

ISBN D 0? 1q51,'ra-0

llilXIJltlllllllllllilll ttnnnli

E3 PIf@
M itrrtrcontroller
Experiments fsr
the Evi | Eenius

Evil 6eniu5 series

123 Robotics Experiments for the Evil Genius

Electrcnic Gad|ets fot the Evit Genius:28 Build'it'yourself Prciec!

Electonic Ci/cuits for the Eril GeniL.s:57 Lesso^, with Prciects

123 PI(P Microcotltollel Eryeriments fol the Eril Geniut

Mechatonics fol the Et il Genius: 25 Build-it'youtself Prcject'

50 Awesome Automoli'e Prcjects for the EviI Genius

Sotat Energ! Proiects for the Evil Genius: 16 Buikl'it'yoarselfThemoelectic and

Mechdnical Prcjects

Bionics fol the Evit GeniLLs: 25 Build'it'Yourself Prcjec1

MORE Etectronic Gadgets for the Evil Genius:28 MORE Build'it'yourself Proiects

the Evi | 6enius

MYKE PREDKO

Experiments for

1A3 PIE@
Mitrrotrontroller

McCraly-Hill
New York Chicago San Francisco Lisbon

London Madid Mexico Cily Milan New Dcthi
San Juan Seoul Singapore SydDey Toronlo

Catiloging-in-Publicttion Data is oD lilc with the Library of Congfcs!

copyright O 2005 by The McC raw-H ill Commpinicq Inc. All rights fcscrved Prinled in thc
Unired Stoles orAnerica. Excepl as permitted undcr the Uniled Stalcs CoPvright Act of 1976'to
pnn of this publication may be reproduced or dislributed in nny forn or by any mcan$,ot slored
in a dala base or rotricval syftD.vilhout the prif writLen pcrnhskn ol rhe publishcr'

3 4 5 6 7 8 9 0 Q P D / Q P D 0 I 0 9 l J 7

ISBN 0-07145142-0

The sponhtug edint lot thi\ hook tras Jkd!) Bisr Ml the ?roduction tttll!tui$r
eas PMtle A. Pelton. ft wat Net ibTinw Tat by l kAllistet Pttblishi S Service!, LLC Thc Irt dituctor Jol
th! &v0 ,,a! Ahthory kndi.

Ptink anl hantl bt Qu.h.cot/Dubuque.

{}Jlllbk::\,ti,''*t"nrocvored'ocid'riccraPcrconl0ini'saminiDUDor50Pcrccntrccvcred

Mccraw-Hill kloks arc dvailable at special quanlily discounts to use as pr€mirims and sales ptomo-
tions, or tor use in corponlc Lr.ining pro$ am$ For Inore information, please wrile to tho Directof
ofSpccialSales"McGraw-H I'|ofessional,Two Pcm PlaTa.New York,NY l0l2l-2298. O' contacr

lnformatio! conlained in this woik has beetr obtained by The Mccraw-Hill Conpa_
nicr lno. ("Mccraw-nill") lron sources bclieled to be reliablo However, neithcr
Mocraw-Hill nor ih authore Suarantee rhc accuracy or comPlebness of any informd-
tion published hcrcir. and neither Mccraw-Hill nor its authos shall be responsible lbr
dnr eros, onn$iorn or danages arising oul oi use of this infomation. Tbis work h
Dublished with thc underst.nding ural Mccraw Hill and its authos are suPplving
information but are not attempnng b render profe$ional senices Ii such serrices are
required. tho alsislane of an aPProPnate prolesional shoLrld be soughl.

ft

ff
{b

.{.

q.f,

LOnIenrS
w€n w)E w" w w. wt gF t F&as i['tq ffii ffi asSt J6r!6 iqost

Introduction

Section One

EXPERIMBNT 1

EXPERIMENT 2

EXPERTMENT 3

Acknowledgments

About the Author

EX?ERMENT 14

EXPERTMENT 15

EXPERIMENT 16

Section Three

EXPERTMENT 17

EXPERTMENT 1 8

EXPERIMENT 19

The Switch Decision
Statement 43

Conditional Looping 45

The For Statement 46

Simple PIC@ MCU
Applications 51

Basic Delays 53

Sequencing PTCkit 1
Starter Kit LEDS 55

Binary Number Output
Using PICkit 1 Starter
Kit LEDS 56

Basic Button Inputs 58

Debouncing Button Inputs 59

MCLR Operatiorl 6I

Ending Applications 63

C Language Features 67

Functions and Subroutines 69

Global and Local Variables 70

Defi[es and Macros 7I

VadableAuays 73

Structures and Unions 75

Pointers and Lists '76

Character Strings 79

Library Functions 81

ix

x

t

t3

L 4

EXPERIMENT 4

Section Tko

EXPERIMENT 5

EX?ERIMENT 6

EXPERTMENT 7

EXPERIMENT 8

EXPERIMENT 9

EXIERTMENT 10

EXPERTMENT 11

EX?ERTMENT 12

EX?ERTMENT 13

Under the Covers of
the PIC16F684

I/O Pins

Configuration word

PIC MCU Variable
Memory, Registers, and
Program Memory

Simulating cFlash.c in
MPLAB IDE

Introductory C
Programming

Variable Declaralion
Statements

C DataTypes

Constant Formatting

Assignment Statements

Expressions

lJrtwrse uperators

Logical Expressions

Conditional Execution
Using the If Statement

Nested Conditional
Statements

EXPERIMENT 20

EXPBRTMEN'r 21

EXPBRIMENT 22

EXPBRIMENT 23

Section Four

EXPERIMENT 24

EXPERTMENT 25

EXPERIMENT 26

EXPERIMENT 27

EXPERIMENT 28

EXPERTMEN.T 29

EXPERTMENT 30

EXPERIMENT 31

18

20

27

28

29

31

33

35

39

4I

Section Flve PIC16F684 Microcontroller Section Seven
Built-in Functions 89

ExPERrrtNT32 Brownout Reset 91

EXTERIMENT'33 ADC Opcratiotl 93

EXpERINIENT 34 Comparatol Operation 96

UsingTMRo 101

Usiig theTMRo Prescaler 102

EXPERTMENT 50

EXPERTMENT 51

ExPERltvtENT 52

EXPERIMENT 53

EXPDRIMENT 54

EXlrinrMENT 55

Sample C
Microcontroller
Applications

Pumpkin LED Display

Rcaction-Time Tester

Rokenbok@ Monorail/
Tiaffic Lights

Seven-Segment LED
Thelmometer

PIC MCU "Piano"

