposed is a position regulation
system—it simply attempts to maintain the position of the block in
one fixed place regardless of disturbance forces applied to the block. In
a later section we will construct a trajectory-following control system
which can cause the block to follow a desired position trajectory.

By equating the open loop dynamics of (9.34) with the control law
of (9.35) we can derive the closed loop dynamics as

méi + bk + kx = —k,x — k2, (9.36)

or
mi + (b+k,)& + (k+ kp)z =0, (9.37)

or
mi + b'd 4+ k'z = 0, (9.38)

where b’ = b+ k, and k¥’ = k + k,. From (9.37) and (9.38) it is clear
that by choosing our control gains, k, and k,, we can cause the closed
loop system to appear to have any second system behavior that we
wish. Often, gains would be chosen to obtain critical damping (i.e.,
b = 2v/mk’) and some desired closed loop stiffness which is given
directly by k'.

Note that k, and k, may be positive or negative depending on the
parameters of the original system. However, if &’ or k' became negative,

o= System . x

b

FIGURE 9.7 A closed loop control system. The control computer (to the left
of the dashed line) reads sensor input and writes actuator output commands.

311

@1 9 Linear control of manipulators

the result would be an unstable control system. This instability would be
obvious if one writes down the solution of the second-order differential
equation (in the form of (9.6), (9.14), or (9.26)). It also makes intuitive
sense, that if b’ or k' are negative, servo errors tend to get magnified
rather than reduced.

. X AMPLE 9.4

If the parameters of the system in Fig. 9.6 are m = 1, b = 1, and
k =1, find gains k, and k, for a position regulation control law which
results in the system being critically damped with a closed loop stiffness
of 16.0.

If we wish k' to be 16.0, then for critical damping we require
b = 2v/mk’ = 8.0. Since k = 1 and b = 1 we need

k,— 150,

9.39
g =l] ()

v

9.5 Control law partitioning

In preparation for designing control laws for more complicated systems,
let us consider a slightly different controller structure for the sample
problem of Fig. 9.6. In this method we will partition the controller
into a model-based portion and a servo portion. The result is that
the system’s parameters (i.e., m, b, and k in this case) appear only in
the model-based portion, and the servo portion is independent of these
parameters. At the moment, this distinction may not seem important,
but it will become more important as we consider nonlinear systems in
Chapter 10. We will adopt this control law partitioning approach
throughout the book.
The open loop equation of motion for the system is

mE+ bz kz = f. (9.40)

We wish to decompose the controller for this system into two parts. In
this case, the model-based portion of the control law will make use of
supposed knowledge of m, b, and k. This portion of the control law is set
up such that it reduces the system so that it appears to be a unit mass.
This will become clear when we do an example below. The second part
of the control law makes use of feedback to modify the behavior of the
system. Since the model-based portion of the control law has the effect
of making the system appear as a unit mass, the design of the servo
portion is very simple——gains are chosen to control a system composed
of a single unit mass (i.e., no friction, no stiffness).

9.5 Control law partitioning | 313 |

The model-based portion of the control appears in a control law of
the form

F=of +8, (9.41)

where ¢ and 3 are functions or constants and are chosen so that if f’
is taken as the new input to the system, the system appears to be a
unit mass. With this structure of control law, the system equation (the
result of combining (9.40) and (9.41)) is

mi + bi + kz = of + 0. (9.42)

Clearly, in order to make the system appear as a unit mass from the f’
input, for this particular system we should choose @ and 3 as

a=m,

B8 = bt + kz. s

Making these assignments and plugging them into (9.42), we have
the system equation

L= (9.44)

FIGURE 9.8 A closed loop control system employing the partitioned
control method.

@J 9 Linear control of manipulators

This is the equation of motion for a unit mass. We now proceed as if
(9.44) were the open loop dynamics of a system to be controlled. We
design a control law to compute f’ just as we did before:

f' = ~kyi - k,z. (9.45)

Combining this control law with (9.44) yields

&+ k& + kpz = 0. (9.46)

Using this methodology, the setting of the control gains is simple, and
is independent of the system parameters, namely

e zﬁ (9.47)

must hold for critical damping. Figure 9.8 shows a block diagram of the
partitioned controller used to control the system of Fig. 9.6.

S, [X AMPLE 9.5

If the parameters of the system in Fig. 9.6 are m = 1, b = 1, and
k =1, find @, 3, and gains k, and k, for a position-regulation control
law which results in the system being critically damped with a closed
loop stiffness of 16.0.

We choose

a=1,
B=i+z (9.48)

so that the system appears as a unit mass from the fictitious f’ input. We
then set gain k, to the desired closed loop stiffness, and set k, = 2\/k,
for critical damping. This gives

T — I
k,=80. = (9.49)

9.6 Trajectory-following control 315

- f =
xd + :
m System P
5t —
+
k k
= : bi + kx
5 é
Xd
2 e
5t ut
Xd e
3 -
+ -

FIGURE 9.9 A trajectory following controller for the system in Fig. 9.6

9.6 Trajectory-following control

Rather than just maintaining the block at a desired location, let us
enhance our controller so that the block can be made to follow a
trajectory. The trajectory is given by a function of time, x4(t), which
specifies the desired position of the block. We assume that the trajectory
is smooth (i.e., the first two derivatives exist) and that our trajectory
generator provides z,, 4, and Z, at all times ¢. We define the servo
error between the desired and actual trajectory as e = ¢, — z. A servo
control law which will cause trajectory following is

f =gtk e+ ke (9.50)

We see that (9.50) is a good choice if we combine it with the equation
of motion of a unit mass (9.44), which leads to

E=2,+k,e+kye, (9.51)

or £
E+ koé+ kye=0. (9.52)

Since this is a second-order differential equation for which we can choose
the coefficients, we can design any response we wish (often critical
damping is the choice made). Such an equation is sometimes said to
be written in error space since it describes the evolution of errors
relative to the desired trajectory. Figure 9.9 shows a block diagram of
our trajectory following controller.

&, 9 Linear control of manipulators

If our model is perfect (i.e., our knowledge of m, b, and k) and if there
is no noise and no initial error, the block will follow the desired trajectory
exactly. If there is an initial error, it will be suppressed according to
(9.52), and thereafter the system will follow the trajectory exactly.

9.7 Disturbance rejection

Omne of the purposes of a control system is to provide disturbance
rejection, that is, to maintain good performance (i.e., small errors) even
in the presence of some external disturbances or noise. In Fig. 9.10, we
show the trajectory-following controller with an additional input of a
disturbance force, f ;.. An analysis of our closed loop system leads to
the error equation

E+ kyé +kpe = faier- (9.53)

Equation (9.53) is that of a differential equation driven by a forcing
function. If it is known that f,,, is bounded, that is, a constant a
exists such that

max fu;a () < g, (9.54)

then the solution of the differential equation, e(t), is also bounded. This
is due to a property of stable linear systems known as bounded-input,

%q I
System

bx + kx

FIGURE 9.10 A trajectory-following control system with a disturbance
acting.

9.7 Disturbance rejection

bounded-output or BIBO stability [3, 4]. This very basic result
ensures that for a large class of possible disturbances, we can at least be
assured that the system remains stable.

Steady-state error

Let’s consider the simplest kind of disturbance, namely when f;;, is
a constant. In this case we can perform a steady-state analysis by
analyzing the system at rest (i.e., the derivatives of all system variables
are zero). Setting derivatives to zero in (9.53) yields the steady-state
equation

kpe = faiats (9.55)

or
€ — fdz‘st/kp' (956)

The value of e given by (9.56) represents a steady-state error. Thus it
is clear that the higher the position gain k, the smaller the steady-state
error will be.

Addition of an integral term

In order to eliminate steady-state error a modified control law is some-
times used. The modification involves the addition of an integral term
to the control law. The control law becomes

=g tkethetl kt-fedt, (9.57)
which results in the error equation
E+k,e+k e+ ki/edt: s (9.58)

The term is added so that the system will have no steady-state error
in the presence of constant disturbances. If e(f) < 0 for ¢ < 0 we can
write (9.58) for ¢ > 0 as

€ k& + ke + ke = [, (9.59)
which in the steady-state (for a constant disturbance) becomes

k,e=0, (9.60)

50
e=0. (9.61)

317

[_3£J 9 Linear control of manipulators

With this control law the system becomes a third-order system,
and one can solve the corresponding third-order differential equation
to determine the response of the system to initial conditions. Often
k; is kept quite small so that the third-order system is “close” to the
second-order system without this term (i.e., a dominant pole analysis can
be performed). The form of control law (9.57) is called a PID control
law, or “proportional, integral, derivative” control law [4]. For simplicity,
the displayed equations generally do not show an integral term in the
control laws which we develop in this book.

9.8 Continuous vs. discrete time control

In the control systems we have discussed we implicitly assumed that
the control computer performs the computation of the control law in
zero time (i.e., infinitely fast) so that the value of the actuator force
[follows that of a continuous function of time. Of course, in reality
the computation requires some time, and the resulting commanded
force is therefore a discrete “staircase” function. We shall employ this
approximation of a very fast control computer throughout the book.
This approximation is good if the rate at which new values of f are
computed is much faster than the natural frequency of the system being
controlled. In the field of discrete time control or digital control
one does not make this approximation but rather takes the servo rate
of the control system into account when analyzing the system [3].

We will generally assume that the computations can be performed
quickly enough that our continuous time assumption is valid. This raises
the question of how quick is quick enough? There are several points which
need to be considered in choosing a sufficiently fast servo (or sample)
rate: :

Tracking reference inputs: The frequency content of the desired
or reference input places an absolute lower bound on the sample rate.
The sample rate must be at least twice the bandwidth of reference
inputs. This is usually not the limiting factor.

Disturbance rejection: In disturbance rejection, an upper bound
on performance is given by a continuous time system. If the sample
period is longer than the correlation time of the disturbance effects
(assuming a statistical model for random disturbances), then these
disturbances will not be suppressed. Perhaps a good rule of thumb
is that the sample period should be 10 times shorter than the
correlation time of the noise [3].

9.9 Modeling and control of a single joint

Antialiasing: Any time an analog sensor is used in a digital control
scheme, there will be a problem with aliasing unless the sensor’s
output is strictly band limited. In most cases, sensors do not have a
band limited output, and so sample rate should be chosen such that
the amount of energy which appears in the aliased signal is small.

Structural resonances: We have not included bending modes in
our characterization of a manipulator’s dynamics. All real mecha-
nisms have finite stiffness and so will be subject to various kinds
of vibrations. If it is important to suppress these vibrations (and it
often is) we must choose a sample rate which is at least twice the
natural frequency of these resonances. We will return to the topic
of resonance later in this chapter.

9.9 Modeling and control of a single joint

In this section we will develop a simplified model of a single rotary joint
of a manipulator. A few assumptions will be made which will allow us to
model the resulting system as a second-order linear system. For a more
complete model of an actuated joint, see [5].

A common actuator found in many industrial robots is the direct
current (DC) torque motor (see Fig. 8.18). The nonturning part of the
motor (the stator) consists of a housing, bearings, and either permanent
magnets or electromagnets. These stator magnets establish a magnetic
field across the turning part of the motor (the rotor). The rotor consists
of a shaft and windings through which current moves to power the motor.
The current is conducted to the windings via brushes which make contact
with the commutator. The commutator is wired to the various windings
(also called the armature) in such a way that torque is always produced
in the desired direction. The underlying physical phenomenon [6] which
causes a motor to generate a torque when current passes through the
windings can be expressed as

F=qV xB, (9.62)

where charge g, moving with velocity V' through a magnetic field B,
experiences a force . The charges are those of electrons moving through
the windings, and the magnetic field is that set up by the stator magnets.
Generally, the torque producing ability of a motor is stated by means
of a single motor torque constant which relates armature current to
the output torque as

319

\&‘ 9 Linear control of manipulators

T = k- (9.63)
When a motor is rotating it acts like a generator and a voltage develops
across the armature. A second motor constant, the back emf constant*

describes the voltage generated for a given rotational velocity as

v==k.@,,. (9.64)

Generally, the fact that the commutator is switching the current through
various sets of windings causes the torque produced to contain some
torque ripple. Although sometimes important, this effect can can
generally be ignored (in any case it is quite hard to model, and quite
hard to compensate even if it is modeled).

Motor armature inductance

Figure 9.11 shows the electric circuit of the armature. The major
components are a voltage source, v,, the inductance of the armature
windings, [,, and the generated back emf, v. The circuit is described by
a first-order differential equation given by

Loty +7oiy=v, — kb, (9.65)

It is generally desirable to control the torque generated by the motor
(rather than the velocity) with electronic motor driver circuitry. These
drive circuits sense the current through the armature and continuously
adjust the voltage source v, so that a desired current ¢, flows through the

keém

FIGURE 9.11 The armature circuit of a DC torque motor.

* “emf” stands for electromotive force.

9.9 Modeling and control of a single joint | 321

armature. Such a circuit is called a current amplifier motor driver [7].
In these current drive systems, the rate at which the armature current
can be commanded to change is limited by the motor inductance [, and
an upper limit on the voltage capability of the voltage source v,. The
net effect is that of a low pass filter between the requested current
and output torque.

Our first simplifying assumption is that the inductance of the motor
can be neglected. This is a reasonable assumption when the natural
frequency of the closed loop control system is quite low compared
to the cut-off frequency of the implicit low pass filter in the current
drive circuitry due to the inductance. This assumption, along with the
assumption that torque ripple is a negligible effect, means that we can
essentially command torque directly. Although there may be a scale
factor (such as k,,,) to contend with, we will assume that the actuator
acts as a pure torque source that we can command directly.

Effective inertia

Figure 9.12 shows the mechanical model of the rotor of a DC torque .
motor connected through a gear reduction to an inertial load. The torque
applied to the rotor, ,,, is given by (9.63) as a function of the current
i, flowing in the armature circuit. The gear ratio () causes an increase
in the torque seen at the load and a reduction in the speed of the load

FIGURE 9.12 Mechanical model of a DC torque motor connected through
gearing to an inertial load.

Iﬁz_’ 9 Linear control of manipulators

as given by
Tt ??Tm‘
! : (9.66)
6= (1/m)0,
where 7 > 1. Writing a torque balance for this system in terms of torque
at the rotor yields

G SEpE e g) (Ié = bé) : (9.67)

where I, and I are the inertias of the motor rotor and the load
respectively, and b, and b are viscous friction coefficients for the rotor
and load bearings. Using the relations (9.66) we can write (9.67) in
terms of motor variables as

T, = (Im i iz) Gat (bm s %) i (9.68)
n U
or in terms of load variables as
7= (I+n°I,) 0+ (b+n,,)0. (9.69)

The term [+n%1,, is sometimes called the effective inertia “seen”
at the output (link side) of the gearing. Likewise, the term b + n%b,,
can be called the effective damping. Note that in a highly geared
joint (i.e., n >> 1) the inertia of the motor rotor can be a significant
portion of the combined effective inertia. It is this effect that allows us
to make the assumption that the effective inertia is a constant. We know
from Chapter 6 that the inertia, I, of a joint of the mechanism actually
varies with configuration and load. However, in highly geared robots the
variations represent a smaller percentage than they would in a direct
drive manipulator (i.e., n = 1). To ensure that the motion of the robot
link is never underdamped, the value used for I should be the maximum
of the range of values that I takes on; we'll call this value I, .. This
choice results in a system that is critically damped or overdamped in all
situations. In Chapter 10 we will deal with varying inertia directly and
will not have to make this assumption.

e X AMPLE 9.6

If the apparent link inertia, I, varies between 2 and 6 Kgm?, the
rotor inertia is [, = 0.01, and the gear ratio is 7 = 30, what are the
minimum and maximum of the effective inertia?

The minimum effective inertia is

Lin +7°1,, = 2.0 + (900}(0.01) = 11.0, (9.70)
and the maximum is
Las + 01, = 6.0+ (900)(0.01) = 15.0. (9.71)

Hence, we see that as a percentage of the total effective inertia, the
variation of inertia is reduced by the gearing. [

9.9 Modeling and control of a single joint _ﬁ

Unmodeled flexibility

The other major assumption we have made in our model is that the
gearing, shafts, bearings, and the driven link are not flexible. In reality
all of these elements have finite stiffness, and their flexibility, if modeled,
would increase the order of the system. The argument for ignoring
flexibility effects is that if the system is sufficiently stiff, the natural
frequencies of these unmodeled resonances are very high and can be
neglected compared to the influence of the dominant second-order poles
that we have modeled.* The term “unmodeled” refers to the fact that for
purposes of control system analysis and design, we neglect these effects
and use a simpler dynamic model, such as (9.69).

Since we have chosen not to model structural flexibilities in the
system, we must be careful not to excite these resonances. A rule of
thumb (8] is that if the lowest structural resonance is w,.,,, then we must
limit our closed loop natural frequency according to

1
Wn < SWres: (9.72)

This provides some guidance as to how to choose gains in our controller.
While we have seen that increasing gains leads to faster response
and lower steady-state error, we now see that unmodeled structural
resonances limit the magnitude of gains. Typical industrial manipulators
have structural resonances in the range of 5Hz to 25Hz [8]. Recent
designs using direct drive arrangments which do not contain flexibility
introduced by reduction and transmission systems have lowest structural
resonances as high as T0Hz [9)].

IS X AMPLE 9.7

Consider the system of Fig. 9.6 with the parameter values m = 1,
b =1, and k = 1. Additionally, it is known that the lowest unmodeled
resonance of the system is at 8 radians/second. Find «, 3, and gains &
and k, for a position control law so the system is critically damped,
doesn’t excite unmodeled dynamics, and has as high a closed loop
stiffness as possible.
We choose
a=1,
9.73
i (9.73)

so that the system appears as a unit mass from the fictitious f’ input.
Using our rule of thumb (9.72), we choose the closed loop natural

* This is basically the same argument we used to neglect the pole due to the
motor inductance. Including it would also have raised the order of the overall
system.

7

LQ‘Q_] 9 Linear control of manipulators .

frequency to be w,, = 4radians/second. From (9.18) and (9.46) we have

k, = w?, s0

k, = 16.0,

(9.74)

k=210]

v

Estimating resonant frequency

The same sources of structural flexibility discussed in Chapter 8 give
rise to resonances. In each case where a structural flexibility can be
identified, an approximate analysis of the resulting vibration is possible
if we can describe the effective mass or inertia of the flexible member.
This is done by approximating the situation by a simple spring-mass
system, which, as given in (9.20) exhibits a natural frequency of

w, = Vk/m, (9.75)

where k is the stiffness of the flexible member, and m is the equivalent
mass displaced in vibrations.

. X AMPLE 9.8

A shaft (assumed massless) with a stiffness of 400 Nt m/radian drives
a rotational inertia of 1 KgM?. If the shaft stiffness was neglected in
modeling of the dynamics, what is the frequency of this unmodeled
resonance?

Using (9.75) we have

Wyes = /400/1 = 20rad/second = 20/(2x)Hz = 3.2Hz. = (9.76)

For the purposes of a rough estimate of the lowest resonant frequency
of beams and shafts, [10] suggests using a lumped model of the mass.
We already have formulas for estimating stiffness at the end of beams
and shafts, and these lumped models provide the effective mass or inertia
needed for our estimation of resonant frequency. Figure 9.13 shows the
results of an energy analysis [10] which suggests that a beam of mass
m be replaced by a point mass at the end of 0.23m, and likewise that
a distributed inertia of I be replaced by a lumped 0.33] at the end of
the shaft.

9.9 Modeling and control of a single joint

e
| :’ %——lomm
| :’ 2—@@ 0.331

OO QLG R

FIGURE 9.13 Lumped models of beams for estimation of lowest lateral
and torsional resonance.

e [X AMPLE 9.9

A link of mass 4.347Kg has an end-point lateral stiffness of
3600 Nt/m. Assuming the drive system is completely rigid, the resonance
due to the flexibility of the link will limit control gains. What is w,,?

The 4.347 Kg mass is distributed along the link. Using the method
of Fig. 9.13, the effective mass is (0.23)(4.347) = 1.0Kg. Hence, the

vibration frequency is
Wres = 4/3600,/1.0 = 60 radians/second = 60/(27) Hz = 9.6 Hz. m (9.77)

The inclusion of structural flexibilities in the model of the system
used for control law synthesis is required if we wish to achieve closed
loop bandwidths higher than that given by (9.75). The resulting system
models are of high order, and the control techniques applicable to this
situation become quite sophisticated. Such control schemes are currently
beyond the state of the art of industrial practice but are an active area
of research [11, 12].

Control of a single joint

In summary, we make the following three major assumptions:

1. The motor inductance [, can be neglected.

325

% 9 Linear control of manipulators

2. Taking into account high gearing, we model the effective inertia
as a constant equal to I, + 7°I,,.

3. Structural flexibilities are neglected except that the lowest struc-
tural resonance w, ., is used in setting the servo gains.

With these assumptions, a single joint of a manipulator can be
controlled with the partitioned controller given by

(6= Imu.;c o ng'{‘rﬂ?

B (9.78)
and
T =0y + kyé + ke (9.79)
The resulting system closed loop dynamics are
Et+k,etEe= Ty, (9.80)
where the gains are chosen as
by =03 = J0es,
(9.81)

k, =24k, = w,.,.

9.10 Architecture of an industrial robot controller

In this section we briefly look at the architecture of the control system
of the Unimation PUMA 560 industrial robot. As shown in Fig. 9.14,
the hardware architecture is that of a two-level heirarchy with a DEC
LSI-11 computer serving as the top-level “master” control computer
passing commands to six Rockwell 6503 microprocessors.* Each of these
microprocessors controls an individual joint with a PID control law not
unlike that presented in this chapter. Each joint of the PUMA 560 is
instrumented with an incremental optical encoder. The encoders are
interfaced to an up/down counter which the microprocessor can read to
obtain the current joint position. There are no tachometers in the PUMA

* These simple 8-bit computers are already old technology. It is not unusual
these days for robot controllers to be based on 32-bit microprocessors like the
Motorola 68020,

9.10 Architecture of an industrial robot controller | 327

VAL
language

2P
@)
By o] &u

6503 Joint 6

i%

6

FIGURE 9.14 Hierarchical computer architecture of the PUMA 560
robot control system.

04

— 6503 > D/A j—] Current » Motor

Encoder |-

FIGURE 9.15 Functional blocks of the joint control system of the
PUMA 560.

560; rather, joint positions are differenced on subsequent servo cycles to
obtain an estimate of joint velocity. In order to command torques to the
DC torque motors, the microprocessor is interfaced to a digital to analog
converter (DAC) so motor currents can be commanded to the current
driver circuits. The current flowing through the motor is controlled in
analog circuitry by adjusting the voltage across the armature as needed
to maintain the desired armature current.

@ 9 Linear control of manipulators

Fach 28 milliseconds the LSI-11 computer sends a new position
command or set-point to the joint microprocessors. The joint mi-
croprocessors are running on a 0.875 millisecond cycle. In this time,
they interpolate the desired position set-point, compute the servo error,
compute the PID control law, and command a new value of torque to
the motors.

The LSI-11 computer carries out all the “high-level” operations of
the overall control system. First of all, it takes care of interpreting the
VAL (Unimation’s robot programming language) program commands
one by one. When a motion command is interpreted, the LSI-11 must
perform any needed inverse kinematic computations, plan a desired tra-
jectory, and begin generating trajectory via points every 28 milliseconds
for the joint controllers.

The LSI-11 is also interfaced to standard peripherals such as the
terminal and a floppy disk drive. In addition to these peripherals, it is
also interfaced to a teach pendant. A teach pendant is a hand-held
button box which allows the operator to move the robot around in a
variety of modes. For example, the PUMA 560 system allows the user
to move the robot incrementally in joint coordinates or in Cartesian
coordinates from the teach pendant. In this mode, teach pendant buttons
cause a trajectory to be computed “on the fly” and passed down to the
joint control microprocessors.

References

[1] W. Boyce and R. DiPrima, Elementary Differential Equations, 3rd edition,
John Wiley and Sons, New York, 1977.

[2] E. Purcell,Calculus with Analytic Geometry, Meredith Corporation, New
York, 1972.

[3] G. Franklin and J. D. Powell, Digital Control of Dynamic Systems, Addison-
Wesley, Reading, Mass., 1980.

[4] G. Franklin, J.D. Powell, and A. Emami-Naeini, Feedback Control of Dy-
namic Systems, Addison-Wesley, Reading, Mass., 1986.

[5] J. Luh, “Conventional Controller Design for Industrial Robots—a Tutorial,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-13,
No. 3, June 1983.

[6] D. Halliday and R. Resnik, Fundamentals of Physics, Wiley, 1970.

[7 Y. Koren and A. Ulsoy, “Control of DC Servo-Motor Driven Robots,”
Proceedings of Robots 6 Conference, SME, Detroit, March 1982.

[8] R.P. Paul,Robot Manipulators, MIT Press, 1981.

9] H. Asada and K. Youcef-Toumi, Direct-Drive Robots— Theory and Practice,
MIT Press, 1987.

[10] J. Shigley, Mechanical Engineering Design, 3rd edition, McGraw-Hill, 1977.

[11] W. Book, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,”
The International Journal of Robotics Research, Vol. 3, No. 3, 1984.

Exercises

[12] R. Cannon and E. Schmitz, “Initial Experiments on the End-Point Control

of a Flexible One Link Robot,” The International Journal of Robotics
Research, Vol. 3, No. 3, 1984.

Exercises

9.1

9.2

9.3

9.4

9.5

9.6

9.7

[20] For a second-order differential equation with complex roots

8 =A+,U-@,

Sg = A — pi,
show that the general solution
z(t) = ¢, e°1° + cpe®2t,
can be written
z(t) = c; et cos(ut) + coe™t sin(ut).

[13] Determine the motion of the system in Fig. 9.2 if parameter values
are m = 2, b= 6, and k = 4 and the block (initially at rest) is released
from the position z = 1.

[13] Determine the motion of the system in Fig. 9.2 if parameter values
arem = 1, b= 2, and k = 1 and the block (initially at rest) is released
from the position z = 4.

[13] Determine the motion of the system in Fig. 9.2 if parameter values
are m = 1, b = 4, and k = 5 and the block (initially at rest) is released
from the position =z = 2.

[15] Determine the motion of the system in Fig. 9.2 if parameter values
arem =1, b=7T, and k = 10 and the block is released from the position
z = 1 with an initial velocity of & = 2.

[15] Use the (1,1) element of (6.60) to compute the variation (as a
percentage of the maximum) of the inertia “seen” by joint 1 of this robot
as it changes configuration. Use the numerical values

|':1 = £2 = 05 1308
m, = 4.0Kg,
my, = 2.0Kg.

Consider that the robot is direct drive and the rotor inertia is negligible.

[17] Repeat Exercise 9.6 for the case of a geared robot (use n = 20) and
a rotor inertia of 7,, = 0.01Kgm?.

329

!ﬁo_l 9 Linear control of manipulators

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

[18] Consider the system of Fig. 9.6 with the parameter values m = 1,
b = 4, and k£ = 5. The system is also known to possess an unmodeled
resonance at w,.,, = 6.0radians/second. Determine the gains k, and
k, which will critically damp the system with as high a stiffness as is
reasonable.

