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Preface

This handbook is designed as a comprehensive reference for the industrial automation engineer. Whether in a small
or large manufacturing plant, the industrial or manufacturing engineer is usually responsible for using the latest and
best technology in the safest, most economic manner to build products. This responsibility requires an enormous
knowledge base that, because of changing technology, can never be considered complete. The handbook will
provide a handy starting reference covering technical, economic, certain legal standards, and guidelines that should
be the first source for solutions to many problems. The book will also be useful to students in the field as it provides
a single source for information on industrial automation.

The handbook is also designed to present a related and connected survey of engineering methods useful in a
variety of industrial and factory automation applications. Each chapter is arranged to permit review of an entire
subject, with illustrations to provide guideposts for the more complex topics. Numerous references are provided to
other material for more detailed study.

The mathematical definitions, concepts, equations, principles, and application notes for the practicing industrial
automation engineer have been carefully selected to provide broad coverage. Selected subjects from both under-
graduate- and graduate-level topics from industrial, electrical, computer, and mechanical engineering as well as
material science are included to provide continuity and depth on a variety of topics found useful in our work in
teaching thousands of engineers who work in the factory environment. The topics are presented in a tutorial style,
without detailed proofs, in order to incorporate a large number of topics in a single volume.

The handbook is organized into ten parts. Each part contains several chapters on important selected topics. Part
1 is devoted to the foundations of mathematical and numerical analysis. The rational thought process developed in
the study of mathematics is vital in developing the ability to satisfy every concern in a manufacturing process.
Chapters include: an introduction to probability theory, sets and relations, linear algebra, calculus, differential
equations, Boolean algebra and algebraic structures and applications. Part 2 provides background information on
measurements and control engineering. Unless we measure we cannot control any process. The chapter topics
include: an introduction to measurements and control instrumentation, digital motion control, and in-process
measurement.

Part 3 provides background on automatic control. Using feedback control in which a desired output is compared
to a measured output is essential in automated manufacturing. Chapter topics include distributed control systems,
stability, digital signal processing and sampled-data systems. Part 4 introduces modeling and operations research.
Given a criterion or goal such as maximizing profit, using an overall model to determine the optimal solution
subject to a variety of constraints is the essence of operations research. If an optimal goal cannot be obtained, then
continually improving the process is necessary. Chapter topics include: regression, simulation and analysis of
manufacturing systems, Petri nets, and decision analysis.
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Part 5 deals with sensor systems. Sensors are used to provide the basic measurements necessary to control a
manufacturing operation. Human senses are often used but modern systems include important physical sensors.
Chapter topics include: sensors for touch, force, and torque, fundamentals of machine vision, low-cost machine
vision and three-dimensional vision. Part 6 introduces the topic of manufacturing. Advanced manufacturing pro-
cesses are continually improved in a search for faster and cheaper ways to produce parts. Chapter topics include: the
future of manufacturing, manufacturing systems, intelligent manufacturing systems in industrial automation, mea-
surements, intelligent industrial robots, industrial materials science, forming and shaping processes, and molding
processes. Part 7 deals with material handling and storage systems. Material handling is often considered a neces-
sary evil in manufacturing but an efficient material handling system may also be the key to success. Topics include
an introduction to material handling and storage systems, automated storage and retrieval systems, containeriza-
tion, and robotic palletizing of fixed- and variable-size parcels.

Part 8 deals with safety and risk assessment. Safety is vitally important, and government programs monitor the
manufacturing process to ensure the safety of the public. Chapter topics include: investigative programs, govern-
ment regulation and OSHA, and standards. Part 9 introduces ergonomics. Even with advanced automation,
humans are a vital part of the manufacturing process. Reducing risks to their safety and health is especially
important. Topics include: human interface with automation, workstation design, and physical-strength assessment
in ergonomics. Part 10 deals with economic analysis. Returns on investment are a driver to manufacturing systems.
Chapter topics include: engineering economy and manufacturing cost recovery and estimating systems.

We believe that this handbook will give the reader an opportunity to quickly and thoroughly scan the field of
industrial automation in sufficient depth to provide both specialized knowledge and a broad background of specific
information required for industrial automation. Great care was taken to ensure the completeness and topical
importance of each chapter.

We are grateful to the many authors, reviewers, readers, and support staff who helped to improve the manu-
script. We earnestly solicit comments and suggestions for future improvements.

Richard L. Shell
Ernest L. Hall
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Chapter 1.1

Some Probability Concepts for Engineers

Enrique Castillo
University of Cantabria, Santander, Spain

Ali S. Hadi
Cornell University, Ithaca, New York

1.1 INTRODUCTION

Many engineering applications involve some element
of uncertainty [1]. Probability is one of the most com-
monly used ways to measure and deal with uncer-
tainty. In this chapter we present some of the most
important probability concepts used in engineering
applications.

The chapter is organized as follows. Section 1.2 first
introduces some elementary concepts, such as random
experiments, types of events, and sample spaces. Then
it introduces the axioms of probability and some of the
most important properties derived from them, as well
as the concepts of conditional probability and indepen-
dence. It also includes the product rule, the total prob-
ability theorem, and Bayes’ theorem.

Section 1.3 deals with unidimensional random vari-
ables and introduces three types of variables (discrete,
continuous, and mixed) and the corresponding prob-
ability mass, density, and distribution functions.
Sections 1.4 and 1.5 describe the most commonly
used univariate discrete and continuous models,
respectively.

Section 1.6 extends the above concepts of univariate
models to the case of bivariate and multivariate mod-
els. Special attention is given to joint, marginal, and
conditional probability distributions.
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Section 1.7 discusses some characteristics of random
variables, such as the moment-generating function and
the characteristic function.

Section 1.8 treats the techniques of variable trans-
formations, that is, how to obtain the probaiblity dis-
tribution function of a set of transformed variables
when the probability distribution function of the initial
set of variables is known. Section 1.9 uses the transfor-
mation techniques of Sec. 1.8 to simulate univariate
and multivariate data.

Section 1.10 is devoted to order statistics, giving
methods for obtaining the joint distribution of any
subset of order statistics. It also deals with the problem
of limit or asymptotic distribution of maxima and
minima.

Finally, Sec. 1.11 introduces probability plots and
how to build and use them in making inferences from
data.

1.2 BASIC PROBABILITY CONCEPTS

In this section we introduce some basic probability
concepts and definitions. These are easily understood
from examples. Classic examples include whether a
machine will malfunction at least once during the
first month of operation, whether a given structure
will last for the next 20 years, or whether a flood will



occur during the next year, etc. Other examples include
how many cars will cross a given intersection during a
given rush hour, how long we will have to wait for a
certain event to occur, how much stress level a given
structure can withstand, etc. We start our exposition
with some definitions in the following subsection.

1.2.1 Random Experiment and Sample Space

Each of the above examples can be described as a ran-
dom experiment because we cannot predict in advance
the outcome at the end of the experiment. This leads to
the following definition:

Definition 1. Random Experiment and Sample
Space: Any activity that will result in one and only
one of several well-defined outcomes, but does not
allow us to tell in advance which one will occur is called
a random experiment. Each of these possible outcomes is
called an elementary event. The set of all possible ele-
mentary events of a given random experiment is called
the sample space and is usually denoted by Q.

Therefore, for each random experiment there is an
associated sample space. The following are examples of
random experiments and their associated sample
spaces:

Rolling a six-sided fair die once yields
Q=1{1,2,3,4,5,6}.
Tossing a fair coin once, yields Q = {Head, Tail}.

Waiting for a machine to malfunction yields

Q={x:x>0}.
How many cars will cross a given intersection yields
Q={0,1,...}.

Definition 2. Union and Intersection: If C is a set con-
taining all elementary events found in A or in B or in
both, then write C = (AU B) to denote the union of A
and B, whereas, if C is a set containing all elementary
events found in both A and B, then we write C = (A N B)
to denote the intersection of A and B.

Referring to the six-sided die, for example, if
A={1,3,5}, B=1{2,4,6},and C = {1, 2, 3}, then (4 U
B)=Q and (AUC)={1,2,3,5}, whereas (AN C) =
{1, 3} and (4 N B) = ¢, where ¢ denotes the empty set.

Random events in a sample space associated with a
random experiment can be classified into several types:

1. Elementary vs. composite events. A subset of Q
which contains more than one elementary event
is called a composite event. Thus, for example,
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observing an odd number when rolling a six-
sided die once is a composite event because it
consists of three elementary events.

2. Compatible vs. mutually exclusive events. Two
events 4 and B are said to be compatible if
they can simultaneously occur, otherwise they
are said to be mutually exclusive or incompatible
events. For example, referring to rolling a six-
sided die once, the events 4 = {1, 3,5} and B =
{2, 4, 6} are incompatible because if one event
occurs, the other does not, whereas the events
A and C = {1, 2, 3} are compatible because if we
observe 1 or 3, then both 4 and C occur.

3. Collectively exhaustive events. If the union of
several events is the sample space, then the
events are said to be collectively exhaustive.
For example, if Q ={1,2,3,4,5,6}, then 4 =
{1,3,5} and B=1{2,4,6} are collectively
exhaustive events but 4 = {1, 3,5} and C = {I,
2, 3} are not.

4. Complementary events. Given a sample space 2
and an event 4 € 2, let B be the event consist-
ing of all elements found in  but not in A.
Then 4 and B are said to be complementary
events or B is the complement of A (or vice
versa). The complement of A is usually denoted
by A. For example, in the six-sided die example,
if4={1,2}, 4 ={3,4,5, 6}. Note that an event
and its complement are always defined with
respect to the sample space 2. Note also that
A and A are always mutually exclusive and col-
lectively exhaustive events, hence (4N A4) = ¢
and (AU 4) = Q.

1.2.2 Probability Measure

To measure uncertainty we start with a given sample
space 2, in which all mutually exclusive and collec-
tively exhaustive outcomes of a given experiment are
included. Next, we select a class of subsets of  which
are closed under the union, intersection, complemen-
tary and limit operations. Such a class is called a o-
algebra. Then, the aim is to assign to every subset in o
a real value measuring the degree of uncertainty about
its occurrence. In order to obtain measures with clear
physical and practical meanings, some general and
intuitive properties are used to define a class of mea-
sures known as probability measures.

Definition 3. Probability Measure: A function p map-
ping any subset A C o into the interval [0, 1] is called a
probability measure if it satisfies the following axioms:



Axiom 1. Boundary: p(2) = 1.
Axiom 2. Additivity: For any (possibly infinite)
sequence, Ay, Ay, ..., of disjoint subsets of o, then

P(U Ai) = ZP(Ai)

Axiom 1 states that despite our degree of uncertainty,
at least one element in the universal set Q will occur
(that is, the set 2 is exhaustive). Axiom 2 is an aggre-
gation formula that can be used to compute the prob-
ability of a union of disjoint subsets. It states that the
uncertainty of a given subset is the sum of the uncer-
tainties of its disjoint parts.

From the above axioms, many interesting properties
of the probability measure can be derived. For
example:

Property 1. Boundary: p(¢) = 0.

Property 2. Monotonicity: If A4 C BC o, then
p(A) < p(B).

Property 3. Continuity—Consistency: For every
increasing sequence 4; € A, C ... or decreasing
sequence A; D A, D ... of subsets of o we have

lim p(4;) = p(lim A4;)

Property 4. Inclusion—Exclusion: Given any pair of
subsets A and B of o, the following equality
always holds:

(AU B) = p(A) + p(B) — p(4 N B) (1)

Property 1 states that the evidence associated with a
complete lack of information is defined to be zero.
Property 2 shows that the evidence of the membership
of an element in a set must be at least as great as the
evidence that the element belongs to any of its subsets.
In other words, the certainty of an element belonging
to a given set 4 must not decrease with the addition of
elements to 4.

Property 3 can be viewed as a consistency or a con-
tinuity property. If we choose two sequences conver-
ging to the same subset of o, we must get the same limit
of uncertainty. Property 4 states that the probabilities
of the sets 4, B, AN B, and A U B are not independent;
they are related by Eq. (1).

Note that these properties respond to the intuitive
notion of probability that makes the mathematical
model valid for dealing with uncertainty. Thus, for
example, the fact that probabilities cannot be larger
than one is not an axiom but a consequence of
Axioms 1 and 2.
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Definition 4. Conditional Probability: Let A and B be
two subsets of variables such that p(B) > 0. Then, the
conditional probability distribution (CPD) of A given B
is given by

p(AN B)
p(B)

Equation (2) implies that the probability of 4 N B can
be written as

p(A4| B) = ()

p(ANB) = p(B)p(4 | B) 3)
This can be generalized to several events as follows:
(A4, By, ..., By
pA | Bi..... By =2 B B )
p(Blv s aBk)

1.2.3 Dependence and Independence

Defintion 5. Independence of Two Events: Let A and B
be two events. Then A is said to be independent of B if
and only if

p(A | B) = p(A) ©)

otherwise A is said to be dependent on B.

Equation (5) means that if 4 is independent of B,
then our knowledge of B does not affect our knowl-
edge about 4, that is, B has no information about 4.
Also, if A4 is independent of B, we can then combine
Egs. (2) and (5) and obtain

(AN B) = p(4) p(B) (6)

Equation (6) indicates that if 4 is independent of B,
then the probability of 4 N B is equal to the product of
their probabilities. Actually, Eq. (6) provides a defini-
tion of independence equivalent to that in Eq. (5).

One important property of the independence rela-
tion is its symmetry, that is, if A is independent of B,
then B is independent of 4. This is because

p(ANB)  p(A)p(B)
oA - pay PP

Because of the symmetry property, we say that 4 and
B are independent or mutually independent. The practi-
cal implication of symmetry is that if knowledge of B is
relevant (irrelevant) to 4, then knowledge of A4 is rele-
vant (irrelevant) to B.

The concepts of dependence and independence of
two events can be extended to the case of more than
two events as follows:

p(B|A)=



Definition 6. Independence of a Set of Events: The

events Ay,..., A, are said to be independent if and
only if
pArN...NA,)=]]pA4) @)
i=1

otherwise they are said to be dependent.

In other words, {4;,..., 4,,} are said to be indepen-
dent if and only if their intersection probability is equal
to the product of their individual probabilities. Note
that Eq. (7) is a generalization of Eq. (6).

An important implication of independence is that it
is not worthwhile gathering information about inde-
pendent (irrelevant) events. That is, independence
means irrelevance.

From Eq. (3) we get

P(A1 N Ay) = p(A; | A2) p(Az) = p(A, | A1) p(Ay)

This property can be generalized, leading to the so-
called product or chain rule:

pAyN...NA4,)=plA)p(4; | Ay)...
p(An | Al n... mAn—l)

1.2.4 Total Probability Theorem

Theorem 1. Total Probability Theorem: Let {4, ...,
Ay} be a class of events which are mutually incompatible
and such that U A; = Q. Then we have

1<i<n
p(B) =Y p(B| A;)p(4))
1<i<n

A graphical illustration of this theorem is given in Fig. I.
1.2.5 Bayes’ Theorem

Theorem 2. Bayes’ Theorem: Let {A,...,A,} be a
class of events which are mutually incompatible and
such that N A; = Q. Then,

1<i<n

A.l(’ Az As L \Ai
e SR By

Ai+1 A2 Ai+3 * 0 An

Figure 1 Graphical illustration of the total probability rule.
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p(B | A;)p(A;)
> p(B | A)p(4))

1<i<n

P(A; | B) =

Probabilities p(A4;) are called prior probabilities,
because they are the probabilities before knowing the
information B. Probabilities p(A4; | B), which are the
probabilities of A4; after the knowledge of B, are called
posterior probabilities. Finally, p(B | A;) are called like-
lihoods.

1.3 UNIDIMENSIONAL RANDOM
VARIABLES

In this section we define random variables, distinguish
among three of their types, and present various ways of
presenting their probability distributions.

Definition 7. Random Variable: A possible vector-
valued function X : Q@ — R", which assigns to each ele-
ment w € Q one and only one vector of real numbers
X(w) = x, is called an n-dimensional random variable.
The space of X is {x : x = X(w, w € Q}. The space of a
random variable X is also known as the support of X.

When n = 1 in Definition 7, the random variable is
said to be wunidimensional and when n > 1, it is said
to be multidimensional. In this and Secs 1.4 and 1.5,
we deal with unidimensional random variables.
Multidimensional random variables are treated in
Sec. 1.6.

Example 1. Suppose we roll two dice once. Let A be
the outcome of the first die and B be the outcome of the
second. Then the sample space Q = {(1,1),...(6,6)}
consists of 36 possible pairs (A,B), as shown in Fig. 2.
Suppose we define a random variable X = A + B, that
is, X is the sum of the two numbers observed when we roll
two dice once. Then X is a unidimensional random vari-
able. The support of this random variable is the set {2,
3, ..., 12} consisting of 11 elements. This is also shown
in Fig. 2.

1.3.1 Types of Random Variables

Random variables can be classified into three types:
discrete, continuous, and mixed. We define and give
examples of each type below.
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Figure 2 Graphical illustration of an experiment consisting of rolling two dice once and an associated random variable which is

defined as the sum of the two numbers observed.

Definition 8. Discrete Random Variables: A4 random
variable is said to be discrete if it can take a finite or
countable set of real values.

As an example of a discrete random variable, let X
denote the outcome of rolling a six-sided die once.
Since the support of this random variable is the finite
set {1, 2, 3,4,5, 6}, then X is discrete random variable.
The random variable X = 4 + B in Fig. 2 is another
example of discrete random variables.

Definition 9. Continuous Random Variables: A4 ran-
dom variable is said to be continuous if it can take an
uncountable set of real values.

For example, let X denote the weight of an object,
then X is a continuous random variable because it can
take values in the set {x : x > 0}, which is an uncoun-
table set.

Definition 10. Mixed Random Variables: A4 random
variable is said to be mixed if it can take an uncountable
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set of values and the probability of at least one value of x
is positive.

Mixed random variables are encountered often in
engineering applications which involve some type of
censoring. Consider, for example, a life-testing situa-
tion where n machines are put to work for a given
period of time, say 30 days. Let X; denotes the time
at which the ith machine malfunctions. Then X; is
a random variable which can take the values
{x:0 < x < 30}. This is clearly an uncountable set.
But at the end of the 30-day period some machines
may still be functioning. For each of these machines
all what we know is that X; > 30}. Then the probability
that X; = 30 is positive. Hence the random variable X;
is of the mixed type. The data in this example is known
as censored data.

Censoring can be of two types: right censoring and
left censoring. The above example is of the former type.
An example of the latter type occurs when we measure
say, pollution, using an instrument which cannot
detect polution below a certain limit. In this case we
have left censoring because only small values are cen-



sored. Of course, there are situations where both right
and left censoring are present.

1.3.2 Probability Distributions of Random
Variables

So far we have defined random variables and their
support. In this section we are interested in measuring
the probability of each of these values and/or the prob-
ability of a subset of these values. We know from
Axiom 1 that p(2) = 1; the question is then how this
probability of 1 is distributed over the elements of 2.
In other words, we are interested in finding the prob-
ability distribution of a given random variable. Three
equivalent ways of representing the probability distri-
butions of these random variables are: tables, graphs,
and mathematical functions (also known as mathema-
tical models).

1.3.3 Probability Distribution Tables

As an example of a probability distribution that can be
displayed in a table let us flip a fair coin twice and let X
be the number of heads observed. Then the sample
space of this random experiment is Q = {77, TH,
HT, HH}, where TH, for example, denotes the out-
come: first coin turned up a tail and second a head.
The sample space of the random variable X is then
{0, 1, 2}. For example, X = 0 occurs when we observe
TT. The probability of each of these possible values of
X is found simply by counting how many elements of
Q are associated with each value in the support of X.
We can see that X = 0 occurs when we observe the
outcome 77, X =1 occurs when we observe either
HT or TH, and X = 2 occurs when we observe HH.
Since there are four equally likely elementary events in
Q, each element has a probability of 1/4. Hence,
pX=0)=1/4, p(X =1)=2/4, and p(X =2) = 1/4.
This probability distribution of X can be displayed in a
table as in Table 1. For obvious reasons, such tables
are called probability distribution tables. Note that to

Table 1 The Probability Distribution of the Random
Variable X Defined as the Number of Heads Resulting
from Flipping a Fair Coin Twice

X Px)
0 0.25
1 0.50
2 0.25
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denote the random variable itself we use an uppercase
letter (e.g., X), but for its realizations we use the cor-
responding lowercase letter (e.g., x).

Obviously, it is possible to use tables to display the
probability distributions of only discrete random vari-
ables. For continuous random variables, we have to
use one of the other two means: graphs or mathema-
tical functions. Even in discrete random variables with
large number of elements in their support, tables are
not the most efficient way of displaying the probability
distribution.

1.3.4 Graphical Representation of Probabilities

The probability distribution of a random variable can
equivalently be represented graphically by displaying
values in the support of X on a horizontal line and
erecting a vertical line or bar on top of each of these
values. The height of each line or bar represents the
probability of the corresponding value of X. For
example, Fig. 3 shows the probability distribution of
the random variable X defined in Example 1.

For continuous random variables, we have infinitely
many possible values in their support, each of which
has a probability equal to zero. To avoid this difficulty,
we represent the probability of a subset of values by an
area under a curve (known as the probability density
curve) instead of heights of vertical lines on top of each
of the values in the subset.

For example, let X represent a number drawn ran-
domly from the interval [0, 10]. The probability distri-
bution of X can be displayed graphically as in Fig. 4.
The area under the curve on top of the support of X
has to equal 1 because it represents the total probabil-
ity. Since all values of X are equally likely, the curve is
a horizontal line with height equal to 1/10. The height
of 1/10 will make the total area under the curve equal
to 1. This type of random variable is called a contin-
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Figure 3 Graphical representation of the probability distri-
bution of the random variable X in Example 1.
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Figure 4 Graphical representation of the pdf of the U(0, 10)
random variable X.

uous uniform random variable and is dentoed by
U(a, b), where in this example « = 0 and b = 10.

If we wish, for example, to find the probability that
X is between 2 and 6, this probability is represented by
the shaded area on top of the interval (2, 6). Note here
that the heights of the curve do not represent probabil-
ities as in the discrete case. They represent the density
of the random variable on top of each value of X.

1.3.5 Probability Mass and Density Functions

Alternatively to tables and graphs, a probability dis-
tribution can be displayed using a mathematical func-
tion. For example, the probability distribution of the
random variable X in Table 1 can be written as

0.25 if x € {0, 2}
p(X =x)=10.50 if x=1 (8)
0 otherwise

A function like the one in Eq. (8) is known as a prob-
ability mass function (pmf). Examples of the pmf of
other popular discrete random variables are given in
Sec. 1.4. Sometimes we write p(X = x) as p(x) for sim-
plicity of notation.

Note that every pmf p(x) must satisfy the following
conditions:

p(x)>0,Vxe 4; p(x)=0,Vx¢ 4, Zp(x):l

xeAd

where A is the support of X.

As an example of representing a continuous random
variable using a mathematical function, the graph of
the continuous random variable X in Fig. 4 can be
represented by the function

0.1 if0<x<10
Jx)= { 0 otherwise

The pdf for the general uniform random variable
U(a, b) is

Copyright © 2000 Marcel Dekker, Inc.

1 .

0 otherwise

Functions like the one in Eq. (9) are known as a
probability density function (pdf). Examples of the pdf
of other popular continuous random variables are
given in Sec. 1.5. To distinguish between probability
mass and density functions, the former is denoted by
p(x) (because it represents the probability that X = x)
and the latter by f(x) (because it represents the height
of the curve on top of x).

Note that every pdf f(x) must satisfy the following
conditions:

f(x)>0,Vx € 4; f(x):O,ngéA;J flx)=1

xeA‘

where A is the support of X.

Probability distributions of mixed random variables
can also be represented graphically and using probabil-
ity mass—density functions (pmdf). The pmdf of a mixed
random variable X is a pair of functions p(x) and f(x)
such that they allow determining the probabilities of X
to take given values, and X to belong to given inter-
vals, respectively. Thus, the probability of X to take
values in the interval (a, b) is given by

x<b b
> p+ [ feodx

The interpretation of each of these functions coincides
with that for discrete and continuous random vari-
ables. The pmdf has to satisfy the following conditions:

X<oo oo}

> p(X)+J

X>—00 —00

p(x) =0, f(x) =0, fx)dx =1

which are an immediate consequence of their defini-
tions.

1.3.6 Cumulative Distribution Function

An alternative way of defining the probability mass—
density function of a random variable is by means of
the cumulative distribution function (cdf). The cdf of a
random variable X is a function that assigns to each
real value x the probability of X having values less
than or equal to x. Thus, the cdf for the discrete case is

PX)=pX =x) =Y p(x)

as<x

and for the continuous case is



F(x) = p(X < x) = j F(x)dx

Note that the cdfs are denoted by the uppercase
letters P(x) and F(x) to distinguish them from the
pmf p(x) and the pdf f(x). Note also that since p(X
=x)=0 for the continuous case, then
p(X <x)=p(X <x). The cdf has the following
properties as a direct consequence of the definitions
of cdf and probability:

F(oco) =1 and F(—o0) = 0.

F(x) is nondecreasing and right continuous.

f(x) = dF(x)/dx.

p(X = x) = F(x) — F(x — 0),
lim,_,q F(x — ¢).

pla < X <b)=F(b) — F(a).

The set of discontinuity points of F(x) is finite or
countable.

Every distribution function can be written as a lin-
ear convex combination of continuous distribu-
tions and step functions.

where F(x—0)=

1.3.7 Moments of Random Variables

The pmf or pdf of random variables contains all the
information about the random variables. For example,
given the pmf or the pdf of a given random variable,
we can find the mean, the variance, and other moments
of the random variable. The results in this section are
presented for the continuous random variables using
the pdf and cdf, f(x) and F(x), respectively. For the
discrete random variables, the results are obtained by
replacing f(x), F(x), and the integration symbol by
p(x), P(x), and the summation symbol, respectively.

Definition 11. Moments of Order k: Let X be a ran-
dom variable with pdf f(x), cdf F(x), and support A.
Then the kth moment my, around a € A is the real num-
ber

my = L (x — @) f(x) dx (10)

The moments around a =0 are called the central
moments.

Note that the Stieltjes—Lebesgue integral, Eq. (10),
does not always exist. In such a case we say that the
corresponding moment does not exist. However, Eq.
(10) implies the existence of
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j x — al*f () dx
A

which leads to the following theorem:

Theorem 3. Existence of Moments of Lower Order: If
the tth moment around a of a random variable X exists,
then the sth moment around a also exists for 0 < s < t.

The first central moment is called the mean or the
expected value of the random variable X, and is
denoted by u or E[X]. Let X and Y be random vari-
ables, then the expectation operator has the following
important properties:

E[c] = ¢, where ¢ is a constant.

ElaX +bY + c] = aE[X]+ DE[Y] + ¢; Ya, b, c € A.
a<Y<b=a<E[Y]<D

|E[Y]l < ET| ¥l].

The second moment around the mean is called the
variance of the random variable, and is denoted by
Var(X) or o?. The square root of the variance, o, is
called the standard deviation of the random variable.
The physical meanings of the mean and the variance
are similar to the center of gravity and the moment of
inertia, used in mechanics. They are the central and
dispersion measures, respectively.

Using the above properties we can write

= E[(X — )]

= E[X* = 2Xu + p?]

= E[X*] - 2uE[X ]+ W’ E1]

= E[X* - 21>+ 12

= E[X?]-1? (11)

which gives an important relationship between the
mean and variance of the random variable. A more
general expression can be similarly obtained:

E[(X —a)’]=0"+(n —a)’

1.4 UNIVARIATE DISCRETE MODELS

In this section we present several important discrete
probability distributions that often arise in engineering
applications. Table 2 shows the pmf of these distribu-
tions. For additional probability distributions, see
Christensen [2] and Johnson et al. [3].



Table 2 Some Discrete Probability Mass Functions that Arise in Engineering Applications

Distribution px) Parameters and support
. D if x=1 0<p<l
Bernoulli 1—p ifx=0 x€{0,1}
n . nef{l,2,...}
X 1 _ n—Xx
Binomial (x)p (=p) O0<p<l1
xef{0,1,...,n}
n (1 = py nell,2,..}
Nonzero binomial x )P P 0<p<l1
1—-(1-p) xef{l,2,...,n}
. 1 O<p<l1
Geometric p(1 —py vel(l,2,..)
ne{l,2,..}
: s s x—1 r X—r
Negative binomial ( 1 )p (1-p) 0<p<l
r= xef0,1,...,n}
, D\(N-D N (n,Nye{l,2,..},n<N
Hypergeometric M=« n max(0,n — N + D) < x < min(n, D)
) e A" A>0
Poisson o xef{0,1,...}
. A* A>0
Nonzero Poisson e 1) ye{l,2,..}
. O<p<l1
Logarithmic series S a>0
xIn(l —p) xe(l,2,..)
. ) Yu (1) O<p<l,a>0
Discrete Weibull a1-py —(1A-=p)" xef{0,1,..)
n(x)I'(n+1)
Yule m (x,n)e{l,2,...}
1.4.1 The Bernoulli Distribution 0 if x<0
Fx)={1-p f0<x<l1
The Bernoulli distribution arises in the following situa- 1 if x>1

tion. Assume that we have a random experiment with
two possible mutually exclusive outcomes: success,
with probability p, and failure, with probability
I —p. This experiment is called a Bernoulli trial.
Define a random variable X by

Y — 1 if we obtain success
—]0 if we obtain failure

Then, the pmf of X is as given in Table 2 under the
Bernoulli distribution. It can be shown that the corre-
sponding cdf is
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Both the pmf and cdf are presented graphically in
Fig. 5.

1.4.2 The Discrete Uniform Distribution

The discrete uniform random variable U(n) is a ran-
dom variable which takes n equally likely values. These
values are given by its support 4. Its pmf is

. n if xed
p(X_x)_{ 0 otherwise
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Figure 5 A graph of the pmf and cdf of a Bernoulli
distribution.

1.4.3 The Binomial Distribution

Suppose now that we repeat a Bernoulli experiment n
times under identical conditions (that is, the outcome
of one trial does not affect the outcomes of the others).
In this case the trials are said to be independent.
Suppose also that the probability of success is p and
that we are interested in the number of trials, X in
which the outcomes are successes. The random vari-
able giving the number of successes after n realizations
of independent Bernoulli experiments is called a bino-
mial random variable and is denoted as B(n, p). Its pmf
is given in Table 2. Figure 6 shows some examples of
pmfs associated with binomial random variables.

In certain situations the event X = 0 cannot occur.
The pmf of the binomial distribution can be modified

P

Binomial B {10, 104

pix} Binomial B {10, 0.25)

[Iu—'?—|—|—|—|—x
01 2 2 4 5 6 7 & 9 1C

X} . ., |
pix) Binomial B {10, 0.50}

Figure 6 Examples of the pmf of binomial random variables.
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to accommodate this case. The resultant random vari-
able is called the nonzero binomial. Its pmf is given in
Table 2.

1.4.4 The Geometric or Pascal Distribution

Suppose again that we repeat a Bernoulli experiment n
times, but now we are interested in the random vari-
able X, defined to be the number of Bernoulli trials
that are required until we get the first success. Note
that if the first success occurs in the trial number x,
then the first (x — 1) trials must be failures (see Fig. 7).
Since the probability of a success is p and the prob-
ability of the (x—1) failures is (1 —p)*~' (because
the trials are independent), then the
p(X = x) = p(1 — p)*~'. This random variable is called
the geometric or Pascal random variable and is
denoted by G(p).

1.4.5 The Negative Binomial Distribution

The geometric distribution arises when we are inter-
ested in the number of Bernoulli trials that are required
until we get the first success. Now suppose that we
define the random variable X as the number of
Bernoulli trials that are required until we get the rth
success. For the rth success to occur at the xth trial, we
must have (r — 1) successes in the (x — 1) previous
trials and one success in the rth trial (see Fig. 8).
This random variable is called the negative binomial
random variable and is denoted by NB(r, p). Its pmf
is given in Table 2. Note that the gometric distribution
is a special case of the negative binomial distribution
obtained by setting (r = 1), that is, G(p) = NB(1, p).

1.4.6 The Hypergeometric Distribution

Consider a set of N items (products, machines, etc.), D
items of which are defective and the remaining (N — D)
items are acceptable. Obtaining a random sample of
size n from this finite population is equivalent to with-
drawing the items one by one without replacement.

Brihability
Events f F [ 5

Experiments

Figure 7 [Illustration of the Pascal or geometric random
variable, where s denotes success and f* denotes failure.
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Figure 8 An illustration of the negative binomial random
variable.

This yields the hypergeometric random variable, which
is defined to be the number of defective items in the
sample and is denoted by HG(N, D, n).

Obviously, the number X of defective items in the
sample cannot exceed the total number of defective
items D nor the sample size n. Similarly, the number
(n — X) of acceptable items in the sample cannot be
less than zero or exceed n minus the total number of
acceptable items (N — D). Thus, we must have
max(0,7n — (N — D)) < X <min(n, D). This random
variable has the hypergeometric distribution and its
pmf is given in Table 2. Note that the numerator in
the pmf is the number of possible samples with x defec-
tive and (n — x) acceptable items, and that the denomi-
nator is the total number of possible samples.

The mean and variance of the hypergeometric ran-
dom variable are D and

DIN-n( D
N—1 (_N>

respectively. When N tends to infinity this distribution
tends to the binomial distribution.

1.4.7 The Poisson Distribution

There are events which are not the result of a series of
experiments but occur in random time instants or loca-
tions. For example, we can be interested in the number
of traffic accidents occurring in a time interval, or the
number of vehicles arriving at a given intersection.

For these types of random variables we can make
the following (Poisson) assumptions:

The probability of occurrence of a single event in an
interval of brief duration dr is adt, that is,
pa(1) = adt + o(dr)*, where « is a positive con-
stant.

The probability of occurrence of more than one
event in the same interval df, is negligible with
respect to the previous one, that is

Jim = 0 (for x > 1)
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The number of events occurring in two nonoverlap-
ping intervals are independent random variables.

The probabilities p,(x) of x events in two time inter-
vals of identical duration, ¢, are the same.

Based on these assumptions, it can be shown that the
pmf of this random variable is:
—al X X

e o't
pi(x) = —
x!

Letting A = at, we obtain the pmf of the Poisson ran-
dom variable as given in Table 2. Thus, the Poisson
random variable gives the number of events occurring
in period of given duration and is denoted by P(A),
where A = at, that is, the intensity « times the duration
t.

As in the nonzero binomial case, in certain situa-
tions the event X = 0 cannot occur. The pmf of the
Poisson distribution can be modified to accommodate
this case. The resultant random variable is called the
nonzero Poisson. Its pmf is given in Table 2.

1.5 UNIVARIATE CONTINUOUS MODELS

In this section we give several important continuous
probability distributions that often arise in engineering
applications. Table 3 shows the pdf and cdf of these
distributions. For additional probability distributions,
see Christensen [2] and Johnson et al. [4].

1.5.1 The Continuous Uniform Distribution

The uniform random variable U(a, b) has already been
introduced in Sec. 1.3.5. Its pdf is given in Eq. (9), from
which it follows that the cdf can be written as (see
Fig. 9):

0 if x<a

X—a .
fa<x<b

Fx) = b—a
1 if x>»b

1.5.2 The Exponential Distribution

The exponential random variable gives the time
between two consecutive Poisson events. To obtain
its cdf F(x) we consider that the probability of X
exceeding x is equal to the probability of no events
occurring in a period of duration x. But the probability
of the first event is 1 — F(x), and the probability of
zero events is given by the Poisson probability distri-
bution. Thus, we have



Table 3 Some Continuous Probability Density Functions that Arise in Engineering

Applications
Distribution p(x) Parameters and Support
) 1 a<b
Uniform h—a a<x<b
. i A>0
Exponential re x>0
) Ax)FTT ™™ A>0,ke{l,2,..}
Gamma T x>0
Lr+1 . —1 rt>0
Beta l"(l‘)l"(t)x (I=x) 0<x<l1
—00 < L < 00
Normal ! (x =’ 6>0
exp| — 3
o2 20 —00 < X < 00
—00 < 4L < 00
Log-normal ! exp( — (Inx — p)’ o>0
xo/ 27 202 x>0
—x/2 _(n/2)—1 nefl,2, ...
Central chi-squared ¢ X { }
2"7T(n/2) xz0
2 o>0
. X X
Rayleigh 2 Xp (— F) x>0
—(n+1)/2
Central ¢ L((n+1)/2) X netl.2.
— 1 +— —00 < X < 00
I'(n/2)/nmx n
Central F C((n + 112)/2))1'1”/2ngZ/2x("‘/2)7l (n,my) efl,2,...}

x>0

T(n, /2)T (1, /2)(ny x + np) 1)/ >

1 — F(x) = py(x) =™
from which follows the cdf:
F(x)=1—¢*" x>0

Taking the derivative of F(x) with respect to x, we
obtain the pdf

the time it takes for Y to be equal to k. Thus the
probability that X is in the interval (x,x 4+ dx) is
f(x)dx. But this probability is equal to the probability
of there having occurred (kK — 1) Poisson events in a
period of duration x times the probability of occur-
rence of one event in a period of duration dx. Thus,
we have

_dF(x) . ;. —Ax k—1
f(x) = o = e x>0 Fyde = © (k(fxl))' 5 de
The pdf and cdf for the exponential distribution are
drawn in Fig. 10. from which we obtain
AOx k—le—Ax
1.5.3 The Gamma Distribution Sf(x) = ( (k)— D 0<x<oo (12)

Let Y be a Poisson random variable with parameter A.
Let X be the time up to the kth Poisson event, that is,
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Expression (12), taking into account that the gamma
function for an integer k satisfies
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Figure 9 An example of pdf and cdf of the uniform random
variable.

r'(k) = J:o e dx = (k= 1)) (13)

can be written as

k—1 —Aix
f =t 0z <o (14)
which is valid for any real positive k, thus, generalizing
the exponential distribution. The pdf in Eq. (14) is
known as the gamma distribution with parameters k
and A. The pdf of the gamma random variable is
plotted in Fig. 11.

1.5.4 The Beta Distribution

The beta random variable is denoted as Beta(r, s),
where r > 0 and s > 0. Its name is due to the presence
of the beta function

) Fi
1{x) 1.*%

Figure 10 An example of the pdf and cdf of the exponential
random variable.
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Figure 11 Examples of pdf of some gamma random vari-
ables G(2, 1), G(3, 1), G(4, 1), and G(5, 1), from left to right.

1

B(p,q) = J 1 -0"Tldx p>0,¢>0
0
Its pdf is given by
r—1 s—1
X7 (1—x)
— 0<x<l1 15
Ar.s) =S (15)

Utilizing the relationship between the gamma and
the beta functions, Eq. (15) can be expressed as
F(V+S) r—1

X1 = x) !

(") T(s) O=x=1

as given in Table 3. The interest in this variable is
based on its flexibility, because it can take many dif-
ferent forms (see Fig. 12), which can fit well many sets
of experimental data. Figure 12 shows different exam-
ples of the pdf of the beta random variable. Two

\\\\_\‘ ’J__,;
-

1.5 ""\__\_H ,-"-__'_'_—\-_- —_ ‘
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Figure 12 Examples of pdfs of beta random variables.



particular cases of the beta distribution are interesting.
Setting (r=1, s=1), gives the standard uniform U(0, 1)
distribution, while setting (r = 1,s =2orr=2,5s=1)
gives the triangular random variable whose cdf is given
by f(x) =2x or f(x) =2(1 — x), 0 < x < 1. The mean
and variance of the beta random variable are

r rs
and 5
r+s r+s+D(r+s)
respectively.

1.5.5 The Normal or Gaussian Distribution

One of the most important distributions in probability
and statistics is the normal distribution (also known as
the Gaussian distribution), which arises in various
applications. For example, consider the random vari-
able, X, which is the sum of n identically and indepen-
dently distributed (iid) random variables X;. Then, by
the central limit theorem, X is asymptotically normal,
regardless of the form of the distribution of the ran-
dom variables X;.

The normal random variable with parameters u and
o is denoted by N(u, o) and its pdf is

! ex (x = p)” 00 < X < 00
o2 P 207

J) =

The change of variable, Z = (X — u)/o, transforms
a normal N(u, 02) random variable X in another ran-
dom variable Z, which is N(0.1). This variable is called
the standard normal random variable. The main inter-
est of this change of variable is that we can use tables
for the standard normal distribution to calculate prob-
abilities for any other normal distribution. For exam-
ple, if X is N(u, o), then

X —nu x—,u)
<
o o

Az <) o ()

MX<XFH{

where ®(z) is the cdf of the standard normal distribu-
tion. The cdf ®(z) cannot be given in closed form.
However, it has been computed numerically and tables
for ®(z) are found at the end of probability and statis-
tics textbooks. Thus we can use the tables for the stan-
dard normal distribution to calculate probabilities for
any other normal distribution.
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1.5.6 The Log-Normal Distribution

We have seen in the previous subsection that the sum
of iid random variables has given rise to a normal
distribution. In some cases, however, some random
variables are defined to be the products instead of
sums of iid random variables. In these cases, taking
the logarithm of the product yields the log-normal dis-
tribution, because the logarithm of a product is the
sum of the logarithms of its components. Thus, we
say that a random variable X is log-normal when its
logarithm In X is normal.

Using Theorem 7, the pdf of the log-normal random
variable can be expressed as

1 (Inx — p)?

where the parameters p and o are the mean and the
standard deviation of the initial random normal vari-
able. The mean and variance of the log-normal ran-
dom variable are 72 and (e — %),
respectively.

x>0

1.5.7 The Chi-Squared and Related Distributions

Let Y,,...,Y, be independent random variables,
where Y; is distributed as N(u;, 1). Then, the variable

X = i Y7
i=1

is called a noncentral chi-squared random variable with
n degrees of freedom, noncenrality parameter
r=>3", u?; and is denoted as Xﬁ(k). When A =0 we
obtain the central chi-squared random variable, which
is denoted by y2. The pdf of the central chi-squared
random variable with n degrees of freedom is given in
Table 3, where I'(.) is the gamma function defined in
Eq. (13).

The positive square root of a x>(A) random variable
is called a chi random variable and is denoted by
x»(X). An interesting particular case of the yx,(A) is
the Rayleigh random variable, which is obtained for
(n=2 and A =0). The pdf of the Rayleigh random
variable is given in Table 3. The Rayleigh distribution
is used, for example, to model wave heights [5].

1.5.8 The ¢ Distribution

Let Y, be a normal N(x, 1) and Y, be a x> independent
random variables. Then, the random variable



Xy

JYy/n

is called the noncentral Student’s t random variable
with n degrees of freedom and noncentrality parameter
A and is denoted by 7,(A). When A = 0 we obtain the
central Student’s t random variable, which is denoted
by ¢, and its pdf is given in Table 3. The mean and
variance of the central ¢ random variable are 0 and
n/(n —2),n > 2, respectively.

T =

1.5.9 The F Distribution

Let X; and X, be two independent random variables
distributed as Xﬁl()\l) and Xi(kz), respectively. Then,
the random variable

X:Xl/nl
X, /ny

is known as the noncentral Snedecor F random variable
with n; and n, degrees of freedom and noncentrality
parameters A; and X,; and is denoted by F,, ,,(A;, 1,).
An interesting particular case is obtained when
A = A, =0, in which the random variable is called
the noncentral Snedecor F random variable with n
and n, degrees of freedom. In this case the pdf is
given in Table 3. The mean and variance of the central
F random variable are

1y

2
}12—2 ny >

and

Zn%(nl +ny, —2)
ny(ny — 2)2(’72 -4

n, >4

respectively.

1.6 MULTIDIMENSIONAL RANDOM
VARIABLES

In this section we deal with multidimensional random
variables, that is, the case where n > 1 in Definition 7.
In random experiments that yield multidimensional
random variables, each outcome gives n real values.
The corresponding components are called marginal
variables. Let {X,..., X],} be n-dimensional random
variables and X be the n x 1 vector containing the
components {Xi, ..., X,}. The support of the random
variable is also denoted by A4, but here 4 is multidi-
mensional. A realization of the random variable X is
denoted by x, an n x 1 vector containing the compo-
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nents {x;, ..., x,}. Note that vectors and matrices are
denoted by boldface letters. Sometimes it is also con-
venient to use the notation X = {Xi,..., X,}, which
means that X refers to the set of marginals
{Xi, ..., X,}. We present both discrete and continuous
multidimensional random variables and study their
characteristics. For some interesting engineering multi-
dimensional models see Castillo et al. [6,7].

1.6.1 Multidimensional Discrete Random
Variables

A multidimensional random variable is said to be dis-
crete if its marginals are discrete. The pmf of a multi-
dimensional discrete random variable X is written as
p(x) or p(xy, ..., x,) which means
p(X) :p(xlv "'9xn) :p(Xl = X1, "'vXn = xn)

The pmf of multidimensional random variables can be
tabulated in probability distribution tables, but the
tables necessarily have to be multidimensional. Also,
because of its multidimensional nature, graphs of the
pmf are useful only for n = 2. The random variable in
this case is said to be two-dimensional. A graphical
representation can be obtained using bars or lines of
heights proportional to p(x, x,) as the following
example illustrates.

Example 2. Consider the experiment consisting of
rolling two fair dice. Let X = (X1, X,) be a two-dimen-
sional random variable such that X\ is the outcome of
the first die and X, is the minimum of the two dice. The
pmf of X is given in Fig. 13, which also shows the
marginal probability of X,. For example, the probabil-
ity associated with the pair (3,3) is 4/36, because,
according to Table 4, there are four elementary events
where X, = X, = 3.

Table 4 Values of X, = min(X, Y) for Different Outcomes
of Two Dice X and Y

Die 2

Die 1 1

[\
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Figure 13 The pmf of the random variable X = (X7, X>).

The pmf must satisfy the following properties:

Z Zp(xl, X)) =1 and

x1€A4 x,€A4

p=(x1,x) =0

Play =X, <b,a <X, < by)

= Z Z p(x]’XZ)

a1 <x1=by ay<xy=by

Example 3. The Multinomial Distribution: We have
seen in Sec. 1.4.3 that the binomial random variable
results from random experiments, each one having two
possible outcomes. If each random experiment has more
than two outcomes, the resultant random variable is
called a multinomial random variable. Suppose that
we perform an experiment with k possible outcomes ry,
..., I with probabilities p, ..., pi, respectively. Since
the outcomes are mutually exclusive and collectively
exhaustive,  these  probabilities — must  satisfy
Zf;l pi = 1. If we repeat this experiment n times and
let X; be the number of times we obtain outcomes r;, for
i=1,....k, then X ={Xq,..., X}} is a multinomial
random variable, which is denoted by M(n; py, ..., pi)-
The pmf of M(n; py,....pi) is

n!

p(x13x2’ <o X3 D1y P2s ""pk) =

X!, xg!

X1 Xo Xi
Py Py P
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The mean of X;, variance of X;, and covariance between
X; and X; are

i = np; 01'25 =npi(l —p;) and 052/ = —mp;p;

respectively.

1.6.2 Multidimensional Continuous Random
Variables

A multidimensional random variable is said to be con-
tinuous if its marginals are continuous. The pdf of an
n-dimensional continuous random variable X is written
as f(x) or f(xy,...,x,). Thus f(x) gives the height of
the density at the point x and F(x) gives the cdf, that is,

Fx)=p(X; <x,..., X, <Xx,)

X, X
:J J f(xq, ..., x,)dx;...dx,
—00 —00
Similarly, the probability that X; belongs to a given
region, say, a; < X; < b, for all i is the integral

play <X, <by,....a, <X, <b,)

b by
=J J f(xq, ..., x,)dx; ... dx,

ay ay

The pdf satisfies the following properties:
f(xy,...,x,)>0

b by
J J f(xy, ..., x)dxy...dx, =1

day ap

Example 4. Two-dimensional cumulative distribution
function. The cdf of a two-dimensional random variable
(X1, X) is

Xy X
F(X1,X2)=J J Sf(x1, xp) dxy dxy

—00 oo

The relationship between the pdf and cdf is

P F(x1, x1)
Bxl 3X2

f(x1,x0) =

Among other properties of two-dimensional cdfs we men-
tion the following:

F(oc0,00) = 1.

F(—o00, xp) = F(x;, —00) = 0.

F(x; + ay, x, + ay) > F(xy, x,), where a;, a, > 0.

play < Xy <by,a < Xy < by)=F(by, by) —
F(ay, by) = F(by, ay) + F(ay, ay).

p(x; = X1, X5 = x;) = 0.



For example, Fig. 14 illustrates the fourth property,
showing how the probability that (X, X5) belongs to a
given rectangle is obtained from the cdf.

1.6.3 Marginal and Conditional Probability
Distributions

We obtain the marginal and conditional distributions
for the continuous case. The results are still valid for
the discrete case after replacing the pdf and integral
symbols by the pmf and the summation symbol,
respectively. Let {X1, ..., X,} be n-dimensional contin-
uous random variable with a joint pdf f(xy,..., x,).
The marginal pdf of the ith component, X;, is obtained
by integrating the joint pdf over all other variables.
For example, the marginal pdf of X; is

f(x»:fo Jm Fu

—00 —00

LX) dxs ... dx,

We define the conditional pdf for the case of two-
dimensional random variables. The extension to the n-
dimensional case is straightforward. For simplicity of
notation we use (X, Y) instead of (Xj, X,). Let then
(Y, X) be a two-dimensional random variable. The
random variable Y given X =x is denoted by
(Y | X =x). The corresponding probability density
and distribution functions are called the conditional
pdf and cdf, respectively.

The following expressions give the conditional pdf
for the random variables (Y | X = x) and (X' | Y = y):

. _ﬁX,Y)(xsy)
fY|X:x(y) = W
_fiX.Y)(x’y)
Par= ) =" 0
¥
o = +
T )
A
v *.t___4|_
a b %

Figure 14 An illustration of how the probability that (X,
X,) belongs to a given rectangle is obtained from the cdf.
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It may also be of interest to compute the pdf con-
ditioned on events different from Y = y. For example,
for the event Y < y, we get

pX <x,Y <y
F <y = X< Y< ==
X|Y7}(x) pX =x|Y <y (Y <)

_ Fx vy(x,»)
Fy(»)

1.6.4 Moments of Multidimensional Random
Variables

The moments of multidimensional random variables
are straightforward extensions of the moments for
the unidimensional random variables.

Definition 12. Moments of a Multidimensional Random
Variable: The moment Wy, _ima,,. . ©0f order
(ky, ..., k), k; € {0, 1, ...} with respect to the point a =
(ai,...,a,) of the n-dimensional continuous random
variable X = (X4, ..., X,), with pdf f(xi,...,x,) and
support A, is defined as the real number

J7 .. J7 (Xl — al)kl(xz - az)kz cee (xn - an)k”
dF(xy, ..., X,)
(16)

For the discrete random variable Eq. (16) becomes

k k> kn
Z (x1 —a)" (v — @)™ ... (%, — @)

(X1,-.,x,)€A
p(xlv LR xn)
where f(xy, ..., x,) is the pdf of X.

The moment of first order with respect to the origin
is called the mean vector, and the moments of second
order with respect to the mean vector are called the
variances and covariances. The variances and covar-
iances can conveniently be arranged in a matrix called
the variance—covariance matrix. For example, in the
bivariate case, the variance—covariance matrix is

Y — (O'XX Oxy >
Oyx Oyy
where oyy = Var(X) and oyy = Var(Y), and

o0

(x = ux)(y — uy)dF(x, y)

Oyxy =0yx = J
—0Q



is the covariance between X and Y, where uy is the
mean of the variable X. Note that X is necessarily
symmetrical.

Figure 15 gives a graphical interpretation of the
contribution of each data point to the covariance and
its corresponding sign. In fact the contribution term
has absolute value equal to the area of the rectangle
in Fig. 15(a). Note that such area takes value zero
when the corresponding points are on the vertical or
the horizontal lines associated with the means, and
takes larger values when the point is far from the
means.

On the other hand, when the points are in the first
and third quadrants (upper-right and lower-left) with
respect to the mean, their contributions are positive,
and if they are in the second and fourth quadrants
(upper-left and lower-right) with respect to the mean,
their contributions are negative [see Fig. 15(b)].

Another important property of the variance—covar-
iance matrix is the Cauchy-Schwartz inequality:

loxyl < V/oxxoyy (17)

The equality holds only when all the possible pairs
(points) are in a straight line.

The pairwise correlation coefficients can also be
arranged in a matrix

p= (PXX ny)
Pyx Pyy
This matrix is called the correlation matrix. Its diago-

nal elements pyy and pyy are equal to 1, and the off-
diagonal elements satisfy —1 < pyy < 1.

1.6.5 Sums and Products of Random Variables

In this section we discuss linear combinations and pro-
ducts of random variables.

[N
I — +

R

My X Hy
I3 hy

Figure 15 Graphical illustration of the meaning of the
covariance.
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Theorem 4. Linear Transformations: Let (X|,..., X))
be an n-dimensional random variable and py and Xy be
its mean and covariance matrix. Consider the linear
transformation

Y =CX

where X is the column vector containing (X1, ...,X,)
and C is a matrix of order m x n. Then, the mean vector
and covariance matrix of the m-dimensional random
variable Y are

py =Cuy and X, =CZ,C’

Theorem 5. Expectation of a Product of Independent
Random Variables: If X1, ..., X, are independent ran-
dom variables with means

E[Xq], ..., E[X,]

respectively, then, we have

E[ﬁXi] = ﬁE[Xi]
i=1 i=1

That is, the expected value of the product of independent
random variables is the product of their individual
expected values.

1.6.6 Multivariate Moment-Generating
Function

Let X =(Xy,...,X,) be an n-dimensional random
variable with cdf F(xi, ..., x,). The moment-generat-
ing function My(t;,...,t,) of X is

Mty 1) = J R GR (e L )
.

Like in the univariate case, the moment-generating
function of a multidimensional random variable may
not exist.

The moments with respect to the origin are

TN (1, ..., 1)
oty ... oty

E[X* .. X&) =

ty==t,=0



Example 5. Consider the random variable with pdf

.f(xlv”'vxn)

n n
| Tren(- )
= i=l J=1
0 otherwise
A >0 Vi=1,...,n

if 0 <x; <o0

Then, the moment-generating function is

My(ty,...,t,) = Jw...JmeXp<ili>fi> ﬁki
J=1 1

0 0 el

exp(— Z )»,x,-) dxy ...dx,
i=1

exp |:Z x;(t; — Ai):| dxy . ..dx,

= I:)Lij explx;(t; — A))] dxi]
0

n A.[

i=1

1.6.7 The Multinormal Distribution

Let X be an n-dimensional normal random variable,
which is denoted by N(u, X), where u and X are the
mean vector and covariance matrix, respectively. The
pdf of X is given by

_ 1 ~0.5x—p)" L (x—p)
1) = e

The following theorem gives the conditional mean and
variance—covariance matrix of any conditional vari-
able, which is normal.

Theorem 6. Conditional Mean and Covariance
Matrix: Let Y and Z be two sets of random variables
having a multivariate Gaussian distribution with mean
vector and covariance matrix given by

X X
”:<”y> and E:( YY YZ
Hz Lzy Xzz
where py and Zyy are the mean vector and covariance
matrix of Y, u, and X, are the mean vector and cov-
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ariance matrix of Z, and Xy, is the covariance of Y and
Z. Then the CPD of Y given Z =z is multivariate
Gaussian with mean vector py ,_. and covariance
matrix Xy z_., where

Ryiz— = By + ZyzX72(z — 1) (18)
Yyiz—: = Eyy — TyzLzeTzy

For other properties of the multivariate normal distri-
bution, see any multivariate analysis book, such as
Rencher [8].

1.6.8 The Marshall-Olkin Distribution

We give two versions of the Marshall-Olkin distribu-
tion with different interpretations. Consider first a sys-
tem with two components. Both components are
subject to Poissonian processes of fatal shocks, such
that if one component is affected by one shock it
fails. Component 1 is subject to a Poisson process
with parameter A;, component 2 is subject to a
Poisson process with parameter A,, and both are sub-
ject to a Poisson process with parameter Aj,. This
implies that

F(s,t)=p[X >5,Y > 1]
=plZi(s;01) =0, Zy(8; Ap) =0, }
Zp(max(s, 1); A2) =0, }
= exp[—A15 — Ayt — Ayp max(s, t)]

where Z(s; 1) represents the number of shocks pro-
duced by a Poisson process of intensity A in a period
of duration s and F(s, ) is the survival function.

This model has another interpretation in terms of
nonfatal shocks as follows. Consider the above model
of shock occurrence, but now suppose that the shocks
are not fatal. Once a shock of intensity A; has
occurred, there is a probability p; of failure of compo-
nent 1. Once a shock of intensity A, has occurred, there
is a probability p, of failure of component 2 and,
finally, once a shock of intensity A, has occurred,
there are probabilities pgg, po1, Pio, and py; of failure
of neither of the components, component 1, compo-
nent 2, or both components, respectively. In this case
we have

F(s,f)=P[X >5,Y > 1]
= exp[—81s — (Szl — 812 max(s, l)]
where
81 = Mp1 + Apors 82 = Aapr + Aiapios
812 = AaPoo



This two-dimensional model admits an obvious gener-
alization to n dimensions:

X,) = exp[— Z Aix; — Z A max(x;x;)
i=1

i<j

- E Al Max(X;, X;, X)) — - - -
i<j<k

F(Xl, ey
- )"12.“)1 max(xl P xn)]

1.7 CHARACTERISTICS OF RANDOM
VARIABLES

The pmf or pdf of random variables contains all the
information about the random variables. For example,
given the pmf or the pdf of a given random variable,
we can find the mean, the variance, and other moments
of the random variable. We can also find functions
related to the random variables such as the moment-
generating function, the characteristic function, and
the probability-generating function. These functions
are useful in studying the properties of the correspond-
ing probability distribution. In this section we study
these characteristics of the random variables.

The results in this section is presented for continu-
ous random variables using the pdf and cdf, f(x) and
F(x), respectively. For discrete random variables, the
results are obtained by replacing f(x), F(x), and the
integration symbol by p(x), P(x), and the summation
symbol, respectively.

1.7.1 Moment-Generating Function

Let X be a random variable with a pdf f(x) and cdf
F(x). The moment-generating function (mgf) of X is
defined as

e™ dFy(x)

—00

My(t) = E[e™] = j

In some cases the moment-generating function does
not exist. But when it exists, it has several very impor-
tant properties.

The mgf generates the moments of the random vari-
able, hence its name. In fact, the k central moment of
the random variable is obtained by evaluating the kth
derivative of My (¢) with respect to f at t = 0. That is, if
M (k)(t) is the kth derivative of M y(f) with respect to ¢,
then the kth central moment of X is my = M (k)(O).
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Example 6. The moment-generating function of the
Bernoulli random variable with pmf

_p if x=1
p(x)_{l—p ifx=0
is
M) = E[e*]=e""p+e""(1 —p)=1—p+pe'

For example, to find the first two central moments of
X, we first differentiate M y(t) with respect to t twice and
obtain  MW(1)=pe' and M) =pe'. In fact,
MPB(1) = pe', for all k. Therefore, M®(0) = p, which
proves that all central moments of X are equal to p.

Example 7. The moment-generating function of the
Poisson random variable with pmf

e—A X
p(x) = xe{0,1,...}
is
00 et»c —A)L»c ) x
MO = e =) =ty
x=0 x=0
_ e—xexe’ _ e/\(e’—l)

For example, the ﬁrst derivative of M(t) with respect to t
is M(l)(t) re” e’e’x" from which it follows that the
mean of the Poisson random variable is MW(0) = A
The reader can show tht E[X*]= M®P0) =1+ 212,
from which it follows that Var(x) = A, where we have
used Eq. (11).

Example 8. The moment-generating function of the
exponential random variable with pdf

f(x) =re™™ x>0

from which it follows that M(l)(t) =271 = t/0)? and,
hence M (1)(0) = 1/, which is the mean of the exponen-
tial random variable.

Tables 5 and 6 give the mgf, mean, and variance of
several discrete and continuous random variables. The
characteristic function ¥ y(¢) is discussed in the follow-
ing subsection.



Table 5 Moment-Generating Functions, Characteristic Functions, Means, and Variances of
Some Discrete Probability Distributions

Distribution My (1) Yy (1) Mean Variance
Bernoulli 1 —p+pe 1 —p+ pe" p p(1 —p)
Binomial (1 —p+peY (1 = p+ pe")" np mp(1 — p)
! it 1 (] - )
. pe pe /p P
Geometric g
T=el=p)  1-e(1-p) r
AN LN 1l -p) (1l —=p)
Negative binomial ( pe ,) pe 2
1 —ge 1 —ge" p p
Poisson D =D A A
1.7.2  Characteristic Function p(x) = - x=1,....n
n

Let X be a univariate random variable with pdf f(x)
and cdf F(x). Then, the characteristic function (cf) of X
is defined by

. 1 1N .
%((l) — Zelt.xp(x) — Zell.xz — EZ ettx
50 X X i=1

B 1 e[t(eitn _ 1)
n (e —1)

" f(x) dx

—00

Yn(0) = j (19)

where i is the imaginary unit. Like the mgf, the cf is
unique and completely characterizes the distribution of
the random variable. But, unlike the mgf, the cf always
exists.

Note that Eq. (19) shows that ¥y(¢) is the Fourier
transform of f(x).

which is obtained using the well-known formula for the
sum of the first n terms of a geometric series.

Example 10. The characteristic function of the contin-
uous uniform random variable U(0, a) with pdf

r=1{5

f0<x<a
otherwise

Example 9. The characteristic function of the discrete
uniform random variable U(n) with pmf

Table 6 Moment-Generating Functions, Characteristic Functions, Means, and Variances of
Some Continuous Probability Distributions

Distribution My(2) Yy (D) Mean Variance
th _ ta ith __ita a-+ b 2
Uniform ¢ ¢ ?76 (b—a)
(b — a) ith — a) 2 B
; A it\ ! 5
Exponential (1 - X) <1 — X) A A
A ir\ ™" R
Gamma (1 — X) <1 _ X) Ak I
Normal Snrta’ ) =o' /2 o
Central chi-squared a1- 21)"’/ 2 a- 2,',)**!/2 n m
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Yy(t) = J“ e,‘le dy — 1 ﬂ a: S
0 a N

a it |, iat

Some important properties of the characteristic
function are:

vy =1

lYx(0)] < L.

Yy(—1) = ¥y (1), where Z is the conjugate of z.

If Z=aX + b, where X is a random variable, and
a and b are real -constants, we have
V(1) = e Wy(af), where ¥y (f) and ¥,(7) are
the characteristic functions of Z and X, respec-
tively.

The characteristic function of the sum of two inde-
pendent random variables is the product of their
characteristic  functions, that is, ¥y, y(?)
= Yy ()Yy(2).

The characteristic function of a linear convex com-
bination of random variables is the linear convex
combination of their characteristic functions with
the same coefficients: V,r 1, (1) = ayx (1) +
0!

The characteristic function of the sum of a random
number N iid random variables {X7,..., X,} is
given by

Ys(h) = 1ﬂN(

where ¥y (f), ¥ (f), and g(?) are the character-
istic functions of X;, N and S = Zfi | X, respec-
tively.

log 1P)((f))
i

One of the main applications of the characteristic
function is to obtain the central moments of the corre-
sponding random variable. In fact, in we differentiate
the characteristic function k times with respect to ¢, we
get

o0

3k f(x) dx

wmzj

—00

which for ¢ = 0 gives

X" dF (x) = *my

MW##F

from which we have
v(0)

l'k

k= (20)

where my, is the kth central moment of X.
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Example 11. The central moments of the Bernoulli
random variable are all equal to p. In effect, its charac-
teristic function is

Yy (1) = pe' +q

and, according to Eq. (20), we get

l’k

_Wo _pit_
k — l.k -

Example 12.  The characteristic function of the gamma
random variable Gamma(p, a) is

wm=(vﬂ)p
a

The moments with respect to the origin, according to Eq.
(20), are

:wgﬁ)(o):P(P—l)...(p_k_;_l)

i* a*

my

Tables 5 and 6 give the cf of several discrete and
continuous random variables.

Next, we can extend the characteristic function to
multivariate distributions as follows. Let X = (X1, ...,
X,) be an n-dimensional random variable. The charac-
teristic function of X is defined as

0 loe]
Uy (1) = J .. J oI 1,,)
oo .
dFy(xy, ..., X,)

where the integral always exists.
The moments with respect to the origin can be
obtained by

A (1 O 1)
Loeendk i)

m,

Example 13. Consider the random variable with pdf

f(x11~~"x11)

n
()\,-e_)“'x’) if0<x;<oo0;i=1,...,n
—1

=

0 otherwise

Its characteristic function is



o0 (o¢] .
Yy(t) = . J T EIN) gE (LX)
—00 —00
o0 o0 n n
= e J eXp ZZ t,'xl‘ l—[()\.ie_)\fxi)
0 0 i=1 i=1
dxy ...dx,
o0 oo N .
= .. J [ ey dx, ... dx,
0 0 =1
n o0
:H()‘ij xi(it, ’\)d/\)
i=1 0
_ SR _ ﬁ(l ili) !
e )‘l — l[l' i1 )‘i
Example 14. The characteristic function of the multi-

normal random variable is

Z klkt

kj=
iy ons = t -
(1 1) =exp|i Zkﬂk 5

Example 15. The characteristic function of the multi-
nominal random variable, M (n; py, ..., pi), can be writ-
ten as

k
o(ty, ..., tp) = Zexp <Z itjxj>
=1

p(x]7 X2y eeny xk)
i1\ X
= e
=Y e
(pzellz)‘(z o (pkell;\)‘(/\

k n
= (ijen,- )
=1

1.8 TRANSFORMATIONS OF RANDOM
VARIABLES

1.8.1 One-to-One Transformations

Theorem 7. Transformations of Continuous Random

Variables: Let (X|,...,X,) be an n-dimensional ran-
dom variable with pdf f(xy, ..., x,) defined on the set A
and let
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Yi=g1(Xy,.... X))
Y, =g, ..., X))
: @1
Yn :gn(Xl"-"Xn)

be a one-to-one continuous transformation from the set
A to the set B. Then, the pdf of the random variable

(Yy,...,Y,) on the set B, is
SO ) Oy s
hn(ylt Y25 eoes yn))' det(J)l

where

X =mh(Y,...,Y,)
X, =h(Y, ..., Y,

Xn = hn(Ylv LR Yn)

is the inverse transformation of Eq. (21) and |det(J)|
the absolute value of the determinant of the Jacobian
matrix J of the transformation. The ijth element of J
is given by 0X;/9Y;.

Example 16. Let X and Y be two independent normal

N(0, 1) random variables. Then the joint pdf is

1 —x/z1 —}2/2
VL Vi

— 0 <X, y<o©

fX y(x, ) =

Consider the transformation

U=X+Y
V=X-Y

which implies that
X=U+V)/2
Y=U-V)2

Then the Jacobian matrix is

g (x/U axjav _ (12 12
“\oavsou avsov )~ \ 12 —12

with | det(d)| = 1/2. Thus, the joint density of U and V
becomes

s = ool -4 (5 )}

1 2, 2
— /AT /A — 00 < U,V < 0
4




which is the product of a function of u and a function of
v defined in a rectangle. Thus, U and V are independent
N(0, 2) random variables.

1.8.2 Other Transformations

If the transformation Eq. (21) is not one-to-one, the
above method is not applicable. Assume that for each
point (x, ..., x,) in A there is one point in B, but each
point in B, has more than one point in 4. Assume
further that there exists a finite partition (4, ..., 4,),
of A, such that the restriction of the given transforma-
tion to each A;, is a one-to-one transformation. Then,
there exist transformations of B in A4; defined by

X] :hli(Yl,..., Yn)
X2 :hzi(Yl, ey Yn)

Xn = hni(Yl’---’ Yn)

with jacobians J; i=1,...,m. Then, taking into
account that the probability of the union of disjoint
sets is the sum of the probabilities of the individual
sets, we obtain the pdf of the random variable
(Y],..., Yn):

m

8o ) = D [y, - byl det(3))]
i=1

1.9 SIMULATION OF RANDOM
VARIABLES

A very useful application of the change-of-variables
technique discussed in the previous section is that it
provides a justification of an important method for
simulating any random variable using the standard
uniform variable U(0, 1).

1.9.1 The Univariate Case

Theorem 8. Let X be a univariate random variable with
cdf F(x). Then, the random variable U = F(x) is distrib-
uted as a standard uniform variable U(0, 1).

Example 17.  Simulating from a  Probability
Distribution: To generate a sample from a probability
distribution f(x), we first compute the cdf,
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Fo=pX =9 =] fwa
—0Q0

We then generate a sequence of random numbers {uy,
. u,} from UQ,1) and obtain the corresponding
values {xi,...,x,} by solving F(x))=u;,i=1,...n,
which gives x; = H™ '(u;), where H™'(u;) is the inverse
of the cdf evaluated at u;. For example, Fig. 16 shows the
cdf F(x) and two values x| and x, corresponding to the
uniform U(0, 1) numbers u; and u,.

Theorem 9. Simulating Normal Random
Variables: Let X and Y be independent standard uni-
form random variables U(0, 1). Then, the random vari-
ables U and V defined by

U = (=2log X)"?sin(27Y)
V = (=2log X)"/? cos(2nY)
are independent N(0, 1) random variables.
1.9.2 The Multivariate Case
., X,,), we can simulate

In the multivariate case (X7, ..
using the conditional cdfs:

F(xl)v F(X2|X1), R F(xn|xl7 ) xnfl)

as follows. First we simulate X; with F(x;) obtaining
x1. Once we have simulated Xj_; obtaining x;_;, we
simulate X, using F(xi|xy, ..., X;_1), and we continue
the process until we have simulated all X’s. We repeat
the whole process as many times as desired.

1.10 ORDER STATISTICS AND EXTREMES

Let (X1,...,X,) be a random sample coming from a
pdf f(x) and cdf F(x). Arrange (X;,...,X,) in an

Figure 16 Sampling from a probability distribution f(x)
using the corresponding cdf F(x).



increasing order of magnitude and let X7, <--- < X,,.,
be the ordered values. Then, the rth element of this
new sequence, X,.,, is called the rth order statistic of
the sample.

Order statistics are very important in practice, espe-
cially so for the minimum, X}., and the maximum, X,,,
because they are the critical values which are used in
engineering, physics, medicine, etc. (see, e.g., Castillo
and Hadi [9-11]). In this section we study the distribu-
tions of order statistics.

1.10.1 Distributions of Order Statistics

The cdf of the rth order statistic X,., is [12, 13]
Fr:n(x) = P[Xr:n <x]=1- Fm(x)(r - 1)

— Z( )Fk(x) F(x)]n—k

n F(x)
=r J u (1
r 0

=Ipy(r,n—r+1) (22)

—u)" " du

where m(x) is the number of elements in the sample
with value X; < x and I,(a, b) is the incomplete beta
function, which is implicitly defined in Eq. (22).

If the population is absolutely continuous, then the
pdf of X, is given by the derivative of Eq. (22) with
respect to x:

Ix,,(X) = V( ’: )F M = FOI'™"f(x)

Fr' (0l — FOoI""f(x)
Blr,n—r+1)

where S(a, b) is the beta function.

(23)

Example 18. Distribution of the minimum order statis-
tic. Letting r = 1 in Eqs (22) and (23) we obtain the cdf
and pdf of the minimum order statistic:

n

Fy, () = Z(Z)F"(x)[l — Feor™*

k=1
— 1 —[l = F)"

and

fx,, (0 = nll = FOOI'"™'f ()
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Example 19. Distribution of the maximum order sta-
tistic. Letting r = n in Eqs (22) and (23) we obtain the
cdf and the pdf of the maximum order statistic: Fy (x)
= F(x)" and fy,,(x) = nF"~ (0)f (x).

1.10.2 Distributions of Subsets of Order
Statistics

Let X, ., ..., X, .., be the subset of k order statistics of
orders r; < ... < ry, of a random sample of size n com-
ing from a population with pdf f(x) and cdf F(x). With
the aim of obtaining the joint distribution of this set,
consider the event X; < X n <X +Ax; 1 <)< k for
small values of Ax;, 1 <j < <k (see Fig. 17) That is, k
values in the sample belong to the intervals (x;, x; +
Ax;)for 1 <j < kand the rest are distributed in such a
way that exactly (rj —rj—1 — 1) belong to the interval
(xji—1 + Axj_y, j)forl <] < k, where Axqg =0, 1y =0,
Fegl =N+ 1 Xg = —o0 and x| = oo.