Model Railway Switch
Colltrol

Exr,r ,RrNrENr' 37

Exl, t r t IMENr'38

ExPERTMEN f 39

LlxPEnt\ ' l r - tN r '40

137

138

140

143EXPER|"I|NT35 Watchdog'l'imer

ExpERlNlFrNr 36 Short Timer Delays

99

t 1 4

t46

151

LongTlnler Delays
Using l 'MRt

Comparing Clock
Oscillators

Pin Rcsislarce
Mcasulcmcnts

104

106

l f J

ExPERIMENT 56 PC Operating Status
Display 156

t09

l t lF\11 RrN,rE\ | 41 Cunerirung PwM Signir lJ

Exl,r-rRrN4BN I 42 Stol ing and Rctrieving
Data

Section Six Interl'acing Projects for the
PIC@Microcontroller ll'7

ExpLRIMEN] 43 Driving a Scvcn_Segmcnt
I-ED DisPlaY DirectlY
hom thc PICl6F6U4

L \ " r R r \ I N " 4 | M u l t i l ' l c S c v q n - S c g m c t r t
LED Displays

ExPERTMENT 45 LED Matrix DisPlaYS

EXPERTMENT ,16 LCD Display

ExpFtRrNrENl ,lT ProduciDg Random
Numbers

ExpERrvrENr ,l8 Two-Bit LCD Display

EXPERI4nNT 49 Switch Matrix
KeYPad MaPPing

l l 9

121

124

126

128

129

t 3 1

.

Section Eisht Introduction to PIC@

ExIERIMENT 57

ExPERIMENT 58

EXPERTMENT 59

ExPERtMENT' 60

EXI,ERIMENT 6l

EXPLRTMENT 62

EXPERIMENT 63

EXPERIMEh*T 64

EXPERTMENT 65

EXPERTMENT'66

MCU Assembly
Language
Programming 159

Thc asmTemplate.asm
Filc ard Basic Directivcs 160

Specifying Program
Memory Addresses 161

Loading the WREG and
Saving Its Coitents 164

Detining Variables 165

B i t w i s e l n s t r u c t i o n s ' i 6 ' 7

Additionlnstruclions 168

AddLibs: Strange
Simulator Results 170

Sublractionlnstructions
']71

Bank Addressing 173

Bit lnstructions 1'75

C o n t e n t s

EXPERTMENT 67

EXPERIMEh-r 68

EXfERTMENT 69

EXPERTMENT 70

EXPERTMENT 7l

Section Nine

Bit Skip Instructions

Conditional Execution

declsz Looping

Subroutines

Defining and
ImplementingArrays I82

PIC@ Microcontroller
Assembly Language
Resource Routines '187

Logic Simulation Using
188

Statcmont 191,

Dcfines 194

ConditionalAssembly 197

Macros 199

l6-BitValues/Variables 201

Universal Delay Macro 203

High-lavcl Pro$amming 205

lmplementing Read-Only
AIrays

Data Stacks

Circular Buffers

Reading andw ting the
EEPROM Data Memory

EXPERTMENT86 PIC MCU Instrument
Interface

EXPERTMENT8T SoundDetection

EXPERTMENT 88 Multiple Miqoswitch
Debouncing

Light Sensors

r7'7

178

180

181

231

235

23'�7

238

f"\
{",t,
:i
i',1'

*J
?:
!:"{a'

iil
EXPERTMENT 89

EXPERIMENT 90

EXPERIMENT 72

EXPER]MENT 73

ExPEnIMENT 74

ExPEnTNIENT 75

ExPERti \4ENr 76

EXPERIMEN].77

ExPEnTMENT 78

EXPERIMENT 79

EXPERIMENT 80

EXPERIMENT 8l

EXPERTMENT 82

EXPERTMENT 83

EXPERTMENT 85 PIC MCU BS2 Keypad
Interface 230

Infiared (IR) Surface
Sensor 239

ExpERlMENr9l Intcrfacing 10 Shary
cP2D120 Rangirg
Object Sensors 242

ExPERTMENT 92 Do-lt-Yourself IR
Object Sensor 243

ExPERTMENT' 93 lR Object-Ranging
Sensor 24'7

ExpERTMENT 94 Ultrasonic Distanco-
Range Sensor 249

ExPERrMENr95 Robor IRTag 251

Section Dleven Motor Control 255

EXPERIMENT 96 DCMotor Driven Usi g
the CCP PWM and Using
a Potentiometer Control 257

ExPfRrvF \ r 1 ,7 DC Moto r Con t ro l x i l t
Simple TMR0 PWM 261

ExpERIMENT98 ControllingMultiple
Motors with PWM aDd
Bs2lntcdace 264

EXPERIMENT 99 Bipolar Stepper Motor
Control 265

EXpERIMENT 100 Unipolar Stepper Motor
Control 269

EXPERIMENT 101 Radio-Control Model Scrvo
Control 272

EXPERTMENT 102 Multiple Servo Control
Software Structure 2'74

the PlC16F684

The C "Switch"

208

210

212

SectionTen Sensors

ExPERrMENr34 PIC MCU BS2 User
lnterfacc

214

227

224

C o n t e n t s

EXPERTMENT 103 Two-Servo Robot Base
with Bs2lnterface 27'7

Section Twelve Solving Programming
Problems in PIC@
Microcontroller
Assembly Language 279

E\p r R rMr \ r 104 L igh l -B i t Mu l t i p l i ca t i t r n
with a 16-Bit Product 280

ExpERrMENl 105 Division of a 16-Bitvalue
by an Eight-Bil Valuc 282

Exr,r 'RrMr'\ | lu6 Squrring a Number Using
Finite Difference Theory 284

EXPERTMENT 107 Find lhe Square Rool of a
16-Bit Number 28(t

EXPERIMENT 108 Converling a Byte into
Three Decimal,T\'r'o Hex,
or Eight Binary ASCII
Bytes 289