[25] The inertial load, I, varies between 4 and 5 Kgm?. The rotor inertia
is I, = 0.0l Kgm? and the gear ratio is n = 10. The system possesses
unmodeled resonances at 8.0, 12.0, and 20.0 radians/second. Design a: and
{3 of the partitioned controller and give the values of k, and k,, such that
the system is never underdamped and never excites resonances, but is as
stiff as possible.

[18] A designer of a direct drive robot suspects that the resonance due to
beam flexibility of the link itself will be the cause of the lowest unmodeled
resonance. If the link is approximately a square cross section beam of
dimensions 5 x 5 x 50 cm with a 1cm wall thickness, and a total mass of
5Kg, estimate w

[15] A direct drive robot link is driven through a shaft of stiffness
1000 Nt m/radian. The link inertia is 1Kgm?. Assuming the shaft is
massless, what is w,..,.

[18] A shaft of stiffness 500 Nt m/radian drives the input of a rigid gear
pair with 7 = 8. The output of the gears drives a rigid link of inertia
1Kgm?. What is w,.., caused by flexibility of the shaft?

[25] A shaft of stiffness 500 Nt m/radian drives the input of a rigid gear
pair with 7 = 8. The shaft has an inertia of 0.1 Kgm?. The output of
the gears drives a rigid link of inertia 1 Kgm?. What is w,.., caused by
flexibility of the shaft?

[28] The inertial load, I, varies between 4 and 5 Kgm?. The rotor inertia
is I, = 0.0l Kgm? and the gear ratio is 7 = 10. The system possesses
an unmodeled resonance due to an end-point stiffness of the link of
4900 Nt/m. Design a and 3 of the partitioned controller and give the
values of k, and k, such that the system is never underdamped, and
never excites resonances, but is as stiff as possible.

[25] A steel shaft of length 30 cm and diameter 0.2 em drives the input gear
of a reduction of = 8. The rigid output gear drives a steel shaft of length
30cm and diameter 0.3 cm. What is the range of resonant frequencies
observed if the load inertia varies between 1 and 4 Kgm??

Programming Exercise (Part 9)-

We wish to simulate a simple trajectory-following control system for the
three-link planar arm. This control system will be implemented as an
independent joint PD (proportional plus derivative) control law. Set the
servo gains to achieve closed loop stiffnesses of 175.0, 110.0, and 20.0 for
joints 1 through 3 respectively. Try to achieve approximate critical damping.

Use the simulation routine UPDATE to simulate a discrete-time servo

running at 100 Hz. That is, calculate the control law at 100 Hz, not at

Programming Exercise (Part 9) | 331

the frequency of the numerical integration process. Test the control scheme
on the following tests:

1) Start the arm at © = (60,—110,20) and command it to stay there
until #4me = 3.0, when the set-points should instantly change to © =
(60, —50, 20). That is, give a step input of 60 degrees to joint 2. Record
the error-time history for each joint.

2) Control the arm to follow the cubic spline trajectory from Programming
Exercise Part 7. Record the error-time history for each joint.

NONLINEAR

CONTROL OF
MANIPULATORS

10.1 Introduction

In the previous chapter we made several approximations which allowed
a linear analysis of the manipulator control problem. Most important
among these approximations was that each joint could be considered
independent and that the inertia “seen” by each joint actuator was
constant. In implementations of linear controllers as introduced in the
previous chapter, this approximation results in nonuniform damping
throughout the workspace and other undesirable effects. In this chapter
we will introduce a more advanced control technique for which this
assumption will not have to be made.

In Chapter 9, we modeled the manipulator by n independent second
order differential equations, and based our controller on that model. In
this chapter, we will base our controller design directly on the n x 1
nonlinear vector differential equation of motion which we derived in
Chapter 6 for a general manipulator.

10.2 Nonlinear and time-varying systems

Since the field of nonlinear control theory is large, we must restrict
our attention to one or two methods which seem well suited to mechan-
ical manipulators. Consequently, the major focus of the chapter will be
one particular method, apparently first proposed in [1] and named the
computed torque method in [2,3]. We will also introduce one method
of stability analysis of nonlinear systems known as Lyapunov’s method
[4].

To begin our discussion of nonlinear techniques for controlling a
manipulator, we return again to a very simple single degree of freedom
mass-spring friction system.

10.2 Nonlinear and time-varying systems

In the preceding development we dealt with a linear constant coefficient
differential equation. This mathematical form arose because the mass-
spring friction system of Fig. 9.6 was modeled as a linear time-invariant
system. For systems whose parameters vary in time or systems which
are by nature nonlinear, solutions are more difficult.

When nonlinearities are not severe, local linearization may be
used to derive linear models which are approximations of the nonlinear
equations in the neighborhood of an operating point. Unfortunately,
the manipulator control problem is not well suited to this approach
because manipulators constantly move among widely separated regions
of their workspace such that no linearization valid for all regions can
be found.

Another approach is to move the operating point with the manip-
ulator as it moves, always linearizing about the desired position of the
manipulator. The result of this sort of moving linearization is a linear
but time-varying system. Although this quasi-static linearization of the
original system is useful in some analysis and design techniques, we will
not make use of it in our control law synthesis procedure. Rather, we
will deal with the nonlinear equations of motion directly and will not
resort to linearizations in deriving a controller.

If the spring in Fig. 9.6 were not linear but instead contained a
nonlinear element. we could consider the system quasi-statically and at
each instant determine where the poles of the system are located. We
would find that the poles “move” around in the real-imaginary plane as
a function of the position of the block. Hence we could not select fixed
gains which would keep the poles in a desirable location (for example, at
critical damping). So we may be tempted to consider a more complicated
control law in which the gains are time-varying (actually, varying as a
function of the block’s position) in a manner such that the system is
always critically damped. Essentially, this would be done by computing

333

\ﬁ_‘ 10 Nonlinear control of manipulators

k, such that the combination of the nonlinear effect of the spring would
be exactly cancelled by a nonlinear term in the control law so that the
overall stiffness would stay a constant at all times. Such a control scheme
might be called a linearizing control law, since it uses a nonlinear
control term to “cancel” a nonlinearity in the controlled system such
that the overall closed loop system is linear.

We now return to our partitioned control law, and will see that it can
perform this linearizing function. In our partitioned control law scheme,
the servo law remains the same as always, but the model-based portion
now will contain a model of the nonlinearity. Thus the model-based
portion of the control performs a linearization function. This is best

shown in an example.

I - AMPLE 10.1

Consider the nonlinear spring characteristic shown in Fig. 10.1.
Rather than the usual linear spring relationship, f = kz, this spring
is described by f = gz3. If this spring is part of the physical system
shown in Fig. 9.6, determine a control law which would keep the system
critically damped with a stiffness of ko .

The open loop equation is

mi + bt + gz® = f. (10.1)

The model-based portion of the control is f = af'+ 3, where now we use

a=m,
10.2
B = bt + qz; 2
and the servo portion is, as always
fl=da+kye+ ke, (10.3)

where the values of the gains are calculated from some desired perfor-
mance specification. Figure 10.2 shows a block diagram of this control
system. The resulting closed loop system maintains poles in fixed loca-
tions.]

I A MPLE 10.2

Consider the nonlinear friction characteristic shown in Fig. 10.3.
Whereas linear friction is described by f = bz, this Coulomb friction
is described by f = b_sgn(z). For most of today’s manipulators, the
friction of the joint in its bearing (be it rotational or linear) is modeled
more accurately by this nonlinear characteristic than by the simpler,
linear model. If this type of friction is present in the system of Fig. 9.6,

10.2 Nonlinear and time-varying systems [339

I =qx

Y

FIGURE 10.1 The force vs. distance characteristic of a nonlinear spring.

tem

W

Sy

M f=m¥+bx+qgx? | ;

bx +

bt
=
o

L Bk o

| SN Ve

FIGURE 10.2 A nonlinear control system for a system with a nonlinear
spring.

design a control system which uses a nonlinear model-based portion to

l&l 10 Nonlinear control of manipulators

f = b.SGN (x)

FIGURE 10.3 The force vs. velocity characteristic of Coulomb friction.

critically damp the system at all times.
The open loop equation is

mi + b, sgn(d) + kz = f. (10.4)
The partitioned control law is f = af’ + 3, where
& =1m,
3=b, sgn(z) + kz, (10.5)
f'=%+k,é+kpe,
where the values of the gains are calculated from some desired perfor-
mance specification.]

I X AMPLE 10.3

Consider the single-link manipulator shown in Fig. 10.4. It has one
rotational joint. The mass is considered to be located at a point at the
distal end of the link, and so the moment of inertia is ml?. There is
Coulomb and viscous friction acting at the joint, and there is a load
due to gravity.

The model of the manipulator is

7 =ml?8 + vf + ¢ sgn(d) + mlgcos(d). (10.6)

10.2 Nonlinear and time-varying systems

Y

FIGURE 10.4 An inverted pendulum or a one-link manipulator.

As always, the control system has two parts, the linearizing model-based
portion and the servo law portion.
The model-based portion of the control is f = af’ + 3, where

a = mi®,
S . (10.7)
3 = v8 + ¢ sgn(f) + migcos(f):
and the servo portion is, as always
=04 +k,e+ ke, (10.8)

where the values of the gains are calculated from some desired perfor-
mance specification. L]

We have seen that in certain simple cases it is not difficult to design
a nonlinear controller. The general method used in the above simple
examples is the same method we will use for the problem of manipulator
control, namely:

1. Compute a nonlinear model-based control law which “cancels” the
nonlinearities of the system to be controlled.

2. Reduce the system to a linear system which can be controlled using
the simple linear servo law developed for the unit mass.

337

&[10 Nonlinear control of manipulators

In some sense, the linearizing control law implements an inverse
model of the system being controlled. The nonlinearities in the system
cancel with those in the inverse model; this, together with the servo law,
results in a linear closed loop system. Obviously, to do this cancelling,
we must know the parameters and the structure of the nonlinear system.
This is often a problem in practical application of this method.

10.3 Multi-input, multi-output control systems

Unlike the simple examples we have discussed in this chapter so far,
the problem of controlling a manipulator is a multi-input, multi-output
(MIMO) problem. That is, we have a vector of desired joint positions,
velocities, and accelerations, and the control law must compute a vector
of joint actuator signals. Qur basic scheme of partitioning the control
into a model-based portion and a servo portion is still applicable, but
now appears in a matrix—vector form. The control law takes the form

F=aF 48, (10.9)

where, for a system of n degrees of freedom, F, F’, and 3 are n x 1
vectors; and o is an n x n matrix. Note that the matrix o is not
necessarily diagonal, but rather is chosen to decouple the n equations
of motion. If & and 3 are correctly chosen, then from the F’ input the
system appears to be n independent unit masses. For this reason, in
the multidimensional case, the model-based portion of the control law
is called a linearizing and decoupling control law. The servo law for
a multidimensional system becomes

F'=X,+K,E+K,E, (10.10)
where K, and K, are now n X n matrices, which are generally chosen

to be diagonal with constant gains on the diagonal. E and F are n x 1
vectors of errors in position and velocity, respectively.

10.4 The control problem for manipulators

In the case of manipulator control, we developed a model and the
corresponding equations of motion in Chapter 6. As we saw, these
equations are quite complicated. The rigid body dynamics have the form:

r=M(©)6+V(0,0)+G(e), (10.11)

10.4 The control problem for manipulators !_..@.9_]

8
0 g e - M{ﬁ:u——-—-—d-@——'—h Arm
=+ T +
S A S
K, K. l ! V.0 + GO + F(o,8)
) |
LS N
8 P z _—y '\ Py "\
a o s o 4
I i
é é

FIGURE 10.5 A model-based manipulator control system.

where M(©) is the n x n inertia matrix of the manipulator, V(©,0)
is an n x 1 vector of centrifugal and Coriolis terms, and G(©) is an
n x 1 vector of gravity terms. Each element of M(©) and G(O) is a
complicated function which depends on ©, the position of all the joints
of the manipulator. Each element of V(©, ©) is a complicated function

of both © and ©.
Additionally, we may incorporate a model of friction (or other

nonrigid-body effects) Assuming that our model of friction is a function
of joint positions and velocities, we add a term, F(©, ©), to (10.11) to
vield the model

r=M(©)®+V(0,0)+G(O)+ F(0,0). (10.12)

The problem of controlling a complicated system like (10.12) can be
handled by the partitioned controller scheme we have introduced in this
chapter. In this case, we have

T=oar + 0, (10.13)

where 7 is the n x 1 vector of joint torques. We choose

a=M(®),
e (10.14)
V(0,8)+G(e) + F(©,0),
with the servo law
7 =0,+K,E+K,E, (10.15)
where
E=0,-06. (10.16)

The resulting control system is shown in Fig. 10.5.

340

10 Nonlinear control of manipulators
Using (10.12) through (10.15) it is quite easy to show that the closed
loop system is characterized by the error equation
E+K,E+K,E=0. (10.17)

Note that this vector equation is decoupled since the matrices K, and
K, are diagonal so that (10.17) could just as well be written on a
joint-by-joint basis as

The ideal performance represented by (10.17) is unattainable in practice
due to many reasons, the most important two being:

1. Discrete nature of a digital computer implementation as opposed to
the ideal continuous time control law implied by (10.14) and (10.15).

2. Inaccuracy in the manipulator model (needed to compute (10.14)).

In the next section we will (at least partially) address these two
issues.

10.5 Practical considerations

In developing -the decoupling and linearizing control in the last few
sections, we have implicitly made a few assumptions which are rarely
true in practice.

Time required to compute the model

In all our considerations of the partitioned control law strategy, we have
implicitly assumed that the entire system was running in continuous
time, and that the computations in the control law require zero time
for their computation. Given any amount of computation, with a large
enough computer we can do the computations sufficiently fast that this is
a reasonable approximation: however, the expense of the computer may
make the scheme economically unfeasible. In the manipulator control
case, the entire dynamic equation of the manipulator, (10.14), must be
computed in the control law. These computations are quite involved
and consequently, as discussed in Chapter 6, there has been a great
deal of interest in developing fast computational schemes to compute
them in an efficient way. As computer power becomes more and more
affordable, control laws which require a great deal of computation
will become more practical. Several experimental implementations of

10.5 Practical considerations

nonlinear model based control laws have been reported [5-9] and partial
implementations are beginning to appear in industrial controllers.

As discussed in Chapter 9, almost all manipulator control systems
are now performed in digital circuitry and are run at a certain sampling
rate. This means that the position (and possibly other) sensors are
read at discrete points in time. Based on the value read, an actuator
command is computed and sent to the actuator. Thus reading sensors
and sending actuator commands are not done continuously, but rather at
a finite sampling rate. To analyze the effect of delay due to computation
and finite sample rate, we must use tools from the field of discrete
time control. In discrete time. differential equations turn into difference
equations, and a complete set of tools has been developed to answer
questions about stability and pole placement for these systems. Discrete
time control theory is beyond the scope of this book, although for
researchers working in the area of manipulator control, many of the
concepts from discrete time systems are essential (see [10]).

Although important, ideas and methods from discrete time control
theory are often difficult to apply to the case of nonlinear systems.
Whereas we have managed to write a complicated differential equation
of motion for the manipulator dynamic equation, a discrete time equiv-
alent is impossible to obtain in general. This is because, for a general
manipulator, the only way to solve for the motion of the manipulator
for a given set of initial conditions. an input, and a finite interval is by
numerical integration (as we saw in Chapter 6). Discrete time models
are possible if we are willing to use series solutions to the differential
equations, or if we make approximations. However, if we need to make
approximations to develop a discrete model, then it is not clear whether
we have a better model than we have when just using the continuous
model and making the continuous time approximation. Suffice it to say
that analysis of the discrete time manipulator control problem is difficult,
and usually simulation is resorted to in order to judge the effect that a
certain sample rate will have on performance.

We will generally assume that the computations can be performed
quickly enough and often enough that the continuous time approxima-
tion is valid.

Feedforward nonlinear control

The use of feedforward control has been proposed as a method of
using a nonlinear dynamic model in a control law without the need for
complex and time-consuming computations to be performed at servo
rates [11]. In Fig. 10.5, the model-based control portion of the control
law is “in the servo loop™” in that signals “flow” through that black box
with each tick of the servo clock. If we wish to select a sample rate of

341

L 342 | 10 Nonlinear control of manipulators

200 Hz, then the dynamic model of the manipulator must be computed
at this rate. Another possible control system is shown in Fig. 10.6. Here,
the model-based control is “outside” the servo loop. Hence it is possible
to have a fast inner servo loop which just consists of multiplying errors
bv gains, with the model-based torques added at a slower rate.

Unfortunately, the feedforward scheme of Fig. 10.6 does not provide
complete decoupling. If we write the system equations™ we will find that
the error equation of this system is

E+M~Y©)K,E+M~*(©)K,E=0. (10.19)

Clearly, as configuration of the arm changes, the effective closed loop gain
changes, and the quasi-static poles move around in the real-imaginary
plane. However, equation (10.19) could be used as a starting point to
consider designing a robust controller. That is, to find a good set of
constant gains such that despite the “motion” of the poles, they are
guaranteed to remain in reasonably favorable locations. Alternatively,
one might consider schemes in which variable gains are precomputed
which change with configuration of the robot so that the system’s
quasi-static poles remain in fixed positions.

Note that in the system of Fig. 10.6 the dynamic model is computed
as a function of the desired path only, and so when the desired path is
known in advance, values could be computed “off-line” before motion
begins. At run time, the precomputed torque histories would then be
read out of memory. Likewise, if time-varying gains are computed, they
too could be eomputed beforehand and stored. Hence such a scheme

. Dynamic * :
i : A
d Model —: @ o i
By +]
K, K,

= =]
vy

1

&)

FIGURE 10.6 Control scheme with the model-based portion “cutside”
the servo loop.

* We have used the simplifying assumptions M(Q4) = M(©), V(04,04) =
V(0.0).G(04) = G(©). and F(04,0,4) = F(6,0).

10.5 Practical considerations

could be quite inexpensive computationally at run time and thus achieve
a high servo rate.

Dual-rate computed torque implementation

Figure 10.7 shows the block diagram of a possible practical implemen-
tation of the decoupling and linearizing position control system. The
dynamic model is expressed in its configuration space form so that
the dynamic parameters of the manipulator appear as functions of
manipulator position only. These functions might then be computed by a
background process or by a second control computer [§], or looked up in
a precomputed table [12]. In this architecture, the dynamic parameters
can be updated at a rate slower than the rate of the closed loop servo. For
example, the background computation might proceed at 60 Hz whereas
the closed loop servo could run at 250 Hz.

Lack of knowledge of parameters

The second potential difficulty encountered in employing the computed
torque control algorithm is that the manipulator dynamic model is often
not known accurately. This is particularly true of certain components of
the dynamics such as friction effects. In fact, it is usually extremely
difficult to know the structure of the friction model, let alone the
parameter values [13]. Finally, if the manipulator has some portion of its
dynamics which are not repeatable, because, for example, they change

M@® . A -
M —_b@———’ rm 5

-+ ——————

K K 1 G (8)
: e !
Oq o o |
I 4

Hd—r®:-. '

FIGURE 10.7 An implementation of the model-based manipulator
control system.

343

\ﬁ‘ 10 Nonlinear control of manipulators

as the robot ages, it is difficult to have good parameter values in the
model at all times.

By nature, most robots will be picking up various parts and tools.
When a robot is holding a tool, the inertia and the weight of the tool
change the dynamics of the manipulator. In an industrial situation, the
mass properties of the tools may be known—in this case they can be
accounted for in the modeled portion of the control law. When a tool is
grasped, the inertia matrix, total mass, and center of mass of the last link
of the manipulator can be updated to new values which represent the
combined effect of the last link plus tool. However, in many applications
the mass properties of objects that the manipulator picks up are not
generally known, so that maintenance of an accurate dynamic model is
difficult.

The simplest possible nonideal situation is one in which we still
assume a perfect model implemented in continuous time, but with
external noise acting to disturb the system. In Fig. 10.8 we indicate
a vector of disturbance torques acting at the joints. Writing the system
error equation with inclusion of these unknown disturbances, we arrive at

E+K,E+K,E=M"1(0) 1, (10.20)

where 7, is the vector of disturbance torques at the joints. The left-hand
side of (10.20) is uncoupled, but from the right-hand side we see that a
disturbance on any particular joint will introduce errors at all the other
joints, since M (©) is not diagonal in general.

Some simple analyses might be performed based on (10.20). For
example, it is easy to compute the steady-state servo error due to a

Mi8) Arm

B =~ C(8) |-

K,
T
b S

Ly

-t ———————»

|

|

1
44

FIGURE 10.8 The model-based controller with an external disturbance
acting.

10.5 Practical considerations

constant disturbance as
E=K,'M~(0) . (10.21)
When our model of the manipulator dynamics is not perfect, analysis
of the resulting closed loop system becomes more difficult. We define
the following notation: M(©) is our model of the manipulator inertia
matrix, M(0). Likewise, V(©,0), G(©), and F(©,0) are our models
of the velocity terms, gravity terms, and friction terms of the actual
mechanism. Perfect knowledge of the model would mean

M(©) = M(©),

V(©,8)=V(0,0),

(10.22)
G(®) =G(®),
F(©,8) = F(8,0).
Therefore, although the manipulator dynamics are given by
r=M(©)® +V(0,0) +G(8) + F(©.0), (10.23)
our control law computes
r=ar' + 8,
a=M(®), (10.24)

B=V(0,0)+G(O) +F(©,0).

Decoupling and linearizing will not therefore be perfectly accomplished
when parameters are not known exactly. Writing the closed loop equa-
tion for the system, we have

E+K,E+K,E

-t [(-n0) 6+ (v-V) + (¢-6)+ (F-£)], "%
where the arguments of the dynamic functions are not shown for brevity.
Note that if the model were exact so that (10.22) were true, then the
right-hand side of (10.25) would be zero and the errors would disappear.
When the parameters are not known exactly, the mismatch between
actual and modeled parameters will cause servo errors to be excited
(possibly even resulting in an unstable system [21]) according to the
rather complicated equation (10.25).

Discussion of stability analysis of a nonlinear closed loop system is
deferred until Section 10.7.

345

[346

10 Nonlinear control of manipulators

10.6 Present industrial robot control systems

Because of the problems with having good knowledge of parameters, it
is not clear whether it makes sense to go to the trouble of computing
a complicated model-based control law for manipulator control. The
expense of the computer power needed to compute the model of the
manipulator at a sufficient rate may not be worthwhile, especially when
lack of knowledge of parameters may nullify the benefits of such an
approach. Manufacturers of industrial robots have decided, probably for
economic reasons, that attempting to use a complete manipulator model
in the controller is not worthwhile. Instead, present-day manipulators are
controlled with very simple control laws which are generally completely
error driven and are implemented in architectures such as those studied
in Section 9.10. An industrial robot with a high-performance servo
system is shown in Fig. 10.9.

FIGURE 10.9 The Adept One, a direct drive robot by Adept Technology, Inc.

10.6 Present industrial robot control systems

Individual joint PID control

Most present industrial robots have a control scheme that in our notation
would be described by

a=1
10.26
3=0, ()
where I is the n x n identity matrix. The servo portion is
' :éd:—KtE-.‘—Kqul—Ki/Edt. (10.27)

where K, K, and K; are constant diagonal matrices. In many cases, O,
is not available, and this term is simply set to zero. That is, most simple
robot controllers do not use a model-based component at all in their
control law. This type of PID control scheme is simple because each joint
is controlled as a separate control system. Often, one microprocessor per
joint is used to implement (10.27), as discussed in Section 9.10.

The performance of a manipulator controlled in this way is not
simple to describe. Since no decoupling is being done, the motion of
each joint affects the other joints. These interactions cause errors which
are suppressed by the error driven control law. It is impossible to select
fixed gains which will critically damp the response to disturbances
for all configurations. Therefore, “average” gains are chosen which
approximate critical damping in the center of the robot’s workspace.
In various extreme configurations of the arm, the system becomes
either underdamped or overdamped. Depending on the details of the
mechanical design of the robot, these effects may be fairly small, and
control is good. In such systems, it is important to keep the gains as
high as possible so that these inevitable disturbances will be quickly
suppressed.

Addition of gravity compensation

Since the gravity terms will tend to cause static positioning errors, some
robot manufacturers include a gravity model, G(#), in the control law
(that is, 3 = G(©) in our notation). The complete control law takes
the form

v =8, +K,E+ KpE+K%-/Edt+C?(@}. (10.28)
Such a control law is perhaps the simplest example of a model-based

controller. Since (10.28) can no longer be implemented on a strict joint-
by-joint basis, the controller architecture must allow communication

347

M 10 Nonlinear control of manipulators

between the joint controllers or must make use of a central processor
rather than individual joint processors.

Various approximations of decoupling control

There are various ways to simplify the dynamic equations of a particular
manipulator [3,14]. After the simplification, an approximate decoupling
and linearizing law can be derived. A usual simplification might be to
disregard components of torque due to the velocity terms—that is, to
model only the inertial and gravity terms. Often, friction models are not
included in the controller since friction is so hard to model correctly.
Sometimes the inertia matrix is simplified so that it accounts for the
major coupling between axes but not for minor cross-coupling effects.
For example, [14] presents a simplified version of the PUMA 560’s mass
matrix which requires only about 10% of the calculations needed to
compute the complete mass matrix, vet is accurate to within 1%.

10.7 Lyapunov stability analysis

In Chapter 9 we examined linear control systems analytically to deter-
mine stability and also performance of the dynamic response in terms of
damping and closed loop bandwidth. The same analyses are valid for a
nonlinear system which has been decoupled and linearized by means of
a perfect model-based nonlinear controller, because the overall resulting
system is again linear. However, when decoupling and linearizing are
not performed by the controller, or are incomplete or inaccurate, the
overall closed loop system remains nonlinear. For nonlinear systems,
stability and performance analysis is much more difficult. In this section
we introduce one method of stability analysis which is applicable to
both linear and nonlinear systems.

Consider the simple mass-spring friction system originally consid-
ered in Chapter 9 whose equation of motion is

mi + bé + kz = 0. (10.29)
The total energy of the system is given by

1.5 .1
J= = + —kz?,
v 2m1: 2:_

(10.30)
where the first term gives the kinetic energy of the mass, and the second
term gives the potential energy stored in the spring. Note that the value,
v, of the system energy is always nonnegative (i.e., it is positive or zero).

10.7 Lyapunov stability analysis

Let’s determine the rate of change of the total energy by differentiating
(10.30) with respect to time to obtain

b = mai + kod. (10.31)
Substituting (10.29) for m# in (10.31) yields
v = —bi?, (10.32)

which we note is always nonpositive (since b > 0). Thus, energy is always
leaving the system, unless £ = (. This implies that however initially
perturbed, the system will lose energy until it comes to rest. Investigating
possible resting positions by means of a steady-state analysis of (10.29)
vields

kz =0, (10.33)

or
z=0. (10.34)

Hence, based on an energy analysis, we have shown that the system of
(10.29) with any initial conditions (i.e., any initial energy) will eventually
come to rest at the equilibrium point. This stability proof by means of an
energy analysis is a simple example of a more general technique called
Lyapunov stability analysis or Lyapunov’s second (or direct)
method after a Russian mathematician of the nineteenth century [15].