Consider the following multinomial experiment
with the 2k + 1 possible outcomes associated with the
2k + 1 intervals illustrated in Fig. 17. We obtain a
sample of size n from the population and determine
to which of the intervals they belong. Since we assume
independence and replacement, the numbers of ele-
ments in each interval is a multinomial random vari-
able with parameters

{m f(x)Axy, L f(X)AXE [F(xp) — F(xo)],
[F(x2) = F(x)], - .., [F(xpq1) = F(x)1}

where the parameters are n (the sample size) and the
probabilities associated with the 2k 41 intervals.
Consequently, we can use the results for multinomial
random variables to obtain the joint pdf of the k order
statistics and obtain

I
hs

—

Figure 17 An illustration of the multinomial experiment
used to determine the joint pdf of a subset of k order
statistics.



k+1

k
Jrrinxts o ox) = T[] ]
i=1 j=1

[F(x) = FQg_ )17

(rj—rj—p = D!

24

1.10.3 Distributions of Particular Order
Statistics

1.10.3.1 Joint Distribution of Maximum and

Minimum

Setting k =2, r; = 1 and r, = n in Eq. (24), we obtain
the joint distribution of the maximum and the mini-
mum of a sample of size n, which becomes

Sran(x1, X2) = n(n = 1) f(x) f ()[F(x) = FOe)]'

X =X

1.10.3.2 Joint Distribution of Two Consecutive
Order Statistics

Setting k =2, r; =iand r, =i+ 1 in Eq. (24), we get
the joint density of the statistics of orders i and 7 + 1:

nlf (x) f () F = e[l = Flx)] !

ii+1:n\X1s X2) =
Jiirta(x1, X2)

(i— Din—i—1)

Xp =X

1.10.3.3 Joint Distribution of Any Two Order
Statistics

The joint distribution of the statistics of orders r and
s (r<s)is

fir,,y:n(xr’ xs)

() f)F ™ (e )IF(xg) — FOe )P ™1 = Fxe)l"™
- (r—Dls—r—1Dl(n—s)

X, < X,

1.10.3.4 Joint Distribution of all Order
Statistics

The joint density of all order statistics can be obtained
from Eq. (24) setting k = n and obtain

n
ﬁ AAAAA iz:n(xl7~~-vx)1)=n!1_[f(xi) X = r 22X,
i=1
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1.10.4 Limiting Distributions of Order Statistics

We have seen that the cdf of the maximum Z, and
minimum W, of a sample of size n coming from a
population with cdf F(x) are H,(x)= P[Z, <x]=
F'(x) and L,(x)=PW,<x]=1-[1-FX)".
When 7 tends to infinity we have

. (1 iR =1
Mm H,(x) = lim F (x)—{o it F(x) < 1

and

. . 0 0 if F(x)=0
Jm L,(x) = lim 1[I = F(0J" = { I if F(x)> 0
which means that the limit distributions are degener-
ate.

With the aim of avoiding degeneracy, we look for
linear transformations Y = a, + b, x, where a, and b,
are constants, depending on n, such that the limit dis-
tributions

lim H,(a, + b,x) = lim F"(a, + b,x) = H(x) Vx
n— 00 n—oo

(25)
and
,11Lngo L(c, +d,x)= ’11Lngo 1 —[1—F(c, +d,x)]"
= L(x) Vx
(26

are not degenerate.

Definition 13. Domain of Attraction of a Given
Distribution: A4 given distribution, F(x), is said to
belong to the domain of attraction for maxima of
H(x), if Eq. (25) holds for at least one pair of sequences
{a,} and {b, > 0}. Similarly, when F(x) satisfies (26) we
say that it belongs to the domain of attraction for
minima of L(x).

The problem of limit distribution can then be stated
as:
1. Find conditions under which Egs (25) and (26)

are satisfied.
2. Give rules for building the

{an}, {by}, {c,}, and {d,}.
3. Find what distributions can occur as H(x) and
L(x).

sequences

The answer of the third problem is given by the follow-
ing theorem [14-16].



Theorem 10. Feasible Limit Distribution for
Maxima: The only nondegenerate distributions H(x)
satisfying Eq. (25) are

exp(—x~%) if x>0
Frechet: Hy o(x) = .
’ 0 otherwise
Weibull: H, ,(x) {1 if =0
eibull: X) =
28 exp[—(—x)*]  otherwise

and

Gumbel: H; o(x) = exp[—exp(—x)] —o0 <x <00

Theorem 11.  Feasible Limit Distribution for
Minima: The only nondegenerate distributions L(x)
satisfying Eq. (26) are

1 —exp[—(—x)"°] ifx<0
1 otherwise
1 —exp(—x%) if x>0

0 otherwise

Frechet: Ly 4(x) = {

Weibull: L, 4(x) = {

and

Gumbel: L;o(x) =1 — exp(—exp x)

— X <X <X

To know the domains of attraction of a given dis-
tribution and the associated sequences, the reader is
referred to Galambos [16].

Some important implications of his theorems are:

1. Only three distributions (Frechet, Weibull, and
Gumbel) can occur as limit distributions for
maxima and minima.

2. Rules for determining if a given distribution
F(x) belongs to the domain of attraction of
these three distributions can be obtained.

3. Rules for obtaining the corresponding
sequences {a,} and {b,} or {c,} and {d,} (i =1,
...) can be obtained.

4. A distribution with no finite end in the asso-
ciated tail cannot belong to the Weibull domain
of attraction.

5. A distribution with finite end in the associated
tail cannot belong to the Frechet domain of
attraction.

Next we give another more efficient alternative to
solve the same problem. We give two theorems [13, 17]
that allow this problem to be solved. The main advan-
tage is that we use a single rule for the three cases.
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Theorem 12. Domain of Attraction for Maxima of a
Given Distribution: A necessary and sufficient condi-
tion for the continuous cdf F(x) to belong to the domain
of attraction for maxima of H.(x) is that

. F'0—e)— F (1 -2e)
lim =
e—~0 F-1(1 = 2¢) — F (1 — 4¢)

¢

where c is a constant. This implies that:

If ¢ <0, F(x) belongs to the Weibull domain of
attraction for maxima.

If ¢=0, F(x) belongs to the Gumbel domain of
attraction for maxima.

If ¢ >0, F(x) belongs to the Frechet domain of
attraction for maxima.

Theorem 13. Domain of Attraction for Minima of a
Given Distribution: A necessary and sufficient condi-
tion for the continuous cdf F(x) to belong to the domain
of attraction for minima of L.(x) is that

e —F Qe
e—0 F~1(28) — F~1(4e)

This implies that:

If ¢ <0, F(x) belongs to the Weibull domain of
attraction for minima.

If ¢ =0, F(x) belongs to the Gumbel domain of
attraction for minima.

If ¢>0, F(x) belongs to the Frechet domain of
attraction for minima.

Table 7 shows the domains of attraction for maxima
and minima of some common distributions.

1.11 PROBABILITY PLOTS

One of the graphical methods commonly used by engi-
neers is the probability plot. The basic idea of prob-
ability plots, of a biparametric family of distributions,
consists of modifying the random variable and the
probability drawing scales in such a manner that the
cdfs become a family of straight lines. In this way,
when the cdf is drawn a linear trend is an indication
of the sample coming from the corresponding family.

In addition, probability plots can be used to esti-
mate the parameters of the family, once we have
checked that the cdf belongs to the family.

However, in practice we do not usually know the
exact cdf. We, therefore, use the empirical cdf as an
approximation to the true cdf. Due to the random
character of samples, even in the case of the sample



Table 7 Domains of Attraction of the Most Common
Distributions

Domain of attraction

Distribution® for maxima for minima
Normal Gumbel Gumbel
Exponential Gumbel Weibull
Log-normal Gumbel Gumbel
Gamma Gumbel Weibull
Gumbel,, Gumbel Gumbel
Gumbel,, Gumbel Gumbel
Rayleigh Gumbel Weibull
Uniform Weibull Weibull
Weibull,, Weibull Gumbel
Weibull,, Gumbel Weibull
Cauchy Frechet Frechet
Pareto Frechet Weibull
Frechet,, Frechet Gumbel
Frechet,, Gumbel Frechet

M = for maxima; m = for minima.

coming from the given family, the corresponding graph
will not be an exact straight line. This complicates
things a little bit, but if the trend approximates linear-
ity, we can say that the sample comes from the asso-
ciated family.

In this section we start by discussing the empirical
cdf and define the probability graph, then give exam-
ples of the probability graph for some distributions
useful for engineering applications.

1.11.1 Empirical Cumulative Distribution
Function

Let x;, denote the ith observed order statistic in a
random sample of size n. Then the empirical cumulative
distribution function (ecdf) is defined as

0 if x < xq.,
p(X = x) = l/l’l if Xip <X < Xitln
1 if x> x,.,

i=1,...,n—1

This is a jump (step) function. However, there exist
several methods that can be used to smooth this func-
tion, such as linear interpolation methods [18].

1.11.2 Fundamentals of Probability Plots

A probability plot is simply a scatter plot with trans-
formed scales for the two-dimensional family to
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become the set of straight lines with positive slope
(see Castillo [19], pp. 131-173).

Let F(x;a,b) be a biparametric family of cdfs,
where a and b are the parameters. We look for a trans-
formation

& = g(x) n=hy) 27

such that the family of curves y = F(x; a, b) after trans-
formation (27) becomes a family of straight lines.
Note that this implies
h(y) =hlF(x;a,b)l =ag(x)+b < n=ack+>

(28)

where the variable 7 is called the reduced variable.

Thus, for the existence of a probabilistic plot asso-
ciated with a given family of cdfs F(x; a, b) it is neces-
sary to have F(x; a, b) = h™'[ag(x) + b].

As we mentioned above, in cases where the true cdf
is unknown we estimate the cdf by the ecdf. But the
ecdf has steps 0,1/m,2/n,...,1. However, the two
extremes 0 and 1, when we apply the scale transforma-
tion become —oo and oo, respectively, in the case of
many families. Thus, they cannot be drawn.

Due to the fact that in the order statistic x;,, the
probability jumps from (i — 1)/n to i/n, one solution,
which has been proposed by Hazen [20], consists of
using the value (i — 1/2)/n; thus, we draw on the prob-
ability plot the points

(xi:w (l - 05)/”)

Other alternative plotting positions are given in Table
8. (For a justification of these formulas see Castillo
[13], pp. 161-166.)

In the following subsection we give examples of
probability plots for some commonly used random
variables.

i=1,...,n

1.11.3 The Normal Probability Plot

The cdf F(x; u, o) of a normal random variable can be
written as

Table 8 Plotting Positions Formulas

Formula Source
(Xi:m i/(n + 1)) -
(X, (I — 0.375)/(n 4 0.25)) Blom [21]
(Xin, (1 = 0.5)/m) Hazen [20]

(X (1 — 0.44)/(n + 0.12)) Gringorten [22]




F(x; u,0) = <I>(x M) (29)
o

where u and o are the mean and the standard devia-

tion, respectively, and ®(x) is the cdf of the standard

normal variable N(0, 1). Then, according to Eqs (27)

and (28), Eq. (29) gives

_ 1 —
f=g)=x n=h()=d"'0) a=- b=_F
o o
and the family of straight lines becomes
n=dat+b= E_T“ (30)

Once the normality assumption has been checked, esti-
mation of the parameters u and o is straightforward.
In fact, setting n = 0 and »n = 1 in Eq. (30), we obtain

n=0 = 0=¢-w/oc = &=u
n=1 = 1=¢-w/c = E=put+o (31

Figure 18 shows a normal probability plot, where the
ordinate axis has been transformed by n= & !(y),
whereas the abscissa axis remains untransformed.
Note that we show the probability scale Y and the
reduced scale 7.

1.11.4 The Log-Normal Probability Plot

The case of the log-normal probability plot can be
reduced to the case of the normal plot if we take into
account that X is log-normal iff ¥ = log(X) is normal.
Consequently, we transform X into log(x) and obtain a
normal plot. Thus, the only change consists of trans-
forming the X scale to a logarithmic scale (see Fig. 19).
The mean p* and the standard deviation o* of the log-
normal distribution can then be estimated by

2 2 2
/’L* — e}l.-HT /2 0_*2 — eZu (62 _ ea )

where ¢ and o are the values obtained according to Eq.

31).

1.11.5 The Gumbel Probability Plot

The Gumbel cdf for maxima is

F(x; 1, 0) = exp|:— exp(—H)} —00 < X <00

8
(32)

Let p = F(x; A, 8). Then taking logarithms of 1/p twice
we get

1 — | 1 [ ]
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Figure 18 An example of a normal probability plot.
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Figure 19 An example of a log-normal probability plot.

—log[log<%)i|=x;)L n:aé—l—b:%

Estimation of the two parameters A and § can be
done by noting that for n = 0 and n = 1. Therefore,

Upon comparison with Eqs (27) and (28), we get

=gx)=x
& =g(x) 1 n=0=(@E=-1)/8§ = &=
n:h(p):—log[log(;)] (33) n=1=¢-2/ = §&=1+$
= —log(—logp) a=1/8 b=—1/8 Thus, once we have fitted a straight line to the data, the
abscissas associated with the reduced variable, 7,
which shows that the transformation Eq. (33) trans- namely 0 and 1, are the values A and A 4§, respec-
forms Eq. (32) to a family of straight lines tively. Figure 20 shows a Gumbel probability plot for
NE0s
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Figure 20 An example of a Gumbel probability plot for maxima.
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Figure 21 An example of a Weibull probability plot for minima.

maxima in which the ordinate axis has been trans-
formed according to Eq. (33) and the abscissa axis
remains unchanged.

1.11.6 The Weibull Probability Plot

The Weibull cdf for maxima is
A —x\?
8

Letting p = F(x; A, B8,8) and taking logarithms twice
we get

y=F(s 0 6,9) = exp[—( (34)

—00<Xx <A

A=
—log(~log) = —ﬂlog<8x>

—Blog(h — x) + Blogé

Comparison with Eqs (27) and (28) gives
§=g(x) = —log(x — x)

(35)
n=h(y) = —log(—logy)
and
a=p b= Blogs (36)

This shows that the transformation Eq. (35) trans-
forms Eq. (34) to a family of straight lines

n=at+ b= pE&+logd)

Note that the 5 scale coincides with that for the
Gumbel plot, but now the & scale is logarithmic.

Copyright © 2000 Marcel Dekker, Inc.

Since now the parameter A is unknown, we must
proceeds by successive approximations until we get a
straight line and then we can proceed to estimate the
remaining parameters 8 and § noting that for n =0
and n = 1 we obtain

n=0=p(+logd)

n=1=p+logs)

= &=—logs
= S—l—lo 8

Figure 21 shows a Weibull probability plot for minima.
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Chapter 1.2
Introduction to Sets and Relations

Diego A. Murio
University of Cincinnati, Cincinnati, Ohio

2.1 SETS

The concept of sets is basic to all mathematics and
mathematical applications. A set is simply a collection
of objects and we assume that this notion is intuitively
clear. Note, however, that the word “‘collection” is as
undefined, in this setting, as is the word ‘‘set
Throughout this chapter, we shall denote sets by capi-
tal letters, such as 4, B, X, and elements of these sets
by lowercase letters, such as a, b, x. If 4 is a set and x is
an object that belongs to 4, we say “x is an element of
A,” “x belongs to 4,” or “x is a member of 4 and
write

99

xe A

If x is not an element of A4, we write
x¢ A

It is convenient to have several ways of describing sets.
If a set does not have too many elements, we can
describe it by listing its elements between a pair of
curly brackets. For example, the set consisting of the
whole numbers 1 to 3 can be written as

A=1{1,2,3)

Alternatively, if B is the set of all elements from
some collection X that satisfy some property P, we
write this as

B = {x € X | x satisfies the property P}

or
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B = {x € X : x satisfies the property P}

These are read as ““the set of x elements that belong to
X such that property P is true.”” If X is understood, we
simply write

B = {x : x satisfies the property P}
For example, the set
D = {x: x is a positive even integer}

describes the set made up of all positive, even integers:
2,4,6, ...
The set

C={x:x*-1=0}
is a fancy way to describe the set
C={-11}

It can happen that there is no x € X that satisfies
property P. In such a case the set will contain no ele-
ments at all. This set is called the empty (or null or void)
set and it is denoted . For instance, if X represents the
set of real numbers,

P={xeX:x*+1=0}

because the square of any real number is nonnegative
and, consequently, it is always true that ¥ 4+1>1.
This last statement implies that x> +1 =0 is never
true.

If A and B are sets such that each member of 4 is
also a member of B, then A is a subset of B or, equiva-
lently, A is contained in B, and we write 4 C B.



The set A is said to be a proper subset of Bif A C B
and there is some element x € B such that x ¢ 4; that
is, every element of A4 is in B but B contains at least one
element that is not in 4. The corresponding notation is
A C B and we also say that the set A is strictly con-
tained in B.

Two sets 4 and B are equal, written A = B, if every
element of A is an element of B and every element of B
is an element of 4. In other words, 4 = B if and only if
we have both 4 € B and B C A. This statement has a
double implication and it should be understood as fol-
lows:

1. If A=Bthen A C Band B C A.
2. IfAC Band BC A then A =B.

Notice that the order in which the elements of a set
are listed does not matter, nor does the repetition of
elements. For example, the sets 4 = {a, b, ¢} and B =
{c, b, a, a, b} are both the same set: 4 = B. Notice also
that for any given set A4,

AC A
and
NC A

Additional sets can be formed by using the elements
of a given set. For instance, if 4 = {a, b, ¢}, the set
whose elements are all the subsets of A4, the power set
P(A), is given by

P(A4) = {0, {a}, {b}. {c}. {a, b}, {a, ¢}, {b. ¢}, {a. b, c}}

Note that all the members of P(A4), except A itself, are
proper subsets of A.

If A is a finite set, the cardinality of A, written |A4],
indicates the number of elements in 4. For our pre-
vious example, |4A| =3 and |P(A4)| = 8. In general, it
can be shown that if |A| = n, then |P(4)| = 2".

2.1.1 Set Operations

The union of the sets 4 and B, written A U B, is the set
of all elements that belong to either A or B or both. In
symbols,

AUB={x:xe€ Aor xe B}

The intersection of the sets A and B, written 4 N B,
is the set of all elements that belong to both 4 and B.
In other words,

ANB={x:x€ Aand x € B}

Sometimes we have to work with sets all of which
are subsets of a given set U, called a universal set. This
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particular set of reference must be explicitly given or
clearly inferred from the context.

The complement of the set A relative to the set B,
denoted B — A, is defined as the set of all elements
belonging to B but not to 4, i.e.,

B—A={x:xe€ Band x¢ A4}

A very common situation occurs when the set B is
the universal set U. In this case the complement of the
set A relative to U, U — A4, is simply called the comple-
ment of the set 4 and denoted A4°.

To help us understand the new terms and defini-
tions, we now look at some simple examples.

Let A=1{ab,c,1,2,3}, B=1{l,a,b,c}, and
C = {3,2}. Then

AUB=/{a,b,c,1,2,3}
ANB={l,a,b,c}
BUC ={a,b,c,1,2,3}

A—B=1{2,3)
B—A=0
BNC=4

If two sets have an empty intersection, we say that
they are disjoint.

If the universal set U is given by U = {1, 2, 3,4, 5,
6,7,8} and we consider the sets A4 ={2,6,8},
B=1{1,2,3,4}, and C = {1, 3, 5, 7}, then

A¢=1{1,3,4,57}

B =1{5,6,7,8}

C‘=1{2,4,6,8)

A°—(B-C)={1,3,4,5,7} — (2,4} ={1,3,5,7}

The following properties can be derived from the
previous definitions. If 4, B, and C are sets, then

ANB=BNA (1)
AUB=BUA ©)
(ANB)NC=AN(BNC) 3)
(AUB)UC =AU(BUC) 4)
AN(BUC)=(ANB)UMANC) 5)
AU(BNC)=(AUB)N(AUCQC) (6)

They represent, in order, commutativity of intersection
and union, associativity of interesection and union,
and distributivity of intersection with respect to
union and union with respect to intersection.

Properties (7) and (8) below are known as De
Morgan’s laws. They relate the operations of intersec-
tion, union, and complementation:



(ANB) = A°U B (7)
(AUB) = A°N B (8)

Other useful relationships involving the universal
set, the empty set, and complements are

ANG=0 )
AUP =A (10)
ANBCACAUB (11)
ANU=A4 (12)
AUU=U (13)
and

(A) =4 (14)
Uc=9 (15)
ANAS =0 (16)
AUA =U (17)

2.1.1.1 Venn Diagrams

Before supplying the proof of some of the previous
propositions, we point out that it is possible to illus-
trate properties of sets graphically by means of Venn
diagrams. The diagrams are very simple and start by
drawing a rectangle whose interior points represent the
elements of the universal set (Fig. 1).

Any subset of the universal set is now represented
by a circle within the rectangle. The elements of the set
are represented by the points inside the circle. For
example, if we want to represent the set 4, we draw
the diagram shown in Fig. 2.

Notice that the points of the rectangle, outside the
circle, represent the elements of the set 4° (Fig. 3).

The concept of union of two sets, 4 and B, is repre-
sented as shown in Fig. 4.

For the interesection of two sets, 4 and B, the cor-
responding Venn diagram is as shown in Fig. 5.

Figure 1 Universal set U.
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Figure 5 Intersection set A N B.

Diagrams get a little more complicated if we want to
visualize some other expressions. For example, to illus-
trate De Morgan’s law, Eq. (7), we must proceed in
stages. First, we generate a Venn diagram for the set
represented by the left-hand side of the equation.
Second, we generate another Venn diagram for the
set represented by the right-hand side of the equation.
Finally, we must compare both diagrams (Fig. 6).



(@

(d)

©

Figure 6 Venn diagrams for De Morgan’s law. Left- and right-hand sides of Eq. (7).

Notice that Venn diagrams do not prove De
Morgan’s law. They simply validate the property for
the particular arrangement of sets in the diagrams.

2.1.1.2 Rigorous Proofs

To rigorously prove property (7), according to our
definition of equality of two sets, we must show the
double inclusion

(ANB) C A°U B° (18)
and
A°NB°C (AN B) (19)

Proof. In proving Eq. (18), we consider an arbitrary
element x € (AN B)°. Then since x is an element that
belongs to the complement of the set AN B,x¢ AN B.
If x¢ AN B, either x ¢ A or x ¢ B. This means that x €
A€ or x € B°. That is, x € AU B°. We have shown that
if xe(ANB)' then xe€ A°NB°. In other words,
(AN B C A°N B

In proving Eq. (19), we consider an arbitrary element
x € A°U B. Then cither x € A° or x € B°. If x € A,

then x¢ A. If x¢ A, then x¢ AN B. Analogously, if

x € B, then x¢ ANB. All together, if x € A°U B°,
x¢ ANB. In other words, if xe€A°UB,
x € (AN B). Since x is arbitrary, this property is true

Copyright © 2000 Marcel Dekker, Inc.

for every element in A°U B° and this implies that

AU B C (AN BY.
Finally, from

(AN B = A°U B

(1) and (2), it follows that

As a second example, let us prove proposition (14).
Again, the method of proof consists of showing that
the set on the left-hand side of the proprosed equality
is a subset of the set on the right-hand side and vice
versa. We have to show that

(A4 c4 (20)
and
A S (A 1)

Proof. In order to demonstrate Eq. (20), we consider
an arbitrary element x € (A°)°. Then x¢ A° and this
implies that x € A. We have shown that (A)° C A.

To prove Eq. (21), we consider an arbitrary element
x € A. Then x ¢ A° which means that x belongs to the
complement of A, ie., x € (A°)°. This shows that
A C (49"

Finally, from Egs (20) and (21), it follows that
A= (A9



2.1.1.3 Indexed Family of Sets

The notions of union and intersection of two sets can
be generalized to unions and intersections of more than
two sets after introducing the notion of indexed family
of sets. Let A be a set and assume that with each ele-
ment y € A there is associated a subset 4, of a given
set S. The collection of all such sets 4, is called an
indexed family of subsets of S with A as the index set
and it is denoted

{4,}yea
Given an indexed family of sets, we define

UA],:{x:xeAyforsomeyeA}

yeA
and

ﬂAyz{x:xeAVforallyeA}
YeEA

Virtually all the notation used for sets applies to
families of sets as well. In the event that the index set
is a subset of the set N of positive integers, it is cus-
tomary to write, if S = N,

o0
(4=
n=1

yeN
or,if S=1{1,2,3,4,5,...,k},
k
4,
n=1
instead of

(4,

yeS

For instance, the collection of sets {1, 3}, {2, 4}, {3,
S5} ..., {n,n+2},... may be considered as an indexed
family of sets with index set N. We can write 4, =
{n, 2n} and the family of sets become {4, : n € N}.

We borrow two more examples, without proof,
from real analysis. If R denotes the set of real numbers,
given a and b in R, a < b, we define the open interval of
real numbers (a, b) as the set

(a,b) ={x:xe€ Rand a < x < b}

Now consider the sets 4, = (0, 1/n) and B, = (1/n, 1)
for each n € N. Then,

Ao
n=1

and
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B,=(0,1)

3
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2.2 RELATIONS
2.2.1 Ordered Pairs

Given any two objects x and y, it is possible to form
the set whose only members are x and y. We write {x,
vy} or {y, x}. In this section we are interested in another
object that can be constructed from two elements: an
ordered pair (x, y), where x is called the first coordinate
and y is the second coordinate. The “ordered” clause
emphasizes that the order in which the objects x and y
appear is essential. The way of defining the ordered
pair (x, y) as a set is as follows:

(x,3) = {{x. ) {x. v

Next, we prove a natural property of ordered pairs;
that is, (x, y) = (1, v) if and only if x = u and y = v.

Proof. If x=u and y=wv, then
{{o}, {01 = ), {w, )} = (. 0).

Suppose now that (x, y) = (u, v). There are two possi-
bilities: (1) x=y and (2) x # y.

(x,») =

1. If x=y, then {{x}} = {u}, {u, v}}. Since the set
on the left-hand side has only one member, the set
on the right must also have one member. This can
only happen if {u} = {u, v}, which is true only if
u=wv. Consequently, we have {{x}} = {{u}}.
Thus, {x} = {u} and x = u. Altogether, we obtain
X=y=u=nw.

2. If x#y, {xt# {x,y}. Since {{x}, {x, y}} = {{u},
{u, v}}, {x} € {{u}, {u,v}} and we conclude that
{x} = {u}. Notice that {x} = {u, v} is impossible
since u and v are distinct. Thus, it follows that
x = u. Similarly, from {x,y} € {{u}, {u, v}}, the
only remaining element that can be equal to {x,
v} is {u, v}. Finally, since we already know that
X = u, the equality {x, y} = {u, v} implies y = v.

The notion of ordered pairs can be generalized very
naturally to sets involving three, four, or more ele-
ments. For example, if x, y, and z are three objects,
the ordered triplet (x, y, z) is defined as the ordered pair

((x, ), z), etc.



2.2.2 Cartesian Product

By restricting the choice of coordinates of ordered
pairs to elements of given sets, we arrived at the con-
cept of Cartesian products. The name is derived from
the classical method of determining the coordinates of
a point in the plane by the French mathematician René
Descartes (1596-1650). Given two sets A and B, the set
of all ordered pairs (x,y) with x e 4 and y € B, is
called the Cartesian product of A and B and it is
denoted A x B. In symbols,

AxB={(x,y): x€ Aand y € B}

As an example, let 4 = {1, 2,3} and B = {a, b}. By
the above definition we have

A x B=1{(1,a),(1,b),(2,a),(2,b), (3, a), (3, b))}
and
Bx A={@a,l),(a?2),(a?3),b,1),(b,2),(b,3)}

We notice that in general the Cartesian product of
two sets is not commutative. Also, if |4] =m and
|B| = n, then |[A x B] = |B x A| = mn.

The Cartesian product can be represented picto-
rially as the set of points in Fig. 7.

We leave as an interesting exercise the task to show
that the Cartesian product distributes with respect to
intersection and union of sets. In symbols, if 4, B, and
C are any three sets, then

Ax(BNC)=(AxB)N(AxC)
AXx(BUC)=(AxB)UMAxC)
and

Ax(B—C)=(AxB)—(4x0)

S
S SRS
R

I 1 I: 1

Figure 7 Cartesian product 4 x B.

Copyright © 2000 Marcel Dekker, Inc.

2.2.3 Relations

A relation is a set of ordered pairs. More precisely,
given two sets A and B, a binary relation R from a
set A to a set B is a subset of the Cartesian product
A x B. To indicate that the ordered pair (x, y) € iR we
write xMy and we say that x is i related to y. In the
particular case of having 4 = B, we say that N is a
relation in A (or B) instead of from A to A.

The set of all x which are in relation % with some y
is called the domain of R and it is denoted Dom R:

Dom N = {x: there exists y such that xMy}

The set of all y such that, for some x, x is in relation
N with y is called the range of M and it is denoted
Ran %

Ran N = {y : there exists x such that xNy}

Notice that the sets Dom i and Ran N represent
the sets of first and second coordinates, respectively,
of all ordered pairs in R.

Given a relation i from A to B, the inverse of the
relation R, denoted R, is the relation from B to A4
such that y%~'x if and only if x%y. In symbols,

R ={(r, %) : (x,¥) € N

An example will help to understand this concept.
Suppose that we are given the following relation:

N ={(x,):x,y€{0,1,2} and x < y}
We can easily list the elements of N,
N ={(0,1),(0.2), (1, 2)}

This is shown graphically in Fig. 8.
By inspection, it follows that

Figure 8 Relation R.



Dom %t = {0, 1}
Ran M = {1, 2}
and
R ={(1,0),(2,0), (2, 1)}
Consider now the relation
Ry = {(x, »)x,y€{0,1,2} and x < y}
Then
N ={(0,0), (0, 1),(0,2), (1, 1), (1, 2), (2, 2)}

As a subset of the Cartesian product of the set {0, 1, 2}
by itself, the relation % can be visualized as shown in
Fig. 9.

Also,

Dom %, = {0, 1, 2}
Ran 9%, = {0, 1, 2}
and
Ri' =1{(0,0),(1,0),(1,1),(2,0), (2, 1), (2, 2)}
Finally, consider the identity relation given by
Ny ={(x,»):x,y€{0,1,2} and x =y}
Then
My ={(0,0), (1, 1, (2,2)}

Pictorially we obtain the diagonal of the graph shown
in Fig. 10.
In this example, we have

Dom %, = {0, 1, 2}
Ran %, = {0, 1,2}

and

"yl =10,0), (1, 1), (2,2)

Figure 9 Relation R;.
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Figure 10 Relation N,.

We close this section indicating a general procedure
to combine two binary relations to obtain a new binary
relation. If N; and N, are two binary relations, we
define the composition of R; and N, by the relation

Ny 0 Ny = {(x, z) : there exists y for which xR,y
and yM,z}

Notice that 90, is applied first and N, second and
also that, in general, the composition of relations is not
commutative, i.e.,

?ﬁz o ?Rl # 9{1 o g{z

For example, let R denote the set of real numbers
and consider the binary relations

R ={(x,y):x,y € Rand y = x?}
and

Ny ={(x,y):x,ye Rand y = x + 1}
Then

Mo, ={(x,2):x,ze Rand z = x>+ 1}
and

M o Ry={(x,2):x,ze Rand z = (x + 1)*}

Note that for %, o %; we have xR, x> and xX>9,(x* + 1),
while for 9M;oN, we have xNM(x+1) and
(x 4+ D%, (x + D%

In general, if i, N,, and N3 are binary relations, the
following properties hold:

(M) 0 My) o Ry = Ry o (R 0 Ny)
My oMy =95 omy!
and

MrH ! =y



2.2.4 Equivalence Relations

Now we concentrate our attention on the properties of
a binary relation N defined in a set X.

1. 9 is called reflexive in X, if and only if, for all
x e X, xNx.

2. N is called symmetrical in X, if and only if, for
all x,y € X, x0y implies yNx.

3. N is called transitive in X, if and only if, for all
x,y,z € X, x0y and yNz implies xNz.

A binary relation i is called an equivalence relation
on X if it is reflexive, symmetrical and transitive.

As an example, consider the set Z of integer num-
bers and let n be an arbitrary positive integer. The
congruence relation modulo n on the set Z is defined
by x = y (modulo #n) if and only if x — y = kn for some
k € Z. The congruence relation is an equivalence rela-
tion on Z.

Proof

1. Foreachx e Z, x — x = On. This means that x =
x (modulo n) which implies that the congruence
relation is reflexive.

2. Ifx=y (modulon), x —y = kn for some k € Z.
Multiplying both sides of the last equality by —1,
we get y —x = —kn which implies that y = x
(modulo n). Thus, the congruence relation is
symmetrical.

3. If x=y (modulo n) and y = z (modulo n), we
have x —y = kin and y — z = kyn for some k,
and ky in Z. Writing x —z=x—y+y—z, we
get x —z=(k; +ky)n. Since k; +k, e Z, we
conclude that x =z (modulo n). This shows
that the congruence relation is transitive.

From 1-3 it follows that the congruence relation
(modulo n) is an equivalence relation on the set Z of
integer numbers.

In particular, we observe that if we choose n = 2,
then x = y (modulo 2) means that x — y = 2k for some
integer k. This is equivalent to saying that either x and
y are both even or both x and y are odd. In other
words, any two even integers are equivalent, any two
odd integers are equivalent but an even integer can not
be equivalent to an odd one. The set Z has been
divided into two disjoint subsets whose union gives
Z. One such proper subset is the set of even integers
and the other one is the set of odd integers.
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2.2.4.1 Partitions and Equivalence Relations

The situation described in the last example is quite
general. To study equivalence relations in more detail
we need to introduce the concepts of partition and
equivalence class.

Given a nonempty set X, a partition S of X is a
collection of nonempty subsets of X such that

. If4,BeS,A+B, then ANB=0.
2. UgsA=X.

If <M is an equivalence relation on a nonempty set X,
for each member x € X the equivalence class associated
with x, denoted x/MN, is given by

xX/M={ze X :xNRx}

The set x/9N is a subset of X and, consequently, an
element of the power set P(X). Thus, the set

X/M={yeP(x):y=x/N for some y € X}

is also a well-defined subset of P(x) called the quotient
set of X by R.

The correspondence between the partition of a
nonempty set and the equivalence relation determined
by it is established in the following propositions.

The quotient set x/N of a set X by an equivalence
relation N is a partition of the set X.

The converse of this statement also holds; that is,
each partition of X generates an equivalence relation
on X. In fact, if S is a partition of a nonempty set X,
we can define the relation

X/S={(x,y) e X x X : x € sand y € s for some
s € S}

This is an equivalence relation on X, and the equiva-
lent classes induced by it are precisely the elements of
the partition S, i.e.,

X/(X/S)=S

Intuitively, equivalence relations and partitions are
two different ways to describe the same collection of
subsets.

2.2.5 Order Relations

Order relations constitute another common type of
relations. Once again, we begin by introducing several
definitions.

A binary relation R in X is said to be antisymme-
trical if for all x,y e X, xRy and yNfx imply

x=y.



A binary relation 0 in X is asymmetrical if for any
x,y € X, xNy implies that yMx does not hold. In
other words, we can not have xiy an yfix both
true.

A binary relation R in X is a partial ordering of X if
and only if it is reflexive, antisymmetrical, and
transitive. The pair (X, M) is called and ordered
set.

A binary relation in X is a strict (or total) ordering
of X if and only if it is asymmetrical and transi-
tive.

For example, consider the set of integers
X =1{1,3,2}
and the binary relation in X given by
RN ={(x,y):x,ye X and x <y}
This gives explicitly
M ={(1,1),(2,2).3.3).(1,2).(1,3),(2,3)}

It is a simple task to check that 9, is a partial ordering
of the set X. It requires a little extra thinking to realize
that now the least and the greatest elements of X have
been identified.

On the same set X, the binary relation defined by
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N ={(x,y):x,ye X and x < y}
={(1,2),(1,3),(2,3)}

is an example of a strict ordering of X.
It is also possible to establish a correspondence
between partial orderings and strict orderings of a set:
If %, is a partial ordering of X, then the binary
relation N, defined in X by

xM,y if and only if xN;y and x # y

is a strict ordering of X.
Finally, if 9, is a strict ordering of X, then the
relation N, defined in X by

xNyy if and only if xMyy or x =y

is a partial ordering of X.
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Chapter 1.3
Linear Algebra

William C. Brown
Michigan State University, East Lansing, Michigan

3.1 MATRICES
3.1.1 Shapes and Sizes

Throughout this chapter, F will denote a field. The
four most commonly used fields in linear algebra are
@ = rationals, R = reals, C = complex numbers and
Z, = the integers modulo a prime p. We will also let
N = {1, 2, ...}, the set of natural numbers.

Definition 1. Let m,n € N. An m x n matrix A with
entries from F is a rectangular array of m rows and n
columns of numbers from F.

The most common notation used to represent an m
x n (read “m by n”") matrix A is displayed in Eq. (1):

apy, dip ..., Ay
A=| = : (M

A1 Ap2 5e-vn gy

If A4 is the m x n matrix displayed in Eq. (1), then the
field elements a; (i=1,....mj=1,..., n) are called
the entries of 4. We will also use [4]; to denote the
i,jth entry of A. Thus, a; = [4]; is the element of F
which lies in the ith row and jth column of 4. By the
size of A, we will mean the expression m x n. Thus, size
(A) =m x n if 4 has m rows and n columns. Notice
that the size of a matrix is a pair of positive integers
with a “x” put between them. Negative numbers and
zero are not allowed to appear in the size of a matrix.
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Definition 2.  The set of all m x n matrices with entries

from F will be denoted by M, (F).

Matrices of various shapes are given special names
in linear algebra. Here is a brief list of some of the
more famous shapes and some pictures to illustrate
the definitions.

1. A matrix is square if m = n.

ay  dp ap
ay  dp
(@), s | a1 dp Az |-

dy;  dp
az;  dz  dzj

size=1x1, 2x2, 3x3,... (2a)

2. An m x n matrix is called a column vctor if

n=1.
a
(a), (Z) :
an
size=1x1,2x1,...,nx1 (2b)

3. Anm x nmatrix is called a row vector if m = 1.
(@), (a,b),...,(ar,...,a,)
size=1x1,1x2,..., 1 xn (2¢)

4. Anm x n matrix 4 is upper triangular if [A4]; =
0 whenever i > ;.



ap dip 43 A --- dip
0 an ay ... a, ... ay
A= 0 0 a3 ... a3 ... ay
0 0 0 ... QG .. Gy
ifm<n
(2d)

5. An m x n matrix 4 is lower triangular if [4];
= 0 whenever i < j.

a 0 0 - 0 0 ... 0

ay ap 0 0 0 0

A= 41 an ax 0 0 0

Ayl App Ay oo Ay 0 ... 0

if m<n
(2¢)
6. Anm x nmatrix 4 is diagonal if [4]; = 0 when-
ever i #j.
ap 0 ce 0

0 a ... 0
L itm=n  (f)

0o 0 ... a,

7. A square matrix is symmetric (skew-symmetric)
if [A]; = [A](—[A4];) for all i,j =1,...,n.

b a b ¢
(), (a ) b d e],... symmetric
b ¢
c e f
(2g)
size=1x1,2x2,3x3
0 b ¢
0 b
<0),( ) oo el
b 0 (2h)
—c —e 0

skew-symmetric

Definition 3. A submatrix of A is a matrix obtained
from A by deleting certain rows andfor columns of A.
A partition of A is a series of horizontal and vertical lines
drawn in A which divide A into various submatrices.

Example 1. Suppose A = ()Zc f: y). Then
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@000 (1) (1) oo (1))
G)

is a complete list of the submatrices of A.

CRIEERIGD) o
y|w z w

are all partitions of A.

The most important partitions of a matrix A4 are its
column and row partitions.

Definition 4. Let

ap, ey ay,
A= € men(F)
Apls ooy Ay
1. Foreachj=1,...,n, the mx 1 submatrix
alj
Coli(4) =
amj
of A is called the jth column of A.

2. A=(Coli(A) | Coly(A) | ...|Col,(A)) is called
the column partition of A.

3. For each i=1,...,m, the 1 xn submatrix
Rowi(A) = (a1, --.,a;,) of A is called the ith
row of A.

4.

Row,(A4)
A= :
Row,,(A)

is called the row partition of A.

We will cut down on the amount of space required
to show a column or row partition by employing the
following notation. In Definition 4, let & = Col;(A) for
j=1,...,n and let o;= Row;(4) for i=1,...,m.
Then the column partition of 4 will be written 4 =
(&1 1& 1...1&, and the row partition of 4 will be
written 4 = (o; op; .. .5 ).

3.1.2 Matrix Arithmetic

Definition 5. Two matrices A and B with entries from
F are said to be equal if size (A) = size (B) and [A]; =
[B][/« ‘fOV all i=1,...,m; j= 1,...,n. Here
m x n = size (A).



If A and B are equal, we will write 4 = B. Notice
that two matrices which are equal have the same size.
Thus, the 1 x 1 matrix (0) is not equal to the 1 x 2
matrix (0,0). Matrix addition, scalar multiplication,
and multiplication of matrices are defined as follows.

Definition 6

1. Let A, Be M,,,(F). Then A+ B is the m x n
matrix whose ijth entry is given by [A + B]; =
[A); +[Bl; foralli=1,....mandj=1,...,n.

2. IfAe M, (F)and x € F, then xA is the m X n
matrix whose ijth entry is given by [xA]; =
x[A); foralli=1,....mandj=1,...,n.

3. Let Ae M, (F)and C € M, ,(F). Then AC is
the m x p matrix whose ijth entry is given by

[4C); = > [A]4[Cly;
k=1

fori=1,...,m;j=1,...,p

Example 2. Let

1 0 3 1
A:<1 ; 2) B:<1

and let

0 1
0 2) e1‘12><3((]1))

0 2
C=|-1 1]eM;,@Q
4 0

Then
2 0 4 6 0 18
A+ B= 64 =
2 1 4 6 6 12

12 2
AC =
(5 3)

Notice that addition is defined only for matrices of
the same size. Multiplication is defined only when the
number of columns of the first matrix is equal to the
number of rows of the second matrix.

The rules for matrix addition and scalar multiplica-
tion are summarized in the following theorem:

)

Theorem 1. Let A, B, C € M,,,,(F). Let x, y € F.
Then

1. A+ B=B+ A.

2. A+B+C=4+B+C).
3. A+0=4.

4. A+ (—1HA4=0.

5. (xp)4 = x(yA).
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6. x(4+ B)=xA+ xB.
7. (x+y)A =xA4+ yA.
8. 14 = A.

When no explicit reference is given, a proof of the
quoted theorem can be found in Brown [1]. The num-
ber zero appearing in 3 and 4 above denotes the m x n
matrix all of whose entries are zero. The eight state-
ments given in Theorem 1 imply M,,,,(F) is a vector
space over F (see definition 16 in Sec. 3.2) when vector
addition and scalar multiplication are given as in 1 and
2 of Definition 6.

Theorem 1(2) implies matrix addition is associative.
It follows from this statement that expressions of the
form x;A; + -+ x, A4, (4, € M,,,,,(F) and x; € F) can
be used unambiguously. Any placement of parentheses
in this expression will result in the same answer. The
sum x;A; + - - - + x, A, is called a linear combination of
Ay, ..., A,. The numbers xi, ..., x, are called the sca-
lars of the linear combination.

Example 3. Let

(1) (Y e

We view A, B, C € M,,,(Z3). Then

2A+B+2C:((1) g) (6)

The rules for matrix multiplication are as follows:

Theorem 2. Let A, D € M,,,,(F), Be M, ,(F), C e
M, ,(F) and E € M,,,(F). Let x € F. Then

(AB)C = A(BCQ).

(A+ D)B=AB+ DB.
E(A+ D)= FEA+ ED.
04 =0 and A0 = 0.
I,A=Aand AI, = A.
X(AB) = (xA)B = A(xB).

AR e

In Theorem 2(4), the zero denotes the zero matrix of
various sizes. In Theorem 2(5), I, denotes the n x n
identity matrix. This is the diagonal matrix given by
[£,]; =1 forall j=1,...,n Theorem 2 implies M,,
(F) is an associative algebra with identity [2, p. 36] over
the field F.

Consider the following system of m equations in
unknowns xi, ..., X,:



anxy +apxy + - +apx, = b
(7
A1 X1 + Xy + -+ -+ Ay Xy, = bm

In Eq. (7), the g;’s and b;’s are constants in F. Set

ay, ey ai, bl X1
A= : | B=| : | x=
7 b, X,
®)

Using matrix multiplication, the system of linear
equations in Eq. (7) can be written succinctly as

AX =B ©)

We will let F" denote the set of all column vectors of
size n. Thus, F" = M,,,.;(F). A column vector & € F" is
called a solution to Eq. (9) if A& = B. The m x n matrix
A = (a;) € M,,,,(F) is called the coefficient matrix of
Eq. (7). The partitioned matrix (4 | B) € M, (u41)(F)
is called the augmented matrix of Eq. (7). Matrix mul-
tiplication was invented to handle linear substitutions
of variables in Eq. (7). Suppose yi, ..., y, are new vari-
ables which are related to xq, ..., x, by the following
set of linear equations:

Xp=cnyr+ o)y
: (here ¢, € F for all u, v)
Xp=Cyy1+--+ Cnplp
(10)
Set

Clly ++es Clp
C= € Mnxp(F)

Cpls v ves cnp

Substituting the expressions in Eq. (10) into Eq. (7)
produces m equations in yj,...,»,. The coefficient
matrix of the new system is AC, the matrix product
of A and C.

Definition 7. A square matrix A € M, ,(F) is said to
be invertible (or nonsingular) if there exists a square
matrix B € M, (F) such that AB = BA = I,.

If A e M,,,(F) is invertible and 4B = BA = I, for
some Be M, ,(F), then B is unique and will be
denoted by A~'. 47! is called the inverse of A.

Example 4. Let
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Xy
A= € M, (F)
zow

and assume A =xw —yz#0. Then A4 is invertible
with inverse given by

PR ( w/A —y/A) (an
\—z/A x/A

If m =n in Eq. (7) and the coefficient matrix A4 is
invertible, then 4X = B has the unique solution 4~ 'b.

Definition 8. Let A € M,,,,,,(F). The transpose of A is
denoted by A'. A" is the n x m matrix whose entries are
given by [Al;=[Al; for all i=1,....n and
j=1,...,m.

A square matrix is symmetric (skew-symmetric) if
and only if 4 = A'(—A"). When the field F = C, the
complex numbers, the Hermitian conjugate (or conju-
gate transpose) of A4 is more useful than the transpose.

Definition 9. Let A € M,,,,(C). The Hermitian conju-
gate of A is denoted by A*. A* is the n x m matrix whose
entries are given by [A*]; =[A]; foralli=1,...,n and
j=1,...,m.

In Definition 9, the bar over [4]; denotes the con-
Jugate of the complex number [A4];;. For example,

<1+i 2)* (1-1’ 2+i>
L] = . and

2—1 1 2 —1

<1+i 2)f_(1+i 2—1’)
2—i i) \ 2 i

The following facts about transposes and Hermitian
conjugates are easy to prove.

(12)

Theorem 3. Let A, C € M, ,(F) and B € M, ,(F).
Then

. A+C) =A"+C".
2. (AB) =B'A".

3. (A) =4

4,

If m = n and A is invertible, then A" is also inver-
tible. In this case, (A = (47")".

If F = C, then we also have
5. (A+ O =A"+C".

6. (AB)" = B*A".
7. (A% = A
8. If A is invertible, so is A* and (4*)™' = (471"



3.1.3 Block Multiplication of Matrices

Theorem 4. Let Ae M, ,(F) and Be M,,,(F).

Suppose
Ay A
A= : : and
All Ar/c
By By,
B = . .
By | ... | By

are partitions of A and B such that size (A;) = m; x n;

and size (By) =n; x p;. Thus, m;+---+m, =m,
ny+---+n,=n, and py+---+p, =p. For each i =
I,...,randj=1,...,1t, set

k
Cyj= ZA,-quj (multiplication of blocks)
q=1

Then
Cll oo Clt

AB =

.| lcx

Notice that the only hypothesis in Theorem 4 is that
every vertical line drawn in 4 must be matched with
the corresponding horizontal line in B. There are four
special cases of Theorem 4 which are very useful. We
collect these in the next theorem.

Theorem 5. Let A € M, ,(F).
. If E=(x;,....x,) €F", then A=Y, x;

Coli(A).

2. If B=(& |...1§) € M, ,(F), then AB = (4§
[...]AE,).

3.0 A=,y Vm) € M (F), then rA=
> i1 vi Rowy(4).

4. If C=05 .. h) € Moy (F), CA = (M4 ...
Ay A).

Definition 10. Let A € M, ,(F).
1. CS(A) ={A&| & € F"} is called the column space

of A.
2. RS(A)={rA|re M, (F)} is called the row
space of A.

Theorem 5 implies that the column space of A con-
sists of all linear combinations of the columns of 4.
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RS(A) is all linear combinations of the rows of A.
Using all four parts of Theorem 5, we have
CS(AB) C CS(A)

(13)
RS(AB) C RS(B)

The column space of A is particularly important for
the theory of linear equations. Suppose 4 € M,,,,.(F)
and B € F". Theorem 5 implies that 4X = B has a
solution if and only if B € CS(4).

3.1.4 Gaussian Elimination

The three elementary row operations that can be per-
formed on a given matrix A are as follows:
() Interchange two rows of A4
(B) Add a scalar times one row of 4 to another
row of 4
(8) Multiply a row of 4 by a nonzero scalar
(14)

There are three corresponding elementary column
operations which can be preformed on A4 as well.

Definition 11. Let A\, A, € M,,,,,(F). A, and A, are
said to be row (column) equivalent if A, can be obtained
from Ay by applying finitely many elementary row (col-
umn) operations to A,.

If A; and A4, are row (column) equivalent, we will
write A; 7 A, (A, ¢ A,). Either one of these relations is
an equivalence relation on M,,,,(F). By this, we mean

A7 A (7 is reflexive)
A7 Ay & Ay T Ay (r is symmetric)
A1 T Ay, Ay ¥ A3 = A 7 A3 (7 is transitive)

(15)

Theorem 6. Let A, Ce M, ,(F) and B, D € F™".
Suppose (A | B) 7 (C | D). Then the two linear systems
of equations AX = B and CX = D have precisely the
same solutions.

Gaussian elimination is a strategy for solving a sys-
tem of linear equations. To find all solutions to the
linear system of equations

apXxy +apx; + -+ aXx, = by
: (16)

Ap1 X1 + A X2 +- 4+ ynXn = bm

carry out the following three steps.



1. Set up the augmented matrix of Eq. (16):
ap, ey ayy, bl
(41 B)= :
Qs o5 Ay bm
2. Apply elementary row operations to (A4 | B) to
obtain a matrix (C | D) in upper triangular

form.
3. Solve CX = D by back substitution.

By Theorem 6, this algorithm yields a complete set
of solutions to 4X = B.
Example 5. Solve

2x+3y+4z=10
xX—y—z=2
x+z=3

F=Q ()

Following steps 1-3, we have

1.

2 3 4|10
I -1 —1] 2
1 0 1] 3

is the augmented matrix of (k)

2.
2 3 4|10 1 0 1| 3
1—1—12(;31—1—12
1 0 1] 3 2 3 4110
1 0 1| 3
®lo -1 —2|-1|©
0 3 2| 4
1 0 13 1 0 1|3
o1 201 |@lo 1 21
0 3 2|4 0 0 —4]1
(upper triangular).
The letters below the arrows indicate which
type of elementary row operation was used on
the matrix on the left to get the matrix on the
right.
3. Solve
x+z=3 x=13/4
y+2z=1= y=3/2
—4z =1 z=-1/4
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Thus, x =13/4, y=3/2 and z= —1/4 is the
(unique) solution to ().

Definition 12. Let A € M,,,,(F). A system of equa-
tions of the form AX =0 is called a homogeneous sys-

tem of equations. A nonzero, column vector § € F" is
called a nontrivial solution of AX =0 if A&=0.

Using Gaussian elimination, we can prove the fol-
lowing theorem.

Theorem 7. Let A € M, (F).

1. The homogeneous system of equations AX =0
has a nontrivial solution if m < n.

2. Suppose m =n. The homogeneous system of
equations AX =0 has only X =0 as a solution
if and only if A7 1,.

3.1.5 Elementary Matrices and Inverses

Definition 13. An elementary matrix (of size m x m)
is a matrix obtained from I, by performing a single
elementary row operation on I,,.

Pictures of the three types of elementary matrices
are as follows:

1. E; will denote the matrix obtained from 7, by
interchanging rows i and j. These matrices are
called transpositions.

1 _
1

0 ... 0 1 !
ol

E; = :
0 1
1 0 0 .

) J
- 1_

i j (17a)

2. Ej(c) will denote the matrix obtained from 17,
by adding ¢ times row j of 7,, to row i of I,,.



1 0 0]
0 0o 1 0 0 ¢ 0 0f;
Ey(c) =
0 1 0 0 [/
LO 0 1
(here i <)
J (17b)

3. E(C) will denote the elementary matrix
obtained from 7,, by multiplying the ith row

of I,, by ¢ #0.
1 0 ... ... ... 0
E()=|0 ... ¢ ... 01i (17¢)
0O ... ... ... 0 1

Each elementary matrix is invertible. Multiplying on
the left by elementary matrices performs row opera-

tions on A.
Theorem 8
2. Ej0) ' = Ey(—o).
3. Ef(e) ' =E1/0).
4. Forany A e M, (F),

a. EjAis the m x n matrix obtained from A by
interchanging rows i and j of A.

b.  Ej(c)A is the m x n matrix obtained from A
by adding ¢ times row j of A to row i of A.

c. Eic)A is the m x n matrix obtained from A
by multiplying row i of A by c.

Thus, two m x n matrices A and B are row equiv-
alent if and only if there exist a finite number of
elementary  matrices  Ej,..., E; such  that
E E,_, -+ E,E\A = B.

Example 6. In Example 5, we showed that

2 3 4|10 10 13
AIB=|1 -1 —1] 2|7lo 1 2[1
10 1]3 0 0 —4|1

=(C|D).

The sequence of elementary matrices used there are as
follows:

Ex(=3)Ex(—1)E3 (=2)Ey (—1)E;3(A4 | B)=(C | D)
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We can also multiply a given matrix 4 on the right
by elementary matrices. Multiplying on the right per-
forms elementary column operations on A.

Theorem 9. Let A € M,,,,(F) be a nonzero matrix.

Then there exist elementary matrices Ei, ..., E, and
E|, ..., E] such that
7 ! ! [f 0
E.---EyE\AE\E;---E; = 0 To (18)

The positive integer ¢ appearing in Theorem 9 is
called the rank of A.

Elementary matrices can be used to characterize
invertible matrices.

Theorem 10. Let A € M, (F). Then the following
conditions are equivalent:

1. A is invertible.

2. A has a left inverse, i.e.,
B € My (F).

3. A has a right inverse, i.e., AC =1, for some
C G Mnxn(F)'

4. The homogeneous system of equations AX =0
has no nontrivial solution.

5. A is a finite product of elementary matrices.

BA =1, for some

The proof of Theorem 10 incorporates an algorithm
for computing A~", which is effective if » is small and
the entries of A are reasonable:

Suppose A is invertible.

1. Form the n x 2n partitioned matrix (4 | 1,).

2. Apply row operations to (4 | 1,) so that 4 on
the left in (4 | 1,) is changed to I,,. Then I, on
the right will change to A",

In symbols,
(AL)FL, 147" (19)

See Brown [1; Ex. 5.15, Chap. I] for a concrete exam-
ple.

One nice application of this material involves the
Vandermonde matrix:

1 a ag
1 a a al

V=1. . . N M 1yx 1) (R)
1 aq, aﬁ a,

(20)



This matrix is invertible if ay, a, . . ., a, are distinct real
numbers. V' is used to prove the following interpola-
tion theorem:

Theorem 11. Suppose ay, ..., a, are n + 1 distinct real
numbers. Let by, ..., b, € R. There exists a polynomial
(with real coefficients) p(t) such that the degree of p(t)
is at most n and p(a;) = b; for all i =0,1, ..., n.

3.1.6 LU-Factorizations

LU-Factorizations are refinements of Gaussian elimi-
nation.

Definition 14. Let A € M, ,(F). A has an LU-factor-
ization if there exists a unit, lower triangular matrix

1 0 ... 0
¢ 1 :

L= € Myyn(F)
by Lp ... 1

and an upper triangular matrix

U Ui Uy,

0 Uy e Uy,
U e . . . € Mnxn(F)

0 0 ...0 uy,
such that A = LU.

A given matrix 4 € M,,,.,(F) may not have an LU-
factorization. The deciding factor is whether any trans-
positions are needed to row reduce A4 to an upper tri-
angular matrix.

Definition 15. A4 square matrix of the form

[P A

is called a Frobenius matrix (L has ones on its diagonal,
constants ¢y, ..., c, in positions (i+1,i)...(n, i) and
zeros elsewhere).

Frobenius matrices are invertible. The inverse of L
is obtained from L by changing the signs of
Ciyls -+ €y If R; denotes the ith row of 4 and L is
the Frobenius matrix pictured above, then
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Ry

R;

LA p— —
R+ R

2]

Rn + CnRi

Thus, multiplying 4 by L on the left performs elemen-
tary row operations of type (8) on A below row i.
Hence, the process which row reduces 4 to an upper
triangular matrix can be stated as follows:

Theorem 12. Let A € M, ,(F). There exist a finite
number of Frobenius matrices Ly, ..., L, and a finite
number of transpositions E, ..., E, such that L Ej ---
LE\A = U an upper triangular matrix.

Example 7. Suppose
01 2
A= 1 2 1 € M3><3(@)
2 0 1
Then
0 0 1 00 1 0 0
0 0 0 0 0 1 0
0 4 0 0 -2 0 1
L, E, L (22)
0 0 01 2 1 21
0 0 2 1]1=]10 1 2
0 0 1 2 0 1 0 0 7
E 4 U

If no transpositions are required in Theorem 12, i.e.,
E =1, forall i=1,...,k, then L, L;_;...L;A=U.
Consequently, 4 = (L7'Ly'... LyHYU. 1t is easy to
see that L = L7'L) ... Ly" is a unit, lower triangular
matrix and hence 4 has an LU-factorization. This
proves part of our next theorem.

Theorem 13. Let A € M,,,.,(F).

1. A has an LU-factorization if and only if no row
interchanges are required in the Gaussian reduc-
tion of A to upper triangular form.

2. Suppose A has an LU-factorization. If A is inver-
tible, then the factorization is unique.

3. Forany A € M, (F), there exists a permutation
matrix P, i.e., a finite product of transposition,
such that PA has an LU-factorization.



There are several important applications of LU-fac-
torizations. We will give one application now and
another in the section on determinants. LU-
Factorizations are used to solve systems of equations.

To solve AX = B:

1. Find an LU-factorization PA = LU.
Replace AX =B with (PA)X = PB, ie.,

L(UX) = PB.
3. Solve LY = PB by forward substitution.
4. Solve UX = Y by back substitution. (23)

Thus, replacing 4 by an LU-factorization converts
AX = B into two simpler problems LY = PB and
UX =Y. These last two systems are lower triangular
and upper triangular respectively. These systems are
usually easier to solve than the original.

3.2 VECTOR SPACES
3.2.1 Definitions and Examples

Definition 16. A vector space over F is a nonempty set
V together with two functions (a, ) — o+ B from V x
V-V and (x,a) > xa from FxV — V which
satisfy the following conditions:

VI. a+B=B+aforala BelV.

V2. a+(B+8)=(+pB)+8 forala,BsecV.

V3. There exists an element 0 € V such that a + 0
=aforallaeV.

V4. For any o € V, there exists a B € V such that
a+p=0.

V5. (xy)a = x(ya) for all « € V and x,y € F.

V6. x(a+pB)=xa+xB for all «, BV and
xekF.

V7. (x+y)a=xa+ ya foralla €V and x,y € F.

V8. la=aforallaeV.

Suppose (V, (a, B) = o + B, (x, ®) = xa) is a vector
space over F. The elements in V" are called vectors and
will usually be denoted by Greek letters. The elements
in F are called scalars and will be represented by low-
ercase English letters. The function (o, 8) > a + B is
called vector addition. The function (x,a) — xa is
called scalar multiplication. Notice that a vector
space is actually an ordered triple consisting of a set
of vectors, the function vector addition and the func-
tion scalar multiplication. It is possible that a given set
V' can be made into a vector space over F in many
different ways by specifying different vector additions
or scalar multiplications on V. Thus, when defining a
vector space, all three pieces of information (the vec-
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tors, vector addition and scalar multiplication) must be
given.

Suppose (V, (o, B) = a + B, (x, ®) — xa) is a vector
space over F. When the two functions («, ) — o + 8,
(x, @) = xo are understood from the context or when
it is not important to know the exact forms of these
functions, we will drop them from our notation and
simply call the vector space V. Axioms V1 and V2 say
that vector addition is commutative and associative.
There is only one vector 0 € V' which satisfies V3.
This vector is called the zero vector of V. If ¢ € V,
there is only one vector 8 € V' such that o+ 8 =0.
The vector B is called the inverse of o and written
—a. The following facts about addition and scalar mul-
tiplication are true in any vector space.

Theorem 14. Let V be a vector space over F. Then

1. Any parentheses placed in oy + - - - + «, result in
the same vector.

x0=0 for all x € F.

O =0 forallaeV.
(=Da=—-aforalacV.

If xa =0 then, x =0 or « = 0.

Nk

The reader will notice that we use 0 to represent the
zero vector in V' as well as the zero scalar in F. This
will cause no real confusion in what follows. Theorem
14(1) implies linear combinations of vectors in V, i.c.,
sums of the form xjo +---+ Xx,a,, can be written
unambiguously with no parentheses.

The notation for various vector spaces students
encounter when studying linear algebra is becoming
standard throughout most modern textbooks. Here is
a short list of some of the more important vector
spaces. If the reader is in doubt as to what addition
or scalar multiplication is in the given example, consult
Brown [1, 2].

1. F5 = all functions from a set S to the field F.
M,,..,(F) = the set of all m x n matrices with
entries from F.

3. F[X] = the set of all polynomials in X with
coefficients from F.

4. CS(A), RS(A), and NS(A) ={& € F" | A¢ = 0}
for any 4 € M,,,,,(F). (NS(A) is called the null
space of A4.)

5. C)y={f e R | f is k times differentiable on
I}. (I here is usually some open or closed set
contained in R).

6. R(a, b)) = {f € R“" | f is Riemann integrable
on [a, b]}. (24)



Definition 17. Let W be a nonempty subset of a vector
space V. W is a subspace of V if a + B € W and xa €
W for all o, B € W and x € F.

Thus, a subset is a subspace if it is closed under
vector addition and scalar multiplication. R[X], C/‘([a,
b]) and R([a,b]) are all subspaces of RO 1f
AeM,,,(F), then NS(A) is a subspace of F", CS(A)
is a subspace of F" and RS(A) is a subspace of
M, (F). One of the most important sources of sub-
spaces are linear spans.

Definition 18. Let S be a subset of a vector space V.
The set of all linear combinations of vectors from S is
called the linear span of S. We will let L(S) denote the
linear span of S.

If S=40, ie., S is empty, then we set L(S) = (0).
Notice, @ € L(S) if « = x,8; + - - - + x,,8, for some §,
oy B, €S and xq,...,x,€F. If S is finite, say
S=1{y,...,y}, then we often write L(y,...,y,) for
L(S). For example, if 4 = (&]...1§,) € M,,,,(F), then
L(%—l’ e én) = CS(A)

Theorem 15. Let V be a vector space over F.

1. For any subset S €V, L(S) is a subspace of V.
- Af S S8, SV, then L(S)) C L(S,) C V.
3. Ifae L(S), then a € L(S)) for some finite subset
S;CS.
4. L(L(S)) = L(S).
5. Exchange principle: If pe L(SU{a}) and
B¢ L(S), then o € L(S U {B}).

The exchange principle is used to argue any two
bases of V' have the same cardinality.

Definition 19. A4 vector space V is finite dimensional if

V = L(S) for some finite subset S of V.

If V' is not finite dimensional, we say V' is infinite
dimensional. M,,,,(F), CS(4), RS(4) and NS(A) are
all examples of finite-dimensional vector spaces over F.
R[X], C*((0,1)) and R([0,1]) are all infinite-dimen-
sional vector spaces over R.

3.2.2 Bases

Definition 20. Let S be a subset of a vector space V.

1. The set S is linearly dependent (over F) if there
exist distinct vectors ay, ..., a, € S and nonzero
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scalars xy,...,x, € F such that xyo;+---
+x,a, = 0.

2. The set S is linearly independent (over F) if S is
not linearly dependent.

3. Sis a basis of V if S is linearly independent and

L(S)=V.

Suppose S is a basis of V. Then every vector in V' is
a linear combination of vectors from S. To be more
precise, if 8 € V and B # 0, then there exist «y, ..., ®,
€ S (all distinct) and nonzero scalars xi,...,x, € F
such that B=xo+- -+ x,0, Furthermore, this
representation is unique. By this, we mean if 8 = y;y,
+---+y ¥ with yq,...,y, nonzero scalars and y,
.., y, distinct vectors in S, then n = ¢ and after a suit-
able permutation of the symbols, oy =y, ..., a, = ¥,
and x; =y, ..., X, =),
The four basic theorems about bases are listed in
our next theorem.

Theorem 16

1. Every vector space has a basis.
If S is a linearly independent subset of 'V, then S
C B for some basis B of V.

3. If L(S) =V, then S contains a basis of V.

4.  Any two bases of V have the some cardinality.

A proof of Theorem 16 can be found in Brown [2].
A much simpler proof of Theorem 16 when V is finite
dimensional can be found in Brown [1]. The common
cardinality of the bases of V' will be denoted by dim(V")
and called the dimension of V. Dim(}V’) is a finite car-
dinal number, i.e., 0,1, 2, ... if and only if V is finite
dimensional. If V' is infinite dimensional, then dim(}")
is an infinite cardinal number. In this case, we will
simply write dim(}) = oo. In our next example, we
list the dimensions of some of the more important
finite-dimensional vector spaces.

Example 8

1. dim(M,,,(F)) =mn. A basis of M, ,(F) is
given by the matrix units B={A;|i=1,...,
m;j=1,...,n} of My,,,(F). Here Ay is the m x
n matrix having a 1 in its i jth entry and 0 else-

where.
2. dim(F") = n. A basis of F" is given by B = {g,
w8} where I, = (g1 |...]¢,). B is usually

called the canonical basis of F".

3. Let P.(R) = {p(X) € R[X] | degree(p) < n}.
Then dim(P,(R))=n+1. B={1,X,..., X"}
is a basis of P,(R).



4. Let Ae M, ,(F). The dimension of CS(A) is
called the rank of A and written tk(A). The
dimension of NS(A) is called the nullity of A
and written v(A). It follows from Theorem 17
that 0 < rk(4) < m and 0 < v(A4) < n.

Theorem 17. Suppose W is a subspace of V and

dim(V) < oo. Then dim(W) < dim(V) with equality if

and only if W =V.

There are many standard theorems about rk(A4), i.c.,
dim(CS(A4)). Here are some of the more important
ones.

Theorem 18. Let A € M,,,(F) and B € M, ,(F).

dim(CS(A4)) = dim(RS(A4)).

0 < rk(A4) < min{m, n}.

rk(A4) = rk(4") (= rk(4™) if F = C).

rk(A) = tk(PAQ) for any invertible matrices P,
0.

. 1k(AB) < min{rk(4), rk(B)}.

6. rk(A4)+v(4) =n.

Rl e e

Theorem 18(1) implies that the rank of A4 can be
computed from the row space of 4 as well as the col-
umn space of 4. Theorem 18(4) implies that the integer
t appearing in Theorem 9 is the rank of 4. Theorem
18(6) is called Sylvester’s law of nullity. We also have

Theorem 19. Let A € M, (F). Then the following
statements are equivalent:

A is invertible.

rk(A4) = n.

The columns of A are linearly independent.
The rows of A are linearly independent.
CS(A) = F".

RS(A) = Mlxn(F)'

v(A4) = 0.

NV kE LD~

For systems of linear equations, we have:

Theorem 20. Let A € M,,,,(F) and B € F". The lin-
ear system of equations AX = B has a solution if and
only if tk(A4 | B) = rk(A).

3.2.3 Coordinate Maps and Change-of-Basis
Matrices

One of the most important applications of bases is to
convert abstract problems into concrete matrix pro-
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blems which machines can then solve. To see how
this is done, suppose V' is a finite-dimensional vector
space over F. Suppose dim(}) =n. Choose a basis
{aqg, ..., of V and form the n-tuple
B=(«q,...,a,). Then B determines a function [*]p :
V' — F" which is defined as follows:

Definition 21

X
if y=xja;4+---+x,0,inV

xl‘l

The definition makes sense because the entries in B
form a basis of V. Every vector y € V can be written in
one and only one way as a linear combination of
ay,...,a, The function [x]; is called a coordinate
map on V. If we permute the entries of B or choose
a new basis altogether, we get a different coordinate
map. Every coordinate map satisfies the following con-
ditions:

Theorem 21. Let {«y, ..
B=(ay,...,,). Then,

., o,} be a basis of V and set

1. [xx+y8lg = x[Alg + yI8lg for all A, 6 € V and x,
yveF.
2. [¥lg: V — F" is one-to-one and onto.

3. yi,...,y are linearly independent in V if and
only if [ylg, ..., Vg are linearly independent
in F".

4. ye Ly, ....y) in V if and only if [ylg €
L(vlg, - - - vilp) in F".

5. If Wi, i=1,2,3, are subspaces of V, then Wy +
Wy =W (W, N W, =W3) if and only if [W]g
HWalg = [Wilg (W) N [Walp = [Wilp) in F".

Let us give one example which illustrates the power
of Theorem 21.

Example 9. Let V = P4uR). Suppose  f1(X)
=14+X+X" LX) =1-X+X—X* and f,(X)
=143X — X +3X* Adre f1./2, /3 linearly indepen-
dent in V? To answer this question, we use Theorem
21(3).

Let B=(1, X, Xz,X3,X4). B is an ordered basis of
V. The matrix



A = (/i]Il1215013]8)

1 1 1 I 1 1
1 -1 3 0 1 -1
=0 0 O0]7]0 O O
0 I -1 00 0
1 -1 3 00 0

has rank 2. Thus fi, f>, f5 are linearly dependent.

Suppose B = (ay,...,a,) and C =(B;,..., B,) are
two ordered bases of V. How are the coordinate
maps [*]z and [*]. related?

Definition 22. Let B= («oq,...,a,) and C = (B4, ...,
B,) be two ordered bases of V. Set

M(C, B) = ([51]B|[ﬂ2]3| cee |[.3n]3)

M(C, B) is an n x n matrix called the change-of-basis
matrix from C to B.

Theorem 22. Let B=(ay,...,qa,) and C=(B4,...,
B,) be two ordered basis of V. Then for all y eV,

M(C, B)lylc = [V]s-

Theorem 22 implies each change-of-basis matrix M
(C, B) is invertible with inverse M (B, C).

3.2.4 Linear Transformations

Definition 23. Let V and W be vector spaces over F. A
function T : V — W is called a linear transformation if
T(xa+yB) = xT(x) +yT(B) for all o,V and
x,yekF.

We will let Hom(V, W) denote the set of all linear
transformations from V to W. In algebra, a linear
transformation is also called a homomorphism. The
symbols denoting the complete set of homomorphisms
from V' to W comes from the word homomorphism.
The function T : V' — W given by T(«) = 0 for all « €
V' is clearly a linear transformation (called the zero
map). Hence, Hom(V, W) contains at least one map.
Here are some standard examples of linear transforma-
tions.

Example 10

1. Coordinate maps [¥]5 : V — F" are linear trans-
formations by Theorem 21(1).
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2. Let V=W and define T:V — V by T(x) =«
for all a € V. T is called the identity map on V
and will be denoted by 1y.

3. T: M, ,(F)— M, (F)given by T(4) = A" is
a linear transformation (notice S : M,,,,(C) —
M,...(C) given by S(A)= A* is not a linear
transformation).

4. Let A e M,,,,(F). A defines a linear transforma-
tion y : F" — F™ given by u,(&) = A& for all
&€ V. The map ., is called multiplication by A.

5. Let I be a nonempty subset of R and set V =R’ .
Let ael. The map E,: R' — R given by E,
(f) =f(a) is a linear transformation called eva-
luation at a.

6. Let I be an open interval in R. The map D : C'
(1) — R! given by D(f)=f' (the derivative of
f) is a linear transformation.

7. The map S : R([a, b]) — R given by S(f) = f:f
(1) dt is a linear transformation.

Definition 24. Let T € Hom(V, W).

1. Ker(T)={a € V|T(x) =0}.
2. Im(T) ={T(x)|x € V}.
3. Tis injective (one-to-one, monomorphism) if Ker

(T) = (0).

4. T is surjective (onto, epimorphism) if Im(T) =
w.

5. T is an isomorphism if T is both injective and
surjective.

The linear transformations in Example 10(1-3) are
all isomorphisms. w4 is an isomorphism if and only if
A is invertible. The set Ker(7) is a subspace of V" and is
called the kernel of T. The set Im(7') is a subspace of
W and is called the image (or range) of 7. If T is an
isomorphism, then 7' is a bijective map (one-to-one
and onto) from V' to W. In this case, there is a well
defined inverse map 7~': W — V given by T7'(8) = «
if T(x) = B. It is easy to prove T~' e Hom(w, V).