EXPERTMBNT 109 Producc the Even Parity
Values for a Byte 291

EXPERTMENT 1 I0 Sort a List of 10 Eight-Bit
Values Using the Bubble-
SortAlgo tllrn 292

EXpERIMENT 111 Encrypt and Decrypt
ul l ASCIIZ Slr ing Using
a Simple Substitution
Algolithm 294

ExpERr \4 r \ r l l 2 Ccnera te c F ihonacc i

Number Sequence 29'7

EXPERTMENT 113 Find the Largest Common
Factor ofTwo Eight-Bit
Numbers 298

Section Thirteen

EXPERIMEN T 114

EXPERTMENT'115

EXPERTMENT 116

EXPERIMF,NT I 17

EXPERIMENT I18

EXPERTMENT 119

EXl ERTMENT 120

ExPERTMENT 121

EXPERTMENT' 122

ExPERTMENT 123

Index

ZipZaps@ Robot 301

Characte zing the
Zipzaps

PIC MCU Power Supply

PIC MCU Electronics
PCB

IRTV Remote Control

Molor and Steering
Control

Basic Thsk-Control
Software

lR Remote Contlol

Lighl Sensors and
Followirlg

303

305

307

310

3 1 1

316

IR ObjectDetection
Sensors 318

IR Linc-Followirlg
Sensors 320

327

ii$
i--;
!'1

#
4_.1
*
i)
t-:

v t i . r C o n t e n t s

FcknouJledgments
! t j . . : . i ' t ! . ; : t l t ! !) . : t t ; . : : ! : ! r i r : i , : : ? r r a ,

- \ r i

F"
{'}'tr
l't
ij
q
l.-ir
(*

Nl"{tr
s
{n
;:.!
f*
{,n

This book would not have been possible without t1le
help, suggestions, and time from the fbllowing indi
viduals:

. CarolPopovich, Greg ADderson, Joc
Drzewiecki,Andre Nemat, and Fanic Duven-
hage ol I \4i(rochrn $ho ha\e helped nre
understand which products would be besl
suited for this book,and have been williDg to
.pcnd r ime with me lo undersrand my rcquirc-
m9nts, answer my legions of questions, and
suggest avenues to follow that hadn't occurred

HT-Soft and lhcir technical support stall fbr
answering D'ry qucstions quickly and holping
to cxplail the iDner workings ofthe PICC
Lirc comti ler.The PICC .l inc of compilers is
a lrcmcndous tool for the bcginnct and pro-
lc:) iunrl r l ikc, and one T ncvcr hcsitatc lo re.-
onmlcDCl.

Brad North, Richard Bonafede, and lhe s!u-
dents ot Rick Hansen Sccondary School ilr
Missassauga, Onf.lrio,lbr helping me to learn
more about how studenls (and teachers) learn
about pr ogramming, electronics, and thc PIC
MCU

Blair Clarkson aDd Dnvc Pilole at the Oltario
Sciencc Centre inToronlo,I'or pushing me to
explair basic microcontroller concepts to peo-
ple that luve built the TAB Electronics Sumo"
Bot at a workshop and want to do norc with
ir. lhe BS2 i rt ' r facc and Robot IR Tig cxpcr-
iments are a direcl result ofthis work.

My edilor at Mccraw-Hill, Judy Bass,who
consistently responds to my questions and
suggestions, regardless of how dunb they are,
with good humor and thougltfulness.

lhc PIC MCU cont inucs lo bc one ol lhd be(l
.uppo cd dc! ice. on l i r)e.3nd I ! \ould l ike lo
thalk the many individuals who have taken
the time lo put information and projects on
rhe lnlefncl a\ \ rc l l as supporl and hclp ntheN
trying to better undclstand the PIC MCU or
get their applicalions up and ruDning.

. Celeslica and its employccs fbr ideas, answcrs
to straDge questions, and opPortunities to
expand my lcchnical horizons,

. My daughter Marya,who has grown up with a
father lhat is always trying out ncw projecls
on hcr. Shc trics them out wilh cnlhusiasm
despite thc lhcl they genorolly need a bit of
tuning belorc they work perlcctly.

. My wilc Patience, for kecping everything
togethcr, cvcn when our youngcst daughler
Talitha was sick, and for having dinner on the
slove, evcn wilh me asking hc! 10 do a"quick
read" of a section or two.I couldn't do any of
it withoul you.

To all ofyou, thank you for all you unselfishhelP
and willingness 1() shareyour ideas, expcdences, and
enlhusiasm for lhis book.

mgke
http J/rilirur. mske. Eom

A c k n o u l e d g m e n t s i x

,')'$.iifi : ::i,ilfi !i!i:.1.-iti::i1i ii'ii#iirt ill,i:i$[ii] {g{S"*;

Fbout the Futhor
i{w €w ffi M ffi EGH @ W{ $SSg Sr$ss ffi ffi KS&&{ ffi€

Myke hedko is Test Architect at Celestica, in Torontq Canada, a suppliel of printed circuit boards to the com-
puter industry. Aln expedenced author, Myke wrote Mccraw'Hill's best-selling 123 Robotitr Prcjects for the Evil
Genius; PICmicrc Mictocontoller Pocket Refercnce; Progamming and Customizing PICMirrc Microconlrolkrs,
Second Edition;P/oSramming Robot Contollers; and other books, and is the principal designer of both TAB
EElecironics BuiM your Ov,n Ro b ot kits,

h

.tJ
5

{)

+-,

,.t

A b o u t t h e A u t h o r

Introduction

When I wrote my first book on the Microchip PICP
microcontroller (commonly abbreviated to "MCU")

almost 10 years ago, the most common criticism I
received about the book was that it took too long to
get to the projects. This is quite foreign to me because I
tend to leam a new device, like a microconftoller, by
first reviewing the datasheets for the part's electrical
information, working at understanding the architec-
ture and how it is programmed, and ending with
understanding what kind of development tools are
available for the part. Looking over this list of tasks, it
is quite obvious that they came about with my back-
ground and training. Being a teenager in the 1970s and
going to university in the early 1980q there wasn't the
variety of easy-to-work-with devices that are available
today, and the sophisticated personal computer-based
development tools that we take for granted were not
even being considered, let alone being developed or
sold. My method for learning about a new part is effec-
tive for me and a result of the situation I found rnyself
in when I first started working with electronics Today
you can set up a development "lab" and create a basic
application from scratch for the PIC MCU in less than
20 minutes using Microchip's MPLAB@ integrated
development mvironmmt (IDE) andPlckitrM 1
starter kit with HT:.soft's PICC LiterM c compiler.