An interesting feature of this method of stability analysis is that we
can conclude stability without solving for the solution of the differential
equation governing the svstem. However, while Lyapunov’'s method
is useful for examining stability. it generally does not provide any
information about the transient response or performance of the system.
Note that our energy analysis yielded no information on whether the
system was overdamped or underdamped, or how long it would take the
system to suppress a disturbance. It is important to distinguish between
stability and performance, as a stable system may nonetheless exhibit
control performance unsatisfactory for its intended use.

Lyapunov's method is somewhat more general than the above
example indicates. It is one of the few techniques that can be applied
directly to nonlinear systems to investigate their stability. As a means of
quickly getting an idea of Lyapunov’s method (in sufficient detail for our
needs) we will look at an extremely brief introduction to the theory and
then proceed directly to several examples. A more complete treatment
of Lyapunov theory can be found in [16, 17].

Lyapunov’s method is concerned with determining the stability of
a differential equation

X = f(X), (10.85)

349

ﬂ[10 Nonlinear control of manipulators

where X is m x 1 and f(-) may be nonlinear. Note that higher-order
differential equations can always be written as a set of first-order
equations in the form (10.35). To prove a system stable by Lyapunov’s
method, one is required to propose a generalized energy function v(X)
that has the following properties:

1. v(X) has continuous first partial derivatives and »(X) > 0 for all
X except 2(0) = 0.

2. 9(X) < 0. Here, ©(X) means the change in v(X) along all system
trajectories.

These properties may hold only in a certain region or may be global,
with correspondingly weaker or stronger stability results. The intuitive
idea is that a positive definite “energy-like” function of state is shown
to always decrease or remain constant—hence, the system is stable in
the sense that the size of the state vector is bounded.

When (X)) is strictly less than zero, asymptotic convergence of the
state to the zero vector can be concluded. Lyapunov’s original work was
extended in an important way by LaSalle and Lefschetz [4], who showed
that in certain situations, even when ¥(X) < 0 (note equality included),
asymptotic stability may be shown. For our purposes, we can deal with
the case of (X) = 0 by performing a steady-state analysis in order to
determine if the stability is asymptotic or if the system under study can
“get stuck” somewhere other than v(X) = 0.

A system deseribed by (10.35) is said to be autonomous because
the function f(-) is not an explicit function of time. Lyapunov’s method
also extends to nonautonomous systems in which time is an argument
of the nonlinear function. See [4,17] for details.

I [AMPLE 10.4

Consider the linear system
X =—AX, (10.36)

where A is m x m and positive definite. Propose the candidate Lyapunov

function

s %XTX._ (10.37)

which is continuous and evervwhere nonnegative. Differentiating yields
o(X)=XTX
= X7 (-AX) (10.38)

=_XTAX,

10.7 Lyapunov stability analysis

which is everywhere nonpositive because A is a positive definite matrix.
Hence, (10.37) is indeed a Lyapunov function for the system of (10.36).
The system is asymptotically stable because ©(X) can be zero only at
X = 0. everywhere else X must decrease. =

N A NPLE 10.5

Consider a mechanical spring-damper system in which both the
spring and damper are nonlinear:

i +b(z) + k(z) = 0. (10.39)

The functions b(-) and k(-) are first- and third-quadrant continuous
functions such that

b(z) >0 for =0,

. (10.40)
zk(z) >0 for z#0.
Proposing the Lyapunov function
S — %:‘aﬁ —/ k(N dA, (10.41)
0
we are led to
oz, &) = 23 + k(z)2,
= —zb(z) — k(I)I + JI’C{CC:E (1042)

= —ib(i).

Hence, 7(-) is nonpositive but is only semidefinite since it is not a
function of z but only of Z. In order to conclude asymptotic stability we
have to ensure that it is not possible for the system to “get stuck” with
nonzero . To study all trajectories for which £ = 0, we must consider

i=—k(z), (10.43)

for which z = 0 is the only solution. Hence the system will only come
torestifz =2 =2 =0]

351

@l 10 Nonlinear control of manipulators

I X AMPLE 106
Consider a manipulator with dynamics given by
T=M(©®)0 +V(0,0)+G(0) (10.44)
and controlled with the control law
r=K,E-K,0+G(0), (10.45)

where K, and K, are diagonal gain matrices. Note that this controller
does not force the manipulator to follow a trajectory, but moves the
manipulator to a goal point along a path specified by the manipulator
dynamics, and then regulates the position there. The resulting closed
loop system obtained by equating (10.44) and (10.45) is

M(©)0+V(0.0) + K;,0+K,0=K_0, (10.46)
and can be proven globally asymptotically stable using Lyapunov’s

method [18,19].
Consider the candidate Lyapunov function

—_

. ée’rme}e +5ETK,E. (10.47)

The function (10.47) is always positive or zero because the manipulator
mass matrix, M(©) and the position gain matrix K, are positive definite
matrices. Differentiating (10.47) vields

_le’f.x‘f(e}e +OTM(©)6 - ETK,0

= —G)T M(©)0-0TK 0 -0TV(e,0) (10.48)

-67TK,0,

which is nonpositive as long as K is positive definite. In taking the last
step in (10.48) we have made use of the interesting identity

oTM(@)e =07V (8,0), (10.49)

2| =

which can be shown by investigation of the structure of Lagrange’s
equations of motion [18-20] (see also Exercise 6.17).

Next, we investigate whether or not the system can get “stuck” with
nonzero error. Since © can only remain zero along trajectories that have
© =0 and © = 0, we see from (10.46) that in this case

K,E=0, (10.50)

10.8 Cartesian-based control systems

and since K, is nonsingular, we have that

E=0. (10.51)

Hence control law (10.45) applied to the system (10.44) achieves global
asymptotic stability.

This proof is important in that it explains, to some extent, why
today’s industrial robots work. Most industrial robots use a simple
error-driven servo, occasionally with gravity models, and so are quite
similar to (10.45). =

See Exercises 10.11 through 10.16 for more examples of nonlinear
manipulator control laws which can be proven stable using Lyapunov’s
method. Recently. Lyapunov theory has become increasingly prevalent
in robotics research publications [18-25].

10.8 Cartesian-based control systems

In this section we introduce the notion of Cartesian-based control.
Although such approaches are not currently used in industrial robots,
there is activity at several research institutions on such schemes.

Comparison with joint-based schemes

In all the control schemes for manipulators we have discussed so far,
we assumed that the desired trajectory was available in terms of
time histories of joint position, velocity, and acceleration. Given that
these desired inputs were available, we designed joint-based control
schemes, that is. schemes in which we develop trajectory errors by finding
the difference between desired and actual quantities expressed in joint
space. Very often we wish the manipulator end-effector to follow straight
lines or other path shapes described in Cartesian coordinates. As we
saw in Chapter 7, it is possible to compute the time histories of the
joint space trajectory which correspond to Cartesian straight line paths.
Figure 10.10 shows this approach to manipulator trajectory control. A
basic feature of the approach is the trajectory conversion process
which is used to compute the joint trajectories. This is then followed by
some kind of joint-based servo scheme as we have been studying.

The trajectory conversion process is quite difficult (in terms of
computational expense) if it is to be done analytically. The computations

353

354 | 10 Nonlinear control of manipulators

&8 T]
Xy — V) Gains |—a Arm
. Trajectory = i
i N el
X4 Conversion __f
i, e —_—, —

FIGURE 10.10 A joint-based control scheme with Cartesian path input.

which would be required are

8, = INVKIN(X,),

0, = J71(0)4,, (10.52)
O, =J"Y0)x; + T (O)A,.

To the extent that such a computation is done at all in present-day
systems, usually just the solution for @, is performed using the inverse
kinematics, and then the joint velocities and accelerations are computed
numerically by first and second differences. However, such numerical
differentiation tends to amplify noise and introduces a lag unless it can
be done with a noncausal filter.” Therefore, we are interested in either
finding a less computationally expensive way of computing (10.52), or
suggesting a different control scheme in which this information is not
needed.

An alternative approach is shown in Fig. 10.11. Here, the sensed
position of the manipulator is immediately transformed by means of
the kinematic equations into a Cartesian description of position. This
Cartesian description is then compared to the desired Cartesian position
in order to form errors in Cartesian space. Control schemes which are
based on forming errors in Cartesian space are called Cartesian-based
control schemes. For simplicity, velocity feedback is not shown in
Fig. 10.11 but would be present in any implementation.

The trajectorv conversion process is replaced by some kind of
coordinate conversion inside the servo loop. Note that Cartesian-based
controllers must perform many computations in the loop because of
the kinematics and other transformations which are now “inside the
loop.” This may be a drawback of the Cartesian-based methods, since
the resulting system may run at a lower sampling frequency compared

* Numerical differentiation introduces a lag unless it can be based on past,
present, and future values. When the entire path is preplanned, this kind of
noncausal numerical differentiation can be done.

10.8 Cartesian-based control systems

Coordinate

X conversion T]
and = Arm

gains

Xq

Kin (8)

FIGURE 10.11 The concept of a Cartesian-based control scheme.

=1
{= =]

85X 36 _
Xy —n J U - (Gains

Y
bs
5

Kin (8)

FIGURE 10.12 The in\-';erse Jacobian Cartesian control scheme.

to joint-based systems (given the same size computer). This would, in
general, degrade the stability and disturbance-rejection capabilities of
the system.

Intuitive schemes of Cartesian control

One possible control scheme which comes to mind rather intuitively
is shown in Fig. 10.12. Here Cartesian position is compared to the desired
position to form an error, § X, in Cartesian space. This error, which may
be presumed small if the control system is doing its job, may be mapped
into a small displacement in joint space by means of the inverse Jacobian.
The resulting errors in joint space, 6§ are then multiplied by gains
to compute torques which will tend to reduce these errors. Note that
Fig. 10.12 shows a simplified controller in that, for clarity, the velocity
feedback has not been shown. It could be added in a straightforward
manner. We will call this scheme the inverse Jacobian controller.

355

L_SM 10 Nonlinear control of manipulators

> JT — | Arm

Kin (8) -

FIGURE 10.13 The transpose Jacobian Cartesian control scheme.

Another scheme which may come to mind is shown in Fig. 10.13.
Here the Cartesian error vector is multiplied by a gain to compute a
Cartesian force vector. This can be thought of as a Cartesian force which,
if applied to the end-effector of the robot, would push the end-effector
in a direction which would tend to reduce the Cartesian error. This
Cartesian force vector (actually a force-moment vector) is then mapped
through the Jacobian transpose in order to compute the equivalent joint
torques which would tend to reduce the observed errors. We will call this
scheme the transpose Jacobian controller.

The inverse Jacobian controller and the transpose Jacobian con-
troller have both been arrived at intuitively. We cannot be sure that
such arrangements would be stable, let alone perform well. It is also
curious that the schemes are extremely similar except the one contains
the Jacobian’s inverse, and the other contains its transpose. Remem-
ber, the inverse is not equal to the transpose in general (only in the
case of a strictly Cartesian manipulator does JT = J~!). The exact
dynamic performance of such systems (if expressed in a second-order
error space equation for example) is very complicated. It turns out that
both schemes will work (i.e., can be made stable), but not well (ie.,
performance is not good over the entire workspace). Both can be made
stable by appropriate gain selection, including some form of velocity
feedback which was not shown in Figs. 10.12 and 10.13. While both will
work, neither is correct in the sense that we cannot choose fixed gains
which will result in fixed closed-loop poles. The dynamic response of
such controllers will vary with arm configuration.

Cartesian decoupling scheme

For Cartesian-based controllers, like joint-based controllers, good per-
formance would be characterized by constant error dynamics over all
configurations of the manipulator. Since errors are expressed in Carte-

10.8 Cartesian-based control systems

sian space in Cartesian-based schemes, this means that we would like to
design a system which, over all possible configurations, would suppress
Cartesian errors in a critically damped fashion.

Just as we achieved good control with a joint-based controller which
was based on a linearizing and decoupling model of the arm., we can
do the same for the Cartesian case. However, we must now write the
dynamic equations of motion of the manipulator in terms of Cartesian
variables. This can be done. as discussed in Chapter 6. The resulting
form of the equations of motion is quite analogous to the joint space
version. The rigid body dynamics can be written:

F=M_(0)X+V,(0,0)+G,(0), (10.53)

where F is a fictitious force-moment vector acting on the end-effector
of the robot, and X is an appropriate Cartesian vector representing
position and orientation of the end-effector [§8]. Analogous to the joint
space quantities, M_(©) is the mass matrix in Cartesian space, V,(0,©)
is a vector of velocity terms in Cartesian space, and G,(0) is a vector
of gravity terms in Cartesian space.

Just as we did in the joint based case, we can use the dynamic equa-
tions in a decoupling and linearizing controller. Since (10.53) computes
F. a fictitious Cartesian force vector which should be applied to the
hand. we will also need to use the transpose of the Jacobian in order to
implement the control. That is, after F is calculated by (10.53), since we
cannot actuallv cause a Cartesian force to be applied to the end-effector,
we instead compute the joint torques needed to effectively balance the
system if we were to apply this force:

r=JT(O) F. (10.54)
. F } 9 ol Kin(8) -4
rd—»@» M8) »@-’ JTg) - Arm)
4 " g X
‘ F)

s T

I
K, K, ¥
V(8,6) + Go(8)

E =
>
[— Y

\

N
()

FIGURE 10.14 The Cartesian model based control scheme.

357

| 358 | 10 Nonlinear control of manipulators

b . X
= F - » Kin (8)
I@—>®+ M0 —bﬁ)—» JTe) b Arm 8
A - . | E
Jg) =
\ f ‘ H)
| e A
1 i
Ell & A :
G () :

B0) + Cf) |t

FIGURE 10.15 An implementation of the Cartesian model-based control
scheme. 2

Figure 10.14 shows a Cartesian arm control system using complete
dynamic decoupling. Note that the arm is preceded by the Jacobian
transpose. Notice that the controller of Fig. 10.14 allows Cartesian paths
to be described “directly with no need for trajectory conversion.

As in the joint space case. a practical implementation may best
be achieved through use of a dual-rate control system. Figure 10.15
shows a block diagram of a Cartesian-based decoupling and linearizing
controller in which the dynamic parameters are written as functions of
manipulator position only. These dynamic parameters are updated at
a rate slower than the servo rate by a background process or a second
control computer. This is appropriate because we desire a fast servo
(perhaps running at 500 Hz or even higher) to maximize disturbance
rejection and stability. Since the dynamic parameters are functions of
manipulator position only, they need be updated at a rate related only
to how fast the manipulator is changing configuration. The parameter
update rate probably needs be no higher than 100 Hz [8].

Adaptive control

10.9 Adaptive control

In the discussion of model-based control, it was noted that often param-
eters of the manipulator are not known exactly. When the parameters in
the model do not match the parameters of the real device, servo errors
will result, as made explicit in (10.25). These servo errors could be used
to drive some adaptation scheme which attempts to update the values of
the model parameters until the errors disappear. Several such adaptive
schemes have been proposed.

An ideal adaptive scheme might be like the one in Fig. 10.16.
Here, we are using a model-based control law as developed in this
chapter. There is an adaptation process which, based on observation
of manipulator state and servo errors, readjusts the parameters in the
nonlinear model until the errors disappear. Such a system would learn
its own dynamic properties. The design and analysis of adaptive schemes
are beyond the scope of this book. A method which possesses exactly
the structure shown in Fig. 10.16 and which has been proven globally
stable is presented in [20,21]. A related technique is that of [22].

\]
S’

Adaptation

.;_f'_, laws

B4 —f\E—tQjE_: —i I}

FIGURE 10.16 The concept of an adaptive manipulator controller.

359

\ﬁﬂ_l 10 Nonlinear control of manipulators

References

[1] R.P. Paul, “Modeling, Trajectory Calculation, and Servoing of a Computer
Controlled Arm,” Technical Report AIM-177, Stanford University Artifi-
cial Intelligence Laboratory, 1972.

[2] B. Markiewicz, “Analysis of the Computed Torque Drive Method and
Comparison with Conventional Position Servo for a Computed-Controlled
Manipulator,” Jet Propulsion Laboratory Technical Memo 33-601, March
1973.

[3] A. Bejczy, “Robot Arm Dynamics and Control,” Jet Propulsion Laboratory
Technical Memo 33-669, February 1974,

[4] J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method with
Applications, Academic Press, New York, 1961.

[5] P.K.Khosla, “Some Experimental Results on Model-Based Control Schemes,”
IEEE Conference on Robotics and Automation, Philadelphia, April 1988.

[6] M. Leahy, K. Valavanis, and G. Saridis, “The Effects of Dynamic Models

on Robot Control,” IEEE Conference on Robotics and Automation, San
Francisco, April 1986.

[7] M. Leborgne, R. Dumas, J. Borrelly, C. Samson, and B. Espiau, “Nonlinear
Control of Robot Manipulators Part 2: Simulation and Implementation
of a Robust Control Method,” Technical Report, IRISA/INRIA, Rennes,
France, 1985,

8] 0. Khatib, “A Unified Approach for Motion and Force Control of Robot
Manipulators: The Operational Space Formulation,” [EEE Journal of
Robotics and Automation, Vol. RA-3, No. 1, 1987.

[9] C. An, C. Atkeson, and J. Hollerbach, “Model-Based Control of a Direct
Drive Arm, Part II: Control,” IEEE Conference on Robotics and Au-
tomation, Philadelphia, April 1988.

[10] G. Franklin and J. Powell, Digital Control of Dynamic Systems, 2nd edition,
Addison-Wesley, 1989.

[11] A. Liegeois, A. Fournier, and M. Aldon, “Model Reference Control of High
Velocity Industrial Robots,” Proceedings of the Joint Automatic Control
Conference, San Francisco, 1980.

[12] M. Raibert, “Mechanical Arm Control Using a State Space Memory,” SME
paper MST7-750, 1977.

(13] B. Armstrong, “Friction: Experimental Determination, Modeling and Com-
pensation,” IEEE Conference on Robotics and Automation, Philadelphia,
April 1988.

[14] B. Armstrong, O. Khatib, and J. Burdick, “The Explicit Dynamic Model
and Inertial Parameters of the PUMA 560 Arm,” IEEE Conference on
Robotics and Automation, San Francisco, April 1936.

[15] AM. Lyapunov, “On the General Problem of Stability of Motion,” (in
Russian), Kharkov Mathematical Society, Soviet Union, 1892.

[16] C. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties,
Academic Press, New York. 1975.

[17] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, 1978.

Exercises

[18] S. Arimoto and F. Miyazaki, “Stability and Robustness of PID Feedback
Control for Robot Manipulators of Sensory Capability,” Third Interna-
tional Symposium of Robotics Research, Gouvieux, France, July 1985.

[19] D. Koditschek, “Adaptive Strategies for the Control of Natural Motion,”
Proceedings of the 24th Conference on Decision and Conirol, Ft. Laud-
erdale., December 1985.

[20] J. Craig, P. Hsu, and S. Sastry, “Adaptive Control of Mechanical Manip-
ulators,” IEEE Conference on Robotics and Automation, San Francisco,
April 1986.

121] J. Craig, Adaptive Control of Mechanical Manipulators, Addison-Wesley
Reading, Mass., 1988.

(22] J.J. Slotine and W. Li, “On the Adaptive Control of Mechanical Manip-
ulators,” The International Journal of Robotics Research, Vol. 6, No. 3,
1987.

(23] R. Kelly and R. Ortega, “Adaptive Control of Robot Manipulators: An
Input-Output Approach,” IEEE Conference on Robotics and Automation,
Philadelphia, 1988.

[24] H. Das, J.J. Slotine, and T. Sheridan, “Inverse Kinematic Algorithms for
Redundant Systems,” IEEE Conference on Robotics and Automation,
Philadelphia, 1988.

[25] T. Yabuta, A. Chona, and G. Beni, “On the Asymptotic Stability of the
Hybrid Positon/Force Control Scheme for Robot Manipulators,” IEEE
Conference on Robotics and Automation, Philadelphia, 1988.

Exercises

10.1 [15] Give the nonlinear control equations for an o, 3-partitioned controller
for the system:

r= (2v’§+ 1) 6 + 362 — sin(8).

Choose gains so that this system is always critically damped with ko =
10.

10.2 [15] Give the nonlinear control equations for an e, G-partitioned controller
for the system:

7 =500+ 26— 136° + 5.

Choose gains so that this system is always critically damped with ko =
10.
10.3 [19] Draw a block diagram showing a joint space controller for the two-link

arm from Section 6.7 such that the arm is critically damped over its entire

workspace. Show the equations inside the blocks of a block diagram.
10.4 [20] Draw a block diagram showing a Cartesian space controller for the

two-link arm from Section 6.7 such that the arm is critically damped

over its entire workspace. See Example 6.6. Show the equations inside the

blocks of a block diagram.

361

@Q_‘ 10 Nonlinear control of manipulators

10.5

10.6

10.7

10.8

10.9

[18] Design a trajectory-following control system for the systems whose
dynamics are given by

T m‘llfél + 'm1£1£26}192e
2 =mal3(6; +62) + vy0,.

Do vou think these equations could represent a real system?

[17] For the control system designed for the one-link manipulator in
Example 10.3, give an expression for the steady-state position error as a
function of error in the mass parameter. Let ¥, = m — 7. The result
should be a function of [,g.6,¢,,, and k,. For what position of the
manipulator is this maximum?

[26] For the two degree of freedom mechanical system of Fig. 10.17, design
a controller which can cause z; and z, to follow trajectories and suppress
disturbances in a critically damped fashion.

[30] Consider the dynamic equations of the two-link manipulator from
Section 6.7 in configuration space form. Derive expressions for the sensi-
tivity of the computed torque value versus small deviations in ©. Can you
say something about how often the dynamics should be recomputed in a
controller like that of Fig. 10.7 as a function of average joint velocities
expected during normal operations?

[32] Consider the dynamic equations of the two-link manipulator from
Example 6.6 in Cartesian configuration space form. Derive expressions
for the sensitivity of the computed torque value versus small deviations
in ©. Can you say something about how often the dynamics should be
recomputed in a controller like that of Fig. 10.15 as a function of average
joint velocities expected during normal operations?

X1 |

i |

ma

XX XX %

FIGURE 10.17 Mechanical system with two degrees of freedom.

Exercises

10.10[15] Design a control system for the system
f = 5z@ + 2% — 12.

Choose gains so that this system is always critically damped with a closed
loop stiffness of 20.

10.11 [20] Consider a position regulation system which (without loss of gener-
ality) attempts to maintain @, = 0. Prove that the control law

r=-K,0 - M(O)K,0+G(O)

vields an asymptotically stable nonlinear system. You may take K, to be
of the form K, = k,I, where k, is a scalar and I,, is the n x n identity
matrix. Hint: This is similar to example 10.6.

10.12[20] Consider a position regulation system which (without loss of gener-
ality) attempts to maintain ©, = 0. Prove that the control law

r=-K,0 - M(©)K,0+G(8)

vields an asymptotically stable nonlinear system. You may take K, to
be of the form K, = k, I, where k, is a scalar and I,, is the n X n
identity matrix. The matrix _-‘G‘(@) is a positive definite estimate of the
manipulator mass matrix. Hint: This is similar to example 10.6.

10.13 [25] Consider a position regulation system which (without loss of gener-
ality) attempts to maintain ©, = 0. Prove that the control law

= —M(O) [er + Kt.é] +G(O)

vields an asymptotically stable nonlinear system. You may take K, to be
of the form K, = k, I, where k, is a scalar and I,, is the n x n identity
matrix. Hint: This is similar to example 10.6.

10.14 [25] Consider a position regulation system which (without loss of gener-
ality) attempts to maintain ©; = 0. Prove that the control law

r=-M(©) K0+ Kv(i)} +G(O)

vields an asymptotically stable nonlinear system. You may take K, to
be of the form K, = k,I,,, where k, is a scalar and I,, is the n x n
identity matrix. The matrix M(®) is a positive definite estimate of the
manipulator mass matrix. Hint: This is similar to example 10.6.

10.15 [28] Consider a position regulation system which (without loss of gener-
ality) attempts to maintain @, = 0. Prove that the control law

r=-K,0-K,0

vields a stable nonlinear system. Show that stability is not asymptotic and
give an expression for the steady-state error. Hint: similar to Example
10.6.

363

|_3€i1 10 Nonlinear control of manipulators

10.16 [30] Prove the global stability of the “Jacobian transpose” Cartesian
controller introduced in Section 10.8. Use an appropriate form of velocity
feedback to stabilize the system. Hint: see [18].

10.17 [15] Design a trajectory-following controller for a system with dynamics
given by

f = az?zi + bi? + csin(z),
such that errors are suppressed in a critically damped fashion over all
configurations.

10.18[15] A system with open loop dynamics given by
r=mf+b6% +cd
is controlled with the control law

T=m [éd +k, e+ kpe] + sin(d).
4
Give the differential equation that characterizes the closed loop action of
the system.

Programming Exercise (Part 10)

Repeat Programming Exercise Part 9 and use the same tests with a new
controller which uses a complete dynamic model of the 3-link to decouple
and linearize the system. For this case, use

100.0 0.0 0.0
K,=| 00 1000 0.0
0.0 0.0 1000

Choose a diagonal K, which guarantees critical damping over all configura-
tions of the arm. Compare the results with those obtained with the simpler
controller used in Programming Exercise Part 9.

11

FORCE CONTROL OF
MANIPULATORS

11.1 Introduction

While position control is appropriate when a manipulator is following
a trajectory through space, when any contact is made between the
end-effector and the manipulator’s environment, position control may
not suffice. Consider a manipulator washing a window with a sponge.
Due to the compliance of the sponge, it may be possible to regulate the
force applied to the window by controlling the position of the end-effector
relative to the glass. If the sponge is very compliant, and/or the position
of the glass is known very accurately, this technique would work quite
well.

However, if the stiffness of the end-effector, tool, or environment is
high, it becomes increasingly difficult to perform operations in which the
manipulator contacts a surface. Instead of a sponge, imagine that the
manipulator is scraping paint off a glass surface using a rigid scraping
tool. If there is any uncertainty in the position of the glass surface, or

366

11 Force control of manipulators

errors in the position servo of the manipulator, this task would become
impossible. Either the glass would be broken, or the manipulator would
wave the scraping tool over the glass with no contact taking place.

In both the washing and scraping tasks, it would be more reasonable
not to specify the position of the plane of the glass, but rather to specify
a force which is to be maintained normal to the surface.

More so than in previous chapters, in this chapter we present
methods which are not yet employed by industrial robots, except in an
extremely simplified way. The major thrust of the chapter is to introduce
the hybrid position/force controller, which is one formalism through
which industrial robots may someday be controlled in order to perform
tasks requiring force control. However, regardless of which method(s)
emerge as practical for industrial application, many of the concepts
introduced in this chapter will certainly remain valid.