Definition 25. Two vector spaces V and W over F are
said to be isomorphic if there exists a linear transforma-
tion T : V — W which is an isomorphism.

If VV and W are isomorphic, we will write V' = I,
Our remarks before Definition 25 imply V' = W if and
only if W = V. Isomorphic vector spaces are virtually
identical. Only the names of the vectors are being
changed by the isomorphism. Example 10(1) implies
the following statement: if dim(¥) = n, then V = F".



Thus, up to isomorphism, F" is the only finite-dimen-
sional vector space over F of dimension 7.

The construction of linear transformations is facili-
tated by the following existence theorem. We do not
assume V is finite dimensional here.

Theorem 23. Let V be a vector space over F and sup-
pose B={a; | i€ A} is a basis of V. Let W be another
vector space over F and suppose {f; | i € A} is any subset
of W. Then

1. A linear transformation from V to W is comp-
letely determined by its values on B. Thus, if T,
SeHom(V, W) and T(x;) = S(a;) for all
i€, then T=S.

2. There exists a unique linear transformation T :
V — W such that T(o;) = B; for all i € A.

A proof of Theorem 23 can be found in Brown [2].
The four basic theorems connecting linear transforma-
tions and dimensions are as follows.

Theorem 24. Let V be a finite-dimensional vector space
over F. Let T € Hom(V, W).

1. If T is surjective, then W is finite dimensional. In
this case, dim(V) > dim(W).

2. Suppose dim(V) = dim(W). Then T is an iso-
morphism if and only if T is injective.

3. Suppose dim(V) = dim(W). Then T is an iso-
morphism if and only if T is surjective.

4. dim(Ker(7)) + dim(Im(7)) = dim(V).

Finally, Hom(V, W) is itself a vector space over
F when addition and scalar multiplication of linear
transformations are defined as follows: For
T,S €e Hom(V, W), set

(T+S)o)=T(x) +S(e) forallaeV
(xT)a) =x(T(x)) forallxe Fanda eV
(25)

3.2.5 Matrix Representations of Linear
Transformations

Suppose V' and W are both finite-dimensional vector
spaces over F. Say dim(V) = n and dim(W) = m. Let
B=(aj,...,a,) be an ordered basis of V and C =
(Bi,...,Bn) be an ordered basis of W. Let
T € Hom(V, W). We can then define an m x n matrix
as follows:
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Definition 26. M (T; B, C) = ([T(a)]cI[T ()]l - -
|[T(0[n)]C)‘

M(T; B, C) is called the matrix representation of T
with respect to B and C. The ith column of M(T’; B, C)
is just the coordinates of T'(¢;) with respect to C.

Example 11. Let V =P3(R), W = P»(R) and D : Ps
(R) — Po(R) be ordinary differentiation (D(f) =7f").
Let B=(1,X,X* X% and C = (1, X, X?). Then

010 0
MMD;B,C)=10 0 2 0] e M, (R) (26)
00 0 3

The following diagram is certainly one of the most
important diagrams in linear algebra:

v ow
[« | I [¥e (27)

) RNy o
Here A = M(T; B, C).
Theorem 25. [T(a)]o = Alx]p for all x € V.

Theorem 25 implies that the diagram (27) commu-
tes, i.e., the composite maps [*]- o T and pu 4 o [*]z are
the same. The vertical maps in (27) are i7somorphisms
which translate the abstract situation V' — W into the
concrete situation F" % F”. Machines do computa-
tions with the bottom row of (27).

Theorem 26. In diagram (27),

1. Ker(7T) = NS(A).
2. Im(T) = CS(A).

The rank and nullity of a linear transformation 7" are
defined to be the dimensions of Im(7) and Ker(T)
respectively. Let us return to Example 11 for an illus-
tration of how Theorem 26 works. Suppose we want to
compute the rank and nullity of D : P3(R) — P»(R).
Since

010 0
MD;B,C)=10 0 2 0] eM; (R (28)
00 0 3

we conclude rk(D) = 3 and v(D) = 1.

If we vary T € Hom(V, W), we get a function
M(x; B, C) : Hom(V, W) — M,,,,(F). This map is an
isomorphism of vector spaces.



Theorem 27. M(x; B, C) : Hom(V, W) — M,,,,,(F) is
an isomorphism.

Thus,
1. M(xxT+yS; B,C)=xM(T; B,C)+ yM(S; B,
0).

2. M(T; B, C) =0if and only if T is the zero map.
3. Given 4 € M,,, ,(F) there exists a T € Hom(/V,
W) such that M(T; B, C) = A. (29)

Suppose V', W, and Z are finite dimensional vector
spaces over F. If T eHom(V,W) and Se€
Hom(W, Z), then the composite map So T :V — Z
is a linear transformation. If D is an ordered basis of
Z, then

M(SoT;B,D)=M(S;C,D)M(T; B, C) (30)
If T:V — W is an isomorphism, then
M(T™';C,B)y= M(T; B,C)"! (31)

Suppose we change basesin ¥ and W. Let B’ = («j,
...,ay) and C'=(B{,..., B, be two new, ordered
bases of V' and W respectively. Then we have two
matrix representations of T :M(T;B,C) and
M(T; B',C’). Recall that M(B,B’) and M(C,C")
denote change-of-basis matrices in V" and W. The rela-
tion between the matrix representations of 7 is as fol-
lows:

M(T; B',C"y = M(C, C")M(T; B, C)M(B, B')™
(32)

Since change of bases matrices are invertible, a simple
translation of Theorem 9 gives us the following theo-
rem:

Theorem 28. Suppose V and W are finite-dimensional
vector spaces over F. Let T € Hom(V, W) and suppose
the rank of T is t. Then there exist ordered bases B and
C of V and W respectively such that

(I, O)
M(T; B,C) = 4{>
0]0

There is a special case of Eq. (32) which is worth
mentioning here. Suppose V=w and
T e Hom(V, V). If B and B’ are two ordered bases
of V, then M(T; B, B) and M(T; B', B') are two n x
n matrices representing 7. If U = M(B, B’), then Eq.
(32) becomes

M(T; B', B"y = UM(T; B, B)U™' (33)
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Definition 27. Let A\, Ay € M,,,,(F). A, is similar to
Ay, if A, =UAU™" for some invertible matrix
UeM,,,(F).

The relation in Eq. (33) implies that any two matrix
representations of 7 € Hom(V, V) are similar. We
then have the following questions: What is the simplest
matrix representation of 72 In other words, what is the
simplest analog of Theorem 28? In terms of matrices,
the question becomes: What is the simplest matrix B
which is similar to a given matrix 4A? The answers to
these questions are called canonical forms theorems.
The important canonical forms (e.g., the Jordan cano-
nical form, rational canonical form, etc.) are discussed
in Brown [2].

3.3 DETERMINANTS AND EIGENVALUES

3.3.1 Determinants

Let n € N and set A(n) ={1,2,...,n}. A permutation
(on n letters) is a bijective function from A(n) to A(n).
We will let S, denote the set of all permutations on n
letters. If o € S, then o is represented by a 2 x n matrix

1 2 3 ... n
U_(il oo in) (34)

Here o(1) =iy, 0(2) = iy, ...,0(n) = i,. Thus, ij, ..., i,
are the numbers 1,2,...,n in some different order.
Obviously, S, is a finite set of cardinality n!.
Permutations can be composed as functions on A(n).
Composition determines a binary operation S,, x S, —
S,[(o, T) = o o 7] which endows S,, with the structure
of a group. See Brown [1, Chap. III] for more details.

Definition 28. A4 permutation o € S, is called a cycle of
length r if there exist distinct integers iy, ..., i. € A(n)
such that:

1. o(i) =b,0(ih)=13,...,0(._;) =i, and o(i,)
== il'

2. o(j) = for all j € Am\{iy, ..., i}

If o is a cycle of length r, we will write
o={(i,i,...,I0). A two-cycle (a,b) interchanges «
and b and leaves all other elements of A(n) invariant.
Two-cycles are also called transpositions. Every per-
mutation in S, is a product of disjoint cycles (i.e.,
cycles having no entries in common). Every cycle o =
(iy,...,0) is a product of transpositions:
(i, ..., 0) = (i1, i)y, i_y) ... (i, ). Thus, every per-
mutation is a finite product of transpositions.



Example 12. Let

Then

o=(1,2,3,4)5,06)7,8,9)

(35)
= (1,4)(1, 3)(1, 2)(5, 6)(7.9)(7. 8)

If 0 € S, is a product of an even (odd) number of
transpositions, then any factorization of ¢ into a pro-
duct of transpositions must contain an even (odd)
number of terms. A permutation o is said to be even
(odd) if o is a product of an even (odd) number of
transpositions. We can now define a function
sgn(x) : S, = {—1, 1} by the following rules:

1 if o is even

sen(o) = { 1 ifois odd (36)

The number sgn(o) is called the sign of o. If e
denotes the identity map on A(n), then e = (a, b)(b, a)
and, hence, sgn(e) = 1. Any transposition is odd.
Hence, sgn((a, b)) = —1. If o is the permutation given
in Eq. (35), then o is even and sgn(o) = 1.

We can now define the determinant, det(4), of an n
X n matrix 4.

Definition 29. Let A = (a;) € M, (F). The determi-
nant of A is defined to be the following element of F

Z $EN(0) a1 4(1)@25(2) - - - Ano(n) (37

o€S,

det(A) =

The symbols in Eq. (37) mean add all possible products
SEN(0) 1 4(1)@25(2) - - - no(ny @S O Tanges over S,,. If we let
A vary, the determinant defines a function
det(x) : M, ,(F) — F.

The value of det(A) is numerically hard to compute.
For instance, if n = 5, there are 120 products to com-
pute, store, and add together in Eq. (37). Fortunately,
we have many theorems which help us compute the
value of det(4). A summary of the more elementary
properties of the determinant is given in Theorem 29
below.

Theorem 29. Let A,B e M, (F). Then

1. If Rowi(4)=0 (or Coli(4)=0), then
det(4) = 0.

2. If Row(A4)=Row;(4) for some i#j [or
Col,(4) = Col;(4)], then det 4 =0.

3. If A is upper or lower triangular, then

det(4) = [1,[A4];-
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4. If A =(ay;...;w,) is the row partition of A and
a;=pB+8 for some i=1,...,n and some
B,8 € My, (F), then

a. det(og;...; x5 ...50,) =
xdet(ay;...; ;... Q).

b. det(a;...; B+8;...5 )
=det(as;...; B;...;,) +
det(ay;...;8; ... ).

S. If A= (ay;...;,) is the row partition of A and
ocesS, then det(ty(1y; - - - 3 Uy(y)) = sgn(o)
det (a5 ... ).

6. det(AB) = det(A)det(B).

7. a. det(E;A) = —det(A4) (i #)).
b. det(E;(c)A) = det(4) (i #)).
c. det(Ej(c)A4) = cdet(A).

8. If PA = LU is an LU-factorization of PA, then
det(4) = sen(P)[T [U);)

9. det(A4) = det(4").

10. A is invertible if and only if det(A) # 0.

The corresponding statements for columns in
Theorem 29(4-6) are also true. The matrix P in (8) is
a permutation matrix and, consequently, has the form
P=(esyl ... | &oey) where (g1]...1¢,)=1, and
o € S,. Then sgn(P) is defined to be sgn(s). Theorem
29(8) is an important application of LU-factorizations:
To compute det(A4), factor PA for a suitable permuta-
tion matrix P, compute the product of the diagonal
elements of U and then det(4) = sgn(P)(]—,[Ul;)
For example, Eq. (22) implies det(4) = —7. Theorem
29(10) is one of the most important properties of the
determinant. A4 is singular (i.e., not invertible) if and
only if det(4) = 0.

Definition 30. Let A € M, ,(F). Assume n > 2.

1. Fori,j=1,...,n M;(A) will denote the (n — 1)
x(n — 1) submatrix of A obtained by deleting row
i and column j of A.

2. cofy(A) = (=1)"" det(M(A)).

3. adj(A) is the n x n matrix whose i, jth entry is
given by [adj(A)]; = cof;;(A).

The determinant of the (n — 1) x (n — 1) submatrix

M ;(A) is called the 7, jth minor of 4. The i, jth minor
of A with sign (—1)"¥ is cof, ;(A) and is called the i, jth
cofactor of A. The matrix deﬁned in 3 is called the
adjoint of 4.

Theorem 30. Laplace Expansion:
Then adj(4)A = A adj(A)

Let A e M,,,(F).
= (det A)I,.



Analyzing the entries in Theorem 30 gives us the
following identities:

> [A]; cofy(4) = 5y, det(A)
i=1
foralli,k=1,...,n
(38)

i[A]U- cof i (A4) = 8 det(A4)
i=1

forallj,k=1,...,n

here

1
(Sm; = { 0

is Kronecker’s delta function.

If A is invertible, then Theorem 30 implies
A" = (det(4))"'adj(4). Equation (11) is just
Laplace’s theorem when n = 2. The last elementary
result we will give concerning determinants is
Cramer’s rule.

fu=v

if ustv

Theorem 31. Cramer’s Rule: Let A=(&|...]&,) €
M, (F). Let Be F". Suppose A is invertible. Then
the unique solution (x, ..., x,) € F" to the system of
equations AX = B is given by

x; = (det(4)) "det(&; | ... | & 1 | Bl & |- 1&)
foralli=1,...,n

(39)

3.3.2 [Eigenvalues

Definition 31

1. Let Ae M, (F). A scalar d € F is called an
eigenvalue (or characteristic value) of A if
there is a nonzero vector &€ F" such that
Af = dE.

2. Let V be a vector space over F and
T € Hom(V, V). A scalar d € F is an eigenvalue
(or characteristic value) of T if there is a nonzero
vector . € V such that T()) = dX.

Eigenvalues of matrices and linear transformations
are related to each other by diagram (27). If 4 is any
matrix representation of 7', then d is an eigenvalue of
T if and only if d is an eigenvalue of 4. For this reason,
we will present only the theory for matrices. The reader
can translate the results given here into the correspond-
ing theorems about linear transformations (on finite-
dimensional vector spaces) by using (27).
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Definition 32. Let A € M, ,(F). Then Sp(A) = {d €
F | d is an eigenvalue of A} is called the spectrum of A.

The spectrum of A4 could very well be empty.
Consider the following well-known example.

Example 13. Let
0 -1
a=(1 7p) e aa®

The matrix A represents a rotation (in the counterclock-
wise direction) of 90° in the plane R2. It is easy to see
A& =dE for some deR implies &=0. Thus,
Sr(4) = 0.

If we view A as a complex matrix, i.e., A € M,,,(C),

Y 4D

Here i = ~/—1. It is easy to show Sc(A) = {—i, i}.

Example 13 shows that the base field F is important
when computing eigenvalues. Thus, the notation Sp(A)
for the spectrum of A includes the field F in the sym-
bols.

Definition 33. Let A € M, ,(F) and let X denote an
indeterminate over F. The polynomial C4(X) = det(XI,
—A) is called the characteristic polynomial of A.

For any matrix 4 € M,,,(F), the characteristic
polynomial has the following form:

CX)=X"+a, X" '+ +a, X +a,. (41)

In Eq. (41), a4, ..., a, € F. The coefficients ay, ..., a,
appearing in C4(X) all have various interpretations
which are related to 4. For example,

a = — Xn:[A]ii a, = (=1)" det(4) (42)
i=1

At any rate, C4(X) is always a nonzero polynomial of
degree n whose leading term is 1. The connection
between Sp(A4) and C4(X) is given in our next theorem.

Theorem 32. Sp(A)={d € F | C,(d) = 0}.

Thus, the zeros of C4(X) in F are precisely the
eigenvalues of 4. In Example 13, C,(X)=X°+ 1.
The zeros of X* + 1 are {—i, i} € C. Hence, Sg(4) =
¢ and S¢(A4) = {£i}.

Although Theorem 32 is simple, it is only useful
when C,(X) (an n x n determinant) can be computed



and the roots of C4(X) in F can be computed. For
large n or “bad” matrices 4, more sophisticated meth-
ods (such as the power method or inverse power
method when F =R or C) must be employed. One
of the central problems of numerical linear algebra is
to devise iterative methods for computing eigenvalues.
A good elementary reference for these techniques is
Cullen [4].

Notice that Theorem 32 implies 4 has at most n
distinct eigenvalues in F. Also, Theorem 32 implies if
A is similar to B, then Sp(A4) = Sp(B).

Definition 34. Let d e Sp(4). The subspace
NS(dI, — A) is called the eigenspace of A associated
with d. The nonzero vectors in NS(dI,, — A) are called

eigenvectors (or characteirstic vectors) of A associated
with d.

We will let £ 4(d) denote the eigenspace of A asso-
ciated with the eigenvalue d. If d,, ..., d. are distinct
eigenvalues in Sp(A4) and & is a nonzero vector in
E4(d;), then &, ...,& are linearly independent over
F. This leads immediately to our next theorem.

Theorem 33. Let A € M, (F). A is similar to a diag-
onal matrix if and only if F" has a basis consisting of
eigenvectors of A.

There are many applications of Theorem 33.
Example 14. Suppose A € M,,,,(F). How do we com-

pute Akfor all k > 2? If F" has a basis {§, ..., §,} con-
sisting of eigenvectors of A, then the problem is easily

solved. Suppose A& =d& for i=1,...,n. Set
P=(&1...1¢&,). Since rk(P) = n, P is invertible.
AP =A | ... | &)
= (A& | ... | A&) = (d & | ... | dy§,) = PD
(43)
Here
d 0
D=
0 d,
Thus, A = PDP~" and
dy 0
A*=(DP Y =pDfPp =P P!
0 dy
(44)
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There are many iteration-type problems in which AF
must be computed for all £ > 1. These problems are
easily solved if 4 has enough eigenvectors to span the
space. The reader is urged to consult Brown [1] for
other applications of eigenvalues.

3.4 INNER-PRODUCT SPACES
3.4.1 Real and Complex Definitions

Inner products are defined on vector spaces defined
over R or C. A vector space V' whose field of scalars
F =R(C) is called a real (complex) vector space. The
definition of an inner product is slightly different for
the two cases.

Definition 35. Let V' be a real vector space, i.e.,
F = R. An inner product on V' is a function (x,*) : V x
V — R which satisfies the following conditions:

1. (a,a) is positive for every nonzero a € V.

2. (xa+yB,y)=x{a,y) + (B, y) forall a, B, y €
V and x,y € R.

3. {(o,8)=(B,a) foralla,Be V.

A real vector space V together with an inner pro-
duct (*,*) on V is called an inner-product space. We
will denote an inner-product space by the ordered pair
(V, (x, *)).

If (V, (*, %)) is an inner-product space, then (0, a) =
0 for all @ € V. Also, (y, xa + yB) = x{y, @) + y{y, B)
by 2 and 3. Hence, (x,*) is a bilinear function on
VxV.

Example 15

1. Let V =R". Define (a, B) = o'B. Here we iden-
tify the 1 x 1 matrix o' B with its single entry in
R. Then (R", (a, B) = a'B) is an inner-product
space. The function (a, B) =d'B is called the
standard inner product (in calculus, the dot pro-
duct) on R".

2. Let V=R" Let ¢,...,c, be any positive
numbers in R. If a=(x,...,x,) and
B=Wi, -, ), set (o, B) = DI ¢;xiy;. then
(R", (%, %)) is an inner-product space.

Thus, a given real vector space V' can have many differ-
ent inner products on it.

3. Let V =C(a,b]), the continuous real-valued
Sfunctions on a closed interval [a,b] C R. If we

define (f,g) = [} f(x)g(x)dx, then (V' (x,)) is

an inner-product space.



Definition 36. Let V be a complex vector space, i.e.,
F = C. An inner product on V is a function {(x,*) : V x
V' — C which satisfies the following conditions:

1. (a, @) is a positive real number for every nonzero
ael.

2. (xa+yB,y)=x{a,y) +y(B,y) foralle, B, y €
V' and x,y € C.

3. (o,B)=(B,a) foralla,BeV.

In 3, (B, @) denotes the conjugate of the complex
number (B, a). A complex vector space V together
with an inner product (x, x) on V' will be called a com-
plex inner-product space (V, (x, *)).

If (V,(*,%)) is a complex inner-product space,
then (0,a)=(x,0)=0 for all aoeV and
(y, xa + yB) = X{y, @) + y{y, B). Thus (x,x) is linear
in its first variable and conjugate linear in its second
variable. The inner product given on C" by («, ) = o
B is called the standard inner product on C".

The theorems for real and complex inner products
are very similar. Usually if one erases the conjugation
symbol in a complex proof, one gets the real proof. For
this reason, we will state all future results for complex
inner-product spaces and leave the corresponding
results for real vector spaces to the reader.

Let (V, (*, %)) be a (complex) inner-product space.
We can define a length function || *|: V' — R on V
for by setting

llell = /A, o) foralla e V (45)

By Definition 36(1) [or 35(1)], (&, @) > 0 for any @ € V.
o, o) denotes the nonnegative real number whose
square is (o, ). Thus, lell* = (o, ). One of the most
important inequalities in mathematics is the Cauchy—
Schwarz inequality:

(e, B)] < Nl 11 Bl

In Eq. (46), |{a, B)| denotes the modulus of the com-
plex number (¢, B). The function | * || defined in Eq.
(45) is called the norm associated with the inner pro-
duct (x, *). The norm satisfies the following inequal-
ities:

foralla,Be V (46)

la]] >0 if a#0 (47a)
101="0 (47b)
lxe|l = |x|lle| foralloe Vand xe C (47¢)

e+ Bll < llell + 18Il foralla, eV (47d)

The inequality in Eq. (47d) is called the triangle
inequality. Its proof follows immediately from the
Cauchy—Schwarz inequality.
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The norm associated with the inner product (x, %)
defines a distance function d : V' x V' — R given by the
following equation

d(a, B) = |l — B

The distance function satisfies the following inequal-
ities:

foralla,Be V (48)

d(a, B) =0 foralla,BeV (49a)
d(e, ) =0 if and only if « = 8 (49b)
da,B)=d(B,a) foralla,BeV (49¢)
dla,p) <d(e,y)+d(y,p) foralla,B,yeV
(49d)

Thus, any inner-product space (V, (x, %)) is a normed
vector space (V, || * ||) with norm given by Eq. (45) and
a metric space (V, d) with metric (i.e., distance func-
tion) d given by Eq. (48). Since we have a distance
function on (V, (x,*)), we can extend many results
from the calculus to (V, (*, x)). For more details, the
reader is referred to Brown [2].

3.4.2 Orthogonality

Definition 37. Let (V, (x,*)) be an inner-product
space.

1. Two vectors o, B € V are said to be orthogonal if
(a, B) = 0.

2. A set of vectors {a; | i€ A} C V is said to be
pairwise orthogonal if a; and a; are orthogonal
whenever i # j.

Notice that («,8) =0 if and only if (8, a)=0.
Thus, o and B are orthogonal if and only if 8 and «
are orthogonal.

Theorem 34. Let «y,...,qa, be pairwise orthogonal,
nonzero vectors in (V, (x, x)). Then

1. «,...,q, are linearly independent.
2. Ifyel(a,...,q,)), then
n
(V’ (){/))
j; (), o) !
3. Ifyel(a,...,q,),then
" ) 172
[y, ;)|
vl = ——
j:ZI (), o)



A set of vectors «, ..., a, € (V, (%, %)) is said to be
orthonormal if (&;, o;) = 0 whenever i # j and ||| = 1
foralli=1,...,n Ifa,...,a, are orthonormal, then
Theorem 34 implies that B = («, ..., ,) is an ordered
basis of W = L(«y, ..., a,). In this case, the coordinate
map [x]g : W — C" is particularly easy to compute. By
2 and 3, we have

(v, 1)

Yl = forany ye W = L(«y, ..., a,)

(v, an)
(50a)

n 1/2
Iyl = :Zuy,amz} for any y € L(ay, ..., )

J=1

(50b)

The Gram—Schmidt process allows us to construct an
orthonormal basis of any finite-dimensional subspace
W of (V, (x, %)).

Theorem 35. Gram—Schmidt: Let «,...,a, be line-
arly independent vectors in (V, (x, *)). Then there exist
pairwise orthogonal vectors Ay, ..., A, such that L(a;,

o)=Ly, ..., p) forj=1,....n

The vectors Aq,...,A, in Theorem 35 are defined
inductively as follows: A; =«;. Having defined
Aly«vos Ay Aqq 1s defined by the following equation:

- (ar+lv)">
e == (G b
j=1 g
To produce an orthonormal basis for L(wy,...,q,),
replace Ay, ..., &, by A/lAgll ooy A/l Al

Theorem 35 can be used to construct the orthogonal
complement of a subspace W.

Theorem 36. Let (V, (x,%)) be a finite-dimensional
inner-product space. Let W be a subspace of V. Then
there exists a unique subspace W' C V such that

. W+w' =vV.

wnw' =(0).
3. Every vector in W is orthogonal to every vector in
w'.

The unique subspace W' given in Theorem 36 is called
the orthogonal complement of W and written W<.
Clearly, dim(W) + dim(W*) = dim V.
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3.4.3 Least-Squares Problems

There are three main problems in numerical linear
algebra:

1. Find effective methods for solving linear sys-
tems of equations AX = B.

2. Find methods for computing eigenvalues of a
square matrix A4.

3. Find effective methods for solving least-squares
problems.

We have already talked about the first two pro-
blems. We will now consider the third problem.

Suppose W is a subspace of some inner-product
space (V, (x,*)). Let a € V. Is there a vector P(x) €
W which is closest to «? In other words, is
there a vector Pla)e W such that
lo — P(a)]| = min{lla — B|| | B W}? If V=R" and
(@, B) = &' B, then |l — B> = Y (a; — x;)*. Here & =
(ay,...,a,) and B=(xi,...,x,) € W. Finding a vec-
tor P(«) in W which is closest to « is equivalent to
finding (x,...,x,)" € W such that (a; — x;)* + -+
(a, — x,)° is as small as possible. Thus, we are trying
to minimize a sum of squares. This is where the name
“least-squares problem” originates.

If dim(W) = oo, there may be no vector in W which
is closest to «. For a concrete example, see Brown [2, p.
212]. If W is finite dimensional, then there is a unique
vector P(x) in W closest to «.

Theorem 37. Let (V, (*, %)) be an inner-product space
and let W be a finite-dimensional subspace of V. Let
a € V. Then there exists a unique vector P(a) e W
such that le — P()|| = min{|la — B|| | B € W}.
Furthermore, if {aq, ..., a,} is any pairwise, orthogonal
basis of W, then

_ . (avaj>>
P ,Z:((“j’aj) K

The unique vector P(«) satisfying Theorem 37 is
called the orthogonal projection of o onto W. The
map Py (x): V — V given by Py (a) = P(x) for alla €
V is called the orthogonal projection of V onto W.
This map satisfies the following properties:

Py, € Hom(V, V).

o — Py (a) is orthogonal to W for every o € V.
Im(Py) = W, Ker(Py) = W,

Py = Py (52)

el



Theorem 37 has important applications in the
theory of linear equations. Suppose 4 € M,,,,(C)
and Be C".

Definition 38. A vector & € C" is called a least-squares
solution to AX =B if ||A& — B|| < ||A) — B|| for all
reC.

Here || * || is the induced norm from the standard
inner product (o, 8) = '8 on C". Thus, & is a least-
squares solution to AX =B if and only if
A& = Pcgq)(B). In particular, Theorem 37 guarantees
least-squares solutions always exist. If B € CS(4), then
AX = B is consistent, i.e., there exists a vector A = C”
such that AA = B. In this case, any least-squares solu-
tion to AX = B is an ordinary solution to the system.

Theorem 38. Let A € M,,,,(C) and B € C". A vector
& € C" is a least-squares solution to AX = B if and only
if € is a solution to (A'A)X = A'B. The least-squares
solution is unique if tk(4) = n.

The equations (4'4)X = A'B are called the normal
equations of 4. Theorem 38 implies the solutions of
the normal equations determine the least-squares solu-
tions to AX = B. Solutions to the normal equations
when rk(4) < n have an extensive literature. For appli-
cations to curve fitting, see Brown [1].

3.4.4 Normal Matrices

In this section, F =R or C. (x, x) will always denote
the standard inner product on F". Thus, (a, 8) = o'B if
F=Rand (o, f) ='Bif F=C.If 4 € M,,,(F), then
A* will denote the Hermitian conjugate of 4. Thus, A4*
= A" if the entries of A4 are all real numbers and, in
general, 4* = (4)". There is an important relationship
between the standard inner product and 4 and A4*.

Theorem 39. Let A€ M, ,(F). Then (Ax, B) = («,
A*B) for all a, B € F".

Definition 39. Let A e M, ,(C). A is unitary if

AA* = A" A =1,

If the entries of A in Definition 39 are all real [i.e.,
AeM,,,(R)] and A4 is unitary, then 44" = A'A =1,.
In this case, 4 is called an orthogonal matrix. The
following theorem characterizes unitary and orthogo-
nal matrices.

Theorem 40. Suppose A= (& |...]§&,) € M,,,(C).
Then the following statements are equivalent:
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1. A is unitary.

2. (Aa, AB) = {(a, B) for all a, B € C".

3. {&,...,&,} is an orthonormal basis of C".

4. A = M(B, C), a change-of-basis matrix between
two orthonormal bases B and C of C".

The same theorem is true with C replaced by R and
unitary replaced by orthogonal. An important corol-
lary to Theorem 40 is the following observation. If A4 is
unitary, then

Se(d)c{zeCllzl=1) (53)

Definition 40. Let A € M, ,(C). A is Hermitian if
A=A"

Theorem 41. Let A € M, ,(C). If A is Hermitian, then
Sc(4) c R

If the entries in A are real, then 4 = 4™ if and only if
A is symmetric. Theorem 41 implies any real, sym-
metric matrix has all of its eigenvalues in R. Here is
a handy chart of the complex and real names of some
important types of matrices:

MIIXH(C) Mnxn(R)

A unitary: A4 =1, A orthogonal: 4’4 =1,
A Hermitian: 4 = A* A symmetric: 4 = A’
A skew-Hermitian: 4* = —4 A skew-symmetric: 4' = —A4

These are all special cases of normal matrices.

Definition 41. Let A e M, (C). A is normal if
AA® = A" A.

Theorem 42. Schur:

1. Let AeM,,,(R) such that Sc(4A) CR. Then
there exists an orthogonal matrix P such that P’
AP is upper triangular.

2. Let A e M,,,(C). There exists a unitary matrix
P such that P*AP is upper triangular.

Notice the difference between the two theorems. If
F = C, there are no hypotheses on 4. Any (square)
matrix is unitarily similar to an upper-triangular
matrix. The corresponding theorem for real matrices
cannot be true. The matrix

a=(1 7)€ tam



is not similar to any upper-triangular matrix since
Sr(A) = @. However, if all eigenvalues of 4 (in C) in
fact are real numbers, then 1 implies A is orthogonally
similar to an upper-triangular matrix. For example,
Theorems 41 and 42(1) imply that any symmetric
matrix 4 € M, ,(R) is orthogonally similar to a diag-
onal matrix. In fact, more is true.

Theorem 43. Let A € M,,,,(C). A is normal if and only
if there exists a unitary matrix P such that P*AP is
diagonal.

In particular, Hermitian and skew-Hermitian matrices
are unitarily similar to diagonal matrices.

We conclude this section with an easy application of
Theorem 43.

Theorem 44. Let A € M,,,,(C) be a normal matrix.

1. A is Hermitian if and only if Sc(A4) C R.
A is  unitary if and only if Sc(A)
C{zeCllzl=1}

3.5 FURTHER READING

This chapter consists of definitions and theorems that
would normally be found in a junior level course in
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linear algebra. For more advanced courses the reader
could try Brown [2] or Greub [5]. For an introduc-
tion to the theory of matrices over arbitrary commu-
tative rings, see Brown [3]. For a basic treatment of
numerical results, see Cullen [4]. For a more
advanced level treatment of numerical results, see
Demmel [6].
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Chapter 1.4
A Review of Calculus

Angelo B. Mingarelli

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada

4.1 FUNCTIONS, LIMITS, AND
CONTINUITY

4.1.1 Functions and Their Properties

A function is a rule which associates with each object of
one set, called the domain [denoted by the symbol
Dom(f)], a single object f(x) from a second set called
the range [denoted by the symbol, Ran(f)]. All func-
tions will be real valued in this chapter. This means that
their range is always a subset of the set of all real
numbers, while their domain is always some interval.
We recall the notation for intervals; the symbol (a, b)
denotes the set of points {x:a < x < b}, and this is
called an open interval, while [a, b] represents the set
{x:a < x < b}, which is called a closed interval. On the
other hand, the symbols (a, b], [a, b) each denote the
sets {x:a <x<b} and {x:a < x < b}, respectively
(either one of these is called a semiopen interval). The
rules f(x) = X3, g(x) = cosx, h(x) = /x are various
examples of functions, with /(x) being defined only
when x > 0. The sum of two functions, f, g, say, is
defined by the rule (f + g)(x) =f(x)+g(x) with a
similar definition being applied to the difference. The
operation known as the product of two functions, f, g,
say, is now defined by the rule (fg)(x)=f(x)g(x).
For example, with f, g as above, their sum,
(f +g)(x) =x’ +cosx, whereas their product
(fe)(x) = x’ cosx. The quotient of two functions is
only defined when the denominator is nonzero. In gen-
eral, (f/g)(x) =f(x)/g(x) represents the quotient of
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/., g, while in our case, (f/g)(x) = x’secx, which is

only defined when cosx # 0. When ¢ is a constant (a
real number), the symbol ¢f 1is defined by
(cf)(x) = ¢f(x). In particular, the identity function,
denoted by the symbol “1,” is defined by the rule
1(x) = x. An important function in calculus is the so-
called absolute value function; it is defined by the rule:
|x] = x, x > 0, while, if x < 0, |x] = —x. In either case,
the absolute value of a number is that same number (if
it is positive) or the original unsigned number (with its
minus sign changed to a plus sign). Thus,
| — 5| = —(=5) =5, while |3.45] = 3.45. When using
square roots we will always take it that Vx? = x|,
for any x.

Another operation which is available on two speci-
fied functions is that of composition. We recall this
notion here: given two functions, f,g where the
range of g is contained in the domain of f, we define
the composition of f and g, denoted by the symbol f o g,
whose values are given by (f o g)(x) = f(g(x)). As an
example, let f(x)=x>+1,g(x)=x—1. then
(f 0 g)(x) =f(g(x)) = g(x)* + 1 = (x — 1)’ + 1. On the
other hand, (go/)(x)=g(f(x)) =/(x)—1=x" and
this shows that the operation of composition is not
commutative, that is, (g o f)(x) # (f o g)(x), in general.

Let f,F be two given function with domains,
Dom(f), Dom(F), and ranges, Ran(f), Ran(F). We
say that f (resp. F) is the inverse function of F (resp.

f) if both their compositions give the identity function,

that is, if (foF)(x)=(Fof)(x)=x [and, as is
usual, Dom(f) = Ran(¥) and Dom(F) = Ran(f)].



Sometimes this relation is written as
(f of " N(x) = (f7"' o f)(x) = x. For instance, the func-
tions f,F defined by the rules f(x)=x" and
F(x) = /x are inverses of one another because their
composition is the identity function. In order that two
functions f, F be inverses of one another it is neces-
sary that each function be one-to-one on their respec-
tive domains. This means that the only solution of the
equation f(x) =f(y) [resp. F(x) = F(y)] is the solu-
tion x =y, whenever x,y are in Dom(f), [resp.
Dom(F)]. The simplest geometrical test for deciding
whether a given function is one-to-one is the so-called
horizontal line test. Basically, one looks at the graph
of the given function on the xy-plane, and if every
horizontal line through the range of the function
intersects the graph at only one point, then the func-
tion is one-to-one and so it has an inverse function.
The graph of the inverse function is obtained by
reflecting the graph of the original function in the
xy-plane about the line y = x.

At this point we introduce the notion of the inverse
of a trigonometric function. The graphical properties
of the sine function indicate that it has an inverse
when Dom(sin) = [—r/2, w/2]. Its inverse is called
the arcsine function and it is defined for —1 < x <1
by the rule that y = arcsin x means that y is an angle
whose sine is x. Thus arcsin(l) = /2, since
sin(rr/2) = 1. The cosine function with
Dom(cos) = [0, 7] has an inverse called the arccosine
function, also defined for —1 < x < 1, whose rule is
given by y = arccos x which means tht y is an angle
whose cosine is x. Thus, arccos(l)=0, since
cos(0) = 1. Finally, the tangent function defined on (
—m/2,/2) has an inverse called the arctangent func-
tion defined on the interval (—oo, 400) by the state-
ment that y = arctanx only when y is an angle in
(=m/2,7/2) whose tangent is x. In particular,
arctan(l) = n/4, since tan(w/4) = 1. The remaining
inverse trigonometric functions can be defined by
the relations y = arccotx, the arccotangent function,
only when y is an angle in (0, 7) whose cotangent is
x (and x is in (—oo,400)). In particular,
arccot(0) = /2, since cot(xw/2) =0. Furthermore,
y = arcsec x, the arcsecant function, only when y is
an angle in [0, 7], different from /2, whose secant
is x (and x is outside the closed interval [—1, 1]). In
particular, arcsec(l) =0, since secO = 1. Finally,
y = arccsc(l)x, the arccosecant function, only when y
is an angle in [—m/2, /2], different from 0, whose
cosecant is x (and x is outside the closed interval
[-1,1]). In particular, arccsc(l)=m/2, since
csc(r/2) = 1. Moreover,
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sin(arcsinx) =x, —1<x<1 arcsin(sinx) = x,
—7/2 <x<m/2 (1)
cos(arccosx) =x, —1<x<1 arccos(cosx)=x
O0<x<m 2)

-0 < X < 400
—n/2 <x<m/2 3)

tan(arctan x) = X,
arctan(tan x) = x,

-0 <X < 400
O<x<m @)

cot(arccot x) = x,
arccot(cot x) = x,

sec(arcsecx) = x |x| > 1 arcsec(secx) = x,
0<x=<mx#mn/2 (5)

csc(arccsc x) = x, |x| > 1 arcesc(csc x) = x,
—m/2<x<m/2,x#0 (6)

arccos x + arcsinx = /2, —-1<x<1 (7

arccot x 4+ arctanx = /2, —00 < X < +00 8)

arcsec x + arcescx = 7w/2, |x| >1 )
sin(arccos x) = cos(arcsinx) = v 1 — x2,
—-l<xx<l1 (10)
Note that other notations for an inverse function include

the symbol =" for the inverse function of f, whenever it
exists. This is not to be confused with the reciprocal

function. We used F in this section, and arcsin(x)

instead of sin™! x, in order to avoid this possible con-
fusion.

A relation between two variables say, x, y, is said to
be an implicit relation if there is an equation connecting
the two variables which forms the locus of a set of
points on the xy-plane which may be a self-intersecting
curve. For example, the locus of points defined by the
implicit relation x*+)?* —9=0 forms a circle of
radius equal to 3. We can then isolate one of the vari-
ables x or y, say x, call it an independent variable and
then have, in some cases, y being a function of x (y
then is called a dependent variable, because the value of
y depends on the actual value of x chosen). When this
happens we say that y is defined implicitly as a function
of x or y is an implicit function of x. In Sec. 4.2.1 we will
use the chain rule for derivatives to find the derivative
of an implicit function.



4.1.2 Finite Limits

Let f be a given real-valued function whose domain is
an interval / of the real line. Most of calculus may be
reduced to the notion of /imits. Let a, L be real num-
bers. We say that the function f has the limit L as x
approaches a (or the limit of f as x approaches a exists
and is equal to L) if, for any given ¢ > (0, no matter how
small, one can find a corresponding number § > 0 with
the property that whenever |x—a| <8 we have
|f(x) — L| < e. In the same spirit, we say that /" has a
limit, L, from the right (resp. left) as x approaches a if
for any given ¢ > 0, no matter how small, one can find
a corresponding number § > 0 with the property that
whenever 0 <x—a<§ (resp. -8 <x—a<0), we
have | f(x) — L| < &. The symbols for the limit, limit
from the right, and limit from the left at a are denoted
respectively by

/o)=L lim /=L i /o)=L

Fundamental in the theory of limits is the fact that a
function f has the limit L as x approaches «, if and
only if each of the left- and right-hand limits exist and
are each equal to L. Furthermore, the limit of a sum
(resp. difference, product) of two limits is the sum
(resp. difference, product) of the individual limits. In
the case of a quotient, the limit of a quotient of two
functions is the quotient of the limits of each function
if the limit of the denominator is nonzero.

For example, if H denotes the Heaviside function
(Fig. 1) where H(x) =+1 when x is in [0,00) and
H(x) = —1 when x is in [—o0, 0), then

lim H(x)=+1 lim H(x)= -1

x—0+ x—>0—

but the actual limit as x approaches 0 does not exist

(since the left- and right-hand limits are unequal). On

the other hand, the limit of xH(x) as x approaches 0 is

0. Note that xH(x) = |x|, the absolute value of x.
Fundamental limits:

0 54

.05+

Figure 1 The Heaviside function.
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I —cosx .
— =0 lim
x—>0 X

lim MY _y (11)

x—0 X

More generally, if the function f has the limit 0 as x
approaches 0, then

I - cos(/(x)) _ sin(/(x))

m—n 0 Im—5 =1
For example, it follows that
JR— 1 3
fim 1 — cos(y/x) _0 lim sin(x”) _1
x—0+ \/35 x—0 x3

If a is any number and b # 0 then

sin(ax) _a

sin(ax) _a

7 (13)

I —
o voosin(bx) b

x—0 bx o b

4.1.3 Infinite Limits and Limits at Infinity

Let /" be a function defined to the left (resp. right) of
x = a. We say that the function f has the limit +00 as x
approaches a from the left (resp. right) [or the limit of f
as x approaches a from the left (resp. right) exists and is
equal to 4+o0] if for every given X > 0, thereisa § > 0
such  that  whenever —-§<x—a<0 (resp.
0 <x—a<§) we have f(x) > X. A similar definition
applies to the case where the limit of / as x approaches
a is —oo. Explicitly, we say that the function f has the
limit —oo as x approaches a from the left (resp. right)
[or the limit of f as x approaches a from the left (resp.
right) exists and is equal to —oo] if, for every given
X > 0, there is a § > 0 such that whenever —§ < x —
a<0 (resp. 0 < x—a<3d) we have f(x) < —X. The
symbols used to denote each one of these limits are,
respectively,

lim f(x) = 400 lim+f (x¥) = 400
limﬁf(x) = —00 1im+f(x) = —00

If any one (or more) of the above limits exists, we call
the line x = a a vertical asymptote of the graph of f.
Thus, the function f defined by f(x) = 1/x has a ver-
tical asymptote at x = 0, while g(x) = (x — 3)/ (x2 —4)
has two vertical asymptotes (at x = +2). In the preced-
ing example, the limit of g as x approaches —2 from the
left is +o00 while, if x approaches —2 from the right, its
limit is —oo.

Now, let f be a real-valued function whose domain
is an interval I of the form (—o0, @) or (a, +00) where a
is unspecified, and let L be a real number. We say that
the function [ has the limit L as x approaches +oco (resp.
—o0) [or the limit of f as x approaches oo (resp. —o0)



exists and is equal to L] if, for any given ¢ > 0, there is a
value of x, say X, such that whenever x > X > 0 (resp.
x < X < 0) we have |f(x) — L| < &. The symbols used
to denote these limits are respectively,

lim f(x)=L  lim f(x)=L

If either one (or both) of the above limits exists, and
y = f(x), we call the line y = L a horizontal asymptote
of the graph of f. Thus, once again, the function f
defined by f(x) = 1/x has the line y = 0 as a horizontal
asymptote, while if f(x) = (x> +4)/(x*> —4) then the
graph of f has the two vertical asymptotes at x = £2
and the line y = 1 as a horizontal asymptote.

The Euler exponential function, exp(x), or ¢*, may be
defined by means of the following limits:

. Ih _ X\
fim1 50" = Jim (1-+)

=" —00 < X < 00

(14)

All other exponential functions of the form f(x) = a*
may be defined in terms of Euler’s exponential function
via the relation ¢* = ¢ where Inx or logx is the
inverse function of the exponential function, called the
natural logarithm. Note that
Dom(e*) = —o00 < x < +oo, while its range is
0<x<+o00. It follows that Dom(logx)=
0 < x < 400, while its range is —oco < x < +o00. To
convert a logarithm from a given base a > 0 to base

e, where ¢ = 2.7182818284590 ... and vice versa, we
use the change-of-base formula,

1
log, x = (15)
Ina
Figure 2 shows graphs of a function of type a".

Some limits:

lim e*x?=0 ifa<0B8>0 (16)
1

lim —2 =0 if >0 (17)

X—=>00 X!

lin(l)xﬁlogx:O if >0 (18)

4.1.4 Continuity

If f is defined on an interval including the number a,
then we say that f is continuous at a if the limit of /" as x
approaches a exists and is equal to L and, in addition,
L = f(a). Intuitively, continuity at ¢ means that the
graph of f has no “break” or is “not infinite”’ at x = a.
A function f is called discontinuous at a if f is not
continuous at a. The notions of right- and left-continu-
ity of a function f at a point « are defined using the
analogous right- and left-hand limits discussed in Sec.
4.1.2. For example, the Heaviside function, H, intro-
duced in Sec. 4.1.2, is continuous whenever x < 0 and
x > 0 but H is not continuous at x = 0 since its right-

Figure 2 The function y = a": left, a < 1; right, a > 1.

Copyright © 2000 Marcel Dekker, Inc.



and left-hand limits differ there. One crucial property
of continuous functions is the so-called intermediate-
value property which states that a function f which is
continuous on [a, b] takes on every value in its range,
or, in particular, between the points f(a) and f(b). Use
of this result shows Balzano’s theorem, namely, that if
f(a) > 0 and f(b) < 0 then there must be a root of f,
say ¢, inside (a, b), that is, if f(a) > 0 and f(b) < 0 then
there is a point ¢ such that f(c¢) = 0, a result which is
very useful in the practical problem of finding the roots
of various functions (see Sec. 4.2.3).

Every polynomial of degree n > 0 with real coeffi-
cients, that is, every expression of the form

n—1

) =ax"+a, X"+ +ax+a

where «, a, . . ., a, are real numbers, is continuous on
the real line (i.e., at every point of the real line). Sums,
differences, and products/quotients (with a nonzero
denominator) of continuous functions give continuous
functions, while every rational function (a quotient of
any two polynomials) is continuous at every point
where the denominator is nonzero. Thus, f(x) = (x —
3)/(x* — 4) is continuous at every point x except when
x = £2. On the other hand, the slightly modified func-
tion f(x) = (x —3)/(x* +4) is continuous at every
point x or, more simply put, continuous everywhere.

The composition of two continuous functions (see Sec.
4.1.1) is also continuous, so that, for instance i(x) = sin
(cos x) is continuous for each x, since i(x) =f (g(x))
where f(x) = sinx and g(x) = cos x. Euler’s exponen-
tial function, e*, is continuous on (—oo, +00), while
its inverse function, the natural logarithm In x, is con-
tinuous on (0, +00). The same is true of all other
exponential functions of the form «* where a > 0.
Figure 3 is a generic graph of points of continuity
and discontinuity.

4.2 DIFFERENTIABILITY AND THE CHAIN
RULE

4.2.1 The Derivative

One of the most important definitions involving limits
is that of the derivative. The derivative of a function f
at the point x = a, denoted by f’'(a), or df/dx(a), is
defined by the two equivalent definitions

d a+h a

Y ) = i = i DS

(19)
lmﬂm—ﬂm

x—a X —a
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The grapf of this finction
is continuous everywhere
gxcept aty x=1.

1L

e

R T A G

1 15 2
x

Figure 3 A discontinuous function.
whenever either limit exists (in which case so does the

other). The right derivative (resp. left derivative) is
defined by the right-hand (resp. left-hand) limits

f(a+h) f(a) J(x)—f(a)
f+(a) + \»IZIJr X—da
(20)
and
1(a) = AChs h) @ _ _f '(X)‘ —/f(a)
X—a X —a
21)

A function f is said to be differentiable at the point a if
its derivative f'(a) exists there. This is equivalent to
saying that both the left- and right-hand derivatives
exist at @ and are equal. A function f is said to be
differentiable everywhere if it is differentiable at every
point a of the real line. For example, the function f
defined by the absolute value of x, namely f(x) = |x|, is
differentiable at every point except at x = 0 where f
(0) = —1 and £/(0) = 1. On the other hand, the func-
tion g defined by g(x) = x|x| is differentiable every-
where.

The derivative of the derivative of a given function f°
at x = ais called the second derivative of f at x = a and
is denoted by f”(a). The derivative of the second deri-
vative is called the third derivative [denoted by f"(a)]
and so on. The function g defined above by g(x) = x|x|
does not have a second derivative at x =0 [i.e., £"(0)
does not exist] even though it is differentiable there. It
is a fundamental fact that if f'(a) exists then f is con-
tinuous at a. First derivatives may be thought of as the
velocity or as the slope of the tangent line to the graph



of the function y = f(x) at the point x = a, while sec-
ond derivatives appear in physical applications under
the name of acceleration.

The binomial theorem states that if n is a positive
integer,

n
)+ Y Cpxy (22)
r=0
where C,, denotes the binomial coefficients defined by
C,o0=1and, for r > 0,

n!

Cor = A=) (23)

As usual, r! denotes the factorial symbol, that is, it is
the product of the first r numbers, 1,2, ..., (r — 1). The
binomial theorem allows one to prove the power rule,
namely, that if k£ is any real number,

CANRyANEY (24)
dx

The derivative has the following properties (whenever
it exists). Let f, g be any two given differentiable func-
tions at the point x and let k be any real number; then,

(f+2)(x)=f"(x)+g'(x) (sum/difference rule)

(25)
(kf)'(x) = kf '(x) (26)
(1®)'(x) = f'(x)g(x) + f(x)g'(x) (product rule)

27

(quotient rule)

(f> o =080~ g )
e 2
g g(x)
(28)

The most useful of all the rules is the chain rule, which
is used to find the derivative of the composition (see
Sec. 4.1.1) of two or more functions. It states that if £,
g are two given functions with f differentiable at the
point g(a) and g itself differentiable at x = a, then their
composition (f o g) is also differentiable at « and its
value there is given by

(fog)(a)=1"(g(a)g'(a) (29)

It is sometimes written in the form

(30)

For example, if f(x) = sin u(x) where u is differentiable
at x, then f/(x) = cosu(x) u'(x).

The generalized power rule states that for any differ-
entiable function u,
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G = ko 2
x

k constant (3D
If f and F are inverse functions then the relation
f(F(x)) = x and the chain rule shows that

1
F'(x)=———
S(F(x))
In the next set of logarithmic and exponential
expressions let u,v each be differentiable functions
and a a constant; then

A ) _ g
dx dx
i Inu(x) = R @ if u(x)>0 oY
dx ©u(x) dx
ia"(x) = "™ ln(a)@
dx dx (33)
i log, u(x) = _ @ if u(x)>0
dx OB =) In(a) dx
d ’ u(x) dv
“ u(.x) u(x) In -
(0" = v() (()d+(()>) )
if v(x) >0
If u is a differentiable function then
i sin u(x) = cos u(x) ﬂ
dx dx (35)
i cosu(x) = —sin (x)@
dx = 0
i tanu(x) = sec? u(x)@
dx dx (36)
i cotu(x) = —csc? (\c)@
dx O = Y 0
i sec u(x) = sec u(x) tan u(x) @
dx dx 37)
i cscu(x) = —cscu(x)cot u(x) @
dx B dx
while, if |u(x)| < 1 then
i arcsin u(x) = ; @
dx / 1 — u(x) dx
1 du (38)

d
— arccos u(x) = - ——
dx /1 B u(x)2 dx

or, for any function u,



d 1 du
— arctanu(x) =
dx

1+ u(x)? dx

d arccot u(x) ! du .
— u e —

dx 1 4 u(x)* dx

and if |u(x)| > 1,

d arcsec u(x) ! du

e u =—

. Uy u? 1 %

(40)

i arcesc u(x) = S S @

o UGy ue? — 14
We define the hyperbolic functions by setting

. eX _ e—X ex + e—X

sinhx = > coshx = 5 (41)

with the remaining functions being defined by rules
similar to the circular (trigonometric) functions; for
example, sechx = 1/coshx, tanhx = sinhx/coshx,
etc. For these functions we have the following differ-
entiation formulae:

i sinh u(x) = cosh u(x) @
dx

cosh u(x) = sinh u(x) @&
b dx
4 tanh u(x) = sech? u(x)
dx dx
d du @3)
- — — 2 b
e coth u(x) csch™ u(x) Ix
1 2 b

i sech u(x) = —sech u(x) tanh u(x) @
dx dx
d du (44)
— c¢sch u(x) = —csch u(x) coth u(x) —
dx dx
The graphs of the hyperbolic sine and cosine functions
are shown in Fig. 4, and those of the hyperbolic cotan-
gent and cosecant functions in Fig. 5.

4.2.2 L’Hospital’s Rule

We begin by defining the notion of an indeterminate
form. A limit problem of the form

AC))

im —

o g(x)
is called an indeterminate form if the expression f(a)/g
(a) is one of the following types: too/co or 0/0. In
either case it is sometimes possible to determine the
limit by appealing to L’Hospital’s rule. Before describ-
ing this rule, we define the notion of a neighborhood of
a point a. Briefly stated, if « is finite, a neighborhood of
a consists of an open interval (see Sec. 4.1.1) contain-
ing a. In the same vein, a left-neighborhood of x = a
consists of an open interval with « has its right end-
point [or an interval of the form (a — §, a) where § > 0].
Similarly, a right-neighborhood of x = a consists of an
open interval with a has its left endpoint (or an interval
of the form (a, a + §) where § > 0). A punctured neigh-
borhood of a is a set of points which is the union of two
open intervals of the form (a —§6,a) and (a,a+ 1)

Figure 4 The hyperbolic sine and cosine functions.
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v = coth(x)

v = cschix)

Figure 5 The hyperbolic contangent and cosecant.

where § > 0, u > 0 are not necessarily given. Notice
that a punctured neighborhood does not include the
point itself. Thus, for example, the union of the inter-
vals (—0.5, 0) and (0, 0.2) is a punctured neighborhood
of the point 0 while the interval (—0.5,0.2) is a neigh-
borhood of 0.

Now, L’Hospital’s rule may be stated as follows: let
f,g be two functions defined and differentiable in a
punctured neighborhood of @, where « is finite. If
2'(x)# 0 in this punctured neighborhood of ¢ and f(a
)/g(a) is one of the following types: too/oc0 or 0/0,
then

lim ACHS lim @

= 4
R ) (45)

provided the limit on the right of Eq. (45) exists (or is
400, or —o0). The rule also holds if, instead of assum-
ing that f(a)/g(a) is of the type +00/00 or 0/0 we only
have that lim,.,f(x)=0 and lim,,,g(x)=0 or
lim,_,, f(x) = £oo and lim,_,g(x) = £oo. The rule
is also valid when the quantity «a is replaced by +oo,
or even if the limits are one-sided limits (i.e., limit as x
approaches a from the right or left, see Sec. 4.1.2). For
example, the limits (11)—(13) can all be found using this
rule. Other indeterminate forms such as 0°, 1°°, and
00 — 0o can sometimes be converted to indeterminate
forms of the type +o0o/00 or 0/0 by algebraic manip-
ulation, taking logarithms, etc. In addition,
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lim(«/ax+b—\/ax+d>:0 if a>0 (46)
X—> 00
lim &1 (47)
x—0 X
a bx /

lim (1 +7) = ¢ (48)
X—00 X

. ax+b a .

1 =_ f 4
ango<cx+d> E if c#0 (49)
lim x'* =1 (50)
x—0+
lim 80 _ (51)
x—0 X

. 1 1 1
Im{l4+=4+=+---+——Inn) =0.57721...
n—00 2 3 n
(52)

For example, in the case of Eq. (51),

tan(ax) lim sec’ (ax) _

lim
x—0 X x—0 1
since the derivative of tan(ax) is o sec*(ax), the deriva-
tive of x 1s 1, and sec0 = 1.



4.2.3 Newton’s Method for Finding Roots

In the event that one wants to find the roots of an
equation of the form f(x) =0, where f is given and
differentiable in an open interval containing the root
sought, there is a powerful technique which approxi-
mates the value of the root(s) to arbitrary precision. It
is easily programmable and many subroutines exist on
the market which do this for you. The idea is as fol-
lows: choose a point x, as a starting point (hopefully it
is close to the desired root). With this value of x, define
x; by setrting x; = xy — f(x0)/f (xy). We can now
define x, by setting x, = x; — f(x,)/f'(x;). This gives
us the three values x, x;, x,, the last of which (namely,
X,) is closer to the desired root than the first (i.e., xg).
We define x,,, the nth term of this sequence of numbers,
by

f(xn—l)
S (1)

If the sequence, x, of numbers converges to a limit, say
L, then the limit, L, of the sequence defined by Eq. (53)
is a root of the equation f(x) = 0 in the required interval,
that is, f(L) = 0. This is the basic idea of Newton’s
method.

For example, if /(x) = x> — 2x — 1 and we want to
find a root of the equation f(x) = 0 near the point 1.5,
then we find f'(x) set up the iteration Eq. (53) for this
function, and then check for convergence of the result-
ing sequence x,,n=1,2,3,... So we set x5 = 1.5,
from which the form of the iterative procedure given
by Eq. (53) can be derived, namely,

PACTY) =X, _x;ll —2x,1 — 1
f,(xnfl) " 3x2

forn>1 (53)

Xpn = Xp—1 —

Xp = Xp—1 —
forn>1

In this case, x; =1.6315789...,x, = 1.6181835...,
x3 = 1.6180340. .., x4 = 1.618033989..., x5 = 1.6180
33989. .., with rapid convergence to the root closest to
the initial value, 1.5, namely, the root whose value is
approximately 1.618033989. On the other hand,
had we chosen x, =1.2, then x;,=1.9206896...,
x, = 1.6731874 ..., x3 =1.6203940..., x4 =1.61803
85..., x5 =1.618033989.... Even in this case we get
very good convergence after only a few terms.

4.2.4 Curve Sketching

We outline here the basic steps required in sketching a
given planar curve defined by a function. A function f
is said to be increasing (resp. decreasing) if given any
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pair of points x; < x, in its domain, we have f(x;) <
f(x2) [resp. f(x1) > f(xy)]. If f is differentiable on its
domain then f is increasing on a given interval if its
derivative is positive there, i.e., f is increasing (resp.
decreasing) whenever f'(x) > 0 [resp. f'(x) <0]. In
each of these cases the slope of the tangent line at
any point on the graph of y = f(x) is positive (resp.
negative). For example, if f is defined by f(x) = X’
then f is increasing when x > 0 and decreasing when
x <0.

The graph of a differentiable function f is said to be
concave up (resp. concave down) if given any pair of
points x; < x, in the domain of its derivative, we
have f'(x)) < f'(xy) [resp. f'(x)) > f'(xp)] If f is
twice differentiable on its domain then f is concave
up on a given interval if its second derivative is positive
there, i.e., f is concave up (resp. concave down) when-
ever f"(x) >0 [resp. f”(x) <0]. For example, the
graph of the function defined by f(x) = x® is concave
up whenever x > 0 and concave down when x < 0. A
point ¢ is called a critical point of a function f defined
on an interval I (containing c) if either f'(¢) =0 or f’
(c) does not exist (either as a finite number, or as a two-
sided limit). Examples of critical points are furnished
by the following two examples: f(x) =1/x at x=0
and f(x)=x" at x=0. The continuous function
defined by f(x) = |x| has a critical point at x =0
since it is not differentiable there (i.e., no two-sided
limit of £ exists at x = 0).

A function f is said to have a local maximum at a
point x = a if there is a neighborhood of a in which
f(x) < f(a). In this case, the value of f(a) is called the
local maximum value. 1t is said to have a global max-
imum at x = a if f(x) < f(a) for every x in the domain
of f. In this case the value of f(a) is called the global
maximum value. For example, if f(x) = —x* then / has
a global maximum at x = 0 and this global maximum
value is equal to 0. If we set f(x) = (x — 1)(x — 2)(x —
3) and Dom(f) = [0, 5], then f has a local maximum at
x=2- 1/\/§, which is not a global maximum, since
this occurs at x = 5. It /" is differentiable we can check
the nature of a critical point, a, of f by using the first
derivative test for a maximum; that is, if f'(x) > 0 for x
in a left neighborhood (Sec. 4.2.2) of @ and f'(x) <0
for x in a right neighborhood (Sec. 4.2.2) of a, then f
has a local maximum at x = a. In the event that f is
twice differentiable on its domain, there is the second
derivative test for a maximum, which states that if x = a
is a critical point of f and f"(a) < 0 then it is a local
maximum. The global maximum (and its value) is
determined by taking that critical point ¢ where f(c)
has the largest maximum value.



The function f is said to have a local minimum at
a point x =a if there is a neighborhood of a in
which f(x) > f(a). In this case, the value of f(a) is
called the local minimum value. 1t is said to have a
global minimum at x = a if f(x) > f(a) for every x in
the domain of f. In this case, the value of f(a) is
called the global minimum value. For example, if f(x)
= x’ then / has a global minimum at x =0 and this
global minimum value is equal to 0. If we set f(x) =
(x = )(x = 2)(x — 3) and Dom( f) =[O0, 5], then f has
a local minimum at x =2+ 1/4/3 which is not a
global minimum since this occurs at x =0. If f is
differentiable we can check the nature of a critical
point, a, of f by using the first derivative test for a
minimum; that is, if f'(x) < 0 for x in a left neighbor-
hood (Sec. 4.2.2) of a and f'(x) > 0 for x in a right
neighborhood of a, then f has a local minimum at
x = a. In the event that f is twice differentiable on its
domain, there is the second derivative test for a mini-
mum which states that if x = a is a critical point of f
and f"(a) > 0 then it is a local minimum. The global
minimum (and its value) is determined by taking that
critical point ¢ where f(c) has the smallest minimum
value.

A function £ is said to have a point of inflection at
x = aif it changes its concavity around x = a, that is, if
there is a left neighborhood of x =a in which the
graph of f is concave down and a right neighborhood
of x = a in which the graph of f is concave up, or if
there is a left neighborhood of x =« in which the
graph of f is concave up and a right neighborhood
of x =a in which the graph of f is concave down.
For example, if f(x) = x°, the graph of / has a point
of inflection at x = 0 but the graph of f(x) = x? does
not (because the graph is a/lways concave up around
x = 0). If f is twice differentiable, a necessary (but not
sufficient) condition for x = a to be a point of inflec-
tion is that /() = 0. In this case, we must then check
around x = « for a change in concavity. We recall the
definitions of asymptotes as presented in Sec. 1.3. The
usual rules for finding the graph of a function f now
follow.

Find the intervals where f is increasing and decreas-
ing.

Determine the critical points.

Find all local maxima and minima and points of
inflection.

Find the roots of /' (use may be made of Newton’s
method, Sec. 4.2.3).

Locate the intervals where the graph of f is concave
up or down.
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Find the vertical and horizontal asymptotes of f, if
any (one may have to use L’Hospital’s rule, Sec.
4.2.2). We give an example of a typical graph
in Fig. 6, this one for the function f* defined by
S(x) = 4x/(1+ 7).

4.2.5 Implicit Differentiation

Implicit relations (Sec. 4.1.1) are useful because they
define a curve in the xy-plane, a curve which is not,
generally speaking, the graph of a function. For exam-
ple, the circle of radius equal to 2 defined by the impli-
cit relation x* + y2 =4 is not the graph of a unique
function. In this case, assuming that y is some function
of x, the derivative is found by repeated applications of
the chain rule, and possibly all the other rules in this
section as well. The basic idea is best described by an
example. Assume that y can be written as a differenti-
able function of x and that there is some implicit rela-
tion like

y3 + 7y = X
We take the derivative of both sides. We see that
dy . dy 2
317 = 47— =3
Y dx + dx *
since
d ; 2 dy
Sl R I
dx Y dx
paint af inflection here . Ioc. max here
hriz.,
asyenpiois o
"-____“_\_\_‘_\-
5 -4 1 =z = 4 5

[Fis concawe up herd

-4l
Fis concave down here

Figure 6 The function f(x) = 4x/(1 + x?).



by the generalized power rule. We can now solve for
the expression dy/dx and find a formula for the deri-
vative, namely,

@_ 3x?
dx  3y*+7

Now we can find the derivative easily at any point (x,
y) on the curve y° + 7y = x°. For instance, the deriva-
tive at the point (2, 1) on this curve is given by sub-
stituting the values x =2,y = 1 in the formula for the
derivative just found, so that dy/dx = 6/5. As usual,
this represents the value of the slope of the tangent line
to the curve y3 + 7y = x> at the point (2, 1). The graph
of an implicit relation is then found by solving the
relation for all possible pairs (x, y) satisfying the equa-
tion defining the relation, along with the derivative
information gathered through implicit differentiation.

4.3 ANTIDERIVATIVES AND
INTEGRATION

4.3.1 Antiderivatives

One can think of the antiderivative of a given function
as a kind of inverse to the operation of differentiation,
which we saw in Sec. 4.2. This notion is motivated by
the so-called fundamental theorem of calculus which we
will see below. Given a function f, whose domain is an
interval [ =[a,b], we define its antiderivative as
another function, F, also defined and continuous on
[a, b], differentiable on (a, b) and with the property that
F'(x) = f(x) for every point x in I (except possibly the
endpoints). Not every function has an antiderivative.
For example it is known that the function f defined by
f(x) = e* hasno antiderivative that can be written as a
sum of a finite number of algebraic expressions. Its
antiderivative is, in fact given by an infinite series.
Basic to this section is the fact that any continuous
function or, more generally, any function which is con-
tinuous except for countably many points does have an
antiderivative. For example, the function F(x) = x* is
an antiderivative of f(x) = 4x°, since F '(x) =f(x) by
the power rule. Although the derivative of a given
function is unique when it is defined, this is not the
case for antiderivatives. All antiderivatives differ by a
constant. Thus if F is an antiderivative of f, then F + ¢
is also an antiderivative of f if ¢ is a constant, by
definition.

Since the antiderivative of a function f depends on f
its symbol is denoted universally by
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An antiderivative of f = F(x) = Jf (x)dx

— J () dx
where «a is some point of the domain of f. The differ-
ence between two values of an antiderivative, say,
F(b) — F(a), is denoted by the symbol

b
J F(x)dx = F(b) — F(a) (54)

a

Thus for example, f xdx = (b* — a®)/2, since F(x) =
x?/2 for f(x) = x. Various antiderivatives are dis-
played below. Note that, in every case, C denotes a
constant.

Jexdx:ex+C J@:
X

Jsinxdx:—cosx—i—C Jcosxdx:sinx—l—C

In|x| +C (55)

(56)

Use of the chain rule, Eq. (30), gives the more general
formulae, analogous to those in Sec. 4.2.1,

J u(x) th’t dx =eu(x) +C

(57)
Ju(x) e dx =Inu(x)+ C, if u(x)>0
Jcos u(x)— dx = sinu(x)+ C
(58)
Jsm u(x)— dx = —cosu(x)+ C
Jtan u(x)— dx = —In|cosu(x)| + C
(59)
Jsec u(x)— dx = In|secu(x) + tan u(x)|+ C
J dx = arcsinu(x) + C
V1i-x2 d (60)
Jm dx dx = arctan M(X) + C
du a“™
u) 4u- ~
Ja dxdx lna—i—C ifa>0 (el)

with similar formulae for the rest of the functions in
Sec. 4.2.1.



4.3.2 The Integral and Its Properties

Let I = [a, b] be an interval. By a partition, denoted by
1, of the interval I we mean a subdivision of I into n
subintervals

[xn—l ’ b]

where, by definition, x, = a, x, = b. The points x; can
be chosen in any fashion whatsoever and do not have
to be equally spaced within /. The norm of the partition
I1, denoted by |1, is defined to be the length of the
largest subinterval making up the partition IT1. For
example, if we let 7 =[0, 1] and define IT to be the
partition [0, 1/5], [1/5,1/3],[1/3,1/2],[1/2,7/8], [7/8,
1] then the norm of this partition is equal to
7/8 —1/2 =3/8 =0.375, which is the length of the
largest subinterval contained within IT.

Given a partition IT of I and f a function defined on
1, we define a Riemann sum as follows. Let &; be a point
in the subinterval [x;_;, x;] and consider the sum

SEDx = x0) +f(ED)xr —x) + ...+ (ED(x, — X,21)
= > fENx — xip)
=1

IT: [a, x1], [x1, x2], [x2, x3], .. -,

Geometrically, this value can be thought of as repre-
senting an approximation of the area under the graph of
the curve y = f(x), if f(x) >0, between the vertical
lines x = @ and x = . We now define the notion of a
limit of the Riemann sum as the norm of IT approaches
0, denoted by the symbol

X Xi_
Jim OZf(S ) )
as follows. If given any number ¢ > 0 we can find a § >
0 such that whenever IT is any partition with ||IT]| < 4,
it follows that

> rEN
i=1

then we say that the limit of the Riemann sum as the
norm of the partition 1 approaches 0 is L.

Note that the numerical value of the limit, L, just
defined generally depends on the choice of f and of the
quantities & and the partition I1. If this limit, L, is
independent of the choice of the partition T1 and the
choice of the & within each subdivision of T1, then we
call this value of L the definite integral of f from a to b.
When this happens we simply say that f is integrable
over I and f is called the integrand of this integral. One
of the consequences of this definition is that the defi-

—x, ) —Ll<e
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nite integral of a function f which is continuous on I =
[a, b] exists. This limit also exists under much more
general conditions but it is not necessary to delve
into these matters here.

The mean value theorem states that if f is differenti-
able on (a, b) and continuous on [a, b] then there exists
some point ¢ inside (a,b) with the property that
f(b) — f(a) =f'(c)(b — a). Using this theorem it is not
difficult to show that, in fact,

The definite integral of f from a to b = F(b) — F(a)

where F is any antiderivative of /. So, we can write

b
jf(x)dx— lim Zf(él (= Xi1) = F(b) — F(a)

I
(62)

and, in particular,

b
J ldx=b—-a
a

Now, if f(x) > 0, we can also define the area under the
graph of the curve y = f(x) between the lines x = a and
x = b by the definite integral of f from a to b, that is
Eq. (62).

Let x be a generally unspecified point in a given
interval [a, b] on which we define f. Assuming that
the definite integral of f from a to b exists, one can
then write the equality

rf(t) dt = F(x) — F(a) 63)

where, as usual, F' is some antiderivative of /. The fact
that we changed the symbol x within the integral to a ¢
is of no consequence to the value of the integral. These
changes reflect the fact that these inner variables can be
denoted by any symbol you want. This means that we
can think of the quantity on the left of Eq. (63) as a
function of x, and this equality is valid for every x in
[a, b]. The quantity on the left of Eq. (63) is also called
an indefinite integral of f. This identifies the notions of
an indefinite integral with that of an antiderivative.
These two notions are equivalent on account of Egs.
(62) and (63). The following properties of the integral
now follow easily:

J:f(t) dt = J:f(t) di + Jff([) g a<c<b

If k is any constant, then

J: kf(t)ydt =k be(z) dt

a



from which follows the fact that

b b
Jkdt:kj 1 dt = k(b — a)

a a

Generally, if f, g are both integrable over I then
b

b b
J (F(0) % g(t) di = J F(tydi & J o(0) di

a

Other properties of the integral that follow directly
from its definition include

b
If f(x) > g(x) over [a, b] then J f(x)dx

b
> J g(x)dx (monotonicity property)
a

from which we easily deduce that

b
If f(x) > 0 over [a, b] then J f(x)dx >0

a

and

ij(x) dx| < jb f )] dx

(triangle inequality for integrals)

A consequence of the definition of antiderivative and
Eq. (63) is the fundamental theorem of calculus which
states that if f is continuous over [a, b] then f has an
indefinite integral and

d X
& roa=rw (64

and, if f is differentiable over (a, b) and continuous
over [a, b], then

b
J £y di = £(B) — f(a) (64)

More generally, there is Leibniz’s formula which fol-
lows from the chain rule and Eq. (64). If f is contin-
uous over the real line and a, b are differentiable
functions there, then

d

b(x) b
| rwa=ree - e

dx a(x) (6 5 )

(Leibniz’s formula)
For example, it follows from Eq. (63) that
ij e dt = d J e ds=e
dx ), x

and, from Eq. (65), that

a
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4 J e dt = eV i(xz) — e (HD’ i(x +1)
dx dx

— _ 4
= 2xe ¥ — ¢ (FD

4.4 TECHNIQUES OF INTEGRATION
4.4.1 Integration by Substitution

The evaluation of indefinite and corresponding definite
integrals is of major importance in calculus. In this
section we introduce the method of substitution as a
possible rule to be used in the evaluation of indefinite
or definite integrals. It is based on a change-of-variable
formula, Eq. (67) below, for integrals which we now
describe. Given a definite integral of /" over I = [a, b]
we can write [see Eq. (62)],

b
J f(x)dx = F(b) — F(a) (66)
The substitution u(x) = ¢, where we assume that u has
a differentiable inverse function x = ' (¢), inside the
integral corresponds to the change-of-variable formula
u(h) d

re-r@=[ o (Gto)a @

u(a)

which is itself equivalent to the relation

d . .o d _

TF ) = F'a o) 2™ ()
; (68)

=f@ ) a0

if F is an antiderivative of f, by the chain rule, Eq. (30).
Integrating both sides of Eq. (68) over the interval
u(a), u(b) and using the fundamental theorem of cal-
culus, we obtain Eq. (67). In practice, we proceed as
follows. In order to evaluate the integral

b 2 ,
J f(x)dx = J 2xe” dx
a 0
we make the substitution u(x) = x? = t, whose inverse
is given by x = +/7=u"'(¢). Using this substitution
we see that u(0)=0, and wu(2)=4. Since

fw (1) =f (V1) =24/i¢', and the derivative of u~!