The purpose of this book is to introduce you to the
Microchip PIC MCU and help you understand how
to create your own applications. In this introduction,
using the PICkit 1 sl2irter kit printed circuit board.
(PCB) and free development tools from Microchip
and HT-Soft,I will show you how easy it is to create a
simple PIC MCU program that will flash one of the
light-emitting diodas (LEDs) on the PICkit 1 starter
kit. As you work through the book, your understand-
ing of the PIC device will increase to the point where
you should be comfortable creating your own com-
plex applications in both the C programming lan-
guage as well as assembly language.

The PICkit 1 starter kit (see Figure i-1) contains
everything you will need to leam how to create and
test your own PIC MCU applications. This includes a
programmer PCB (see Figure i-2), a universal serial
bas (USB) cable to connect the PICkit 1 starter kit to
your PC, a CD-ROM containing the source code for
the applications presented in this book, two PIC
MCUs, an eight-pin PIC12F675, and a 14-pin
PIC16F684. In this book,I will be focusing on the
PIC16F684 because its 14 pins allow a greater variety
of different applications to be built from it, but you will
also gain experience with the eight-pin PIC12F675.

On the back cover of the book is a web link that you
can use to order a PICkit 1 starter kit for use with this
book. If you do not buy a PICkit 1 starter kit, the
source code can be dolrinloaded from my web site
(www.myke.com).

In this book, I will be working exclusively with
Microsoft Windows. I recorrmend that you use the lat-
est version available (at this witing it is Windows,XP
SP2) when working with the PICC Lite compiler and
MPLAB IDE tools used in the book. Development
tools are available for Linux, although not for Apple
Macintosh OS/X (but you should be able to get the
Windows software to work from an emulator). You
will find that the software works well underWindows.

If you look at the CD-ROMS that come with the
PICkit 1 starter kit, you will find they have the
Microchip MPLAB IDE and HT:Soft PICC Lite com-
piler development tools that are used in the book.
Although you could load these programs onto your
PC,I recommend that you download the latest ver-
sions from the Microchip and HT-Soft web sites.These
tools are continuously updated (during the period that
this book was written, MPLAB IDE had five upgrades,
two of them major and changed how some of the oper-
ations are performed) to include new features and PIC
MCU part numbers, and to fix any outstanding prob-
lems. In this book. I used MPLAB IDE version 7.01

Figure il The Microchip PICkit I stsrter kit
enables you to create your own PIC MCU
applications and to test them out easily qnd
inexp ensively.

o . , o . i . n , ; : " 3 o . . & q < r . r . , . . . d G 9

EmbeddedSv$ems
t 0nlelence san Franc "o
.,"-..,,P, I:S:,"f,'i.'::.i'i.Yrf"!.'*...,"-..,

Figure i-? The PICkit I starter kit's PCB consisx of
programmer circuits along with eight LEDI, a switch,
and a potentiometer that enable you to easily learn
how to program and access the peripheral feqtures of
the PIC MCU.

and PICC Lite compiler version 8.05. With the versions
that you use, you may see some differences in look or
operation, but the features presented in this book will
all be present. If you are confused as to how to per-
form some operation, you can consult the T[torial
section of MPLAB IDE, which can be found under the
Help pull-down.

To start setting up the software needed to start
developing your own PIC MCU applications, go to
www.htsoft.com, as shown in Figure i-3. PICC Lite is a
free, full-featured C compiler that supports quite a few
of the different PIC MCU part numbers (including the
PIC12F675 and PIC16F684 included in the PICkit 1
starter kit package). Next click "Downloads" and then
select "PICC Lite (Windows)" (see Figure i-4). To
download PICC Lite compiler, you will have to regis-
ter with HT-Soft at no charge (see Figure i-5).To do
this, follow the instructions on the page shown in
Figure i-4. It should go without saying that the page
will probably not look exactly like the figures here, due
to the delay between when I have written this and
when you actually access the web site.

The retail PICC compiler is capable of building
code for literally all the PIC MCU part numbers and
does not have any of the restrictions of the PICC Lite
compiler.

After registering, the PICC Lite compiler installa-
tion software should start downloading automatically.
Depending on your secudty settings (especially if you
use Microsoft Windows/XP Service Pack 2 or later),
the download may be blocked (as in Figure i-6). If this
is the case, you may have to tum off the security to
allow the download to take place. Once the program
has downloaded, I recommend selecting "Run" instead
of"Save" (see Figure i-7).This will install the PICC

Figure i-3 Step I - Go to www.htsoft.com

I l ; , - . I d " e : . ; , . d & a t ' r !

Figure Step 2 - PICC Lire Compiler downloa,li -q

94- .J ! l I i ; i / , i4 . . - " € r r . , a . t j .o I

ltfi il,f; :i#;il ;i':ii:f .ri::,:.i l":ll

Fiqure i-5 Step 3 - Registering a an HT-Soft
customer

q
. . ^ : i , i ; l :

d!!:@

1 , 2 3 P I C @ l ' l C [J E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

lib Edt r/i4 FMt6 Iode rgp

Oo* - .,.y' sl td $ j)s..,a $r"-* € 3- + n :, ffl im I

I oownuas > oomos r,G@
Download P.oducl Demos and Fra€ Software
Registratron is requrred to dowrload.lf)€u ha\€ notalready registered you willbe redlrected t0 a page attowingyou to register,
free 0f charge, or tog n Ityou have prevjou9ty registefed.