11.2 Application of industrial robots to assembly tasks

The majority of the industrial robot population is employed in relatively
simple applications such as spot welding, spray painting, and pick
and place operations. Force control has already appeared in a few
applications; for example. some robots are already capable of simple
force control which allows them to do tasks such as grinding and
deburring. Apparently the next big area of application will be to
assembly line tasks in which one or more parts are mated. In such
parts-mating tasks, monitoring and control of the forces of contact are
extremely important.

Precise control of manipulators in the face of uncertainties and
variations in their work environments is a prerequisite to application
of robot manipulators to assembly operations in industry. It seems that
by providing manipulator hands with sensors that can give information
about the state of manipulation tasks. important progress can be made
toward using robots for assembly tasks. Currently, the dexterity of
manipulators remains quite low and continues to limit their application
in the automated assembly area.

The use of manipulators for assembly tasks requires that the preci-
sion with which parts are positioned with respect to one another be quite
high. Current industrial robots are often not accurate enough for these
tasks, and building robots that are may not make sense. Manipulators
of greater precision can be achieved only at the expense of size, weight,
and cost. The ability to measure and control contact forces generated
at the hand, however, offers a possible alternative for extending the
effective precision of a manipulator. Since relative measurements are
used, absolute errors in the position of the manipulator and the ma-

11.3 A framework for control in partially constrained tasks

nipulated objects are not as important as they would be in a purely
position controlled system. Since small variations in relative position
generate large contact forces when parts of moderate stiffness interact,
knowledge and control of these forces can lead to a tremendous increase
in effective positional accuracy.

11.3 A framework for control in partially constrained
tasks

The approach presented in this chapter is based on a framework for
control in situations in which motion of the manipulator is partially con-
strained due to contact with one or more surfaces [1-3]. This framework
for understanding partially constrained tasks is based on a simplified
model of interaction between the manipulator’s end-effector and the
environment. Namely, since we are interested in describing contact and
freedoms, we consider only the forces due to contact. This is equivalent
to doing a quasi-static analysis and ignoring other static forces such
as certain friction components and gravity. The analysis is good where
forces due to contact between relatively stiff objects are the dominant
source of forces acting on the system.

Every manipulation task can be broken down into subtasks that
are defined by a particular contact situation occurring between the
manipulator end-effector (or tool) and the work environment. With
each such subtask we may associate a set of constraints, called the
natural constraints, that result from the particular mechanical and
geometric characteristics of the task configuration. For instance, a hand
in contact with a stationary. rigid surface is not free to move through
that surface, and hence a natural position constraint exists. If the surface
is frictionless, the hand is not free to apply arbitrary forces tangent to
the surface. and hence a natural force constraint exists.

In general. for each subtask configuration a generalized surface
can be defined with position constraints along the normals to this
surface and force constraints along the tangents. These two types of con-
straint, force and position, partition the degrees of freedom of possible
end-effector motions into two orthogonal sets that must be controlled
according to different criteria.

Figure 11.1 shows two representative tasks along with their associ-
ated natural constraints. Notice that in each case, the task is described in
terms of a frame {C'}, the so-called constraint frame, which is located
in a task-relevant location. According to the task, {C'} may be fixed in
the environment or may move with the end-effector of the manipulator.
In Fig. 11.1a, the constraint frame is attached to the crank as shown and

367

ﬂ, 11 Force control of manipulators

(a) Turning crank
Natural constraints
v, =0 fi=0
v.=10 n,=0
W, =
wy = 0
cz Natural constraints
\ ve=0 fi=0
w, =0 n.=0
w, =0
v, =0
Cx ny
T

FIGURE 11.1 The natural constraints for two different tasks.

moves with the crank with the X direction always directed toward the
pivot point of the crank. Friction acting at the fingertips ensures a secure
grip on the handle, which is on a spindle so that it may rotate relative
to the crank arm. In Fig. 11.1b. the constraint frame is attached to the
tip of the screwdriver and moves with it as the task proceeds. Notice
that in the ¥ direction the force is constrained to be zero since the slot
of the screw would allow the screwdriver to slip out in that direction. In
these examples, a given set of constraints remains true throughout the
task. In more complex situations, the task is broken into subtasks for
which a constant set of natural constraints can be identified.

In Fig. 11.1, position constraints have been indicated by giving
values for components of velocity of the end-effector. V. described in
frame {C}. We could just as well have indicated position constraints
by giving expressions for position, rather than velocities. However, in
many cases it is simpler to specify a position contraint as a “velocity
equals zero” constraint. Likewise, force constraints have been specified
by giving values to components of the force-moment vector, F, acting on
the end-effector described in frame {C}. Note that when we say position

11.3 A framework for control in partially constrained tasks

constraints we mean position and/or orientation constraints, and when
we say force constraints we mean force and/or moment constraints. The
term natural constraints is used to indicate that these constraints arise
naturally from the particular contacting situation. They have nothing
to do with the desired or intended motion of the manipulator.

Additional constraints, called artificial constraints, are intro-
duced in accordance with the natural constraints to specify desired
motions or force application. That is, each time the user specifies a
desired trajectory in either position or force, an artificial constraint is
defined. These constraints also occur along the tangents and normals of
the generalized constraint surface; but unlike natural constraints, artifi-
cial force constraints are specified along surface normals, and artificial
position constraints along tangents—hence consistency with the natural
constraints is preserved.

Figure 11.2 shows the natural and artificial constraints for two tasks.
Note that when a natural position constraint is given for a particular de-
gree of freedom in {C}, an artificial force constraint should be specified,
and vice versa. Any given degree of freedom in the constraint frame is
at any instant controlled to meet either a position or a force constraint.

Natural constraints

(a) Turning crank i =0 fi=0
d .
v, =10 n, =0
w, =0
w, =0

Artificial constraints

v, = reg fe=10

o=ar fi=0
n,=10
n,=0

(b} Rasimg merewdives Natural constraints

o ve=10 fo=0
CZ\ w, =0 n.=10
w, =0
v, =0
Artificial constraints
Cj& cy vy =0 fe=0
W, = a3 ne =0
— n,=10
fr=o3

FIGURE 11.2 The natural and artificial constraints for two tasks.

369

370

11 Force control of manipulators

Assembly strategy is a term which refers to a sequence of planned
artificial constraints that will cause the task to proceed in a desirable
manner. Such strategies must include methods by which the system can
detect a change in the contacting situation so that transitions in the
natural constraints can be tracked. With each such change in natural
constraints, a new set of artificial constraints is recalled from the set
of assembly strategies and enforced by the control system. Methods for
automatically choosing the constraints for a given assembly task await
further research. In this chapter we will assume that a task has been
analyzed in order to determine the natural constraints and that a human
planner has determined an assembly strategy with which to control
the manipulator.

Note that we will usually ignore friction forces between contacting
surfaces in our analysis of tasks. This will suffice for our introduction to
the problem. and in fact will yield strategies which work in many cases.
Usually friction forces of sliding are acting in directions chosen to be
position controlled, and so these forces appear as disturbances to the
position servo and are overcome by the control system.

. X AMPLE 111

Figure 11.3a-d shows an assembly sequence used to put a round peg
into a round hole. The peg is brought down onto the surface to the left
of the hole and then slid along the surface until it drops into the hole. It
is then inserted until the peg reaches the bottom of the hole, at which
time the assembly is complete. Each of the four indicated contacting
situations defines a subtask. For each of the subtasks shown, give the
natural and artificial constraints. Also indicate how the system senses
the change in the natural constraints as the operation proceeds.

First, we will attach the constraint frame to the peg as shown in
Fig. 11.3a. In Fig. 11.3a, the peg is in free space, and so the natural

FIGURE 11.3 The sequence of four contacting situations for peg insertion.

11.3 A framework for control in partially constrained tasks

constraints are
CF=0. (11.1)

Therefore the artificial constraints in this case consitute an entire
position trajectory which moves the peg in the ©Z direction toward
the surface. For example

0
0
C'v - L"ep;bmach . (112)
0
0

where v, 1S the speed with which to approach the surface.

In Fig. 11.3b. the peg has reached the surface. To detect that this
has happened. we observe the force in the CZ direction. When this
sensed force exceeds a threshold, we sense contact, which implies a new
contacting situation with a new set of natural constraints. Assuming
that the contacting situation is as shown in Fig. 11.3b, the peg is not
free to move in €Z, or to rotate about ©X or Y. In the other three
degrees of freedom it is not free to apply forces, and hence the natural
constraints are

Sy, =0
Cw_ =0
c*_y -0
B}, (11.3)
=0
Cn_=0.

The artificial constraints describe the strategy of sliding along the surface
in the “X direction while applying small forces to ensure that contact
is maintained. Thus we have

Uz = Ugides
Cy, =0
Cw, =0
Sk =T (11.4)
Cn, =0,

€n, =0.

371

372

11 Force control of manipulators

where f,,.100; 18 the force applied normal to the surface as the peg is slid,
a nd v, is the velocity with which to slide across the surface.

In Fig. 11.3c, the peg has fallen slightly into the hole. This situation
is sensed by observing the velocity in the € Z direction and waiting for it
to cross a threshold (to become nonzero in the ideal case). When this is
observed, it signals that once again the natural constraints have changed,
and thus our strategy (as embodied in the artificial constraints) must
change. The new natural constraints are

Cu, =0
va =0
Cuy=0
o (11.5)
Cf=0
Cn,=0
We choose the artificial constraints to be
= Uz = Vinsert:
Cw, =0
Cr =0
T (11.6)
Cn, =0
Cn, =0

where v, is the velocity at which the peg is inserted into the hole.
Finally, the situation shown in Fig. 11.3(d) is detected when the force
in the ©Z direction increases above a threshold. =

It is interesting to note that changes in the natural constraints are
always detected by observing the position or force variable that is not
being controlled. For example, to detect the transition from Fig. 11.3(b)
to Fig. 11.3(c) we monitor the velocity in €Z while we are controlling
force in ©Z. To determine when the peg has hit the bottom of the hole,
we monitor € f, although we are controlling Cv,.

Determining assembly strategies for fitting more complicated parts
together is quite complex. We have also neglected the effects of uncer-
tainty in our simple analysis of this task. The development of automatic
planning systems which include the effects of uncertainty and may be

11.4 The hybrid position/force control problem

applied to practical situations is still a research topic [4-8]. For a good
review of these methods see [9].

11.4 The hybrid position/force control problem

Figure 11.4 shows two extreme examples of contacting situations. In
Fig. 11.4a, the manipulator is moving through free space. In this case
the natural constraints are all force constraints—namely, since there is
nothing to react against, all forces are constrained to be zero.” With an
arm having six degrees of freedom, we are free to move in six degrees of
freedom in position, but we are unable to exert forces in any direction.
Figure 11.4b shows the extreme situation of a manipulator with its
end-effector glued to a wall. In this case, the manipulator is subject
to six natural position constraints since it is not free to be repositioned.
However, the manipulator is free to exert forces and torques to the object
with six degrees of freedom.

In Chapters 9 and 10 we studied the position control problem which
applies to the situation of Fig. 11.4a. Since the situation of Fig. 11.4b

S
23

AL

FIGURE 11.4 The two extremes of contacting situations. The manipulator
on the left is moving in free space where no reaction surface exits. The
manipulator on the right is glued to the wall so that no free motion is possible.

* It is important to remember that we are concerned here with forces of contact
between end-effector and environment, not inertial forces

373

\ﬂi} 11 Force control of manipulators

does not occur very often in practice, we usually must consider force
control in the context of partially constrained tasks in which degrees
of freedom of the system are subject to position control, and others
are subject to force control. Thus. in this chapter we are interested in
considering hybrid position/force control schemes.

The hybrid position/force controller must solve three problems:

1. Position control of a manipulator along directions in which a natural
force constraint exists.

2. Force control of a manipulator along direction in which a natural
position constraint exists.

3. A scheme to implement the arbitrary mixing of these modes along
orthogonal degrees of freedom of an arbitrary frame, {C}.

11.5 Force control of a mass-spring

In Chapter 9 we began our study of the complete position control
problem with the study of the very simple problem of controlling a single
block of mass. We were then able in Chapter 10 to use a model of the
manipulator in such a way that the problem of controlling the entire
manipulator became equivalent to controlling n independent masses (for
a manipulator with n joints). In a similar way, we begin our look at
force control by controlling the force applied by a simple single degree
of freedom system. 3

In considering forces of contact we must make some model of the
environment upon which we are acting. For the purposes of conceptual
development we will use a very simple model of interaction between
a controlled body and the environment. We model contact with an
environment as a spring—that is, we assume our system is rigid and
the environment has some stiffness, k..

Let us consider the control of a mass attached to a spring as in
Fig. 11.5. We will also include an unknown disturbance force, f,;,, which
might be thought of as modeling unknown friction or cogging in the
manipulator’s gearing. The variable we wish to control is the force acting
on the environment, f,. which is the force acting in the spring,

fe = kgI- (117)
The equation describing this physical svstem is

f=mé+kz+ fo. (11.8)

11.5 Force control of a mass-spring \ﬂl

/.

L.)
-

: - faist %
FE, (R __fm;o'vL_é

/////////////////////////////////

FIGURE 11.5 A spring-mass mystem.

or, written in terms of the variable we wish to control, f,, we have
f:mka_lfz ;_fe+f{."ési' (119)

Using the partitioned controller concept. we use

a=mk;",
B = fe+ fuist
to arrive at the control law,
f=mk! [fd-.tkvféf:—kpfefj+fe+fa-,-5¢,_ (11.10)

where e, = f; — f, is the force error between the desired force, f4, and
the sensed force on the environment, f,. If we could compute (11.10),
we would have the closed loop system

However, we cannot use knowledge of f;;; in our control law, and
so (11.10) is not feasible. We might leave that term out of the control
law, but a steady-state analysis shows that there is a better choice,
especially when the stiffness of the environment, k.. is high (which is
the usual situation).

If we choose to leave the f, . term out of our control law, equate
(11.9) and (11.10), and do a steady-state analvsis by setting all time
derivatives to zero, we find

— fd:sr

a4

es (11.12)

376 |

11 Force control of manipulators

where a = mk; 'k, the effective force feedback gain. However, if we
choose to use f; in the control law (11.10) in place of the term f, + fuy,
we find the steady-state error to be

(11.13)

When the environment is stiff, as is often the case, a may be
small, and so the steady-state error calculated in (11.13) is quite an
improvement over that of (11.12). Therefore we suggest the control law

f=mkIt |fatkyosés+hopes| + fa (11.14)

Figure 11.6 is a block diagram of the closed loop system using the control
law (11.14).

. N II\A_I g / = T+ khx+ W .0
JI:D ——‘%’ m € ——b—@-—b f mx € fa’.\.
k\ "Ep
o wNSS dt
fo (D=

FIGURE 11.6 A force control system for the spring-mass system.

11.5 Force control of a mass-spring 377

Generally, practical considerations change the implementation of a
force control servo quite a bit from the ideal shown in Fig. 11.6. First,
usually force trajectories are constants; that is, we are usually interested
in controlling the contact force to be at some constant level. Applications
in which contact forces should follow some arbitrary function of time
are rare. Therefore, the fd and f,; inputs of the control system are very
often permanently set to zero. Another reality is that sensed forces are
quite “noisy.” and numerical differentiation to compute fe is ill-advised.
However, since f, = k,z, we can obtain the derivative of the force on
the environment as f, = k,&. This is much more realistic in that most
manipulators have means of obtaining good measures of velocity. Having
made these two pragmatic choices, we write the control law as

F=mlk sk te; — kypd) + far (11.15)

with the corresponding block diagram shown in Fig. 11.7.

Note that an interpretation of the system of Fig. 11.7 is that force
errors generate a set-point for an inner velocity control loop with gain
k¢ Some force control laws also include an integral term to improve
steady-state performance.

An important remaining problem is that the stiffness of the environ-
ment, k,, appears in our control law but is often unknown, and perhaps
changes from time to time. However, often an assembly robot is dealing
with rigid parts, and k, could be guessed to be quite high. Generally
this assumption is made, and gains are chosen such that the system is
somewhat robust with respect to variations in k..

System

f=m&+kox+ fuin

- ke
o ——4»@—' kpj

fe

FIGURE 11.7 A practical force control system for the spring-mass.

378 | 11 Force control of manipulators

Force f fe

—_— - System
fo servo -

fe

FIGURE 11.8 The force control servo as a black box.

The purpose in constructing a control law to control the force of
contact has been to show one suggested structure and to expose a few
issues. For the remainder of this chapter, we will simply assume that
such a force-controlling servo could be built, and abstract it away into
a black box, as shown in Fig. 11.8. In practice, it is not easy to build
a high-performance force servo, and it is currently an area of active
research [11-14]. For a good review of this area, see [15].

11.6 The hybrid position/force control scheme

In this section we introduce an architecture for a control system which
implements the hybrid position/force controller.

A Cartesian manipulator aligned with {C}

We will first consider the simple case of a manipulator having three
degrees of freedom with prismatic joints acting in the Z f"_. and X
directions. For simplicity, we will assume that each link has mass m and
slides on frictionless bearings. Let us also assume that the joint motions
are lined up exactly with the constraint frame, {C}. The end-effector is in
contact with a surface with stiffness k&, which is oriented with its normal
in the —€Y direction. Hence force control is required in that direction
and position control in the ©X and €Z directions. See Fig. 11.9.

In this case, the solution to the hybrid position/force control prob-
lem is clear. We should control joints 1 and 3 with the position controller

11.6 The hybrid position/force control scheme | 379

-

FIGURE 11.9 A Cartesian manipulator with three degrees of freedom
contacting a surface.

developed for a unit mass in Chapter 9. Joint 2 (operating in the ¥
direction) should be controlled with the force controller developed in
Section 11.4. We could then supply a position trajectory in the € X and
CZ directions while independently supplying a force trajectory (perhaps
just a constant) in the €Y direction.

If we wish to be able to switch the nature of the constraint surface
such that its normal might also be X or Z, we can slightly generalize
our Cartesian arm control system as follows. We build the structure of
the controller such that we may specify a complete position trajectory
in all three degrees of freedom and also a force trajectory in all three
degrees of freedom. Of course, we can’t control so as to meet these six
constraints at any one time, but rather, we will set modes to indicate
which components of which trajectory will be followed at any given time.

Consider the controller shown in Fig. 11.10. Here we indicate the
control of all three joints of our simple Cartesian arm in a single diagram
by showing both the position controller and the force controller. The
matrices S and S’ have been introduced to control which mode—position
or force—is used to control each joint of the Cartesian arm. The S matrix
is diagonal with ones and zeros on the diagonal. Where a one is present
in S, a zero is present in S’ and position control is in effect. Where a zero
is present in S, a one is present in S and force control is in effect. Hence
the matrices S and S’ are simply switches which set the mode of control
to be used with each degree of freedom in {C}. In accordance with the

@ 11 Force control of manipulators

L
Lj—> Position

r_,g —_— control > 5
Xy = law X
o -
‘ —
i F Cartesian
Constraints arm
L F.
Force
5(_.-—1‘-“ control > S’
law

1

FIGURE 11.10 The hybrid controller for a 3-DOF Cartesian arm.

setting of S, there are always three components of the trajectory being
controlled. though the relative mix between position control and force
control is arbitrary. The other three components of desired trajectory
and associated servo errors are being ignored. Hence when a certain
degree of freedom is under force control, position errors on that degree
of freedom are ignored.

IR - AMNPLE 11.2

For the situation shown in Fig. 11.9 with motions in the €Y direction
constrained by the reaction surface, give the matrices S and §’.

Because the X and Z components are to be position controlled, we
enter ones on the diagonal of S corresponding to these two components.
This will cause the position servo to be active in these two directions,
and the input trajectory will be followed. Any position trajectory input
for the ¥ component will be ignored. The S’ matrix has the ones and
zeros on the diagonal inverted, and hence we have

100
S=(0 0
[0 0 1]
(11.16)
[0 0 0]
=101 0 .
10 0 0]

11.6 The hybrid position/force control scheme

Figure 11.10 shows the hybrid controller for the special case that the
joints line up exactly with the constraint frame, {C}. In the following
subsection we use techniques studied in previous chapters to generalize
the controller to work with general manipulators and for an arbitrary
{C}. However, in the ideal case, the system performs as if the manip-
ulator had an actuator “lined up” with each of the degrees of freedom
in {C}.

A general manipulator

Generalizing the hybrid controller shown in Fig. 11.10 so that a gen-
eral manipulator may be used is straightforward using the concept
of Cartesian-based control. Chapter 6 discussed how the equations of
motion of a manipulator could be written in terms of Cartesian motion
of the end-effector, and Chapter 10 showed how such a formulation
might be used to achieve decoupled Cartesian position control of a
manipulator. The major idea is that through use of a dynamic model
written in Cartesian space, it is possible to control so that the combined
system of the actual manipulator and computed model appear as a
set of independent, uncoupled unit masses. Once this decoupling and
linearizing are done. we can apply the simple servo already developed
in Section 11.4.

Figure 11.11 shows the compensation based on the formulation of
the manipulator dynamics in Cartesian space such that the manipulator
appears as a set of uncoupled unit masses. For use in the hybrid control
scheme, the Cartesian dynamics and the Jacobian are written in the
constraint frame, {C}. Likewise, the kinematics are computed with
respect to the constraint frame.

=l
T

JTia) Arm Kin —X

Y

ViH8) = GJ8) -

FIGURE 11.11 The Cartesian decoupling scheme introduced in Chapter 10.

381

\ﬁ] 11 Force control of manipulators

Since we have designed the hybrid controller for a Cartesian ma-
nipulator which is aligned with the constraint frame, and because the
Cartesian decoupling scheme provides us with a system with the same
input-output properties, we only need to combine the two to generate
the generalized hybrid position/force controller.

Figure 11.12 is a block diagram of the hybrid controller for a general
manipulator. Note that the dynamics are written in the constraint
frame, as is the Jacobian. The kinematics are written to include the
transformation of coordinates into the constraint frame, and the sensed
forces are likewise transformed into {C'}. Servo errors are calculated in
{C?}, and control modes within {C?} are set through proper choice of S.”
Figure 11.13 shows a manipulator being controlled by such a system.

Adding variable stiffness

Controlling a degree of freedom in strict position or force control
represents control at two ends of the spectrum of servo stiffness. An
ideal position servo is infinitely stiff and rejects all force disturbances

X

J,

f_“' * Positien/
X;— control = S —1

Kin (8)

Id—" law
/_f+ . 5 —
e @» M.(8) JT(0)] Arm |

Force/
‘Jd = control = S’
law

A i
F

V(8,8 + Gi(8) |t

FIGURE 11.12 The hybrid position/force controller for a general
manipulator. For simplicity, the velocity feedback loop has not been shown.

* The partitioning of control modes along certain task-related directions has
been generalized in [10] from the more basic approach presented in this chapter.

11.6 The hybrid poesition/force control scheme

FIGURE 11.13 A PUMA 560 manipulator washes a window under control
of the COSMOS system developed under O. Khatib at Stanford University.
These experiments use force-sensing fingers and a control structure similar
to that of Fig. 11.12 [10].

acting on the system. Likewise, an ideal force servo exhibits zero stiff-
ness and maintains the desired force application regardless of position
disturbances. It may be useful to be able to control the end-effector to
exhibit stiffnesses other than zero or infinite. In general, we may wish to
control the mechanical impedance of the end-effector [14,16,17].

In our analysis of contact, we have imagined that the environment
is very stiff. When we contact a stiff environment, we use zero stiffness
force control. When we contact zero stiffness (moving in free space) we
use high-stiffness position control. Hence it appears that controlling the
end-effector to exhibit a stiffness which is approximately the inverse of
the local environment is perhaps a good strategy. Therefore, in dealing
with plastic parts or springs, we mayv wish to set servo stiffness to other
than zero or infinite.

Within the framework of the hybrid controller, this is done simply
bv using position control and lowering the position gain corresponding to
the appropriate degree of freedom in {C}. Generally, if this is done, the
corresponding velocity gain is lowered so that that degree of freedom
remains critically damped. The ability to change both position and

383

384

11 Force control of manipulators

velocity gains of the position servo along the degees of freedom of {C'}
allows the hybrid position/force controller to implement a generalized
impedance of the end-effector [17]. However, in many practical situations
we are dealing with the interaction of stiff parts, so that pure position
control or pure force control is desired.

11.7 Present industrial robot control schemes

True force control. such as the hybrid position/force controller intro-
duced in this chapter, does not exist today in industrial robots. Among
the problems of practical implementation are the rather large amount
of computation required, lack of accurate parameters for the dynamic
model, lack of rugged force sensors, and the burden of difficulty placed
on the user of specifying a position/force strategy.

Passive compliance

Extremely rigid manipulators with very stiff position servos are ill-suited
to tasks in which parts come into contact and contact forces are
generated. In such situations parts are often jammed or damaged. Ever
since early experiments with manipulators attempting to do assembly,
it was realized that to the extent that the robots could perform such
tasks. it was only thanks to the compliance of the parts, of the fixtures,
or of the arm itself. This ability of one or more parts of the system to
“oive” a little was often enough to allow the successful mating of parts.

Once this was realized, devices were specially designed which in-
troduced compliance into the system on purpose. The most successful
such device is the RCC or remote center compliance device developed at
Draper Labs [18]. The RCC was cleverly designed such that it introduced
the “right” kind of compliance which allowed certain tasks to proceed
smoothly and rapidly with little or no chance of jamming. The RCC is
essentially a spring with six degrees of freedom which is inserted between
the manipulator’'s wrist and the end-effector. By setting the stiffnesses
of the six springs, various amounts of compliance can be introduced.
Such schemes are called passive compliance schemes, and are used in
industrial applications of manipulators in some tasks.

Compliance through softening position gains

Rather than achieving compliance in a passive, and therefore fixed, way
it is possible to devise schemes in which the apparent stiffness of the
manipulator is altered through adjustment of the gains of a position

11.7 Present industrial robot control schemes

control system. A few industrial robots do something of this type for
applications such as grinding, in which contact with a surface needs to
be maintained but delicate force control is not required.

A particularly interesting approach has been suggested by Salisbury
[16]. In this scheme, the position gains in a joint-based servo system are
modified in such a way that the end-effector appears to have a certain
stiffness along Cartesian degrees of freedom. That is, consider a general
spring with six degrees of freedom. Its action could be described by

F = K,,6X, (11.17)

where K, is a diagonal 6 x 6 matrix with three linear stiffnesses followed

by three torsional stiffnesses on the diagonal. How could we make the

end-effector of a manipulator exhibit this stiffness characteristic?
Recalling the definition of the manipulator Jacobian, we have

5X = J(©)60. (11.18)
We have, combining with (11.17),
F=K,,J(©)s®. (11.19)
From static force considerations we have
r=JT(@)F, (11.20)
which, combined with (11.19), yields
m=J7(0)K,.J(8)s0. (11.21)
Here, the Jacobian is usually written in the tool frame. Equation (11.21)
is an expression for how joint torques should be generated as a function
of small changes in joint angles, #©, in order that the manipulator
end-effector behave as a Cartesian spring with six degrees of freedom.