(1) is 1/(2+/1), Eq. (67) becomes, in this case,

2 ) 4 1
J 2xe’ dx :J 2t —— dt

0 0 2./t
4
=J eldr=(e* = 1)
0



The shortcut to integration by substitution, which
amounts to the same thing as an answer can be sum-
marized by setting ¢ = x?, dr = 2xdx with the limits
being changed according to the rule =0 when
x =0, t =4 when x = 2. We find

2 , 4
J 2xe”* dx:J e dt
0 0

as before, but more directly.

4.4.2 Integration by Parts

When every other technique fails try using integration
by parts. This method is based on the product rule for
derivatives (Sec. 4.2.1); in fact it is a sort of inverse of
this method. Starting with the ordinary product rule,
Eq. (27), namely,

(12)'(x) =" (0) g(x) +f(x) g'(x)

we can integrate both sides, say, from a to b. Use of
Eq. (64") and some adjustments show that, when used
with a definite integral,

b b
j F()8'() dx = (o)) — (fe)a) — J () g(x) dx
(69)

However, it is more commonly written in the following
indefinite integral form:

Judv:uv—Jvdu (70)
For example, in order to evaluate

J xe" dx
we set u=ux,dv=e". From this we obtain,
du = dx,v = ¢". Substituting these values into Eq.
(70) we get

Jxexdx =xe" — Jexdx =xe'—e"+C
where C is a constant of integration. In the event where
one of the terms is a simple trigonometric function

(such as sin or cos), the method needs to be adapted,
as the following shows. For example, the evaluation of

J e sin x dx

requires that we set u=¢e", dv=sinxdx. Then
du = ¢* dx, v = — cos x. The method then gives us

Copyright © 2000 Marcel Dekker, Inc.

Jexsinxdx = —excosx—i—Jexcosxdx

We apply the same technique once again, except that
now we set u = ¢, dv = cos x dx in the integral on the
right of the last display. From this, du = ¢* dx, v = sin
x and we now find

Jexsinxdx = —excosx+exsinx—Jexsinxdx

It follows that

—e¥cosx + e sinx
2

Jexsinxdx =

This method can always be used when one of the fac-
tors is either a sine or cosine and the other is an expo-
nential.

4.4.3 Trigonometric Integrals

A trigonometric integral is an integral whose integrand
contains only trigonometric functions and their
powers. These are best handled with the repeated use
of trigonometric identities. Among those which are
most commonly used we find (here u or x is in radians):

1 2 1-— 2
COSZL,:LS(U) sinzu:M (71)
2 2
cos®u+sinu = 1 sec’u —tan’u = 1
5 5 (72)
csc-u—cotu=1
sin(2u) = 2 sinucosu (73)

As an example, we consider the problem of finding an
antiderivative of the function f(x) = cos* x. This pro-
blem is tackled by writing f(x) = cos* x = cos® x cos® x
= (1 —sin’ x)cos’ x and then using the first of Eqs
(71), (73), and the second of Eq. (71) along with a
simple change of variable. The details for evaluating

integrals of the form
J cos” xsin” x dx (74)

where m, n are positive integers are given here. Similar
ideas apply in the case where the integral Eq. (74)
involves other trigonometric functions.

m is odd, n is even. Solve the first of Eqs (72) for cos’
x and substitute the remaining in lieu of the
cosine expression leaving one cosine term to the
side. Follow this with a substitution of variable,
namely, u =sinx, du=cosxdx, which now



reduces the integrand to a polynomial in # and
this is easily integrated.

m is odd, n is odd. Factor out a copy of each of sin x,
cos x leaving behind even powers of both sin x,
cos x. Convert either one of these even powers in
terms of the other using Eq. (72), and then per-
form a simple substitution, as before.

m is even, n is odd. Proceed as in the case where m is
odd and 7 is even with the words sine and cosine
interchanged.

m is even, n is even. Remove all even powers of the
sine and cosine by applying Eq. (71) repeatedly.
In addition to Eqs (71)—(73) there are a few other
formulae which may be useful as they untangle
the products. For any two angles, A4, B, these are

cos(A — B) — cos(4 + B)

sin(A) sin(B) = 5 (75)
sin(4) cos(B) = sin(4 — B) ~2|— sin(4 + B) (76)
cos(A) cos(B) = cos(4 — B) —;— cos(4 + B) (77)

For example,
. 1
Jsm4 xcos> xdx = 3 J(l — c0s(2x))*(1 4 cos(2x)) dx

= %J(l — cos(2x) — cos*(2x)

+ cos’(2x)) dx

where the first three integrals may be evaluated with-
out much difficulty. The last integral above reduces to
the case where m is odd and n is even (actually, n =0
here).

4.44 Trigonometric Substitutions

A trigonometric substitution is particularly useful
when the integrand has a particular form, namely, if
it is the sum or difference of two squares, one of which
is a constant. The substitutions can be summarized as
follows. If the integrand contains a term of the form:

v a* — x*, where a > 0 is a constant: set x = asin#,
dx = acos6do, Va?: — x2 =acosb, if

—/2 <0 <m/2.
Va* + x?, where a > 0 is a constant: set x = atané,

dx = asec® 6 do, Va? + x* = asech, if

—n/2 <0 <m/2.

/' x% — a2, where a > 0 is a constant: set x = asec9,
dx = asech. tan6do, xr—a® =atan6, if
0<0<m/2.
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For example,

e J(3 sin 0)*3 cos 6 dO
3cos0

2
X
— =9 J sin 6 d6
J V9 — x?
and the last one is handled by means of Eq. (71) and a
substitution. Thus,

9 9 9
9 J sin® 6. d6 = EJ(I_ cos(20)) d6 = 59 — Zsin(29)~|— C

But x = 3sin 6 means that 8 = arcsin(x/3). Moreover,

by trigonometry, (9/4)sin(20) = (9/4)sin(2 arcsin
(x/3)) = (1/2)xv/9 — x?. Hence,

J x? 9 . (X XV9 — x?

———dx = farcsm( ) -

9 2

C

3

4.4.5 Partial Fractions

The method of partial fractions applies to the case
where the integrand is a rational function (see Sec.
4.1.4). It is known from algebra that every polynomial
with real coefficients can be factored into a product of
linear factors [e.g., products of factors of the form
(x — )], and a product of quadratic factors called
quadratic  irreducibles (e.g., ax>+bx+c¢ where
b* — dac < 0, i.e., it has no real roots). For example,
X —1=02+ D —1(x+1). It follows that the
numerator and denominator of every rational function
can also be factored in this way. In order to factor a
given polynomial in this way one can use Newton’s
method (Sec. 4.2.3) in order to find all its real roots
successively.

Now, in order to evaluate an expression of the form

Janx"+a,,_1x”_l+--~+a1x+a0 J
X

78
bmx"’+bm_1x’”_] ++b1x+b0 ( )

where m,n are integers and the coefficients are
assumed real, there are two basic cases.

n > m. In this case we apply the classical method of
long division which indicates that we divide the
numerator into the denominator resulting in a
polynomial and a remainder term which is a
rational function whose numerator has degree
one (or more) less than the denominator. For
example, long division gives us that

1

X 2
= 14+ —
x2—1 v +x2—1

Here, the remainder is the rational function on
the right of the last display (whose numerator has
degree 0 and whose denominator has degree 2).



The remainder may be integrated using the idea
in the next case.

n < m. We factor the denominator completely into a
product of linear and irreducible factors. Next,
we decompose this quotient into a partial fraction
in the following sense. To each factor (of the
denominator) of the form (x — r)’, there corre-
sponds a sum of terms of the form

Ay A, As Ap
+ 7+ sttt
X—r (x—r) (x—r) (x—=ry

where the A’s are to be found. To every quadratic
irreducible factor (of the denominator) of the
form (ax® + bx 4 ¢)? where b* —4ac <0, there
corresponds, in its partial fraction decomposition,
a sum of terms of the form

BIX + C] Bzx + C2
ax’> +bx+c  (ax? + bx + )’
B,x + C,

(ax? + bx + ¢)?

where the B’s and C’s are to be found, as well.
The method for finding the A’s, B’s, and C’s is
best described using an example. In order to eval-
uate

X
Jx4—1 dx

which is a rational function, we find its partial
fraction decomposition, which looks like
X Al Az le + Cl
4 = + 2

xX*—1 x—1 x+1 x 41
since the factors of the denominator are (x — 1)
(x 4+ 1)(x* + 1) and each such factor is simple (i.e.,
p=1,q9=1). We multiply both sides of the last
display by the denominator, x* — 1 and we proceed
formally, canceling out as many factors as possible
in the process. In this case, we get

x=A;(x+ D+ D+ Ar(x = D>+ 1)
+Bix+Cx—D(x+1)

Since the last relation must be true for every value
of x, we can set x = 1, —1 and then any two other
values of x, say, x = 0, 2 in order to get a system
of equations (four of them) in the four given
unknowns, 4, 4,, B;, C;. Solving this system,
we get the values A, =1/4,4,=1/4, B =
—1/2,C; =0 so that

x 4 /4 (1/)x
x*—1 x—-1 x+1 x2+4+1
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It follows that

Jdezljigj dx
xt—1 4)x—1 4)x+1
1 xdx
-5l35

1 1
:Zln|x— 1|+Zln|x+1|

—%ln(xz +1)

4.4.6 Numerical Integration

When the evaluation of a definite integral is required
and every possible method of finding an antiderivative
fails, one resorts to numerical integration, that is, the
numerical approximation of the value of the definite
integral. The two principal techniques here are the tra-
pezoidal rule and Simpson’s rule. Many other methods
(midpoint rule, quadrature formulae, etc.) exist as well
and the reader may consult any manual in numerical
analysis for further details. In the trapezoidal rule the
value of the definite integral of a given integrable func-
tion f on an interval [a, b] is approximated by

b b—a
| e 1, = 22 s+ 210
£ 2100+ 2 5) /()

where xyp=a, x,=b and x;=a+ilb—a)/n, if
i=0,1,2,3,...,n This method uses /ine segments to
mimic the curvature of the graph of the function f. The
larger the value of n the better the approximation and
one is limited only by computing power. For example,
if n =30,

1
J ¢ dx ~ 14631550
0

whereas if we choose n = 40 the value is approximately
1.46293487, while for n = 50 the value is 1.462832952
with accuracy to three decimal places. In general, the
error obtained in using the trapezoidal rule on a twice
differentiable function f which is continuous on [a, b] is
given by

Kb - a)®
12n2

<

J:f(x) dy—T,| <

if |f"(x)| < K for x in [a, b].
Simpson’s rule states that, if we choose n to be an
even number,



b b —
[ rerae 5, = 222 (rg + 1) + 21

+ 47 (x3) + - + 4 (1) +1 (X))

where the coefficients on the right alternate between 4
and 2 except in the initial and final positions. This
particular method uses parabolic segments to mimic
the curvature of the graph of the function /" and usually
results in a better approximation (in contrast to the
trapezoidal rule) for small values of n. For example,
if we choose n = 30 as before, we find

1 2
J e dx ~ 1.462652118
0

with accuracy to five decimal places already. In this
case, the error obtained in using Simpson’s rule on a

four-times differentiable function f/ which is continuous
on [a, b] is given by

_ Ko~ a)’

b
[ e —s, < S

if | f(x)| < K for x in [a, b].

4.4.7 Improper Integrals

In some cases a definite integral may have one or both
of its limits infinite, in which case we need to define the
meaning of the integral. The natural definition involves
interpreting the definite integral as a limit of a definite
integral with finite limits. In the evaluation of the
resulting limit use may be made of L’Hospital’s rule
(Sec. 4.2.2) in conjunction with the various techniques
presented in Sec. 4.3. Given a function f defined and
integrable on every finite interval on the real line, we
define an improper integral with infinite limit(s) in a
limiting sense, as follows:

J:of(x) dx = Th_r)r;O LTf(x) dx

Jaoo f(x)dx = Tgrzloo J; f(x)dx

whenever this limit exists and is finite, in which case we
say that the improper integral converges. In the event
that the limit does not exist as a finite number, we say
the improper integral diverges. A similar definition
applies when both limits are infinite, e.g.,

a

J:f(x) dx = Joof(x) dx + j_wfm dx

a
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provided this limit exists and is finite. For example, the
evaluation of

00 T
xe “dx= lim | xe Vdx
0 T—o0 0

requires integration by parts after which
T
lim J xe Vdx= lim(—(T+DeT+1)=1
T—o0 ) T—oo

by L’Hospital’s rule. If an antiderivative cannot be
found using any method, one resorts to numerical inte-
gration (Sec. 4.4.6).

4.5 APPLICATIONS OF THE INTEGRAL
4.5.1 The Area Between Two Curves

In this section we outline the main applications of the
integral and its main interpretation, namely, as the area
under two given curves. Let y = f(x), y = g(x) denote
the graph of two curves defined on a common domain
[a, b] and we assume each function f, g is integrable
over [a, b]. The area between the two curves is defined
to be the expression

The area between the two curves

- (79)
=J () — ()] dx

where the absolute value function was defined in Sec.
4.1.1. In the event that f(x) > 0 the area under that part
of the graph of f lying above the x-axis and between a, b
is given simply by the definite integral,

Jj f(x)dx

For example, the area between the curves y = x> — 1,
y=x>+1 above the interval [—1,1] is given by
j_ll |(x> = 1) — (x> + 1)|dx = 4. This area is depicted
graphically in Fig. 7.

4.5.2 Volume and Surface Area of a Solid of
Revolution

Next, let y = f(x), y = g(x) denote the graph of two
curves defined on a common domain [a, b] and assume
each function f, g is integrable over [a, b], as above. In
addition, we assume that f(x) < g(x), @ < x < b. Now,
consider the planar region defined by the curves x = a,
x=b,y=f(x),y = g(x). This region is a closed region
and it can be rotated (out of the plane) about an arbi-
trary line x = L where L < a, or L > b, thus forming a



1

This area is given by a definite integral

Figure 7 The area between y = x> — 1 and y = x* + 1 above
the interval [—1, 1].

solid of revolution. The volume of the solid of revolution
obtained by revolving this region about the line x = L is
given by

b
sz L — xI(f(x) — g()) dx (80)

On the other hand, if we revolve this region about the
line y = M where M exceeds the largest value of f(x),
a < x < b or is smaller than the smallest value of g(x),
a < x < b, then the volume of the solid of revolution
thus obtained by revolving the region about the line y =
M is given by

o [ [/l — o

Similar formulae may be derived in case the planar
region under discussion is bounded by curves of the
form x = h(y), x = k(y) where ¢ <y <d and we are
revolving about an arbitrary vertical or horizontal
line. We point out a theorem of Pappus which states
that if a closed region in the plane is rotated about a
line which does not intersect the region, then the
volume of the resulting solid is the product of the
area of the region and the distance traveled by the
center of mass (Sec. 4.5.4). If we set g(x) =0, then
the surface area of the solid of revolution obtained by
revolving the region about the x-axis, also called a
surface of revolution is given by the expression

b
J 27 f () 1+ f/(x)* dx
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provided f(x) > 0 and f is differentiable. For example,
if we rotate the region bounded by the two curves y =
1 - x2,y =x?>—1 about the line x =2, say, we get
(from Eq. (81)), the integral

1
27 J_l 12— x|[(1 = x}) = (> = 1)]dx = 327”

The surface area of the solid of revolution obtained by

revolving that part of the curve y = 1 — x*> with y > 0
about the x-axis is given by

1
27TJ (1 = X)W1 +4x2dx = 77T«/§_ 177 1n(v/5 = 2)
-1

8 16

4.5.3 The Length of a Curve

The length of a segment of a curve given by the graph of
a differentiable function f on the interval [a, b] is given

by
Jb,/l + f(x)? dx 81)

a

where, as usual, f'(x) denotes the derivative. The meth-
ods of Sec. 4.4 (trigonometric substitutions) may prove
useful in the evaluation of an integral of the type Eq.
(81). If these should fail, one can always resort to
numerical integration (Sec. 4.4.6). For example, the
length of the arc of the curve given by the function f
where f(x) = (&** — x*/*)*/?, between the points x = 0
and x = g, is given by

[Vieretan =] Ji+@r - as
0 0

a 3a
:J d Py g =24
0 2

If the differentiable curve is given parametrically by a
set of points (x, y) where x = x(¢), y = y(¢), a < t < b,
are each differentiable functions of ¢, then its length is
given by

b
J VX0 4 y'(6)* dt (82)

a

For example, the parametric equations of a circle of
radius R centered at a point P = (xy, yg), are given by
X =Xxy+ Rcost, y=yy+ Rsint where 0 <7 <2n. In
this case, the circumference of the circle is given by Eq.
(82) where x'(1)* + (1) = R* resulting in the value
2n R, as expected.



4.5.4 Moments and Centers of Mass

Let y = f(x), y = g(x) denote the graph of two curves
defined on a common domain [a, b] and assume each
function f, g is integrable over [a, b], as above. In addi-
tion, we assume that f(x) > g(x), a < x < b. Then the
center of mass or centroid of the region of uniform
mass density defined by the curves x=a,x =05,
y =f(x), y = g(x) is given by the point (X, y) where

M, 1((
xz—;z—Jqurgu»w

m  m),
b
m=Juur@u»w

M1 PR -8
y—;?—aL“‘f“*“

where M, M, represent the moment about the x-axis
(resp. y-axis). For example, the centroid of the region
bounded by the intersection of the line y = f(x) = x
and the parabola y=g(x)=x> has mass
m= jol(x — x*)dx = 1/6. In this case,

1
1

)’C:6J (xz—x3)dx:—
0 2

1,2 _ 4
6]9;_£2 o2

)7:
) 5

4.6 DIFFERENTIAL EQUATIONS
4.6.1 First-Order Equations

The essence of most practical physical applications of
calculus includes differential equations. By a differen-
tial equation of order n we mean an equation involving
some unknown function say, y(x), and its derivatives
up to order n. By a classical solution of a differential
equation of order n we mean a function, y, which has
continuous derivatives up to and including that of
order n and whose values satisfy the equation at
every point x under consideration. For example, the
function y(x) = ¢" is a solution of the differential equa-
tion of order 1, y'(x) = y(x). By the general solution of
a differential equation of order n is meant a solution
which has the property that it contains every other
solution of the same equation for particular choices
of parameters appearing in it. For example the general
solution of the equation y'(x) = y(x) is given by y(x) =
ce® where ¢ is an arbitrary constant. Every other solu-
tion of this equation must agree with a particular
choice of the parameter, ¢, in the general solution
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just written. It is a general fact that the general solution
of a differential equation of order » must contain n
parameters.

The simplest form of all differential equations of the
first order is known as a separable equation. 1t has the
simple form

dy

=/ 08w (83)

Dividing both sides by g(y), assumed nonzero, and
integrating both sides with respect to x gives the gen-
eral solution in implicit form

[ rwa=c 84
A[y(a)@ I_Jaf(t) = ( )

where C is a constant, and « is a prescribed point. For
example, the general solution of the separable equation

2

dy x
dx ye’
is given by

(x) ¥
J te’dz—Jtdt:C
()

a
or, upon integration,

3
4 . X
e et - = ¢
where C includes all the quantities, y(a), a etc., being
constant, they can all be absorbed in some new con-
stant, denoted again by C. This equation can also be
written in the form
3
X
e —e ——=C
7 3
where the dependence of y on the independent variable
x is suppressed. As such it becomes an implicit relation
and it defines y as a function of x under some condi-
tions (derived from a general result called the implicit
function theorem).
A linear differential equation of the first order has
the special form

d
=4 Py = 0) (85)
and its general solution may be written explicitly as

1
VX)) = —F 07—
exp (J P(1) dl)

a

<J: Q(t)exp (J; P(u) du) dt + C)

(86)



where C is a parameter (constant). For example, the
general solution of the equation
dy 2

- — =X

dx

is given by

y(x) = % (J Pe ' dr + C)
=" (e (—x* = 2x = 2) + O),

=Ce" —x?—2x-2

and the particular solution for which y = 1 when x =0
is given by y(x) = 3¢ — x> — 2x — 2.

4.6.2 Partial Derivatives of Functions of Two
Variables and Exact Equations

We turn briefly to a definition of a partial derivative,
that is, the extension of the notion of derivative, also
called an ordinary derivative, to functions of two or
more variables. A function of two variables is a func-
tion, f, whose domain is a set of points in a plane,
usually considered as the xy-plane. Its values are
denoted by f(x,y) and it acts on two arguments,
instead of one. For example, the function defined by
f(x,y) =xe" is such a function and f(1,0) = 1. The
values f(x+ h,y) are defined as usual by replacing
every occurrence of the symbol x in the expression
for f(x, y) by the new symbol x + & and then simplify-
ing this new expression. For example, with f/ defined
earlier, f(x + h, ) = (x + B)e“™ = (x + h)ee”. Ina
similar way one can define the meaning of, say,
f(x,y+ k). In our case, this implies that, for example,
f(x,y+ k) = xe™*_ This then enables us to define
the notion of a partial derivative as a limit, as we did
in Sec. 4.2. For functions of two variables, we define
the partial derivative of f with respect to x at the point
(a,b) as

o _ o fla+hb)—flab)
ox h—0 h

87

whenever this limit exists and is finite. In the same way
we can define the partial derivative of f with respect to y
at the point (a,b) as

%: limf(a,b—i—/c) —f(a, b)
ay k=0 k

(88)

These two quantities represent the rate of change of the
function f in the direction of the two principal axes,
the x- and y-axes. In practice, these partial derivatives
are found by thinking of one variable as a constant and
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taking the ordinary derivative of the f* with respect to
the other variable. The operation of taking a partial
derivative can be thought of as being an operation on a
function of one variable, and so all the rules and prop-
erties that we know of in Sec. 2 apply in this case as
well. For example, for f defined earlier,

I 9

ax  dx
by the product rule, since every occurrence of the vari-
able y in the value of f(x, y) triggers the rule that it be
thought of as a constant. A function of two variables is
called differentiable at (a, b) if each one of its two par-
tial derivatives exists at (a, b) and is finite. As usual it is
differentiable in a region if it is differentiable at every
point of the region. The notion of continuity for a
function of two variables is similar to the one pre-
sented in Sec. 4.1.4, except that the notion of a limit
needs to be updated to take into account the fact that
there are now two variables, (x, y), approaching a spe-
cified point, (a, b). In this case, we say that a function f
of two variables is continuous at (a, b) if it is defined at
(a, b), i.e., f(a, b) is a finite number, and if

lim f(x,y) =f(a,b)

(x,)—(a.b)

(xe™) = xye™ + ¥

where, by the symbol on the left, we mean the follow-
ing. For each given ¢ > 0, we can find a number §,
generally depending on ¢ > 0, with the property that
whenever

Jo— ot +(r—h? <5
we also have

|f(x,») = fla. D) < ¢

Every polynomial function in two variables is con-
tinuous, for example, f(x,y) = —1 +x — x* y + 3x%)°
is such a function. More generally, the product of
any two polynomials of one variable, say, p(x), ¢(»)
gives a polynomial of two variables. As in Secs. 4.1
and 4.2, the composition of continuous functions is
also continuous, and so forth.

We can now turn to the solution of a so-called exact
differential equation. We assume that the functions
P(x, y), O(x, y) appearing below are each differentiable
functions of two variables, in the sense above. A first-
order (ordinary) differential equation of the form

d
P(x.7) +Qx.) 5. =0 (89)

is called an exact differential equation if the functions
of two variables, P, Q satisfy the equations



P 930

ay  ox ©0)
in the region which is the intersection of the domains
of each function. In this case the differential equation
Eq. (89) can be solved and a general solution may be
found as an implicit relation. However, before writing
down the general solution, we need to have some
working knowledge of the meaning of an expression
like

JP(x, V) dx

By this we mean that we integrate the function P(x, y)
with respect to x and we think of every occurrence
of the symbol y as being a constant (as before). For
example,

Xy
Je’w ax=5"+ (some function of y)
y
Another example is furnished by
Xy
Je’“’ dy = ¢ 4 (some function of x)
X

The last two terms which are functions of x and or y are
the two-dimensional equivalent of the constant of inte-
gration which appears after we evaluate an indefinite
integral for a function of one variable. In the next
formula, we will set them both to zero.

The general solution of the exact equation Eq. (89) is
given implicitly by the relation

Jy)=c

where c¢ is an ordinary constant, and

flxy) = jP(x, V) dx

" J[Q(x, n-y (J P(x. ) dx)} dy

For example, we solve the equation

(In(y) + 3y + (E + 6xy> dy =0
y dx

by noting that here, P(x, y) = In(y) + 3»* and O(x, )

= x/y + 6xy with the exactness criterion Eq. (90) being
verified, since

d 9 1

T (In() + 3D = (S 6xy) =+ 6y

ay ox \y y
Next,

JP(x, y)dx = J(ln(y) + 3y dx = x(In(y) + 31%)
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and so

0 1
— | P(x, y)dx = x —+6)
| P (y v

Finally we note that
ad
00y~ Pl dx =0
'y

and it follows that
f(x, ) = x(In(y) + 35°)

or the general solution is given implicitly by

x(In(y) 4+ 3y*) = ¢

where ¢ is an arbitrary constant. It is difficult to isolate
the y variable in the last expression but, nevertheless,
this does give a general solution and one which is prac-
tical, since, given any initial condition, we can deter-
mine ¢, and therefore the locus of all points in the xy-
plane making up the graph of the required solution.

4.6.3 Integrating Factors

By an integrating factor of a first-order differential
equation of the form Eq. (89) is meant a function of
one variable, call it 7, with the property that

d
1P(x,7)+1Q(x.) 5= =0

is exact. Of course the original equation is not assumed
to be exact, but, in some cases, it can be turned into an
exact equation by multiplying throughout by this inte-
grating factor. We describe two cases in which Eq. (89)
can be transformed into an exact equation. If the quo-
tient

L (e
O(x,y)\dy ox

then an integrating factor is given by the exponential
function

~ 1 (P 00
1() = exp (J 0.7 (5 B 5) dx)

On the other hand, if

1 aP 0
(— — —Q> = a function of y alone 92)
P(x,y)

ay  ox
then an integrating factor is given by the exponential
function (note the minus sign),

B 1 (P B0
0= e"p(‘ 7 ) (@ - a) dy)

) = a function of x alone o1




In both cases the general solution may be written as

f(X,y):C

where ¢ is a constant and, in the case where /(x) is a
function of x alone, f is given by

fxy) = Jl(x) PCx.y)dx + j[l(x) 0(x.y) - %

(J I(x) P(x, ) dx>:| dy
93)

while in the case where I(y) is a function of y alone, f is
given by

fxy) = Jl(y) P, y)dx + J[l(y) 0(x.y) - %

(j 10) PG y) dx)] dy
94)

For example, if we wish to solve the differential equa-
tion

d
(1—xy)+x(y—x)d—)y€:o

we note that P(x,y) =1 — xy, O(x, y) = x(y — x) and

1 (oP 90\ 1
Q(w)(a_y_&)‘T
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so that I(x) = 1/x, if x > 0. In this case,

JI(x)P(x, y)dx =Inx — xy

10 0(x.y) — % (j 1(x) P(x. 7) dx) )

and it follows that the general solution is given by
f(x,y) = ¢ where

2
Sleg) =Inx —xy+5
In particular, the solution which passes through the
point (1, 0) is given implicitly by
2
Y
Inx —> —=0
nx—xy-+ )
since ¢ = 0 in this case.
More techniques for finding the solutions of various
first-order differential equations and those of higher
order as well, may be found in Refs. 1 and 2.
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Chapter 1.5
Ordinary Differential Equations

Jane Cronin
Rutgers University, New Brunswick, New Jersey

5.1 INTRODUCTION

A differential equation is an equation which involves
an unknown function and its derivatives. We will con-
sider ordinary differential equations which concern
only functions of one independent variable. (If the
unknown function is a function of two or more vari-
ables and partial derivatives with respect to two vari-
ables occur, the differential equation is called a partial
differential equation.) Solving the differential equation
means determining a function which satisfies it. For
example, suppose we are given the differential equation

dy .
o sin 2x &)

then a solution of the differential equation is
y(x) = —Fcos2x+ C

where C is an arbitrary constant. This equation is par-
ticularly easy to solve because on the left, we have only
dy/dx and on the right we have an expression involving
only the independent variable x. However, even an
equation as simple as (€) requires finding an integral
or antiderivative of sin2x, and if the right-hand side
were more complicated, say,

X sin(x?)

then finding the antiderivative or integral might pre-
sent more serious problems. It is for this reason that we
must often resort to using a table of integrals. Short
tables can be found in most calculus textbooks. For
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more extensive tables, see Refs 1, 2, or 3. There are also
integral tables in some computer software systems (see,
e.g., Ref. 4).

Few of the differential equations encountered in
physics, engineering, or chemistry are as simple as
(£). Many involve second or higher derivatives of the
unknown function and the expression on the right
usually involves y as well as x. Thus it is clear from
the start that there are serious problems in solving
differential equations.

Differential equations have been studied since
Newton invented the calculus, which means that peo-
ple have worked on them for more than 300 years. Our
purpose here is to describe, in brief form, some tech-
niques for studying solutions of differential equations.
Before proceeding to this description, we mention
some general properties of solutions.

In solving equation (£) we obtained actually an infi-
nite set of solutions because C is an arbitrary constant.
Very often we are concerned with finding a solution
which satisfies an initial condition, that is, a solution
which has a given value for a given value of the inde-
pendent value. For example, to find the solution of (£)
which equals 0 if x = 27, we write

—1cos22m) +C=0
Thus
c=1

and the desired solution is



y(x) = —Lcos2x +1

Under quite general conditions, the solution which
satisfies an initial condition is unique, and this has
important practical and theoretical consequences.

In most of the discussion which follows, we concern
ourselves with the question of how to find or to
approximate the solution. Thus we are assuming impli-
citly that there is a solution to be found. This is not
always true. (For examples of nonuniqueness and non-
existence, see Ref. 5, p. 27 and p. 29). Moreover, there
is the allied question of the domain of the solution, i.e.,
the values of the independent value for which the solu-
tion is defined. As we shall see, even simple-looking
equations present difficulties along this line. Finally,
there is the question of relationships among the various
solutions of an equation. Important aspects of this
question are linear independence (especially for solu-
tions of linear equations) and stability (for solutions of
all classes of equations). Roughly speaking, a given
solution is stable if solutions which are near it for
some value of the independent variable stay close to
the given solution for all larger values of the indepen-
dent value. We shall return later to a description of
these properties.

In describing methods for solving differential equa-
tions, we will use informal descriptions and exhibit
examples. We will not be concerned with proofs, but
will simply give references for further development or
more rigorous treatment. The references given are
intended to provide only a minimal sampling of avail-
able material. The literature on differential equations is
huge. A few words about notation and numbering:
first, in the examples during the discussion of calcula-
tions it is sometimes necessary to refer just once or
twice to an immediately preceding equation. Instead
of using an unnecessary numbering system for these
equations we refer to such equations with (*).
Second, the examples are numbered consecutively,
independent of the section in which they appear.

We begin by describing some of the classical tech-
niques which are sometimes very effective but apply
only to special classes of equations. Then we proceed
to an account of second-order linear equations, with
constant coefficients and also with nonconstant coeffi-
cients. (An equation of nth order is one in which
d"y/dx" appears but no derivative or order higher
than n appears.) Then we treat first-order linear sys-
tems with constant coefficients. After that, we describe
briefly a couple of the major topics in nonlinear equa-
tions. Because these topics are large and because of
limitations of space, our treatment is indeed brief.
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Finally, we consider the very important question of
whether to use numerical analysis, i.e., whether to ‘put
the differential equation on the computer’ rather than
try to solve it by ‘pencil-and-paper’ methods.

5.2 SOME CLASSICAL TECHNIQUES

First we will describe some techniques which were
developed mainly in the 1700s and 1800s but which
are still often useful.

5.2.1 Separable Equations

Regard dy/dx as the ratio of two differentials and mul-
tiply through by dx. If the equation can be written so
that the variable x appears only on one side and the
variable y on the other, then integrate the two sides
separately.

Example 1
d
(1425 =xp
dx

@_ xdx
vy l+x

Inpyl=in(l+x)+C=hvI+x2+C

where C is a constant of integration.

] = V1 + 52

(Since C is real, then ¢ > 0.) Thus we obtain two solu-
tions: y = e“V1 +x? and y= —eSV/1 4 X2

Example 2

y3ﬁ= (* +2) cos x
dx
y3
P12 dy = cos x dx
ln(p* +2) =sinx+ C
In(* 4+ 2) = dsinx + C (%)

A solution of the differerntial equation is obtained by
solving the equation (%) for y as a function of x. We
say that (%) yields an implicit solution of the differential
equation. In this case, we can solve (x) as follows:

4 in x- inx
eln() +2) — e(4sm.\+C) — e4sm.\eC

y4+2 :Ke4sinx



where K is a positive constant.
y4 — Ke4sinx )

Since
—1<sinx<1

then

and
y — :i:(K€4Sinx _ 2)1/4

(If Ke**™* < 2, then y would not be real.)

5.2.2 Linear Equation of First Order

A linear differential equation is an equation in which
the dependent variable and its derivatives are all of
degree 1 (have exponent 1).

The general formula for the solution of the linear
equation of first order

4

=+ Py = 0()

is

= IP(x)dx { J[Q(x)]ej PO e + C}

Example 3
Y _ay=e =1
dx
P(x) = —4
JP(x)dx = —4x - JP(x)dx =4x
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1
:—ge’“+Ce4x
1
W) =—3+C=1
4
c="1
3
(X)_ l X_‘_i 4x
Y 3¢ T3¢

5.2.3 Exact Differential Equations
The differential equation
d
M(x,y)+ N(x, y)—y =0
dx

is exact if there is a function F(x, y) such that

oF oF
—= and —=
ax ay
Then the differential equation can be written
oF OFdy
ox  dy dx

But if y(x) is a solution of the differential equation, we
have

d oF oF d
e T Y001 = by e 01 = 0

Integrating, we have
Flx,y(x)] =0

where we have, for convenience, chosen the constant of
integration to be zero. It can be proved that the differ-
ential equation

d
Mww+wa£=o

is exact if and only if

oM _ N
dy  ox




Example 4
2xy+1 y—xdy
+—- ==
y y* odx
2 1 —
M="27 N=2=2
y y

The equation is exact because

oM 9 1 1 oN
_— = 2x+— = —— = —
dy Iy ¥ y? o ox

Let f(x) M(x, y)dx be the antiderivative of M regarded
as a function of x.
We seek a function F(x,y) such that

oF F
— =M and 3_ =

ax ay
Since 0F /ox = M, then integrating with respect to x, we
obtain

(x)
FwwszMmgm

where g(y) is an arbitrary function of y. (Function g is
arbitrary because if we differentiate with respect to x,
any function of y only can be regarded as a constant
during the differentiation.) Thus we require that

oF 9 (W
dy
or
9 (™ ,
5ﬁ Mdx— N(x.y) = ¢'0) ()

Since the right-hand side of (%) is a function of y only,
then the left-hand side of (x) must be a function of 'y only.
This is, in fact, true because taking the partial derivative
of the left-hand side with respect to x, we obtain

(x) (x)
i i J M dx oN _ a 0 J Md oN
ax ay

Cox dy ox YT
_OM  ON
_E)y x
In this problem,
9 (™ P _
g'(y):_J de—N=—|:x2+f:|—y -
ay ay y y
X 1 X 1
vy o2y
Hence
)= —Iny|

and the implicit solution is
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F(x,y)—x2+§—ln|y| =0
Sometimes even if the equation
d
M(x, )+ N(x, y) =0
dx

is not exact, there exists a function pu(x,y) such that if
the equation is multiplied by wu(x,y), the result is an
exact differential equation. Such a function u(x,y) is
called an integrating factor.

Example 5
dy 3
¥ =0
X Ty—X
The equation is not exact since
M=—y—x and N =x
so that
oM oN
—=-1 and —=1
ay ax

If we multiply by the integrating factor u(x, y) = 1/x%,
the equation becomes

y 1 (dy
——2—x+—<E>:0 (*)

X

in which M = —(y/x*) — x, N = 1/x and
oM 1 N 1
y 2

X2 ox X
Thus we have obtained an exact equation which can be
solved as follows:

(x) 2
J dezz_x_
x 2
aly_ x| _1
ylx 2| x
3 (@ 1
g'(y):—J de—N:——(—):O
ay X X
g =C
2
Fxn=2-21c=0
x 2
3
y:%—Cx

We may also solve (x) as follows. Rewrite (x) as
1
—%dx— xdx+—-dy=0
x X

or



xdy — ydx

2

xdx =0
or

d(%) = xdx

Integrating each side, we obtain
2

y X
L 1C
X 2+

or

3
y:%+Cx

(Since C is an arbitrary constant, its sign has no sig-
nificance.) A strategic choice of an integrating factor
can simplify significantly the problem of solving a dif-
ferential equation, but finding an integrating factor

may require skill, experience, and luck.

5.2.4 Substitution Methods

5.2.4.1 Homogeneous Equations

A homogeneous first-order equation is an equation

which can be written in the form
dy y
4= )
dx X

Example 6

, d
(xe”™ +y) — oo
dx

Divide by x and obtain the homogeneous equation
dy
dx

Let

— gV/-’C_+_Z
X

J
V== 0ry=ux
x

Then
dy dv

T
Substituting (2) and (3) in (1) yields

+xdv—e”+
v dx_ v
dv

+Xa:€

This is a separable equation.

v
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)

2

(©)

dx

e dv=—"—
X

or
e'=—In|x|+C

If C =1In K, then this equation becomes

y
X

e =—In|x|+1In K =In(K/|x]|)
or

Ine™/* = —g — In[In(K/|x]]
Therefore

y = —xIn[In(K/|x])]

5.2.4.2 Bernoulli’s Equation
This is
dy
dx

where P, Q are functions of x only and & is any fixed
real number.
Divide by y*:

+ P(x)y = [0

Y P = 0
X

Let v = y**!. Then
d’U —k
—=(-k+1
=k Dy
Substitution yields

1 dv
1=k dx +[P(X)]v = O(x)

dy
dx

or

% + (1= PO = (1 — K)O()

This is a linear first-order equation and we have
already described a general formula for its solution.

Example 7. y' —y = —)*. (We use sometimes y' and
y" to denote dy/dx and d*y]dx>, respectively.)
Divide by y*:

vyl
=1 (+)
yoy
Let v=y ' = 1/y. Then
do_ v
dx dx



and (%) becomes
dv

=1
dx
or
@—H}—l
dx o

This is a first-order linear equation for which we have a
general formula for the solution. We have here P(x) = 1
and Q(x) = 1. Hence

yl=v= e‘”“e‘”dx—i— C}
=e )+ Ce " =1+Ce™
=1+Ce™

_ 1 . e’
T 14+ Ce T e+ C

< < |-

5.2.4.3 Dependent Variable Absent
Example 8
=10 1) =0

The dependent variable y is absent.
Let p=y'; then p' = y" and the equation becomes

xp 4+ =Dp-1)=0

’ 2
-1
p—1 X
/ 1 d 1
p—+x——:O or —p+ X —— dx:()
p—1 X p—1 X
2
mm—u+%—mm:c
p—1 ¥
1 —=C
n X +2
_1 2 2
|p—|x| I_ e /DTC = e /? where C, > 0
p—11=Clxle™"
Ifp>1,
d
Y e 41
dx
If x >0,

—‘('2/2
y:—Cle : +X+C2
If x <0,
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Y _ e 41
dx

and

y = Cleixz/z +x+ C2

Ifp<l,
d 2
—%:QMV”%4
and if x > 0,

y: Cle_xz/2+X+C2
If x <0,

y = —Cle_xz/z + X + C2

5.2.4.4 Independent Variable Absent

The procedure is to take y to be the independent vari-
able and let y’ be the new dependent variable.
Example 9. yy" +(y')>+1=0. Let y' = p. Then

v _dp _dpdy _ dp
i avax Pay

The equation becomes

d
yp—p+p2+l:0
dy

d 1
y—p—l-p+—:0
dy P

d d

?_ 1%
p+1l/p vy
pdp ‘W—o
: A
p+1l

In@* + 1)+ Inly|=C
In(p*+ 1) +mny*=C
In[(p* + 1)y*] = C

K
(pz—i-l):—2 where K =¢“ > 0
Y
(pz)_E_l_K—yz
¥ ¥
dy VK-
ax P y
d
YV _
K—y2

—(K-y¥"P=x+cC



K-’ =(x+C)
y¥=K—(x+C)

In the preceding pages, we have given a sampling of
the many ingenious techniques which have been devel-
oped to study particular classes of first-order differen-
tial equations. More complete discussions including
extensions of the techniques we have described and
other techniques can be found in standard textbooks.
There is an excellent discussion in Ref. 5, Chap. 1. Very
extensive and thorough treatments are given in Refs 6—
8. Each of these references presents a large number of
ordinary differential equations and then solutions.
Reference 8 is a more extensive compilation than
Refs 6 or 7, but Refs 6 and 7 contain more theory
and references.

5.3 A GEOMETRICAL APPROACH

We have been describing methods for obtaining expli-
cit formulas for solutions of differential equations.
There are, however, other ways of obtaining useful
information about solutions. A geometrical approach
yields a good qualitative (nonnumerical) understand-
ing not only of particular solutions but also of the
relationships among the solutions. If we consider a
first-order equation
% =/(x,y)

then each solution y(x) represents a curve in the xy-
plane. If this curve passes through a point (xy, yo) the
slope of the curve at (xg, yg) i f(xg, ¥9)- Thus to get an
idea of how the solutions behave, we indicate by an
arrow with initial point (xg, yo) the slope f(xg, yg) at
that point. A solution which passes through (x, 1)
must be tangent at (xg, yg) to the arrow with initial
point (xy, o). If we look at the entire collection of
arrows, this will, in many cases, give considerable
information about the solutions even if we do not cal-
culate any of the solutions.

Example 10. dy/dx = —2y. As shown in Fig. 1, all the
arrows on a horizontal line y = k, a constant, have the
same slope. If k>0, then as k increases the slope
becomes more and more negative. If k <0 then as k
decreases, the slope becomes increasingly positive.

Thus a reasonable guess at the appearance of two
typical solutions are the curves sketched in Fig. 1.
Notice that y(x) = 0 for all x is a solution of the differ-
ential equation and that the sketch suggests that as
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—_ — = — — — -
"'s.”\lpu\ )

X
_ f__/_/___.d_i_u_
Figure 1

X — 00, l.e. as x increases without bound, then each
solution y(x) approaches the solution y(x) =0 for all
x. (If this occurs then we say that the solution y(x) =
0 is asymptotically stable.) Of course, it is easy to verify
the conjectures we have made about the solutions
because the differential equation in this case is easy to
solve:

& _

—2dx
y
Injy|]=-2x+C
I =efe™

Thus all the solutions have the form
y(x) = Ke ™

where K is a positive constant or a negative constant.
However, the geometrical description that we have given
is often enlightening if the problem of solving the differ-
ential equation is more difficult.

5.4 SECOND-ORDER LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

The techniques described so far are, in the main, unre-
lated. They are effective with special classes of equa-
tions, but there is no logical structure which relates
them. Now we begin a more systematic study. We
have already obtained a formula for the solution of a
first-order linear equation. Now we consider second-
order linear equations with constant coefficients, i.e.,
equations of the form

'+ by +cy = g(x) (L)



where b, ¢ are constants, and g is a given function of x.
If g(x) =0, for all x, the equation is homogeneous.
(Note that this is a different definition of the word
homogeneous from the definition used in Example 6.)
The procedure for solving the homogeneous equation
is as follows. Find the roots rj,r, of the quadratic
equation

PP br4+c=0
Then the general solution has the form

Ae" + be'™
where 4, B are constants. The only exception is the
case r| = r,, which will be discussed below.
Example 11. " —3y"+2y=0

P =3r42=0r=2)r—-1)=0

r=2 =1
The general solution is

Ae™ + Be*

Example 12. y” — 6y’ +25y =0
P —6r+25=0
By the quadratic formula

6+ 36 —100
2

r, I, are =3+4i

The general solution is
A 4 g g 3w i p S i
— 83X(Ae4ix + 3674”)
= e™[A(cos 4x + i sin 4x)
+ B(cos[—4x] + i sin[—4x])]
= e>[(4 + B) cos4x
+ i(A — B)sin4x]
Here we have used the facts that
cos(—x) = cos x

sin(—x) = —sinx
and the Euler formula
&t = ¢%(cos b + isinb)

Finally, we consider the case in which the quadratic
equation has a multiple root.

Copyright © 2000 Marcel Dekker, Inc.

Example 13. »" +6y'+9y =0
P4 6r+9=(+37=0

Thus, ry = ry = —3. The general solution in this case is
Ae > + Bxe ™

( Later, we shall indicate how this result comes about.)

If (L) is not homogeneous, i.c., if g(x) is not identi-
cally zero, then the procedures for solving the differ-
ential equation become more complicated and, in some
cases, less effective. First we observe by a straightfor-
ward calculation that if y(x) is a given solution of (L),
then if

Ae"" + Be™*

is the general solution of the corresponding homoge-
neous equation [i.e., equation (L) with g(x) = 0 for all
x] it follows that

A" + Be™ + y(x)

is a solution of (L). In fact, every solution of (L) can be
written in this form by a strategic choice of constants 4
and B.

Example 14. Straightfoward calculation shows that
one solution of

v +4y = x> +cosx

1.2 1,1
7X —gT3cosx

The corresponding homogeneous equation is
y// + 4y -0
and its general solution is

AT 4 Be ¥ =A[cos2x + i sin 2x]
+ B[cos 2x — isin 2x]
=(A4 + B)(cos 2x) + i(A — B) sin2x
=4, cos2x + B; sin2x

Then any solution of the differential equation may be
written as

1 1 1 .
sz —§+§cosx+A1cos2x+Bl sin 2x

Thus the practical problem of solving (L) becomes that
of finding the general solution of the corresponding
homogeneous equation and just one solution (with
no given initial conditions) of equation (L) itself.
This conclusion is clearly of practical importance in



solving (L), but it is also of considerable general
importance because it holds for many other linear
equations, for example, partial differential equations,
integral equations, and abstract functional equations.

Now we consider the problem of finding one solu-
tion of the inhomogeneous equation. We describe first
the method of undetermined coefficients which is sim-
ple but not always applicable. We suppose that g(x) in
equation (L) has a simple form, i.e., that g(x) is a sum
of products of polynomials, exponential functions &,
and trigonometric functions coskx and sin kx. Then,
looking at g(x), we make a guess at the form of the
solution.

Example 15. " + 4y = x* + cos x. 4 reasonable guess
at a solution is
Ax* + Bx+ C + Dcosx + Esin x

and we try to determine the constant coefficients A, B,
C, D, E. The derivative and second derivative of the
guessed solution are

2AX + B— Dsinx + Ecosx
2A — Dcosx — Esinx
Substituting into the differential equation, we get
24 — Dcosx — Esinx + 4A4x*> 4+ 4Bx + 4C
+ 4D cos x + 4E sin x = x> 4 cos x
or
(44 — 1)x*> + 4Bx +4C + 24 + (3D — 1) cos x
+3Esinx =0

Setting the coefficients equal to zero yields

Il
o al—

ool—

SISO AN
I Il
o wi— |

8=

N

Il

|

So a solution is
1,2 141
7X g T 3C08X
and the general solution is
acos2x + bsin2x +%x2 —141cosx

where a, b are constants.
Notice that if we consider the equation

V' +4dy = x® + cos 2x
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where g(x) contains the term cos2x, which is a solution
of the corresponding homogeneous equation

y//+4y:0

then the procedure used above fails because suppose we
make the ‘reasonable’ guess at a solution as

Ax* 4+ Bx + C + D cos 2x + E sin 2x
then we arrive at the equation
(44 — 1)x* +4Bx + (24 +4C) —cos2x =0

But no matter what values we use for A, B, C, this
equation cannot be satisfied for all x because then cos?2
x would be identically equal to a polynomial, which is
certainly not true. For this case, it is necessary to use a
more complicated ‘guess’ obtained by multiplying the
terms by an appropriate power of x [5, p. 155].

We have seen that the method of undetermined
coefficients, although simple and straightforward, has
serious limitations, especially on the function g(x).
There is a far more powerful and general method,
called the method of variation of constants or varia-
tion of parameters. (It must be acknowledged that the
price of this power and generality is a considerable
amount of calculation.) The method of variation of
parameters has the additional virtue that it can be
used in a much more general context. Consequently
we will postpone describing it until we consider more
general problems (systems of linear first-order equa-
tions) in Sec. 5.6.

5.5 LINEAR EQUATIONS WITH
NONCONSTANT COEFFICIENTS

It would seem reasonable that if we consider a linear
equation with coefficients which are not constant but
are simple functions of x (e.g., a function like xz) that
such an equation would not be too difficult to solve.
This is, however, not true. The reason is that as long as
we deal with equations with constant coefficients, the
solutions are composed of sums of terms of the form

X" Y — X" 6% (cos bx + i sin bx)

where r is a nonnegative integer and « and b are real.
Thus the solutions are finite sums and products of
integer powers of x, exponential functions ¢, and
trigonometric functions sin bx, cos bx. (This is shown
in the general case in Sec. 5.6.) But as soon as we
venture into the realm of equations with nonconstant
coefficients, the solutions become less familiar (e.g.,



Bessel functions) or are completely unknown. There is
no easy answer to the question of how to proceed if
confronted by a linear equation in which the coeffi-
cients are functions of x. Part of the reason for this
is that certain equations with nonconstant coefficients
often arise in physical and engineering applications.
Consequently these equations have been studied exten-
sively and for a long time. Among the most important
of these equations are the Bessel equation, the
Legendre equation, and the Laguerre equation. (For
an introduction to these equations and further refer-
ences, see Ref. 5.) One may have the good fortune or
technical insight to recognize that the given equation is
or can be transformed into one of these much studied
equations. (See, for example, the beautiful discussions
in Ref. 5, pp. 277-283, of the Schrédinger equation for
the hydrogen atom.) But if the given equation cannot
be treated in this way, there is no alternative but to use
a numerical method, i.e., put the equation on a com-
puter.

Much of the study of such important equations as
the Bessel equation is based on the method of power
series solutions. We describe this technique as follows:

Example 16. 7o find the solutions of
y'+y=0

such that
y0)=0 Y0 =1

1t is easy to show by the earlier method that the solution
of this problem is y(x) = sin x. However, let us suppose
that we do not have this answer and start by assuming
that the solution can be represented as an infinite series,
ie.,
2 n
y(x)=ay+a;x+ax 4+ +ax" +---
Since

1

y'(x)=a; +2ax+ - +na,x"" + -

and
Y =2ay - (= Da "7

then substituting in the equation we have
2,4 - +nn—Da,x" >+ +ag+ayx+--
=0 ()

Since (x) must hold for all x, then the coefficient of each
power of x must be zero. Thus we obtain
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(122—7

a = 4
3T 3x2
-2

n = nn—1)

Since y(0) = ay = 0, then if n is even
a,=0

Since y'(0) =a; =1, then

o 1
PT3x2
and if nis odd, i.e., if n =2p + 1, then
1y

" n!

and the solution is

XX X

Tty oot
which is a power series (the Maclaurin series) for
y(x) = sin x.

Two serious questiosn arise immediately about this
procedure. First, if we manage to get a power series in
this way, how do we determine whether the series con-
verges or diverges for various values of x? This ques-
tion is readily answered by application of some
classical theory. (See, e.g., Ref. 5, Chap. 3.) But even
if we can show that the power series converges, this
gives us no practical knowledge of how the function
represented by the series behaves. One can try approx-
imating the function by using the first few terms of the
power series, but we would not know, in general, how
good this approximation is.

On the other hand, it should be emphasized that the
power series approach has been and remains very
important in the study of the particular equations men-
tioned earlier: Bessel’s equation, the Legendre equa-
tion, and others.

5.6 SYSTEMS OF LINEAR FIRST-ORDER
DIFFERENTIAL EQUATIONS

So far, we have dealt only with second-order linear
equations. It is easy to guess how some of the methods
we have described might be carried over to third-order
or higher-order equations. However, instead of pursu-
ing this direction we proceed at once to the study of



systems of first-order linear equations. There are sev-
eral reason for choosing this direction. First, a single
nth-order equation can be regarded as a system of n
linear first-order equations. Thus the investigation of
linear first-order systems is a broadening of our study.
Secondly, by taking the first-order system viewpoint,
we can utilize matrix theory to obtain a coherent and
complete description of how to treat the problems.
Finally, systems of first-order linear equations are
important for many applications.

A system of linear first-order differential equations
is a set of equations

dxl
7L +apxy + -+ ayx, + by
dX2
o + Xy + -+ ay X, + by
! (S
dx,,
W =auX| + aqpxXy + -+ apy X, + bn
where a; (i=1,...,n;j=1,...,n) will be assuemd to

be constant and by, ..., b, are functions of z. If

b()=0 i=1,....n

the system is said to be homogeneous. In system (S) the
t is the independent variable and solving system (S)
means finding functions x(¢), ..., x,(t) which satisfy
system (S). Specifying an initial condition for the solu-
tion means specifying initial values x;(¢y), ..., x,(t),
all at the same value ¢, of the independent variable.

Each of the equations in (S) is a first-order equation,
and we show first how to write a single nth-order linear
equation as a system of first-order equations. We con-
sider the equation

d"x d"'x d"*x d*x

g g T g T Sy g

—i—az%—l—alx—i-b(t)zo

Let
X =X
. _dx  dx
2T At dt
o _d [
3T AR " dt|dt| T ar
LAy _d|d"x| _d,
S A
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Then equation (E) can be written as the system

dxl
a7
dX2
"
dxnfl
Tar
d'x dx,
ar o dr —a Xy —dpXp = =y 1 X
— apXy — b([)

Although it is by no means obvious at this stage, it
turns out that it is better to treat the single nth-order
equation as a special case of a system of first-order
equations. We shall see why later. But in order to
develop the theory for systems of first-order equations,
we need a few facts about matrices.

5.6.1 Some Theory of Matrices

A matrix is a rectangular array (m rows, n columns) of
numbers

ap ayy,

A cee App

Sometimes the matrix is denoted by [a;;].

5.6.1.1 Sums, Determinants, and Products of

Matrices

The sum of two matrices is defined for two matrices
with the same number of rows and columns as follows:

aip dip ... Ay by by ... by,
ay [25%) e ayy, b21 b22 e b2n
+
Apl Ay -+ g bml me o bmn
apy+by  ap+bp ay, + by,
ay +by an+by sy + by,
am1 + bml Am2 + me Ay + bmn

Multiplication of a matrix by a number (or scalar) is
defined as follows: if ¢ is a number then the product of
¢ and the matrix [a;] is



ap dayy, ap ayy,
ary o ary o
C = [&
A Ay A Ay
capg e cayy,
cdy Cdop
Cy) Cyn

We will need to consider only square matrices (m = n)
and single column matrices (n = 1). (A single column
matrix is a vector.)

If A4 is a square matrix

an dip ... dipy

Ap1 A2 im

the determinant of A4, denoted by det A4, is defined
inductively as follows. If m =2, detd =ajjan—
apay. If det 4 is defined for 4, an (m — 1) x (m — 1)
matrix, let B be an m x m matrix,

bll b12 s blm

bZl b22 s me
B =

bml bm2 cee bmm

Let B(i,j) be the (m — 1) x (m — 1) matrix obtained by
deleting the ith row and the jth column of matrix B.
Then det B can be defined to be

detB=) (—=1)"b;B(,))

n
J=1

where 7 is a fixed integer with 1 < i < m or det B can be
defined as

det B =Y (—1)"b;B(,))

m
i=1
where j is fixed with 1 <j < m.

All these expressions for det B yield the same result.
The first equation is called expansion by the ith row.

The second equation is called expansion by the jth
column.
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Example 17. Expansion by the first row:

1 -2 7
32 6| =MDRA —600)]+ (=D(=2)[3(4)
-5 0 4

= 6(=5)]+ (ND[3(0) — (2)(—5)]
=8 +2(42) + 7(10)
=8+84+70
=162

Expansion by the second column:

1 -2 7
3002 6| =(=)(=2)[12 +30] + Q)[4
-5 0 4
—7(=5)]
= 2(42) + 2(39)
=84+78
=162

If A and B are two square matrices, their products are
defined to be

Can an .. ay | [bn b ... by,
AB — dy dyp ... by by
L A1 o N bml me bmm
_Cll €l - xlm_
L Cm1 Cm2 Cmm _
where

ey = ayby +apby + -+ ay,by

m

= ayby
)

That is, ¢y, is the dot product of the first row of A with
the first column of B. Also

ciy = ayby + apby + -+ aypbyp
m
=2 _ayba
Jj=1

That is, ¢, is the dot product of the first row of A with
the second column of B. Generally, if k =1,...,m and
L=1,...,m, then

m
e =Y ayby
=



Similarly

b b e by T
11 12 Im agg apn oo Ay,
b21 b22 b2m s ay ey
BA =
| bml bm2 bmm i Amy Ay oo A
dll dl2 dlm
— d21 d22 d2m
L dml dm2 dmm _
where

m
dkf = E b/xj/'ajf
=

WARNING. In general AB # BA. That is, multiplica-
tion of matrices is not commutative, as the following
example shows.

Example 18
| 2 3
e B
Then

411 116
AB:[IO 25] BA:[B 18}

1

in which all the diagonal entries, a;;, are equal to 1 and
every entry off the diagonal, a; with i # j, is equal to 0,
is called the identity matrix because if A is any m x m
matrix then

Al =14=A4

If A has an inverse A_l, i.e., if there exists a matrix A7
such that AA™" = I, the identity matrix, then A and A~
commute:

AA =44 =1

It can be proved that A has an inverse if and only if

det 4 # 0.

Multiplication of a square matrix and a vector is
defined as follows:
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- m

> aib;

b =

ap apn (2577 bl Jml
ayy ayy ... dyy, 2 . 7
= azjb]

: =1

Aml A2 - - Ay bm mn

> anb;

Jj=1

5.6.1.2 Exponent of a Matrix

The exponent of a matrix is a very useful concept in
systems of linear differential equations. It is defined by
using the infinite series for the familiar exponential
function, i.e.,

2 n

X
__|_..._|_n_!_|_... (*)

X _
e _1+x~|—2!

If 4 is a square matrix, we define the exponent of 4 as

2 n

eAzl—i—A—I—%-l--“-i-%-i-“' (%%)
For this definition to make sense it is necessary to say
what we mean by convergence of an infinite series of
matrices and to show that the above infinite series of
matrices converges. In order to define the convergence,
we must introduce a definition of distance between
matrices 4 and B, denoted by |4 — B|. This distance
is defined as

m

ij=1

The formal definition of convergence is based on this
distance and using the convergence of the familiar
exponential series (x), it can be proved that (%) con-
verges.

5.6.1.3 FEigenvalues and Eigenvectors of a
Matrix

An important concept for matrices is an eigenvalue of a
matrix. Given a matrix 4 = [a;], then an eigenvalue of
A is a number A such that

ayp — A [450) e Ay
a ayy — A a

det 21 22 2m =0
[ A Am A



Example 19. Find the eigenvalues of

4 2 8
A=| 1 13/3 16/3
—1 —4/3 -7/3

The eigenvalues are the solutions of the polynomial equa-
tion

42 2 8
det| 1 13/3—x»  16/3
-1 —4/3  —(1/3)—x

= [0 =90~ 6+ )]+ @ = D[~ () (9]
£2(:=9) +8(-4+5-1) =0
A 62— 11 +6=0

or

B+ —6=0

The number 6 must be divisible by any integer solution of
this polynomial equation. So the possible integer solu-
tions include 2 and 3. Using synthetic division, we have

I —6 +11 —6 |3
43 =9 46
1 -3 2

That is: A> — 61> +11x — 6 = (A — 3)(A> — 31+ 2). So
the solutions are A = 1,2, 3.

The eigenvalues are the solutions of a polynomial
equation, that is, if A is an m x m matrix, the eigenva-
lues of A are the solutions of a polynomial equation of
degree m. Hence by a theorem from algebra, the matrix
A has m eigenvalues if each eigenvalue is counted with its
multiplicity.

It is straightforward to prove that the product of the
eigenvalues is det 4. Thus 0 is an eigenvalue of 4 if and
only if det 4 = 0.

Later we will need the concept of an eigenvector. If
A is an eigenvalue of matrix A4, then

det(4 — A1) =0

As will be shown later (after Example 25), it follows
that there is a nonzero vector x such that

A—-ADx=0

Vector x is called an eigenvector of A. Note that if x is
an eigenvector and c¢ is a nonzero constant, then cx is
also an eigenvector.
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5.6.1.4 Canonical Forms of a Matrix

With one more bit of matrix theory, we reach the result
which is used to given an explicit formula for the solu-
tions of a system of m first-order homogeneous equa-
tions with constant coefficients. If 4 is an m x m
matrix with entries a; which are real or complex,
then there is a constant matrix P with an inverse P~
such that

PlaP=1J

where J is a matrix called the Jordan canonical form
and J has the form

Ji
J>

J,

where all the entries not written in are zero and J; (j =
1,...,s) has the form

1

where A; is an eigenvalue of A. (All the entries not
written in are zero.) Each eigenvalue of 4 appears in
at least one of the matrices J;. (The eigenvalues A; are,
in general, not distinct.)

If all the entries of A are real, then there is a real
constant matrix P with an inverse P~ such that

PlaP=17]

where J is a matrix called the real canonical form, all
the entries of J are real, and J has the form

Ji

<
Il

and j_, is associated with eigenvalue A; and has one of
the two following forms: if A; is real,

l

J



Each A; appears in at least one fj If A; is a complex
eigenvalue,

A= oy + i

where o; and B; are real and B; > 0. (Note that since 4
is real, then if o; + iB; is an eigenvalue, so is o; — if;.)

Then
B aj ,Bj 1 O

13

~.

B o 0 1
o f
L =B o]

Corresponding to each A; = o; +iB;, there is at least
one J;.

Example 20. The eigenvalues of

—-19 30 0
—-15 23 0
0 0 3

are the solutions of the polynomial equation

—19-x 30 0
det| —15 23— 0 =0
0 0 &—x

or, expanding the determinant by the third column,

(8 — M[(—19 — 1)(23 — 1) + 450] = 0
(8 = M[(—19)23 4 (19 — 23)A + 1> +450] = 0
(8 —M[A% — 41 — 43744501 =0

@ =MA>—4r+13]=0

The eigenvalues are 8 and

4416 —-52
2

or

4 4 6i 4 — 6i

2 2

or

24 3i 2—3i
Then
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) 230
J=1-3 20
00 8

In general, finding the Jordan canomical form or the
real canonical form can be a lengthy process even if m
is fairly small. (For a more detailed description of the
canonical forms, a description of how to calculate
them, and an example with m = 7, see Ref. 9, Chap. 2.)

5.6.2 Solutions of a Homogeneous System of
Linear Differential Equations

With these facts about matrices, we return to the study
of systems of linear differential equations. We consider
a linear homogeneous system with constant coefficients

Xm
7 apxy +apx; + -+ aypXy
dX2
v =daynX| +apx; + -+ auX,
(£)
dx,,
dt = A X| F Xy + o QX

We may rewrite (£) in matrix form as

dx/dt apn  dip ... Ay || X1
dXz/d[ ar [25) ce Ay, X
dxm/dt A1 A2 - Ay Xm

If we introduce the notation

X1
X2
X =
L Xm
B dx1 /dl
dx dXz/df
dt
L dxm/d[
[an an ... a4y
ay [25)) . Ay
A=
Ldm  Am2 Qym



then the linear system (£) can be written in the much
briefer form

dx

dt
Before discussing the problem of solving (£) or (L,,),
we state a couple of facts about the set of solutions of
(L£). These facts are stated in terms of the notion of
linear independence. We will then discuss the meaning
of linear independence.

The basic facts are:

Ax (‘Cm)

1. System (£) has m linearly independent solu-
tions.

2. Every solution of (£) can be expressed as a lin-
ear combination of m linearly independent solu-
tions.

(For proofs of these statements, see Ref. 9, Chap. 2.)

The notion of linear independence is of crucial
importance throughout the study of linear equations
of all sorts. Unfortuantely, it has an eclusive quality
that is difficult to deal with, at least at first. Part of
this difficulty stems from the fact that the definition of
linear independence is given in negative terms.

First we define linear dependence. Functions f;(¢),
oo Jo(t) are linearly dependent if there exist con-
stants ay, ..., a,, not all zero, such that for all ¢

afi(0) + afr (D) + - - + af,(1) = 0

(Speaking informally, we would say that fi, ..., f, are
linearly dependent if one of them can be written as a
linear combination of the others.) The vectors

x11(2) X12(2) X1,(0)
X21(2) X (1) X2,(1)
xml(t) me([) an(l)
are linearly dependent if there exist constants ay, . .., a,,
not all zero, such that for all ¢,
xll(t) X]g(l) xln(l)
Xor (1 X (1) Xp,(1)
a 21(0) ta tota,
)le(t) sz(l) xmn(t)
0
0
0

or
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ayxy (1) ax5(1) apX1,(1)
apxy (1) ay Xy (1) X, (1)
+ . ot
aXm1 (l) a2xn12(l) anxnm(t)
0
0
0

(The zero vector on the right is sometimes denoted
simply by 0.) This last vector equation is equivalent
to the scalar equations

ayxy () + apxp(0) + - - + a,x1,(1) =0
ayxy1 (1) + arxp(t) + - - - + a,x5,(1) = 0

alxml(t) + a2xn12(t) +- 4+ anxmn(t) =0

(Note that in these definitions, any or all of the func-
tions f;(#), x;;() may be constant functions.)

Example 21. The constant vectors

3 12
HIEb
are linearly dependent because
3 12 0
]+ [¥]-10]
Example 22.

I

are linearly dependent, we show that there are numbers
ay, a, such that

L) (3]

ar +3a, = —17
2a; +4a, = —18

To show that the vectors

These simultaneous equations have a unique solution for
a, and a, because

1 3
det[2 4:| =-2+#0



(Actually it can be proved that if n is any integer, then a
set of (n + 1) constant n-vectors must be linearly depen-
dent.)

Functions f(?), ..., f,(?) are linearly independent if
they are not linearly dependent. Similarly, vectors are
linearly independent if they are not linearly dependent.
Thus if we want to show that a set of functions or
vectors is linearly independent then we must show
that there is no set of numbers «,...,a, with the
properties described in the definition of linear depen-
dence. It is by no means obvious how to go about this.

Example 23. The functions

Al =1
) =1
f=r

are linearly independent because if ay, ay, ay are fixed
numbers, then the equation

ap +(121+Cl3[2 :0

holds for at most two values of t (the solutions of the
quadratic equation) unless a; =0, a, =0, and a3 = 0.

Example 24. Similarly the functions

filn =1
fH=1"
faltz) =17

are linearly independent because the equation
a + (12112 + (13117 = 0

holds for, at most, 17 values of t (the solutions of the
polynomial equation of degree 17) unless a; = 0, a, =0,
and a; = 0.

Example 25. The vectors

1 1 5
-2 1,{31,]10
4 6 2

are linearly independent because if

1 1 5
a —2 +612 3 +(13 0 = 0
4 6 2

then
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a+a+5a3 =0
—2a;+3a, =0 (*)
4(1] —+ 602 + 2&3 = O

But since the coefficient determinant is

115
det| =2 3 0| =5-12-12)+2(3+2)
4 6 2

=—120+10 #0

then the system of equations (x) has the unique solution
a) =dy =dy = 0.

The same kind of argument shows that more gen-
erally, we have: n constant n-vectors are linearly inde-
pendent if the corresponding determinant is nonzero.
Also if the n-vectors are linearly independent, then the
corresponding determinant is nonzero. Finally, it is
easy to show that eigenvectors exist: since

det(4d —AI) =0

then the columns of 4 — Al are linearly dependent.
That is, there exists a nonzero vector x such that

(A4 —2D)x =0

Example 26. Suppose we have two 3-vectors

X11 X12
Xo1 |5 | X22
X3] X32
then if
X X
det| 11 12 £0
X211 X2

the vectors are linearly independent. To prove this sup-
pose that

X11 X12
ap| X + ay| Xnp =0
X31 X32
that is

aixy + axxp =0
ap X + aAyrXyy) = 0
ap| X3y + aAr X3y = 0
Then the equations
aixy + axxp =0

ayXa; +axyxy =0



can be solved for a,, a,. Since

X X
det| 11 12] 0
[le X2 7

the solution is a; =0, a, = 0.

The basic facts stated carlier essentially tell us that
in order to find the solutions of system (L), it is suffi-
cient to find m linearly independent solutions. The first
step in such a search is to observe that the matrix
equation

dx

dr
which is another form of (£), is a generalization of the
simple scalar equation

dx

dt
and we know that a solution of this equation is e™.
This suggests that the exponential

Ax (L)

ax

2 42 n 4n

e :I+tA+%+--~+t A

is, in some sense, a solution of (£,,). In fact it is not

difficult to prove that the m columns of the matrix '

are m linearly independent solutions of (Ly). [A

matrix with this property is called a fundamental
matrix of (L;).] Indeed, for t = 0, we have

OA:]

and hence the solution x(z) of (£;,) such that
x(0) =x

where X is a given vector, is

x(t) = 1%
A glance at equation (F) is enough to suggest that
these statements have no practical value. If 4 is, say,
a 3 x 3 matrix, how can the powers of 4 be calculated?
That is, how can an explicit form for the infinite series
be obtained? Also how can we determine what this
infinite series converges to for various values of ¢?
These would seem to be difficult problems, but they
are fairly easy to solve if we use the Jordan canonical
form or the real canonical form described earlier. Since
we are interested mainly in the case in which all the
entries in A are real and in finding real solutions we
will use the real canonical form. We stated earlier that
there exists a real matrix P with inverse P~' such that

Plap=1J
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where J is the real canonical form described in Sec.
5.6.1.3. Multiplying this equation on the left by P
and on the right by P~', we obtain

A=rPrJp!
and

A> = (PJP Y PIP Yy =PI(P'P)JP!

= P(J)*P"!
and for any integer n
AII — P(j)l’lp—]
Then by equation (F),
2 pr 2 p—1
~ P(J) P
e =14+ PJP! +%
tnP j nP—l
RS
n!
2/ 7\2 ne \n
~ (] "'J
=P|:1+tJ+ (2,) +ot Eﬂ) +---:|P_1

_ Per]P—l

Calculating (J)" is not difficult and with some sim-
ple, although rather lengthy, computations the expres-
sion ¢ can be explicitly determined. (For a detailed
description of this, see Ref. 9, Chap. 2.) Here we will
just sketch the results. First, we have

1],
el

So it is sufficient to exhibit ¢ where J has the form, if
the eigenvalue A is complex,

a B 1 0
-8 a 0 1
J = a B 1 0
-8 « 0 1
o p
L B o
or, if A is real,
a1
Y|
J—
A1
A




Simple calculations show that if A is real and J is such
an m x m matrix, then

If A is complex, then simple but lengthier calculations
show that ¢/ has the following form, which we indicate
only briefly:

e cosBt esinpt  te* cospt te* sin Bt

—e"'sin Bt eatcos Bt —te*' sinft  te* cos Bt
e — e cospt e sin Bt
—e*sin Bt e cos Bt

(These expressions appear to be rather complicated,
but it is important to notice that each term is simply
an integer power of ¢ multiplied by a real exponential
or a sine or a cosine.) Finally, it is not difficult to show
that since

etA — PetJP71

is a fundamental matrix, so is petl. [An m x m matrix
whose m columns are linearly independent solutions of
(L) 1s a fundamental matrix of (Ly).]