@
l;;--__l
I H r r E r H P ' ((1 8 |
| @f rp r r ru .d i I

t " " " " " " . , - l
r@n
,i, ";,"";,";".,""

@
f - �

- - , 1
I sere.1 w i
t . 1

. l

D6mos

The demo prog€ms below a€ inbnd€d l0r prosperllve
custome6 ofNI.TECH Sotware lo evaluate our prodult
before naking a prxchase decision.Tlte demostpically
haw 53me deliberale limilalions com!rJed t0lhe full,
purchased prcdurt, and also ha!€ an €xpiry, usualt2l

These d.mos are provrded enlirely dlhoul any wamnly.
and arelorevalualion pueosss onv, and are notlicensed

8051

HitachiHS/300 f
68HC05l
68H411
H- I0E fo i P CC 18
MEP43|]

z 8 0 l

Faee Software

H|T:CH Sdlwar€ mak€s cenarn lelsions of ils sonwaE
pfoducls avadable asrree sonwdre Th€seproducls areiree
f0rr.ykind oluse, inrludinq educalrol]al rnd commercirl
!se, bulremain lhe propeE of!1lI€c!1 sonwa€ 313l times
Allcopy qhl and olhernghls are resered and nowa*artot

Thenee sottvi?fe downloads do no! ha!€ a built,tn €xpiry

Prcc,L|TE (Lrnua

I C0nlactsilee t0 orqanize a lime llmiled eyalualion ollhis

Figure i-6 Step 4 - Allowing PICC Lite Compiler file download inWindows/XP SP2

Lite compiler without leaving you with an .exe or .zip
file to delete later.

When the PICC Lite compiler installation screen
appears (see Figure i-8), click "Next" and follow the
defaults. If you are prompted to load the software/
drivers for MPLAB IDE, do so, as they will be
required to use PICC Lite compiler with the
Microchip tools and provide you with a truly inte-
grated development environment, or IDE. The
MPLAB IDE is a single program containing an editor,
assembler, linker, simulator, and PICkit 1 starter kit's
programmer interface, and it will be the only program
you have to run to create PIC MCU applications.
PICC Lite compiler will integrate with MPLAB IDE
when the latter is installed so you will have a single
Windows program for developing C and assembly lan-
guage programs for the PIC MCU.

After PICC Lite compiler is installed, you will be
asked if you want to restart your computer. Click
"No," then power down your computer, and power
back up. I find that soft resets (ones in which power is

I . a O) , * i r * o i . i ; ! r . { .G : . .

Figure i-7 Step 5 - PICC Lite downloading

not removed) may not reset all the PC's parameters,
and the software installed on boot may not work prop-
erly. Powering down and then back up eliminates these
potential problems.

@
t;,;i l

e-d

q

l " ; "

lntroduction

. d . . 1 1 G . .

Figure i-8 Step 6 - PICC Lite Installer

With the PC back up, go to Microchip's web site
(www.microchip.com shown in Figure i-9) and
click "MPLAB IDE" or "Development Tools," fol-
lowed by "Full Install" (see Figure i-10).The MPLAB
IDE software is quite large (30 MB) and will take
some time to download if you use a dial-up connec-
tion. This time click "Save" instead of "Run" and store
the .zip file into a temporary folder on your PC
(see Figure i-11). You should be able to unzip the
file by double-clicking on it, and the file management
software on your PC will expand the file into the direc-
tory of your choosing (ideally the same one you
started with).

After the MPLAB IDE install files are unzipped,
double-click on "Setup" and follow the instructions to
insrall the MPLAB IDE (see Figure i-12). If asked,
make sure the programming interface for the PICkit 1
starter kit is included and you will not have to look at

, , . ! r . / , G n , . a ' , . d a i : l

Fiqure ilO Step 8 - MPLAB IDE Download Page
on www,microchip.com

Figure i-ll Step 9 - MPLAB IDE Install files stored
in a temporary folder

any readme files (unless you want to). If you are
prompted to reboot your computer, click "No" and
then power down and power back up, as you did after
installing the PICC Lite compiler software. Do not
connect the PICkit 1 starter kit to your PC using the
USB cable until you are told.

That's it;you've just installed a set of integrated
development tools that are just as powerful as some
software development products that cost many thou-
sands of dollars.With the tools installed, you can copy
the source code files for the application code used in
this book from the PICkit 1 starter kit's CD-ROM
code folder into a similar "code" or "Evil Genius"
folder under the C drive of your PC.Another source
for these files can be found on my web site at
www.myke.com.

{rnc*rr

EE-

WWffi
r E - E :

" ' Elir

Figure i-9 Step 7 - Set yotry browser to
www.microchip.com to download the MPLAB IDE
as well as PIC MCU Datasheets

€d- ..) . ' ,a i . * :t '6G I t-t- i

r t ; ^ . t

; . J t / * . . * , E l l - - 4 - j 9 -

8.. . SiAl'l.,....'

l , P 3 P I C @ l ' l C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

r{
q

f*i:

i.{

$-i*

kr.
r'1
.-i

Figure i-12 Step 10 - MPLAB IDE Installer
window

Now let's try to create a simple program that flashes
an LED on the PICkit 1 starter kit. To do this, double-
click on the MPLAB IDE icon that has been placed on
your PC's desktop.When it first boots up, the MPLAB
IDE desktop looks like Figure i-13, and is ready for
you to start entering your own application. Click
"New" and enter the following code into the window
that comes up:

#incluale <pic.h>
-CONEIG(FCITDIS & IESODIS & BORDIS & IINPROIECT

!4CIJRDIS & P!\IRTEN & WMDIS & INTIO) '
in t i t
nain()
t

PORTA = 0;
CUCONo = ?t
ANSE J = 0i
TRISA{ = 0i
TRISAs = 0t
whi le (1 == 1)
{

25000 r i ++) i

Different parts of this program will be displayed
using different colors; don't worry if it looks a bit
strange.The program should be saved as "c:\Evil

Genius\Flash\Flash.c" (see Figure i-14). Once the pro-
gram is saved, close the window that contains it.

All programs should be run as part of an MPLAB
IDE project that saves options and features selections
specific to the application without requiring you to
reload them each time you start up MPLAB IDE.The
first step is to specify the project name and where it is
going to be stored (see Figure i-15).