Whereas a simple joint-based position controller might use the
control law

r=K,E+K,E, (11.22)

where K, and K, are constant diagonal gain matrices, and E is servo
error defined as ©; — ©, Salisbury suggests using

r=J7(8) K,.J(®) E+K,E, (11.23)

where K, is the desired stiffness of the end-effector in Cartesian space.
For a manipulator with six degrees of freedom, K, is diagonal with

385

386 | 11 Force control of manipulators

the six values on the diagonal representing the three translational and
three rotational stiffnesses that the end-effector is to exhibit. Essentially,
through use of the Jacobian, a Cartesian stiffness has been transformed
to a joint-space stiffness.

Force sensing

Force sensing allows a manipulator to detect contact with a surface
and, based on this sensation, to take some action. For example, the term
guarded move is sometimes used to mean the strategy of moving under
position control until a force is felt, then halting motion. Additionally,
force sensing can be used to weigh objects which the manipulator lifts.
This can be used as a simple check during a parts handling operation—to
ensure that a part was acquired, or that the appropriate part was
acquired.

Some commercially available robots come equipped ‘with force sen-
sors in the end-effector. These robots can be programmed to stop motion
or to take other action when a force threshold is exceeded, and some can
be programmed to weigh objects which are grasped in the end-effector.

References

[1] M. Mason, “Compliance and Force Control for Computer Controlled Ma-
nipulators.” M.S. Thesis, MIT AI Laboratory, May 1978.

[2] J. Craig and M. Raibert, “A Systematic Method for Hybrid Position/Force
Control of a Manipulator,” Proceedings of the 1979 IEEE Computer
Software Applications Conference, Chicago. November 1979.

'3] M. Raibert and J. Craig. “Hybrid Position/Force Control of Manipulators,”
ASME Journal of Dynamic Systems, Measurement, and Control, June
1981.

[4] T. Lozano-Perez, M. Mason, and R. Taylor. “Automatic Synthesis of Fine-
Motion Strategies for Robots,” 1st International Symposium of Robotics
Research, Bretton Woods, N.H., August 1983.

[5] M. Mason, “Automatic Planning of Fine Motions: Correctness and Com-
pleteness,” IEEE International Conference on Robotics, Atlanta, March
1984.

[6] M. Erdmann, “Using Backprojections for the Fine Motion Planning with
Uncertainty.” The International Journal of Robotics Research, Vol. 5, No.
1, 1986.

[71 S.Buckley, “Planning and Teaching Compliant Motion Strategies,” Ph.D. Dis-
sertation. Department of Electrical Engineering and Computer Science,
MIT, January 1986.

[8] B. Donald, “Error Detection and Recovery for Robot Motion Planning with
Uncertainty.,” Ph.D. Dissertation. Department of Electrical Engineering
and Computer Science, MIT. July 1987.

&

Exercises

9] J.C. Latombe, “Motion Planning with Uncertainty: On the Preimage
Backchaining Approach,” in The Robotics Review, O. Khatib, J. Craig,
and T. Lozano-Perez, Editors, MIT Press, 1988,

[10] O. Khatib, “A Unified Approach for Motion and Force Control of Robot
Manipulators: The Operational Space Formulation,” IEEE Journal of
Robotics and Automation, Vol. RA-3, No. 1, 1987.

[11] D. Whitney, “Force Feedback Control of Manipulator Fine Motions,” Pro-
ceedings Joint Automatic Control Conference, San Francisco, 1976.

[12] S. Eppinger and W. Seering, “Understanding Bandwidth Limitations in
Robot Force Control,” Proceedings of the IEEE Conference on Robotics
and Automation, Raleigh, N.C., 1987.

[13] W. Townsend and J.K. Salisbury, “The Effect of Coulomb Friction and
Stiction on Force Control.” Proceedings of the IEEE Conference on
Robotics and Automation, Raleigh, N.C., 1987.

[14] N. Hogan, “Stable Execution of Contact Tasks Using Impedance Con-
trol,” Proceedings of the IEEE Conference on Robotics and Automation,
Raleigh, N.C., 1987.

[15] N. Hogan and E. Colgate. “Stability Problems in Contact Tasks,” in The
Robotics Review, O. Khatib, J. Craig, and T. Lozano-Perez, Editors, MIT
Press, 1988,

[16] J.K. Salisbury, “Active Stiffness Control of a Manipulator in Cartesian
Coordinates,” 19th IEEE Conference on Decision and Control, December
1980.

[17] J.K. Salisbury and J. Craig. “Articulated Hands: Force Control and Kine-
matic Issues,” International Journal of Robotics Research, Vol. 1, No. 1.

(18] S. Drake, “Using Compliance in Lieu of Sensory Feedback for Automatic
Assembly,” Ph.D. Thesis, Mechanical Engineering Department, MIT,
September 1977.

Exercises

11.1 [12] Give the natural constraints present for a peg of square cross section
sliding into a hole of square cross section. Show your definition of {C}
in a sketch.

11.2 [10] Give the artificial constraints (i.e.. the trajectory) you would suggest
in order to cause the peg in Exercise 11.1 to slide further into the hole
without jamming.

11.3 [20] Show that using the control law (11.14) with a system given by (11.9)
results in the error-space equation

é‘f EE krféf s {k}:‘f " 'm_lke}ef = m'_lkefdisz-
and hence that choosing gains to provide critical damping is only possible
if the stiffness of the environment, k., is known.

11.4 [17] Given

0.866 —0.500 0.000 10.0

0.500 0.866 0.000 0.0

0.000 0.000 1.000 5.0
0 0 0 1

47 -

387

388

11 Force control of manipulators

If the force-torque vector at the origin of {A} is

0.0
2.0
-3.0
0.0
0.0
4.0

AV=

find the 6 x 1 force-torque vector with reference point the origin of {B}.
11.5 [17] Given
0.866 0.500 0.000 10.0
—0.500 0.866 0.000 0.0

0.000 0.000 1.000 5.0
0 0 0 1

AT =

If the force-torque vector at the origin of {A} is

6.0
6.0
0.0
5.0
0.0
0.0

A'V —

find the 6 x 1 force-torque vector with reference point the origin of {B}.

11.6 [18] Describe in English how you accomplish the insertion of a book into
a narrow crack between books on vour crowded bookshelf.

11.7 [20] Give the natural and artificial constraints for the task of closing
a hinged door with a manipulator. Make any reasonable assumptions
needed. Show yvour definition of {C} in a sketch.

11.8 [20] Give the natural and artificial constraints for the task of uncorking
a bottle of champagne with a manipulator. Make any reasonable assump-
tions needed. Show your definition of {C} in a sketch.

11.9 [41] For the stiffness servo system of Section 11.7, we have made no claim
that the system is stable. Assume that (11.23) is used as the servo portion
of a decoupled and linearized manipulator (so the n joints appear as unit
masses). Prove that the controller is stable for any K, which is negative
definite.

11.10 [48] For the stiffness servo system of Section 11.7, we have made no claim
that the system is or can be critically damped. Assume that (11.23) is
used as the servo portion of a decoupled and linearized manipulator (so
the n joints appear as unit masses). Is it possible to design a K, which
is a function of © which causes the system to be critically damped over
all configuratons?

Programming Exercise (Part 11) \&‘

FIGURE 11.14 A block constrained by a floor below and a wall to the side.

11.11[15] As shown in Fig. 11.14, a block is constrained below by a floor and to
the side by a wall. Assuming this contacting situation is maintained over
an interval of time, give the natural constraints that are present.

Programming Exercise (Part 11)

Implement a Cartesian stiffness control system for the three-link planar
manipulator by using the control law (11.23) to control the simulated arm.
Use the Jacobian written in frame {3}.

For the manipulator in position © = [60.0 —90.0 30.0] and K, of the
form

ksmﬂll 0.0 O-O
How—| 10 00|

simulate the application of the following static forces:
1) a 1 Newton force acting at the origin of {3} in the X, direction, and
2) a 1 Newton force acting at the origin of {3} in the Y3 direction.
The values of k., 4y, and ky,, should be found experimentally. Use a
large value of k;;, for high stiffness in the Yj direction, and a low value

of Ky for low stiffness in the X, direction. What are the steady-state
deflections in the two cases?

12

ROBOT
PROGRAMMING
LANGUAGES
AND SYSTEMS

12.1 Introduction

In this chapter we begin to consider the interface between the human
user and an industrial robot. It is by means of this interface that a user
takes advantage of all the underlying mechanics and control algorithms
which we have studied in previous chapters.

The sophistication of the user interface is becoming extremely
important as manipulators and other programmable automation are
applied to more and more demandirig industrial applications. It turns
out that the nature of the user interface is a very important concern.
In fact, much of the challenge of the design and use of industrial robots
focuses on this aspect of the problem. ;

12.2 The three levels of robot programming ‘ﬁ_l_l

Robot manipulators differentiate themselves from fixed automation
by being “flexible,” which means programmable. Not only are the move-
ments of manipulators programmable, but through the use of sensors
and communications with other factory automation, manipulators can
adapt to variations as the task proceeds.

In considering the programming of manipulators, it is important to
remember that they are typically only a minor part of an automated
process. The term workcell is used to describe a local collection of
equipment which may include one or more manipulators, conveyor
systems, parts feeders, and fixtures. At the next higher level, workeells
might be interconnected in factorywide networks so that a central control
computer can control the overall factory flow. Hence, the programming
of manipulators is often considered within the broader problem of
programming a variety of interconnected machines in an automated
factory workeell.

12.2 The three levels of robot programming

There have been many styles of user interface developed for program-
ming robots. Before the rapid proliferation of microcomputers in in-
dustry, robot controllers resembled the simple sequencers often used
to control fixed automation. Modern approaches focus on computer
programming, and issues in programming robots include all the issues
faced in general computer programming, and more.

Teach by showing

Early robots were all programmed by a method that we will call teach
by showing, which involved moving the robot to a desired goal point
and recording its position in a memory which the sequencer would read
during playback. During the teach phase, the user would guide the robot
by hand, or through interaction with a teach pendant. Teach pendants
are hand-held button boxes which allow control of each manipulator
joint or of each Cartesian degree of freedom. Some such controllers
allow testing and branching so that simple programs involving logic can
be entered. Some teach pendants have alphanumeric displays and are
approaching hand-held terminals in complexity. Figure 12.1 shows an
operator using a teach pendant to program a large industrial robot.

ﬂl 12 Robot programming languages and systems

FIGURE 12.1 The GMF S380 is often used in automobile-body spot-welding
applications. Here an operator uses a teach pendant interface to program the
manipulator.

Phote courtesy of GMFanuc Corp.

Explicit robot programming languages

With the arrival of inexpensive and powerful computers, the trend has
has been increasingly toward programming robots via programs written
in computer programming languages. Usually these computer program-
ming languages have special features which apply to the problems of
programming manipulators and so are called robot programming
languages (RPLs). Most of the systems which come equipped with
a robot programming language have also retained a teach-pendant style
interface as well.

Robot programming languages have taken on many forms as well.
We will split them into three categories as follows:

1. Specialized manipulation languages. These robot programming
languages have been built by developing a completely new language
which, while addressing robot-specific areas, may or may not be
considered a general computer programming language. An example
is the VAL language developed to control the industrial robots of
Unimation, Inc [1]. VAL was developed especially as a manipulator

12.2 The three levels of robot programming \ﬁg

control language, and as a general computer language it was quite
weak. For example, it did not support floating-point numbers or
character strings, and subroutines could not pass arguments. A more
recent version, VAL II, now provides these features [2]. Another
example of a specialized manipulation language is AL, developed at
Stanford University [3].

2. Robot library for an existing computer language. These robot
programming languages have been developed by starting with a
popular computer language (e.g., Pascal) and adding a library of
robot-specific subroutines. The user then writes a Pascal program
making use of frequent calls to the predefined subroutine package for
robot-specific needs. Examples include AR-BASIC from American
Cimflex [4] and Robot-BASIC from Intelledex [5], both of which are
essentially subroutine libraries for a standard BASIC implementa-
tion. JARS, developed by NASA’s Jet Propulsion Laboratory, is an
example of such a robot programming language based on Pascal [6].

3. Robot library for a new general-purpose language. These
robot programming languages have been developed by first creating
a new general purpose language as a programming base, and then
supplying a library of predefined robot-specific subroutines. An
example of such a robot programming language is AML developed
by IBM [7]. The Robot programming language KAREL, developed
by GMF Robotics [8], is also in this category, although the language
is quite similar to Pascal.

Studies of actual application programs for robotic workeells have
shown that a large percentage of the language statements are not
robot-specific [7]. Instead, a great deal of robot programming has to do
with initialization, logic testing and branching, communication, etc. For
this reason, a trend may develop to move away from developing special
languages for robot programming, and toward developing extensions to
general languages, as in categories 2 and 3 above.

Task-level programming languages

The third level of robot programming methodology is embodied in
task-level programming languages. These are languages which allow
the user to command desired subgoals of the task directly, rather than
to specify the details of every action the robot is to take. In such a
system, the user is able to include instructions in the application program
at a significantly higher level than in an explicit robot programming
language. A task-level robot programming system must have the ability
to perform many planning tasks automatically. For example, if an
instruction to “grasp the bolt” is issued, the system must plan a path of

Iﬁi 12 Robot programming languages and systems

the manipulator which avoids collision with any surrounding obstacles,
automatically choose a good grasp location on the bolt, and grasp it. In
contrast, in an explicit robot programming language, all these choices
must be made by the programmer.

The border between explicit robot programming languages and task-
level programming languages is quite distinct. Incremental advances are
being made to explicit robot programming languages which help to ease
programming, but these enhancements cannot be counted as components
of a task-level programming system. True task-level programming of
manipulators does not exist yet but is an active topic of research [9], [10].

12.3 A sample application

Figure 12.2 shows an automated workcell which completes a small sub-
assembly in a hypothetical manufacturing process. The workcell consists
of a conveyor under computer control which delivers a workpiece. A
camera connected to a vision system is used to locate the workpiece on
the conveyor. There is an industrial robot (a PUMA 560 is pictured)
equipped with a force sensing wrist. A small feeder located on the work
surface supplies another part to the manipulator. A computer controlled
press may be loaded and unloaded by the robot, and finished assemblies
are placed in a pallet.

The entire process is controlled by the manipulator’s controller in
a sequence as follows:

1. The conveyor is signaled to start, and is stopped when the vision
system reports that a bracket has been detected on the conveyor.

2. The vision system determines the bracket’s position and orientation
on the conveyor and inspects the bracket for defects such as the
wrong number of holes.

3. Using the output of the vision system, the manipulator grasps the
bracket with a specified force. The distance between the fingertips
is checked to ensure that the bracket has been properly grasped. If
it has not, the robot moves out of the way and the vision task is
repeated. .

4. The bracket is placed in the fixture on the work surface. At this
point, the conveyor can be signaled to start again for the next
bracket. That is, steps 1 and 2 can begin in parallel with the
following steps.

5. A pin is picked from the feeder and inserted partway into a tapered
hole in the bracket. Force control is used to perform this insertion
and to perform simple checks on its completion. If the pin feeder

12.3 A sample application L 399

FIGURE 12.2 An automated workcell containing an industrial robot.

was empty, an operator is notified and the manipulator waits until
commanded to resume by the operator.

6. The bracket—pin assembly is grasped by the robot and placed in the
press.

7. The press is commanded to actuate, and presses the pin the rest of
the way into the bracket. The press signals that it has completed,
and the bracket is placed back into the fixture for a final inspection.

8. Using force sensing the assembly is checked for proper insertion of
the pin. The manipulator senses the reaction force when it presses
sideways on the pin, and can do several checks to determine how far
the pin protrudes from the bracket.

9. If the assembly is judged to be good, the robot places the finished
part into the next available pallet location. If the pallet is full, the
operator is signaled. If the assembly is bad, it is dropped into the
trash bin.

10. Wait for step 2 (started earlier in parallel) to complete, then go to
step 3.

% 12 Robot programming languages and systems

This is an example of a task that is possible (though slightly
challenging) for today’s industrial robots. It should be clear that the
definition of such a process through “teach by showing” techniques
is probably not feasible. For example, in dealing with pallets, it is
laborious to have to teach all the pallet compartment locations; it is
much preferable to teach only the corner location and then compute the
others making use of the dimensions of the pallet. Further, specifying
interprocess signaling and setting up parallelism using a typical teach
pendant or a menu-style interface is usually not possible at all. This
kind of application necessitates a robot programming language approach
to process description (see Exercise 12.5). On the other hand, this
application is too complex for any existing task-level languages to deal
with directly. It is typical of the great many applications which must
be addressed with an explicit robot programming approach. We will
keep this sample application in mind as we discuss features of robot
programming languages.

12.4 Requirements of a robot programming language

World modeling

Since manipulation programs must by definition involve moving objects
in three-dimensional space, it is clear that any robot programming
language needs a means of describing such actions. The most common
element of robot programming languages is the existence of special
geometric types. For example, types are introduced which are used
to represent joint angle sets, as well as Cartesian positions, orientations,
and frames. Predefined operators which can manipulate these types often
are available. The “standard frames” introduced in Chapter 3 might
serve as a possible model of the world: All motions are described as tool
frame relative to station frame, with goal frames being constructed from
arbitrary expressions involving geometric types.

Given a robot programming environment which supports geometric
types, the robot and other machines, parts, and fixtures can be modeled
by defining named variables associated with each object of interest.
Figure 12.3 shows part of our example workcell with frames attached
in task-relevant locations. Each of these frames would be represented
with a variable of type “frame” in the robot program.

In many robot programming languages, this ability to define named
variables of various geometric types and refer to them in the program
forms the basis of the world model. Note that the physical shapes

12.4 Requirements of a robot programming language 397

¥
P f . { Feeder }

{ Fixture }

{ Table }

=W

FIGURE 12.3 Often a workecell is modeled only by a set of frames which
are attached to relevant objects.

of the objects are not part of such a world model, and neither are
surfaces, volumes, masses, or other properties. The extent to which
objects in the world are modeled is one of the basic design decisions
made when designing a robot programming system. Most present-day
systems support only the style just described.

Some world-modeling systems allow the notion of affixments be-
tween named objects [3]. That is, the system can be notified that two
or more named objects have become “affixed” and from then on, if one
object is explicitly moved with a language statement, any objects affixed
to it are moved as well. Thus, in our application, once the pin has
been inserted into the hole in the bracket, the system would be notified
(via a language statement) that these two objects have become affixed.
Subsequent motions of the bracket (that is, changes to the value of the
frame variable “bracket”) would cause the value stored for variable “pin”
to be updated as well.

Ideally, a world-modeling system would include much more infor-
mation about the objects with which the manipulator has to deal, and
about the manipulator itself. For example, consider a system in which
objects are described with CAD-style models which represent the spatial

\ﬁl 12 Robot programming languages and systems

shape of an object by giving definitions of its edges, surfaces, or volume.
With such data available to the system, it begins to become possible
to implement many of the features of a task-levél programming system.
These possibilities are discussed further in Chapter 13.

Motion specification

A very basic function of a robot programming language is to allow the
description of desired motions of the robot. Through the use of motion
statements in the language, the user interfaces to path planners and
generators of the style described in Chapter 7. Motion statements allow
the user to specify via points and the goal point, and whether to use joint-
interpolated motion or Cartesian straight-line motion. Additionally, the
user may have control over the speed or duration of a motion.

To illustrate various syntaxes for motion primitives, we will consider
the following example manipulator motions: 1) move to position “goall,”
then 2) move in a straight line to position “goal2,” then 3) move without
stopping through “vial” and come to rest at “goal3.” Assuming all of
these path points had already been taught or described textually, this
program segment would be written as follows.

In VAL II:

move goall
moves goal2
move vial
move goald

In AL (here controlling the manipulator “garm™):

move garm to geall;
move garm to goal2 linearly;
move garm to goal3 via vial;

In Intelledex Robot-BASIC:

10 move goall

20 move straight goal?2
30 cpon

40 move vial

50 move goal3 '

60 cpoff

Most languages have similar syntax for simple motion statements
like these. Differences in the basic motion primitives from one robot
programming language to another become more apparent if we consider
features such as

12.4 Requirements of a robot programming language

1. The ability to do math on structured types like frames, vectors, and
rotation matrices

2. The ability to describe geometric entities like frames in several
different convenient representations—with the ability to convert
between representations

3. The ability to give constraints on the duration or velocity of a
particular move. For example, many systems allow the user to set
the speed to a fraction of maximum. Fewer allow the user to specify
a desired duration or a desired maximum joint velocity directly.

4. The ability to specify goals relative to various frames, including
frames defined by the user and frames in motion (on a conveyor
for example)

Flow of execution

As in more conventional computer programming languages, a robot pro-
gramming system allows the user to specify the flow of execution. That
is, concepts such as testing and branching, looping, calls to subroutines,
and even interrupts are generally found in robot programming languages.

More so than in many computer applications, parallel processing
is generally important in automated workeell applications. First of all,
very often two or more robots are used in a single workcell and work
simultaneously to reduce the cycle time of the process. But even in
single-robot applications such as the one shown in Fig. 12.2, there
is other workcell equipment which must be controlled by the robot
controller in a parallel fashion. Hence signal and wait primitives are
often found in robot programming languages, and occasionally more
sophisticated parallel execution constructs are provided [3].

Another frequent occurrence is the need to monitor various processes
with some kind of sensor. Then, either by interrupt or through polling,
the robot system must be able to respond to certain events which
are detected by the sensors. The ability easily to specify such event
monitors is afforded by some robot programming languages [2], [3].

Programming environment

As with any computer languages, a good programming environment
helps to increase programmers’ productivity. Manipulator programming
is difficult and tends to be very interactive, with a lot of trial and error.
If the user were forced to continually repeat the “edit-compile-run” cycle
of compiled languages, productivity would be low. Therefore, most robot
programming languages are now interpreted so that individual language

399

\ﬂ‘ 12 Robot programming languages and systems

statements can be run one at a time during program development
and debugging. Typical programming support such as text editors,
debuggers, and a file system are also required.

Sensor integration

An extremely important part of robot programming has to do with in-
teraction with sensors. The system should have the minimum capability
to query touch and force sensors and use the response in if-then-else
constructs. The ability to specify event monitors to watch for transitions
on such sensors in a background mode is also very useful.

Integration with a vision system allows the vision system to send the
manipulator system the coordinates of an object of interest. For example,
in our sample application, a vision system locates the brackets on the
conveyor belt and returns to the manipulator controller their position
and orientation relative to the camera. Since the camera’s frame is known
relative to the station frame, a desired goal frame for the manipulator
can be computed from this information.

Some sensors may be part of other equipment in the workcell. For
example, some robot controllers can use input from a sensor attached
to a conveyor belt so that the manipulator can track the belt’s motion
and acquire objects from the belt as it moves [2].

The interface to force control capabilities as discussed in Chapter 9
comes through special language statements which allow the user to
specify force strategies [3]. Such force control strategies are by necessity
an integrated part of the manipulator control system—the robot pro-
gramming language simply serves as an interface to those capabilities.
Programming robots which make use of active force control may require
other special features, such as the ability to display force data collected
during a constrained motion [3].

In systems which support active force control, the description of the
desired force application may become part of the motion specification.
The AL language describes active force control in the motion primitives
by specifying six components of stiffness (three translational and three
rotational) and a bias force. In this way, the manipulator’s apparent
stiffness is programmable. To apply a force, usually the stiffness is set
to zero in that direction, and a bias force is specified. For example:

move garm to goal
with stiffness=(80,80,0,100,100,100)
with force=20*ounces along =zhat;

12.5 An example application coded in three RPLs

12.5 An example application coded in three RPLs

Perhaps the only way to gain an appreciation of the current state of
the art in robot programming languages is to read some examples of
robot programs in various languages. In this section we have chosen a
palletizing example from [11] and show the actual code to accomplish
this task as expressed in three different robot programming languages.
Each of these programs solves the same scenario: pick a part from a
pallet with 1 rows and cl columns and put it into a pallet of 72 rows
and ¢2 columns; signal or wait for presentation and removal of full or
empty pallets. These programs are documented or self-documenting so
that you should be able to follow them with a careful reading,.

Palletizing application written in AL

Below is an AL program (3] that will accomplish the palletizing appli-
cation (from [11]).

BEGIN "Palletizing sample program"
FRAME in_pallet, out_pallet, part;
COMMENT
The (1,1) positions of the pallets and
grasping position of the parts;
VECTCOR del._rl, del._cil;
VECTOR del.r2, del.c2;
COMMENT Relative displacements along the rows and columns;
SCALAR rl1, ci, irl, icl;
SCALAR T2, c2, irZ, icZ:
COMMENT counters;
EVENT in_pallet_empty, in_pallet_replaced;
EVENT out_pallet_full, out_pallet_replaced;
COMMENT
Here insert the frame definitions for IN PALLET
and OUT_PALLET and the vector value for displacements
along the rows and columns. These would be taught and
recorded using the robot. FRAME definitions are typically
unreadable by humans;
COMMENT
Now define the procedure PICK and PLACE called in the
main program later on;
PROCEDURE PICK;
BEGIN
FRAME pick_frame;
2bhaa e L s
TR il GT 1l
THEN
BEGIN

401

Iﬂ‘ 12 Robot programming languages and systems

Glpeal HEY LS
e e s e L
IF: el GT ol
THEN
BEGIN
SIGNAL in_pallet_empty;
WAIT in_pallet_replaced;
iel = 1;
END;
END;
pick frame := in_pallet+(irl-1)*del_ri+(icl-1}*del.ci;
MOVE BHAND TO pick_frame;
CENTER BARM;
AFFIX part TO BARM;
END;
PROCEDURE PLACE;
BEGIN
FRAME place frame;
ir2:=ir2 + 1:

IF ir2 GT r2

THEN

BEGIN
ir2 = 1;
ic2 1= icZ + 1;
IF ic2 GT c2
THEN
BEGIN

SIGNAL out_pallet_empty;
WAIT out_pallet_replaced;
ic2 = 1;
END;
END;
place_frame := out_pallet+(ir2-1)*del r2+(ic2-1)*del._c2;
MOVE part TO place_frame;
OPEN BHAND TO 3.0%IN;
UNFIX part FROM BARM;
END;
COMMENT The main program;
OPEN BHAND TO 3.0%IN;
WHILE TRUE DO
BEGIN
PICK;
PLACE;
END;
END;

Palletizing application written in KAREL

Below is a KAREL program [8] that will accomplish the palletizing
application (from [11]).