Example 27. Find the solution of

d
7);:4x+2y+8z
dy_ 1316
i 3773
dz 4 7

a3 T3

which satisfies the initial condition

x(0) =1
20 = —1
20)=4

By Example 19, the eigenvalues of the coefficient matrix

4 2 8
A=1] 1 13/3 16/3
—1 —4/3 -7/3

are the number 1, 2, 3. Hence the Jordan canonical form
of A is
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1 00
J=10 2 0
0 0 3
It is easy to see that if n is a positive integer, then
"0 0
@y'=({0 @) 0
0 0 (3
and it follows that
e 0 0
=10 & 0
0 0 &

As remarked above, a fundamental matrix of the system
of differential equation is Pe" .

It remains to determine the matrix P. As is shown in a
detailed discussion of canonical forms (e.g., Ref. 9,
Chap. 2), the columns of P are eigenvectors associated
with the eigenvalues. If A =1, we solve the following
equation in order to find an eigenvector:

4—1 2 8 P
1 (133 =1  16/3 oy | =0

| -1 —4/3 =(7/3) =1 [ pa
or

B 3 2 8 P11

1 10/3 16/3 Py | =0

_—1 —-4/3 —10/3 P31
or

3pir+2pa +8p3 =0 ey

P +?1’21 +%P31 =0 (2

—Pu — %le - %Pm =0 (3)
Adding (2) and (3) yields

2py +2p31 =0 or D21 = —P31

Multiplying (3) by 5/2 and adding to (2) yields

—3p11—3p3 =0
=3pi1 —6p3; =0
P11 = —2p3

So an eigenvector associated with eigenvector A =1 is
(if we take p3; = 1)
=2
—1
1

If & =2, we solve



4-2 2

8 P =2 2(=3) 3(0)
I (13/3)—2 163 | =0 AP=| =1 2(=1) 3(—4)
-1 —4/3  =(1/3) =2 || px L2(1)  3(1)
2p1 +2ppn +8p3 =0 4) and
P+irn+%Epn=0 ) ] 0 0 100
. N PlaP=10 2(1) 0 02 0
P12 —3Pn —5pPn=0 (6) 0 0 31 0 0 3
Adding (5) and (6), we obtain A fundamental matrix of our system is
po+pn=0 or  pn=-py Pe’
Substituting in (4) yields where
2p1+6p3 =0

or
P12 = —3p3

So an eigenvector associated with the eigenvalue A = 2 is

but
(if we take p3, = 1) e 0 0
- 3 el.’ O €2f O
. 0 0 ¢
1

and hence the fundamental matrix is
If & =3 we solve

-2 -3  0][e 0 O
2t
4_3 2 ] Pis -1 -1 -4 0 e (3
1 (13/3)-3 16/3 Py | =1 1 1 1/|l0 0 ¢
| -1 —4/3 =73 =3 [|rs [ —2¢' =3¢ 0
P13+ 2p2 +8p33 =0 (7 =| - - -4
t 2t 3t
P13 +3pn+¥pn =0 ®) L ¢ ¢ ¢
4y 16, ) Since Pe" is a fundamental matrix then the desired solu-
P13 =3P — 3P = tion is a linear combination of the columns of Pe". That
Subtracting (8) from (7) yields is, there exist constants a, b, ¢ such that at t =0
%Pz,z +§P33 =0 or P = —4p33 —2¢' —3¢” 0 ; 1
o . al —e' | +b| =¥ | +c| —4e" -1
Substituting in (9) yields o o Y 4
So an eigenvalue associated with eigenvalue » = 3 is (if Da—3b=1
we take p33 = 1) Cd—bh—de——1
2 a+b+c=4
1 Solving these three equations for a, b, ¢, we obtain:
Now let matrix P have these three eigenvectors as its

c=—1,b=—11, a = 16. Hence the desired solution is
columns. That is,

x(f) = 16(=2¢") — 11(=3¢*)
5 3 o y(1) = —16¢" + 11e* + 4¢*
P=|-1 -1 -4 2(f) = 16¢' — 11* — &
1 1 1

These calculations show that even for a simple, low-
Then since the columns of P are eigenvectors, we have

dimensional example, the solutions are not quickly
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obtained. It is clear that the difficulties increase if 7 is
much larger. Also we have not described at all how to
deal with the case of eigenvalues of multiplicity greater
than 1 [9, Chap. 2]. To do so, we must introduce gen-
eralized eigenvectors in order to find the matrix P.
There is one cheering note in this welter of complica-
tions. If we deal with a system which stems from a
single nth-order equation, and if X is a multiple eigen-
value, then A appears in just one ‘box’ J; in the Jordan
canonical form [9, Chap. 2]. Thus we obtain a straight-
forward algebraic explanation of the form of the solu-
tions of the single nth-order equation. (The form of the
solutions for the single second-order equation with a
multiple eigenvalue was described in Example 13.)

5.6.3 Solutions of Nonhomogeneous Linear
Systems

Finally, we turn to the problem of solving a nonhomo-
geneous linear system with constant coefficients, i.e., a
system

dxl

W =anx;+apxy+---+ap,x, + bl(t)
dX2

o fan +anxy + -+ QX + by(2)
dx

Wm = A X1+ QX 0 QX + bm(l)

Using the matrix notation introduced earlier and let-
ting b(z) denote the vector

by (1)
by (1)

by (1)
then we may rewrite this system as

dx
o= Ax + b(1) )

Let M(¢) be a fundamental matrix of the correspond-
ing homogeneous equation
dx
— =4 2
= A 2
Then we have the following result:

Variation-of-Constants Formula (also called the varia-
tion-of-parameters formula). The solution x(t) of (1)
such that x(t) satisfies the initial condition
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x(t9) = Xo

is given by the formula

(1) = (1) + M) j (M ()] b(s) ds

fy
where y(t) is the solution of (2) such that
W(ty) = Xo

The proof of this formula is a straightforward calcula-
tion [9, Chap. 2]. It is worth noting that this is a gen-
eralization of the formulation for the solutions of a
single first-order linear equation, i.e., the formula
given in Sec. 5.2.2.

We have looked only at linear systems with constant
coefficients. If we permit the coefficients a;; to be func-
tions of ¢, the problems become far more difficult. This
is to be expected because if we consider a single-
second-order linear homogeneous equation whose
coefficients are not constants, then we move from the
realm where all the solutions are sums of terms of the
familiar form ¢ or /“¢" into another country where
the solutions are entirely novel: Bessel functions,
Legendre functions, etc. In fact there is very little gen-
eral theory of linear systems with coefficients a; which
are functions of ¢. One exception is the Floquet theory
for systems in which each a;(¢) has period T [9, Chap.
2]. Although useful, the Floquet theory is limited in
scope and yields few explicit results.

5.7 NONLINEAR EQUATIONS

A second direction of generalization is to consider
equations or systems which have terms in which the
unknown functions appear with exponent different
from 1. Such equations are termed nonlinear equations.
(Examples 2, 4, 6, and 7 are nonlinear equations.) In
some rough sense, most equations are nonlinear. More
precisely, the class of linear equations is highly specia-
lized. As this suggests, there are many applications in
which we must deal with nonlinear equations. Among
these applications is celestial mechanics, which was the
motivation for the remarkable work of Poincaré and
Lyapunov. Later impetus for study came from the
intensive study of radio circuits, which began in the
1920s. More recent applications have arisen in chem-
istry and biology: for example, population models and
mathematical descriptions of electrically excitable cells
(neurons, cardiac components). These applications
have inspired a lot of study of nonlinear differential
equations in the last hundred years. But although tre-
mendous strides have been made in our knowledge, the



results remain somewhat fragmentary. There is no gen-
eral theory like that for linear systems, which is embo-
died in the variation-of-constants formula. That is, we
have no convenient general formulas which automati-
cally yield solutions. There are, of course, many special
cases which can be dealt with, such as Examples 2, 4, 6,
and 7. But all of these examples satisfy some very spe-
cial hypotheses. (Examples, 2, 4, 6, and 7 were all first-
order equations.)

Besides the lack of general formulas for the solu-
tions of nonlinear equations, there is another serious
complication which arises in nonlinear equations. We
have seen that the solutions of linear equations with
constant coefficients are defined for all values of the
independent variable, i.e., the domain of the solution
includes all the real numbers. (The reason for this is
that each component of each solution consists of a sum
of terms of the form c£Xe“*™" where a, b, ¢ and k are
constants.)

However, even a very simple example reveals the
unpleasant fact that there may be strong limitations
on the domain of the solution of a nonlinear equation.

Example 28. Find the solution of
dx 2
E =X
such that x(0) = 1. (Since the dependent variable x

appears with exponent 2, this equation is certainly non-
linear.)

Solution: using separation of variables, we have

dx
;:dt
1
——=t+C
X
_ 1
t+C
1
N=1=——
X(0) c

Therefore C = —1 and x(f) = —1/(¢t — 1). But then x(7)
is defined for ¢ < 1; however, as ¢ approaches 1, the
solution x(#) increases without bound.

5.7.1 Classical Techniques

By the end of the 1800s, mathematicians had, largely
by struggling with nonlinear equations in celestial
mechanics, become aware of the deep problems inher-
ent in the study of nonlinear equations. The result was
that various techniques were introduced which are
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used to investigate different aspects or properties of
solutions. Our next step is to describe briefly some of
these techniques.

5.7.1.1 Perturbation Theory

One of the oldest techniques for dealing with nonlinear
equations is the perturbation method. The basic idea of
the perturbation method is to represent the problem as
a simple problem which is perturbed by the addition of
a small but more complicated term. For example, the
equation
d*x

W—i—x+sx3:0

where ¢ is a small parameter is a special case of
Duffing’s equation, which arises in nonlinear
mechanics. The unperturbed equation is

d*x

dr
which is by now a familiar equation and easy to solve.
The idea is then to look for solutions of the perturbed
equation near solutions of the unperturbed equation.
This idea is the basis for a large amount of important
theory. It was developed extensively by Poincaré in his
studies of celestial mechanics and used widely in stu-
dies of radio circuitry in the 1920s. It is also widely
used in other fields: sound, mechanics, and quantum
mechancis. However, a description of the subject is far
beyond the reach of this chapter. (For an interesting

introductory discussion of perturbation theory, see
Ref. 10, Chap. 25; see also Ref. 9, Chap. 7, and Ref. 11.)

+x=0

5.7.1.2 Poincaré—Bendixson Theory

The geometrical viewpoint was developed largely by
Poincaré¢ and has been used and extended ever since.
The most complete development is for systems of the
form
dx
dt

dy_
E - Q(X, y)

Let us assume that P and Q have continuous partial
derivatives of second order for all (x, y). Each solution
of the system is a pair of functions (x(#), y(¢)) which
describes a curve in the xy-plane. From the standard
existence and uniqueness theorem is follows that there
is one such curve through each point in the xy-plane.
Thus no two curves intersect each other and no curve
crosses itself. To get an idea of how the curves behave



we use a viewpoint introduced earlier in the study of
first-order equations (see Example 10). If a solution
curve passes through a point (xg, yy), then the slope
of the curve at (x, yo) is

dy dy/dt  O(xy, o)

dx dx/dt  P(xgy, )

Thus we can associate with each point (xg, yg) an
arrow which indicates the slope of the curve at
(xg, ¥o). As earlier, if enough of these arrows are
sketched, then a picture of the solution curves begins
to emerge. This picture becomes clearer if we investi-
gate the solutions which are single points. Suppose
(x, y) is a point such that

P(x,y)=0(x,y)=0
Then the pair of constant functions

x(t) =x

W) = } for all ¢

is a solution of (NL). Such a single-point solution is
called a critical point, a singular point, or an equilibrium
point. The behavior of solutions near the critical point
can be determined if the determinant of the matrix

oP _ _. oP _ _
—xy =&
ax ay

Q0 _ _. 00 _ _
a()ay) 8_y(x’y)

is nonzero. The solutions of the linear approximation
to (NL), i.e., the system

dx/dt | X
[dy/dl} _M[y} (EA)
can be described in detail and these results can then be
used to obtain considerable information about the
solutions near (x, y) of the system (NL). Here we will
just describe briefly the behavior near (x, y) of the solu-

tions of (LA). If both the eigenvalues of M (i.e., both
the solutions of the quadratic equation

det[M — AI] = 0

are positive, all the solutions of (LA) near (x, y) move
away from (x, y). Typical such behavior is shown in
Fig. 2(a). If both the eigenvalues are negative, all the
solutions near (X, y) move toward (X, y) as indicated
typically in Fig. 2(b). If one eigenvalue is positive
and the other negative, the behavior is more compli-
cated. Most of the solutions move away from (x, y),
but two of them approach (x, y). Such an equilibrium
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point is called a saddle point; a typical saddle point is
shown in Fig. 2(c). If the eigenvalues are complex, then
since the entries in matrix M are real the two eigenva-
lues will be complex conjugates a + ib and a — ib. If a
> 0 (a < 0) the solutions spiral outward from (x, y)
[inward toward (x, y)] as shown in Fig. 2(d) [(e)]. If
a = 0, the solutions describe closed curves as shown
in Fig. 2(f).

The analysis by which these pictures are obtained is
quite simple [9, Chap. 3]. But other seemingly simple
questions present more serious problems. Having used
the equilibrium points to help get a picture of the solu-
tion curves, we turn to a question which arises very
often in applications: Does the system (NL) have a
periodic solution? In geometrical terms, this question
becomes: Is there a solution which describes a closed
curve? A solution (x(t), y(¢)) describes a closed curve if
there is a number 7 such that for all ¢

(x(t+T), (1 + T)) = (x(1), y(1))

An answer to this question is given by the Poincaré—
Bendixson theorem which can be stated informally as
follows. If (x(), y(¢)) is a solution of (NL) with the
following properties:



1. For t beyond some value, the solution (x(¢), y
(?)) is bounded. (More precisely, there is a value
to and a positive number M such that if 7 > 1,
then [x|(0)] + |y(1)] < M.)

2. If (x,p) is an equilibrium point of (NL), then
(x(2), y(r)) does not approach (x,y) as ¢
increases without bound. [More precisely,
there is a disc D in the xy-plane with center (x,
y) and a value ¢, such that if # > ¢, then (x(?),
y(1)) is outside D.]

Then either:

1. (x(2), y(¢)) is a periodic solution, or
2. (x(2), y(1)) spirals toward a periodic solution as
indicated in Fig. 3.

The Poincaré—Bendixson theorem is intuitively very
reasonable. Roughly speaking, it says that if a solution
is bounded and does not ‘pile up’ on an equilibrium
point, then either D ‘piles up’ on a periodic solution or
is itself a periodic solution. However, a rigorous proof
of the theorem is surprisingly complicated.

Some of the geometrical theory described above for
the system (NL) can be extended to systems of n equa-
tions where n > 2. Generally speaking, studying the
solution curves in n-space turns out to be a fruitful
approach for many problems. But it has drawbacks.
If n > 3, we lose the possibility of completely visualiz-
ing the solution curve. Also the Poincaré—Bendixson
theorem is no longer valid if n > 2.

5.7.1.3 Stability Theory

The equilibrium points of (LA) described in the pre-
ceding section illustrate the simplest aspects of the con-
cept of stability, a subject largely developed by the
great Russian mathematician Lyapunov. Speaking
informally, we say that a solution of a differential
equation is stable if every solution which gets close to
the solution stays close to the solution. The solution is
asymptotically stable if every solution which gets close

Figure 3
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to the solution actually approaches the solution. If
neither of these conditions holds, the solution is
unstable. The equilibrium points in Fig. 2(b) and (e)
are asymptotically stable; the equilibrium points in
Fig. 2(a), (c), and (d) are unstable. The equilibrium
point in Fig. 2(f) is stable. For applications, stability
is a very important property because in many cases we
can expect that only the solutions which have some
stability will predict the actual behavior of the physical
system that is modeled by the differential equations.
The reason for this is that the physical system is
often subject to small disturbances which are not
included in the description given by the differential
equation. Such disturbances can be interpreted as
‘kicking’ the system a small distance from the solution
that the system is ‘on.” If the system were at equili-
brium and described by one of the asymptotically
stable equilibrium points, then after a ‘kick’ the system
would tend to return to the equilibrium point. But if
the equilibrium point were unstable then after even a
very small ‘kick,” the system would tend to move away
from the equilibrium point.

Stability theory has been studied extensively for
many years, and a good deal of theory has been devel-
oped. Here we will merely point out one fundamental
results for linear systems.

Let

dx
i Ax
be a linear homogeneous system with constant coeffi-
cients. Then the solution x = 0 has the following sta-
bility properties: if the eigenvalues of A4 all have
negative real parts, then x = 0 is asymptotically stable;
if at least one eigenvalue of 4 has positive real part
then x = 0 is unstable; if all the eigenvalues of 4 are
pure imaginary, then x =0 is stable but it is not
asymptotically stable. These results can be proved by
looking at the fundamental matrix

etA — PetJP—l

which we discussed earlier.

5.7.2 Modern Techniques

More recent approaches to the study of nonlinear
equations include qualitative or topological studies
and chaos theory.

The topological studies, which use results such as
fixed point theory, had their start in the work of
Poincaré and Lyapunov. They provide useful informa-



tion about the existence and properties of solutions
and are a useful complement to the more conventional
studies. However, a description of topological tech-
niques is beyond the scope of this chapter.

The basic idea of chaos theory lies in the following
observation. We consider a system of nonlinear equa-
tions:

dx
=A@ x)
dx,,
? :ﬁ1(xl’ e xn)

with n > 3, in which all the functions f;,...,f, are
fairly simple and are ‘well behaved’ (say, have deriva-
tives of all orders) so that the usual existence and
uniqueness theorems are applicable. Then it may hap-
pen that the solutions of the system display compli-
cated behavior and also that solutions which have
almost the same initial condition may behave very dif-
ferently. This observation was already formulated by
Poincaré before 1900 but it did not receive the atten-
tion it deserved until the advent of computers which
made possible extensive and detailed numerical studies.
The nummerical studies illustrate vividly the compli-
cated and disorderly solution behavior which some-
times occurs. This behavior is called deterministic
chaos. A particularly striking example of deterministic
chaos is displayed by the solutions of the famous
Lorenz system of three nonlinear differential equa-
tions. A meterological model, the Lorenz system was
introduced and studied in the 1960s.

5.8 NUMERICAL OR COMPUTER
ANALYSIS

There are many software programs which can be used
to obtain accurate numerical approximations to the
solutions of a given differential equation. Such numer-
ical analysis can be used even if one has no idea how to
analyze the differential equation by using one of the
techniques described earlier. Moreover, even if one of
those techniques can be applied there is, sooner or
later, numerical analysis that must be carried out. An
example would be to find the solutions of an n-dimen-
sional homogeneous linear system

dx
dt

where 7 is not small, e.g., n = 11. To find the eigenva-
lues, one must find the solutions of a polynomial equa-

= Ax
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tion of degree 11. Also the eigenvectors must be
calculated, and finally one must calculate Pe”. If the
linear equation is inhomogeneous, then if the varia-
tion-of-constants formula is used, we must also calcu-
late an integral, which calculation may itself be a
nontrivial chore.

In some important applications, we are wholly
dependent on the use of numerical techniques. For
example, the orbits of satellites are determined accu-
rately by numerical calculations of the solutions of the
appropriate differential equations.

In view of these remarks, the natural question that
arises is: Why not just ‘put the differential equation on
the computer’ rather than attempt to use one of the
“pencil-and-paper” techniques that we described ear-
lier? This is a valid question and deserves a detailed
answer.

Before attempting to answer this question, we dis-
cuss a little further the kind of results that can be
obtained by using a computer program. We have
already referred to the numerical approximations to
solutions that can be obtained with the computer. In
addition some software programs (e.g., Maple [4]) do
symbolic work, i.e., the program can be used to
obtain a formula for the general solution. Thus we
have a quick way to solve the differential equation
provided that the equation can be treated symboli-
cally by the program. On the other hand, the pro-
gram may not have the resources to deal with a
given differential equation even though the differen-
tial equation has a closed solution, i.e., a solution
which can be represented explicitly or implicitly in
terms of known functions. Then the computer pro-
gram can be used only to obtain a numerical
approximation to a solution of the differential
equation.

Thus if one is confronted with a differential equa-
tion, the first step is to try to apply whatever pencil-
and-paper techniques one knows; then, if this fails, to
seek a formula for the solution by using the symbol
resources of whatever computer program is available.
If neither of these directions yields the desired solution,
then one must make a decision whether to search
further for a pencil-and-paper technique or settle for
a numerical approximation to the solution which can
be obtained from the computer.

The further search for a pencil-and-paper method
can be started by consulting a textbook such as Ref. 5
and then continued in the collections of differential
equations [6-8]. This procedure may yield a closed
solution. But the danger is that time may be invested
in a vain search.



On the other hand, the numerical approximation is
not a wholly satisfactory description of the solution.

Also the computer analysis yields only information
about single solutions of the differential equation.
Little or no information is obtained about the struct-
ure of the set of solutions. For example, the stability
properties of the solutions remain unknown. An
example of this is shown in the study of differential
equations which model electrically excitable cells
(nerve fibers, neurons, cardiac fibers). These differen-
tial equations are messy-looking nonlinear systems,
and their study has been largely limited to numerical
studies. However, an analytical study of some of these
equations reveals that the structure of the set of solu-
tions of the differential equation is quite simple, sur-
prisingly so in view of the appearance of the
equations.
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Chapter 1.6
Boolean Algebra

Ki Hang Kim
Alabama State University, Montgomery, Alabama

6.1 INTRODUCTION

The theory of Boolean algebra is relatively simple but
it is endowed with an elegant structure and rich in
practical applications. Boolean algebra is named after
the British mathematician George Boole (1815-1864).
For Boole’s pioneering work, see Refs 1 and 2.
Boolean algebras have been extensively studied by
Schroder [3], Huntington [4], Birkhoff [5], Stone [6],
Halmos [7], Sikorski [8], and Hohn [9]. In this chapter,
we present a concise summary of Boolean algebra and
its applications.

A Boolean algebra is a mathematical system (8, Vv,
A) consisting of a nonempty set 8 = {a, b,c,...} and
two binary operations Vv (vee) and A (wedge) defined
on f such that:

b;. Both operations are associative; that is
(avb)yve=av(bVec)
(anbyrc=an(bnrc)

b,. Both operations are commutative; that is,
avb=bva anb=bAa

b;. Each operation is distributive with respect to
the other; that is,

avbve)y=(avbyn(aVc)
anbve)y=(anb)Vvianc

bs. B contains an identity element 0 with respect to
Vv and an identity element 1 with respect to A;
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that is,

av0=a anl=a

The element 0 is called the zero element and the
element 1 is called the unit (or universal) ele-
ment, respectively, of .

bs. For each a € , there exists an element a € 8
such that

ava=1 ana=20
The element a is called a complement of a.

Notice that there exists a complete symmetry in the
postulates b;—bs with respect to the operations v and
A and also in the identities of by. Therefore, we can
state the following principle:

Principle of Duality. If in any statement deduced from
the five postulates by—bs we interchange v and A, and 0
and 1, then we obtain a valid statement.

Example 1. Let S ={a, b}, a <b. We define av b=
sup{a, b} and a A b = inf{a, b}. (Accordingly, we can
also define the operations as av b = max{a, b} and
aAnb=min{a, b}.) The tables for these operations are
as Tables 1 and 2 .

Clearly (S, Vv, A) is the simplest and most fundamental
nontrivial Boolean algebra.

Example 2. Let D be the set of positive integral divi-
sors of 6: that is, D ={1,2,3,6}. For all a, b € D, we



Table 1
Multiplication for v

\% a b
a a b
a b b
Table 2

Multiplication for A
A a b
a a a
b a b

define aNv b and a Ab to be respectively the least com-
mon multiple (lem) and greatest common divisor (gcd)
of a and b. In other words, av b= Ilcm {a, b} and
aNb=gcd {a,b}. The tables for these operations are
Tables 3 and 4.

Table 3 Lowest Common Multiple
Multiplication Table

Vv 1 2 3 6
1 1 2 3 6
2 2 2 6 6
3 3 6 3 6
6 6 6 6 6

Table 4 Greatest Common Divisor
Multiplication Table

A 1 2 3 6
1 1 1 1 1
2 1 2 1 2
3 1 1 3 3
6 1 2 3 6

A quick inspection of these tables yields the fact that
the integer 1 plays the role of the zero element and the
integer 6 plays the role of the unit element and the tables
also yield the various complements as follows: for all
aeD,a=6/a;, 1=6,2=3,3=2,6=1. Therefore,
(D, Vv, A) is a Boolean algebra.

Example 3. Let S=/{a,b,c d} together with the
operations defined in Tables 5 and 6. The system (S, V,
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A) is a Boolean algebra. The verification is left as an
exercise.

Table 5 Four-Element v Multiplication Table
\ a b c d
a a b ¢ d
b b b d d
c ¢ d ¢ d
d d d d d

Table 6 Four-Element A Multiplication Table

A a b c d
a a a a a
b a b a b
c a a c c
d a b c d

Example 4. Let P(X) be the power set of a nonempty,
finite set X. Then (P(X),U,N) is a Boolean algebra,
taking v and N as U and N, respectively. Take “—"
as complementation relative to X, 0 =0, 1 = X, resp-
ectively. Therefore, the operations v and N may be
denoted by U and N, respectively.

Infinite Boolean algebras are not used much in the
theory of switching circuits but do occur in other areas
of mathematics such as measure theory, logic, prob-
ability, and topology. Since we are mainly interested
in the applications of Boolean algebras, we will only
concentrate on finite Boolean algebras.

The simplest infinite Boolean algebras are infinite
Cartesian products of {0, 1}. These act almost identi-
cally to finite Boolean algebras.

Example 5. All measurable subsets of the real numbers
form a Boolean algebra which allows not only finite
union and intersection but also countable union and
intersection.

Example 6. A/l sets obtained from the open and closed
sets of a topology by finite union and intersection form a
Boolean algebra.

Example 7. Given any set, a Boolean algebra is
obtained by taking all its finite subsets and all the com-
plements of finite subsets.



We now present another characterization of
Boolean algebra. For a comprehensive treatment of
lattice theory, see Birkhoff [5]. A lattice is a mathema-
tical system (L, Vv, A) consisting of a nonempty set L =
{a,b,c, ...} and two binary operations Vv (join) and A
(meet) defined on L such that:

;. Associativity: (avb)yve=av Vo),

(anbyrc=an(bArc).

l,. Commutativity: avb=bVva,anb=>bAa.

l;.  Absorption: aVv(anb)=a,
an(avb)=a.

If in addition the distributive law:

ly. avbrce)y=(avb)A(aV o), an(bve)=
(a A b)V (anc) holds, then L is called a distri-
butive lattice.

L is said to be modular if and only if
Is. an[bv(anc)]=(@Ab)V(anc).
Since 1;—1; hold in every Boolean algebra, every

Boolean algebra is a lattice.

Example 8. Let X ={1,2,3}. Then P(X)=1{0, {1},

{2}, {3}, {1, 2}, {2, 3}, {1, 3}, X}. The subset lattice of

P(X) is shown in Fig. 1.

Example 9. Let P(X) be the same as in Example 4.
Then (P(X), Vv, A) is a lattice.

As a consequence of the above example the opera-
tions v and A are frequently interchanged with set-
theoretical ‘“‘union” (lattice-theoretical “join’”) and
set-theoretical “intersection” (lattice-theoretical
“meet’”), respectively. However, some authors use
“+7” (addition and **-” (multiplication) instead of Vv
(U) and A (N), respectively. For brevity and simplicity,
from now on we use ““+ " instead of v and “*-” instead
of A, respectively. Furthermore, we usually suppress
the dot ““.” of a - b and simply write ab.

We list some important properties of Boolean alge-
bras which can be deduced from the five postulates
bl_bs.

pi- The identities 0 and 1 are unique.
p>- Idempotency: fora € B,a+a = a, aa = a.
p3.- Dominant element: for aepf, a+1=1,

a0 = 0.
ps. Absorption: for a, bep, a+(ab)=a,
a(a+ b) = a.

ps. Complementation: 0=1,1=0.
ps- Every a € B has a unique complement.
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Figure 1 Subset lattice of P({1, 2, 3}).

p;- Involution: for a € B, a=a. o
ps. De Morgan’s law: for a, b e B, a+b = ab,
ab=a+b.

A ring is called Boolean if all of its elements are
idempotent under the second operation.

Example 10. The ring of integers modulo 2, (Z,, ®, ®)
is a Boolean ring, since 0 @0 =0and 1® 1 = 1.

Example 11. The ring (P(X), A,N) of subsets of a
nonempty set X is a Boolean ring, where A is the sym-
metrical difference of sets. The verification is left as an
exercise.

6.2 BOOLEAN FUNCTION

Let B{x, x,, ..., x,} be a Boolean algebra. A constant
of B is any symbol, such as “0” and ““1”, which repre-
sents a specified element of 8. A variable is any symbol
which represents an arbitrary element of B. In the
expression x; + x,x3 we call x; and x,x3 monomials
and the entire expression x; + x,x3 a Boolean polyno-
mial. Any expression such as x; + x5, x; X3, (x| + xX2x3)
consisting of a finite number of elements of 8 will be
called a Boolean function and we will denote it by
f(x1, x2, x3) (for short f). For example, [(x; + x5)(x, +
X3)]x4 is a function of four variables x|, x5, x3, and x4.

A Boolean polynomial is said to be in disjunctive
normal form (or canonical form) if it is a sum of mono-
mials in which each variable or its complement appears
exactly once.



Example 12.
form

This polynomial is in disjunctive normal

S = X1X2X3 + X1 X3 + X1 X503

In disjunctive normal form of a function f, a given
monomial M will appear if and only if the function f is
1 when we make x; = 1 whenever x; appears in M and
x; = 0 whenever x; appears in M.

Example 13. In the above example the first monomial
is 1 provided x; = 0,x, = 1,x3 = 0. For then all of X,
X, X3 are 1 and so is their product. But in all other cases
at least one variable is zero and the product is zero.

This argument shows that the disjunctive normal
form is unique, and moreover that it exists since if
we add one monomial to M whenever the function is
1 at some set of x; values then we get a function equal
to that function at each set of x; values.

Example 14. Suppose f has the truth table of Table 7.
Then f =1 at the three triples (0,0,0), (0,1,0), and
(0,1, 1). Add the corresponding monomials to get

f = )21)_62)23 + )_CIXZ)_Cg + X1X2X3
We can also obtain the disjunctive normal form for
general polynomial by expanding products of polyno-

mials and replacing absent variables in monomials by
X; + X;.

Example 15.  Suppose =0+ x)( +x3) +
x1(xy +x3).  Expand  the  products to  get
f=x1)E1 +X2)Z'1 +XIX3 +X2X3 +XIX2+X1)C3. Now
x1x; =0, and combine terms to get

[ = XX + X1X3 4+ XoX3 + X1Xo. Now since x5 is missing
in the first term, and x3+ X3 =1, rewrite it as
X1x(x3 + X3).

Do the same for other terms:

Table 7 Truth Table of Boolean

Function f

X X2 X3 /
0 0 0 1
0 0 1 0
0 1 0 1
1 0 0 0
1 1 0 0
1 0 1 0
0 1 1 1
1 1 1 0
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X1X2(X3 + X3) + X1(X + X2)x3 + (X + X1)xpx3
+ X1 X5(x3 + X3)

= X|X2X3 + X X2X3 + X1 XoX3 + X[ XpX3 + X XpX3
4 X1X2X3 + X1 XX3 + X1 XX3

= X1XpX3 + )_CIX2X3 + )_CIX2)E3 + Xl)_sz::, + XIXZ)_C3

With n variables, the number of monomials is 2",
since for each variable we have two choices: comple-
ment it or not, give choices on previous variables. This
means a Boolean function is determined by its 2" coef-
ficients which can each be 0 or 1. This means that there
are 2% Boolean Sfunctions of n variables.

Example 16. In two variables, there are 22 = 4 mono-
mials: X1Xx,, XXy, X1Xp, X1%,, and 2* = 16 functions.

The conjuctive normal form is dual to the disjunctive
normal form. It is a product of sums S such that each
variable or its complement occurs just once as a sum-
mand in S.

Example 17. This is in conjunctive normal form

(Xl + X2 + )23)()_61 + X2 + X3)

In the conjunctive normal form, if x; appears in a
factor then set x; =0, if x; appears set x; = 1. Then
the factor and hence the whole expansion is zero. This
indicates that a given factor appears in the conjunctive
normal form for a function f'if and only if when we make
this substitution the function is zero. By considering
those values which make f zero, we can expand any
Sfunction in conjunctive normal form.

Suppose f has the same values as in Table 7. Then fis
zero at the triples (0,0, 1), (1,0,0), (1,0, 1), (1, 1,0),
(1, 1, 1). Therefore f is the product

(Xl + X2 + )_C3)()_Cl + X2 + X3)()_Cl + X + )_C3)
()2'1 + )2'2 + X3)()€1 + )22 + )_63)

We may also expand the function using the dual dis-
tributive law and replacing summands 0 by x;X;.

Example 18. Let f = (x + x)(X] + x3) + x1(x5 + Xx3).

S =10 + x5 + x3) + x][(er + x2)(% + x3)
+ x5 + x3]
= (X1 + x5 + X)X + X3+ x7)
(o1 + 22 + x5 + x3)(%) + x5 + x5 + x3)
= (x1 + x2)(D(x1 + X2 + x3)(X1 + X2 + X3)
= (%] + X + x3X3)(x1 + X0 + X3)(X] + X0 + X3)
= (X1 + x5 + x3)(x] + X2 + X3)(X] + X3 + X3)



Still another way to obtain the conjunctive normal
form of f is to obtain the disjucntive normal form of f
and take its dual.

Example 19. Let f be as in the Example 14. The dis-
junctive normal form of f is X|XpX3+ X;XyX3+
XI)Z'2X3 + XIX2)_C3 + X1 XpX3.

Then fis its complement, a product of one factor for
each summand in f. The summand X|X,X3 goes 10 X|X»X3
=X + X, + X3 and so on. This gives once again the
product

(Xl + Xy + X3)()_Cl + X + X3)()_Cl + Xy + )_Cg)
()_Cl + )_Cz + X3)()??1 + )22 + )??';)

6.3 SWITCHING FUNCTIONS

Shannon [10] was the first one to apply Boolean alge-
bra to digital circuitry. For an excellent account of the
switching functions, see Hohn [11] and Dornhoff and
Hohn [12].

In two-state circuits, a switch or contact may be in
the open state or in the closed state. With an open
contact (or open path) in a circuit we assign the symbol
“0” and with a closed contact (or closed path) we assign
the symbol ““1.”” That is, we assign the value 1 or 0 to
any circuit according as current does or does not flow
through it. Therefore, we can construct a two-element
Boolean algebra, which is also known as switching alge-
bra as follows.

Example 20. Let 8y = {0, 1}. We define +, by Tables
8 and 9. This system has applications in both switching
theory and the algebra of propositions, where 0 is “‘false”
and 1 is “true.”

Table 8 Addition Table for g
+ 0 1
0 0 1

1 1 1

Table 9 Multiplication Table for S,

0 1
0 0 0
1 0 1

Let B={xy, x5, ...,Xx,} where x; is either 0 or 1 for
every i. Then the Boolean function

f(xl,xz,...,xn):{(l)

is called a switching function.

Example 21. Let x and y be the circuit variables which
apply to a two-terminal circuit consisting of two contacts
x and y. Thus, we have the parallel and series connection,
shown in Figs. 2 and 3.

The two circuits can be represented by switching func-
tions (Table 10).

The disjunctive normal form gives a way to repre-
sent any Boolean function by a switching circuit.

Example 22. Let f(x,y,z) = Xyz + Xyz + xyz. This is
represented by Figs. 4 and 5 .

In general, we have one series circuit for each mono-
mial and then put all those circuits in parallel. However,
in very many cases, this form will not be the simplest

form.

Example 23. The function f(x,y,z) = x+ yz in dis-

Junctive normal form is xyz + xyzZ 4+ xyz + xyz + Xyz,

Table 10  Values of Switching
Circuits

X y X+y Xy

0 0 0 0

1 0 1 0

0 1 1 0

1 1 1 1

Figure 2 Parallel connection: x + y.
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Figure 3 Series connection: xy.

as shown in Fig. 6, but the original function is as shown
in Fig. 7, which is simpler.

The terms appearing in the disjunctive normal form
are known as minterms.

In realizing Boolean functions by switching circuits,
it is important to have as few switches as possible in
order to save money, space, and time.

F:S > ——

=2|
L

3]
L

[

Figure 4 First switching circuit for f(x, y, z).

We may consider minimizing a representation of a
Boolean function as a sum of products of variables and
its complements. We say that one polynomial P; is
shorter than another polynomial P, if (1) P; has no
more terms than P,, and (2) P; has fewer total appear-
ances of variables than P,.

Example 24.
minimal.

X1Xy + X1Xy = X1 SO the former is not

Example 25. X1i2+X2)_C3+X3321: )_CIX2 +3_C2.X3+)_C3X1
so minimal forms need not be unique.

v X o ¥ ow « Z
+ X - > v * Z -
v ¥ - v o z »

Figure 5 Second switching circuit for f(x, y, z).

The basic way of simplifying an expression is to
replace Mx; + Mx; by M where M is a monomial.

A product P = z,z, ...z, of variables and comple-
ments which implies a function f is called an implicant
of f. Thisis equivalentto P < f or P+ f = f. Animpli-
cant is prime if no subproduct of P is also an implicant.

Example 26. Any term of a Boolean polynomial is an
implicant.

Example 27. x;x, is an implicant of x;x, + XX, which
is not prime, and x; is an implicant which is prime.

Any minimal expression for a Boolean function f
must be a sum of prime implicants, otherwise we can
replace any nonprime implicant by a subproduct and
get a shorter expression.

Quine’s method of finding prime implicants is first
to write in a column the terms in the disjunctive normal
form of f. Examine each term to see whether it can be
combined with a term below, i.e., the two terms differ
by complementing a single variable. If so, check it and
the term below and write the shortened term in a sec-
ond column. Then repeat this procedure for the second
and later columns.

Example 28. Consider the Boolean polynomial with
disjunctive normal form x;X,X3 + X1 X2X3 + X1 X2 X3
+X1X2X3 4+ X1Xox3. The first column is

. - oy T 7z
. X e . V. v T 4
+ X o * -‘;’- . LA
. x - .« v . + Z .
.3 . v - e

Figure 6 Switching circuit before simplification.

Copyright © 2000 Marcel Dekker, Inc.



Figure 7 Switching circuit after simplification.

X1X2X3
XI)E2X3
X]XpX3
X1XpX3

)_C])C2X3

The first term combines with the second to give
X1X3, with the third to give x;x,, with the fifth to
give XpXj3.

The second combines with the fourth to give x,X,. The
third combines with the fourth to give x,x5. So the new
table is Table 11. In the second column, x,x; combines
with x;X3 to give Xy, X1X, combines with x;Xx, to give x;.
This gives Table 12. Then the unchecked terms are the
prime implicants of f. Their sum is one formula for f,
X1 4 XoX3, which in this case is minimal.

In general, a shortest formula will use some but not
all of the minimal implicants. To determine this we
form a table with rows labeled by prime implicants
and columns labeled by terms in the disjunctive nor-
mal form (Table 13). We put a v’ in a cell when the
prime implicant implies the disjunctive term.

Example 29. Now choose as few rows as possible such
that every column has a check. Here we need both x and
XpX3.

For n large, these procedures will typically grow
exponentially in the amount of time and space required
to carry them out and in fact the last part of this
method is an example of an NP-complete problem.

Table 11  Computation of
Prime Implicants, Second
Stage

XIXZX_*,\/ X1X3
xl)22X3«/ XX
X1X2X3,/ X2X3
X1XX3,/ X1,
)EIX2X3«/ xl)_C3

Copyright © 2000 Marcel Dekker, Inc.

Table 12 Computation of Prime
Implicants, Third Stage

X1X2X3\/ XIX:;\/ X1
X132'2X3\/ XIXZ\/
X1X2)_C3\/ Xy X3

Xl,{'z)z':;\/ XIJZZ\/
)EIX2X3\/ X1.£3J

Next we give an example where not all prime impli-
cants are used.

Example 30. Let f = X1X2)23 + X13_62X3 + )EIXQX:;
+X1XpX3 + X1XoX3 + X1 X1X3. Then the monomials
are

X1X2X3
X1 XpX3
X1 X2X3
X1 X2X3
X1X2X3

X1 XpX3

The first combines with the fourth to give x|x3, with the
fifth to give x,X3. The second combines with the fourth to
give x1Xx, and with the sixth to give X,x3. The third
combines with the fifth to give xX\x, and with the sixth
to give X1x3. So we have Table 14 (see pg. 120). All the
second column are prime implicants (Table 15, see pg.
120). Any three disjoint rows give a minimal expression

Jor f,
X1323 + )_CzX3 + )21)(2 or X23_63 + X])_Cz + )_613(?3

In practice often some values of Boolean functions
are not important, for instance those combinations
may never occur. These are called “don’t cares.”
They are dealt with by listing them when finding the
prime implicants, but not in Table 15.

Example 31. Suppose we add x,x,x3 as a don’t care in
Table 14 (Table 16, see pg. 120). Then across the top we
list all but the last don’t care (Table 17, see pg. 120). So
X1 + X5 + x3 is the minimal Boolean polynomial.

Table 13 Computation of Shortest Formula

X1 XpX3 X122X3 X2X2)E3 xliz)_@ )E]XzX}
X1 \/ \/ \/ \/
XpX3 \/ \/




Table 14 Computation of
Prime Implicants

X|X2,{'3\/ Xl,{':;
Xl,{'2X3«/ X232'3
)_Cl.)C2X3\/ )Cl)zz
xliz,{j\/ ,%2,\'3
561,\'2323«/ ,{'13(2
)_Cl)zz)@\/ .§1X3

6.4 BOOLEAN MATRICES

Let BV, denote the set of all n-tuples (v, vy, ..., v,)
over By = {0, 1}. An element of BV, is called a Boolean
vector of dimension n. The system (BV,,+,:) is a
Boolean algebra by defining operations as elementwise
sums and products. For elementary properties of
Boolean vectors, see Kim [13].

Example 32. Let (1,0,1,0), (0,0,1,1) € BV,. Then
(1,0,1,0)+ (0,0, 1,1) = (1,0, 1, 1)
(1,0,1,0)0,0, 1, 1) = (0,0, 1, 0).

A subspace of BV, is a subset containing the zero
vector (0,0, ...,0) and closed under addition of vec-
tors. The span of a set S of vectors, denoted (S), is the
intersection of all subspaces containing S.

Example 33

1. Let U={0,0,0),(1,0,0),(0,1,0),(1,1,0),
(0,1, 1),(1,1,1)} € BV;. Then U is a subspace
of BV3.

2. Let V=4{0,0,0),(1,0,0),(0,0,1),(1,1,0),
0,1,1),(1,1, 1)} € BV;. Since (1,0,0)+
(0,0,1)=(1,0,1) ¢ BV, V is not a subspace
of BV3.

Table 15 Determination of Minimal Expression for f

.XIXZ)Z'3 x1)22X3 )21)62)(73 xl,‘_cz)_@ “‘EIXZ'{?S )21)_62)(3
X1X3 x/ «/
XpX;3 v Vv
Xl)zz \/ \/
XX3 x/ «/
X)X «/ \/
.’21X3 \/ \/

Table 16 Computation of Prime
Implicants with “Don’t Care”

xl.x2£3J x1~‘_C3x/ X1
x1%x3/ X %3/ X2
X1 Xx34/ X%/ X3
xp'cp@«/ xll_Clx/
32‘1362)23\/ ,322X3\/
)_cl)_czx3 )Cl.X}«/
x1x2X3«/ )_Clx2\/

x5/

)Cz)C}«/

By a Boolean matrix we mean a matrix over f,. One
can also define a Boolean matrix over an arbitrary
Boolean algebra. The Boolean matrices behave quite
differently from matrices over a field. Let B,,, denote
the set of all m x n Boolean matrices. If m = n, we just
write B,. For a comprehensive treatment of Boolean
matrices and their applications, see Kim [13].

Boolean matrix addition and multiplication are the
same as in the case of matrices over a field except the
concerned sums and products are over B,. There are
two other operations on Boolean matrices.

1. Logical product: 4 © B = (a;b;).
2. Complement: A€ = (@)

Example 34. Let

(=
— O
S =
S =
—_ O
o O
S =
- O

—
—
(=]
(=]
(=]
(==
—
—

Table 17 Omission of “Don’t Care” to Find Shortest

Formula

.X|X2X_T3 XI.X_,‘2X3 )Z'IX2.X3 Xl)zz)?; )EI.XQ)Z} 5(1562)(73
Xy v v v
X3 \/ \/ \/
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Then

10 1 17 [0 0 10

010 0 100 1
A+ B= +

00 1 1 01 10

1100 oo 11

10 1 17

110 1

“lo o111

111

10 1 170 0 1 0
s |0 Lol o0

001 1]/lo1 10

110 0]l0o0 11

001 1 17

100 1

“lo o111

10 1 1]

10 1 17 [0 o0 10
dop_ |0 OO {100

00 1 1 0110

1100 |00 11

000 1 0]

0000

“loo 10

(0 0 0 0]

10 1 179 [0 1 0 07
e o100 0 1 1
=10 o1 1| 110 o0

11 00] oo 1 1]

10 1 17" 10 0 1
oo ool foron

00 1 1 1010

11 00] 101 0]

(47 = (a;)]

The inequality of Boolean matrices is defined by 4 <
B if and only if a; < b; for all i,j. This is a partial
order relation. Similarly, one can define a strict partial
order relation 4 < B if and only if 4 < B and a; < bij
for some i and ;.

Copyright © 2000 Marcel Dekker, Inc.

Example 35. Let

o G e

NN
R

The row space of A € B,,, is the span of the set of all
rows of A. Similarly, the column space of A is the span
of the set of all columns of 4. Let R(A) [C(A4)] denote
the row (column) space of A.

IA

A

Example 36. Let

1 0 0
A=|11 0|eB
10 1

Then R(4)={0, 0, 0),(1,0,0),(1, 1,0), (1,0, 1),(1, 1, 1)},
and C(4) = {(0,0,0)7,(0, 1,07, (0,0, DT, (0,1, DT,
(1,1, 7.

Let A € B,,,. Then both R(A) and C(A) are lattices,
respectively. The join of two elements is their sum and
the meet of two elements is the sum of the elements of
R(A) which are less than or equal to both elements.
Certainly, 0 is the universal lower bound while the
sum of all the elements of R(A) is the universal upper
bound. Here 0 denotes the zero vector.

Example 37. Let A be the same as in the above exam-
ple (Figs. 8, 9 see pg. 122).

For a binary relation from X = {x;, X5, ..., X} to
Y ={y1,ya, ..., .}, we can associate a m x n Boolean
matrix A = (a;) to each binary relation R by the follow-
ing rule:

a0 — {1, (xi, ;) € R
100 () ¢ER

This gives a one-to-one correspondence between binary
relations from X to Y and m x n Boolean matrices.
Under this correspondence unions of binary relations
become Boolean matrix sums and compositions of binary
relations become Boolean matrix products.

Example 38. Let X ={1,2,3,4} and Y ={1,2,3}.
Let R=1{(1,2),(2,3),(3,1),(3,2),(4,3)}. Then the
Boolean matrix corresponding to R is



(1,3.1]

(1,1,7) 1,3, L)
(1,0,0)
:D;D,D)

Figure 8 Lattice of R(A).
01 0
0 0 1
A=1110
0 0 1

A directed graph (for short digraph) consists of
points called vertices, and line segments with arrows
from certain vertices to certain others. The line seg-
ments are called edges. A digraph represents a binary
relation R from a set X to a set Y if its vertices are
labeled to correspond to the elements of X and Y and
an edge is drawn from x to y if and only if (x, y) € R.
For an excellent treatment of digraph theory, see
Harary et al. [14].

Example 39. Let X=1{1,2,3,4,5}and Y={1,2,3,4}.
Let R={(1,1),(1,4),(2,2),(2,3),3,1),(3,4),4,3),
4,4),(5,1),(5,4)}. Then the digraph corresponding to
R is shown in Fig. 10.

(L, 1,1

0,2.0m37T c,o, 1"

(0,3,07T

Figure 9 Lattice of C(A).
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Figure 10 Digraph of a binary relation.

We give an application of Boolean matrices to
switching circuits due to Hohn and Schissler [9].
Switching circuits can be drawn by a variety of graphs
which cannot always be analyzed into parallel and ser-
ies components. The question of analysis is: Given a
circuit in graphical form, when will current flow
between any pair of points?

Example 40. Consider Fig. 11. Here x, y, u, and v are
switches. We are interested in current flows among pairs
of vertices, 1, 2, 3, and 4.

The primitive connection matrix of a graph with
vertex set V' is the |V| x |V| matrix whose (i,))-
entry is labeled with the product of all switches
going between vertex i and vertex j (assumed to be
in series). Its (i, j)-entries are 1. Here |V| denotes the
cardinality of V.

3

Figure 11 A general switching circuit.



Example 41. The primitive connection matrix in

Example 40 is

T O - =
S = O O
—_e R

1
x
0
y

Our goal is to produce a matrix representing
whether current will flow between any set of vertices
in a subset S of V.

An output matrix of a circuit has (i, j)-entry some
Boolean polynomial P such that for each setting of all
switches P is 1 if and only if current flows between
those vertices.

To obtain an output matrix, we may first remove all
vertices outside the set S. To remove a vertex v,, delete
its row and column and then to every remaining entry
(i,7) add the product of the (i, r)- and (r, j)-entries in
the original matrix.

Example 42. [If we remove vertex 4 from the above
example we obtain

l4+yy x+yu vy
M=|x4+yu 14+uu uv
vy uv 14+ vv

Note that the matrix M so obtained is symmetrical and
reflexive (M > I) where I is an identity matrix. We may
by Boolean algebra simplify this to

1 xX+yu vy
M= x4+yu 1 uv
vy uv 1

Now take the least power of this matrix which is
idempotent (M2 = M). The reason is that nth powers

of matrices have entries representing all products of

entries of length n walks in their graphs. For a reflexive
Boolean matrix, M" > M"". So this eventually gives all
possible routes for the current to take between any two
given points.

For a reflexive n-square Boolean matrix its (n — 1)
power will equal all subsequent powers, this corre-
sponds to any matrix being reachable from another
by a path of length at most (n — 1) if it is reachable
at all. Powers of large Boolean matrices can be com-
puted rapidly by repeatedly squaring them.

Example 43. Here it is enough to take the second
power of the 3 x 3 matrix in the last example. That is,
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1 X + yu + uvy vy + uvx + yuv

X + yu + uvy 1 XVy + yuvy + uv
vy + Xuv + yuv  Xvy + yuvy + uv 1
1 X4+ yu vy + uvx
=| x4yu 1 uv + xvy
vy +uvx  uv + xvy 1

This is the required output function.

Given a required output, circuits may be synthe-
sized by reversing this sequence of steps. However,
there are a very great number of ways to synthesize a
given circuit and it is not obvious which synthesis will
have the fewest circuit components.

One could synthesize any circuit by adding a new
vertex for every term but one, in every off-main-diag-
onal 1 entry. For example, synthesize

_ 1 Xy + uv
T xy+uww 1

We add a new vertex 3 so that my3m, is the second
term uv of my, (see Fig. 12).

In the following we give an application of Boolean
matrices to automata [15]. A finite-state machine con-
sists of a finite set S (internal states), an initial state
o € S, a finite set X (input symbols), a finite set Y (out-
put symbols), and functions

f:SxX—>S
g:SxX—>Y

(transition function)
(output function)

A finite-state nondeterministic machine differs in that
f and g are binary relations instead of functions. That
is, the next state and output are not uniquely deter-
mined by the previous state.

Nondeterministic machines are of interest even
though their behavior is not completely predictable.
Sometimes deterministic machines can be modeled by
nondeterministic machines with fewer states.

Figure 12 Equivalent connection graph.



Example 44. We can produce a deterministic finite-
state machine which will add two numbers of any number
of digits where the input set X =Y is {(a,b):a,
be{0,1,2,...,9}}. The set of internal states is {0, 1},
the possible carries. The transition function calculates
the next carry from the previous carry c¢ and the two
input states:

_]0 ifa+b+c<10
f(“’b’c)—{l if a+b+c=>10

The output function produces the next digit of the
output. Any deterministic machine is also a nondetermi-
nistic machine.

A semigroup is a set G together with an associative
binary operation defined on G. The semigroup of a
deterministic finite automaton is the set of all functions
from S to S which are finite compositions of the func-
tions f.(s) = f(s, x). Its operation is composition of
functions. The semigroup of a nondeterministic finite
automaton is the set of all binary relations from S to
S which are finite compositions of the binary relations
f(8) =f(s, x) from S to S, under the operation com-
position of binary relations.

Example 45. The semigroup of the machine in
Example 44 consists of the three monotone functions f,

J1, 310, 1} o dtself: fo(s) = 0, f1(s) = 1, fr(s) = s. For

instance, if x = (0, 0) we never have a carry, giving fo. If

x = (9, 9) we always have a carry, giving f1. If x = (0, 9)
then we have a carry if and only if the previous carry is 1,
giving f>.

Semigroups of machines can be used to tell some-
thing about the number of states used to produce a
given output. For example, we can show there is no
machine analogous to the adder above which can do
arbitrary multiplication. Suppose it has n states.
Consider the product of the two numbers 10...01, 10
... 01 with n zeros.

The output will be 10...020...01 with two
sequences of n zeros. It will be output in reverse
order, and the final 0...01 occur when both inputs
are 0. Given the state s, after the last 1’s are input,
the function fy, must have the property that fy,(s,42)
lies in a state yielding output O forj =1, 2,...,nand in
a state yielding output 1 for j =n+ 1.

However, there does not exist any such transforma-
tion on a set of n states because fj(s,) for j=1,2,
..., n will realize all states that could possibly occur
for higher powers.
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We can more precisely describe the asymptotic
behavior of any function f on a set of n elements as
follows: there is an integer k called the index, which is
at most (n — 1), and an integer d called the period, such
that for any j > k,f"*d =fk. The integer d must divide
n!. There is also an index and a period for the set f° k(s)
for each s € S, and its period is at most #.

Example 46. On {0,1,...,9} consider the function
such that f(x)=x—1if x> 1 and f(0) = 2. This has
index 7, sincef7 is the least power mapping the whole set
into {0, 1,2} where it cycles, and the period is 3, since

@ =1/1)=0,/(0) =2

Boolean matrices 4 also have an index k and a
period d such that A= 4 if j >d. For n-square
Boolean matrices, the index is at most (n— 1)*+ 1
and the period is the period of some permutation on
n elements, a divisor of n!.

Example 47. Consider the Boolean matrix
01 0 0
00 10
A= 0 0 0 1
1 1 0 0

Its powers are the semigroup of a machine defined as

Sfollows: S =1{1,2,3,4}, X ={0}, Y ={1,2,3,4},
S (i, x) contains the element j if and only if a; =1 and
g(i,x) =1i.
We have
[0 0 1 07 11 0 07
2 0 0 01 o 01 10
1 100 0 0 1 1
|01 1 0] |1 1 0 1]
1 1 1 07 0 1 1 17
4 01 1 1 £ I 1 11
I 1 11 1 1 11
|11 1 1] 11 1 1]
11 1 17
410 _ I 1 11
I 1 11
11 1 1]

Then A" equals all larger powers and the index is
10=@4—-1)7>+1.



Example 48. The 5 x 5 Boolean matrix

01 0 0 0
0 01 00
A=1]1 0 0 0 O
0 0 0 01
0 00 10

is the direct sum of a 2-cycle and a 3-cycle. It can be
made into the semigroup of a nondeterministic machine
in the same way. Its period is the least common multiple
of 2, 3, or 6.

6.5 GENERALIZATION OF BOOLEAN
ALGEBRA

The two-element Boolean algebra B, ={0,1} only
expresses two extreme or opposite relationships such
as ‘“‘negative’” and “positive,” “no”” and ‘‘yes,” “off”
and “‘on,” and ‘‘false” and “true.” Thus, in order to
express degrees of relationships, we introduce a new
algebra known as an incline algebra to expand B, to
a closed unit interval [0, 1]. For a detailed account of
incline algebra, see Cao et al. [16].

A semiring is a nonempty set S provided with two
binary operations “+” and ‘- such that S is closed
and associative under both operations, and commuta-
tive under +, satisfying also the distributive law.

Example 49. Any Boolean algebra is a semiring under
Boolean operations.

In the following two examples, “+” stands for
ordinary addition and - stands for ordinary multi-

plication.

Example 50. Let Z" denote the set of all positive inte-
gers. Then (Z©,+, ") is a semiring.

Example 51. Let M,(Z") denote the set of all n-square
matrices over Z*. Then [M,(Z"), +, -] is a semiring.

An incline is a semiring which also satisfies

i;. Idempotence under +: a+a=a.
i,. Absorption law: a+ab=a,
a+ba=a.

The absorption law implies that any product ab < a
or ab < b. Therefore, these operations tend to make
quantities “‘slide downhill.” Accordingly, we decided
to call it incline. The first letter of the Korean alphabet
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is “7” (pronounced ‘‘gee-yeok’), which looks like a
slide downhill and so 7 denotes an arbitrary incline.

Example 52. The two-element Boolean algebra B, =
{0, 1} is an incline under Boolean operations.

Example 53. Let Q (R") denote the set of all positive
rationals (reals). Let Z~(Q~, R™) denote the set of all
negative integers (rationals, reals). Then (1) Z*(QT,
R") is not an incline under ordinary addition and ordin-
ary multiplication. Similarly, (2) Z~ (Q~, R") is not an
incline under ordinary addition and multiplication.
However, Z~ (Q~, R") is an incline under the operations
a+b=supla, b} and ab=a+ b (ordinary addition)

fora, beZ (Q,R).

Let IV, for an incline 7 denote the Cartesian pro-
duct incline 7 x 7 x - -+ x 7 (n factors). An element of
1V, is called an incline vector of dimension n. The sys-
tem (IV,, 4, -) is an incline under the operations u +
v=u;+v; and wu-v=uw; where wu= (uy,...,u,,
v=(v,...,v,) €IV,.

Example 54. Let 7 have operations supf{a, b} and
ab. Let (0.01,0.9,0.2), (0.5,0.8,0.12) € IV5. Then
(0.01,0.9,0.2) + (0.5,0.8,0.12) = (0.5, 0.9, 0.2) and
(0.01,0.9,0.2) - (0.5,0.8,0.12) = (0.005, 0.72, 0.024).

The matrices over an incline 7 are called incline
matrices. Let M,,,(7) [M,(7)] denote the set of all m x
n (n x n) incline matrices. The system [M,,,(7), +, ] is
an incline under the operations 4 + B = sup{a;, b;}
and 4 - B= A O B = (q;b;) (elementwise product) for
all 4 = (ay), B = (by) € M,,,(7).

Example 55. Let

A= |:0.1 0.5] B_ |:0.2 0.3i| e My(7).

0.6 0.3 0.7 0.8
Then

r0.1 0.57 102 0.3 02 0.5

0.6 0.3 [0.7 0.8} [0.7 0.8}
AB_'o.l 0.57[02 037 [035 04
0.6 03]107 08] [021 024

ro.1 057 102 0.3 0.02 0.15

0.6 0.3 [0.7 0.8} [0.42 0.24]

The inequality of incline matrices is defined by 4 < B if
and only if a;; < b; for all 7, j. Transpose is defined by
AT = (aﬂ)



Example 56
0.2 0.5 - 0.2 09
0.1 0.7]—1]03 0.8

02 05 1" _[o02 o1

[0.1 0.7 :| - |:0.5 O.7:|

We introduce three basic and practical inclines. We
expand By = {0, 1} to a closed unit interval F = [0, 1]
and the operations are defined by a+ b = sup{a, b}
and a-b = inf{a, b} for all a, b € F. This is called a
fuzzy algebra and vectors over F are called fuzzy sets,
respectively. In fact, fuzzy sets were first invented by
Menger [17] in 1951 who called them hazy sets.
However, they were independently rediscovered by
Zadeh [18] who explored and popularized the subject.
For basic facts and applications of fuzzy sets, see
Dubois and Prade [19].

Example 57. The fuzzy algebra is an incline under the
operations maximum and minimum.

Let F be the first basic incline, the fuzzy algebra,
and denote it by 7;. The second basic incline 7, is
defined on F by a+ b = inf{a, b} and
a-b=1inf{l,a+ b}. The third basic incline 73 is
denoted on F by a+b=sup{a,b} and a-b=ab
(ordinary multiplication).

Since basic inclines essentially differ in their second
operation, these determine the suitability of an incline
to a particular application. (1) 7; with idempotent
operation is suited to an application involving order
properties only or a totally controlled system. (2) In 7,,
for a # 0,

a-a...a=1

n factors
for some n. Therefore, it is suited to applications hav-
ing a strong convergence to a finite state. (3) 75 is
suitable to applications in which constant proportion-
ality between cause and effect holds. In the following
we give an example dealing with application of 7, [20].

Fuzzy algebras and inclines have been used by many
workers to model control systems. Here we model a
simple industrial system which responds to distur-
bances by recovering to a satisfactory equilibrium.

The use of maximum is natural in a control system
because the controller wants to maximize his or her
utility. The incline 7, is used here because (1) the situa-
tion is linear and (2) there is a cutoff point which
should not be exceeded.

A linear system is a dynamical system over time with
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x(t+1) =(x(t)A)+ B

where x(f) = (xy, Xo, ..., X,,) 1s the state at time ¢, 4 =
(a;) is a matrix describing transitions and B = (b, b,,
.., b,) is a vector describing some external factor.

We assume a;; is the desired balance between factor
x; and factor x;. In this situation, the automatic con-
troller is causing the transitions. Therefore, a; =c
means that factor x; should not exceed factor x; by
more than ¢. In order for the process to be safe, we
must impose (by, by, ..., b,) as upper limits on these n
quantities.

If x; > a; + x; then the prevalence of factor x; over
factor x; results in an inferior product. Subject to these
conditions the quantity of production is maximized
when all x; are as large as possible. Then x; = inf{q; +
x;j, b;} which is precisely an equilibrium in our system.

Example 58. Consider an automated process of manu-
facturing in which x(t) is pressure, x,(t) is temperature,
and x3(t) acidity.
Let x{0) = (0,0.1,0.3), B=(0.5,0.5,0.5),
1 02 0.1
A=102 1 06

05 03 1
Then

x(1) = (x(0)4) + B

1 02 0.1
=1(0,0.1,03)] 02 1 0.6
0.5 03 1
+(0.5,0.5,0.5)
=1(0.3,0.2,0.1) 4+ (0.5,0.5,0.5)
=(0.3,0.2,0.1)
x(2) = (0.4,0.4,0.4)
x(3) =(0.5,0.5,0.5)
x(4) = (0.5,0.5,0.5)
x(5) = (0.5,0.5,0.5)
x(6) = (0.5,0.5,0.5)
x(k) =(0.5,0.5,0.5) keZzt
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Figure 13 Inclines of various semirings.

Therefore, (0.5, 0.5, 0.5) is the equilibrium and so it is an
ideal state.

We conclude by illustrating the relationship between
the various algebras and the distinct characteristics of
the various algebras mentioned in the chapter (Fig. 13,
Table 18).

Table 18 Properties of Types of Semirings

Algebras
Properties Bo F 7
Ordered structure X X X
Degree of intensity X X
Real number operations X
Parameter of proportionality X
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Chapter 1.7

Algebraic Structures and Applications

J. B. Srivastava
Indian Institute of Technology, Delhi, New Delhi, India

7.1 GROUPS

In this section we study one of the most important and
useful algebraic structures, that of a group. The recent
developments in computer applications have made it
possible to automate a wide range of systems and
operations in the industry by building ever more intel-
ligent systems to cope with the growing demands.
Group theory and group theoretical methods have
played a vital role in certain crucial areas in these
developments. Group theory is a vast subject with
wide applications both within mathematics and in the
real-world problems. We present here some of the most
basic concepts with special emphasis on permutation
groups and matrix groups.

Let S be a nonempty set. A binary operation on S is
any function from S x S to S. We shall denote an
arbitrary operation on S by “x.” Thus x: S x S — S
sending (x,y) — x*y assigns to each ordered pair
(x, y) of elements of S an element x %y in S. Binary
operation « on S is said to be associative if (x x y) x z =
x*x(yxz)forall x,y,zeS.(S,x)is called a semigroup
if S is a nonempty set and » defines an associative
binary operation on S.

(G, %) is said to be a group if G is nonempty set and %
is a binary operation on G satisfying the following
properties (axioms):

I. (x*xy)xz=xx*(yxz) forall x,y,zegdG.
2. There exists an element ¢ € G such that exx =
x for every x € G.
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3. For every x € G, there exists an element y € G
with yxx =e.

If (G, %) is a group, as above, then it can be proved that
x*e = x for every x € G and in axiom 3, yxx = ¢ if
and only if x x y = e. Further, ¢ in axiom 2 and y in
axiom 3 are unique. In the group (G, *), the element e is
called the identity of the group G and y is called the
inverse of x in G. Axiom 1 says that every group is a
semigroup. Thus a group is a semigroup in which there
exists a unique identity element e withex x = x = xxe
and for every x there exists a unique y such that
yrX=e=X%).

7.1.1
7.1.1.1

Examples of Groups
Abelian Groups

A group (G, x) is said to be Abelian or commutative if
xxy=yxx for all x,y € G. The following examples
are well known:

1. (Z,+)=the group of all integers (positive,
negative and 0) under addition.

2. (R, +) = the group of all real numbers under
addition.

3. (C,+)=the group of all complex numbers
under addition.

4. (M,(R),+)=the group of all nxn real
matrices under addition.

5. (R*,.) = all nonzero real numbers under multi-
plication.



6. (C*,.) = all nonzero complex numbers under
multiplication.

A | T R

under multiplication.

7.1.1.2  Permutation Groups

Let X be a nonempty set. Any one-to-one, onto func-
tion from X to X is called a permutation on X. The set
of all permutations on X form a group under multi-
plication which is by definition a composition of func-
tions. Let Sy denote the set of all permutations on X
and let o, p € Sy. Then ¢ and p are one-to-one, onto
functions from X to X. Their product cp=0cop is
defined by op(x) = (00 p)(x) =o(p(x)) for every
x € X. Clearly op is one-to-one, onto and hence
op € Sy. Composition of functions is associative. The
function e : X — X defined by e(x) = x for every x €
X is the identity. Also every one-to-one, onto function
has an inverse which is also one-to-one, onto. Thus Sy
under multiplication (which is composition) is a group.

When X = {x;, x5, ..., x,} is a finite set, a function
from X to X is one-to-one if and only if it is onto. In
this case the group of all permutations Sy on X is
denoted by S,. In particular, if X ={1,2,3,...,n},
the group of all permutations on X under multiplica-
tion is denoted by S, and is called the symmetrical
group of degree n. It may be noted that the symmetri-
cal group S, is non-Abelian for all n > 3.

7.1.1.3 Matrix Groups

1. GL,(R)= GL(n;R)=the group of all nxn
nonsingular real matrices under matrix multi-
plication. Here nonsingular means invertible
or equivalently having nonzero determinant.
GL,(R) is called the general linear group of
degree n over the reals R.

2. GL,(C)=GL(n; C) = the general linear group
of degree n over the field of all complex num-
bers.

3. SL,(R)=SL(n;R)={4 € GL,(R)|det(A4) = 1}
= the special linear group of degree n over R.

4. SL,(C) = the special linear group of degree n
over C.

5. Umn)=U,(C)=the n-dimensional unitary
group is the multiplicative group of all n x n
complex unitary matrices. 4 € GL,(C) is uni-
tary if 47! = (4)' = the conjugate transpose
of A.
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6. O(n) = O(n; R) = the n-dimensional real ortho-
gonal group = the group of all nxn real
orthogonal matrices under multiplication.
AcOn) & A'd=1=A4"s A" = 4"

7. SU(n) = the special unitary group of degree n =
{4 € U(n) | det(4) = 1} under matrix multipli-
cation.

8. SO(n) = the special orthogonal group of degree
n={A4 € O(n) | det(4) = 1} under matrix multi-
plication.

7.1.1.4 Miscellaneous
1. Dihedral groups:

Dy =,y X" =1y =1y xp=x"

This is the group generated by two elements x
and y with prdouct rules given by x" =1,
V=1, px=x""y, x ' =x"!, y7! =y having
1 as the identity.

2. Quaternion groups: Qg = {*1, &i, +j, £k} with
multiplication rules =7 =k=-1,
ij =k =—ji, jk=i=—kj, ki=j=—ik and
identity 1.

3. {l,—1,i,—i} under multiplication
i = +/—1 is the complex number.

4. G,={zeC|" =1} =the multiplicative
group of all nth roots of unity belonging to C.
Here 7 is fixed but arbitrary.

where

7.1.2 Basic Concepts

Let (G, x) be a group. A nonempty subset H of G is
a subgroup of G if H is a group under the binary
operation of G. This means (1) ee H, (2)
x,yeH=xxyeH, (3) xeH=x"'eH. It is
easy to see that H is a subgroup of G if and only if x x
y‘1 € H for all x,y € H. A subgroup H of G is said to
be a normal subgroup of G if g« H = H x g for each
g € G. Thus H is a normal subgroup of G if and only if
g '«xHxg=H=g+xHxg 'forall geg.

If x,y € G, then y is said to be a conjugate of x if
y=gxx*xg ' ory=g ' xxxgforsome ge G. If H
is a subgroup of G, then a conjugate of H is g+ H x g~
org '« Hxg for any g € G.

If H is a subgroup of G, we define
gxH ={gxh|he H}=the left coset of H by g€ G
and Hxg = {hxg|h e H} = the right coset of H by
g. Two cosets are either identical or disjoint. Further,
Hxg=H & ge H<4 gxH = H. Using this, we get
Hxg =Hxg &g g € H. Similarly, g, «H
:gz*HégII*gz e H.



For a finite group G, we denote by |G| the order of
the group G. Here |G| denotes the number of distinct
elements in G. If H is a subgroup of G, then define
|G : H| = the index of H in G = the number of distinct
left cosets of H in G = the number of distinct right
cosets of H in G.

If H is a normal subgroup of G, then the quotient
group or factor group G/H is defined by
G/H={H*xg=gxH|geG}=the set of all right
(left) cosets of H in G and

(H % g))x (H % g,) = H (g *g)

(Hxg) ' = Hxg " and identity G/H is H = H *e.

Let (Gy, %) and (G,, x;) be groups which may be
identical. Then a function f:G; — G, is called a
group homomorphism if f(x %, y) = f(x)*, f(y) for
all x,yeGy. If f:G; -> G, is a homomorphism,
then K = Ker f = the kernel of f is defined by

Kerf = {x € G| | f(x) = e, = the identity of G,}

It is not difficult to see that K = Kerf is a normal
subgroup of G;. Also Imf = {f(x) | x € G|} is a sub-
group of G,.

An isomorphism of groups is a one-to-one, onto
group homomorphism. We write G; = G, for G; is
isomorphic to G, if there exists an isomorphism from
G1 to Gz.

If S is a subset of G, then (S) denotes the smallest
subgroup of G containing the subset S. If G = (S),
then we say that G is generated by the subset S. If S =
{x} is a singleton subset and G = (x), then G is called a
cyclic group. Thus G is a cyclic group if and only if it is
generated by a single element. G is a finite cyclic group
if G = (x) for some x € G and x" = e for some positive
integer n. The group G is called infinite cyclic if G = (x)
for some x € G and x" # e for any positive integer n. If
x is an element of a group G, then x has infinite order if
x" nee for any positive integer n. An element x of a
group has finite order if x" = e for some positive inte-
ger n. The least positive integer n such that x" = e is
called the order of x and is denoted by o(x) = n the
order of x. In fact, o(x) = |{x)| = the order of the cyc-
lic subgroup generated by x.

7.1.3 Main Theorems

Now onward, for the sake of convenience, we shall use
xy for x xy whenever there is no confusion. In this
section, we state without proof some theorems in
group theory and explain their importance. We start
with the basic results on finite groups.
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Lagrange’s Theorem. Let H be a subgroup of a finite
group G. Then

|G| = |HI||G : H

Remarks:

1. From Lagrange’s theorem it is clear that the
order and the index of any subgroup divide
the order of the whole group.

2. The converse of Lagrange’s theorem is false in
the sense that if |G| = n and m divides n, then G
need not have a subgroup of order m.

A pivotal role is played by the following most famous
theorems on finite groups.

Sylow’s Theorem. Let G be a finite group having
|G| = p"m, p a prime, p and m relatively prime. Then:

1. G has at least one subgroup of order p".

2. Any two subgroups of G having order p" are con-
jugate in G.

3. The number n, of Sylow p-subgroups (subgroups
of order p") of G is of the formn, =1+ kp, k =
0,1,2,... and n, divides |G|.