Fisure i-13 Step 11 - MPLAB IDE Start Up
desktop

Figure iJq Step 12 - First Applicqtion entered into
MPLAB IDE Editor wind.ow and savetl

Figure i-I5
prolect

f o r (i = 0 r i <
R A { = A A 4 ^ 1 t

Introduction

Step l3 - Creating an MPLAB IDE

, a:":
: l

.i.,u

Figure i-'f6 Step 14 - Selecting the PICC Lite C
Compiler as the MPLAB IDE Buiki tool

The Flash application is written in the C program-
ming language for the PICC Lite compiler. To specify
the PICC Lite compiler, click "Project" and then
"Select Language Toolsuite."You may have to scroll
through the Active Toolsuite to find PICC Lite com-
piler (see Figure i-16). When you have selected it,
make sure that the location of PICL.exe is correct. If it
is not, look for the CIPICCLITE folder on your PC,
and point the Toolsuite Contents to picl.exe in the BIN
subfolder.

When you are working with assembly language pro-
grams, you may have to perform the same operation
there as well. In this case, the assembly language pro-
grams (such as mpasmwin.exe) can be found in the
Program Files\MPLAB folder or in its subfolders.

Right-click on "Source Files" in the Flash.mcw win-
dow (see Figure i-17) and select "Flash.c" from the

Figure i-17 Step 15 - Specifying project source lile

Figure i-18 Step 16 - Selecting the PIC MCU part
number to work with (note the large number of PIC
MCUs to choose from).

c:\Evil Genius\Flash\Flash.c folder (where you stored
the program earlier).To load Flash.c onto the desktop,
double-click on "Flash.c" in the Flash.mcw window.
This will associate Flash.c with the project that was
just created. Each time you work with a new
program, it should have a new project associated
with it.

Next, you will have to make sure the proper PIC
MCU is selected for the application. CLick "Configure"

and then "Select Device," and find PIC16F684 in the
list (see Figure i-18).I'm sure you will be amazed at
the number of different PIC microcontroller part
numbers that come up. After working through this
book, you will discover you can program and use the
vast majodty of these chips in your applications. The
difference in the part numbers is the number of pins
and interfacing features built into the PIC MCU.
Programming and interfacing are identical to what has
been presented in this book.

Now you are ready to try and "build" the applica-
tion. You can click "Project" and then "Build All," or
press Ctrl+F10 to compile the application and store
the result in a .hex file that will be programmed into
the PIC MCU later. If any errors occur, go back over
the code you keyed in and compare it to the previous
Iisting.This is the most likely source of the problem.
Once the program has compiled correctly, you will get
the summary information shown in Figure i-19,listing
the amount of space required to store and run the pro-
gram in a PIC MCU

With the program compiled, plug your PICkit 1
starter kit into a USB cable plugged into your PC.
Afterwards, the MPLAB IDE screen will look like Fig-
ure i-20 with the status window changing to list the
Firmware version of the PICkit 1 starter kit. If it does

,:-,)

:t,,1

ir. , . ' :

5 l , a 3 P I C @ I ' l (U E x o e n i m e n t s f o r t h e E v i l 6 e n i u s

Figure i-19 Step 17 - Build information for
"Flash.c" application

not change, then click on the programmer toolbar loI-
lowed by "Select Programmer" and then the PICkit 1
icon. A four-button programmer toolbar will also be
displayed on the desktop. Remove the PIC12F675 that
came installed in the PICkit 1 starter kit and put in the
PIC16F684 that was in the PICkit box. Remember to
store the PIC12F675 in a safe place (using the piece of
foam the PIC16F684 was on is a good choice). Click
"Programmer," "Program Device," or the Program
icon (place your mouse over the programmer icons to
make a button legend appear) to download the appli-
cation inlo lhe PICl6F684.The programming opera-
tion will take a few moments (the operation is
indicated by a growing bar on the bottom-left corner
of the desktop, and a "Program Succeeded" message
will be shown on the status window, Figure i-21).

Once the build/compile operationq followed by the
device programming steps, are complete, the D0 LED
of the PICkit 1 starter kit will start to flash. If it
doesn't, you should review the source code and the
process of creating the project.

Figure i-eO Step I8 - tnformarion provitled when
the PICkit 1 starter kit is plugged into the (levelopment
PC's USB Port. Note: Four-button Programmer
toolbar at the top center of MPLAB IDE desktop.

Introduction

Figure i-al Step 19 - The first application has been
programmed into a PIC16F684 and inserted into the
PICkit 1 started kit connected to the development PC.
The D0 LED should now be flashing!

That's it;you have just set up a very sophisticated
microcontroller application code development lab and
created your first application. I realize very little of the
program or the process you went through to get to this
point makes sense, but as you work through the differ-
ent expedments in this book, their functions will
become more obvious and easier for you to use on
your own. Just as if you were to review the datasheets
for the part's electrical information, working at under-
standing the architecture and how it is programmed
will help you understand what kind of development
tools are available for the part.

Throughout the rest of this book, I will help you
learn about and work with the PIC MCU. The experi-
ments range from the very trivial to some very com-
plex intedacing applications that are really quite a bit
of fun.There is a lot of material in this book and a lot
to learn; try to work through each experiment in a
section before taking a break-I would be surprised if
you were able to get through the entire book in less
than a year.

As part of the learning exercise, try to develop your
own circuits and code-this will cement the knowledge
you gain from the book and help you build the skills
needed to create your own applications. Don't be
afraid to use my designs and code as a base or as a part
of yours (using cut and paste). Playing "what if" can be
a lot of fun and very instructive. I believe that before
somebody is comfortable working on a new device and
development system, he or she should have 50 or so of
his own applications under his or her belt.

Don't be discouraged when, at first, your applica-
tions don't work.It isn't unusual for it to take a week
or two to get a person's very fint application working

(even if it's flashing an LED, as I do in this introduc-
tion). The second time it will take half as long, the third
a quarter, and so on. Over a fairly short period of time,
you will be able to create applications efficiently that
are as sophisticated as those created by professionals.

Seeing your own PIC microcontroller applications
working will be an amazing experience for you, and it
will give you a sense of pride to know you can do
something that only a small percentage of the world's
population can do. Unfortunately, the process of get-
ting there is full ol frustration, confusion, and hard
work. Along with teaching you about the PIC MCU,
the purpose of this book is to help you gain the skills
necessary to develop your own applications with a
minirnum of the inevitable frustration. confusion, and
hard work.