12.5 An example application coded in three RPLs

program PALLET
-- Transfers workpieces from one pallet to another.

var

-- Variables for the input pallet:
BASEL : position -- (1,1} position on pallet
IR1,IC1 : integer -- counters for rows & cols
NR1,NC1 : integer == limits for rows & cols
DR1,DC1 : wvector —— delta between rows & cols

ISIG1,0SIG1 : integer -- signals for pallet changing
-- Variables for the cutput pallet:

BASE2 : position -- (1,1) position on pallet
IR2,IC2 : integer -- counters for rows & cols
NR2,NC2 : integer -- limits for rows & cols

DR2,DC2 : wector -- delta between rows & cols

ISIG2,08IG2 : integer —— signals for pallet changing

routine PICK
-- Pick a workpiece from the input pallet.
var
TARGET : position -- target pose
begin
IRl = IR1 + 1
if IR1 > NR1
then
LRI =L
IC1 = IC1 + 1
if IC1 > NC1
then
IC1 = 1
-- get a new pallet
dout [0SIG1] = true
-- notify pallet-changer
wait for din[ISIG1]+
-- wait for input line to go high,
-- meaning pallet has been changed
deut [05IG1] = false
-- turn off our output signal
—-- compute target pose
endif
endif
TARGET = BASE1
-- start with (1,1) pose
shift (TARGET, (IR1-1)*DR1+(IC1-1)*DC1)
- shift for row and col offset
-- get the part
move near TARGET by 50 -- move to 50 mm away from TARGET
move to TARGET
close hand 1
move away 50 -- back away from TARGET by 50 mm
end PICK
routine PLACE
-- Place a workpiece on the output pallet.

403

\ﬂ] 12 Robot programming languages and systems

var
TARGET : position -= target pose
begin
IR2 = IR2 + 1
if IR2 > NR2

then
TR2: =1
IC2 = IC2 + 1
if IC2 > NC2
then
IC2 = 1
-- get a new pallet
dout [0SIG2] = true
-- notify pallet-changer
wait for din[ISIG2]+
-- wait for input line to go high,
-- meaning pallet has been changed
dout [0SIG2] = false
-- turn off our output signal
-= compute target pose
endif
endif

TARGET = BASE2
-- start with (1,1) pose
shift (TARGET, (IR2-1)*DR2+(IC2-1)*DC2)
—-— shift for row and col offset

move near TARGET by 50 -- move to 50 mm away from TARGET
move to TARGET
open hand 1
move away 50 -- back away from TARGET by 50 mm
end PLACE

————— MAIN PROGRAM e

IR1 =0 ; IC1 =0 -- initialize counters
IR2 =0 ; IC2 =0
== initialize other variables:

= BASE1 , NR1 , NC1 , DR1 , DC1 , ISIGl , OSIG1
== BASE2 , NR2 , NC2 , DR2 , DC2 , ISIG2 , OSIG2

-- numerical pose definitions omitted here
open hand 1 '
while true do == loop

pick

place
endwhile
end PALLET

12.5 An example application coded in three RPLs

Palletizing application written in VAL I

In the VAL II [2] version of the palletizing application, the program
transfers parts between two pallets using the external binary I/0 signals
to request additional pallets. It communicates with the user via the
system terminal, asking questions and providing information on the
system operation. A pallet location is taught by instructing the operator
to move the robot to the corners of the pallet, using the manual teach
pendant. The program then computes all locations in the pallet. Once
both pallets have been taught, the robot transfers parts until manually
stopped by the operator.

.PROGRAM main()

; ABSTRACT: This is the top level program to move parts
; between two pallets. It allows the operator to teach
; the pallet locations if desired, and then moves parts
; from one pallet to the next.

; DATA STRUCTURES:

; in.pallet[] = An array of locations for items on the
H pallet to be unloaded.

i in.height = Approach/depart height for input pallet.

H in.max = The number of items on a full input pallet.
2 in.count = The number of items left on this input

H pallet.

; out.pallet[]= An array of locations for items on the
g pallet to be loaded.
; out.height = Approach/depart height for output pallet.

i out . max = The number of items on a full cutput pallet.
; out.count = The number of items left on this output

; pallet.

i #zafe = Safe robot location reachable from both

} pallets.

LOCAL $ans, in.count, out.count

; Define binary signal numbers used to control pallets
transfer = 1001 ;Input signal TRUE when transfers permitted
in.ready = 1002 ;Input signal TRUE when input pallet ready

out.ready = 1003 ;Input signal TRUE when output pallet ready
in.change = 4 ;0utput signal requests new input pallet
out.change= 5 ;Output signal requests new output pallet

; Ask operator about setup and teach new pallets if desired

PROMPT "Do you want to define the pallet (Y/N):", $ans

IF $ans == "Y" THEN
DETACH(} ;Detach robot from program control
TYPE "Use the PENDANT to teach the input pallet location"
CALL setup.pallet{in.count, in.pallet[], in.height)
TYPE "Use the PENDANT to teach the output pallet location"
CALL setup.pallet(out.count, out.pallet[], pout.height)
TYPE "Press the COMP button on the PENDANT to continue"

405

406

12 Robot programming languages and systems

ATTACH() ;Attach robot (wait for COMP button)
END
; Initialize transfer data
transfer.count = 0 ;Count of parts transferred
in.count = 0 ;Assume empty input pallet at start
out.count = 0 ;Assume full output pallet at start
; Wait for tramsfer signal, then start the pallet transfer
MOVES #safe ;Move robot to a safe place
TYPE "Waiting for trasfer signal ...", /8
WAIT SIG(transfer) ;Wait until transfer signal seen

TYPE "starting tramsfer", /C2
; Main loop transferring from one pallet to the other, requesting
; new pallets as necessary. Quit when transfer signal becomes FALSE

WHILE SIG(transfer) DO ;While transfer is still ok...
IF in.count <= 0 THEN ;If out of input parts, ask for new
SIGNAL in.change ;Request pallet change

WAIT SIG(-in.ready) ;Wait for input not ready

WAIT 5IG(in.ready) ;Followed by input ready

in.count = in.max ;Indicate full pallet

END
IF out.count <= 0 THEN ;If output pallet full, ask for new

SIGNAL out.change ;Request pallet change

WAIT SIG(-out.ready);Wait for output not ready

WAIT SIG(out.ready) ;Followed by output ready

out.count = out.max ;Indicate empty pallet

END
; Acquire input part
OPEN ;Open gripper
APPROS in.pallet[in.count], in.height ;Move over part
SPEED 20 ;Move at 20} speed
MOVES in.pallet[in.count] ;Move to part
CLOSET ;Close immediately
DEPARTS in.height ;Move up again
in.count = in.count - 1 ;Count down

; Place output part
APPROS out.pallet[out.count], out.height ;Move over output

SPEED 20 ;Move at 207 speed
MOVES out.pallet [out.count] ;Move to empty place
OPENI ;0pen immediately
DEPARTS out.height ;Move up again
out.count = out.count - 1 ;Count down

; Count transfer and display it
transfer.count = transfer.count + 1
TYPE /U1, "Number of parts transferred:", /I8, transfer.count
END ;End of while loop F
; All done transferring parts, move robot to safe place and quit
MOVES #safe
.END
.PROGRAM setp.pallet(count, array[], approach)
; ABSTRACT: Routine to compute an array of locations given locations
; which represent the upper left, lower left, and lower right point
; of a pallet. All output locations have the orientation of the
; upper left part location.

12.6 Problems peculiar to robot programming languages

; INPUT PARM: None

; OUTPUT PARM: count = Number of items on this pallet.
: array[] = Array containing the pallet locations.
B approach= The approach height for this pallet.

LOCAL ul, 11, 1lr, ap, t[], ncol, nrow
LOCAL row, col, cs8, rs, i, frame
; Ask operator to teach pallet locations
CALL teach.point("upper left pallet position", ul)
CALL teach.point("lower left pallet position", 11)
CALL teach.point("lower right pallet position", 1r)
CALL teach.point("approach height above the pallet', ap)
PROMPT "Enter the number of columns (left to right): ",ncol
PROMPT "Enter the number of rows (top to bottom): ", nrow
count = ncol#*nrow ;Compute count of items
; Setup to compute pallet locations
cs =0 ;Assume 1 column, zero spacing
IF ncol > 1 THEN
c¢s = DISTANCE(11l,1r)/(ncol-1) ;Compute spacing of columns
END
re = 0 ;Assume 1 row, zero spacing
IF nrow > 1 THEN y
rs = -DISTANCE(ul,11)/(nrow-1);Compute spacing of rows
END
; Compute frame values
SET frame = FRAME(1l,lr,ul,ul) ;Compute frame for pallet
approach = DZ(INVERSE(frame):ap);Compute approach height
iwrt frame plane
DECOMPOSE t[1] = ul
; Loop to compute array values
1i=1
FOR row = 0 to nrow-1
FOR col = 0 to ncol-1
SET array[i] = frame:TRANS(row*rs,colscs,0,t[4],t[5],t[6])
io=rd b i
END
END
RETURN
.END

12.6 Problems peculiar to robot programming
languages

While advances in recent years have helped, programming robots is still
difficult. Robot programming shares all the problems of conventional
computer programming, plus some additional difficulties caused by
effects of the physical world [12].

407

408 I 12 Robot programming languages and systems

Internal world model versus external reality

A central feature of a robot programming system is the world model
that is maintained internally in the computer. Even when this model
is quite simple, there are ample difficulties in assuring that it matches
the physical reality that it attempts to model. Discrepancies between
internal model and external reality result in poor or failed grasping of
objects, collisions, and a host of more subtle problems.

This correspondence between internal model and the external world
must be established for the program’s initial state and must be main-
tained throughout its execution. During initial programming or debug-
ging it is generally up to the user to suffer the burden of ensuring that the
state represented in the program corresponds to the physical state of the
workeell. Unlike more conventional programming, where only internal
variables need to be saved and restored to reestablish a former situation,
in robot programming, physical objects must usually be repositioned.

Besides the uncertainty inherent in each object’s position, the ma-
nipulator itself is limited to a certain degree of accuracy. Very often
steps in an assembly will require the manipulator to make motions
requiring greater precision than it is capable of. A common example
of this is inserting a pin into a hole where the clearance is an order
of magnitude less than the positional accuracy of the manipulator. To
further complicate matters, the manipulator’s accuracy usually varies
over its workspace.

In dealing with those objects whose locations are not known ex-
actly, it is essential to somehow refine the positional information. This
can sometimes be done with sensors, e.g., vision, touch, or by using
appropriate force strategies for constrained motions.

During debugging of manipulator programs, it is very useful to be
able to modify the program and then back up and try a procedure
again. Backing up entails restoring the manipulator and objects being
manipulated to a former state. However, in working with physical
objects, it is not always easy, or even possible, to undo an action. Some
examples are the operations of painting, riveting, drilling, or welding,
which cause a physical modification of the objects being manipulated.
It may therefore be necessary for the user to get a new copy of the
object to replace the old, modified one. Further, it is likely that some
of the operations just prior to the one being retried will also need to
be repeated to establish the proper state required before the desired
operation can be successfully retried.

12.6 Problems peculiar to robot programming languages

Context sensitivity

Bottom-up programming is a standard approach to writing a large
computer program in which one develops small, low level pieces of a
program and then puts them together into larger pieces, eventually
resulting in a completed program. For this method to work it is essential
that the small pieces be relatively insensitive to the language statements
that precede them and that there are no assumptions concerning the
context with which these program pieces execute. For manipulator
progamming this is often not the case; code that worked reliably when
tested in isolation frequently fails when placed in the context of the
larger program. These problems generally arise from dependencies on
manipulator configuration and speed of motions.

Manipulator programs may be highly sensitive to initial conditions,
for example, the initial manipulator position. In motion trajectories,
the starting position will influence the trajectory that will be used for
the motion. The initial manipulator position may also influence the
velocity with which the arm will be moving during some critical part
of the motion. For example, these statements are true for manipulators
that follow cubic spline joint space paths studied in Chapter 7. While
these effects might be dealt with by proper programming care, such
problems may not arise until after the initial language statements
have been debugged in isolation and are then joined with statements
preceding them.

Because of insufficient manipulator accuracy, a program segment
written to perform an operation at one location is likely to need to be
tuned (i.e., positions retaught and the like) to make it work at a different
location. Changes in location within the workeell result in changes in the
manipulator’s configuration in reaching goal locations. Such attempts at
relocating manipulator motions within the workcell test the accuracy of
the manipulator kinematics and servo system, and frequently problems
arise. Such relocation may cause a change in the manipulator’s kinematic
configuration, for example, from left shoulder to right shoulder, or from
elbow up to elbow down. Moreover, these changes in configuration may
cause large arm motions during what had previously been a short, simple
motion.

The nature of the spatial shape of trajectories is likely to change as
paths are located in different portions of the manipulator’s workspace.
This is particularly true of joint space trajectory methods, but use of
Cartesian path schemes can also lead to problems if singularities are
nearby.

When testing a manipulator motion for the first time it is often
wise to have the manipulator move slowly. This allows the user a chance
to stop the motion if it appears to be about to cause a collision. It
also allows the user to inspect the motion closely. After the motion has

409

\ﬂ_‘ 12 Robot programming languages and systems

undergone some initial debugging at a slower speed it is then desirable
to increase motion speeds. Doing so may cause many of the aspects of
the motion to change. Due to limitations in most manipulator control
systems, greater servo errors are to be expected in following the quicker
trajectory. Also, in force-control situations involving contact with the
environment, speed changes can completely change force strategies re-
quired for success.

The manipulator’s configuration also affects the delicacy and accu-
racy of forces that may be applied with it. This is a function of how well
conditioned the Jacobian of the manipulator is at a certain configuration,
which is generally difficult to consider when developing robot programs.

Error recovery

Another direct consequence of working with the physical world is that
objects may not be exactly where they should be and hence motions
that deal with them may fail. Part of manipulator programming involves
attempting to take this into account and making assembly operations
as robust as possible, but, even so, errors are likely; and an important
aspect of manipulator programming is how to recover from these errors.

Almost any motion statement in the user's program can fail, some-
times for a variety of reasons. Some of the more common causes are
objects shifting or dropping out of the hand, an object missing from
where it should be, jamming during an insertion, not being able to
locate a hole, and so on.

The first problem that arises for error recovery is identifying that an
error has indeed occurred. Because robots generally have quite limited
sensing and reasoning capabilities, error detection is often difficult. In
order to detect an error, a robot program must contain some type of
explicit test. This test might involve checking the manipulator’s position
to see that it lies in the proper range; for example, when doing an
insertion, no change in position might indicate jamming, while too much
change might indicate that the hole was missed entirely or the object
has slipped out of the hand. If the manipulator system has some type
of visual capabilities then it might take a picture and check for the
presence or absence of an object, and, if the object is present, determine
its location. Other checks might involve force, such as weighing the load
being carried to check that the object is still there and has not been
dropped, or checking that a contact force remains within certain bounds
during a motion.

Since every motion statement in the program may potentially fail,
these explicit checks can be quite cumbersome and can take up more
space than the rest of the program. Rather than attempt to deal with
all possible errors, which is extremely difficult, usually just the few

12.6 References

statements which seem most likely to fail are checked. The process of
determining which portions of a robot application program are likely to
fail is one which requires a certain amount of interaction and partial
testing with the robot during the program development stage.

Once an error has been detected, an attempt can be made to recover
from it. This can be done totally by the manipulator under program
control, or it may involve manual intervention by the user, or some
combination of the two. In any event, the recovery attempt may in turn
result in new errors. It is easy to see how code to recover from errors
can become the major part of the manipulator program.

The use of parallelism in manipulator programs can further compli-
cate recovery from errors. When several processes are running concur-
rently and one causes an error to occur, it may or may not affect other
processes. In many cases it will be possible to back up the offending
process, while allowing the others to continue. Other times it will be
necessary to reset several or all of the running processes.

References

[1] B. Shimano, “VAL: A Versatile Robot Programming and Control System,”
Proceedings of COMPSAC 1979, Chicago, November 1979.

[2] B. Shimano, C. Geschke, and C. Spalding, “VAL II: A Robot Programming
Language and Control System,” SME Robots VIII Conference, Detroit,
June 1984.

[3] S. Mujtaba and R. Goldman, “AL Users’ Manual,” 3rd edition, Stanford
Department of Computer Science, Report No. STAN-CS-81-889, Decem-
ber 1981.

[4] A. Gilbert et al., AR-BASIC: An Advanced and User Friendly Programming
System for Robots, American Robot Corporation, June 1984.

[5] Intelledex, Inc., “Model 605 Operator’s Manual,” Section 3, Intelledex, Inc.,
1983.

[6] J. Craig, “JARS - JPL Autonomous Robot System: Documentation and
Users Guide,” JPL Interoffice memo, September 1980.

[7] R. Taylor, P. Summers, and J. Meyer, “AML: A Manufacturing Language,”
International Journal of Robotics Research, Vol. 1, No. 3, Fall 1982,

[8§] GMF Robotics Inc., “KAREL Language Reference,” Version 1.20p, Troy,
Mich., 1986.

[9] R. Taylor, “A Synthesis of Manipulator Control Programs from Task- Level
Specifications,” Stanford University Al Memo 282, July 1976.

[10] T. Lozano-Perez, “Automatic Planning of Manipulator Transfer Move-
ments,” IEEE Transactions on Man, Systems, and Cybernetics, Vol.
SMC-11, No. 10, October 1981.

[11] W. Gruver and B. Sorcka, “Programming, High Level Languages,” in The
International Encyclopedia of Robotics, R. Dorf and S. Nof, Editors, Wiley
Interscience, 1988.

411

|ﬂ| 12 Robot programming languages and systems

[12] R. Goldman, Design of an Interactive Manipulator Programming Enuviron-

ment, UMI Research Press, Ann Arbor, Mich., 1985.

Exercises

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

[15] Write a robot program (use any of [1] through [8]) to pick a block up
from location A and place it in location B.

[20] Describe tieing your shoelace in simple English commands that might
form the basis of a robot program.

[32] Design the syntax of a new robot programming language. Include
ways to give duration or speeds to motion trajectories, I/0 statements
to peripherals, commands to control the gripper, and force sensing (i.e.,
guarded move) commands. You can skip force control and parallelism
(see Exercise 12.4).

[28] Extend the specification of a new robot programming language that
you started in Exercise 12.3 by adding force control syntax and syntax
for parallelism.

[38] Write a program in a commercially available robot programming
language to perform the application outlined in Section 12.3. Make any
reasonable assumptions concerning 1/O connections and other details. Use
any of the references [1] through [8] or other for details of syntax.

(28] Use any robot language (for example, references [1] through [8]) and
write a general routine for unloading an arbitrarily sized pallet. The
routine should keep track of indexing through the pallet, and signal a
human operator when the pallet is empty. Assume the parts are unloaded
onto a conveyor belt.

[35] Use any robot language (for example, references (1] through [8]) and
write a general routine for unloading an arbitrarily sized source pallet
and loading an arbitrarily sized destination pallet. The routine should
keep track of indexing through the pallets, and signal a human operator
when the source pallet is empty or when the destination pallet is full.

[35] Use the AL language [3] and write a program which uses force control
to fill a cigarette box with 20 cigarettes. Assume that the manipulator has
an accuracy of about 0.25 inch, so force control should be used for many
operations. The cigarettes are presented on a conveyor belt with a vision
system returning their coordinates.

[35] Use any robot language (for-example, references [1] through [8])
and write a program to assemble the hand-held portion of a standard
telephone. The six components (handle, microphone, speaker, two caps,
and cord) arrive in a kit, that is, a special pallet holding one of each kind
of part. Assume there is a fixture into which the handle can be placed
which holds it. Make any other reasonable assumptions needed.

12.10[33] Write an AL program [3] which uses two manipulators. One, called

GARM has a special end-effector designed to hold a wine bottle. The
other arm, BARM, will hold a wine glass, and is equipped with a force

12.6 Programming Exercise (Part 12) | 413

sensing wrist which can be used to signal GARM to stop pouring when
it senses the glass is full.

Programming Exercise (Part 12)

Create a user interface to the other programs you have developed by writing
a few subroutines in Pascal. Once these routines are defined, a “user” could
write a Pascal program which contains calls to these routines to perform a
2-D robot application in simulation.

Define primitives which allow the user to set station and tool frames:
setstation(SrelB:vec3);
settool (TrelW:vec3);

where “SrelB” gives the station frame relative to the base frame of the
robot and “TrelW” defines the tool frame relative to the wrist frame of the
manipulator. Define motion primitives:

moveto(goal:vec3);
moveby (increment :vec3);

where “goal” is a specification of the goal frame relative to the station frame
and “increment” is a specification of a goal frame relative to the current
tool frame. Allow multisegment paths to be described when the user first
calls the “pathmode” function, then specifies motions to via points, and
finally says “runpath.” For example:

pathmode; (* enter path mode #)

moveto(goall);

moveto(goal2);

runpath; (* execute the path without stopping at goall *)

Write a simple “application” program and have your system print the
location of the arm every n seconds.

13

OFF-LINE
PROGRAMMING
SYSTEMS

13.1 Introduction

We define an off-line programming (OLP) system as a robot pro-
gramming language which has been sufficiently extended, generally by
means of computer graphics, that the development of robot programs
can take place without access to the robot itself.* Off-line programming
systems are important both as aids in programming present-day indus-
trial automation as well as platforms for robotics research. Numerous
issues must be considered in the design of such systems. In this chapter, a

* Chapter 13 is reprinted with permission from Infernational Symposium
of Robotics Research by R. Bolles and B. Roth (editors). From “Issues in the
Design of Off-Line Programming Systems” by John J. Craig, MIT Press,
Cambridge, MA (©1988.

13.1 Introduction

discussion of these issues is presented, followed by the basic design of one
such system. The topics discussed include the spatial representation of
solids, graphical rendering of these objects, automatic collision detection,
incorporation of kinematics, path planning, and dynamic simulation,
simulation of sensors, concurrent programming, translation by post
processors to various target languages, and workcell calibration.

In the last decade the growth of the industrial robot market has not
been nearly as rapid as predicted. One primary reason for this is that
robots are still too difficult to use. A great deal of time and expertise
is required to install a robot in a particular application and bring the
system to production readiness. For various reasons, in some applications
this problem is more severe than others, and hence, we see certain
application areas (e.g., spot welding, spray painting) being automated
with robots much sooner than other application domains. It seems that
lack of sufficiently trained robot system implementors is limiting growth
in some if not all areas of application. At some manufacturing companies,
management encourages the use of robots to an extent greater than
that realizable by applications engineers. Also, a large percentage of the
robots delivered are being used in ways which do not take full advantage
of their capabilities. These symptoms indicate that current industrial
robots are not easy enough to use to allow successful installation and
programming in a timely manner.

There are many factors that make robot programming a difficult
task. First, it is intrinsically related to general computer programming
and so shares many of the problems encountered in that field. But
programming robots, or any programmable machine, has particular
problems which make the development of production-ready software
even more difficult. As we saw in the last chapter, most of these
special problems arise from the fact that a robot manipulator interacts
with its physical environment [1]. Even simple programming systems
maintain a “world model” of this physical environment in the form of
locations of objects and have “knowledge” about presence and absence of
various objects encoded in the program strategies. During development
of a robot program (and especially later during production use) it is
necessary to keep the internal model maintained by the programming
system in correspondence with the actual state of the robot’s environ-
ment. Interactive debugging of programs with a manipulator requires
frequent manual resetting of the state of the robot’s environment—parts,
tools, etc., must be moved back to their initial locations. Such state
resetting becomes especially difficult (and sometimes costly) when the
robot performs a irreversible operation on one or more parts (e.g.,
drilling, routing, etc.). The most spectacular effect of the presence of
the physical environment is when a program bug manifests itself in some
unintended irreversible operation on parts, tools, or on the manipulator
itself.

415

[416 | 13 Off-line programming systems

Although difficulties exist in maintaining an accurate internal model
of the manipulator’s environment, there seems no question that great
benefits result from doing so. Whole areas of sensor research, perhaps
most notably computer vision, focus on developing techniques by which
world models may be verified, corrected, or discovered. Clearly, in order
to apply any computational algorithm to the robot command-generation
problem, the algorithm needs access to a model of the robot and its
surroundings.

In the development of programming systems for robots, advances
in the power of programming techniques seem directly tied to the
sophistication of the internal model referenced by the programming
language. Early joint space “teach by showing” robot systems employed
a limited world model, and there were very limited ways in which the
system could aid the programmer in accomplishing a task. Slightly more
sophisticated robot controllers included kinematic models so that the
system could at least aid the user in moving the joints so as to accomplish
Cartesian motions. Robot programming languages (RPLs) evolved which
support many different data types and operations which the programmer
may use as needed to model attributes of the environment and compute
actions for the robot. Some RPLs support world modeling primitives
such as affixments, data types for forces and moments, and other features
[2].

The robot programming languages of today might be called “explicit
programming languages” in that every action that the system takes
must be programmed by the application engineer. At the other end of
the spectrum, are the so-called task level programming (TLP) systems
in which the programmer may state high-level goals such as “insert
the bolt,” or perhaps even “build the toaster oven.” Such systems use
techniques from artificial intelligence research to automatically generate
motion and strategy plans. However, these task level languages do not
exist yet, although various pieces of such systems are under development
by researchers [3]. Task level programming systems will require a very
complete model of the robot and its environment to perform automated
planning operations.

Although this chapter focuses to some extent on the particular
problem of robot programming, the notion of an OLP system extends
to any programmable device on the factory floor. A common argument
raised in their favor is that an OLP system will not tie up production
equipment when it needs to be reprogrammed, and hence, automated
factories can stay in production mode a greater percentage of the time.
They also serve as a natural vehicle to tie computer aided design (CAD)
data bases used in the design phase of a product’s development to the
actual manufacturing of the product. In some applications, this direct
use of CAD design data can dramatically reduce the programming time
required for the manufacturing machinery.

13.2 Central issues in OLP systems

Off-line programming of robots offers other potential benefits which
are just beginning to be appreciated by industrial robot users. We have
discussed some of the problems associated with robot programming, and
most have to do with the fact that an external, physical workeell is
being manipulated by the robot program. This makes backing up to try
different strategies tedious. Programming of robots in simulation offers
a way of keeping the bulk of the programming work strictly internal to a
computer—until the application is nearly complete. Thus, many of the
problems peculiar to robot programming tend to diminish.

Off-line programming systems should serve as the natural growth
path from explicit programming systems to task level programming
systems. The simplest OLP system is merely a graphical extension
to a robot programming language, but from there it can be extended
toward a task level programming system. This gradual extension is
accomplished by providing automated solutions to various subtasks as
these solutions become available, and letting the programmer use them
to explore options in the simulated environment. Until we discover
how to build task level systems, the user must remain in the loop to
evaluate automatically planned subtasks and guide the development of
the application program. If we take this view, an OLP system serves as
an important basis for research and development of task level planning
systems, and indeed, in support of their work many researchers have
developed various components of an OLP system (e.g., 3-D models and
graphic display, language postprocessors, etc.). Hence, OLP systems
should be a useful tool in research as well as an aid in current industrial
practice.

13.2 Central issues in OLP systems

This section raises many of the issues that must be considered in the
design of an OLP system. The collection of topics discussed will help to
set the scope of the definition of an OLP system.

User interface

Since a major motivation for developing an OLP system is to create
an environment that makes programming manipulators easier, the user
interface is of crucial importance. However, the other major motivation is
to remove reliance on use of the physical equipment during programming.
Upon initial consideration, these two goals seem to conflict—robots are
hard enough to program when you can see them, how can it be easier

417

% 13 Off-line programming systems

without the presence of physical device? This question touches upon the
essence of the OLP design problem.