Remarks:

1. Subgroups of G of order p" in the above theo-
rem are called Sylow p-subgroups of G.

2. Theorems 1, 2, and 3 above are called Sylow’s
first, second, and third theorem respectively.

3. Sylow’s theorems and Lagrange’s theorem are
the most basic theorems in the study of finite
groups.

4. It is known that if |G| = p, p a prime, then G is
cyclic and if |G| = pz, then G is Abelian.

For arbitrary groups, finite or infinite, the following
theorem is quite useful.

Fundamental Theorem of Homomorphism. Let G and
G, be two groups and let f : G; — G, be a group homo-
morphism. Then

G /Kerf = Imf

Thus, if f is onto, then G|/Ker f = G,.

Remarks:

1. Define f:GL,(R)— R*=R\{0} by f(4)=
det(4). Then f(AB) = det(4B) = det(A4) det(B)
= f(A)f(B). Thus f is a group homomorphism.
Clearly, Ker f={4 € GL,(R) |f(a) = det(A4)



= a} = SL,(R). By the above theorem GL,(R)/
SL,(R) = (R, ).

2. Define f: (R, +) — (R, ) by f(x) =e*. Then
f(x+yp) =" =e%e" =f(x)f(y). Thus f is a
homomorphism, Ker f(=(0). In fact f is an
isomorphism. Here (R, ) is the multiplicative
group of all positive real numbers.

7.1.4 Permutation Groups

Permutations arise naturally in several concrete pro-
blems. The symmetrical group S, of degree n consists
of all permutations on {1,2,3,...,n} and the binary
operation is product which is composition. We discuss
in detail the permutations because of their importance
in several practical problems.

Let o0 € S, be any permutation. Then ¢ can be
represented by displaying its values:

_ 1 2 3 ... n

7= (a(l) o2) o) ... 0(n)>
The order of the symmetrical group S, is n!. o € S,
fixes k if o(k) = k. The most simple kind of permuta-
tions are transpositions. A permutation t € S, is called
a transposition if ©(i) =, 7(j) = i and t(k) = k for all
k#1i,j where | <i,j,k <n with i #j. We write this
transposition as t = (i, j). Thus v = (r, s) means r — s,
s—>r,k—kfork #r,s,r#£s, e, 1(r)=s, t(s) =r,
r # s, and t(k) = k for k # r, 5. Clearly, every transpo-
sition 7 has order 2, i.e., 7> = e, where ¢ is the identity
permutation and hence 7! = 7.

A permutation p € S, is called a cycle of length r if
there exist distinct integers iy, i, .. ., i, between 1 and n

such that
pliy) =i o) = i3, ..., p(i,_1) = p(i))
p(iy) = i) plk) =k

for all other integers between 1 and n. It is denoted by
po=1(i1, b, ...,i). Thus S; is explicitly given by

1 2 3 1 2 3
S3: e = "El: .

1 2 3 2 1 3

1 2 3 1 2 3
T = , T3 = ,
3 21) 7032

1 2 3 1 2 3
o = , P =

2 31 31 2

={e, (1,2),(1,3),(2,3),(1,2,3),(1,3,2)}
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Now 71, =(12)(13)=(132)=p but 5 =(13)
(12)=(123)=o0. Thus 71750 # 157; and hence S; is
non-Abelian. In fact S, is non-Abelian for n > 3.
Two cycles, o0 = (ijiy...i.) and p = (ji,/5...J;), In
S, are said to be disjoint if {i, i, ..., i) and {j, />,
.., Js} are disjoint as sets, i.e., they do not have com-
mon indices. Disjoint cycles commute. It is a routine
computation to verify that any nonidentity permuta-
tion can be written as a product of disjoint cycles and
writing this way is unique except for the order in which
the cycles are written. Since I-cycles are identity
permutations, we ignore them. This is best illustrated
by an example:

/12345 678910 11 12 13 14
710461193218 5 141312
—(173469)2108)(5 11)(12 14)

Here o € S74 has been expressed as a product of dis-
joint cycles which commute.
Remarks:

1. A 2-cycle is simply a transposition.
2. An r-cycle (i1i, ...i.) can be expressed as a pro-
duct of (r — 1) transpositions as

(ia .. i) = (i)(irie—y) - - (112)

which are not disjoint.

3. Any permutation in S,, n > 2, can be written as
a product of transpositions. It is a well-known
result that while writing a permutation as a pro-
duct of transpositions, the number of transposi-
tions is either always even or always odd. It is
never possible to write the same permutation as
a product of even number of transpositions as
well as a product of odd number of transposi-
tions.

4. o€ S, is called an even permutation if o is a
product of even number of transpositions. o is
called an odd permutation if o can be written as
a product of odd number of transpositions.

5. Let 4, ={o € S,|o is even}. Then A4, is a sub-
group of S, and it is called the alternating group
of degree n. The mapping f:S, — {1, —1}
sending

1 if o is even

/o) = {—1 if o is odd

is an onto group homomorphism with Kerf
= A,. Thus S,/A4, = {1, —1}. Here {1, —1} is a
group under multiplication. Thus order |4,| =
n!/2 and index |S, : 4,| = 2. Also 4, is a nor-
mal subgroup of S,,.



6. Any subgroup of the symmetrical group S, is
called a permutation group.

7.1.5 Group Actions

Let G be a group and let X be a nonempty set. A group
action of G on X is a function from G x X — X send-
ing (g, x) to g - x € X satisfying the following:

1. (g1-8) - x=g-(g-x) for all g,,g, € G and
all x e X.

2. e-x=xforall x € X, where e is the identity of
the group G.

Given a group action, there exists a group homo-
morphism p: G — Sy defined by g— p, and
Py i X — X maps x to g-x. Conversely, every group
homomorphism p: G — Sy defines a unique group
action where g - x = p,(x) for g € G and x € X.

Given a group action of the group G on a set X, we
have the following concepts:

1. The orbits of the group action are defined
in a natural way. If xe€X, then
O0,=0(x)={g-x|geG}=the orbit of x
under the given G-action.

2. The stabilizer subgroup of xeX s
G,={geG|g-x=x}=the stabilizer sub-
group of x.

3. Points on the same orbit have conjugate stabi-
lizers. Suppose x and y belong to the same orbit.
Then there exists a g € G such that y =g - x.
Then it can be shown that the stabilizers of x
and y are conjugate as G, = ¢G.g "

In this context, we have the following well-known
theorems.

Orbit-Stabilizer Theorem. Let G be a finite group act-
ing on a finite nonempty set X. Then the size of the orbit
0| = |G : G| = the index of the stabilizer subgroup
for each x € X. Further, the size of each orbit divides
the order |G| of the group.

The next theorem gives the count.
The Counting Orbit Theorem. If' G and X are as in the

previous theorem then the number of distinct orbits is
given by

1
21X
IGI;(;

where | X¥| denotes the number of distinct elements of X
left fixed by g in the sense g - x = Xx.
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7.1.6 Group of Rigid Motions

We briefly describe the group of all rigid motions (the
Euclidean group). This is the group of all distance-
preserving functions from R" — R". When n =2 or
3, these groups are of great practical importance and
contain translations, rotations, and reflections. Here
R" = {(x;,X3,...,x,) | x; e R, 1 <i<n} consists of
all ordered n-tuples of real numbers, and the distance
between two points x = (xy, x5, ..., X,) and y = (yy,
Vo, .o,y s d d(x,y) where
d(x,y) = llx =yl = \;Z;;(xi —-y)>. A function
T :R" — R" is distance preserving if d(Tx, Ty) = || Tx
Tyl = lx =yl =d(x,y) for all x,y e R". All dis-
tance-preserving functions from R" to R" form a
group under composition of functions. Such functions
are called rigid motions of R". When n = 2, R? defines
a plane and when n = 3, R® defines the usual three-
dimensional space.

IfweR", T,:R"— R"given by T,,(x) = x + w for
x € R" defines a translation. SO(2) = the group of all
2 x 2 orthogonal matrices having determinant 1 define
the group of all rotations of the plane and SO(3) simi-
larly defines the group of all rotations of the three-
dimensional Euclidean space. Reflections can be repre-
sented by orthogonal matrices having determinant —1.
Every rigid motion is the composite of a translation
and an orthogonal transformation which may be a
rotation or a reflection in the above sense.
Geometrical applications help in understanding the
physical phenomena.

7.2 RINGS AND FIELDS

In this section we deal with algebraic structures having
two binary operations satisfying certain axioms.

A ring R is a nonempty set together with two binary
operations “+” and ““-” called addition and multipli-
cation, which satisfy the following axioms:

1. (R,+) is an Abelian group with identity
denoted by 0.

2. (R,-)is a semigroup with identity denoted by 1.

3. Distributive laws hold: for all a, b, ¢ € R,

(a+b)-c=a-c+b-c
a-(b+c)=a-b+a-c
Note: in axiom 2 some authors do not assume the
identity.
R is said to be a commutative ring if a- b = b - a for
all a,b € R. A commutative ring with identity 1 is



called an integral domain if for a,b € R,a#0,b #0
always implies a - b # 0. A field is a commutative ring
with identity 1 # 0 in which every nonzero element has
a multiplicative inverse, i.e., (R, ) is also an Abelian
group where R* = R\{0} = all nonzero elements of R.

7.2.1 Examples
7.2.1.1 Commutative Rings

1. (2,4, ) = Z = the ring of all integers under
usual addition and multiplication.

2. R[X] = the ring of all real polynomials under
usual addition and multiplication.

3. R=C(0,1)={f:[0,1]— R|f is contin-
ous}, the ring of all continuous real-valued
functions defined on the closed interval [0, 1]
with addition and multiplication of functions
defined pointwise

(f + &) =f(x) +g(x)
(f-9)(x) =f(x)g(x)  forall xe[0,1]

4. Zlil={a+ bi € Cla,b € Z}, the ring of gaus-
sian integers consisting of all complex numbers
having their real and imaginary parts integers,
and addition and multiplication inherited from
complex numbers.

5. Z2,={0,1,2,...,(n—1)} with addition and
multiplication defined modulo n. Here r=ys
mod(n) means r —s is divisible by n. n=0
mod (n).

7.2.1.2  Examples of Fields

1. a. R = the field of all real numbers with usual
addition and multiplication.
b. C = the field of all complex numbers with
usual addition and multiplication.
c. @ = the field of all rational numbers.

2. Z,=the field of all integers modulo p, p a
prime. Here Z,={0,1,2,....(p=1)}, p a
prime and addition and multiplication is
defined modulo p.

3. K(X) = the field of all rational functions with
coefficients in a given field K
J(X)

{g(X) | f(X), g(X) € K[X]

polynomials with g(X) # 0}

By taking K = R, C, @, or Z, we get special examples
of fields of rational functions.
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7.2.1.3 Noncommutative Rings

1. M,(K)=the ring of all n x n matrices with
entries from the field K with the usual addition
and multiplication of matrices, n > 2. M,(R),
M, (C) etc. give concrete examples of practical
importance.

2. H={a+bi+c¢j+dk|ab,c,dec R} the ring
of all real quaternions with addition (a + bi
+cj+di)+@ +bi+cj+dk) = (a+a)+
b+ b+ (c+c)j+(d+d)Hk and multiplica-
tion adefined distributively using the rules:
P=72=kK=-1, ij =k, ji = —k; jk =i,
kj = —i; ki =, ik = —j.

7.2.2 Basic Concepts

Since most of the rings from the application point of
view are generally commutative, the emphasis will be
on such rings.

Let R be a ring. S is called a subring of R if a,
beS=axtbh,a-b1eS. Further, a nonempty set /
is called an ideal of R ifs a,bel =a+b el and
ael,re R=a-r,r-aecl. In this situation (/,+) is
a subgroup of (R, +).

If I is an ideal of a ring R, then the quotient ring or
factor ring is given by

R/I ={I + a| a € R} with addition and
multiplication

defined by

(I+a)+T+b)=1+(a+b)
U+a) - U+b)=1+(a-b)

Let R; and R, be two rings which may be the same. A
function f : Ry — R, is called a ring homomorphism if
it preserves addition and multiplication, i.e.,

fla+b)=f(@+f(b)  flab)=[(a) f(b)

for all a, b € R,. Here “+” and **-”” denote + and - of
R, and R, depending upon where the elements belong
to.

If f: R, > R, is a ring homomorphism, then the
kernel of f is defined as

Kerf ={ae Ry |f(a) =0in R,}

It is easy to see that Kerf is an ideal of R; and
Imf ={f(a)| a € R} is a subring of R,.

An isomorphism is a one-to-one, onto ring homo-
morphism. If ' : R{ — R, is an isomorphism, then we
saythat R; is isomorphic to R, via f. In general, we



write R; = R, and read R, is isomorphic to R, if there
exists an isomorphism from R; to R,.

Note: in homomorphism, we always assume that
f(1) =1, ie., the homomorphism maps 1 of R; to 1
of Rz.

Fundamental Homomorphism Theorem for Rings. Let
f 1 Ry = R, be aring homomorphism with kernel Ker f.
Then

Ri/Kerf = Imf
and if [ is onto, R;/Kerf = R,.

7.2.3 Polynomial Rings

In this section, we shall study polynomial rings over
the field R of all real numbers and the field C of all
complex numbers. The study of these rings leads to the
understanding of algebraic and projective geometry
which has a wide range of applications in such diverse
areas as robotics and computer vision. Much of this
material is very well presented in Cox et al. [1] and uses
the computation of Grobner bases as a basic tool.
R[X] and C[.X] denote the polynomial rings in single
variable X. Also R[X}, X5, ..., X,] and C[X|, X, ...,
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S =ex[To (X —ay); e, ..

X,] for n > 2 denote the polynomial rings in n com-
muting variables X7, X5, ..., X,. Over the field C of
complex numbers, the following theorem plays the
dominant role.

The Fundamental Theorem of Algebra. Every noncon-
stant polynomial in C [X] has a root in C.

Remark. 1f f(X)e C[X] is nonconstant, then
repeated application of the above theorem gives
,o,€C and n=
degree of f(X).

The behavior of polynomials in several variables is
much more difficult. Understanding of these polyno-
mials requires the knowledge of commutative rings.
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Chapter 2.1

Measurement and Control Instrumentation Error-Modeled

Performance

Patrick H. Garrett
University of Cincinnati, Cincinnati, Ohio

1.1 INTRODUCTION

Modern technology leans heavily on the science of
measurement. The control of industrial processes and
automated systems would be very difficult without
accurate sensor measurements. Signal-processing func-
tions increasingly are being integrated within sensors,
and digital sensor networks directly compatible with
computer inputs are emerging. Nevertheless, measure-
ment is an inexact science requiring the use of reference
standards and an understanding of the energy transla-
tions involved more directly as the need for accuracy
increases. Seven descriptive parameters follow:

Accuracy: the closeness with which a measurement
approaches the true value of a measurand,
usually expressed as a percent of full scale.

Error: the deviation of a measurement from the true
value of a measurand, usually expressed as a pre-
cent of full scale.

Tolerance: allowable error deviation about a refer-
ence of interest.

Precision: an expression of a measurement over
some span described by the number of significant
figures available.

Resolution: an expression of the smallest quantity to
which a quantity can be represented.

Span: an expression of the extent of a measurement
between any two limits.
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A general convention is to provide sensor measure-
ments in terms of signal amplitudes as a percent of full
scale, or %FS, where minimum—maximum values cor-
respond to 0 to 100%FS. This range may correspond
to analog signal levels between 0 and 10 V (unipolar)
with full scale denoted as 10 Vgg. Alternatively, a sig-
nal range may correspond to +50%FS with signal
levels between £5V (bipolar) and full scale denoted
at + SVFS'

1.2 INSTRUMENTATION AMPLIFIERS
AND ERROR BUDGETS

The acquisition of accurate measurement signals, espe-
cially low-level signals in the presence of interference,
requires amplifier performance beyond the typical cap-
abilities of operational amplifiers. An instrumentation
amplifier is usually the first electronic device encoun-
tered by a sensor in a signal-acquisition channel, and in
large part it is responsible for the data accuracy attain-
able. Present instrumentation amplifiers possess suffi-
cient linearity, stability, and low noise for total error in
the microvolt range even when subjected to tempera-
ture variations, and is on the order of the nominal
thermocouple effects exhibited by input lead connec-
tions. High common-mode rejection ratio (CMRR) is
essential for achieving the amplifier performance of
interest with regard to interference rejection, and for
establishing a signal ground reference at the amplifier



that can accommodate the presence of ground—return
potential differences. High amplifier input impedance
is also necessary to preclude input signal loading and
voltage divider effects from finite source impedances,
and to accommodate source-impedance imbalances
without degrading CMRR. The precision gain values
possible with instrumentation amplifiers, such as
1000.000, are equally important to obtain accurate
scaling and registration of measurement signals.

The instrumentation amplifier of Fig. 1 has evolved
from earlier circuits to offer substantially improved
performance over subtractor instrumentation ampli-
fiers. Very high input impedance to 10° Q is typical
with no resistors or their associated temperature coef-
ficients involved in the input signal path. For example,
this permits a 1k source impedance imbalance with-
out degrading CMRR. CMRR values to 10° are
achieved with 4, values of 10° with precision internal
resistance trimming.

When conditions exist for large potentials between
circuits in a system an isolation amplifier should be
considered. Isolation amplifiers permit a fully floating
sensor loop because these devices provide their own
input bias current, and the accommodation of very
high input-to-input voltages between a sensor input
and the amplifier output ground reference. Off-ground
V. values to £10V, such as induced by interference

&
Q

>
-
-
»

coupled to signal leads, can be effectively rejected by
the CMRR of conventional operational and instru-
mentation amplifiers. However, the safe and linear
accommodation of large potentials requires an isola-
tion mechanism as illustrated by the transformer
circuit of Fig. 2. Light-emitting diode (LED)-photo-
transistor optical coupling is an alternate isolation
method which sacrifices performance somewhat to
economy. Isolation amplifiers are especially advanta-
geous in very noisy and high voltage environments and
for breaking ground loops. In addition, they provide
galvanic isolation typically on the order of 2 pA input-
to-output leakage.

The front end of an isolation amplifier is similar in
performance to the instrumentation amplifier of Fig. 1
and is operated from an internal de—dc isolated power
converter to insure isolation integrity and for sensor
excitation purposes. Most designs also include a
100 k€2 series input resistor R to limit the consequences
of catastrophic input fault conditions. The typical
amplifier isolation barrier has an equivalent circuit of
10" @ shunted by 10pF representing Ry, and Ci,,
respectively. An input-to-output V,,, rating of £2500
V peak is common, and is accompanied by an isola-
tion-mode rejection ratio (IMRR) with reference to the
output. Values of CMRR to 10* with reference to the
input common, and IMRR values of 10® with reference
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Figure 1 High-performance instrumentation amplifier.
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Figure 2 Isolation instrumentation amplifier.

to the output are available at 60 Hz. This dual rejection
capability makes possible the accommodation of two
sources of interference, V., and V,,, frequently
encountered in sensor applications. The performance
of this connection is predicted by Eq. (1), where non-
isolated instrumentation amplifiers are absent the Vy,/
IMRR term:

1 V. V;
V :A » Vl 1 cm 1SO
0= va dff( T CMRR Vdiff)JrIMRR
where (1)
2Ry
AVdiff =1 +R7G
The majority of instrumentation-amplifier applica-
tions are at low frequencies because of the limited
response of the physical processes from which mea-
surements are typically sought. The selection of an
instrumentation amplifier involves the evaluation of

Copyright © 2000 Marcel Dekker, Inc.

amplifier parameters that will minimize errors asso-
ciated with specific applications under anticipated
operating conditions. It is therefore useful to perform
an error evaluation in order to identify significant error
sources and their contributions in specific applications.
Table 1 presents parameter specifications for example
amplifiers described in five categories representative of
available contemporary devices. These parameters
consist of input voltage and current errors, interference
rejection and noise specifications, and gain nonlinear-
ity. Table 2 provides a glossary of amplifier parameter
definitions.

The instrumentation amplifier error budget tabula-
tion of Table 3 employs the parameters of Table 1 to
obtain representative amplifier error, expressed both as
an input-amplitude-threshold uncertainty in volts and
as a percent of the full-scale output signal. These error
totals are combined from the individual device para-
meter errors by



Table 1 Example Amplifier Parameters

Subtractor amplifier =~ Three-amplifier

Isolation amplifier Low-bias amplifier CAZ DC amplifier

OP-07 AD624 BB3456 OPA 103 ICL 7605

Ve 60 pV 25V 0.25pV 100 uV 2uv
dV,,)dT 0.2pV/°C 0.2pV/°C 1uv/°C 1pv/°C 0.05uV/°C
I 0.8nA 10nA 10 pA 0.2pA 150 pA
dl./dT 5pA/°C 20pA/°C 0.3nA/°C 7%I,./°C 1pA/°C
S 0.17V/us S5V/us 0.5uV/ps 1.3V/us 0.5V/us
fu@A,,, =10° 600 Hz 25kHz 1 kHz 1 kHz 10 Hz
CMRR (IMRR) 10° 10° 10%(10% 104 10°
V, rms 10nV/+/Hz 4nV/y/Hz 7nV/+/Hz 30nV/v/Hz 200nV/v/Hz
f(Ay) 0.01% 0.001% 0.01% 0.01% 0.01%
dAV/dT Rlcmpco 5 ppm/oc 10 ppm/oc Rlcmpco 15 ppm/oc

1.2x 10" @ 10° @ 5x10°Q 10 Q 10" Q

it 3x107Q 10° Q@ 10" Q 10" @ 10" Q

eompirrt = Vor + TouRo 4 f(A,) Vs @) of these amplifier error terms discloses that input offset

A

Vdiff
v, : 4 :
oS T cm
+ [( ar ¢ ) +(CMRR(IMRR)>

) 1/2
+ (6.6 Vy/fri) (‘;ATV dT VFS) ]

A Vdiff

= Avan 1009 3)
Eamp1%FS = €amplRTI % X o (
FS

The barred parameters denote mean values, and the
unbarred parameters drift and random values that are
combined as the root-sum-square (RSS). Examination

Table 2 Amplifier Parameter Glossary

Vs Input offset voltage

AV, /dT Input-offset-voltage temperature drift
I Input offset current

dl,/dT Input-offset-current temperature drift
R Differential input impedance

R; Common-mode input impedance

S, Slew rate

Vy Input-referred noise voltage

I, Input-referred noise current

Ay, Open-loop gain

Ay, Common-mode gain

Ay Closed-loop differential gain

f(4,) Gain nonlinearity

dA,/dT Gain temperature drift

Jhi —3dB bandwidth
CMRR (IMRR) Common-mode (isolation-mode)
numerical rejection ratio
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voltage drift with temperature is a consistent error, and
the residual V, error following upgrading by amplifier
CMRR is primarily significant with the subtractor
instrumentation amplifier. Amplifier referred-to-input
internal rms noise ¥V, is converted to peak—peak at a
3.30 confidence (0.1% error) with multiplication by 6.6
to relate it to the other dc errors in accounting for its
crest factor. The effects of both gain nonlinearity and
drift with temperature are also referenced to the ampli-
fier input, where the gain nonlinearity represents an
average amplitude error over the dynamic range of
input signals.

The error budgets for the five instrumentation
amplifiers shown in Table 3 include typical input con-
ditions and consistent operating situations so that their
performance may be compared. The total errors
obtained for all of the amplifiers are similar in magni-
tude and represent typical in-circuit expectations.
Significant to the subtractor amplifier is that V.,
must be limited to about 1V in order to maintain a
reasonable total error, whereas the three-amplifier
instrumentation amplifier can accommodate Vi,
values to 10V at the same or reduced total error.

1.3 INSTRUMENTATION FILTERS

Lowpass filters are frequently required to bandlimit
measurement signals in instrumentation applications
to achieve frequency-selective operation. The applica-
tion of an arbitrary signal set to a lowpass filter can
result in a significant attenuation of higher frequency
components, thereby defining a stopband whose
boundary is influenced by the choice of filter cutoff



Table 3 Amplifier Error Budgets (A4

Vdiff

=10%, Vs = 10V, AT = 20°C, Ry = 1%, Riempeo = 50 ppm/°C)

Subtractor Three- Isolation Low-bias CAZ DC
amplifier amplifier amplifier amplifier amplifier
Amplifier parameters OP-07 AD624 BB3456 OPA103 ICL7605
Input conditions Vem +1V +10V +1000V +100 mV +100mV
R 1k 1kQ 1kQ 10MQ 1kQ
Offset group Vos Nulled Nulled Nulled Nulled pINY
dv.
d](fs AT 4V 5uV 20 uvV 20 uV 1pVv
IR, 0.8V Topv TOpv 2uv 0.15uV
Interference group Vem 30uV 101V (10V) 12UV LuV
CMRR (IMRR), ., a a a H
6.6V1v/ fni 1.6V 4.1V 1.5V 6.2uV 4.1pV
Linearity group 1( Av);ﬁ Tpv 0.1V Tuv Tpv Tuv
Udiff
ddy \ o Ves 10pV Y 2uV 10pV IV
DT A”dl(l‘
Combined error €ampi RTI 34uvV 22 uv 33uvV 29 v 8 uv
€ampi%FS 0.34% 0.22% 0.33% 0.29% 0.08%

frequency, with the unattenuated frequency compo-
nents defining the filter passband. For instrumentation
purposes, approximating the lowpass filter amplitude
responses described in Fig. 3 is beneficial in order to
achieve signal bandlimiting with minimum alteration
or addition of errors to a passband signal of interest.
In fact, preserving the accuracy of measurement signals
is of sufficient importance that consideration of filter
charcterizations that correspond to well-behaved func-
tions such as Butterworth and Bessel polynomials are
especially useful. However, an ideal filter is physically
unrealizable because practical filters are represented by
ratios of polynomials that cannot possess the disconti-
nuities required for sharply defined filter boundaries.

Figure 3 describes the Butterworth and Bessel low-
pass amplitude response where n denotes the filter
order or number of poles. Butterworth filters are char-
acterized by a maximally flat amplitude response in the
vicinity of dc, which extends toward its —3 dB cutoff
frequency f; as n increases. Butterworth attenuation is
rapid beyond f; as filter order increases with a slightly
nonlinear phase response that provides a good approx-
imation to an ideal lowpass filter. Butterworth filters
are therefore preferred for bandlimiting measurement
signals.
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Table 4 provides the capacitor values in farads for
unity-gain networks tabulated according to the num-
ber of filter poles. Higher-order filters are formed by a
cascade of the second- and third-order networks
shown. Figure 4 illustrates the design procedure
with a 1 kHz-cutoff two-pole Butterworth lowpass fil-
ter including frequency and impedance scaling steps.
The choice of resistor and capacitor tolerance deter-
mines the accuracy of the filter implementation such
as its cutoff frequency and passband flatness. Filter
response is typically displaced inversely to passive-
component tolerance, such as lowering of cutoff fre-
quency for component values on the high side of their
tolerance.

Table 5 presents a tabulation of the example filters
evaluated for their amplitude errors, by

0.1 S/0.1f¢
Efitervors = 77 D10 = A(f)) x 100% 4)
B JC 0

over the specified filter passband intervals. One-pole
RC and three-pole Bessel filters exhibit comparable
errors of 0.3%FS and 0.2%FS, respectively, for signal
bandwidths that do not exceed 10% of the filter cutoff
frequency. However, most applications are better
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Figure 3 (a) Butterworth and (b) Bessel lowpass filters.

served by the three-pole Butterworth filter which offers
an average amplitude error of 0.2%FS for signal pass-
band occupancy up to 50% of the filter cutoff, plus
good stopband attenuation. While it may appear inef-
ficient not to utilize a filter passband up to its cutoff
frequency, the total bandwidth sacrificed is usually
small. Higher filter orders may also be evaluated
when greater stopband attenuation is of interest
with substitution of their amplitude response A(f) in
Eq. (4).
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1.4 MEASUREMENT SIGNAL
CONDITIONING

Signal conditioning is concerned with upgrading the
quality of a signal of interest coincident with measure-
ment acquisition, amplitude scaling, and signal band-
limiting. The unique design requirements of a typical
analog data channel, plus economic constraints of
achieving necessary performance without incurring
the costs of overdesign, benefit from the instrumenta-
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tion error analysis presented. Figure 5 describes a basic Emeasurement = [afensor + eﬁmpliﬁer + Ehiter + Eandom
signal-conditioning structure whose performance is 5 12 _ip

described by the following equations for coherent +€°0herem] N

and random interference: (7

v R 4 o -172 Input.signals Vaier corrupted by either coherent or
e _ Vom |: diff:| Yem |1 4 <fcoh> random interference V,,, can be sufficiently enhanced
coherent =7, . N\ R | A £ ®) by the signal-conditioning functions of Egs. (5) and
< 100% (6), based upon the selection of amplifier and filter
parameters, such that measurement error is principally

determined by the hardware device residual errors

Vo TR1V24 y 12 derived in previous sections. As an option, averaged

Erandom = — |: dlffi| Vem /D _°j| x100%  (6) measurements offer the merit of sensor fusion whereby
Vit [ Rem A total measurement error may be further reduced by the

Vdiff

Vaift hi

Table 4 Unity-Gain Filter Network Capacitor Values (Farads)

Butterworth Bessel
Poles C] C2 C3 C] C2 C3
2 1.414 0.707 0.907 0.680
3 3.546 1.392 0.202 1.423 0.988 0.254
4 1.082 0.924 0.735 0.675
2.613 0.383 1.012 0.390
5 1.753 1.354 0.421 1.009 0.871 0.309
3.235 0.309 1.041 0.310
6 1.035 0.966 0.635 0.610
1.414 0.707 0.723 0.484
3.863 0.259 1.073 0.256
7 1.531 1.336 0.488 0.853 0.779 0.303
1.604 0.624 0.725 0.415
4.493 0.223 1.098 0.216
8 1.091 0.981 0.567 0.554
1.202 0.831 0.609 0.486
1.800 0.556 0.726 0.359
5.125 0.195 1.116 0.186
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Figure 4 Butterworth lowpass filter design example.

Table 5 Filter Passband Errors

Frequency Amplitude response A(f) Average filter error &gjiero,rs

J: 1-pole 3-pole 3-pole 1-pole 3-pole 3-pole
fe RC Bessel Butterworth RC Bessel Butterworth
0.0 1.000 1.000 1.000 0% 0% 0%
0.1 0.997 0.998 1.000 0.3 0.2 0
0.2 0.985 0.988 1.000 0.9 0.7 0
0.3 0.958 0.972 1.000 1.9 1.4 0
0.4 0.928 0.951 0.998 3.3 2.3 0
0.5 0.894 0.924 0.992 4.7 33 0.2
0.6 0.857 0.891 0.977 6.3 4.6 0.7
0.7 0.819 0.852 0.946 8.0 6.0 1.4
0.8 0.781 0.808 0.890 9.7 7.7 2.6
0.9 0.743 0.760 0.808 11.5 9.5 44
1.0 0.707 0.707 0.707 13.3 11.1 6.9
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Figure 5 Signal-conditioning channel.

factor n~'/? for n identical signal conditioning channels
combined. Note that Vi and V,,, may be present in
any combination of dc or rms voltage magnitudes.

External interference entering low-level instrumen-
tation circuits frequently is substantial, especially in
industrial environments, and techniques for its
attenuation or elimination are essential. Noise coupled
to signal cables and input power buses, the primary
channels of external interference, has as its cause
local electric and magnetic field sources. For example,
unshielded signal cables will couple 1 mV of interfer-
ence per kilowatt of 60 Hz load for each lineal foot of
cable run on a 1 ft spacing from adjacent power cables.
Most interference results from near-field sources, pri-
marily electric fields, whereby the effective attenuation
mechanism is reflection by a nonmagnetic material
such as copper or aluminum shielding. Both copper-
foil and braided-shield twinax signal cables offer
attenuation on the order of 90 voltage dB to 60 Hz
interference. However, this attenuation decreases by
20dB per decade of increasing frequency.

For magnetic fields, absorption is the effective
attenuation mechanism, and steel or mu-metal shield-
ing is required. Magnetic-field interference is more dif-
ficult to shield against than electric-field interference,
and shielding effectiveness for a given thickness
diminishes with decreasing frequency. For example,
steel at 60 Hz provides interference attenuation on
the order of 30 voltage dB per 100 mils of thickness.
Magnetic shielding of applications is usually imple-
mented by the installation of signal cables in steel con-
duit of the necessary wall thickness. Additional
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magnetic-field cancellation can be achieved by periodic
transposition of a twisted-pair cable, provided that the
signal return current is on one conductor of the pair
and not on the shield. Mutual coupling between cir-
cuits of a computer input system, resulting from finite
signal-path and power-supply impedances, is an addi-
tional source of interference. This coupling is mini-
mized by separating analog signal grounds from
noisier digital and chassis grounds using separate
ground returns, all terminated at a single star-point
chassis ground.

Single-point grounds are required below 1 MHz to
prevent circulating currents induced by coupling
effects. A sensor and its signal cable shield are usually
grounded at a single point, either at the sensor or the
source of greatest intereference, where provision of the
lowest impedance ground is most beneficial. This also
provides the input bias current required by all instru-
mentation amplifiers except isolation types, which fur-
nish their own bias current. For applications where the
sensor is floating, a bias-restoration path must be pro-
vided for conventional amplifiers. This is achieved with
balanced differential Ry, resistors of at least 10* times
the source resistance R, to minimize sensor loading.
Resistors of 50 M2, 0.1% tolerance, may be connected
between the amplifier input and the single-point
ground as shown in Fig. 5.

Consider the following application example.
Resistance-thermometer devices (RTDs) offer com-
mercial repeatability to 0.1°C as provided by a 100 2
platinum RTD. For a 0-100°C measurement range the
resistance of this device changes from 100.0Q to



138.5Q with a nonlinearity of 0.0028°C/°C. A con-
stant-current excitation of 0.26 mA converts this resis-
tance to a voltage signal which may be differentially
sensed as Vg from 0 to 10mV, following a 26 mV
amplifier offset adjustment whose output is scaled 0—
10V by an AD624 instrumentation amplifier differen-
tial gain of 1000. A three-pole Butterworth lowpass
bandlimiting filter is also provided having a 3 Hz cutoff
frequency. This signal-conditioning channel is evalu-
ated for RSS measurement error considering an input
Ven of up to 10V rms random and 60 Hz coherent
interference. The following results are obtained:

tolerance + nonlinearity x FS

ERTD = S x 100%
0.1°C + 0.0028% x 100°C
= 100°C x 100%
= 0.38%FS
€ampl = 0.22%FS (Table 3)
&hier = 0.20%FS (Table 5)

o 12

v [10°0 »

Ecoherent = Th 7 | Th9 x10
10mV | 10°Q

60HZ\|

Z

14+ (—2 100°
><|:+<3Hz)j| x100%
=1.25x 107°%FS

9 12
10V [10 sz] 10-6

Erandom =

10mV | 10° Q

3Hz 1'°
o
X ﬁ[ZSk z:| x 100%

=1.41 x 1073%FS

2 2 2
Emeasurement — [SRTD + Sampl + Efilter + Ecoherent

2 1/2
+8random]

= 0.48%FS

An RTD sensor error of 0.38%FS is determined for
this measurement range. Also considered is a 1.5Hz
signal bandwidth that does not exceed one-half of the
filter passband, providing an average filter error con-
tribution of 0.2%FS from Table 5. The representative
error of 0.22%FS from Table 3 for the AD624 instru-
mentation amplifier is employed for this evaluation,
and the output signal quality for coherent and random
input interference from Egs. (5) and (6), respectively, is
1.25 x 107°%FS and 1.41 x 107°%FS. The acquisi-
tion of low-level analog signals in the presence of
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appreciable intereference is a frequent requirement in
data acquisition systems. Measurement error of 0.5%
or less is shown to be readily available under these
circumstances.

1.5 DIGITAL-TO-ANALOG CONVERTERS

Digital-to-analog (D/A) converters, or DACs, provide
reconstruction of discrete-time digital signals into con-
tinuous-time analog signals for computer interfacing
output data recovery purposes such as actuators, dis-
plays, and signal synthesizers. These converters are
considered prior to analog-to-digital (A/D) converters
because some A/D circuits require DACs in their
implementation. A D/A converter may be considered
a digitally controlled potentiometer that provides an
output voltage or current normalized to a full-scale
reference value. A descriptive way of indicating the
relationship between analog and digital conversion
quantities is a graphical representation. Figure 6
describes a 3-bit D/A converter transfer relationship
having eight analog output levels ranging between
zero and seven-eighths of full scale. Notice that a
DAC full-scale digital input code produces an analog
output equivalent to FS — 1 LSB. The basic structure
of a conventional D/A converter incudes a network of
switched current sources having MSB to LSB values
according to the resolution to be represented. Each
switch closure adds a binary-weighted current incre-
ment to the output bus. These current contributions
are then summed by a current-to-voltage converter
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amplifier in a manner appropriate to scale the output
signal. Figure 7 illustrates such a structure for a 3-bit
DAC with unipolar straight binary coding correspond-
ing to the representation of Fig. 6.

In practice, the realization of the transfer character-
istic of a D/A converter is nonideal. With reference to
Fig. 6, the zero output may be nonzero because of
amplifier offset errors, the total output range from
zero to FS — 1 LSB may have an overall increasing or
decreasing departure from the true encoded values
resulting from gain error, and differences in the height
of the output bars may exhibit a curvature owing to
converter nonlinearity. Gain and offset errors may be
compensated for leaving the residual temperature-drift
variations shown in Table 6, where gain temperature
coefficient represents the converter voltage reference
error. A voltage reference is necessary to establish a
basis for the DAC absolute output voltage. The major-
ity of voltage references utilize the bandgap principle,
whereby the V3, of a silicon transistor has a negative
temperature coefficient of —2.5mV/°C that can be
extrapolated to approximately 1.2V at absolute zero
(the bandgap voltage of silicon).

Converter nonlinearity is minimized through preci-
sion components, because it is essentially distributed
throughout the converter network and cannot be elimi-
nated by adjustment as with gain and offset error.
Differential nonlinearity and its variation with tem-
perature are prominent in data converters in that
they describe the difference between the true and actual
outputs for each of the 1-LSB code changes. A DAC
with a 2-LSB output change for a 1-LSB input code
change exhibits 1 LSB of differential nonlinearity as

I
!
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Figure 7 Three-bit D/A converter circuit.
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Table 6 Representative 12-Bit D/A Errors

Differential nonlinearity (1/2 LSB) 0.012%
Linearity temp. coeff. (2 ppm/°C)(20°C) 0.004
Gain temp. coeff. (20 ppm/°C)(20°C) 0.040
Offset temp. coeff. (5 ppm/°C)(20°C) 0.010
€p/A 0.05%FS

shown. Nonlinearities greater than 1 LSB make the
converter output no longer single valued, in which
case it is said to be nonmonotonic and to have missing
codes.

1.6 ANALOG-TO-DIGITAL CONVERTERS

The conversion of continuous-time analog signals to
discrete-time digital signals is fundamental to obtain-
ing a representative set of numbers which can be used
by a digital computer. The three functions of sampling,
quantizing, and encoding are involved in this process
and implemented by all A/D converters as illustrated
by Fig. 8. We are concerned here with A/D converter
devices and their functional operations as we were with
the previously described complementary D/A conver-
ter devices. In practice one conversion is performed
each period T, the inverse of sample rate f;, whereby
a numerical value derived from the converter quantiz-
ing levels is translated to an appropriate output code.
The graph of Fig. 9 describes A/D converter input—
output relationships and quantization error for pre-
vailing uniform quantization, where each of the levels
q is of spacing 27"(1 — LSB) for a converter having an
n-bit binary output wordlength. Note that the maxi-
mum output code does not correspond to a full-scale
input value, but instead to (1 —27")FS because there
exist only (2" — 1) coding points as shown in Fig. 9.
Quantization of a sampled analog waveform
involves the assignment of a finite number of ampli-
tude levels corresponding to discrete values of input
signal V; between 0 and Vgg. The uniformly spaced
quantization intervals 27" represent the resolution
limit for an n-bit converter, which may also be
expressed as the quantizing interval ¢ equal to
Ves/(2" — 1)V. These relationships are described by
Table 7. It is useful to match A/D converter word-
length in bits to a required analog input signal span
to be represented digitally. For example, a 10 mV-to-
10V span (0.1%—-100%) requires a minimum converter
wordlength n of 10 bits. It will be shown that addi-
tional considerations are involved in the conversion
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of an input signal to an n-bit accuracy other than the
choice of A/D converter wordlength, where the
dynamic range of a digitized signal may be represented
by an n-bit wordlength without achieving n-bit data
accuracy. However, the choice of a long wordlength
A/D converter will beneficially minimize both quanti-
zation noise and A/D device error and provide
increased converter linearity.

The mechanization of all A/D converters is by either
the integrating method or the voltage-comparison
method. The successive-approximation voltage-com-
parison technique is the most widely utilized A/D con-
verter for computer interfacing primarily because its
constant conversion period 7 is independent of input
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Figure 9 Three-bit A/D converter relationships.
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signal amplitude, making its timing requirements con-
veniently uniform. This feedback converter operates by
comparing the output of an internal D/A converter
with the input signal at a comparator, where each bit
of the converter wordlength n is sequentially tested
during n equal time subperiods to develop an output
code representative of the input signal amplitude. The
conversion period 7" and sample/hold (S/H) acquisi-
tion time 7,,q determine the maximum data conversion
throughput rate f; < (T—I—lacq)f1 shown in Fig. 10.
Figure 11 describes the operation of a successive-
approximation converter. The internal elements are
represented in the 12-bit converter errors of Table 8,
where differential nonlinearity and gain temperature
coefficient are derived from the internal D/A converter
and its reference, and quantizing noise as the 1/2 LSB
uncertainty in the conversion process. Linearity tem-
perature coefficient and offset terms are attributable to
the comparator, and long-term change is due to shifts
occurring from component aging. This evaluation
reveals a two-binary-bit derating in realizable accuracy
below the converter wordlength. High-speed, succes-
sive-approximation A/D converters require high-gain
fast comparators, particularly for accurate conversion
at extended wordlengths. The comparator is therefore
critical to converter accuracy, where its performance is
ultimately limited by the influence of internal and
external noise effects on its decision threshold.

Integrating converters provide noise rejection for
the input signal at an attenuation rate of —20dB/
decade of frequency. Notice that this noise improve-
ment capability requires integration of the signal plus
noise during the conversion period, and therefore is
not provided when a sample-hold device precedes the
converter. A conversion period of 16 2/3 ms will
provide a useful null to the conversion of 60Hz
interference, for example. Only voltage-comparison
converters actually need a S/H to satisfy the A/D-
conversion process requirement for a constant input
signal.



Table 7 Decimal Equivalents of Binary Quantities

Bits, n Levels, 2" LSB weight, 27" eo,ps(1 LSB)

1 2 0.5 50.0

2 4 0.25 25.0

3 8 0.125 12.5

4 16 0.0625 6.25

5 32 0.03125 3.12

6 64 0.015625 1.56

7 128 0.0078125 0.78

8 256 0.00390625 0.39

9 512 0.001953125 0.19
10 1,024 0.0009763625 0.097
11 2,048 0.00048828125 0.049
12 4,096 0.000244140625 0.024
13 8,192 0.0001220703125 0.012
14 16,384 0.00006103515625 0.006
15 32,768 0.000030517578125 0.003
16 65,536 0.0000152587890625 0.0015
17 131,072 0.00000762939453125 0.0008
18 262,144 0.000003814697265625 0.0004
19 524,288 0.0000019073486328125 0.0002
20 1,048,576 0.00000095367431640625 0.0001

Dual-slope integrating converters perform A/D
conversion by the indirect method of converting an
input signal to a representative time period that is
totaled by a counter. Features of this conversion tech-
nique include self-calibration that makes it immune to
component temperature drift, use of inexpensive com-
ponents in its mechanization, and the capability for
multiphasic integration yielding improved resolution
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Figure 10 Timing relationships for S/H-A/D conversion.
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of the zero endpoint as shown in Fig. 12. Operation
occurs in three phases. The first is the autozero phase
that stores the converter analog offsets on the inte-
grator with the input grounded. During the second
phase, the input signal is integrated for a constant
time 7). In the final phase, the input is connected
to a reference of opposite polarity. Integration then
proceeds to zero during a variable time 7, while clock
pulses are totaled to represent the amplitude of the
input signal. The representative errors of Table 8
show slightly better performance for dual-slope com-
pared with successive-approximation converters, but
their speed differences belie this advantage. The self-
calibration, variable conversion time, and lower cost
features of dual-slope converters make them espe-
cially attractive for instrumentation applications.
Sample/hold component errors consist of contribu-
tions from acquisition time, capacitor charge droop
and dielectric absorption, offset voltage drift, and
hold-mode feedthrough. A representative S/H error
budget is shown in Table 9. Hold-capacitor voltage
droop dV/dt is determined primarily by the output
amplifier bias-current requirements. Capacitor values
in the 0.01- 0.001 uF range typically provide a balance
for reasonable droop and acquisition errors. Capacitor
dielectric absorption error is evident as voltage creep
following repetitive changes in capacitor charging
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Table 8 Representative 12-Bit A/D Errors

12-bit successive approximation

Differential nonlinearity (1/2 LSB) 0.012%
Quantizing uncertainty (1/2 LSB) 0.012
Linearity temp. coeff. (2 ppm/°C)(20°C) 0.004
Gain temp. coeff. (20 ppm/°C)(20°C) 0.040
Offset (5 ppm/°C)(20°C) 0.010
Long-term change 0.050
€A/D 0.080%FS
12-bit dual slope
Differential nonlinearity (1/2 LSB) 0.012%
Quantizing uncertainty (1/2 LSB) 0.012
Gain temp. coeff. (25 ppm/°C)(20°C) 0.050
Offset temp.coeff. (2 ppm/°C)(20°C) 0.004
0.063%FS

€A/D
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resulting from incomplete diclectric repolarization.
Polycarbonate capacitors exhibit 50 ppm dielectric
absorption, polystyrene 20 ppm, and Teflon 10 ppm.
Hold-jump error is attributable to that fraction of
the logic signal transferred by the capacitance of the
switch at turnoff. Feedthrough is specified for the hold
mode as the percentage of an input sinusoidal signal
that appears at the output.

1.7 SIGNAL SAMPLING AND
RECONSTRUCTION

The provisions of discrete-time systems include the
existence of a minimum sample rate for which theore-
tically exact signal reconstruction is possible from a
sampled sequence. This provision is significant in
that signal sampling and recovery are considered
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simultaneously, correctly implying that the design of
real-time data conversion and recovery systems should
also be considered jointly. The following interpolation
formula analytically describes this approximation x(7)

Table 9 Representative Sample/Hold Errors

Acquisition error 0.01%
Droop (25uV/us)(2 us hold) in 10Vgg 0.0005
Dielectric absorption 0.005
Offset (50 uV/°C)(20°C) in 10VEs 0.014
Hold-jump error 0.001
Feedthrough 0.005
6S/H 0.02%FS
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of a continuous time signal x(7) with a finite number of
samples from the sequence x(n7T) as illustrated by Fig.
13:

(0 = F ' {fIx(uT)] * H(f))
X BW Py " . .
— Z (TJ x(nT) e—.IZT(/"T)eﬂﬂ.ft df

n——x —BW

®)

j2nBW(t—nT) €7j2nBW(t7nT)

x ¢
=T x(nT) J27(1 — nT)

sin 2nrBW(t — nT)
2nBW(t — nT)

—2TBW Y x(nT)

n=—x

X(¢) is obtained from the inverse Fourier transform of
the input sequence and a frequency-domain convolu-
tion with an ideal interpolation function H(f), result-



Table 10 Signal Interpolation Functions
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Figure 13 Ideal signal sampling and recovery.
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ing in a time-domain sinc amplitude response owing to
the rectangular characteristic of H(f). Due to the
orthogonal behavior of Eq. (8), however, only one
nonzero term is provided at each sampling instant by
a summation of weighted samples. Contributions of
samples other than the ones in the immediate neigh-
borhood of a specific sample, therefore, diminish
rapidly because the amplitude response of H(f) tends
to decrease. Consequently, the interpolation formula
provides a useful relationship for describing recovered
bandlimited sampled-data signals of bandwidth BW
with the sampling period T chosen sufficiently small
to prevent signal aliasing where sampling frequency
fo=1/T.

It is important to note that an ideal interpolation
function H(f) utilizes both phase and amplitude infor-
mation in reconstructing the recovered signal x(z), and
is therefore more efficient than conventional band-
limiting functions. However, this ideal interpolation
function cannot be physically realized because its
impulse response is noncausal, requiring an output
that anticipates its input. As a result, practical inter-
polators for signal recovery utilize amplitude informa-
tion that can be made efficient, although not optimum,
by achieving appropriate weighting of the recon-
structed signal.

Of key interest is to what accuracy can an original
continuous signal be reconstructed from its sampled
values.

It can be appreciated that the determination of sam-
ple rate in discrete-time systems and the accuracy with
which digitized signals may be recovered requires the
simultaneous consideration of data conversion and
reconstruction parameters to achieve an efficient allo-
cation of system resources. Signal to mean-squared-
error relationships accordingly represent sampled and
recovered data intersample error for practical interpo-
lar functions in Table 10. Consequently, an intersam-
ple error of interest may be achieved by substitution of
a selected interpolator function and solving for the
sampling frequency f; by iteration, where asymptotic
convergence to the performance provided by ideal
interpolation is obtained with higher-order practical
interpolators.

The recovery of a continuous analog signal from a
discrete signal is required in many applications.
Providing output signals for actuators in digital con-
trol systems, signal recovery for sensor acquisition sys-
tems, and reconstructing data in imaging systems are
but a few examples. Signal recovery may be viewed
from either time-domain or frequency-domain perspec-
tives. In time-domain terms, recovery is similar to
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interpolation procedures in numerical analysis with
the criterion being the generation of a locus that recon-
structs the true signal by some method of connecting
the discrete data samples. In the frequency domain,
signal recovery involves bandlimiting by a linear filter
to attenuate the repetitive sampled-data spectra above
baseband in achieving an accurate replica of the true
signal.

A common signal recovery technique is to follow a
D/A converter by an active lowpass filter to achieve an
output signal quality of interest, accountable by the
convergence of the sampled data and its true signal
representation. Many signal power spectra have long
time-average properties such that linear filters are espe-
cially effective in minimizing intersample error.
Sampled-data signals may also be applied to control
actuator elements whose intrinsic bandlimited ampli-
tude response assist with signal reconstruction. These
terminating elements often may be characterized by a
single-pole RC response as illustrated in the following
section.

An independent consideration associated with the
sampling operation is the attenuation impressed upon
the signal spectrum owing to the duration of the
sampled-signal representation x(n7T'). A useful criterion
is to consider the average baseband amplitude error
between dc and the full signal bandwidth BW
expressed as a percentage of departure from full-scale
response. This average sinc amplitude error is
expressed by

Esinc%FS = %( - %) x 100% (9)
and can be reduced in a specific application when it is
excessive by increasing the sampling rate f;. This is
frequently referred to as oversampling.

A data-conversion system example is provided by a
simplified three-digit digital dc voltmeter (Fig. 14). A
dual-slope A/D conversion period 7" of 16 2/3 ms
provides a null to potential 60Hz interference,
which is essential for industrial and field use, owing
to sinc nulls occurring at multiples of the integration
period 7. A 12-bit converter is employed to achieve a
nominal data converter error, while only 10 bits are
required for display excitation considering 3.33 binary
bits per decimal digit. The sampled-signal error eva-
luation considers an input-signal rate of change up to
an equivalent bandwidth of 0.01 Hz, corresponding to
an f,/BW of 6000, and an intersample error deter-
mined by zero-order-hold (ZOH) data, where V,
equals Vgg:
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=0.07/%FS

The RSS error of 0.07/% exceeds 10 bits required for a
three-digit display with reference to Table 7.

1.8 DIGITAL CONTROL SYSTEM ERROR

The design of discrete-time control loops can benefit
from an understanding of the interaction of sample
rate and intersample error and their effect on system
performance. The choice of sample rate influences sta-
bility through positioning of the closed-loop transfer
function pole locations in the z-domain with respect to
the origin. Separately, the decrease in intersample error
from output interpolation provided by the closed-loop
bandwidth of the control system reduces the uncer-
tainty of the controlled variable. Since the choice of
sample rate also influences intersample error, an ana-
lysis of a digital control loop is instructive to illustrate
these interrelationships.
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Figure 15 describes an elementary discrete-time con-
trol loop with a first-order process and unity feedback.
All of the process, controller, and actuator gains are
represented by the single constant K with the compen-
sator presently that of proportional control. The D/A
converter represents the influence of the sampling per-
iod T, which is z-transformed in the closed-loop trans-
fer function of the following equations:

_ kd-eh)
D= vk
(transfer function) (10)

k(=" Z
CZ—e M) +1Z-1
(unit step input K =1, 7 =0.1sec) (11)

=057 n 0.5Z
S Z-08 Z-1
(by partial fractions) (12)
C(n) = [(—0.5)(0.8)" 4+ (0.5)(1)"]U(n)
(inverse transforming) (13)

= 0.50 final value (n large)

The denominator of the transfer function defines the
influence of the gain K and sampling period 7" on the
pole positions, and hence stability. Values are substi-
tuted to determine the boundary between stable and
unstable regions for control loop performance evalu-
ated at the z-plane unit circle stability boundary of
z = 1. This relationship is plotted in Fig. 15.
Calculation of the —3dB closed-loop bandwidth
BW for both first- and second-order processes is neces-
sary for the determination of interpolated intersample
error of the controlled-variable C. For first-order pro-
cesses, the closed-loop BW is obtained in terms of the
rise time #; between the 10% and 90% points of the
controlled-variable amplitude response to a step input
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as defined in Table 11. The constant 0.35 defines the
ratio of 2.2 time constants, required for the response to
rise between 10% and 90% of the final value, to 2x
radians for normalization to frequency in Hertz.
Validity for digital control loops is achieved by acquir-
ing ¢, from a discrete-time plot of the controlled-vari-
able amplitude response. Table 11 also defines the
bandwidth for a second-order process which is calcu-
lated directly with knowledge of the natural frequency,
sampling period, and damping ratio.

In the interest of minimizing sensor-to-actuator
variability in control systems the error of a controlled
variable of interest is divisible into an analog measure-
ment function and digital conversion and interpolation
functions. Instrumentation error models provide a uni-
fied basis for combining contributions from individual
devices. The previous temperature measurement signal
conditioning associated with Fig. 5 is included in this
temperature control loop, shown by Fig. 16, with the
averaging of two identical 0.48%FS error measure-
ment channels to effectively reduce that error by
n~ "% or 272, from Eq. (7), yielding 0.34%FS. This
provides repeatable temperature measurements to

Table 11 Process Closed-Loop Bandwidth

within an uncertainty of 0.34°C, and a resolution of
0.024°C provided by the 12-bit digital data bus
wordlength.

The closed-loop bandwidth is evaluated at conser-
vative gain and sampling period values of K =1 and
T =0.1 sec (f, = 10Hz), respectively, for unit-step
excitation at r(¢). The rise time of the controlled vari-
able is evaluated from a discrete-time plot of C(n) to be
1.1sec. Accordingly, the closed-loop bandwidth is
found from Table 11 to be 0.318 Hz. The intersample
error of the controlled variable is then determined to
be 0.143%FS with substitution of this bandwidth value
and the sampling period T(7 = 1/f;) into the one-pole
process-equivalent interpolation function obtained
from Table 10. These functions include provisions for
scaling signal amplitudes of less than full scale, but are
taken as Vg equalling Vgg for this example.
Intersample error is therefore found to be directly
proportional to process closed-loop bandwidth and
inversely proportional to sampling rate.

The calculations are as follows:

€measurement = 0-43%§ (Fig. 5)
€SH = 0.02%3§ (Table 9)
ea/p = 0.08%§ (Table 8)
ep/a = 0.05%§ (Table 6)

1 (1 —sin70.318 Hz/10 H
Esine = 5 sin " Z/l 0 Hz x 100%
2 7(0.318 /10

=0.08%FS

intersample =

sinr (!

_0318Hz\\ 7
10Hz

0318 Hz
d 10Hz

10Hz

|1

1
sin(n(l +0.318 i

0.318 Hz)
+

10Hz

2
)) [1 . (10Hz+0.3181—[z

0.318 Hz

x 100%
=0.143%FS
122 2 2 172
e (Smeasuremenl x 2 ) + 5S/H + EA/D
Ceontrolled =
variable 2 2 2
i Jr"ED/A + &5ine + Eintersample

=0.39%FS

—3dB BW of controlled variable

Process

. 0.35
First order BW = WHZ (t; from C(n))
Second order BW =L

(natural frequency w,, sample period T sec, damping ratio o)

12
—a+1Ja +4w}) " Hz where a = 40’ w;, + 4oy T — 2w, — wn T”
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Figure 16 Process controlled-variable defined error.

The addition of interpolation, sinc, and device
errors results in a total rss controlled-variable error
of 0.39%FS, corresponding to 8-bit binary accuracy.
This 0.39%FS defined error describes the baseline
variability of the control loop and hence the process
quality capability. It is notable that control-loop track-
ing cannot achieve less process disorder than this
defined-error value regardless of the performance
enabled by process identification and tuning of the
PID compensator.
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Chapter 2.2

Fundamentals of Digital Motion Control

Ernest L. Hall, Krishnamohan Kola, and Ming Cao
University of Cincinnati, Cincinnati, Ohio

2.1 INTRODUCTION

Control theory is a foundation for many fields, includ-
ing industrial automation. The concept of control the-
ory is so broad that it can be used in studying the
economy, human behavior, and spacecraft design as
well as the design of industrial robots and automated
guided vehicles. Motion control systems often play a
vital part of product manufacturing, assembly, and
distribution. Implementing a new system or upgrading
an existing motion control system may require
mechanical, electrical, computer, and industrial engi-
neering skills and expertise. Multiple skills are required
to understand the tradeoffs for a systems approach to
the problem, including needs analysis, specifications,
component source selection, and subsystems integra-
tion. Once a specific technology is selected, the suppli-
er’s application engineers may act as members of the
design team to help ensure a successful implementation
that satisfies the production and cost requirements,
quality control, and safety.

Motion control is defined [1] by the American
Institute of Motion Engineers as: “The broad applica-
tion of various technologies to apply a controlled force
to achieve useful motion in fluid or solid electromecha-
nical systems.”

The field of motion control can also be considered
as mechatronics [1]: “Mechatronics is the synergistic
combination of mechanical and electrical engineering,
computer science, and information technology, which
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includes control systems as well as numerical methods
used to design products with built-in intelligence.”

Motion control applications include the industrial
robot [2] and automated guided vehicles [3-6].
Because of the introductory nature of this chapter,
we will focus on digital position control; force control
will not be discussed.

2.2 MOTION CONTROL ARCHITECTURES

Motion control systems may operate in an open loop,
closed-loop nonservo, or closed-loop servo, as shown
in Fig. 1, or a hybrid design. The open-loop
approach, shown in Fig. 1(a), has input and output
but no measurement of the output for comparison
with the desired response. A nonservo, on—off, or
bang-bang control approach is shown in Fig. 1(b).
In this system, the input signal turns the system on,
and when the output reaches a certain level, it closes
a switch that turns the system off. A proportion, or
servo, control approach is shown in Fig. 1(c). In this
case, a measurement is made of the actual output
signal, which is fed back and compared to the desired
response. The closed-loop servo control system will be
studied in this chapter.

The components of a typical servo-controlled
motion control system may include an operator inter-
face, motion control computer, control compensator,
electronic drive amplifiers, actuator, sensors and trans-
ducers, and the necessary interconnections. The actua-
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Figure 1 Motion control systems may operate in several
ways such as (a) open loop, (b) closed-loop nonservo, or
(c) closed-loop servo.

tors may be powered by electromechanical, hydraulic,
or pneumatic power sources, or a combination.

The operator interface may include a combination
of switches, indicators, and displays, including a
computer keyboard and a monitor or display. The
motion control computer generates command signals
from a stored program for a real-time operation.
The control compensator is a special prgram in the
motion control computer. Selecting the compensator
parameters is often a critical element in the success
of the overall system. The drive amplifiers and elec-
tronics must convert the low power signals from the
computer to the higher power signals required to
drive the actuators. The sensors and transducers
record the measurements of position or velocity
that are used for feedback to the controller. The
actuators are the main drive devices that supply
the force or torque required to move the load. All
of these subsystems must be properly interconnected
in order to function properly.
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2.3 MOTION CONTROL EXAMPLE

Consider the simple pendulum shown in Fig. 2 that has
been studied for more than 2000 years. Aristotle first
observed that a bob swinging on a string would come
to rest, seeking a lower state of energy. Later, Galileo
Galilei made a number of incredible, intuitive infer-
ences from observing the pendulum. Galileo’s conclu-
sions are even more impressive considering that he
made his discoveries before the invention of calculus.

2.3.1 Flexible-Link Pendulum

The pendulum may be described as a bob with mass,
M, and weight given by W = Mg, where g is the accel-
eration of gravity, attached to the end of a flexible cord
of length, L as shown in Fig. 2. When the bob is dis-
placed by an angle 6, the vertical weight component
causes a restoring force to act on it. Assuming that
viscous damping, from resistance in the medium,
with a damping factor, D, causes a retarding force
proportional to its angular velocity, w, equal to Dw.
Since this is a homogeneous, unforced system, the
starting motion is set by the initial conditions. Let
the angle at time 6(r = 0) be 45°. For definiteness let
the weight, W = 401b, the length, L =3ft, D =0.11b
sec and g = 32.2ft/s”.

The analysis is begun by drawing a free-body dia-
gram of the forces acting on the mass. We will use the
tangent and normal components to describe the forces
acting on the mass. The free-body diagram shown in
Fig. 2(b) and Newton’s second law are then used to
derive a differential equation describing the dynamic
response of the system. Forces may be balanced in any
direction; however, a particularly simple form of the

W=Mg
th} Free bady diagram

fal Physical diagram

Figure 2 Pendulum as studied by Galileo Galilei.



equation for pendulum motion can be developed by
balancing the forces in the tangential direction:

S F = Ma, M

This gives the following equation:

. do
—MgsmG—DE:Ma, 2)

The tangential acceleration is given in terms of the rate
of change of velocity or arc length by the equation

dv  d’s
ar = @ da (3)
Since the arc length, s, is given by
s=10 4)
Substituting s into the differential in Eq. (3) yields
d*6
at = LW (5)
Thus, combining Egs. (2) and (5) yields
: do d*0
—Mgst—DgzMa,zMLW (6)

Note that the unit of each term is force. In imperial
units, W is in lbg, g is in ft/secz, D is in 1b sec, L is in
feet, 6 is in radians, d6/dt is in rad/sec and 41729/6172 isin
rad/sec’. In SI units, M is in kg, g is in m/sec®, D is in
kg m/sec, L is in meters, 6 is in radians, d6/dt is in rad/
sec, and d?0/dr* is in rad/sec’.

This may be rewritten as

2

%Jr%%Jr%sme:o )
This equation may be said to describe a system. While
there are many types of systems, systems with no out-
put are difficult to observe, and systems with no input
are difficult to control. To emphasize the importance
of position, we can describe a kinematic system, such as
y=T(x). To emphasize time, we can describe a
dynamic system, such as g = h(f(¢)). Equation (7)
describes a dynamic response. The differential equa-
tion is nonlinear because of the sin 6 term.

For a linear system, y = T(x), two conditions must
be satisfied:

1. If a constant, a, is multiplied by the input, x,
such that ax is applied as the input, then the
output must be multiplied by the same constant:

T(ax) = ay (®)

2. If the sum of two inputs is applied, the output
must be the sum of the individual outputs and
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the principal of superposition must hold as
demonstrated by the following equations:

T(x)+x) =y1+)2 )
where

T(x)) =y (10)
and

T(x2) = » (11)

Equation (7) is nonlinear because the sine of the sum of
two angles is not equal to the sum of the sines of the
two angles. For example, sin45°=0.707, while
sin90° = 1.

Invariance is an important concept for systems. In
an optical system, such as reading glasses, position
invariance is desired, whereas, for a dynamic system
time invariance is very important.

Since an arbitrary input function, f(f) may be
expressed as a weighted sum of impulse functions
using the Dirac delta function, §(¢ — 7). This sum can
be expressed as

1) = J F(@)8(t — ) dr (12)

(Note that ¢ is the time the output is observed and t is
the time the input is applied.)

The response of the linear system to this arbitrary
input may be computed by

s =hl | s (13)
Thus by the property of linearity we obtain
g(n) = J S(@)hls(t — )] d (14)

Therefore, the response of the linear system is charac-
terized by the response to an impulse function. This
leads to the definition of the impulse response, /(t, 1),
as

h(t, 7) = h[8(t — 7)] (15)

Since the system response may vary with the time
the input is applied, the general computational form
for the output of a linear system is the superposition
integral called the Fredholm integral equation [7,8]:



B
o) = Jf(r) h(t, 7) d (16)

o

The limits of integration are important in determining
the form of the computation. Without any assump-
tions about the input or system, the computation
must extend over an infinite interval.

+00

s = | 1@ a7
—0Q0
An important condition of realizability for a con-
tinuous system is that the response be nonanticipatory,
or casual, such that no output is produced before an
input is applied:
h(t, 1) =0

The causality condition leads to the computation:
1

o) = J FO (1 1) dr (19)

With the condition that f(¢) = 0 for ¢ < 0, the compu-
tation reduces to

fort—1t<0 (18)

t

¢(t) = jf(r)h(z, N dr (20)

0
If the system is time invariant, then
h(t,7) = h(t — 1) (21)

This leads to the familiar convolution equation:

1

o) = Jf(r)h(r _vydr (22)
0

The reason that linear systems are so important is
that they are widely applicable and that a systematic
method of solution has been developed for them. The
relationship between the input and output of a linear,
time-invariant system is known to be a convolution
relation. Furthermore, transformational techniques,
such as the Laplace transform, can be used to convert
the convolution into an equivalent product in the trans-
form domain. The Laplace transform F(s) of f(¢) is

o0

F(s) = J f()e ™ dt (23)
0
The convolution theorem states that

G(s) = H(s) F(s) (24)

where

G(s) = J g(H) e dt (25)
0
and
H(s) = Jh(z) e dr (26)
0

(Note that this theorem shows how to compute the
convolution with only multiplication and transform
operations.) The transform, H(s), of the system func-
tion, A(?), is called the system transfer function. For
any input, f(¢), its transform, F(s), can be computed.
Then multiplying by H(s) yields the transform G(s).
The inverse Laplace transform of G(s) gives the output
time response, g(7).

This transform relationship may also be used to
develop block diagram representations and algebra
for linear systems, which is very useful to simplify
the study of complicated systems.

2.3.1.1 Linear-Approach Modeling

Returning to the pendulum example, the solution to
this nonlinear equation with D # 0 involves the ellip-
tical function. (The solutions of this nonlinear system
will be investigated later using Simulink.") Using the
approximation sinf =6 in Eq. (7) gives the linear
approximation

d’0 D do g

R Vi T @7

When D =0, Eq. (27) simplifies to the linear differen-
tial equation for simple harmonic motion:

o +26=0 (28)

A Matlab' m-file may be used to determine the time
response to the linear differential equation. To use
Laplace transforms in Matlab, we must use the linear
form of the system and provide initial conditions, since
no forcing function is applied.

Remembering that the Laplace transform of the
derivative is

L{%} = 50(s) — 6(07) (29)

and

"Matlab and Simulink are registered trademarks of the Math Works, Inc.
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d* d6(0~
L{;f} = 5°0(s) — s6(07) — % (30)

Taking the Laplace transform of the linear differential
Eq. (27) gives

_. dé00™) D _
2 — J— _ J—
s7O(s) — s6(07) 7 + WL [s®(s) — 6(07)]
+ %@(s) —0
(31)
This may be simplified to
s6(07) — %9(0_) + d@fl(i )
O(s) = JI R (32)
P+ ——s+=
ML L

(Note that the initial conditions act as a forcing func-
tion for the system to start it moving.) It is more com-
mon to apply a step function to start a system. The
unit step function is defined as

(1) = 1 fort =0
“D=10 fort <0

(Note that the unit step function is the integral of the
delta function.) It may also be shown that the Laplace
transform of the delta function is 1, and that the
Laplace transform of the unit step function is 1/s.

To use Matlab to solve the transfer function for
6(t), we must tell Matlab that this is the output of
some system. Since G(s) = H(s) F(s), we can let H(s)
=1 and F(s) =O(s). Then the output will be
G(s) = O(s), and the impulse function can be used
directly. If Matlab does not have an impulse response
but it does have a step response, then a slight manip-
ulation is required. [Note that the impulse response of
system G(s) is the same as the step response of system
5 (G(s)).]

The transform function with numerical values sub-
stituted is

(33)

45(s — 0.0268)

O(s) =
) = 777002685 £ 10.73

(34)

Note that 6(0) = 45° and d6(0)/dt = 0. We can define
T0 = 6(0) for ease of typing, and express the numera-
tor and denominator polynomials by their coefficients
as shown by the num and den vectors below.

To develop a Matlab m-file script using the step
function, define the parameters from the problem
statement:
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T0=45

D=0.1

M=40/32.2

L=3

G=32.3

num=[T0,D*T0/ (M*L),0];
den=[1,D/(M*L),G/L];
t=0:0.1:10;

step (num,den, t) ;

grid on

title ('Time response of the pendulum
linear approximation’)

This m-file or script may be run using Matlab and
should produce an oscillatory output. The angle starts
at 45° at time 0 and goes in the negative direction first,
then oscillates to some positive angle and dampens out.
The period,

T = 27[\/; (35)
g

in seconds (or frequency, f = 1/T in cycles/second or
hertz) of the response can be compared to the theore-
tical solution for an undamped pendulum given in Eq.
(35) [9]. This is shown in Fig. 3.

2.3.1.2 Nonlinear-Approach Modeling

To solve the nonlinear system, we can use Simulink to
develop a graphical model of the system and plot the
time response. This requires developing a block dia-
gram solution for the differential equation and then
constructing the system using the graphical building

Time Response of non-linear pendulum madel

Degrees

o
—_—

\ (Y
Time (Seconds)

-50

0 2 4 g g 0

Figure 3 Pendulum response with linear approximation,
0(0+) = 45°.



blocks of Simulink. From this block diagram, a simu-
lation can be run to determine a solution.

To develop a block diagram, write the differential
equation in the following form:

oty -Ddb g

g7 = m E — Z Sin 9(1) (36)

Note that this can be drawn as a summing junction
with two inputs and one output. Then note that 6
can be derived from @”6/d* by integrating twice. The
output of the first integrator gives df/dt. An initial
velocity condition could be put at this integration. A
pick-off point could also be put here to be used for
velocity feedback. The output of the second integrator
gives 6. The initial position condition can be applied
here. This output position may also be fed back for the
position feedback term. The constants can be imple-
mented using gain terms on amplifiers since an ampli-
fier multiplies its input by a gain term. The sine
function can be represented using a nonlinear function.

The motion is started by the initial condition,
0(04) = 45°, which was entered as the integration con-
stant on the integrator which changes d6/dt to 6. Note
that the sine function expects an angle in radians, not
degrees. Therefore, the angle must be converted before
computing the sine. In addition, the output of the sine
function must be converted back to degrees. A block
diagram of this nonlinear model is shown in Fig. 4.
The mathematical model to analyze such a nonlinear
system is complicated. However, a solution is easily
obtained with the sophisticated software of Simulink.
The response of this nonlinear system is shown in Fig.

.-”I’,’
e erTTDA32.2140°3) |

H“-..___ |

(VL

5. Note that it is very similar to the response of the
linear system with an amplitude swinging between
+45° and —45°, and a period slightly less than 2 sec,
indicating that the linear system approximation is not
bad. Upon close inspection, one would see that the
frequency of the nonlinear solution is not, in fact, con-
stant.

2.3.2 Rigid-Link Pendulum

Consider a related problem, the dynamic response for
the mechanical system model of the human leg shown
in Fig. 6. The transfer function relates the output angu-
lar position about the hip joint to the input torque
supplied by the leg muscle. The model assumes an
input torque, T(¢), viscous damping, D at the hip
joint, and inertia, J, around the hip joint. Also, a com-
ponent of the weight of the leg, W = Mg, where M is
the mass of the leg and g is the acceleration of gravity,
creates a nonlinear torque. Assume that the leg is of
uniform density so that the weight can be applied at
the centroid at L/2 where L is the length of the leg. For
definiteness let D =0.01lbsec, J = 4.27ftlbsec?,
W = Mg =401b, L = 3 ft. We will use a torque ampli-
tude of T'(r) = 75ftlb.