Prerequisites
This book was written to be the second in a sequence
(123 Robotics Experiments for the Evil Genius vtas the
first book) and, as such, many of the basic electrical,
mechanical, and programming concepts used in this
book were presented in the first. To understand fully
the experiments presented in this book as well to be
able to create your own applications, you will have to
be familiar with the concepts listed below:

. Basic electrical laws
. Parts of a circuit
. Ohm's law
. Series resistances
. Parallel resistances
. Kirchoff's voltage law
. Kirchoff's current law
o Thevinin'sequivalency
o Resistor markings

. Semiconductor basics
. Diode operation
. LEDs (including 7 Segment Displays)
. Bipolar transistor operation and pinouts
. MOSFET operation

. Binary electronic logic
. The six basic gates
. Diflerent logic tech nologies
. The Boolean arithmetic laws
. Types of flip flops
. Common circuits

l , e 3 P I C o l l C l J E x p e n i m e n t s f o r t h e E v i l G e n i u s

. Adders
o Muxes/Demuxes
. Counters
o Shift registers and.linear feedback shift

registers (LFSRs)

Oscillators
. Basic relaxation oscillator
o Reflex oscillator
. Crystals and ceramic resonators
. 555 timer chip

Common electronic devices
. 74L op amp
. 386 audio amplifier
. IR object sensors

Power supplies
. Batteries
. 780x/78l0x voltage regulators
. Switch mode power supplies
Numbering systems
. Scientific notation
. Metdc prefixes
r Capacitor markings
. Binary numbers and conversions
. Hexadecimal numbers and conversions
Programming concepts
. Data types
r Variable declaration
. Assignment statement
. Vadable arrays
. Iflelse/endifstatement
. While statement
o Subroutines

Microcontroller concepts
. Memory organization
. Input and output pins
. Special pin functions
. Power supplies

computer science, mathematics, or physical sciences, it
should be appropriate for university students or tech-
nical hobbyists looking for more information on pro-
gramming and interfacing PIC microcontrollers into
an application. To ensure that the material presented
here would be relevant to high school students, the
Ontario Ministry of Education curriculum guidelines
for Computer Engineering (found at www.edu.govon
.ca /eng/document/curricuUsecondary I gradeLLl2
/tech/tech.html#engineering) have been used as a ref-
erence when topics, experiments, and materials were
selected. This book should be useful both as a course
text and as a reference for both teachers and students.
After working through these experiments, you will not
only have a good understanding of how PIC16F684
and PIC12F675 microcontrollers (and indeed the
entire PIC family of microcontrollers) are pro-
grammed and interface to other devices, but you will
also be well on your way to being capable of creating
your own sophisticated PIC MCU applications.

Reading through the experiments in this book will
not make you proficient in creating your own PIC
MCU application. I am a firm believer in doing, and I
would expect that in any course, there would be many
assignments that consist of modifications of the experi-
ments presented in this book. These assignments
should give students the task of creating their own
applications and, as part of the process, planning,
wiring, and debugging them. For the students to
become reasonably proficient in developing applica-
tions, they should be given 10 to 20 applications as
assignments over the course of a term in order to
familiarize themselves with the MPLAB IDE software
development environment, the PICkit, and the PIC
MCU operation.

Along with providing information on Microchip
PIC microcontrollers (the PIC16F684 in particular),
electronics interfacing programming in C, and assem-
bler programrning, this book attempts to develop and
engender the important thinking and problem-solving
skills that are expected from a graduate engineer.
These skills include the ability to work independently,
perform basic technical research, create a development
plan, and effectively solve problems. Along with being
useful in professional careers, these skills are critical to
your success in college and university.

The experiments in this book do not lend them-
selves well to group activities-you'll find that it is dif-
ficult to divide small microcontroller applications into
different tasks that can be carried out by different
members of a group. For this reason, I recommend
assignments that are limited as one-student projects.
Projects given during the term should be solvable in
less than 100 lines of code (two printed pages) and
should not require a lot of research on the part of the

...:

;: ,:
: . :

fomments for Teachers
and StudentE
While the target audience for this book is Grade 11
(junior) and Grade 12 (senior) high school students
preparing for post secondary education in engineering,

lntroduction

|-;

ff
t : ' " j

.i,"j

ful
;r1

'r{

ii;
!r
-r''i

it-J

student. Instead time should be spent trying to decide
the best way to solve the program and structure the
software. All of these projects, except for a summative
project,sholJldbe easily completed in a week or less.

H Note to StudentE:

. Teachers are very good at figuring out when an
assignment is copied or plagiarized, and getting
caught will land you and any other students
who are involved in trouble. Copying code or
circuitry from the Internet or other books will
be identified quickly as it is difficult to rework
them to fit into your design system or style of
programming. In any case, cheating will not
help you gain the necessary skills for develop-
ing your own application (and ultimately pass-
ing the course). In short, hand in only your own
work and make sure that you can explain the
how and why of your assignments. It will pay
off in the long term.

. When given an assignrnent, spend a few
moments a day on it, no matter what. Don't
leave it until the night before it's due. By doing
a little bit of work on it each day, your subcon-
scious will work on the assignment, and when it
comes time to finally create it and wdte it up, it
will seem a lot easier.

. Don't be afraid to try something different. The
worst thing that can happen is that it won't
work-the upside is you will discover a way of
approaching the problem that is very efficient
and easy to implement. In this book, there are
several examples where I just tried different
things and discovered a better solution to a
problem than I would have expected (and cases
where the alternative solution was worse than
the original).

H Note to Teachers:

. For teachers considering using this book as a
text for their courses, I would like to emphasize
that the material is designed for the PIC16F684,
PICkit 1, and, to a lesser extent, the PICI2F675.
I realize that investments have been made in
other PIC (and other) MCUs, in programmers,
in and other equipment, but the MPLAB
IDE/PICC Lite compiler and PIC16F684/PICkit
combination is an extremely flexible and cost-
effective tool for application development.

. Tiy to use real-world situations for your assign-
ments and try to vary them, both to interest
your students and to make it harder for them to
copy from preexisting materials. A good way to
come up with these assignments is to keep a
notebook handy and record the different things
you see in your travels. Toys 'R Us, Radio
Shack,The Sharper Image, and other retailers
can be wonderful sources of inspiration.