Manufacturers of industrial robots have learned that the RPLs they
provide with their robots cannot be successfully utilized by a large
percentage of manufacturing personnel. For this, and other historical
reasons, many industrial robots are provided with a two-level interface
[4], one for programmers and one for nonprogrammers. Nonprogrammers
utilize a teach pendant and interact directly with the robot to develop
robot programs. Programmers write code in the RPL and interact with
the robot in order to teach robot work points and to debug program
flow. In general, these two approaches to program development trade off
ease of use versus flexibility.

Viewed as an extension of a RPL, it is natural for an OLP system to
contain an RPL as a subset of its user interface. This RPL should share
features which have already been discovered valuable in present robot
programming systems. For example, for use as an RPL, interactive
languages are much more productive than compiled languages which
force the user to go through the “edit-compile-run” cycle for each
program modification.

While the language portion of the user interface inherits much from
“traditional” RPLs, it is the lower level (i.e., easier to use) interface
which must be carefully considered in an OLP system. A central com-
ponent of this infterface is a computer graphic view of the robot being
programmed and its environment. Using a pointing device such as a light
pen or a mouse, the user can indicate various locations or objects on
the graphics screen. The design of the user interface addresses exactly
how the user interacts with the screen to specify a robot program. The
same pointing device can indicate items in a “menu” in order to specify
modes or invoke various functions.

A central primitive is that of teaching a robot work point or “frame”
which has six degrees of freedom by means of interaction with the
graphics screen. The availability of 3-D models of fixtures and workpieces
in the OLP system often makes this task quite easy. The interface
provides the user with the means to indicate locations on surfaces,
allowing the orientation of the frame to take on a local surface normal,
and then provides methods for offsetting, reorienting, etc. Depending on
the specifics of the application, such tasks are quite easily specified via
the graphics window into the simulated world.

A well-designed user interface should enable nonprogrammers to
accomplish many applications from start to finish. In addition, frames
and motion sequences “taught” by nonprogrammers can be translated
by the OLP system into textual RPL statements. These simple programs
can be maintained and embellished in a RPL form by more experienced
programmers. For programmers, the RPL availability allows arbitrary
code development for more complex applications.

13.2 Central issues in OLP systems

3-D modeling

A central element in OLP systems is the use of graphic depictions of the
simulated robot and its workeell. This requires the robot and all fixtures,
parts, and tools in the workecell to be modeled as three-dimensional
objects. To speed up program development, it is desirable to use any
CAD models of parts or tooling that are directly available from the CAD
system on which the original design was done. As CAD systems become
more and more prevalent in industry, it becomes more and more likely
that this kind of geometric data will be readily available. Because of the
strong desire for this kind of CAD integration from design to production,
it makes sense for an OLP system to contain a CAD modeling subsystem,
or to be itself a part of a CAD design system. If an OLP system is to
be a stand-alone system, it must have appropriate interfaces to transfer
models to and from external CAD systems. However, even a stand-alone
OLP system should have at least a simple local CAD facility for quickly
creating models of noncritical workcell items, or for adding robot-specific
data to imported CAD models.

OLP systems generally require multiple representations of spatial
shapes. For many operations, an exact analytic description of the surface
or volume is generally present, while in order to benefit from display
technology another representation is often needed. Present technology
is well suited to systems in which the underlying display primitive is a
planar polygon. Hence, while an object shape may be well represented by
a smooth surface, practical display (especially for animation) requires a
faceted representation. User interface graphical actions such as pointing
to a point on a surface should internally act so as to specify a point
on the true surface, even if graphically the user sees a depiction of the
faceted model.

An important use of the three-dimensional geometry of the object
models is in automatic collision detection. That is, when any
collisions occur between objects in the simulated environment, the OLP
system should automatically warn the user and indicate exactly where
the collision takes place. Since applications such as assembly involve
many desired “collisions,” it is necessary to be able to inform the system
that collisions between certain objects are acceptable. It is also valuable
to be able to generate a collision warning when objects pass within a
specified tolerance of a true collision. While the exact collision-detection
problem for general 3-D solids is difficult, collision detection for faceted
models is quite practical.

Kinematic emulation

A central component in maintaining the validity of the simulated world
is the faithful emulation of the geometrical aspects of each simulated

419

420 [13 Off-line programming systems

manipulator. Concerning inverse kinematics, the OLP system can inter-
face to the robot controller in two distinct ways. First, the OLP system
can replace the inverse kinematics of the robot controller, and always
communicate robot positions in mechanism joint space. The second
choice is to communicate Cartesian locations to the robot controller and
let the controller use the inverse kinematics supplied by the manufacturer
to solve for robot configurations. The second choice is almost always
preferable especially as manufacturers begin to build arm signature style
calibration into their robots. These calibration techniques customize the
inverse kinematics for each individual robot. In this case, it becomes
desirable to communicate information at the Cartesian level to robot
controllers.

These considerations generally mean that the forward and inverse
kinematic functions used by the simulator must reflect the nominal
functions used in the robot controller supplied by the manufacturer of
the robot. There are several details of the inverse kinematic function as
specified by the manufacturer which must be emulated by the simulator
software. Any inverse kinematic algorithm must make arbitrary choices
in order to resolve singularities. For example, when joint 5 of a PUMA
560 robot is at its zero location, axes 4 and 6 line up, and a singular
condition exists. The inverse kinematic function in the robot controller
can only solve for the sum of joint angles 4 and 6, and then uses
an arbitrary rule to choose individual values for joints 4 and 6. The
OLP system must emulate whatever algorithm is used. Choosing the
nearest solution when many alternate solutions exist provides another
example. The simulator must use the same algorithm as the controller
in order to avoid potentially catastrophic errors in simulating the actual
manipulator. A helpful feature occasionally found in robot controllers is
the ability to command a Cartesian goal and specify which of the possible
solutions the manipulator should use. The existence of this feature
eliminates the requirement that the simulator emulate the solution
choice algorithm since the OLP system can force its choice on the
controller,

Path planning emulation

In addition to kinematic emulation for static positioning of the manip-
ulator, an OLP system should accurately emulate the path taken by
the manipulator in moving through space. Again, the central problem is
that the OLP system needs to simulate the algorithms in the robot
controllers, and these path planning and execution algorithms vary
considerably from one robot manufacturer to another. Simulation of the
spatial shape of the path taken is important for detection of collisions
between the robot and its environment. Simulation of the temporal

13.2 Central issues in OLP systems

aspects of the trajectory are important in predicting the cycle times
of applications. When a robot is operating in a moving environment
(for example, near another robot) accurate simulation of the temporal
attributes of motion is necessary to accurately predict collisions, and in
some cases to predict communication or synchronization problems such
as deadlock.

Dynamic emulation

Simulated motion of manipulators can neglect dynamic attributes if the
OLP system does a good job of emulating the trajectory planning algo-
rithm of the controller and if the actual robot follows desired trajectories
with negligible errors. However, at high speed or under heavy loading
conditions, trajectory tracking errors can become important. Simulation
of these tracking errors necessitates modeling the dynamics of the
manipulator and objects which it moves, as well as the control algorithm
used in the manipulator controller. Presently practical problems exist
in obtaining sufficient information from the robot vendors to make this
kind of dynamic simulation of practical value, but in some cases dynamic
simulation can be fruitfully pursued.

Multiprocess simulation

Some industrial applications involve two or more robots cooperating
in the same environment. Even single robot workeells often contain a
conveyor belt, transfer line, vision system, or some other active device
with which the robot must interact. For this reason, it is important
that an OLP system be able to simulate multiple moving devices and
other activities that involve parallelism. As a basis for this capability,
the underlying language in which the system is implemented should be
a multiprocessing language. Such an environment makes it possible to
write independent robot control programs for each of two or more robots
in a single cell, and then simulate the action of the cell with the programs
running concurrently. Adding signal and wait primitives to the language
enables the robots to interact with each other just as they might in the
application being simulated.

Simulation of sensors

Studies have shown that a large portion of robot programs are not
motion statements but rather initialization, error checking, I/O and
other kinds of statements [5]. Hence the ability of the OLP system to pro-
vide an environment which allows simulation of complete applications,
including interaction with sensors, various 1/O, and communication

421

% 13 Off-line programming systems

with other devices becomes important. An OLP system which supports
simulation of sensors and multiprocessing, not only checks robot motions
for feasibility but also verifies the communication and synchronization
portion of the robot program.

Language translation to target system

An annoyance for present users of industrial robots (and other pro-
grammable automation) is that almost every supplier of such systems
has invented a unique language for programming their product. If an
OLP system aspires to be universal in the equipment it can handle, it
must deal with the problem of translating to and from several different
languages. One choice for dealing with this problem is to choose a single
language to be used by the OLP system, and then post process the
language in order to convert it into the format required by the target
machine. The ability to upload programs which already exist on the
target machines and bring them into the OLP system is also desirable.

Two potential benefits of OLP systems relate directly to the lan-
guage translation topic. Most proponents of OLP systems note that one
universal interface which enables users to program a variety of robots
solves the problems of learning and dealing with several automation
languages. The second benefit stems from economic considerations in
future scenarios in which hundreds or perhaps thousands of robots fill
factories. The cost associated with a powerful programming environment
(such as a language and graphical interface) may prohibit placing this
at the site of each robot installation. Rather, it seems to make economic
sense to place a very simple, “dumb,” but cheap controller with each
robot, and have it downloaded from a powerful, “intelligent” OLP system
which is located in an office environment. Hence, the general problem of
translating an application program from a powerful universal language
to a simple language designed to execute in a cheap processor becomes
an important issue in OLP systems.

Workcell calibration

An inevitable reality of a computer model of any real-world situation is
that of inaccuracy in the model. In order to make programs developed on
an OLP system usable, methods for workeell calibration must be an
integral part of the system. The magnitude of this problem varies greatly
depending upon the application and makes off-line programming of some
tasks much more realistic than others. If the majority of the robot work
points for an application must be retaught with the actual robot to solve
inaccuracy problems, OLP systems lose their effectiveness.

13.3 CimStation

A large class of applications involve many actions performed relative
to a rigid object. Consider, for example, the task of drilling several
hundred holes in a bulkhead. The actual location of the bulkhead relative
to the robot can be taught using the actual robot by taking three
measurements. From that data, the locations of all the holes can be
automatically updated if they are available in part coordinates from a
CAD system. In this situation, only these three points need be taught
with the robot rather than hundreds. Most tasks involve tais sort of
“many operations relative to a rigid object” paradigm, for example,
PC board component insertion, routing, spot welding, arc welding,
palletizing, painting, deburring, etc.

13.3 CimStation

In this s:ction we consider the core design of CimStation, an OLP
system developed by SILMA Inc [6]. By “core design” we mean the
fundamental portion of the system that maintains a world model which
describes arbitrarily many objects each having attributes such as spatial
shape, position, velocity, and others. The way this world model is
programmed and the way resulting programs are converted to operate
the corresponding real-world devices will be discussed.

Models and graphics

CimStation contains a facility to build CAD models from scratch, or to
import them from external CAD systems via the IGES (Initial Graphical
Exchange Specification) interface or via direct translators ffom certain
CAD systems. In any case, models are represented by a boundary
representation of the surface or solid. Internally these boundaries or
surfaces are represented with collections of planar polygons, or facets.
The model data structure stores edges shared between facets only
once, and likewise, points shared between edges are stored only once.
This data structure also includes information which allows groups of
facets to be regarded as a single surface, for example, the facets which
form the curved surface of a cylinder. In addition to this faceted
representation, the model may include an analytic repesentation
as well. For compatibility with existing CAD systems, the system can
also handle wireframe models, which are collections of line segments
that contain no surface information.

Several modes of displaying (or rendering) faceted surface models
exist. Figure 13.1 shows an example of some of these techniques. The sim-
plest rendering technique is wireframe mode in which each edge of the

423

% 13 Off-line programming systems

FIGURE 13.1 Examples of rendering of faceted models. Clockwise from
upper left: wireframe, backface elimination, flat shading, Goraud shading.

object is drawn using a perspective transformation. Use of a technique
called back face elimination removes the hidden lines of individual
convex shapes, and yields an image which is somewhat more easily un-
derstood by the viewer. Back face elimination, a computationally simple
technique, is much simpler than the complete hidden line elimination
problem. One method of achieving hidden line elimination is to fill the
facets to create a shaded image. By drawing facets farthest from the
viewer first, near facets tend to cover far facets, producing a hidden
line eliminated image. Perfect rendering of shaded images requires a
Z-buffer technique implemented either in software or hardware to do
depth sorting on a pixel by pixel basis. Techniques such as Goraud
shading can be used to smooth over the edges that exist between facets
to make the rendered surface appear smooth.

Collision detection is implemented for collisions between any two
surfaced models, and uses the faceted repesentation for the computa-
tion. To speed up collision detection, all objects in the world model
have bounding boxes precomputed. On platforms without graphics

13.3 CimStation | 425

hardware, a software collision detection algorithm similar to [7] is used.
When available, graphics hardware can be exploited for the collision
detection computation. CimStation uses an algorithm related to, but
more general than, the method presented in [8]. In this algorithm, the
hardware used for clipping polygons to a 3-D volume (normally used
in display) is used to quickly determine if any object intrudes into a
specified volume. The hardware restricts the nature of this 3-D volume
to have straight edges and to be topologically equivalent to a cube.
The collision detection algorithm to detect a collision with object ‘A’
proceeds roughly as follows:

1. Check whether any polygons intrude into the bounding box of ‘A’.

2. For each intruding polygon found in step 1, construct its bounding
box, and check for intrusion by any polygon of object ‘A’.

3. If any intrusions are found in step 2, use software routine for
determining if and where the planar polygons intersect.

As an elaboration of the preceding algorithm, CimStation can also
detect near misses within a specified tolerance by “expanding” all objects
by the desired tolerance.

Objects and the world model

Every simulated entity such as a workpiece, fixture, or link of a robot is
represented by an object. The object data structure contains the model
of the entity, several other attributes, plus room to add future data. A
simple example of another attribute stored with an object is a label by
which the object is referenced. Objects can be built from their models
and stored in data base libraries for later use.

It is natural to group objects into structured objects in a tree struc-
ture. For example, an n-jointed robot is a structured object having a null
model at its root, and having n + 1 subobjects (‘link0’ through ‘linkn’).
Subobjects are referred to by path names, for example, ‘pumal/link3’.
The entire simulated world is a single structured object with a null
model at the root named ‘world’. Any time an object is moved, all of
its descendants move with it, but the motion of a child-object does not
affect its parent-object.

Figure 13.2 shows an example of a simple world model containing
a robot, an end-effector, a part (‘bolt’), and an object upon which
the robot is mounted (‘pedestal’). Dashed lines in Fig. 13.2 indicate
affixments which are used to temporarily create a rigid connection
between two objects. Affixments connect an end-effector to the final link
of the robot. These affixments also enable a simulated manipulator to
pick up a simulated bolt. In the situation shown in Fig. 13.2, a command

13.3 CimStation

hardware, a software collision detection algorithm similar to [7] is used.
When available, graphics hardware can be exploited for the collision
detection computation. CimStation uses an algorithm related to, but
more general than, the method presented in [8]. In this algorithm, the
hardware used for clipping polygons to a 3-D volume (normally used
in display) is used to quickly determine if any object intrudes into a
specified volume. The hardware restricts the nature of this 3-D volume
to have straight edges and to be topologically equivalent to a cube.
The collision detection algorithm to detect a collision with object ‘A’
proceeds roughly as follows:

1. Check whether any polygons intrude into the bounding box of ‘A’.

2. For each intruding polygon found in step 1, construct its bounding
box, and check for intrusion by any polygon of object ‘A’.

3. If any intrusions are found in step 2, use software routine for
determining if and where the planar polygons intersect.

As an elaboration of the preceding algorithm, CimStation can also
detect near misses within a specified tolerance by “expanding” all objects
by the desired tolerance.

Objects and the world model

Every simulated entity such as a workpiece, fixture, or link of a robot is
represented by an object. The object data structure contains the model
of the entity, several other attributes, plus room to add future data. A
simple example of another attribute stored with an object is a label by
which the object is referenced. Objects can be built from their models
and stored in data base libraries for later use.

It is natural to group objects into structured objects in a tree struc-
ture. For example, an n-jointed robot is a structured object having a null
model at its root, and having n + 1 subobjects (‘link(’ through ‘linkn’).
Subobjects are referred to by path names, for example, ‘pumal/link3’.
The entire simulated world is a single structured object with a null
model at the root named ‘world’. Any time an object is moved, all of
its descendants move with it, but the motion of a child-object does not
affect its parent-object. =

Figure 13.2 shows an example of a simple world model containing
a robot, an end-effector, a part (‘bolt’), and an object upon which
the robot is mounted (‘pedestal’). Dashed lines in Fig. 13.2 indicate
affixments which are used to temporarily create a rigid connection
between two objects. Affixments connect an end-effector to the final link
of the robot. These affixments also enable a simulated manipulator to
pick up a simulated bolt. In the situation shown in Fig. 13.2, a command

425

13.3 CimStation

CimStation generally uses closed form kinematic routines, but iter-
ative solutions may be used if necessary. Kinematic routines supplied by
the robot vendor may be used directly if available. Figure 13.3 shows a
simulated manipulator in a workcell—commands to move the attached
tool or last link result in the application of inverse kinematics to compute
movement of all the linkages.

Structured objects are by no means restricted to the class of open
serial chains but may have a completely general topology.

Attachment of paths to objects

To add the dimension of time to the world model, a path becomes asso-
ciated with an object any time that object moves. A path is essentially
a frame-valued function of time, hence specifying the evolution of the
position and orientation of an object as a function of time. At any
instant, several paths can be associated with different objects in the
world, forming the basis of simulation of simultaneous motion.

The geometric properties of a path can be specified in several ways
using CimStation. Often, as in typical RPLs, a sequence of via points
specify a path. Each of these via points can be specified graphically
or numerically. A path can also be specified computationally—a user-
written SIL routine might compute a list of frames based on some
algorithm. Finally, and perhaps most importantly, paths can often be
specified more or less directly from CAD data. Figure 13.4 shows a path

FIGURE 13.3 Commands to move the end-effector or anything affixed to
it cause motion of all the linkages using the particular inverse kinematic
function of the robot.

427

% 13 Off-line programming systems

FIGURE 13.4 A path derived from CAD data.

(indicated by an equally spaced sequence of frames) which was generated
very rapidly from a CAD model that had been imported via the IGES
format from another CAD system.

Dynamics and evaluation of world state

Paths associated with objects play the role of desired paths, which are
equivalent to actual paths if CimStation is not simulating dynamics.
If dynamic simulation is enabled, then the desired path, present state,
and control law associated with a given object determine the actual
position of the object at any future time. In dynamic mode CimStation
uses rigid body models of manipulators and other objects, along with
their control laws and a fourth-order Runge-Kutta integration algorithm
to compute the motion of simulated objects. In either mode, when a
graphic depiction of the world state is desired, the system updates the
positions of all objects and calls the display function to render a scene.
This rendering depends upon the location of the ‘lens’ and its current
focal length, either of which could themselves be changing over time.

In dynamic simulation mode, multiple manipulators which influence
each other through some form of cooperation can be simulated. In
Fig. 13.5 the motion of the two robots is coupled due to the force trans-
mitted by the spring which connects them. When simulating a complete
closed loop dynamic system, CimStation supports the collection of data
and the generation of graphs of time histories of various variables.

13.3 CimStation

FIGURE 13.5 Two robots pulling on a spring which connects their
terminal links.

The SIL language

Users develop application programs through interaction with the mouse-
menu interface, or directly in a powerful programming language called
SIL [9]. In program generation mode, actions described from the mouse-
menu interface generate corresponding SIL statements. So whether used
by programmers or nonprogrammers, CimStation creates SIL programs.
CimStation makes use of the local facilities of the host platform for text
editing, file system, hardcopy output, etc..

SIL has Pascal syntax, and a great many predefined types, proce-
dures, and functions. Examples of predefined types include a variety of
geometric types such as types zyz (an Euler angle set), ypr (yaw, pitch,
and roll about fixed axes), point (a vector), frame (a homogeneous
transform), and dozens of others. An example of a predefined procedure
is the moveto procedure, which is used to accomplish most motion
specification in SIL. i

SIL procedures may be polymorphic in that the same procedure
name can be used for different routines as long as the two differ in the
types and number of arguments. This feature plays an important role
in building a robot programming language with a minimum number
of keywords for the user to remember. For example, the statement
moveto(‘tool’,foo) will move the ‘tool’ to foo, where foo may be a
joint vector, a frame, a position vector (implying translate only), or

429

&, 13 Off-line programming systems

a rotation type (implying rotate only). Hence, SIL does not need the
proliferation of command names found in most motion control languages
(e.g., move, jmove, jog, rotate, translate).

SIL also features automatic coercion of types. This allows the
system to know about data types that are semantically equivalent, and
allows for the specification of mapping functions between these types.
For example, types which represent 3-space rotations can automatically
coerce to one another in SIL. Hence if a subroutine accepts an argument
of the type zyz Euler angles, it can immediately be called with argument
of type ypr, or any other rotation type. This also leads to a “clean”
syntax and nonproliferation of function names.

A major extension beyond standard Pascal is that SIL is an interac-
tive language. A single statement can be typed at the system at any time,
and the results can be observed. The SIL environment resembles a LISP
environment in that global variables, functions, and procedures are all
immediately available. When a user defines a new function, it becomes
part of the global state. Unlike LISP, SIL is a typed language and has
the relatively easy syntax of Pascal. The great majority of CimStation is
itself written in SIL, so when users add new functions to the system, they
are expanding the system just as its developers have. Fully debugged SIL
code can be compiled for efficiency.

The fact that SIL is a concurrent or multiprocessing language offers
a significant extension to Pascal. Users may define a process with syntax
exactly like that of a procedure declaration (very simple examples
are shown in Figs. 13.6 and 13.7). Later several processes may run
concurrently. Processes communicate through global variables or by
means of message passing. The message passing primitives are called
signal and wait. The type of data signaled (and waited for) can be any
legal SIL type, so messages can range from simple booleans to complex
structured types. Most automation simulations use booleans as signals,
since this mimics the simple binary I/O ports found on many controllers.

In summary, SIL can be thought of as an interpreted, concurrent
Pascal with many predefined types and functions apropos to the robot
programming problem.

Simulation of sensors

CimStation allows the simulation of several kinds of sensors. In general,
using the multiprocessing environment and other features of the system,
the user can write elaborate simulations of sensors if desired. In this
section some simple capabilities to simulate sensors are discussed.
Simulation of force sensing for guarded moves is possible using
the multiprocessing environment and the collision-detection capability.
In a guarded move, the collisions between the end-effector (including

13.3 CimStation

anything affixed to it) and the rest of the environment are checked at
the force sample rate, and if a collision occurs, motion of the robot is
stopped. This force monitor is implemented as a separate process that
“wakes up” at the force sample rate and checks for a new collision.

Similarly, the simulation of limit switches and light-beam interrupt
sensors are simulated using the collision-detection apparatus.

Vision systems can be simulated using a process to emulate the
vision system. This process can be signaled to determine the position and
orientation of any workcell object. The simulation consists of delaying
for some specified processing time and then returning the frame of the
workeell object to the calling process. Failure to detect the object can be
signaled if the object does not lie in the simulated camera’s field of view.

Translation to target system languages

The SIL environment provides a universal language with several ad-
vanced features as well as access to the world model. This environment
is designed to be powerful and easy to use, to maximally aid in the
difficult task of developing robot programs. The resulting program,
in order to be useful, must be translated into the native language of
the simulated robot (or other programmable automation). The native
languages found in present-day robot controllers vary widely as regards
the types, operations, and program structures which they support. A
subsystem of CimStation accomplishes this translation from a universal
language (SIL) to a restricted language. A large part of this compu-
tational machinery is common regardless of the target language, and
another portion depends upon the target language.

The language translation problem in an OLP system is more com-
plex than that of a cross compiler between two universal languages. The
fact that the target language is restricted, and the source program makes
references to a world model generally not present on the target system
causes these problems. Consider a SIL program which uses affixments
while manipulating the world model, and also refers to robot goal
positions given relative to the location of various objects in the world. In
a target system which does not support a world model and affixments,
such a program may not be implementable. Likewise, if a SIL program
makes use of certain types or operations which are not supported on
the target platform, the translation may not be possible. Hence, a
large portion of the translation algorithm in CimStation has to do with
analyzing the SIL program in light of a description of the target language
to determine if the program is translatable. This analysis involves more
than merely checking to see if unsupported types or operations appear
in the SIL code.

431

u&‘ 13 Off-line programming systems

process pumal(is_ok: boolean) ;
var x,binl,bin2,drop: frame;
begin
bini:= [40,40,0,0,90,-90] as crt.zyz;
bin2:= [20,80,0,0,90,-90] as crt_zyz;
drop:= [0,0,15,0,180,0] as crt_ypr;
signal (sensor,ready,true);
wait (is_ok);
if is_ok then
z:=binl
alse
%:=bin2;
moveto(’bolt’, drop rel x);
end;

FIGURE 13.6 A nondownloadable SIL program.

process puma2(is_ok: boolean);
var ¥x,binl,bin2,drop: frame;
begin
bini:= [40,40,0,0,90,-90] as crt_zyz;
bin2:= [20,80,0,0,90,-90] as crt_zyz;
drop:= [0,0,15,0,180,0] as crt_ypr;
signal (sensor,ready,true);
wait (is_ok);
if is_ok then
x:=drop rel binil
alse
x:=drop rel bin2;
moveto('bolt’, xJ;
end;

FIGURE 13.7 A downloadable SIL program.

Consider the two simple example SIL programs in Figs. 13.6 and
13.7. They are intended for download to a controller which supports
the type frame but does not support the operation rel (frame multi-
plication). Although both programs contain the use of the rel operator
on frames, one is downloadable (Fig. 13.7), and one is not (Fig. 13.6).
In the version shown in Fig. 13.7, the rel operator only appears in

13.3 CimStation

expressions whose operands are program-flow invariant and hence can
be precomputed.

Program analysis proceeds roughly as follows. The source SIL pro-
gram is converted into a graph in which each node is a block of code
which begins with a label, contains only sequential instructions, and
ends in a “go to” or a conditional “go to.” The arcs of the graph
represent program jumps which may or may not be taken at run
time depending on the value of external inputs, etc. The entire SIL
program is analyzed to determine its use of variables, and these variables
are collected in a state vector. By querying a tabular description of
correspondences between SIL types and operations and those supported
in the target system, certain elements of this state vector are marked
as nonrepresented. At each node of the program’s graph, we ask if any
way exists to enter that node such that a nonrepresented variable can
have different values. If this is possible, and if the node in question
uses the nonrepresented variable, the program is not downloadable. If
analysis shows that nonrepresented operations are only performed on
operands that are program-flow invariant, then these expressions can be
precomputed, with only the result appearing in the target code.