The pendulum gives us a good model for a robot
arm with a single degree of freedom. With a rigid link,
it is natural to drive the rotation by a torque applied to
the pinned end and to represent the mass at the center
of mass of the link. Other physical variations lead to
different robot designs. For example, if we mount the
rigid link horizontally and then articulate it, we reduce

&

1
- - — 160/3.14
i ._ 5 ! 8
Sum Integrator Integrator] rad/degree Auto-Seale
Graph
”’,-"”
‘Qﬁ sin(g)
gL 5in

Figure 4 Block diagram entered into Simulink to solve the nonlinear system.
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Time response of pendulum with Inear approximation
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Figure 5 Nonlinear pendulum response simulation with
Simulink. Note the location of the peaks.

the effect of gravity on the motion. This option is used
in the Cartesian, cylindrical, and SCARA (Selective
Compliant Articulated Robot for Assembly) robot
designs. The spherical and vertically articulated indus-
trial robots have the rigid link pointed upward. A gan-
try or an overhead-mounted, vertically articulated
industrial robot has the link pointing down as in the
simple pendulum.

We can draw a free-body diagram, as shown in Fig.
6, for the application of the rotational form of
Newton’s second law about the pinned end to balance
the torque. The angle of motion is shown with positive
direction counterclockwise. The motion is resisted by
three torques: the component of weight is
(MgL/2)sin6; the damping torque is D(d6/dt); and

My

(a} (b

Mg-sin @

the inertial torque is J(d’0/ds’). For a bob mass at
the end of a link, the inertia is J = ML*. However,
for a distributed link the inertia is only ML?/12.

We can write the differential equation that describes
the system dynamic response and obtain both non-
linear and linear equations. A solution can be devel-
oped by using the rotary system torque balance.

d*0 _do MgL .
4+ DT+ sing=T
J 7 + 0l + > sin () (37)

Using the small-angle approximation, sin 6 = 6 gives

d*0 _do MgL
o4 D4+ =T
IR+ D+ ——0=T0 (38)

Equation (38) is a linear form. Since it is linear, we can
take the Laplace transform to obtain the transfer func-
tion between the output and input:

® 1 1/J

T(s) MgL , D MgL

Js?+ Ds+—== —5+—
s< + v+2 9+Jv+2J

It is also interesting to show how the equations sim-
plify for a pendulum mounted in a horizontal plane
rather than a vertical plane. For a horizontally articu-
lated pendulum or robot, the weight is perpendicular
to the motion and does no work so the equation sim-
plifies as

2
de—l—Dﬁ (40)

T =Jaz+by,

This linear system is easier to control and shows why
the SCARA robot design has become popular. The
SCARA robot assembles items accurately and effi-
ciently as well.

yD-defdt

Figure 6 Rigid-link pendulum structure diagram: (a) physical diagram; (b) components of weight vector; (c) free-body torque

diagram.
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We can also develop a Matlab m-file solution to this
linear differential equation:

J=4.27;

D=0.1;

M=40/32.2;

g=32.2;

L=3;

num=[0,180/3.14159];%18/3.14159 is to
translate radians into degrees
den=[J,D,M*g*L/2];

t=0:0.1:10;

impulse (num,den, t) ; 3find impulse response
grid on;

xlabel=('Degrees’);

yvlabel=('Time (seconds) ’) ;

title('Unit impulse response of the rigid
link pendulum’);

When one runs this program using Matlab, it produces
the result shown in Fig. 7.

One can also use Simulink to develop a graphical
model and solve the nonlinear system. To develop the
block diagram recall that 7'(¢) is the input and 6 is the
output. We can manipulate the differential equation
and develop the block diagram. Various forms of the
block diagram may be developed depending on how
one solves the equation. One form is shown in Fig. 8.
When the torque step input is 7(0+) = 75, the time
response is as shown in Fig. 9. Rather than oscillating,
the angle output appears to be going to infinity. This
corresponds to the rigid link rotating continuously
about its axis.

Impulsa rasponse af rigic link 2endcum
walli firar apprusirna:

o o
Time (Seconcs)

Figure 7 Solution to nonlinear system computed with
Simulink.
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2.3.2.1 Representation with State Variables

One can also determine the differential equation for
the rigid-link pendulum by applying a torque balance
around the pinned end for a vertically articulated
robot pointed upward using a state variable represen-
tation [10].

State variables are a basic approach to modern con-
trol theory. Mathematically, it is a method for solving
an nth-order differential equation using an equivalent
set of n, simultaneous, first-order differential equa-
tions. Numerically, it is easier to compute solutions
to first-order differential equations than for higher-
order differential equations. Practically, it is a way to
use digital computers and algorithms based on matrix
equations to solve linear or nonlinear systems. A sys-
tem is described in terms of its state variables, which
are the smallest set of linearly independent variables
that describe the system, its dynamic state variable,
the derivative of the state variable, its input, and its
output. Since state variables are not unique, many dif-
ferent forms may be chosen for solving a particular
problem. One particular set which is useful in the solu-
tion of nth-order single variable differential equations
is the set of phase variables. These are defined in terms
of the variable and its derivatives of the variable of the
nth-order equation. For example, in the second-order
differential equation in 6 which we are working with,
we can define a vector state variable with components,
x; = 60(t) and x, = dO(t)/dt. Two state variables are
required because we have a second-order differential
equation. We would need N for an Nth-order differ-
ential equation. The state vector may be written as the
transpose of the row vector: [x, x,]”. We normally use
column vectors, not row vectors, for points. The state
equations for a linear system always consist of two
equations that are usually written as

d.
%:Ax+3u
y=Cx+ Du 41)

where x is the state vector, dx/dt is the dynamic state
vector, u is the vector input and y is the vector output.
Suppose the state vector x has a dimension of n. For a
single input, single output (SISO) system: A isann x n
constant coefficient matrix called the system matrix; B
is a n x 1 constant matrix called the control matrix; C
isa 1 x n constant matrix called the output matrix; and
D is called the direct feedforward matrix. For the SISO
system, D is a 1 x 1 matrix containing a scalar con-
stant.
Using the phase variables as state variables,
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Figure 8 Block diagram of the nonlinear rigid link system with torque input.
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Then the dynamic state equations may be developed
using the definition and the system equation

axi _

da — ?

dx, —MgL . D T(1)

7;: 7 sinx — =X, +T (43)
y =X (44)

This is the state variable form for the dynamic system.
The output y is simply x;.

The system can be linearized about the equilibrium
point , x; = 0, and x, = 0. This again amounts to using
the approximation

sin x; = x; (45)

X 10a Step Input responsa of rigid link non-linear modei
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Figure 9 Unit step response of the rigid link model.
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and may be used to obtain the linear state equations:

X = 0 + (le

Xy = 0 + (SX2 (46)
The complete state equations are

X = Ax+ Bu

V= Cx+ Du (47)

These may be written in the linear state equation’s
matrix form:

dx,
a7
v, _ D Mgl . T() )
dt J J J
y=Xx

in which the output is

0 1 0
A = B:
[—MgL/J —D/J] [ 1/J] (49)
C=[1 0] D =[0]

To illustrate the use of state variables, let us determine
the equilibrium states of the system. The equilibrium is
defined in terms of the unforced system as the points at
which the dynamic state vector is equal to zero:

dX]

dX2

ke’ 1

7 =0 (51)
which gives

X, =0 (52)
and



MgL . D
2gJ s1nx1%=0 (53)

So the solutions are
n=20,1,2,...

X| = nmw

X2:0

It is possible to use either the state space or the transfer
function representation of a system. For example, the
transfer function of the linearized rigid link pendulum
is developed as described in the next few pages.

Taking the Laplace transform assuming zero initial
conditions gives

d’0  _do Mgl
(1) :Jﬁ+D—+—g9

dr ' 2

Os) 1/J (54)
T(s) ,  Ds MgL
SRR IRy

The nonlinear differential equation of the rigid link
pendulum can also be put in the “rigid robot” form
that is often used to study the dynamics of robots.

Mg+ V(¢ q)+ Glg) =T() (55)

where M is an inertia matrix, ¢ is a generalized coor-
dinate vector, V' represents the velocity dependent
torque, G represents the gravity dependent torque
and T represents the input control torque vector.

M@®) =J
V(@) =D

G(O) = # 0 (56)

0=q
T=T(1)

.’\."!Th’lil.lr! valr)
) circuir
Py e——

Fan 1.

a} ’ &)

Figure 10 Fixed field DC motor: (a) circuit diagram; (b)
block diagram (from Nise, 1995).
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2.3.3 Motorized Robot Arm

As previously mentioned, a rigid-link model is in fact
the basic structure of a robot arm with a single degree
of freedom. Now let us add a motor to such a robot
arm.

A DC motor with armature control and a fixed field
is assumed. The electrical model of such a DC motor is
shown in Fig. 10. The armature voltage, e,(¢) is the
voltage supplied by an amplifier to control the
motor. The motor has a resistance R,, inductance L,,
and back electromotive force (emf) constant, K,. The
back emf voltage, v,(¢) is induced by the rotation of the
armature windings in the fixed magnetic field. The
counter emf is proportional to the speed of the
motor with the field strength fixed. That is,

do
vp(1) = K 7 (57)

Taking the Laplace transform gives
Vi(s) = sK,O(s) (58)

The circuit equation for the electrical portion of the
motor is

E (s) = Ro1,(5) + Lasly(s) + Vi(s) (59)
This may also be written as

_ E(s) — KysO(s)

1) == (60)

The torque developed by the motor is proportional to
the armature current:

T,.(s) = K,L(s) (61)

This torque moves the armature and load.

Balancing the torques at the motor shaft gives the
torque relation to the angle that may be expressed as
follows:

d*6, _de,

T()=J o +D 7 (62)
where 6,, is the motor shaft angle position, J represents
all inertia connected to the motor shaft, and D all
friction (air friction, bearing friction, etc.) connected
to the motor shaft.

Taking the Laplace transform gives

T,(5) = J57©,,(s) + DsO,,,(s) (63)
Solving Eq. (63) for the shaft angle, we get

Tu(s)

On(s) = 72+ Ds

(64)



If there is a gear train between the motor and load,
then the angle moved by the load is different from the
angle moved by the motor. The angles are related by
the gear ratio relationship, which may be derived by
noting that an equal arc length, S, is traveled by two
meshing gears. This can also be described by the fol-
lowing equation:

S = Rm9m == RLQL (65)

The gear circumference of the motor’s gear is 27R,,,
which has N,, teeth, and the gear circumference of the
load’s gear is 2w R, which has N; teeth, so the ratio of
circumferences is equal to the ratio of radii and the
ratio of number of teeth so that

NLQL = Nmem (66)
or

QL Nm

L _m 67

9171 NL ( )

The gear ratio may also be used to reflect quantities on
the load side of a gear train back to the motor side so
that a torque balance can be done at the motor side.
Assuming a lossless gear train, it can be shown by
equating mechanical, Tw;, and electrical, EI, power
that the quantities such as inertia, J, viscous damping
D, and torsional springs with constants K may be
reflected back to the motor side of a gear by dividing
by the gear ratio squared. This can also be described
with the equations below:

J
I =% (68)
n
D
D, =—% (69)
n
K
Ky =—7 (70)

Using these relationships, the equivalent load quanti-
ties for J and D may be used in the previous block
diagram. From Egs. (59), (60), (61), (64), and (67) we

(s}
E’"—-——;+ N 3 N Tisy
- "|LsR
Sumi Torope G
H=K,

.

can get the block diagram of the armature-controlled
DC motor as shown in Fig. 11.

By simplifying the block diagram shown in Fig. 11,
we can get the armature-controlled motor transfer
function as

G(s) = Or(s) Kn
E(s)  s[(Js+ D)(L,s + R,) + K, K]
G(s) Kin (71)

= S[(JL,s> + (JR, + DL,)s + DR, + K,K,]

As we can see, this model is of the third order.
However, in the servomotor case, the inductance of
the armature L, could usually be ignored. Thus this
model could be reduced to a second-order system.

Now, apply this model to a simple example. Suppose
a DC motor is used to drive a robot arm horizontally as
shown in Fig. 12. The link has a mass, M = 5kg, length
L = 1m, and viscous damping factor D = 0.1. Assume
the system input is a voltage signal with a range of 0—
10 V. This signal is used to provide the control voltage
and current to the motor. The motor parameters are
given below. The goal is to design a compensation strat-
egy so that a voltage of 0 to 10 V corresponds linearly of
an angle of 0° to an angle of 90°. The required response
should have an overshoot below 10%, a settling time
below 0.2sec and a steady state error of zero. The
motor parameters are given below:

J, = 0.001 kgm?/s*
D, =0.01 Nms/rad

R,=1Q
L,=0H
K, =1Vs/rad
K, =1Nm/A

First, consider a system without gears or a gear ratio of
1. The inertia of the rigid link as defined before is

s e, =y

1
JeHd ]

Ot

\]“‘

Shaft angle welosity feedback

Figure 11 Armature-controlled DC motor block diagram.
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Figure 12 A single joint robot arm driven by an armature-
controlled DC motor.

. ML 5x1°
T2 T 12
According to the impedance reflection model estab-

lished before, the total inertia J and total damping
factor D are

=0.4167kgm® (72)

J=J,+J,=0.001+0.4167 = 0.4177 kgm?*
D=D,+D; =0.01l+0.1=0.11
Substituting the known values into Eq. (65) we can get

G(S) _ ®L(S) 1

E(s) - s[(0.4177s +0.11)(1 +0 x ) + 1 x 1]
1
Gs)=——————— 73
) = 04177 £ 1.11) (73)
The above process could be calculated with Matlab
scripts as follows:

J=0.001+0.4167;

D=0.1+0.01;

La=0;

Ra=1;

Kt=1;

Kb=1;

n=1;

Num=Kt *n;

Den=[J*La J*Ra+La*D D*Ra+Kt*Kb 0] ;
step (Num, Den);

title('Step Response of the Motorized Robot
Arm’) ;

End;

The step-response of this system is shown in Fig. 13.
As we can see the system does not go to a steady-state
value, but to an increasing angle at constant value.
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This means the armature rotates at a constant speed,
which is achieved by its built-in velocity feedback fac-
tor Kj.

However, we want the motor to move the robot arm
to a proper angular position corresponding to the
input. This can be achieved by a positional servome-
chanism, i.e., we feed back the actual robot arm posi-
tion, 6;, convert the position information into voltage
via a constant K, and then negatively feed back this
signal back into the system. Accordingly, the feedback
signal in voltage is £y = 0; K,,, where K, (V/deg) is the
proportional constant depending on the input and
desired position output.

A simple position sensor is a potentiometer, a vari-
able resistor. The resistor can measure rotational posi-
tion. A DC voltage V is applied to both ends of the
resistor. R, is the resistance from the pointer to one
fixed end, while R is the total resistance. R, is propor-
tional to the position of the pointer, since the resistor is
linearly distributed. Another position sensor is an
encoder, it can also feed back digital position informa-
tion. The mechanism of the encoder will be described
later.

The revised system block diagram is shown in Fig.
14. Suppose the voltage between both ends of the
potentiometer is 10V, and that K, is the ratio of the
voltage change to the corresponding angle change. In
this case, K, = (10 —0)/(90 —0) =0.1111 V/deg; the
gear ratio is 1.

The new transfer function is

, G
Gls) = — 2O
1+ G(s) K,
1
G'(s) = 74
)= 041775 + 1.11s + 0.0011 74
Stap Respanse of Motorized Raobot Arm
1500 - o ; —
P -
o ///
. ,é/,—
1000 F— - . e ....,.;;,. e e
/'/’,,
T e
a 2 4 4] g 10

Figure 13 Step response of motorized robot arm.
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Figure 14 Position and velocity feedback model of the motorized rigid link.

The step response can be determined with the follow-
ing program:

V=10;

Angle=90;

Kp=V/Angle; %$feedback voltage/angle
constant

G=tf([1],[0.4177 1.11 0]);

% the transfer function of the velocity
loop

sysclose=feedback (G,Kp);

%the closed loop function of position
feedback

step (sysclose);

end

After position feedback, the steady response tends to
be stable as shown in Fig. 15. However, the system
response is too slow; to make it have faster response
speed, further compensation is needed. The following
example outlines the building of a compensator for
feedback control system.

2.3.4 Digital Motion Control

2.3.4.1 Digital Controller

With the many computer applications in control sys-
tems, digital control systems have become more impor-
tant. A digital system usually employs a computerized
controller to control continuous components of a
closed-loop system. The block diagram of the digital
system is shown in Fig. 16. The digital system first
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samples the continuous difference data e, and then,
with an A/D converter, changes the sample impulses
into digital signals and transfers them into the compu-
ter controller. The computer will process these digitral
signals with predefined control rules. At last, through
the digital-to-analog (D/A) converter, the computing
results are converted into an analog signal, m(¢), to
control those continuous components. The sampling
switch closes every T, sec. Each time it closes for a
time span of & with & < T,. The sampling frequency,

fs, 1s the reciprocal of Ty, f; = 1/T,, and o, = 27t/ T) is

called the sampling angular frequency. The digital con-
troller provides the system with great flexibility. It can
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Figure 15 Step response of the motorized robot arm.



achieve compensation values that are hard for analog
controllers to obtain.

2.3.4.2 Digital-Controlled Servo System

A servo system is a motor control system that com-
bines various components to automatically control a
machine’s operation. It is generally composed of a
servo drive, a motor, and feedback device. The con-
troller gets a feedback signal and outside control signal
and controls the servo drive and motor together to
precisely control torque, velocity, or position of the
motor shaft. The feedback continuously reports the
real-time status, which is compared to the command
value. Differences between the command position and
feedback signals are automatically adjusted by the
closed-loop servo system. This closed loop provides
the servo system with accurate, high-performance con-
trol of a machine.

A servo motor is characterized by a long, thin con-
figuration. This design permits the motor to provide
torque while minimizing the growth in rotor inertia. It
results in an improved mechanical time constant and
faster time response.

The controller of the servo system is, in most cases,
programmable. It allows one piece of equipment to do

many related jobs or functions by selecting a different
program.

A typical computer-controlled servo system is
shown in Fig. 17. It has three main elements: (1) a
digital controller, (2) an amplifier, and (3) a motor
and an encoder. The controller is composed of a digi-
tal filter, a zero-order-hold (ZOH), and a digital-to-
analog converter (DAC). The purpose of the control-
ler is to compensate the system to make an unstable
system become stable. This is usually achieved by
adjusting the parameters of the filter. The controller
accepts both encoder feedback and commands from
the computer and finds the error between them. The
error signal passes through the digital filter, ZOH,
and DAC to generate control signals to control the
amplifier (AMP). The amplifier amplifies the control
signals from the controller to drive the motor. The
encoder is usually mounted on the motor shaft. When
the shaft moves, it generates electrical impulses, which
are processed into digital position information. This
position information is then feedback directly into the
controller. The mathematical model of the above
components could be varied among different pro-
ducts. However, they tend to be the same in most
aspects.

Typical digital control systems modeling and design
can be illustrated by the following design example.

Sample switch

+ . s E{zy ... - m{z} o(z)
input __fq >< ; Drigital %, plant e OUDPUL
R ! Controller !
_ Ty  TTTTmEmETEEmS
(a)
;; ADC - Digital | DAC :: ]
i computer :
{b)

Figure 16 Computer controlled servo system: (a) system; (b) controller.
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Figure 17 Two representations of digital control systems: (a) digital control system; (b) digital controller.

2.3.5 Digital Motion Control System Design

Example

Selecting the right parameters for the position, inte-
gral, derivative (PID) controller is the most difficult
step for any motion control system. The motion con-
trol system of the automatic guided vehicle (AGV)
helps maneuver it to negotiate curves and drive around
obstacles on the course. Designing a PID controller for
the drive motor feedback system of Bearcat II robot,
the autonomous unmanned vehicle, was therefore con-
sidered one important step for its success.

The wheels of the vehicle are driven independently
by two Electrocraft brush-type DC servomotors.
Encoders provide position feedback for the system.
The two drive motor systems are operated in current
loops in parallel using Galil MSA 12-80 amplifiers. The
main controller card is the Galil DMC 1030 motion
control board and is controlled through a computer.

2.3.5.1 System Modeling

The position-controlled system comprises a position
servo motor (Electrocraft brush-type DC motor) with
an encoder, a PID controller (Galil DMC 1030 motion
control board), and an amplifier (Galil MSA 12-80).
The amplifier model can be configured in three
modes, namely, voltage loop, current loop, and velo-
city loop. The transfer function relating the input vol-
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tage V to the motor position P depends upon the
configuration mode of the system.

Voltage Loop. In this mode, the amplifier acts as a
voltage source to the motor. The gain of the amplifier
will be K, and the transfer function of the motor with
respect to the voltage will be

P K,
Vo [Ks(sty, + D(sT, + 1)] (75)
where
RJ L
T, = ?,Z(S) and T, = E(s)

The motor parameters and the units are:

K,: torque constant (N m/A),

R: armature resistance (ohms),

J: combined inertia of the motor and load (kg m?),
L: armature inductance (Henries).

Current Loop. In this mode the amplifier acts as a
current source for the motor. The corresponding trans-
fer function will be as follows:
P KK,
VoooJs?
where K, is the amplifier gain, and K, and J are as
defined earlier.

(76)

Velocity Loop. In the velocity mode, a tachometer
feedback to the amplifier is incorporated. The transfer



function is now the ratio of the Laplace transform of
the angular velocity to the voltage input. This is given
by

kK,
w J 1
— = : = 77)
V 1 + KaK[KgS Kg(sfl + 1)

T,
where

J

T =
KKK,

and therefore

P 1
Vo Kys(sti+ 1)

The Encoder. The encoder is an integral part of the
servomotor and has two signals A and B, which are in
quadrature and 90° out of phase. Due to the quadra-
ture relationship, the resolution of the encoder is
increased to 4N quadrature counts/rev, where N is
the number of pulses generated by the encoder per
revolution.

The model of the encoder can be represented by a
gain of

Ky = i—];] counts/rad (78)
The Controller. The controller in the Galil DMC
1030 board has three elements, namely the digital-to-
analog converter (DAC), the digital filter and the zero-
order hold (ZOH).

Digital-to-analog converter. The DAC converts a
14-bit number to an analog voltage. The input range
of numbers is 16,384 and the output voltage is
+10V. For the DMC 1030, the DAC gain is given
by K4 = 0.0012 V/count.

Digital filter. This has a discrete system transfer
function given by

(79)

The filter parameters are K, A, and C. These are
selected by commands KP, KI, and KD, where KP,
KI, and KD are respectively the proportional, integral
and derivative gains of the PID controller.

The two sets of parameters for the DMC 1030 are
related according to the equations
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A= 80
(K,,+Kd) (80)
K;

C=3%

Zero-order hold. The ZOH represents the effect of
the sampling process, where the motor command is
updated once per sampling period. The effect of the
ZOH can be modeled by the transfer function

1
_;————7:— @81)
< +s5>

In most applications, H(s) can be approximated as 1.
Having modeled the system, we now have to obtain

the transfer functions with the actual system para-

meters. This is done for the system as follows.

H(s) =

2.3.5.2 System Analysis

The system transfer functions are determined by com-
puting transfer functions of the various components.

Motor and amplifier: The system is operated in a
current loop and hence the transfer function of
the motor—amplifier is given by

P KK,
voos?
Encoder: The encoder on the DC motor has a reso-
lution of 500 lines per revolution. Since this is in
quadrature, the position resolution is given by 4
x 500 = 2000 counts per revolution. The encoder
can be represented by a gain of

(82)

4x N 2000
I T T 2n
DAC: from the Galil manual, the gain of the DAC
on the DMC 1030 is represented as
K,; =0.0012 V/count.
ZOH: the ZOH transfer function is given by

H(s)=——
1 Z
+s 3
where T is the sampling time. The sampling time
in this case is 0.001 sec. Hence the transfer func-
tion of the ZOH is

2000

H(s) = ——2
) = 32000

(83)



2.3.5.3 System Compensation Objective

The analytical system design is aimed at closing the
loop at a crossover frequency w. This crossover fre-
quency is required to be greater than 200 rad/sec. An
existing system is taken as a reference and the cross-
over frequency of that system is used, since the two are
similar Ref [11].

The following are the parameters of the system:

1. Time constant of the motor, K, = 2.981bin,/A
(0.3375 Nm/A).

2. Moment of inertia of the system, J = 2201b in.
(approx.) [2.54 x 10* kg m’ (approx.)].

3. Motor resistance, R = 0.42 Q.

4. Amplifier gain in current loop, K, = 1.2 A/V.

5. Encoder gain, Ky = 318 counts/rev.

The design objective is set at obtaining a phase margin
of 45°.

The block diagram of the system is shown in Fig.
18.

Compensation filter:

G(s)=P+sD (89)

1.21 x 10°

L(s) = M(s) K,K; K H(s) = <2(s + 2000)

(90)

The feed-forward transfer function of the system is
given by

A(s) = L(s) G(s) 91)
and the open-loop transfer function will be
1.21 x 10°
L(200) = ————— 92)
(j200)~(200 + 2000)

The magnitude of L(s) at the crossover frequency of
200 rad/sec is

|L(j200)| = 0.015 (93)

and the phase of the open-loop transfer function is
given by

Motor: 200
K 0.3375 1330 Arg L(j200) = —180 — tan™' [ — ) = —185° 94
M(s) = = = (84) rg L(j200) an <2ooo> ©4)
Js 2.54 x 10 s
Amplifier: G(s) is selected such that A(s) has a crossover fre-
quency of 200 rad/sec and a phase margin of 45°.
Ky=12 (85) This requires that
DAC: ()] = 1 (93)
10
K, = 3100 = 0.0012 (86) and
Encoder: Arg[A(j200)] = —135° (96)
K, =318 (87) But we have A(s) = L(s) G(s), therefore we must have
: ) |A(;7200)]
ZOH G(7200) = U ©7)
2000 08 |L(;200)|
H(s)=———
) s+ 2000 ®8) and
o Clock | -
| »- Jo | o L .
+ L — — — ! L
-1 _ s+l sl g
Computes Sun {'fm?lmile: Fan (;ndzl Mold Dac Amplifier M:mr XY trapy
/IIA
\\J‘—
Ingader

Figure 18 Block diagram of the position controlled servo system.
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Arg[G(;j200)] = Arg[A4(;200)] = Arg[L(,;200)]
= —135° + 185° = 50°
(98)
Hence select the filter function of the form
G(s)=P+sD (99)

such that at crossover frequency of 200, it would have
a magnitude of 66 and a phase of 50°.

|G(j200)| = | P + (j200D)| = 66 (100)
and
Arg[G(j200)] = tan™! [mg} = 50° (101)

Solving these equations, we get

P=42
D =0.25
The filter transfer function is given by

G(s) = 0.25s + 42.
The step response of the compensated system is
shown in Fig. 19.

2.3.5.4 System Analysis with Compensator

Now with the filter parameters known, the open-loop
and closed-loop transfer functions are computed as
follows:

Step Response
3012

0.008:

Amplhiude
o
=)
&

0.004

0.002 -

0 1 z 3 4 S

Tinw (gec.)

Figure 19 Step response of the compensated system.
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Figure 20 Root locus plot of the compensated system.

9.62s° +25725° + 1.885 x 10°s + 4.104 x 10°

OLTF =
55 4+ 400s* + 47,5005 + 1.5 x 1052

(102)

The root locus and Bode plot for the system are shown
in Figs. 20 and 21, and it is clear that the system is not
stable in the closed loop because it has two poles at the
origin. This has to be further compensated by a con-
troller in order to stabilize the closed loop.

A controller with zeros that can cancel the poles at
the origin is used. Poles are added at s = —50 and s =
—150 in order to stabilize the closed-loop step
response.

Bode D:agrams

Phase {deg); Magnitude (dB)

Frequercy (rad/sme)

Figure 21 Bode plot of the compensated system.
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Figure 22 Experimental step response.

The controller transfer function is given by

S2

60 = 5 50)6 + 150)

(103)

With the controller, the open- and closed-loop transfer
functions are given by

30.45 x 10%s + 51.15 x 10°
OLTF = 104
§3 4 2200s% + 407,5005 + 15 x 10° (104

and

957.65 + 160,876
5° + 22005 + 408,457s + 15.16 x 106
(105)

CLTF =

The experimental step response plots of the system
are shown in Fig. 22.

The analytical values of K, K;, and K,; which are
the proportional, integral, and derivative gains, respec-
tively, of the PID controller, are tested for stability in
the real system with the help of Galil Motion Control
Servo Design Kit Version 4.04.
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2.4 CONCLUSIONS

A simple mechanism has been used to illustrate many
of the concepts of system theory encountered in con-
trolling motion with a computer. Natural constraints
often described by a differential equation are encoun-
tered in nature. The parameters such as length and
mass of the pendulum have a large impact on its con-
trol. Stability and other system concepts must be
understood to design a safe and useful system.
Analog or continuous system theory must be merged
with digital concepts to effect a computer control. The
result could be a new, useful, and nonobvious solution
to an important practical problem.
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Chapter 2.3
In-Process Measurement

William E. Barkman

Lockheed Martin Energy Systems, Inc., Oak Ridge, Tennessee

3.1 INTRODUCTION

Manufacturing operations are driven by cost require-
ments that relate to the value of a particular product to
the marketplace. Given this selling price, the system
works backward to determine what resources can be
allocated to the manufacturing portion of the cost
equation. Then, production personnel set up the neces-
sary resources and provide the workpieces that are
consumed by the market. Everyone is happy until
something changes. Unfortunately, the time constant
associated with change in the manufacturing world is
usually very short. Requirements often change even
before a system begins producing parts and even
after production is underway there are typically
many sources of variability that impact the cost/qual-
ity of the operation. Variability associated with sche-
duling changes must be accommodated by designing
flexibility into the basic manufacturing systems.
However, the variability that is related to changing
process conditions must be handled by altering system
performance at a more basic level.

Error conditions often occur where one or more
critical process parameters deviates significantly from
the expected value and the process quality is degraded.
The sensitivity of the process to these variations in
operating conditions depends on the point in the over-
all manufacturing cycle at which they occur as well as
the specific characteristics of a particular process dis-
turbance. Amplitude, a frequency of occurrence, and a
direction typically characterize these process errors. In
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a machining operation, the typical result is a lack of
synchronization between the tool and part locations so
that erroneous dimensions are produced.

Over time, the amplitudes of process errors are typi-
cally limited to a specific range either by their inherent
nature or by operator actions. For example, shop tem-
perature profiles tend to follow a specific pattern from
day to day, component deflections are directly related
to cutting forces, and cutting tools are replaced as they
wear out. As multiple process error sources interact,
the result is typically a seemingly random distribution
of performance characteristics with a given ‘“‘normal
range” that defines the routine tolerances that are
achievable with a given set of operations. On the
other hand, trends such as increasing operating tem-
peratures due to a heavy workload, coolant degrada-
tion, component wear, etc. have a nonrandom
component that continues over time until an adjust-
ment is made or a component is replaced.

One solution to the problem of process variation is
to build a system that is insensitive to all disturbances;
unfortunately, this is rarely practical. A more realistic
approach is to use a manufacturing model that defines
the appropriate response to a particular process para-
meter change. This technique can be very successful if
the necessary monitoring systems are in place to mea-
sure what is really happening within the various man-
ufacturing operations. This approach works because
manufacturing processes are deterministic in nature:
a cause-and-effect relationship exists between the out-
put of the process and the process parameters. Events



occur due to specific causes, not random chance, even
though an observer may not recognize the driving
force behind a particular action. If the key process
characteristics are maintained at a steady-state level
then the process output will also remain relatively con-
stant. Conversely, when the process parameters change
significantly, the end product is also affected in a
noticeable manner.

Recognizing the deterministic nature of manufac-
turing operations leads to improvements in product
quality and lowers production costs. This is accom-
plished by measuring the important process para-
meters in real time and performing appropriate
adjustments in the system commands. Moving beyond
intelligent alterations in control parameters, parts can
also be “flagged” or the process halted, as appropriate,
when excessive shifts occur in the key process vari-
ables. In addition, when an accurate system model is
available, this real-time information can also lead to
automatic process certification coupled with “sample”
certification of process output and the full integration
of machining and inspection.

The system elements necessary to accomplish this
are an operational strategy or model that establishes
acceptable limits of variability and the appropriate
response when these conditions are exceeded, a
means of measuring change within the process, plus a
mechanism for inputting the necessary corrective
response. This chapter discusses the selection of the
key process measurements, the monitoring of the
appropriate process information, and the use of this
measurement data to improve process performance.

3.2 PROCESS VARIATION

An important goal in manufacturing is to reduce the
process variability and bias to as small a level as is
economically justifiable. Process bias is the difference
between a parameter’s average value and the desired
value. Bias errors are a steady-state deviation from an
intended target and while they do cause unacceptable
product, they can be dealt with through calibration
procedures. On the other hand, process variability is
a continuously changing phenomenon that is caused
by alterations in one or more manufacturing process
parameters. It is inherently unpredictable and there-
fore more difficult to accommodate. Fortunately,
real-time process parameter measurements can provide
the information needed to deal with unexpected excur-
sions in manufacturing system output. This extension
of conventional closed-loop process control is not a
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complex concept; however, the collection of the neces-
sary process data can be a challenge.

Process variability hinders the efforts of system
operators to control the quality and cost of manufac-
turing operations. This basic manufacturing character-
istic is caused by the inability of a manufacturing
system to do the same thing at all times, under all
conditions. Examples of variability are easily recog-
nized in activities such as flipping a coin and attempt-
ing to always get a “heads” or attempting to always
select the same card from a complete deck of cards.
Machining operations typically exhibit a much higher
degree of process control. However, variability is still
present in relatively simple operations such as attempt-
ing to control a feature diameter and surface finish
without maintaining a constant depth of cut, coolant
condition/temperature, tooling quality, etc.

Inspecting parts and monitoring the value of var-
ious process parameters under different operating con-
ditions collects process variability data. The answers to
the following questions provide a starting point in
beginning to deal with process variability: What para-
meters can and should be measured, how much var-
tion is acceptable, is bias a problem (it is usually a
calibration issue), what supporting inspection data is
required, and does the process model accurately pre-
dict the system operation?

Error budgets [1] are an excellent tool for answering
many of these questions. It is rarely possible or cost
effective to eliminate all the sources of variability in a
manufacturing process. However, an error budget pro-
vides a structured approach to characterizing system
errors, understanding the impact of altering the mag-
nitudes of the various errors, and selecting a viable
approach for meeting the desired performance goals.
The error budgeting process is based on the assump-
tion that the total process error is composed of a num-
ber of individual error components that combine in a
predictable manner to create the total system error.
The identification and characterization of these error
elements and the understanding of their impact on the
overall process quality leads to a system model that
supports rational decisions on where process improve-
ment efforts should be concentrated.

The procedure for obtaining a viable error budget
begins with the identification and characterization of
the system errors, the selection of a combinatorial rule
for combining the individual errors into a total process
error, and the validation of this model through experi-
mental testing. The system model is obtained by con-
ducting a series of experiments in which a relationship
is established between individual process parameters



and the quality of the workpiece. In a machining
operation this involves fabricating a series of parts
while keeping all parameters but one at a constant
condition. For instance, tool wear can be measured
by making a series of identical cuts without changing
the cutting tool. Wear measurements made between
machining passes provide a wear hsitory that is useful
in predicing tool performance. In a similar fashion, a
series of diameters can be machined over time (using a
tool-workpiece combination that does not exhibit sig-
nificant wear) without attempting to control the tem-
perature of the coolant. This will produce temperature
sensitivity data that can be used to define the degree of
temperature control required to achieve a particular
workpiece tolerance.

After all the process error sources have been char-
acterized, it is necessary to combine them in some intel-
ligent fashion and determine if this provides an
accurate prediction of part quality. Since all errors
are not present at the same time, and because some
errors will counteract each other it is overly conserva-
tive to estimate process performance by simply adding
together all the maximum values of the individual error
sources. Lawrence Livermore National Laboratory
(LLNL) has been quite successful in predicting the
performance of precision machine tools using a root-
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mean-square method for combining the individual
error elements into an overall performance predictor
[2]. An excellent example of the application of the error
budget technique is the LLNL large optics diamond
turning machine shown in Fig. 1.

Once the system error model has been validated, a
reliable assessment can be made of the impact of
reducing, eliminating, or applying a suitable compen-
sation technique to the different error components.
Following a cost estimate of the resources required
to achieve the elimination (or appropriate reduction)
of the various error sources, a suitable course of
action can be planned. In general, it is desirable to
attempt to reduce the amplitudes of those error
sources that can be made relatively small (10% of
the remaining dominant error) with only a modest
effort. For example, if a single easily corrected
error source (or group of error sources) causes 75%
of a product feature’s error then it is a straightfor-
ward decision on how to proceed. Conversely, if this
error source is very expensive to eliminate then it
may be inappropriate to attempt to achieve the
desired tolerances with the proposed equipment. In
this case, it is necessary to reevaluate the desired
objectives and processing methods and consider alter-
native approaches. Obviously, a critical element in
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Figure 1 Artist’s concept of initial large optics diamond turning machine design (courtesy of Lawrence Livermore National

Laboratory).
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the above process is the ability to isolate and mea-
sure individual process errors.

3.3 IN-PROCESS MEASUREMENTS FOR
PROCESS CONTROL

As mentioned above, process parameter information
can be used to monitor the condition of a manufactur-
ing operation as well as provide a process control sig-
nal to a feedback algorithm. For example, the accuracy
of a shaft diameter feature can be enhanced by correct-
ing for cutting tool wear. If errors due to component
deflection, machine geometry, etc. are relatively con-
stant, then tool offsets based on the condition of the
cutting tool can improve the system performance. At
the same time, tool offset variability is introduced by
the system operator’s inability to determine the
amount of compensation needed. If adjustments are
made based on historical data, then the system is vul-
nerable to unexpected changes in factors such as tool
performance, material characteristics, operator-
induced changes in feeds and speeds, etc. Offsets that
are based on product certification results are a little
better, since there is a closer tie to the “current pro-
cess,” but the delay between production and inspection

can still cause difficulties. In-process measurements
offer the best alternative as long as the time required
to collect the data is not an unacceptable cost to the
production operations. In order to be useful, the in-
process measurement data must be easily obtained, an
accurate predictor of system performance, and useful
to the process operator. Measurement processes that
do not meet these criteria provide little, if any, value
and only harm the relationship between the shop and
the organization that has supported this alteration to
the previous manufacturing process.

Figure 2 is an example of a machine tool that uses
in-process measurement data to improve the quality of
turned workpieces. This machine uses the tool set cycle
depicted in Fig. 3 to establish the relationship between
the cutting tool and the spindle face and centerline.
This avoids the necessity of “‘touching up” on the
part whenever tools are changed and also automati-
cally compensates for tool wear that occurs in the
direction of the machine axes. Of course, tool wear
occurs at all contact points between the tool and work-
piece, and this tool setting algorithm does not compen-
sate for wear or size errors that occur between the tool
set locations. This can result in appreciable part errors
when using a round-nose tool to machine a tapered
section like the one shown in Fig. 3. This occurs

Figure 2 Advanced turning machine with tool and part measurement capability.
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because the location of the physical tool edge may not
match the theoretical location associated with a parti-
cular radius tool. (For a 45° taper, the cutting tool
point of contact would be midway between the two
tool set points and the associated error is approxi-
mately 40% of the difference in the theoretical and
actual tool radii.)

If only a single taper is being machined then an
additional tool set cycle could be implemented to
determine the tool condition for that particular point
of contact. However, a more general solution is poss-
ible using an on-machine tool size and shape measure-
ment system. The advanced turning machine shown
earlier in Fig. 2 uses an on-machine camera to inspect
the size, shape, and location of a cutting tool after the
cutter is mounted on the machine’s boring bar. The
camera measures the location of the tool edge in 1°
increments around the nose of the tool and calculates
a tool set location as well as an effective tool shape.
(The effective tool shape is the actual tool shape
adjusted for the projected point of contact as the tool
moves around the part.) This is necessary for profiling
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operations because the cutter’s “high points” contact a
greater segment of a workpiece than what is “seen by
low regions.”

The effective tool shape data, obtained in the on-
machine tool inspection operation, is used to automa-
tically adjust the theoretical tool path that was pro-
duced using the theoretical tool shape. Preliminary
machining tests were conducted using worn cutters
that exhibited shape errors similar to the data shown
in Fig. 4. The circular profile is a relatively challenging
shape for a Cartesian-coordinate machine and the
results demonstrated that the tool inspection and com-
pensation process could be used to compensate for
significant cutter errors.

Additional tests were conducted to evaluate the
robustness of the system. In this case, the machine
was programmed to produce a spherical contour
using a 0.021 in. radius cutter. However, the test was
conducted using a 0.032 in. cutter instead of the cor-
rectly sized tool. This results in a theoretical error of
approximately 0.0045 in. at the point midway between
the pole and equator of the test part. Figure 5 shows
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the results obtained in this machining test. The profile
errors were as expected when no tool path compensa-
tion was used. A very significant contour improvement
was obtained when the compensation was implemen-
ted.

The above example demonstrates many of the con-
cepts discussed throughout this chapter. The machine
tool performance was initially tested using an alumi-
num workpiece, a single-point diamond tool and a

Part Shape Deviations
CMM Inspection Data

Tiest part was ot with 0.032 radius
{med. NC toal path was programmed
tor Q.021 radius tool,

With Teol Shape
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Figure 5 Workpiece inspection results for test using incor-
rect cutter size.
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coolant temperature control system. The early tests
focused on the sensitivity of the system to excursions
in the machine coolant. An experiment was conducted
in which the coolant temperature was driven through a
series of step changes over a 12 hr period. During this
time, the machine was moved through a series of simu-
lated tool paths, but no machining was done, so that
the part dimensions were only affected by the coolant
temperature. Figure 6 shows the temperature response
of various machine components plotted along with the
coolant temperature. Figure 7 shows the part dimen-
sional response to the temperature changes. This veri-
fies the need to maintain good control of the coolant
temperature.

Additional tests were performed with the coolant
temperature control system activated. It was demon-
strated that under the relatively ideal cutting condi-
tions, the machine was capable of producing a shape
accuracy of approximately 0.0002 in. on a spherical
contour. When the workpiece and cutting-tool materi-
als were changed to stainless steel and tungsten carbide
respectively, the machined contour was degraded to
about 0.002 in. This demonstrated that the most sig-
nificant error with respect to workpiece contour was
the cutting tool wear. Fortunately, it was also noted
that the majority of the tool wear occurred on the first
pass and the tool was relatively stable for a number of
additional machining passes.

Figure 8 shows the tool form errors associated with
two machining passes on two different tools. In both
cases the wear pattern is essentially unchanged by the
second machining operation. This lead to the concept
of inspecting the tool form after an initial “wear-in”
pass, adjusting the tool path for the effective shape of
the worn tool, and then performing the finish-machin-
ing operation with the compensated tool path.
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After significantly reducing the errors associated
with the cutting tool, additional tests were conducted
to characterize the remaining system error compo-
nents. It was noted that while the shape of the contour
was signficantly improved, there were still occasional
size errors that were larger than desired. These size
errors were traceable to the cumulative effects of the
drift of the tool set station, component deflection, and
a relatively small amount of additional tool wear. The
solution to this problem was to use an in-process probe
to measure the part diameter and perform the appro-
priate tool offset prior to the finish-machining pass.

3.4 IN-PROCESS MEASUREMENTS FOR

PROCESS QUALIFICATION

In addition to improving the accuracy and consistency
of manufacturing operations, in-process measurements
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Figure 8 Tool wear comparison data for two different tools.
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of critical parameters can be used to provide real-time
assurance that the workpiece quality is being main-
tained at the desired level. Aside from the obvious
step of measuring one or more critical dimensions on
a finished workpiece, additional process data can be
collected that qualifies the process before the part is
removed from the machine tool. In the case of the
advanced turning machine described above, the
machining process was shown to be very repeatable
as long as certain key elements were maintained at a
constant level. Process consistency was accomplished
by focusing on the machine stability and the condition
of the cutting tool. The deflection/size errors associated
with thermal gradients were avoided by controlling the
temperature of the cutting fluid. Tool wear errors were
minimized by avoiding the use of a new tool on the
finish-machining pass; and in-process inspection cycles
were added to correct for errors in initial tool position
as well as tool form.

Each of these operations contributes to the overall
accuracy of the system and is also a potential source of
disruption to production operations. If the tempera-
ture compensation system malfunctions and introduces
temperature gradients instead of eliminating them then
the machine’s tool path accuracy will be degraded.
Similarly, if the tool measurement and compensation
system or the part probing operation is erratic or awk-
ward to use then it will not add value to the overall
process.

Instead of waiting for a post-process inspection step
to detect a potential system malfunction, each of these
subsystems can be monitored in real time to provide
assurance that the correct compensation actions are
implemented. The temperature control system can be
checked easily by tracking the amplitude of the “‘tem-
perature-following error.” If the difference between the
desired coolant temperature and the actual coolant
temperature becomes excessive then there is probably
an error condition and the system should be halted and
checked at an appropariate time.

Monitoring the gaging system is also straightfor-
ward. In both tool- and part-gaging operations, an
artifact can be checked each time a gaging operation
is initiated and the result compared with historical
values to estimate the quality of the current measure-
ments. A 1 in. diameter ball is a useful monitor part for
the probing system because the ball diameter measure-
ments are sensitive to errors in both probe height and
probe repeatability. In a similar fashion, a small gage
wire that is permanently mounted in the field of view of
the tool measurement camera can provide a viable
reference measurement. Artifacts such as these main-



tain constant dimensions over time and offer a good
means of verifying system repeatability and validating
the quality of the current measurement process.

Further process performance data can also be
gained by comparing the in-process measurement
values  with  post-process  certification  data.
Eventually, sufficient data can be collected to establish
a statistical basis for reducing the amount of post-pro-
cess inspection operations in favor of process certifica-
tion. Of course, it is generally not appropriate to
transfer the inspection burden from the downstream
gages to the on-machine systems. This merely creates
a pinch point farther upstream in the process. Instead,
it is necessary to monitor those critical process para-
meters that can be used as quality predictors without
negatively impacting process throughput.

Additional process information is available by com-
paring parameters that are common between many
part families. The differences between actual and
intended dimensions which are common features to
multiple part families is a useful technique for tracking
process quality in an environment in which the part
mix is constantly changing. Deviations in certain part
characteristics such as length errors (or diameter
errors) can be compared as a measure of system per-
formance and the suitability of cutter offsets. Even
though the part sizes may vary widely between differ-
ent workpieces, the ability of the system to control
common features such as a diameter or length is an
important system attribute and can be tracked using
control charts.

Eventually a model can be constructed that defines
the appropriate machining conditions for producing a
high-quality product. This model might include the
typical amount of tool wear and offsets required for
a particular operation as well as the limits that define
when external corrective action is required to restore
process viability. During the machining cycle, process
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characteristics such as the size of the cutter offset, the
size of key features at an intermediate processing
stage, the amount of tool wear on a given pass, etc.
can be used to verify that the operation is performing
as expected. If all of the critical process attributes fall
within the model limits then the process output can
be expected to be similar to what has been achieved
in the past. However, if one or more of the important
system parameters is out of the control limits defined
by the process model, then external actions are prob-
ably required to restore system performance.

The advanced turning machine mentioned above is
an example of how this technique can be applied.
This machine can produce complex profiles that
require sophisticated inspection machines for product
certification yet process performance can be accu-
rately predicted by monitoring a few key parameters.
Barring a mechanical or electrical breakdown, the
machine’s geometry accuracy is quite good as long
as there are no temperature gradients in the structure.
Monitoring the coolant temperature control sytem
gives an accurate prediction of the machine tool
path accuracy. Using on-machine probing to compare
the size of a small number of features to historical
performance records validates the suitability of tool
offsets, and changes in tool form define the amount
of uncompensated tool wear that can degrade the
part quality.
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Chapter 3.1
Distributed Control Systems

Dobrivoje Popovic
University of Bremen, Bremen, Germany

1.1 INTRODUCTION

The evolution of plant automation systems, from
very primitive forms up to the contemporary com-
plex architectures, has closely followed the progress
in instrumentation and computer technology that, in
turn, has given the impetus to the vendor to update
the system concepts in order to meet the user’s grow-
ing requirements. This has directly encouraged users
to enlarge the automation objectives in the field and
to embed them into the broad objectives of the pro-
cess, production, and enterprise level. The integrated
automation concept [1] has been created to encompass
all the automation functions of the company. This
was viewed as an opportunity to optimally solve
some interrelated problems such as the efficient uti-
lization of resources, production profitability, pro-
duct quality, human safety, and environmental
demands.

Contemporary industrial plants are inherently com-
plex, large-scale systems requiring complex, mutually
conflicting automation objectives to be simultaneously
met. Effective control of such systems can only be
made feasible using adequately organized, complex,
large-scale automation systems like the distributed
computer control systems [2] (Fig. 1). This has for a
long time been recognized in steel production plants,
where 10 million tons per annum are produced, based
on the operation of numerous work zones and the
associated subsystems like:
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Iron zone with coke oven, palletizing and sintering
plant, and blast furnace

Steel zone with basic oxygen and electric arc fur-
nace, direct reduction, and continuous casting
plant, etc.

Mill zone with hot and cold strip mills, plate bore,
and wire and wire rod mill.

To this, the laboratory services and the plant care con-
trol level should be added, where all the required cal-
culations and administrative data processing are
carried out, statistical reviews prepared, and market
prognostics data generated. Typical laboratory services
are the:

Test field

Quality control

Analysis laboratory

Energy management center
Maintenance and repair department
Control and computer center

and typical utilities:

Gas and liquid fuel distribution

Oxygen generation and distribution

Chilled water and compressed air distribution
Water treatment

Steam boiler and steam distribution

Power generation and dispatch.

The difficulty of control and management of complex
plants is further complicated by permanent necessity of
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steady adaptation to the changing demands, particu-
larly due to the quality variations in the raw materials
and the fact that, although the individual subsystems
are specific batch-processing plants, they are firmly
incorporated into the downstream and upstream pro-
cesses of the main plant. This implies that the inte-
grated plant automation system has to control,
coordinate, and schedule the total plant production
process.

On the other hand, the complexity of the hierarch-
ical structure of the plant automation is further
expanding because the majority of individual subplants
involved are themselves hierarchically organized, like
the ore yard, coke oven, sintering plant, BOF/LD
(Basic Oxygen Furnace LD-Converter) converter, elec-
tric arc furnace, continuous casting, etc.

Onshore and offshore oil and gas fields represent
another typical example of distributed, hierarchically
organized plants requiring similar automation con-
cepts. For instance, a typical onshore oil and gas pro-
duction plant consists of a number of oil and gas
gathering and separation centers, serving a number
of remote degassing stations, where the crude oil and
industrial gas is produced to be distributed via long-
distance pipelines. The gas production includes gas
compression, dehydration, and purification of liquid
components.

Copyright © 2000 Marcel Dekker, Inc.

The remote degassing stations, usually unmanned
and completely autonomous, have to be equipped
with both multiloop controllers and remote terminal
units that should periodically transfer the data, sta-
tus, and alarm reports to the central computer.
These stations should be able to continue to operate
also when the communication link to the central
computer fails. This is also the case with the gather-
ing and separation centers that have to be equipped
with independent microcomputer-based controllers
[3] that, when the communication link breaks
down, have to automatically start running a prepro-
grammed, failsafe routine. An offshore oil and gas
production installation usually consists of a number
of bridge-linked platforms for drilling and produc-
tion, each platform being able to produce 100,000
or more barrels of crude oil per day and an adequate
quantity of compressed and preprocessed gas.
Attached to the platforms, beside the drilling
modules, are also the water treatment and mud
handling modules, power generation facilities, and
other utilities.

In order to acquire, preprocess, and transfer the
sensing data to the central computer and to obtain
control commands from there, a communication link
is required and at the platform a supervisory control
data acquisition system (SCADA). An additional link



is requried for interconnection of platforms for
exchange of coordination data.

Finally, a very illustrative example of a distributed,
hierarchically organized system is the power system in
which the power-generating and power-distributing
subsystems are integrated. Here, in the power plant
itself, different subsystems are recognizable, like air,
gas, combustion, water, steam, cooling, turbine, and
generator subsystems. The subsystems are hierarchi-
cally organized and functionally grouped into:

Drive-level subsystem
Subgroup-level subsystem
Group-level subsystem
Unit-level subsystem.

1.2 CLASSICAL APPROACH TO PLANT
AUTOMATION

Industrial plant automation has in the past undergone
three main development phases:

Manual control
Controller-based control
Computer-based control.

The transitions between the individual automation
phases have been so vague that even modern automa-
tion systems still integrate all three types of control.

At the dawn of industrial revolution and for a long
time after, the only kind of automation available was
the mechanization of some operations on the produc-
tion line. Plants were mainly supervised and controlled
manually. Using primitive indicating instruments,
installed in the field, the plant operator was able to
adequately manipulate the likely primitive actuators,
in order to conduct the production process and avoid
critical situations.

The application of real automatic control instru-
mentation was, in fact, not possible until the 1930s
and 40s, with the availability of pneumatic, hydraulic,
and electrical process instrumentation elements such as
sensors for a variety of process variables, actuators,
and the basic PID controllers. At this initial stage of
development it was possible to close the control loop
for flow, level, speed, pressure, or temperature control
in the field (Fig. 2). In this way, the plants steadily
became more and more equipped with field control
instrumentation, widely distributed through the
plant, able to indicate, record, and/or control indivi-
dual process variables. In such a constellation, the duty
of the plant operator was to monitor periodically the
indicated measured values and to preselect and set the
controlling set-point values.

Yet, the real breakthrough in this role of the plant
operator in industrial automation was achieved in the
1950s by introducing electrical sensors, transducers,
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Figure 2 Closed-loop control.
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actuators, and, above all, by placing the plant instru-
mentation in the central control room of the plant. In
this way, the possibility was given to supervise and
control the plant from one single location using some
monitoring and command facilities. In fact, the intro-
duction of automatic controllers has mainly shifted the
responsibility of the plant operator from manipulating
the actuating values to the adjustment of controllers’
set-point values. In this way the operator became a
supervisory controller.

In the field of plant instrumentation, the particular
evolutionary periods have been marked by the respec-
tive state-of-the art of the available instrumentation
technology, so that here an instrumentation period is
identifiable that is:

Pneumatic and hydraulic
Electrical and electronic
Computer based.

The period of pneumatic and hydraulic plant instru-
mentation was, no doubt, technologically rather primi-
tive because the instrumentation elements used were of
low computational precision. They, nevertheless, have
still been highly reliable and—above all—explosion
proof, so that they are presently still in use, at least
in the appropriate control zones of the plant.

Essential progress in industrial plant control has
been made by introducing electrical and electronic
instrumentation, which has enabled the implementa-
tion of advanced control algorithms (besides PID,
also cascaded, ratio, nonlinear, etc. control), and con-
siderably facilitated automatic tuning of control para-
meters. This has been made possible particularly
through the computer-based implementation of indivi-
dual control loops (Fig. 3).

The idea of centralization of plant monitoring and
control facilities was implemented by introducing the
concept of a central control room in the plant, in which
the majority of plant control instrumentation, with the
exception of sensors and actuators, is placed. For con-
necting the field instrumentation elements to the cen-
tral control room pneumatic and electrical data
transmission lines have been installed within the
plant. The operation of the plant from the central con-
trol room is based on indicating, recording, and alarm
elements, situated there, as well as—for better local
orientation—on the use of plant mimic diagrams.
The use of plant mimic diagrams has proven to be so
useful that they are presently still in use.
Microcomputers, usually programmed to solve some
data acquisition and/or control problems in the field,
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have been connected, along with other instrumentation
elements, to the facilities of the central control room,
where the plant operators are in charge of centralized
plant monitoring and process control.

Closed-loop control is essential for keeping the
values of process variables, in spite of internal and
external disturbing influences, at prescribed, set-point
values, particularly when the control parameters are
optimally tuned to the process parameters. In indus-
trial practice, the most favored approach for control
parameter tuning is the Ziegler—Nichols method, the
application of which is based on some simplified rela-
tions and some recommended tables as a guide for
determination of the optimal step transition of the
loop while keeping its stability margin within some
given limits. The method is basically applicable to the
stationary, time-invariant processes for which the
values of relevant process parameters are known; the
control parameters of the loop can be tuned offline.
This cannot always hold, so the control parameters
have to be optimally tuned using a kind of trial-and-
error approach, called the Ziegler—Nichols test. It is an
open-loop test through which the pure delay of the




loop and its ‘“‘reaction rate” can be determined, based
on which the optimal controller tuning can be under-
taken.

1.3 COMPUTER-BASED PLANT
AUTOMATION CONCEPTS

Industrial automation has generally been understood
as an engineering approach to the control of systems
such as power, chemical, petrochemical, cement, steel,
water and wastewater treatment, and manufacturing
plants [4,5].

The initial automation objectives were relatively
simple, reduced to automatic control of a few process
variables or a few plant parameters. Over the years,
there has been an increasing trend toward simulta-
neous control of more and more (or of all) process
variables in larger and more complex industrial plants.
In addition, the automation technology has had to
provide a better view of the plant and process state,
required for better monitoring and operation of the
plant, and for improvement of plant performance
and product quality. The close cooperation between
the plant designer and the control engineer has,
again, directly contributed to the development of bet-
ter instrumentation, and opened perspectives to imple-
ment larger and more complex production units and to
run them at full capacity, by guaranteeing high pro-
duct quality. Moreover, the automation technology is
presently used as a valuable tool for solving crucial
enterprise problems, and interrelating simultaneous
solution of process and production control problems
along with the accompanying financial and organiza-
tional problems.

Generally speaking, the principal objectives of plant
automation are to monitor information flow and to
manipulate the material and energy flow within the
plant in the sense of optimal balance between the pro-
duct quality and the economic factors. This means
meeting a number of contradictory requirements such
as [3]:

Maximal use of production capacity at highest pos-
sible production speed in order to achieve max-
imal production yield of the plant

Maximal reduction of production costs by
Energy and raw material saving
Saving of labor costs by reducing the required

staff and staff qualification
Reduction of required storage and inventory
space and of transport facilities
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Using low-price raw materials while achieving
the same product quality

Maximal improvement of product quality to meet
the highest international standards while keeping
the quality constant over the production time

Maximal increase of reliability, availability, and
safety of plant operation by extensive plant mon-
itoring, back-up measures, and explosion-proof-
ing provisions

Exact meeting of governmental regulations concern-
ing environmental pollution, the ignorance of
which incurs financial penalties and might pro-
voke social protest

Market-oriented production and customer-oriented
production planning and scheduling in the sense
of just-in-time production and the shortest
response to customer inquiries.

Severe international competition in the marketplace
and steadily rising labor, energy, and raw material
costs force enterprise management to introduce
advanced plant automation, that simultaneously
includes the office automation, required for compu-
ter-aided market monitoring, customer services, pro-
duction supervision and delivery terms checking,
accelerated order processing, extensive financial balan-
cing, etc. This is known as integrated enterprise auto-
mation and represents the highest automation level [1].

The use of dedicated comptuers to solve locally
restricted automation problems was the initial compu-
ter-based approach to plant automation, introduced in
the late 1950s and largely used in the 1960s. At that
time the computer was viewed—mainly due to its low
reliability and relatively high costs—not so much as a
control instrument but rather as a powerful tool to
solve some special, clearly defined problems of data
acquisition and data processing, process monitoring,
production recording, material and energy balancing,
production reporting, alarm supervision, etc. This ver-
satile capability of computers has also opened the pos-
sibility of their application to laboratory and test field
automation.

As a rule, dedicated computers have individually
been applied to partial plant automation, i.e., for auto-
mation of particular operational units or subsystems of
the plant. Later on, one single large mainframe com-
puter was placed in the central control room for cen-
tralized, computer-based plant automation. Using
such computers, the majority of indicating, recording,
and alarm-indicating elements, including the plant
mimic diagrams, have been replaced by corresponding
application software.



The advent of larger, faster, more reliable, and less
expensive process control computers in the mid 1960s
even encouraged vendors to place the majority of plant
and production automation functions into the single
central computer; this was possible due to the enor-
mous progress in computer hardware and software,
process and man—machine interface, etc.

However, in order to increase the reliability of the
central computer system, some backup provisions have
been necessary, such as backup controllers and logic
circuits for automatic switching from the computer to
the backup controller mode (Fig. 4) so that in the case
of computer failure the controllers take over the last
set-point values available in the computer and freeze
them in the latches available for this purpose. The
values can later on be manipulated by the plant opera-
tor in a similar way to conventional process control.

In addition, computer producers have been working
on some more reliable computer system structures,
usually in form of twin and triple computer systems.
In this way, the required availability of a central con-
trol computer system of at least 99.95% of production
time per year has enormously been increased. To this
comes that the troubleshooting and repair time has
dramatically been reduced through online diagnostic
software, preventive maintenance, and twin-computer

modularity of computer hardware, so that the number
of really needed backup controllers has been reduced
down to a small number of most critical ones.

The situation has suddenly been changed after the
microcomputers have increasingly been exploited to
solve the control problems. The 8-bit microcomputers,
such as Intel’s 8080 and Motorola’s MC 6800,
designed for bytewise data processing, have proved
to be appropriate candidates for implementation of
programmable controllers [6]. Moreover, the 16- and
32-bit microcomputer generation, to which Intel’s
8088 and 8086, Motorola’s 68000, Zilog’s Z 8000 and
many others belong, has even gained a relatively high
respect within the automation community. They have
worldwide been seen as an efficient instrumentation
tool, extremely suitable to solve a variety of automa-
tion problems in a rather simple way. Their high relia-
bility has placed them at the core of digital, single-loop
and multiloop controllers, and has finally introduced
the future trend in building automation systems by
transferring more and more programmed control
loops from the central computer into microcomputers,
distributed in the field. Consequently, the duties left to
the central computer have been less and less in the area
of process control, but rather in the areas of higher-
level functions of plant automation such as plant mon-
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itoring and supervision. This was the first step towards
splitting up the functional architecture of a computer-
based automation system into at least two hierarchical
levels (Fig. 5):

Direct digital control
Plant monitoring and supervision.

The strong tendency to see the process and produc-
tion control as a unit, typical in the 1970s, soon accel-
erated further architecture extension of computer-
based automation systems by introducing an addi-
tional level on top of the process supervisory level:
the production scheduling and control level. Later on,
the need was identified for building the centralized data
files of the enterprise, to better exploit the available
production and storage resources within the produc-
tion plant. Finally, it has been identified that direct
access to the production and inventory files helps opti-
mal production planning, customer order dispatching,
and inventory control.

In order to integrate all these strongly interrelated
requirements into one computer system, computer
users and producers have come to the agreement that
the structure of a computer system for integrated plant
and production automation should be hierarchical,
comprising at least the following hierarchical levels:

Process control
Plant supervision and control
Production planning and plant management.

This structure has also been professionally implemen-
ted by computer producers, who have launched an
abundant spectrum of distributed computers control
systems, €.g.:

ASEA MASTER (ASEA)

CENTUM (Yokogawa)
CONTRONIC P (Harman and Braun)
DCI 4000 (Fisher and Porter)

HIACS 3000 (Hitachi)

LOGISTAT CP 80 (AEG-Telefunken)
MOD 300 (Taylor Instruments)

PLS (Eckardt)

PMS (Ferranti)

PROCONTROL I (BBC)

PROVOX (Fisher Controls)
SPECTRUM (Foxboro)

TDC 3000 (Honeywell)

TeLEPERM M (Siemens)

TOSDIC (Toshiba).

1.4 AUTOMATION TECHNOLOGY

Development of distributed computer control systems
evidently depends on the development of their essential
parts: hardware, software, and communication links.
Thus, to better conceive the real capabilities of modern
automation systems it is necessary to review the tech-
nological level and the potential application possibili-
ties of the individual parts as constituent subsystems.
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1.4.1 Computer Technology

For more than 10 years, the internal, bus-oriented Intel
80 x 86 and Motorola 680 x 0 microcomputer archi-
tectures have been the driving agents for development
of a series of powerful microprocessors. However, the
real computational power of processors came along
with the innovative design of RISC (reduced instruc-
tion set computers) processors. Consequently, the
RISC-based microcomputer concept has soon outper-
formed the mainstream architecture. Today, most fre-
quently used RISC processors are the SPARC (Sun),
Alpha (DEC), R4X00 (MIPS), and PA-RISC (Hewlett
Packard).

Nevertheless, although being powerful, the RISC
processor chips have not found a firm domicile within
the mainstream PCs, but rather have become the core
part of workstations and of similar computational
facilities. Their relatively high price has decreased
their market share, compared to microprocessor
chips. Yet, the situation has recently been improved
by introducing emulation possibilities that enable com-
patibility among different processors, so that RISC-
based software can also run on conventional PCs. In
addition, new microprocessor chips with the RISC
architecture for new PCs, such as Power PC 601 and
the like, also promote the use of RISCs in automation
systems. Besides, the appearance of portable operating
systems and the rapid growth the workstation market
contributes to the steady decrease of price-to-perfor-
mance ratio and thus to the acceptance of RISC pro-
cessors for real-time computational systems.

For process control applications, of considerable
importance was the Intel initiative to repeatedly mod-
ify its 80 x 86 architecture, which underwent an evolu-
tion in five successive phases, represented through the
8086 (a 5 MIPS, 29,000-transistor processor), 80286 (a
2 MIPS, 134,000-transistor processor), 80386 (an 8
MIPS, 175,000-transistor processor), 80486 (a 37
MIPS 1.2-million-transistor processor), up to the
Pentium (a 112 and more MIPs, 3.1-million-transistor
processor). Currently, even an over 300 MIPS version
of the Pentium is commercially available.

Breaking the 100 MIPS barrier, up to then mono-
polized by the RISC processors, the Pentium has
secured a threat-free future in the widest field of appli-
cations, relying on existing systems software, such as
Unix, DOS, Windows, etc. This is a considerably lower
requirement than writing new software to fit the RISC
architecture. Besides, the availability of very advanced
system software, such as operating systems like
Windows NT, and of real-time and object-oriented

Copyright © 2000 Marcel Dekker, Inc.

languages, has essentially enlarged the application pos-
sibilities of PCs in direct process control, for which
there is a wide choice of various software tools, Kkits,
and tool boxes, powerfully supporting the computer-
aided control systems design on the PCs. Real-time
application programs developed in this way can also
run on the same PCs, so that the PCs have finally
become a constitutional part of modern distributed
computer systems [7].

For distributed, hierarchically organized plant auto-
mation systems, of vital importance are the computer-
based process-monitoring stations, the human—
machine interfaces representing human windows into
the process plant. The interfaces, mainly implemented
as CRT-based color monitors with some connected
keyboard, joystick, mouse, lightpen, and the like, are
associated with individual plant automation levels to
function as:

Plant operator interfaces, required for plant moni-
toring, alarm handling, failure diagnostics, and
control interventions.

Production dispatch and production-monitoring inter-
faces, required for plant production management

Central monitoring interfaces, required for sales,
administrative, and financial management of the
enterprise.

Computer-based human-machine interfaces have
functionally improved the features of the conventional
plant monitoring and command facilities installed in
the central control room of the plant, and completely
replaced them there. The underlying philosophy of new
plant-monitoring interfaces (that only those plant
instrumentation details and only the process variables
selected by the operator are presented on the screen)
releases the operator from the visual saturation present
in the conventional plant-monitoring rooms where a
great number of indicating instruments, recorders,
and mimic diagrams is permanently present and has
to be continuously monitored. In this way the plant
operator can concentrate on monitoring only those
process variables requiring immediate intervention.
There is still another essential aspect of process
monitoring and control that justifies abandoning the
conventional concept of a central control room, where
the indicating and recording clements are arranged
according to the location of the corresponding sensors
and/or control loops in the plant. This hampers the
operator in a multialarm case in intervening accord-
ingly because in this case the plant operator has to
simultaneously monitor and operationally interrelate
the alarmed, indicated, and required command values



situated at a relative large mutual distance. Using the
screen-oriented displays the plant operator can, upon
request, simultaneously display a large number of pro-
cess and control variables in any constellation. This
kind of presentation can even—guided by the situation
in the field—be automatically triggered by the
computer.

It should be emphasized that the concept of modern
human interfaces has been shaped, in cooperation
between the vendor designers and the users, for
years. During this time, the interfaces have evolved
into flexible, versatile, intelligent, user-friendly work-
places, widely accepted in all industrial sectors
throughout the world. The interfaces provide the user
with a wide spectrum of beneficial features, such as:

Transparent and easily understandable display of
alarm messages in chronological sequence that
blink, flash, and/or change color to indicate the
current alarm status

Display scrolling by advent of new alarm messages,
while handling the previous ones

Mimic diagram displays showing different details of
different parts of the plant by paging, rolling,
zooming, etc.

Plant control using mimic diagrams

Short-time and long-time trend displays

Real-time and historical trend reports

Vertical multicolor bars, representing values of pro-
cess and control variables, alarm limit values,
operating restriction values, etc.

Menu-oriented operator guidance with multipur-
pose help and support tools.

1.4.2 Control Technology

The first computer control application was implemen-
ted as direct digital control (DDC) in which the com-
puter was used as a multiloop controller to
simultancously implement tens and hundreds of con-
trol loops. In such a computer system conventional
PID controllers have been replaced by respective PID
control algorithms implemented in programmed digital
form in the following way.

The controller output y(f), based on the difference
e(t) between the control input u(f) and the set-point
value SPV is defined as

t

20 =K, | e(d) + Ti J o(z) dr + Ty P40
R

dt
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where K, is the proportional gain, T the reset time,
and T the rate time of the controller.

In the computer, the digital PID control algorithm
is based on some discrete values of measured process
variables at some equidistant time instants ¢, f{, ..., f,
of sampling, so that one has mathematically to deal
with the differences and the sums instead of with deri-
vatives and integrals. Therefore, the discrete version of
the above algorithm has to be developed by first differ-
entiating the above equation, getting

) =K, |:é(l) + %e(l) + Tp é(t):|
R

where ¢é(¢) and ¢(t) are the first and the second deriva-
tive of e(¢), and y(¢) the first derivative of y(¢). The
derivatives can be approximated at each sampling
point by

y(k) = (k) — y(k — 1))/ At

é(k) = (e(k) — e(k — 1))/ At
and

é(k) = (e(k) — é(k — 1))/ At

to result in
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This is known as the positional PDI algorithm that
delivers the new output value y(k), based on its pre-
vious value y(k — 1) and on some additional calcula-
tions in which the values of e(f) at three successive
samplings are involved. The corresponding velocity
version is

Ay(k) = y(k) — y(k — 1)

Better resutls can be achieved using the “smoothed”
derivative

1}171

. Cr—i — €k—i—]
e(k) =- Z _
né= At

or the “weighted” derivative



n—1
> Wiletk — i) — ek — i — 1]
(k) = =2

n—1

S,
i=0

in which the weighting factors are selected, so that
Wi=1W,

and

In this case the final digital form of the PID algorithm
is given by
y(k) = y(k — 1)+ bye(k) + bre(k — 1) + bye(k — 2)
+ bze(k — 3) + bge(k — 4)

with
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e
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Another form of discrete PID algorithm, used in the
first DDC implementations, was

k
0=k e+ L3 s 7, ==

R =0

Due to the sampling, the exact values of measured
process variables are known only at sampling
instances. Information about the signal values between
the sampling instances is lost. In addition, the require-
ment to hold the sampled value between two sampling
instants constantly delays the value by half of the sam-
pling period, so that the choice of a large sampling
period is equivalent to the introduction of a relatively
long delay into the process dynamics. Consequently,
the control loop will respond very slowly to the
changes in that set-point value, which makes it difficult
to properly manage urgent situations.

The best sampling time At to be selected for a given
control loop depends on the control algorithm applied
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and on the process dynamics. Moreover, the shorter
the sampling time, the better the approximation of
the continuous closed-loop system by its digital equiva-
lent, although this does not generally hold. For
instance, the choice of sampling time has a direct influ-
ence on pole displacement of the original (continuous)
system, whose discrete version can in this way become
unstable, unobservable, or uncontrollable.

For systems having only real poles and which are
controlled by a sampled-version algorithm, it is recom-
mended to choose the sampling time between 1/6 and
1/3 of the smallest time constant of the system. Some
practical recommendations plead for sampling times of
1 to 1.5 sec for liquid flow control, 3 to 5 sec of pres-
sure control, and 20 sec for temperature control.

Input signal quantization, which is due to the limited
accuracy of the analog-to-digital converters, is an essen-
tial factor influencing the quality of a digital control
loop. The quantization level can here produce a /limit
cycle within the frame of the quantization error made.

The use of analog-to-digital converters with a reso-
lution higher than the accuracy of measuring instru-
ments makes this influence component less relevant.
The same holds for the quantization of the output
signal, where the resolution of the digital-to-analog
converter is far higher than the resolution of position-
ing elements (actuators) used. In addition, due to the
low-pass behavior of the system to be controlled, the
quantization errors of output values of the controller
have no remarkable influence on the control quality.
Also, the problem of influence of the measurement
noise on the accuracy of a digital controllers can be
solved by analog or digital prefiltering of signals,
before introducing it into the control algorithm.

Although the majority of distributed control sys-
tems is achieving a higher level of sophistication by
placing more emphasis on the strategy in the control
loops, some major vendors of such systems are already
using artificial intelligence technology [8] to implement
knowledge-based controllers [9], able to learn online
from control actions and their effects [10,11]. Here,
particularly the rule-based expert controllers and
fuzzy-logic-based controllers have been successfully
used in various industrial branches. The controllers
enable using the knowledge base around the PID algo-
rithm to make the control loop perform better and to
cope with process and system irregularities including
the system faults [12]. For example, Foxboro has
developed the self-tuning controller EXACT based
on a pattern recognition approach [4]. The controller
uses a direct performance feedback by monitoring the
controlled process variable to determine the action



required. It is rule-based expert controller, the rules of
which allow a faster startup of the plant, and adapt the
controller’s parameters to the dynamic deviations of
plant’s parameters, changing set-point values, varia-
tions of output load, etc.

Allen—Bradley’s programmable controller config-
uration system (PCCS) provides expert solutions to
the programmable controller application problems in
some specific plant installations. Also introduced by
the same vendor is a programmable vision system
(PVS) that performs factory line recognition
inspection.

Accol II, of Bristol Babcock, the language of its
distributed process controller (DPC), is a tool for
building of rule-based control systems. A DPC can
be programmed, using heuristic knowledge, to behave
in the same way as a human plant operator or a con-
trol engineer in the field. The incorporated inference
engine can be viewed as a logical progression in the
enhancement of an advanced, high-level process con-
trol language.

PICON, of LMI, is a real-time expert system for
process control, designed to assist plant operators in
dealing with multiple alarms. The system can manage
up to 20,000 sensing and alarm points and can store
and treat thousands of inference rules for control and
diagnostic purposes. The knowledge acquisition inter-
face of the system allows building of relatively complex
rules and procedures without requiring artificial intel-
ligence programming expertise. In cooperation with
LMI, several vendors of distributed computer systems
have incorporated PICON into their systems, such as
Honeywell, Foxboro, Leeds & Northrup, Taylor
Instruments, ASEA—Brown Bovery, etc. For instance,
Leeds & Northrup has incorporated PICON into a
distributed computer system for control of a pulp
and paper mill.

Fuzzy logic controllers [13] are in fact simplified
versions of real-time expert controllers, mainly
based on a collection of IF-THEN rules and on
some declarative fuzzy values of input, output, and
control variables (classified as LOW, VERY LOW,
SMALL, VERY SMALL, HIGH, VERY HIGH,
etc.) are able to deal with the uncertainties and to
use fuzzy reasoning in solving engineering control pro-
blems [14,15]. Thus, they can easily replace any man-
ual operator’s control action by compiling the
decision rules and by heuristic reasoning on compiled
database in the field.

Originally, fuzzy controllers were predominantly
used as stand-alone, single-loop controllers, particu-
larly appropriate for solving control problems in the
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situations where the dynamic process behavior and
the character of external disturbances is now
known, or where the mathematical process model is
rather complex. With the progress of time, the fuzzy
control software (the fuzzyfier, rule base, rule inter-
preter, and the defuzzifier) has been incorporated
into the library of control functions, enabling online
configuration of fuzzy control loops within a distrib-
uted control system.

In the 1990s, efforts have been concentrated on the
use of neurosoftware to solve the process control pro-
blems in the plant by learning from field data [16].
Initially, neural networks have been used to solve cog-
nition problems, such as feature extraction and pattern
recognition. Later on, neurosoftware-based control
schemes have been implemented. Networks have even
been seen as an alternative technology for solving more
complex cognition and control problems based on
their massive parallelism and the connectionist learn-
ing capability. Although the neurocontrollers have
mainly been applied as dedicated controllers in proces-
sing plants, manufacturing, and robotics [17], it is
nevertheless to be expected that with the advent of
low-price neural network hardware the controllers
can in many complex situations replace the current
programmable controllers. This will introduce the pos-
sibility to easily implement intelligent control schemes
[18], such as:

Supervised controllers, in which the neural network
learns the sensor inputs mapping to correspond-
ing actions by learning a set of training examples,
possibly positive and negative

Direct inverse controllers, in which the network
learns the inverse system dynamics, enabling the
system to follow a planned trajectory, particu-
larly in robot control

Neural adaptive control, in which the network learns
the model-reference adaptive behavior on exam-
ples

Back-propagation of utility, in which the network
adapts an adaptive controller based on the results
of related optimality calculations

Adapative critical methods, in which the experiment
is implemented to simulate the human brain cap-
abilities.

Very recently also hybrid, neurofuzzy approaches
have been proposed, that have proven to be very effi-
cient in the area of state estimation, real-time target
tracking, and vehicle and robot control.



1.5 SYSTEMS ARCHITECTURE

In what follows, the overall structure of multicomputer
systems for plant automation will be described, along
with their internal structural details, including data file
organization.

1.5.1 Hierarchical Distributed System Structure

The accelerated development of automation technol-
ogy over many decades is a direct consequence of out-
standing industrial progress, innumerable technical
innovations, and a steadily increasing demand for
high-quality products in the marketplace. Process
and production industry, in order to meet the market
requirements, was directly dependent on methods and
tools of plant automation.

On the other hand, the need for higher and higher
automation technology has given a decisive impetus
and a true motivation to instrumentation, control,
computer, and communication engineers to continu-
ally improve methods and tools that help solve the
contemporary field problems. A variety of new meth-
ods has been proposed, classified into new disciplines,
such as signal and system analysis, signal processing,
state-space approach of system theory, model building,
systems identification and parameter estimation, sys-
tems simulation, optimal and adaptive control, intelli-
gent, fuzzy, and neurocontrol, etc. In addition, a large
arsenal of hardware and software tools has been devel-
oped comprising mainframe and microcomputers, per-
sonal computers and workstations, parallel and
massively parallel computers (neural networks), intel-
ligent instrumentation, modular and object-oriented
software experts, fuzzy and neurosoftware, and the
like. All this has contributed to the development of
modern automation systems, usually distributed, hier-
archically organized multicomputer systems, in which
the most advanced hardware, software, and communi-
cation links are operationally integrated.

Modern automation systems require distributed
structure because of the distributed nature of industrial
plants in which the control instrumentation is widely
spread throughout the plant. Collection and preproces-
sing of sensors data requires distributed intelligence
and an appropriate field communication system [19].
On the other hand, the variety of plant automation
functions to be executed and of decisions to be made
at different automation levels require a system archi-
tecture that—due to the hierarchical nature of the
functions involved—has also to be hierarchical.
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In the meantime, a layered, multilevel architecture
of plant automation systems has widely been accepted
by the international automation community that
mainly includes (Fig. 6):

Direct process control level, with process data collec-
tion and preprocessing, plant monitoring and
data logging, open-loop and closed-loop control
of process variables

Plant supervisory control level, at which the plant
performance monitoring, and optimal, adaptive,
and coordinated control is placed

Production scheduling and control level, production
dispatching, supervision, rescheduling and
reporting for inventory control, etc.

Plant management level, that tops all the activities
within the enterprise, such as market and custo-
mer demand analysis, sales statistics, order dis-
patching, monitoring and processing, production
planning and supervision, etc.

Although the manufacturers of distributed compu-
ter control systems design their systems for a wide
application, they still cannot provide the user with all
facilities and all functions required at all hierarchical
levels. As a rule, the user is required to plan the dis-
tribution system to be ordered. In order for the plan-
ning process to be successful, the user has above all to
clearly formulate the premises under with the system
has to be built and the requirements-oriented functions
to be implemented. This should be taken as a selection
guide for system elements to be integrated into the
future plant automation system, so that the planned
system [20]:

Covers all functions of direct control of all process
variables, monitors their values, and enables the
plant engineers optimal interaction with the plant
via sophisticated man—-machine interfaces

Offers a transport view into the plant performance
and the state-of-the-art of the production sche-
dule

Provides the plant management with the extensive
up-to-date reports including the statistical and
historical reviews of production and business
data

Improves plant performance by minimizing the
learning cycle and startup and setup trials

Permits faster adaptation to the market demand
tides

Implements the basic objectives of plant automa-
tion—production and quality increase, cost
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Figure 6 Bus-oriented hierarchical system.

Based on the above premises, the distributed computer
control system to be selected should include:

A rich library of special software packages for each
control, supervisory, production and manage-

ment level, particularly

At control level: a full set of preprocessing, con-

trol, alarm, and calculation algorithms for
measured process variables that is applicable
to a wide repertoire of sensing and actuating
elements, as well as a versatile display concept
with a large number of operator friendly facil-
ities and screen mimics

At supervisory level: wide alarm survey and tra-

cing possibilities, instantaneous, trend, and
short historical reporting features that include
the process and plant files management, along
with special software packages and block-
oriented languages for continuous and batch
process control and for configuration of plant
mimic diagrams, model building and para-
meter estimation options, etc.
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At production level: efficient software for online

production scheduling and rescheduling, for
performance monitoring and quality control,
for recipe handling, and for transparent and
exhaustive production data collection and
structured reporting

At management level: abundant stock of profes-

sional software for production planning and
supervision, order dispatch and terms check,
order and sales surveys and financial balancing,
market analysis and customer statistics, etc.

A variety of hardware features
At control level: attachment possibility for most

types of sensors, transducers, and actuators,
reliable and explosion-proof installation,
hard-duty and failsafe version of control
units, online system reconfiguration with a
high degree of systems expandability, guaran-
teed further development of control hardware
in the future by the same vendor, extensive
provision of online diagnostic and preventive
maintenance features

At supervisory and production level: wide program

of interactive monitoring options designed to



meet the required industrial standards, mult-
iple computer interfaces to integrate different
kinds of servers and workstations using inter-
nationally standardized bus systems and local
area networks, interfacing possibilities for var-
ious external data storage media

At management level: wide integration possibili-
ties of local and remote terminals and work-
stations.

It is extremely difficult to completely list all items
important for planning a widespread multicomputer
system that is supposed to enable the implementation
of various operational functions and services.
However, the aspects summarized here represent the
majority of essential guiding aids to the system plan-
ner.

1.5.2 Hierarchical Levels

In order to appropriately lay out a distributed compu-
ter control system, the problems it is supposed to solve
have to be specified [21]. This has to be done after a
detailed plant analysis and by knowledge elicitation
from the plant experts and the experts of different
enterprise departments to be integrated into the auto-
mation system [22]. Should the distributed system
cover automation functions of all hierarchical levels,
a detailed analysis of all functions and services should
be carried out, to result in an implementation report,
from which the hardware and software of the system
are to be planned. In the following, a short review of
the most essential functions to be implemented is given
for all hierarchical levels.

At plant instrumentation level [23], the details should
be listed concerning the

Sensors, actuators, and field controllers to be con-
nected to the system, their type, accuracy, group-
ing, etc.

Alarm occurrences and their locations

Backup concept to be used

Digital displays and binary indicators to be installed
in the field

Completed plant mimic diagrams required

Keyboards and local displays, hand pads, etc. avail-
able

Field bus to be selected.

At this lowest hierarchical level of the system the field-
mounted instrumentation and the related interfaces for
data collections and command distribution for open-
and closed-loop control are situated, as well as the
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electronic circuits required for adaptation of terminal
process elements (sensors and actuators) to the com-
puter input/output channels, mainly by signal condi-
tioning using:

Voltage-to-current and current-to-voltage conver-

sion

Voltage-to-frequency and frequency-to-voltage con-
version

Input signal preprocessing (filtering, smoothing,
etc.)

Signal range switching
Input/output channel selection
Galvanic isolation.

In addition, the signal format and/or digital signal
representation has also to be adapted using:

Analog-to-digital and digital-to-analog conversion
Parallel-to-serial and serial-to-parallel conversion
Timing, synchronization, triggering, etc.

The recent development of FIELDBUS, the interna-
tional process data transfer standard, has directly con-
tributed to the standardization of process interface
because the FIELDBUS concept of data transfer is a
universal approach for interfacing the final field con-
trol elements to the programmable controllers and
similar digital control facilities.

The search for the “best” FIELDBUS standard
proposal has taken much time and has created a series
of “good” bus implementations that are at least de
facto accepted standards in their application areas,
such as Bitbus, CiA, FAIS, FIP, IEC/ISA, Interbus-
S, mISP, ISU-Bus, LON, Merkur, P-net, PROFIBUS,
SERCOS, Signalbus, TTP, etc. Although an interna-
tionally accepted FIELDBUS standard is still not
available, some proposals have widely been accepted
but still not standardized by the ISO or IEC. One of
such proposals is the PROFIBUS (PROcess Fleld
BUS) for which a user group has been established to
work on implementation, improvement, and industrial
application of the bus.

In Japan, the interest of users has been concentrated
on the FAIS (Factory Automation Interconnection
System) Project, which is expected to solve the problem
of a time-critical communication architecture, particu-
larly important for production engineering. The final
objective of the bus standardization work is to support
the commercial process instrumentation with the built-
in field bus interface. However, also here, finding a
unique or a few compatible standard proposals is
extremely difficult.



The FIELDBUS concept is certainly the best
answer to the increasing cabling complexity at sensor
and actuator level in production engineering and pro-
cessing industries, which was more difficult to manage
using the point-to-point links from all sensors and
actuators to the central control room. Using the
FIELDBUS concept, all sensors and actuators are
interfaced to the distributed computer system in a
unique way, as any external communication facility.
The benefits resulting from this are multiple, some of
them being:

Enormous decrease of cabling and installation
costs.

Straightforward adaptation to any future sensor
and actuator technology.

Easy configuration and reconfiguration of plant
instrumentation, automatic detection of trans-
mission errors and cable faults, data transmission
protocol.

Facilitated implementation and use of hot backup
by the communication software.

The problem of common-mode rejection, galvanic
isolation, noise, and crosstalk vanishes due to
digitalization of analog values to be transmitted.

Plant instrumentation includes all field instrumenta-
tion elements required for plant monitoring and con-
trol. Using the process interface, plant instrumentation
is adapted to the input—output philosophy of the com-
puter used for plant automation purposes or to its data
collection bus.

Typical plant instrumentation elements are:

Physical transducers for process parameters

On/off drivers for blowers, power supplies, pumps,
etc.

Controllers, counters, pulse generators, filters, and
the like

Display facilities.

Distributed computer control systems have provided a
high motivation for extensive development of plant
instrumentation, above all with regard to incorpora-
tion of some intelligent functions into the sensors
and actuators.

Sensors and actuators [24,25] as terminal control
elements are of primary interest to control engineers,
because the advances of sensor and actuator technol-
ogy open new perspectives in further improvement of
plant automation. In the past, the development of spe-
cial sensors has always enabled solving control pro-
blems that have not been solvable earlier. For
example, development of special sensors for online
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measurement of moisture and specific weight of run-
ning paper sheet has enabled high-precision control of
the paper-making process. Similar progress in the pro-
cessing industry is expected with the development of
new electromagnetic, semiconductor, fiber-optic,
nuclear, and biological sensors.

The VLSI technology has definitely been a driving
agent in developing new sensors, enabling the extre-
mely small microchips to be integrated with the sensors
or the sensors to be embedded into the microchips. In
this way intelligent sensors [26] or smart transmitters
have been created with the data preprocessing and dig-
tal communication functions implemented in the chip.
This helps increase the measurement accuracy of the
sensor and its direct interfacing to the field bus. The
most preferable preprocessing algorithms implemented
within intelligent sensors are:

Calibration and recalibration in the field
Diagnostic and troubleshooting

Reranging and rescaling

Ambient temperature compensation

Linearization

Filtering and smoothing

Analog-to-digital and parallel-to-serial conversion
Interfacing to the field bus.

Increasing the intelligence of the sensors is simply to be
viewed as a shift of some functions, originally imple-
mented in a microcomputer, to the sensor itself. Much
more technical innovation is contained in the emerging
semiconductor and magnetic sensors, biosensors and
chemical sensors, and particularly in fiber-optic sen-
SOTS.

Fiber devices have for a long time been one of the
most promising development fields of fiber-optic tech-
nology [27,28]. For instance, the sensors developed in
this field have such advantages as:

High noise immunity

Insensitivity to electromagnetic interfaces
Intrinsic safety (i.e., they are explosion proof)
Galvanic isolation

Light weight and compactness

Ruggedness

Low costs

High information transfer capacity.

Based on the phenomena they operationally rely on,
the optical sensors can be classified into:

Refractive index sensors
Absorption coefficient sensors
Fluorescence constant sensors.



On the other hand, according to the process used for
sensing of physical variables, the sensors could be:

Intrinsic sensors, in which the fiber itself carries light
to and from a miniaturized optical sensor head,
i.e., the optical fiber forms here an intrinsic part
of the sensor.

Extrinsic sensors, in which the fiber is only used as a
transmission.

It should, nevertheless, be pointed out that—in spite
of a wealth of optical phenomena appropriate for sen-
sing of process parameters—the elaboration of indus-
trial versions of sensors to be installed in the
instrumentation field of the plant will still be a matter
of hard work over the years to come. The initial enor-
mous enthusiasm, induced by the discovery that fiber-
optic sensing is viable, has overlooked some consider-
able implementation obstacles of sensors to be
designed for use in industrial environments. As a con-
sequence, there are relatively few commercially avail-
able fiber-optic sensors applicable to the processing
industries.

At the end of the 1960s, the term integrated optics
was coined, a term analogous to integrated circuits.
The new term was supposed to indicate that in the
future LSI chips, photons should replace electrons.
This, of course, was a rather ambitious idea that was
later amended to become optoelectronics, indicating
the physical merger of photonic and electronic circuits,
known as optical integrated circuits. Implementation of
such circuits is based on thin-film waveguides, depos-
ited on the surface of a substrate or buried inside it.

At the process control level, details should be given
(Fig. 7) concerning:

Individual control loops to be configured, including
their parameters, sampling and calculation time
intervals, reports and surveys to be prepared,
fault and limit values of measured process vari-
ables, etc.

Structured content of individual logs, trend records,
alarm reports, statistical reviews, and the like

Detailed mimic diagrams to be displayed

Actions to be effected by the operator

Type of interfacing to the next higher priority level
exceptional control algorithms to be implemen-
ted.

At this level the functions required for collection and
processing of sensor data, for process control algo-
rithms, as well as the functions required for calculation
of command values to be transferred to the plant are
stored. Examples of such functions are functions for
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Figure 7 Functional hierarchical levels.

data acquisition functions include the operations needed
for sensor data collection. They usually appear as
initial blocks in an open- or closed-loop control
chain, and represent a kind of interface between the
system hardware and software. In the earlier process
control computer systems, the functions were known
as input device drivers and were usually a constituent
part of the operating system. To the functions belong:

Analog data collection
Thermocouple data collection
Digital data collection
Binary/alarm data collection
Counter/register data collection
Pulse data collection.

As parameters, usually the input channel number,
amplification factor, compensation voltage, conversion



factors, and others are to be specified. The functions
can be triggered cyclically (i.e., program controlled) or
event-driven (i.e., interrupt controlled).

Input signal-conditioning algorithms are mainly used
for preparation of acquired plant data, so that the data
can—after being checked and tested—be directly used
in computational algorithms. Because the measured
data have to be extracted from a noisy environment,
the algorithms of this group must include features like
separation of signal from noise, determination of phy-
sical values of measured process variable, decoding of
digital values, etc.

Typical signal-conditioning algorithms are:

Local linearization

Polynomial approximation

Digital filtering

Smoothing

Bounce suppression of binary values
Root extraction for flow sensor values
Engineering unit conversion
Encoding, decoding, and code version.

Test and check functions are compulsory for correct
application of control algorithms that always have to
operate on true values of process variables. Any error
in sensing elements, in data transfer lines, or in input
signal circuits delivers a false measured value which—
when applied to a control algorithm—can lead to a
false or even to a catastrophic control action. On the
other hand, all critical process variables have to be
continuously monitored, e.g., checked against their
limit values (or alarm values), whose crossing certainly
indicates the emergency status of the plant.

Usually, the fest and check algorithms include:

Plausibility test
Sensor/transmitter test
Tolerance range test
Higher/lower limit test
Higher/lower alarm test
Slope/gradient test
Average value test.

As a rule, most of the anomalies detected by the
described functions are, for control and statistical pur-
poses, automatically stored in the system, along with
the instant of time they have occurred.

Dynamic compensation functions are needed for spe-
cified implementation of control algorithms. Typical
functions of this group are:

Lead/lag
Dead time
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Differentiate
Integrator

Moving average
First-order digital filter
Sample-and-hold
Velocity limiter.

Basic control algorithms mainly include the PID algo-
rithm and its numerous versions, e.g.:

PID-ratio
PID-cascade
PID-gap
PID-auto-bias
PID-error squared
I, P, PI, PD

As parameters, the values like proportional gain, inte-
gral reset, derivative rate, sampling and control inter-
vals, etc. have to be specified.

Output signal condition algorithms adapt the calcu-
lated output values to the final or actuating elements to
be influenced. The adaptation includes:

Calculation of full, incremental, or percentage
values of output signals

Calculation of pulse width, pulse rate, or number of
pulses for outputting

Book-keeping of calculated signals, lower than the
sensitivity of final elements

Monitoring of end values and speed saturation of
mechanical, pneumatic, and hydraulic actuators.

Output functions corresponds, in the reversed sense, to
the input functions and include the analog, digital, and
pulse output (e.g., pulse width, pulse rate, and/or pulse
number).

At plant supervisory level (Fig. 7) the functions are
concentrated, required for optimal process control,
process performance monitoring, plant alarm manage-
ment, and the like. For optimal process control,
advanced, model-based control strategies are used
such as:

Feed-forward control
Predictive control
Deadbeat control
State-feedback control
Adaptive control
Self-tuning control.

When applying the advanced process control, the:

Mathematical process model has to be built.



Optimal performance index has to be defined, along
with the restriction on process or control vari-
ables.

Set of control variables to be manipulated for the
automation purposes has to be identified.

Optimization method to be used has to be selected.

In engineering practice, the least-squares error is used
as performance index to be minimized, but a number of
alternative indices are also used in order to attain:

Time optimal control
Fuel optimal control
Cost optimal control
Composition optimal control.

Adaptive control [29] is used for implementation of
optimal control that automatically accommodates the
unpredictable environmental changes or signal and
system uncertainties due to the parameter drifts or
minor component failures. In this kind of control,
the dynamic systems behavior is repeatedly traced
and its parameters estimated which—in the case of
their deviation from the given optimal values—have
to be compensated in order to retain their constant
values.

In modern control theory, the term self-tuning con-
trol [30] has been coined as alternative to adaptive
control. In a self-tuning system control parameters
are, based on measurements of system input and out-
put, automatically tuned to result into a sustained opti-
mal control. The tuning itself can be affected by the use
of measurement results to:

Estimate actual values of system parameters and,
in the sequence, to calculate the corresponding
optimal values of control parameters, or to

Directly calculate the optimal values of control
parameters.

Batch process control is basically a sequential, well-
timed stepwise control that in addition to a prepro-
grammed time interval generally includes some binary
state indicators, the status of which is taken at each
control step as a decision support for the next control
step to be made. The functional modules required for
configuration of batch control software are:

Timers, to be preset to required time intervals or to
the real-time instants

Time delay modules, time- or event-driven, for deli-
miting the control time intervals

Programmable up-count and down-count timers as
time indicators for triggering the preprogrammed
operational steps
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Compactors as decision support in initiation of new
control sequences

Relational blocks as internal message elements of
control status

Decision tables, defining—for specified input condi-
tions—the corresponding output conditions to be
executed.

In a similar way the recipe handling is carried out. It
is also a batch-process control, based on stored recipes
to be downloaded from a mass storage facility contain-
ing the completed recipes library file. The handling
process is under the competence of a recipe manager,
a batch-process control program.

Energy management software takes care that all
available kinds of energy (electrical, fuel, steam,
exothermic heat, etc.) are optimally used, and that
the short-term (daily) and long-term energy demands
are predicted. It continuously monitors the generated
and consumed energy, calculates the efficiency index,
and prepares the relevant cost reports. In optimal
energy management the strategies and methods are
used, which are familiar in optimal control of station-
ary processes.

Contemporary distributed computer control sys-
tems are equipped with a large quantity of different
software packages classified as:

System software, i.e., the computer-oriented soft-
ware containing a set of tools for development,
generation, test, run, and maintenance of pro-
grams to be developed by the user

Application software, to which the monitoring, con-
trol loop configuration, and communication soft-
ware belong.

System software is a large aggregation of different
compilers and utility programs, serving as systems
development tools. They are used for implementation
of functions that could not be implemented by any
combination of program modules stored in the library
of functions. When developed and stored in the library,
the application programs extend its content and allow
more complex control loops to be configured.
Although it is, at least in principle, possible to develop
new programmed functional modules in any languages
available in process control systems, high-level lan-
guages like:

Real-time languages
Process-oriented languages

are still preferred for such development.



Real-time programming languages are favored as
support tools for implementation of control software
because they provide the programmer with the neces-
sary features for sensor data collection, actuator data
distribution, interrupt handling, and programmed real-
time and difference-time triggering of actions. Real-
time FORTRAN is an example of this kind of high-
level programming language.

Process-oriented programming languages go one step
further. They also support planning, design, genera-
tion, and execution of application programs (i.e., of
their tasks). They are higher-level languages with multi-
tasking capability, that enables the programs, imple-
mented in such languages, to be simultaneously
executed in an interlocked mode, in which a number
of real-time tasks are executed synchronously, both in
time- or event-driven mode. Two outstanding exam-
ples of process-oriented languages are:

Ada, able to support implementation of complex,
comprehensive system automation software in
which, for instance, the individual software
packages, generated by the members of a pro-
gramming team, are integrated in a cooperative,
harmonious way

PEARL (Process and Experiment Automation
Real-Time Language), particularly designed for
laboratory and industrial plant automation,
where the acquisition and real-time processing
of various sensor data are carried out in a multi-
tasking mode.

In both languages, a large number of different kinds of
data can be processed, and a large-scale plant can be
controlled by decomposing the global plant control
problem into a series of small, well-defined control
tasks to run concurrently, whereby the start, suspen-
sion, resumption, repetition, and stop of individual
tasks can be preprogrammed, i.e., planned.

In Europe, and particularly in Germany, PEARL is
a widespread automation language. It runs in a num-
ber of distributed control systems, as well as in diverse
mainframes and personal computers like PDP-11,
VAX 11/750, HP 3000, and Intel 80x86, Motorola
68000, and Z 8000.

Besides the general purpose, real-time and process-
oriented languages discussed here, the majority of
commercially available distributed computer control
systems are well equipped with their own, machine-
specific, high-level programming languages, specially
designed for facilitation of development of user-tailored
application programs.
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At the plant management level (Fig. 7) a vast quan-
tity of information should be provided, not familiar to
the control engineer, such as information concerning:

Customer order files

Market analysis data

Sales promotion strategies

Files of planned orders along with the delivery
terms

Price calculation guidelines

Order dispatching rules

Productivity and turnover control

Financial surveys

Much of this is to be specified in a structured, alpha-
numeric or graphical form, this because—apart from
the data to be collected—each operational function to
be implemented needs some data entries from the lower
neighboring layer, in order to deliver some output data
to the higher neighboring layer, or vice versa. The data
themselves have, for their better management and
easier access, to be well-structured and organized in
data files. This holds for data on all hierarchical levels,
so that in the system at least the following databases
are to be built:

Plant databases, containing the parameter values
related to the plant

Instrumentation databases, where the data are stored
related to the individual final control elements
and the equipment placed in the field

Control databases, mainly comprising the configura-
tion and parametrization data, along with the
nominal and limit values of the process variable
to be controlled

Supervisory databases required for plant perfor-
mance monitoring and optimal control, for
plant modeling and parameter estimation, as
well as production monitoring data

Production databases for accumulation of data rele-
vant to raw material supplies, energy and pro-
ducts stock, production capacity and actual
product priorities, for specification of product
quality classes, lot sizes and restrictions, stores
and transport facilities, etc.

Management databases, for keeping trace of custo-
mer orders and their current status, and for stor-
ing the data concerning the sales planning, raw
material and energy resources status and
demands, statistical data and archived long-
term surveys, product price calculation factors,
etc.



Before the structure and the required volume of the
distributed computer system can be finalized, a large
number of plant, production, and management-rele-
vant data should be collected, a large number of
appropriate algorithms and strategies selected, and a
considerable amount of specific knowledge by inter-
viewing various experts elucidated through the system
analysis. In addition, a good system design demands a
good cooperation between the user and the computer
system vendor because at this stage of the project plan-
ning the user is not quite familiar with the vendor’s
system, and because the vendor should—on the user’s
request—implement some particular application pro-
grams, not available in the standard version of system
software.

After finishing the system analysis, it is substantial
to entirely document the results achieved. This is par-
ticularly important because the plants to be auto-
mated are relatively complex and the functions to
be implemented distributed across different hierarch-
ical levels. For this purpose, the detailed instrumenta-
tion and installation plans should be worked out
using standardized symbols and labels. This should
be completed with the /list of control and display flow
charts required. The programmed functions to be
used for configuration and parametrization purposes
should be summarized in a tabular or matrix form,
using the fill-in-the-blank or fill-in-the-form technique,
ladder diagrams, graphical function charts, or in spe-
cial system description languages. This will certainly
help the system designer to better tailor the hardware
and the system programmer to better style the soft-
ware of the future system.

To the central computer system a number of compu-
ters and computer-based terminals are interconnected,
executing specific automation functions distributed
within the plant. Among the distributed facilities
only those directly contributing to the plant automa-
tion are important, such as:

Supervisory stations
Field control stations

Supervisory stations are placed at an intermediate level
between the central computer system and the field con-
trol stations. They are designed to operate as autono-
mous elements of the distributed computer control
system executing the following functions:

State observation of process variables

Calculation of optimal set-point values

Performance evaluation of the plant unit they
belong to
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Batch process control

Production control

Synchronization and backup of subordinated field
control stations

Because they belong to some specific plant units, the
supervisory stations are provided with special applica-
tion software for material tracking, energy balancing,
model-based control, parameter tuning of control loops,
quality control, batch control, recipe handling, etc.

In some applications, the supervisory stations figure
as group stations, being in charge of supervision of a
group of controllers, aggregates, etc. In the small-scale
to middle-scale plants also the functions of the central
computer system are allocated to such stations.

A brief review of commercially available systems
shows that the following functions are commonly
implemented in supervisory stations:

Parameter tuning of controllers: CONTRONIC
(ABB), DCI 5000 (Fisher and Porter), Network
90 (Bailey Controls), SPECTRUM (Foxboro),
etc.

Batch control: MOD 300 (Taylor Instruments),
TDC 3000 (Honeywell), TELEPERM M
(Siemens), etc.

Special, high-level control: PLS 80 (Eckhardt),
SPECTRUM, TDC 3000, CONTRONIC P,
NETWORK 90, etc.

Recipe handling: ASEA-Master (ABB), CENTUM
and YEWPACK II (Yokogawa), LOGISTAT
CP-80 (AEG Telefunken), etc.

The supervisory stations are also provided with the
real-time and process-oriented general or specific
high-level programming languages like FORTRAN,
RT-PASCAL, BASIC, CORAL [PMS (Ferranti)],
PEARL, PROSEL [P 4000 (Kent)], PL/M, TML, etc.
Using the languages, higher-level application programs
can be developed.

At the lowest hierarchical level the field control sta-
tions, i.e., the programmable controllers are placed,
along with some process monitors. The stations, as
autonomous subsystems, implement up to 64 control
loops. The software available at this control level
includes the modules for

Process data acquisition
Process control
Control loop configuration

Process data acquisition software, available within the
contemporary distributed computer control systems, is
modular software, comprising the algorithms [31] for



sensors, data collection, and preprocessing, as well as
for actuator data distribution [31,32]. The software
modules implement functions like:

Input device drivers, to serve the programming of
analog, digital, pulse, and alarm or interrupt
inputs, both in event drivers or in cyclic mode

Input signal conditioning, to preprocess the collected
sensor values by applying the linearization, digi-
tal filtering and smoothing, bounce separation,
root extraction, engineering conversion, encod-
ing, etc.

Test and check operations, required for signal plau-
sibility and sensor/transmitter test, high and low
value check, trend check, etc.

Output signal conditioning, needed for adapting the
output values to the actuator driving signals, like
calculation of full and incremental output values,
based on the results of the control algorithm
used, or the calculation of pulse rate, pulse
width, or the total number of pulses for output-
ting

Output device drivers, for execution of calculated
and conditioned output values.

Process control software, also organized in modular
form, is a collection of control algorithms, containing:

Basic control algorithms, i.e., the PID algorithm and
its various modifications (PID ratio, cascade,
gap, autobias, adaptive, etc.)

Advanced control algorithms like feed-forward, pre-
dictive, deadbeat, state feedback, self-tuning,
nonlinear, and multivariable control.

Control loop configuration [33] is a two-step proce-
dure, used for determination of:

Structure of individual control loops in terms of
functional modules used and of their interlink-
age, required for implementation of the desired
overall characteristics of the loop under config-
uration, thus called the loop’s configuration step

Parameter values of functional modules involved in
the configuration, thus called the loop’s parame-
trization step.

Once configured, the control loops are stored for their
further use. In some situations also the parameters of
the block in the loop are stored.

Generally, the functional blocks available within the
field control stations—in order not to be destroyed—
are stored in ROM or EPROM as a sort of firmware
module, whereas the data generated in the process of
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configuration and parametrization are stored in RAM,
i.e., in the memory where the configured software runs.

It should be pointed out that every block required
for loop configurations is stored only once in ROM, to
be used in any numbers of loops configured by simply
addressing it, along with the pertaining parameter
values in the block linkage data. The approach actually
represents a kind of soft wiring, stored in RAM.

For multiple use of functional modules in ROM,
their subroutines should be written in re-entrant
form, so that the start, interruption, and continuation
of such a subroutine with different initial data and
parameter values is possible at any time.

It follows that once having all required functional
blocks as a library of subroutine modules, and the tool
for their mutual patching and parameterization, the
user can program the control loops in the field in a
ready-to-run form. The programming is here a rela-
tively easy task because the loop configuration means
that, to implement the desired control loop, the
required subroutine modules should be taken from
the library of functions and linked together.

1.5.3 Data File Organization

The functions, implemented within the individual func-
tional layers, need some entry data in order to run and
generate some data relevant to the closely related func-
tions at the ‘“‘neighboring” hierarchical levels. This
means that the automation functions implemented
should directly access some relevant initial data to gen-
erate some data of interest to the neighboring hierarch-
ical levels. Consequently, the system functions and the
relevant data should be allocated according to their
tasks; this represents the basic concept of distributed,
hierarchically organized automation systems: automa-
tion functions should be stored where they are needed,
and the data where they are generated, so that only
some selected data have to be transferred to the adja-
cent hierarchical levels. For instance, data required for
direct control and plant supervision should be allo-
cated in the field, i.e., next to the plant instrumentation
and data, required for higher-level purposes, should be
allocated near to the plant operator.

Of course, the organization of data within a hiera-
chically structured system requires some specific con-
siderations concerning the generation, access,
updating, protection, and transfer of data between dif-
ferent files and different hierarchical levels.

As common in information processing systems, the
data are basically organized in files belonging to the
relevant database and being distributed within the sys-



tem, so that the problem of data structure, local and
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the selected data are received from other levels,
whereby the intensity of the data flow ‘“upward”
through the system decreases, and in the opposite + Dlant Sratus Data
direction increases. Also, the communication fre-
quency between the “lower” hierarchical levels is
higher, and the response time shorter than between
the “higher” hierarchical levels. This is due to the auto- r
mation functions of lower levels servicing the real-time
tasks, whereas those of the higher levels service some
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The content of individual database units (DB) (Fig.
8) basically depends on their position within the hier- ¥ t
archical system. So, the process database (Fig. 9), situ-
ated at process control level, contains the data Figure 9 Process DB.

necessary for data acquisition, preprocessing, check-
ing, monitoring and alarm, open- and closed-loop con-

trol, positioning, reporting, logging, etc. The database
unit also contains, as long-term data, the specifications
S concerning the loop configuration and the parameters
Management DE of individual functional blocks used. As short-term
data it contains the measured actual values of process
variables, the set-point values, calculated output
r v values, and the received plant status messages.
Depending on the nature of the implemented func-
Production DI tions, the origin of collected data, and the destination
of generated data, the database unit at process control
level has—in order to handle a large number of short-
Y v life data having a very fast access—to be efficient under
real-time conditions. To the next “higher” hierarchical
Plant DE of Supervisory Control | level only some actual process values and plant status
messages are forwarded, along with short history of
T T some selected process variables. In the reverse direc-
tion, calculated optimal set-point values for controllers

are respectively to be transferred.
Process DI ’ The plan.l database, situa.ted at supervision control
level, contains data concerning the plant status, based
on which the monitoring, supervision, and operation
of plant is carried out (Fig. 10). As long-term data, the
database unit contains the specifications concerning
the available standard and user-made displays, as
PLANT well as data concerning the mathematical model of
the plant. As short-term data the database contains
the actual status and alarm messages, calculated values
of process variables, process parameters, and optimal
Figure 8 Individual DB units. set-point values for controllers. At the hierarchical
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level, a large number of data are stored whose access
time should be within a few seconds. Here, some cal-
culated data have to be stored for a longer time (his-
torical, statistical, and alarm data), so that for this
purpose hard disks are used as backup storage. To
the “‘higher” hierarchical level, only selected data are
transferred for production scheduling, and directives
are received.

The production database, situated at production
scheduling and control level (Fig. 11), contains data
concerning the products and raw material stocks, pro-
duction schedules, production goals and priorities, lot
sizes and restrictions, quality control as well as the
store and transport facilities. As long-term data the
archived statistical and plant alarm reports are stored
in bulk memories. The data access time is here in no
way critical. To the ‘“higher” hierarchical level, the
status of the production and order processing, as well
as of available facilities necessary for production
replanning is sent, and in the reverse direction the tar-
get production data.

Finally, the management database, stored at corpo-
rate or enterprise management level (Fig. 12), contains
data concerning the customer orders, sales planning,
product stocks and production status, raw material
and energy resources and demands, status of store
and transport facilities, etc. Data stored here are
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long-term, requiring access every few minutes up to
many weeks. For this reason, a part of the database
can be stored on portable magnetic media, where it can
be deposited for many years for statistical or adminis-
trative purposes.

The fact that different databases are built at differ-
ent hierarchical levels and possibly stored in different
computers, administrated by different database man-
agement or operating systems, makes the access of any
hierarchical level difficult. Inherent problems here are
the problems of formats, log output procedures, con-
currency control, and other logical differences con-
cerning the data structures, data management
languages, label incompatibilities, etc. In the mean-
time, some appraoches have been suggested for solving
some of the problems, but there is still much creative
work to be done in this field in order to implement
flexible, level-independent access to any database in a
distributed computer system.

Another problem, typical for all time-related data-
bases, such as the real-time and production manage-
ment databases, is the representation of time-related
data. Such data have to be integrated into the context
of time, a capability that the conventional database
management systems do not have. In the meantime,
numerous proposals have been made along this line
which include the time to be stored as a universal attri-
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bute. The attribute itself can, for instance, be transac-
tion time, valid time, or any user-defined time.
Recently, four types of time-related databases have

been defined according to their

ability to support the

time concepts and to process temporal information:
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Snapshot databases, i.e., databases that give an
instance or a state of the data stored concern-
ing the system (plant, enterprise) at a certain
instant of time, but not necessarily correspond-
ing to the current status of the system. By
insertion, deletion, replacement, and similar
data manipulation a new snapshot database
can be prepared, reflecting a new instance or
state of the system, whereby the old one is
definitely lost.

Rollback databases, e.g., a series of snapshot data-
bases, simultancously stored and indexed by
transaction time, that corresponds to the instant
of time the data have been stored in the database.
The process of selecting a snapshot out of a roll-
back database is called rollback. Also here, by
insertion of new and deletion of old data (e.g.,
of individual snapshots) the rollback databases
can be updated.

Historical databases, in fact snapshot databases in
valid time, i.e., in the time that was valid for the
systems as the databases were built. The content
of historical databases is steadily updated by
deletion of invalid data, and insertion of actual
data acquired. Thus, the databases always reflect
the reality of the system they are related to. No



data belonging to the past are kept within the
database.

Temporal databases are a sort of combination of
rollback and historical databases, related both
to the transition time and the valid time.

1.6 COMMUNICATION LINKS REQUIRED

The point-to-point connection of field instrumentation
elements (sensors and actuators) and the facilities
located in the central control room is highly inflexible
and costly. This total reduction of wiring and cable-
laying expenses remains the most important objective
when installing new, centralized automation systems.
For this purpose, the placement of a remote process
interface in the field multiplexers and remote terminal
units (RTUs) was the initial step in partial system
decentralization. With the availability of microcompu-
ters the remote interface and remote terminal units
have been provided with the due intelligence so that
gradually some data acquisition and preprocessing
functions have been also transferred to the frontiers
of the plant instrumentation.

Yet, data transfer within the computer-based, dis-
tributed hierarchical system needs an efficient, univer-
sal communication approach for interconnecting the
numerous intelligent, spatially distributed subsystems
at all automation levels. The problems to be solved in
this way can be summarized as follows:

At field level: interconnection of individual final ele-
ments (sensors and actuators), enabling their tel-
ediagnostics and remote calibration capability

At process control level: implementation of indivi-
dual programmable control loops and provision
of monitoring, alarms, and reporting of data

At production control level: collection of data
required for production planning, scheduling, mon-
itoring, and control

At management level: integration of the production,
sales, and other commercial data required for
order processing and customer services.

In the last two or more decades much work has been
done on standardization of a data communication
links, particularly appropriate for transfer of process
data from the field to the central computer system. In
this context, Working Group 6 of Subcommittee 65C
of the International Electrotechnical Commission
(IEC), the scope of which concern the Digital Data
Communications for Measurement and Control, has
been working on PROWAY (Process Data

Copyright © 2000 Marcel Dekker, Inc.

Highway), an international standard for a high-
speed, reliable, noise immune, low-cost data transfer
within the plant automation systems. Designed as a
bus system, PROWAY was supposed to guarantee
the data transfer rate of 1 Mbps over a distance of 3
km, with up 100 participants attached along the bus.
However, due to the IEEE work on project 802 on
local area networks, which at the time of standardiza-
tion of PROWAY had already been accepted by the
communication community, the implementation of
PROWAY was soon abandoned.

The activity of the IEEE in the field of local area
networks was welcomed by both the IEC and the
International Organization for Standardization (ISO)
and has been converted into corresponding interna-
tional standards. In addition, the development of mod-
ern intelligent sensors and actuators, provided by
telediagnostics and remote calibration capabilities,
has stimulated the competent professional organiza-
tions (IEC, ISA, and the IEEE itself) to start work
on the standardization of a special communication
link, appropriate for direct transfer of field data, the
FIELDBUS. The bus standard was supposed to meet
at least the following requirements:

Multiple drop and redundant topology, with a total
length of 1.5km or more.

For data transmission twisted pair, coax cable, and
optical fiber should be applicable.

Single-master and multiple-master bus arbitration
must be possible in multicast and broadcast
transmission mode.

Access time of 5-20 sec or a scan rate of 100 samples
per second should be guaranteed.

High-reliability with the error detection features
built in the data transfer protocol.

Galvanic and electrical (>250V) isolation.

Mutual independence of bus participants.

Electromagnetic compatibility.

The requirements have simultaneously been worked
out by IEC TC 65C, ISA SP 50, and IEEE P 1118.
However, no agreement has been achieved on final
standard document because four standard candidates
have been proposed:

BITBUS (Intel)

FIP (Factory Instrumentation Protocol) (AFNOR)
MIL-STD-1533 (ANSI)

PROFIBUS (Process Field Bus) (DIN).

The standardization work in the area of local area net-
works, however, has in the last more than 15 years



been very successful. Here, the standardization activ-
ities have been concentrated on two main items:

ISO/OSI Model
IEEE 802 Project.

The ISO has within its Technical Committee 97
(Computers and Information Processing) established
the subcommittee 16 (Open Systems Interconnection)
to work on architecture of an international standard of
what is known as the OSI (Open Systems
Interconnection) model [34], which is supposed to be
a reference model of future communication systems. In
the model, a hierarchically layered structure is used to
include all aspects and all operating functions essential
for compatible information transfer in all application
fields concerned. The model structure to be standar-
dized defines individual layers of the communication
protocol and their functions there. However, it should
not deal with the protocol implementation technology.

The work on the OSI model has resulted in a recom-
mendation that the future open system interconnection

standard should incorporate the following functional
layers (Fig. 13):

Physical layer, the layer closed to the data transfer
medium, containing the physical and procedural
fucntions related to the medium access, such as
switching of physical connections, physical mes-
sage transmission, etc., without any prescription
of any specific medium

Data link layer, responsible for procedural functions
related to link establishment and release, trans-
mission framing and synchronization, sequence
and flow control, error protection

Network layer, required for reliable, cost-effective,
and transparent transfer of data along the trans-
mission path between the end stations by ade-
quate routing, multiplexing, internetworking,
segmentation, and block building

Transport layer, designed for establishing, supervi-
sion, and release of logic transport connections
between the communication participants, aiming
at optimal use of network layer services
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Session layer, in charge of opening, structuring, con-
trol, and termination of a communication session
by establishing the connection to the transport
layer

Presentation layer, which provides independence of
communication process on the nature and the
format of data to be transferred by adaptation
and transformation of source data to the internal
system syntax conventions understandable to the
session layer

Application layer, the top layer of the model, serving
the realization and execution of user tasks by
data transfer between the application processes
at semantic level.

Within distributed computer control systems, usually
the physical, logic link, and application layers are
required, other layers being needed only when inter-
networking and interfacing the system with the public
networks.

As mentioned before, the first initiative of IEEE in
standardization of local area networks [18,35] was
undertaken by establishing its Project 802. The project
work has resulted in release of the Draft Proposal
Document on Physical and Data Link Layers, that
still was more a complication of various IBM Token
Ring and ETHERNET specifications, rather than an
entirely new standard proposal. This was, at that time,
also to be expected because in the past the only com-
mercially available and technically widely accepted de
facto communication standard was ETERNET and
the IBM Internal Token Ring Standard. The slotted
ring, developed at the University of Cambridge and
known as the Cambridge Ring, was not accepted as a
standard candidate.

Real standardization work within the IEEE has in
fact started by shaping the new bus concept based on
CSMA/CD (Carrier Sense Multiple Access/Contention
Detection) principle of MAC (Medium Access
Control). The work has later been extended to standar-
dization of a token passing bus and a token passing
ring, that have soon been identified as future industrial
standards for building complex automation systems.

In order to systematically work on standardization
of local area networks [36], the IEEE 802 Project has
been structured as follows:

802.1 Addressing, Management, Architecture
802.2 Logic Link Control

802.3 CSMA/CD MAC Sublayer

802.4 Token Ring MAC Sublayer

802.5 Token Ring MAC Sublayer

802.6 Metropolitan Area Networks
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802.7 Broadband Transmission
802.8 Fiber Optics
802.9 Integrated Voice and Data LANS.

The CSMA/CD standard defines a bit-oriented local
area network, most widely used in implementation of
the ETHERNET system as an improved ALOHA
concept. Although being very reliable, the CSMA/
CD medium access control is really efficient when the
aggregate channel utilization is relatively low, say
lower than 30%.

The token ring is a priority type, medium access
control principle in which a symbolic token is used
for setting the priority within the individual ring parti-
cipants. The token is passed around the ring, intercon-
necting all the stations. Any station intending to
transmit data should wait for the free token, declare
it by encoding for a busy token, and start sending the
message frames around the ring. Upon completion of
its transmission, the station should insert the free token
back into the ring for further use.

In the token ring, a special 8-bit pattern is used, say
11111111 when free, and 11111110 when busy. The
pattern is passed without any addressing information.
In the token bus, the token, carrying an addressing
information related to the next terminal unit permitted
to use the bus, is used. Each station, after finishing its
transmission, inserts the address of the next user into
the token and sends it along the bus. In this way, after
circulating through all participating stations the token
again returns to the same station so that actually a
logic ring is virtually formed into which all stations
are included in the order they pass the token to each
other.

In distributed computer control systems, communi-
cation links are required for exchange of data between
individual system parts in the range from the process
instrumentation up to the central mainframe and the
remote intelligent terminals attached to it. Moreover,
due to the hierarchical nature of the system, different
types of data communication networks are needed at
different hierarchical levels. For instance:

The field level requires a communication link
designed to collect the sensor data and to distri-
bute the actuator commands.

The process control level requires a high-perfor-
mance bus system for interfacing the program-
mable controllers, supervisory computers, and
the relevant monitoring and command facilities.

The production control and production management
level requires a real-time local area network as a



system interface, and a long-distance communi-
cation link to the remote intelligent terminals
belonging to the system.

Presently, almost all commercially available systems
use at all communication levels very well-known
interntional bus and network standards. This facili-
tates the products compatibility of different computer
and instrumentation manufacturers, giving the user’s
system planner to work out a powerful, low-cost multi-
computer system by integrating the subsystems with
highest performance-to-price ratio.

Although there is a vast number of different com-
munication standards used in design of different com-
mercially available distributed computer control
systems, their comparative analysis suggests their gen-
eral classification into:

Automation systems for small-scale plants and med-
ium-scale plants, having only the field and the
process control level. They are basically bus-
oriented systems requiring not more than two
buses. The systems can, for higher level automa-
tion purposes, be interfaced via any suitable com-
munication link to a mainframe.

Automation systems for medium-scale to large-scale
plants additionally having the production plan-
ning and control level. They are area network
oriented and can require a long distance bus or a
bus coupler (Fig. 1).

Automation systems for large-scale plants with the
integrated automation concept, requiring more or
less all types of communication facilities: buses,
rings, local area networks, public networks, and
a number of bus couplers, network bridges, etc.
Manufacturing plant automation could even
involve different backbone buses and local area
networks, network bridges and network gateways,
etc. (Fig. 13). Here, due to the MAP/TOP stan-
dards, a broad spectrum of processors and pro-
grammable controllers of different vendors (e.g.
Allen Bradley, AT&T, DEC, Gould, HP,
Honeywell, ASEA, Siemens, NCR, Motorola,
SUN, Intel, ICL, etc.) have been mutually inter-
faced to directly exchange the data via a MAP/
TOP system.

The first distributed control system launched by
Honeywell, the TDC 2000 system, was a multiloop
controller with the controllers distributed in the field,
and was an encouraging step, soon to be followed by a
number of leading computer and instrumentation ven-
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dors such as Foxboro, Fisher and Porter, Taylor
Instruments, Siemens, Hartman and Braun,
Yokogawa, Hitachi, and many others. Step by step,
the system has been improved by integrating powerful
supervisory and monitoring facilities, graphical proces-
sors, and general purpose computer systems, intercon-
nected via high-performance buses and local area
networks. Later on, programmable logic controllers,
remote terminal units, SCADA systems, smart sensors
and actuators, intelligent diagnostic and control soft-
ware, and the like was added to increase the system
capabilities.

For instance, in the LOGISTAT CP 80 System of
AEG, the following hierarchical levels have been
implemented (Fig. 14):

Process level, or process instrumentation level

Direct control level or DDC level for signal data
processing, open- and closed-loop control, mon-
itoring of process parameters, etc.

Group control level for remote control, remote para-
metrizing, status and fault monitoring logic, pro-
cess data filling, text processing, etc.

Process control level, for plant monitoring, produc-
tion planning, emergency interventions, produc-
tion balancing and control, etc.

Operational control levels, where all the required
calculations and administrative data processing

Process computer

Figure 14 LOGISTAT CP 80 system.



are carried out, statistical reviews prepared, and
market prognostic data generated.

In the system, different computer buses (K 100, K 200,
and K 400) are used along with the basic controller
units A 200 and A 500. At each hierarchical level,
there are corresponding monitoring and command
facilities B 100 and B 500.

A multibus system has also been applied in imple-
menting the ASEA MASTER system, based on Master
Piece Controllers for continuous and discrete process
control. The system is widely extendable to up to 60
controllers with up to 60 loops each controller. For
plant monitoring and supervision up to 12 color dis-
play units are provided at different hierarchical levels.
The system is straightfowardly designed for integrated
plant control, production planning, material tracking,
and advanced control. In addition, a twin bus along
with the ETHERNET Gateway facilitates direct sys-
tem integration into a large multicomputer system.

The user benefits from a well-designed backup sys-
tem that includes the ASEA compact backup control-
lers, manual stations, twin bus, and various internal
redundant system elements.

An original idea is used in building the integrated
automation system YEW II of Yokogawa in which the
main modules:

YEWPAC (packaged control system)
CENTUM (system for distributed process control)
YEWCOM (process management computer system)

have been integrated via the fiber-optic data link.

Also in the distributed computer control system
DCI 5000 of Fisher and Porter, some subsystems are
mutually linked via fiber-optic data transfer paths that,
along with the up to 50km long ETHERNET coax
cable, enable the system to be widely interconnected
and serve as a physically spread out data management
system. For longer distances, if required, fiber-optic
bus repeaters can also be used.

A relatively simple but highly efficient concept
underlines the implementation of the MOD 300 system
of Taylor, where a communication ring carries out the
integrating function of the system.

Finally, one should keep in mind that not always
the largest distributed installations are required to
solve the plant automation problems. Also simple,
multiloop programmable controllers, interfaced to an
IBM-compatible PC with its monitor as the operator’s
station are sufficient in automation practice. In such a
configuration the RS 232 can be used as a communi-
cation link.

Copyright © 2000 Marcel Dekker, Inc.

1.7 RELIABILITY AND SAFETY ASPECTS

Systems reliability is a relatively new aspect that design
engineers have to take into consideration when design-
ing the system. It is defined in terms of the probability
that the system, for some specified conditions, nor-
mally performs its operating function for a given per-
iod of time. It is an indicator of how well and how long
the system will operate in the sense of its design objec-
tives and its functional requirements before it fails. It is
supposed that the system works permanently and is
subject to random failures, like the electronic or
mechanical systems are.

Reliability of a computer-based system is generally
determined by the reliability of its hardware and soft-
ware. Thus, when designing or selecting a system from
reliability point of view, both reliability components
should be taken into consideration.

With regard to the reliability of systems hardware,
the overall system reliability can be increased by
increasing the reliability of its individual components
and by system design for reliability, using multiple,
redundant structures. Consequently, the design of dis-
tributed control systems can increase the overall sys-
tem reliability by selecting highly reliable system
components (computers, display facilities, communica-
tion links, etc.) and implementing with them a highly
reliable system structure, whereby first the question
should be answered as to how redundant a multicom-
puter system should be in order to still be operational
and affordable, and to still operate in the worst case
when a given number of its components fail.

Another aspect to be considered is the system fea-
tures of automatic component-failure detection and
failure isolation. In automation systems this particu-
larly concerns the sensing elements working in severe
industrial environments. The solution here consists of
a majority voting or “m from n” approach, possibly
supported by the diversity principle, i.e., using a com-
bination of sensing elements of different manufac-
turers, connected to the system interface through
different data transfer channels [37].

The majority voting approach and the diversity
principle belong to the category of static redundancy
implementations. In systems with repair, like electronic
systems, dynamic redundancy is preferred, based on the
backup and standby concept. In a highly reliable,
dynamically redundant, failure-tolerant system addi-
tional “parallel” elements are assigned to each outmost
critical active element, able to take over the function of
the active element in case it fails. In this way, alterna-
tively can be implemented:



Cold standby, where the “‘parallel” elements are
switched off while the active element is running
properly and switched on when the active element
fails.

Hot standby, where the “parallel” element is perma-
nently switched on and repeats in offline, open-
loop mode the operations of the active elements
and is ready and able to take over online the
operations from the active element when the ele-
ment fails.

Reliability of software is closely related to the relia-
bility of hardware, and introduces some additional fea-
tures that can deteriorate the overall reliability of the
system. As possible software failures the coding and
conceptual errors of subroutines are addressed, as
well as the nonpredictability of total execution time
of critical subroutines under arbitrary operating con-
ditions. This handicaps the interrupt service routines
and the communication protocol software to guarantee
the required time-critical responses. Yet, being intelli-
gent enough, the software itself can take care of auto-
matic error detection, error location, and error
correction. In addition, a simulation test of software
before it is online used can reliably estimate the
worst-case execution time. This is in fact a standard
procedure because the preconfigured software of dis-
tributed computer control systems is well tested and
evaluated offline and online by simulation before
being used.

Systems safety is another closely related aspect of
distributed control systems application in the automa-
tion of industrial plants, particularly of those that are
critical with regard to possible explosion consequences
in the case of malfunction of the control system
installed in the plant. For long period of time, one of
the major difficulties in the use of computer-based
automation structures was that the safety authoriza-
tion agencies refused to licence such structures as
safe enough. The progress in computer and instrumen-
tation hardware, as well as in monitoring and diagnos-
tic software, has enabled building computer-based
automation systems acceptable from the safety point
of view because it can be demonstrated that for such
systems:

Failure of instrumentation elements in the field,
including the individual programmable control-
lers and computers at direct control level, does
not create hazardous situations.

Such elements, used in critical positions, are self-
inspected entities containing failure detection,
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failure annunciation, and failure safety through
redundancy.

Reliability and fail-safety aspects of distributed com-
puter control systems demand some specific criteria to
be followed in their design. This holds for the overall
systems concept, as well as for the hardware elements
and software modules involved. Thus, when designing
the system hardware [37]:

Only the well-tested, long-time checked, highly reli-
able heavy-duty elements and subsystems should
be selected.

A modular, structurally transparent hardware con-
cept should be taken as the design base.

Wherever required, the reliability provisions (major-
ity voting technique and diversity principle)
should be built in and supported by error check
and diagnostic software interventions.

For the most critical elements the cold standby and/
or hot standby facilities should be used along
with the noninterruptible power supply.

Each sensor’s circuitry, or at least each sensor
group, should be powered by independent sup-
plies.

A variety of sensor data checks should be provided
at signal preprocessing level, such as plausibility,
validity, and operability check.

Similar precautions are related to the design of soft-
ware, e.g. [38]:

Modular, free configurable software should be used
with a rich library of well-tested and online-ver-
ified modules.

Available loop and display panels should be rela-
tively simple, transparent, and easy to learn.

A sufficient number of diagnostic, check, and test
functions for online and offline system monitor-
ing and maintenance should be provided.

Special software provisions should be made for
bump-free switch over from manual or automatic
to computer control.

These are, of course, only some of the most essential
features to be implemented.
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2.1 INTRODUCTION

The stability of a system is that property of the system
which determines whether its response to inputs, dis-
turbances, or initial conditions will decay to zero, is
bounded for all time, or grows without bound with
time. In general, stability is a binary condition: either
yes, a system is stable, or no, it is not; both conditions
cannot occur simultaneously. On the other hand, con-
trol system designers often specify the relative stability
of a system, that is, they specify some measure of how
close a system is to being unstable. In the remainder of
this chapter, stability and relative stability for linear
time-invariant systems, both continuous-time and dis-
crete-time, and stability for nonlinear systems, both
continuous-time and discrete-time, will be defined.
Following these definitions, criteria for stability of
each class of systems will be presented and tests for
determining stability will be presented. While stability
is a property of a system, the definitions, criteria, and
tests are applied to the mathematical models which are
used to describe systems; therefore before the stability
definitions, criteria, and tests can be presented, various
mathematical models for several classes of systems will
first be discussed. In the next section several mathema-
tical models for linear time-invariant (LTI) systems are
presented, then in the following sections the defini-
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tions, criteria, and tests associated with these models
are presented. In the last section of the chapter, stabi-
lity of nonlinear systems is discussed.

2.2 MODELS OF LINEAR TIME-
INVARIANT SYSTEMS

In this section it is assumed that the systems under
discussion are LTI systems, and several mathematical
relationships, which are typically used to model such
systems, are presented.

2.2.1 Differential Equations and Difference
Equations

The most basic LTI, continuous-time system model is
the nth order differential equation given by

n dly m dlu

a;—== b — 1

; Cdr [ZO: Par M
where the independent variable ¢ is time, u(t), t > 0, is
the system input, y(¢), ¢ > 0, is the system output, the
parameters «;, i=0,1,...,n, a,#0, and b,
[=0,1,...,m, are constant real numbers, and m and
n are positive integers. It is assumed that m < n. The
condition that m < n is not necessary as a mathemati-
cal requirement; however, most physical systems



satisfy this property. To complete the input—output
relationship for this system, it is also necessary to spe-
cify n boundary conditions for the system output. For
the purposes of this chapter, these n conditions will be
n initial conditions, that is, a set of fixed values of y(7)
and its first n — 1 derivatives at t = 0. Finding the solu-
tion of this differential equation is then an initial-value
problem.

A similar model for LTI, discrete-time systems is
given by the nth-order difference equation

i ayk +1i) = i bu(k +1) (2)
i=0 1=0

where the independent variable k is a time-related vari-
able which indexes all of the dependent variables and is
generally related to time through a fixed sampling per-
iod, T, thatis, t = kT. Also, u(k) is the input sequence,
y(k) is the output sequence, the parameters a«;,
i=0,1,...,n,a,#0,and b, =0, 1, ..., m, are con-
stant real numbers, and m and n are positive integers
with m < n. The condition m < n guarantees that the
system is causal. As with the differential equation, a set
of n initial conditions on the output sequence com-
pletes the input—output relationship and finding the
solution of the difference equation is an initial-value
problem.

2.2.2 Transfer Functions

From the differential equation model in Eq. (1),
another mathematical model, the transfer function of
the system, is obtained by taking the one-sided Laplace
transform of the differential equation, discarding all
terms containing initial conditions of both the input
u(t) and output y(¢z), and forming the ratio of the
Laplace transform Y(s) of the output to the Laplace
transform U(s) of the input. The final result is H(s),
the transfer function, which has the form

Z blSl
o 3)

— 2 : i
1Cs=0 Cl,‘S
i=0

where s is the Laplace variable and the parameters «;,
i=0,1,...,n,and b, [ =0, 1, ..., m, and the positive
integers m and n are as defined in Eq. (1).

For a discrete-time system modeled by a difference
equation as in Eq. (2), a transfer function can be devel-
oped by taking the one-sided z-transform of Eq. (2),
ignoring all initial-value terms, and forming the ratio

H(s) E%
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of the z-transform of the output to the z-transform of
the input. The result is

m

S
=0

— n ]

1Cs=0 E al.Zl
i=0

where z is the z-transform variable, Y (z) is the z-trans-
form of the output y(k), U(z) is the z-transform of the
input u(k), and the other parameters and integers are
as defined for Eq. (2).

4)

2.2.3 Frequency Response Functions

Another mathematical model which can be used to
represent a system defined by Eq. (1) is the frequency
response function which can be obtained by replacing s
by jw in Eq. (3), thus forming

m

> bi(jo)
=0

e S— )

> aijo)
i=0

where j = v/—1 and w is a real frequency variable mea-
sured in rad/sec. All of the other parameters and vari-
ables are as defined for Eq. (3).

The frequency response function for an LTI, dis-
crete-time system defined by Eqgs. (2) and (4) is
obtained by replacing z by ¢“7 in Eq. (3) thus forming

i bl(eij)l
H(E") = HE)|.oor = 55— (6)

Z ai(ein)i
i=0

where the parameters and integers are as defined in Eq.
(2). T is the sampling period as discussed for Eq. (2).

H(jo) = H($)|,=jo

2.2.4 Impulse Responses

Transfer functions and frequency response functions
are called frequency domain models, since their inde-
pendent variables s, z, and w are related to sinusoids
and exponentials which are periodic functions and gen-
eralizations of periodic functions. Systems also have
time domain models in which the independent variable
is time. The most common of these is the impulse
response function. For this chapter, the most general
impulse response which will be considered is that
which results if the inverse Laplace transform is



taken of the transfer function. Systems of a more gen-
eral nature than this also have impulse responses but
these will not be considered here. Thus the impulse
response function will be defined by

h(t) = L™'[H(s)]

where L™![-] represents the inverse Laplace transform
operator. The input-output relation (assuming all
initial conditions are zero) for a system defined by an
impulse response function is given by

=t

W) = j Wt — Du(v)de ™

=0
where the limits on the integral result from earlier
assumptions on the differential equation model.

For an LTI, discrete-time system, the impulse
response sequence (in reality, an impulse does not
exist in the discrete-time domain) will be defined as
the inverse z transform of the transfer function in
Equation (4), that is,

hk) = Z7'[H(z)]

where Z_1[~] represents the inverse z-transform. The
input—output relation (assuming all initial conditions
are zero) of a discrete-time system defined by an
impulse response sequence is given by

k
y(k) =" h(k — juj) ®)
j=0

where the limits on the summation result from earlier
assumptions on the difference equation model.

2.2.5 State Space Models

A more general representation of LTI, continuous-
time systems is the state space model, which consists
of a set of n first-order differential equations which are
linear functions of a set of n state variables, x;,
i=1,2,...,n, and their derivatives and a set of r
inputs, u;, i=1,2,...,r, and a set of m output equa-
tions which are linear functions of the n state variables
and the set of r inputs. A detailed discussion of these
models can be found in Santina et al. [1]. These equa-
tions can be written in vector—matrix form as

x(?) = Ax(?) 4+ Bu(?)

y(1) = Cx(¢) + Du(?)
where x is a vector composed of the » state variables, u
is a vector composed of the r inputs, y is a vector

composed of the m outputs, A is an 7 x n matrix of
constant real numbers, B is an n x r matrix of constant

©)
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real numbers, C is an m x n matrix of constant real
numbers, and D is an m x r matrix of constant real
numbers. As with Eq. (1) the independent variable ¢
is time and # initial values of the state variables are
assumed to be known, thus this is also an initial-value
problem. Note that Eq. (1) can be put into this state
space form.

For LTI, discrete-time systems there also exist state
space models consisting of a set of n first-order differ-
ence equations and a set of m output equations. In
vector-matrix form these equations can be written as

x(k + 1) = Ax(k) + Bu(k)

(10)
y(k) = Cx(k) + Du(k)

where k is the time variable, x(k) is the n-dimensional
state vector, u(k) is the r-dimensional input vector, y(k)
is the m-dimensional output vector, and A, B, C, and D
are constant matrices with the same dimension as the
corresponding matrices in Eq. (9). Note that Eq. (2)
can be put into this state space form.

2.2.6 Matrix Transfer Functions

As the differential equation model in Eq. (1) was
Laplace transformed to generate a transfer function,
the state space model in Eq. (9) can be Laplace trans-
formed, assuming zero initial conditions, to form the
matrix input—output relationship

Y(s) = [C(sT — A)"'B 4+ D] U(s) = T(s) U(s)

where U(s) is the Laplace transform of the input vector
u(?), Y(s) is the Laplace transform of the output vector
y(¢), and the transfer function matrix of the system is
given by

T(s) = C(s —A)"'B+D (11)

By similar application of the z-transform to the dis-
crete-time state Eq. (10), the discrete-time matrix trans-
fer function is given by

T(z) =C(zI—A)"'B+D (12)

2.2.7 Matrix Impulse Responses

For an LTI continuous-time system defined by a state
space model, the inverse Laplace transform of the
matrix transfer function in Eq. (11) produces a matrix
impulse response of the form

T(1) = CO(t)B + D (13)

where ®(7) = ¢ is called the state transition matrix.



The input—output relationship, excluding initial
conditions, for a system described by this matrix
impulse response model is given by the convolution
integral given by

=t

y())=C J ABu(t) dt + Du(?)

=0

where all of the parameters and variables are as defined
for the state space model in Eq. (9) and the limits on
the integral result from the conditions for the state
space model.

Similarly, for an LTI, discrete-time system, a matrix
impulse response is generated by the inverse z-trans-
form of the matrix transfer function of Eq. (12), thus
forming

T(k) = Co(k)B+D (14)
where ®(k) = AF is called the state transition matrix.
the input—output relationship, excluding initial condi-
tions, for a system described by this matrix impulse
response model is given by the convolution summation
given by

A7Bu(j) + Du(})

k
¥ = C}

j=0

2.2.8 Summary of Section

In this section, a total of 14 commonly used models for
linear time-invariant systems have been presented.
Half of these models are for continuous-time systems
and the rest are for discrete-time systems. In the next
section, criteria for stability of systems represented by
these models and corresponding tests for stability are
presented.

2.3 DEFINITIONS OF STABILITY

When we deal with LTI systems, we usually refer to
three main classes of stability: absolute stability, mar-
ginal stability, and relative stability. While each class
of stability can be considered distinct, they are inter-
related.

2.3.1 Absolute Stability

Absolute stability is by far the most important class of
stability. Absolute stability is a binary condition: either
a system is stable or it is unstable, never both. In any
sort of operational system, this is the first question that
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needs to be asked. In order to answer this question, we
need to determine whether or not the system has an
input.

A zero-input system is said to be absolutely stable if],
for any set of initial conditions, the system output:

1. Is bounded for all time 0 < ¢ < o0
2. Returns to the equilibrium point 0 as time
approaches infinity.

This type of stability is also referred as asymptotic
stability. As described in Hostetter et al. [2], this
nomenclature is used because the impulse response of
a stable system asymptotically decays to zero.

For the systems considered in this chapter, the defi-
nition for asymptotic stability can be mathematically
defined in terms of the impulse response function as

() <oo  Vi=1

and

lim [h(5] = 0

or for the discrete-time system as
|h(kT)| < o0 Vk>0

and
/lgrolo |W(kT)| =0

When the system in question has an input, whether
an external input, control input, or a disturbance, we
change the definition of stability to that of bounded-
input-bounded-output stability, also referred to as
BIBO stable or simply BIBO.

A system is said to be BIBO stable if every bounded
input results in a bounded output. Mathematically,
given an arbitrary bounded input u(¢), that is,

u(®] < N<+o00 V>0

the resulting output is bounded, that is, there exists a
real finite number M such that

V(O <M<+ o0 Vt>0

The mathematical definition for the discrete-time case
is identical.

The important consequence of the two previous
definitions for stability is the location of the poles of
the transfer function of a stable system. The transfer
function is in the form of a ratio of polynomials as in
Eq. (3). The denominator polynomial is called the
characteristic polynomial of the system and if the char-
acteristic polynomial is equated to zero, the resulting
equation is called the characteristic equation. The
roots of the characteristic equation are called the



poles of the transfer function. As shown in Kuo [3], a
necessary and sufficient condition for a system to be
absolutely stable is that all of its poles must lie in the
left half plane (the poles have negative real part) for
continuous-time systems, or lie within the unit circle
(pole magnitude less than 1) for discrete-time systems.
For systems defined by the state space model, the poles
are the eigenvalues of the state transition matrix A.

2.3.2 Marginal Stability

As with all definitions in engineering, there exist some
exceptions to the rules of stability. Several important
systems, such as the differentiation operator and the
pure integrator as continuous-time systems, violate the
rules of asymptotic stability and BIBO stability,
respectively. Other cases exist in the set of systems
that have resonant poles along the jw-axis (imaginary
axis), for continuous-time systems, or on the unit cir-
cle, for discrete-time systems.

While the differentiation operator violates the
asymptotic stability definition, since the impulse
response is not bounded, it does satisfy the BIBO
definition. In any case, it is generally considered
stable. For an integrator, the impulse response is a
constant and thus bounded and in the limit is a con-
stant, as described in Oppenheim et al. [4]; however,
for a step input, which is bounded, the output grows
without bound. The same would occur if the input is
a sinusoid of the same frequency as any imaginary
axis (unit circle for discrete-time systems) poles of a
system. Since such systems only “blow up” for a
countable finite number of bounded inputs, such sys-
tems are often considered stable. However, for any
input along the imaginary axis (unit circle), the out-
put of these systems will neither decay to zero nor
even to a stable value. Systems such as these are
referred to as marginally stable. For these systems
the roots of the polynomial, or eigenvalues of the
state transition matrix, that do not meet the criteria
for absolute stability, lie on the imginary axis (zero
real-value part) for a continuous-time system or lie on
the unit circle (magnitude equal to 1) for a discrete-
time system. While some consider such systems as
stable, others consider them unstable because they
violate the definition of absolute stability.

2.3.3 Relative Stability

Once we have determined that a system is absolutely
stable, usually we desire to know “How stable is it?”
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To a design engineer such a measure provides valuable
information. It indicates the allowable variation or
uncertainty that can exist in the system. Such a mea-
sure is referred to as relative stability. Many different
measures for relative stability are available so it is
important to discuss desirable measures.

2.4 STABILITY CRITERIA AND TESTS

Now that we have defined stability, we need tools to
test for stability. In this section, we discuss various
criteria and tests for stability. This section follows
the format from the preceding section in that we first
discuss the techniques for determining absolute stabi-
lity, followed by those for marginal stability, and
finally those for relative stability.

2.4.1 Absolute Stability Criteria

There exist two approaches for determining absolute
stability. The first is to use time-domain system mod-
els. The second, and the most usual, is to deal with the
transfer function. Both types of techniques are pre-
sented here.

2.4.1.1 Zero-Inp