If the program is downloadable, the translator will produce a native
language program complete with program structures and I/O. For many
target languages, most SIL programs are downloadable. Users who have
some familiarity with the target systems limitations can generally avoid
creating nondownloadable SIL programs. Figure 13.8 shows the KAREL
language [10] source which results from translation of the SIL program
in Fig. 13.7. Note that because KAREL supports the rel operator, both
SIL programs shown above are downloadable to this controller. Note that
the translator has taken care of the details of changing the representation
of orientation used (from zyz to a KAREL type which is equivalent to
ypr), and the units used (from cm to mm).

Calibration facilities

CimStation can temporarily connect to a robot controller in on-line
mode. In this mode, the simulated and actual robots move together as
the user interacts with CimStation. On-line mode allows the robot to be
used to reteach object locations, and to upload such data to CimStation
to correct the world model. If the robot is remote from CimStation, this
reteaching can occur independently and a data file uploaded.

The major calibration procedure makes use of feature point corre-
spondence between modeled features and the locations of those features
obtained by teaching with the robot. The algorithm uses n feature points
(where n must be at least three) to update the location of a rigid body.
The system computes the RMS position error for the taught points in

433

\ﬂ‘ 13 Off-line programming systems

PROGRAM PUMAZ2
CONST
IS.OK = 2

SENSORREADY = 3

VAR

%,DROP,BIN1,BIN2: POSITION
BEGIN
$MOTYPE = JOINT

$TERMTYPE = CODARSE

$UFRAME = P0S(0.0,0.0,-950.0,0.0,0.0,0.0,')
$UTOOL
$SPEED

G336:

BIN1
BIN2
DROP

= P0S(-0.0,-0.0,334.962,-0.0,0.0,0.0,'")
= 346.41

PDS(400.0,400.0,0.0,-89.9994,0.000508,-89.9999, ")
POS(200.0,800.0,0.0,-89.9994,0.000508,-89.9999, ")
PDS(0.0,0.0,150.0,0.0,180.0,0.0,'))

DOUT [SENSORREADY] = TRUE
IF DIN[IS_.OK] THEN
GOTO G329

ENDIF

GOTO G332

G329:

X = (BIN1:DROP)
GOTO G326

G332:

X = (BINZ2:DROP)

G326:

MOVE TO X NOWAIT
END PUMA2

FIGURE 13.8 The KAREL version of the program in Fig. 13.6.

order to allow the user to assess the accuracy of the robot and thus his

chances for success.

Another calibration procedure called warp may be used to deform
the shape of a continuous path derived from a CAD model by reteach-
ing n points along the path. This routine uses a cubic error spline
to smoothly warp the original (CAD-derived) space curve so that it
interpolates the taught points while as much as possible maintaining its

original shape.

Using all the capabilities mentioned in this section, complex mul-
tirobot workcells, such as shown in Fig. 13.9, can be simulated and

programmed off-line.

13.4 Automating subtasks in OLP systems

FIGURE 13.9 Simulation of a complete workcell.

13.4 Automating subtasks in OLP systems

In this section we briefly mention some advanced features which might be
integrated into the “baseline” OLP system concept already presented.
Most of these features accomplish automated planning of some small
portion of an industrial application.

Automatic robot placement

One of the most basic tasks that can be accomplished by means of an
OLP system is the determination of the workcell layout so that the
manipulator(s) can reach all of the required workpoints. Determining
correct robot or workpiece placement by trial and error is more quickly
completed in a simulated world than in the physical cell. An advanced
feature which automates the search for feasible robot or workpiece
location(s) goes one step further in reducing burden on the user.
Automatic placement can be computed by direct search, or perhaps
by heuristic gnided search techniques. Since most robots are mounted flat
on the floor (or ceiling), and have their first rotary joint perpendicular

435

\ﬂ‘ 13 Off-line programming systems

to the floor, it is generally only necessary to search by tesselation of
the three-dimensional space of robot base placement. The search might
optimize some criterion or might halt upon location of the first feasible
robot or part placement. Feasibility can be defined as collision-free
ability to reach all workpoints, or perhaps given an even stronger
definition. A reasonable criterion to maximize might be some form of a
measure of manipulability as discussed in Chapter 8. An implementation
using a similar measure of manipulability has been discussed in [11]. The
result of such an automatic placement is a cell in which the robot can
reach all of its workpoints in well-conditioned configurations.

Collision avoidance and path optimization

Research on the planning of collision-free paths [12,13] and the planning
of time-optimal paths [14-16] are natural candidates for inclusion in
an OLP system. Some related problems which have a smaller scope,
and smaller search space, are also of interest. For example, consider
the problem of using a six degree of freedom robot for an arc welding
task whose geometry specifies only five degrees of freedom. Automatic
planning of the redundant degree of freedom can be used to avoid
collisions and singularities of the robot [17].

Automatic planning of coordinated motion

In many arc welding situations, details of the process require a certain
relationship between the workpiece and the gravity vector to be main-
tained during the weld. This results in a two or three degree of freedom
orienting system on which the part is mounted operating simultaneously
with the robot in a coordinated fashion. In such a system there may
be nine or more degrees of freedom to coordinate. Such systems are
generally programmed today using teach pendant techniques. A planning
system that could automatically synthesize the coordinated motions for
such a system might be quite valuable [17,18].

Force-control simulation

In a simulated world in which objects are represented by their surfaces,
it is possible to investigate the simulation of manipulator force-control
strategies. This task involves the difficult problem of modeling some
surface properties and expanding the dynamic simulator to deal with
the constraints imposed by various contacting situations. In such an
environment it might be possible to assess various force-controlled
assembly operations for feasibility [19].

References

Automatic scheduling

Along with the geometric problems found in robot programming, there
are often difficult scheduling and communication problems. This is
particularly the case if we expand the simulation beyond a single
workeell to a group of workcells. While some discrete time simulation
systems offer abstract simulation of such systems [20], few offer planning
algorithms. Planning schedules for interacting processes is a difficult
problem and an area of research [21,22]. An OLP system would serve as
an ideal test bed for such research, and would be immediately enhanced
by any useful algorithms in this area.

Automatic assessment of errors and tolerances

An OLP system might be given some of the capabilities discussed in
recent work in modeling positioning errors sources and the effect of
data from imperfect sensors [23,24]. The world model could be made
to include various error bounds and tolerancing information, and the
system could assess the likelihood of success of various positioning or
assembly tasks. The system might suggest the use and placement of
sensors so as to correct potential problems.

13.5 Summary

Off-line programming systems are useful in present-day industrial ap-
plications and can serve as a basis for continuing robotics research and
development. A large motivation in developing OLP systems is to fill
the gap between the explicitly programmed systems available today and
the task level systems of tomorrow.

References

[1] R. Goldman, Design of an Interactive Manipulator Programming Environ-
ment, UMI Research Press, Ann Arbor, Mich., 1985.

[2] S. Mujtaba and R. Goldman, “AL User’s Manual,” 3rd edition, Stanford
Department of Computer Science, Report No. STAN-CS-81-889, Decem-
ber 1981.

[3] T. Lozano-Perez, “Spatial Planning: A Configuration Space Approach,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-11,
1983.

4] B. Shimano, C. Geschke, and C. Spalding, “VAL - II: A Robot Programming
g
Language and Control System,” SME Robots VIII Conference, Detroit,
June 1984.

437

% 13 Off-line programming systems

[5] R. Taylor, P. Summers, and J. Meyer, “AML: A Manufacturing Language,”
International Journal of Robotics Research, Vol. 1, No. 3, Fall 1982.

[6] SILMA Inc., “The CimStation User’'s Manual,” Version 4.0, Available from
SILMA Inc., 1601 Saratoga-Sunnyvale Rd., Cupertino, Calif., 95014, 1989.

[7] J. Bobrow, “The Efficient Computation of the Minimum Distance Between
Convex Polyhedra,” UC Irvine, to appear.

[8] R. Smith, “Fast Robot Collision Detection Using Graphics Hardware,”
Symposium on Robot Control, Barcelona, November 1985.

[9] SILMA Inc., “Programming in SIL,” Available from SILMA Inc., 1601
Saratoga-Sunnyvale Rd., Cupertino, Calif., 95014, 1988.

[10] GMF Inc., “KAREL Language Reference,” Version 1.20p, Troy, Mich., 1986.

[11] B. Nelson, K. Pedersen, and M. Donath, “Locating Assembly Tasks in a Ma-
nipulator’s Workspace,” IEEE Conference on Robotics and Automation,
Raleigh, N.C., April 1987.

[12] T. Lozano-Perez, “A Simple Motion Planning Algorithm for General Robot
Manipulators,” IEEE Journal of Robotics and Autornation, Vol. RA-3,
No. 3, June 1987.

[13] R. Brooks, “Solving the Find-Path Problem by Good Representation of
Free Space,” IEEE Transactions on Systems, Man, and Cybernetics,
SM(C-13:190-197, 1983.

[14] J. Bobrow, S. Dubowsky, and J. Gibson, “On the Optimal Control of
Robotic Manipulators with Actuator Constraints,” Proceedings of the
American Control Conference, June 1983.

[15] K. Shin and N. McKay, “Minimum-Time Control of Robotic Manipulators
with Geometric Path Constraints,” IEEE Transactions on Automatic
Control, June 1985.

[16] R. Johanni and F. Pfeiffer, “A Concept for Manipulator Trajectory Plan-
ning,” Proceedings of the IEEE Conference on Robotics and Automation,
San Francisco, 1986.

[17] J.J. Craig, “Coordinated Motion of Industrial Robots and 2-DOF Orienting
Tables,” Proceedings of the 17th International Symposium on Industrial
Robots, Chicago, April 1987.

[18] S. Ahmad and S. Luo, “Coordinated Motion Control of Multiple Robotic
Devices for Welding and Redundancy Coordination through Constrained
Optimization in Cartesian Space,” Proceedings of the IEEE Conference
on Robotics and Automation, Philadelphia, 1988.

[19] M. Peshkin and A. Sanderson, “Planning Robotic Manipulation Strategies
for Sliding Objects,” TEEE Conference on Robotics and Automation,
Raleigh, N.C., April 1987.

[20] E. Russel, “Building Simulation Models with Simeript I1.5,” C.A.C.L, Los
Angeles, 1983.

[21] A. Kusiak and A. Villa, “Architectures of Expert Systems for Scheduling
Flexible Manufacturing Systems,” IEEE Conference on Robotics and
Automation, Raleigh, N.C., April 1987.

[22] R. Akella and B. Krogh, “Hierarchical Control Structures for Multicell
Flexible Assembly System Coordination,” IEEE Conference on Robotics
and Automation, Raleigh, N.C., April 1987.

Programming Exercise (Part 13) \ﬁ'

[23] R. Smith, M. Self, and P. Cheeseman, “Estimating Uncertain Spatial Re-
lationships in Robotics,” IEEE Conference on Robotics and Automation,
Raleigh, N.C., April 1987.

[24] H. Durrant-Whyte, “Uncertain Geometry in Robotics,” IEEE Conference
on Robotics and Automation, Raleigh, N.C., April 1987.

Exercises

13.1 [10] In a sentence or two define collision detection, collision avoidance,
collision-free path planning.

13.2 [10] In a sentence or two define world model, path planning emulatioh,
dynamic emulation.

13.3 [10] In a sentence or two define automatic robot placement, time optimal
paths, error propagation analysis.

13.4 [10] In a sentence or two define wireframe graphics, shaded surface display,
hidden line elimination.

13.5 [10] In a sentence or two define RPL, TLP, OLP.

13.6 [10] In a sentence or two define calibration, coordinated motion, automatic
scheduling.

13.7 [20] Make a chart indicating how the graphic ability of computers has
increased over the past ten years (perhaps in terms of the number of
vectors drawn per second per $10,000 of hardware).

13.8 [20] Make a list of tasks which are characterized by “many operations
relative to a rigid object” and so are candidates for off-line programming,.

13.9 [20] Discuss the advantages and disadvantages of using a programming
system which maintains a detailed world model internally.

13.10 [20] For the collision-detection algorithm sketched out in this chapter,
what situation (regarding the relative placement of obejcts) results in the
worst case running time?

Programming Exercise (Part 13)

1. Consider the planar shape of a bar with semicircular end caps. We will call
this shape a “capsule.” Write a routine that given the location of two such
capsules computes if they are touching or not. Note that all points of a
capsule are equidistant from a single line segment that might be called its
“spine.”

2. Introduce a capsule-shaped object near your simulated manipulator and test
for collisions as you move the manipulator along a path. Use capsule-shaped
links for the manipulator. Report any collisions detected.

3. If time and computer facilities permit, write routines to graphically depict
the capsules that make up your manipulator and the obstacles in the
workspace.

APPENDIX A:
TRIGONOMETRIC

D]

EN TERLES

Formulas for rotation about the principle axes by 6:

Rx (6)

Ry (6)

Rz(0)

1 0 0

0 cosf@ —sind |, (A.1)
| 0 sinf cosd
[cos® 0 sind

0 e Tl T (A.2)

| —sinf 0 coséd
[cosf® —sinf 0

sinf cosf 0 (A.3)
o opet 4

Identities having to do with the periodic nature of sine and cosine:

sinf = —sin(—@) = — cos(f + 90°) = cos(f — 90°),

cos 8 = cos(—0) = sin(# + 90°) = —sin(@ — 90°).

(A.4)

0.0

The sine and cosine for the sum or difference of angles 6, and ,:
cos(0; +0,) = 15 = ¢103 — 8182,

sin(f; + 8,) = 815 = ¢85 + 51¢5,

(A.5)

cos(fl; — 0;) = cyeq + 5184,

sin(f; — #,) = 5,¢5 — €185,

The sum of the squares of the sine and cosine of the same angle
is unity:

0 +s%6=1. (A.6)

If a triangle’s angles are labeled a, b, and ¢, where angle a is opposite
side A, and so on, then the “law of cosines” is

A% = B? + C? - 2BC cosa. (A7)

The “tangent of the half angle” substitution:

—tarzg
U= 2
ey
sinf = 2l oo
14+u

To rotate a vector Q about a unit vector K by #, use Rodriques’
formula:

Q' =Qcost+sinf(K x Q)+ (1 —cos)(K -Q)K. (A.9)
See Appendix B for equivalent rotation matrices for the twenty

four angle set conventions, and Appendix C for some inverse kinematic
identities.

441

APPENDIX B

THE 24 ANGLE SET
CONVENTIONS

The twelve Euler angle sets are given by

cfey
Ryiyvigi(a, B8,7) = | sasBey+ cosy
| —casfey + sasy
e
Rxigryi(a, B8,7) = | casBey + sasy
| saesfey — casy

[sasBsy + cacy
ReraZ;{a,IS}’}") = c’ﬁg—?
| casfsy — sacy

—cfsy s
—sasfsy + cacy —sach
casfdsy + saey cacl

—afd csy
cac casFsy — sacy
saefd sasfisy

sasfey — casy sach]
cfew —sB
casfey + sasy cacf |

Ry 1 zrxi(a, 3, 7) =

Ry xryi(a,8,7) =

Rgryrxi(a,B,7) =

Rxiyrxi(a, B,7) =

Ryizgixi(a,8,7) =

RY’X’Y’(Q\J@;']’) i

Ry gey (o, 8,7) =

Ryixizi(a, B,7) =

Rziyigi(a,B,7) =

[cacl casBsy —

sfsy
| —cacfBsy — sacy

[cacBey — sasy
sfdcy
| —sacfey — casy

[—saefsy + caey
cacfsy + sacy
sfsy

[cacBey — sasy
sacfey + casy
—sfcy

sacy ewasfey + sasy

sac sasfsy + caey sasfey — casy
| —s8 efsy cBey
e sBsy sfcy

sasf —sacfsy + cacy —sacBey — casy

| —casf cacBsy + sacy cacfey — sasy
[<8 —sBecy sfsy

casf cocfey — sasy —eweflsy — sacy
| sasfl sacfBey + casy —sacfsy + cacy |
[—sacfsy + cacy sasf sacBey + casy |

e —sfcy
casfl cacfey — sasy |

—casfd
cf 50357y

sasfd

—sacfey — casy sasf
cocfey — sasy —casf
sBey c

—caef3sy — saey casf
—sacfsy + caey sasf
8fsy cf3

The twelve fixed angle sets are given by

Rxvyz(v,0,0) =

Rxzy (1, 6,) =

[cacB casBsy —sacy casfBey + sasy
sacf sasfBsy + caey sasfcy — casy
| —sf cfsy cfcy
[cacl —casBey +sasy casfsy + sacy
s cey —cfsy
| —sacf sasfey+casy —sasfsy + cacy

[cacB —casfey+ sasy casBsy+ sacy |
s cley —cfsy
| —sac sasfBey+casy —sasfsy + cacy |
[—sasfsy + cacy —sacl sasfey + casy |
casf3sy + sacy caecfl —casfey + sasy
—cPBsy sg cBey

cacBsy + sacy]

—sacsy + cacf |

443

[_ﬂ' Appendix B: the twenty-four angle set conventions

Ry xz(v,0,0) =

Rsz(’i’;ﬂ; a)=

Rzxv (7.8, ﬂ)_ =

RZYX(AI'HB:Q) i

Rxyx(v,8,a)=

RXZX(AI'H@:&) =

Ry xv(v,8,a) =

Ry zv(v,8,0) =

Ryxz(v,0.0)=

Ryyz(y,8,0)=

| —casf
e

| saesf3

[—sasfBsy + cacy

casBsy + saey
—cf3sy

cfey
casfey + sasy

| sasfey — casy

[sasfBsy + cacy

clsy

| casfsy — sacy

clcy
sasfey + casy

| —casfey + sasy

e

sasd

casf cacfey —

[—sacBsy + cacy

s3sy

| —cacfBsy — sacy

[cacBey — sasy

sfcy

| —sacfey — casy

[—sacfsy + cacy

cacfsy + sacy
sfsy

[cocBey — sasy

sacBey + casy
—s8cy

s3sy
—sacfsy + cacy
caclsy + sacy

—sfcy

sacfey + casy

—sac
caef3

53

sasfey + casy
—casfey + sasy
cfcy

_Sﬁ
cac3
sach

cf3sy
casfsy — sacy
sasfBsy

sae]
_s8

coef |

sasfey — casy
cfea
casfey + sasy

s8]
—sacf
cocl |

—c3sy
—sasfsy + caey
caesFsy + sacy

sfey
—sacfey — casy
cacfey — sasy |

s3sy
—cocf3sy — sacy
—sacfsy + cacy |

S8y

sasf sacfBey + casy]
cf —sfey
casf cacfey — sasy |

—casf cacBsy + sacy |
cf3 838y
sasfl —sacfsy 4 cocl |

sas8]
—casfd

e

—sacfey — casy
cacfey — sasy
sBcy

—cacfBsy — saey casf
—sacfsy + cacy sasf
s3sy cf3

APPENDIX C:
SOME INVERSE
KINEMATIC
FORMULAS

The single equation

sinf = a, (C.1)
has two solutions given by
0 = +Atan2 (m 2 a) : (C.2)
Likewise, given
cosf = b, (C.3)

there are two solutions given by
§ = Atan2 (b Lyqe 52) (C.4)
If both (C.1) and (C.3) are given, then there is a unique solution given by

6 = Atan2 (a,b). (C.5)

\ﬂ‘ Appendix C: some inverse kinematic formulas

The transcendental equation

acosf +bsind =0, (C.6)
has the two solutions

6 = Atan2 (a, - b), (ek o)
and

0 = Atan2 (—a,b). (C.8)
The equation

acosf + bsinf = ¢, (C.9)

which we solved in Section 4.5 using the tangent of the half angle
substitutions, is also solved by

6 = Atan2 (b, a) + Atan2 (\/ et c) ; (C.10)

The set of equations

acosfl —bsinf = ¢,

C.11
asinf + beosf = d, ()

which were solved in Section 4.4 also are solved by

§ = Atan2 (ad — be, ac + bd) . (C.12)

INDEX

accuracy 143 BIBO 316
actuator space 85 bottom-up programming 409
actuator vector 85 bounded 316
affixments 397 425 bounded-input bounded-output 316
AL 255,401 bounding boxes 424
algebraic solution 119 brushless motors 288
alternating-current CAD models 419,423
(AC) motors 288 CAD 1
analytic representation 423 calibration 143,433
angle set conventions 50,163,442 CAM 1
angle axis 51,247 Cartesian based control 353
angular velocity matrix 161 Cartesian manipulator 267
angular velocity vector 155,161 Cartesian mass matrix 211
anthropomorphic 268 Cartesian motion 246
anti-aliasing 319 Cartesian space 7,85
armature 319 Cartesian straight line motion 247
articulated manipulator 268 Cartesian trajectory generation 11
artificial constraints 369 Cayley’s formula for
assembly strategy 370 orthonormal matrices 43
automatic coercion 430 centrifugal force 205
automatic robot placement 435 characteristic equation 303
automatic scheduling 437 CimStation 423
autonomous 350 closed form solutions 119
back emf constant 320 closed form solvable 129
back face elimination 424 closed form 201
backlash 281 closed loop stiffness 311
ball bearing screws 282 closed loop structures 277
base frame 7,100, 141 closed loop system 301

bevel gears 281 collision detection 419,424

448

co-located

complex roots

computed points
computed torque method
computer vision
configuration space equation
constraint frame

control algorithm

control gains

control law partitioning
control law

control system

Coriolis force

Coulomb friction
critically damped

cross helical gears
current amplifier

cycle time

cylindrical manipulator
damped natural frequency
damping ratio

decoupled control
degrees of freedom
Denavit-Hartenberg notation
dextrous workspace
digital control

direct drive

direct kinematics
direction cosines
discrete time control
disturbance rejection
dominant poles
dynamically simple
dynamics

effective damping
effective inertia

elbow manipulator

end of arm tooling
end-effector

equivalent angle-axis
error space

Euler angles

Euler parameters

Euler’s formula

Euler's theorem on rotation
event monitors

faceted representation
facets

feedback

289
304
143
333
416
206
367
12,2499
311
312
310
299
205
214,334
304
281
321
266
270
307
306
338

6

74

114
318
280,322
68,113
23
318,341
316,318
304
218
8,187
322
321
268
263
7,263
51,247
315
48,442
55

306

51

399
423
423
300

feedforward control
finite element techniques
fixed automation

flexure

force control law

force control

force sensing
force-moment transformation
forward kinematics
frame

free vector

gear ratio

gears

generalized surface
geometric types
geometric solution

goal frame

Goraud shading
Grubler's formula
guarded move

hidden line elimination
homogeneous transform
hybrid position/force control
hydraulic cylinders
hysteresis

incremental rotary optical encoder

independent joint control
industrial robot

inertia ellipsoid

inertia tensor

initial conditions
instantaneous axis of rotation
interactive languages
inverse Jacobian controller
inverse kinematics
Jacobian

joint angles

joint based control

joint offset

joint space

joint torques

joint variable

joint vector

jointed manipulator
kinematically simple
kinematics

Lagrangian dynamic formulation
Lagrangian

Laplace transforms

Index

341
287
3,14
291
14,374
13,365
290, 386
181
768
5,23,37
57

281

281
367
396

119

101

424

279

386
424

30
14,366, 374
287

291
289

302

1

276

190

302

163

418
355
7113
8,152, 169
6,72
353

6
7.85,211
8

74

85

268
218
6,68
207
208

303

Index

lead screws
length sum
I'Hopital’s rule
light pen

limit stops

line of action

line vector

linear control
linearizing and decoupling control
linearizing control
link length

link offset

link parameters
link twist

links

load capacity
local linearization
low pass filter
lower pair
lumped model
Lyapunov stability analysis

Lyapunov's second (or direct) method

manipulability measure
mapping

mass matrix

mass moments of inertia
mass products of inertia
mechanical impedance
mechanical manipulator
micromanipulator
MIMO

model-based portion
motor torque constant
mouse

Multi-Input Multi-Output
natural constraints
natural frequency

NC

noise

nonautonomous
nonlinear control
null-space

numerical differentiation
numerical integration
numerical solutions
off-line programming system
OLP

open kinematic chain
open loop

282
274
308
418
291
57
57
299
338
334
70
72
74
70
6,69
266
333
321
69
324
348
348
275

8,25, 26

205
191
191
383

3

277
302
312
319
418
302
367
306

3

316
350
13,332
180
289
215
119
15,414
414
6,267
301

operating point
operational space
orientation

orienting structure
overdamped

overload protection
parallel axis theorem
parallelism in programming
passive compliance
path generator

path points

path update rate

PID control law
pneumatic cylinders
poles

polymorphic

position control law
position control system
position vector
positioning structure
positive definite
potentiometers
principal axes
principal moments
prismatic joints
proper orthonormal matrices
proprioceptive
quadratic form
reachable workspace
real and equal roots
real and unequal roots
reduction system
redundant

regulation

rendering
repeatability

repeated roots
resolvers

resonances

revolute joints
revolute

robot programming language
robust controller
Rodriques’ formula
roll, pitch, yaw
rotation matrix

rotor

run-time

sampling rate

449

333
83,211
21
267

304

291

193

421

384
245,252
228

228

318

287

303

429
14,310
12,299
20

267

208

289

191

191
6,69

43

263

208

114

304

304

280

264

311

423

143

308

289
283,319,323
69

]

14, 255,392
342

64

45

21

319

252

341

450

SCARA manipulator 268
Sensors 12, 289, 290
serial kinematic linkages 6,267
SErvo error 301
servo portion 312
servo rate 318
set point 328
shaded graphics 424
SIL 429
similarity transform 64
simulation 10,414
Single-Input Single-Output 302
singularities of the mechanism 173
singularities 8,173
SISO 302
skew-symmetric 160
solvable 119
specialized manipulation languages 392
spline 11
Spur gears 281
stable 301
state space equation 205
station frame 100
stator 319
steady state analysis 317
steady state error 317
stepper motors 288
Stewart mechanism 278
strain gauges 290
structural length index 274
structural resonances 283,319,323
subspace 115,120
tachometers 289, 300
task oriented space 85
task-level programming languages 393,416
taught point 143
teach by showing 391
teach pendant 328,391
three roll wrist 271
through point 246
TLP 416

tool frame

torque ripple

tracking reference inputs
trajectory conversion
trajectory following control
trajectory generation
trajectory

transform equation
transmission systemn
transpose Jacobian controller
underdamped

unit quaternion

universe coordinate system
unmodelled resonances
unstable

user interface

vane actuators

velocity transformation

via points

virtual work

viscous friction
well-conditioned
wireframe rendering

work envelope

work volume

workcell calibration
workcell

workspace boundary singularities
workspace interior singularities
workspace

world model

worm gears

wrist frame

wrist point

wrist sensors

wrist

wrist-partitioned

X-Y-Z fixed angles

Z-buffer

Z-Y-X Euler angles

Z-Y-Z Euler angles

Index

7101
320
318
353
311

11,252
227

40

280
356
304

55

19
319,323
302
417
287
181
11,228
179
214
275
424
265
265
422,433
391
173
73
7,114,265
415
281
100
267
290
267
267

45

124

48

49