. Lead by example. You should work through as
many different applications until you are com-
fortable doing so and can debug most of the
problems you experience. An important tool to
be familiar with is the MPLAB IDE simulator.
A couple of teachers have told me that they
don't bother with the simulator when they are
teaching because students prefer to see flashing
lights or something happening. Please try to
break this habit and encourage the use of the
simulator as a tool for verifying the operation
of the code as well as for debugging execution
problems. Using the simulator will give students
the ability to see the program working or not
working, and why it is not working before mak-
ing the effort to wire the application. For virtu-
ally all applications that run the first time
power is applied, the developer should have
demonstrated the corrgct operation of code on
the simulator before he or she attemDts to burn
it into a PIC MCU.

lcons and Conventions
At the start of each section and experiment, you will
fild one or more icons indicating the parts and tools
you need to have available to complete the experi-
ment(s). I have chosen to do this rather than providing
one central list of parts required for all the experiments
in this book.The reason for doing this is to help you effi-
ciently plan for the section's experiments without hav-
ing to buy many hundreds of dollars of parts (many of
which you will not need for months). I have tried to
keep the number of parts to a reasonable minimum by
designing as many experiments as possible to execute
within the PICkit 1 starter kit-once the PIC MCU is
programmed, the application programmed into it can
execute on the PICkit 1 starter kit without modification.

The icons used to specify parts and operations are
as follows:

At the start of each section, I will list the required
parts for the section under this icon (see Figure
i-22). As I indicated, this is a summation of the parts
used in all the exoeriments of the section.

1 0 l , e 3 P I C @ l ' l C U E x p e n i m e n t s f o r t h e E v i I G e n i u s

F{
!!E

.t
a.*
!'r,

. l*

l ;
':i"

i't,

..:}

Figure i-ea Required Parts icon Figure i-eq PICkit I starter kit icon

Figure i-a3 PC/Simulator icon

Virtually all of the experiments will require a PC
(indicated by Figure i-23) running Windows and
loaded with rhe MPLAB IDE and PICC Lite com-
piler.This PC should be running one of the following
versions of Microsoft Windows:

o Windows 98 SE
. Windows ME
. Windows NT 4.0 SP6a Workstations (NOT

Servers)
e Windows 2000 SP2
. Windows XP

And the PC should have 32 MB memory (128 MB
recommended),95 MB of hard disk space (1 GB rec-
ommended), CD-ROM drive, along with Internet
Explorer 5.0 or greater with an Internet connection
for installation and online Help along with one free
USB port.

When the PICkit 1 starter kit icon (see Figure i-24)
appears at the start of an experiment, it means that the
PICkit is required either as a platform for the experi-
ment or as a PIC MCU programrner.

The Parts Bin icon (see Figure i-25) specifies which
parts are required for the application. Parts may be
reused between experiments

The last icon (see Figure i-26) lists the tools
required to create the application's circuit.You should
not require any specialized tools for the experiments
presented in this book. Remember to wear safety
equipment when doing any cutting or drilling.

Figure i-45 Parts Bin icon

Figure i-e6 Toolbox icon

In terms of conventionq I will use both Ststem Inter-
nationale (Sl),better known as the metric system, and
English measurements together where possible. I rec-
ognize that there are still a number of issues with speci-
fying the correct measurement system, so by listing
both I hope there will be less confusion. Standard elec-
trical prefixes will be used, and I assume the reader is
familiar with them. They include the following:

k for thousands

M for millions

m for thousandths

p for millionths

p for trillionths

I restrain from speciffng part numbers except
when I believe that only one manufacturer's part
should be used. Often, equivalents to various parts can
be found in surplus and general electronics stores at a
very low cost.

For the screen shots shown in the book, I have used
MPLAB IDE version 7.01. I know that after this book

lntroduction 1 1

goes to press, later and more capable versions of
MPLAB IDE will be available for download from
Microchip's web site. www.microchip.com

The MPLAB IDE functions presented in this book
will not change from version to version (except for
fixes to discovered problems), so despite some cos-
metic changes in appearance, their operation will not
change. I recommend that you always use the latest
version available from the Microchip web site because
if you have problems, the first recommendation that
you will be given will be to try again with the latest
version of the software.

Finding Parts
When you are first starting out in electronics, it can be
difficult to find retailers to provide you with the parts
and tools to create your own circuits. Over time, you
will develop a network of stores that have the parts
you need, but if you are starting out or are looking for
better suppliers, here are some suggestions:

. Digi-Key (www.digikey.com).I have not found
a source of parts anywhere in the world that
matches the selection, price, and service of
Digi-Key.

. Jameco (wwwjameco.com). Another excellent
supplier that carries Microchip parts. Also car-
ries a good selection of robot parts (including
gears and motors).

Mouser Electronics (www.mouser.com). Along
with Microchip products, Mouser also has an
excellent selection of opto-electronic parts.

Radio Shack (www.radioshack.com). I find
Radio Shack to have a number of components
that I can't find anywhere else (thermistors,
TRIACs) as well as good-quality wire at a rea-
sonable price. Recently, Radio Shack has
included some Microchip PIC MCU chips and
the Parallax BASIC Stamp to their catalog.

Incal electronics stores. InToronto,I recom-
mend Supremetronic (www.supremetronic.com)
as it has all the passive and discrete parts that I
need, prototyping PCBs, and other useful parts
that are nice to handle and choose from instead
of deciphering PDFS on line.

Local surplus shops. If you are in the Toronto
area, I'm sure you will recognize Active Surplus
(www.activesurplus.com) by the large stuffed
gorilla out front. While having a good selection
of electronic parts, surplus stores often have
a variety of other parts and subassemblies
that are perlect for hacking or designing new
controls.

S*!

i.,,,

o.',..:

ir,"i
*;

L2 l , e 3 P I C o l l C U E x o e n i m e n t s f o n t h e E v i l 6 e n i u s

Under the Eovers of the PlElEFEBq

1 P l c l 6 F 6 8 4

Before astronomers begin to investigate and learn
more about a star, they make sure they fully under-
stand the tools they are going to use.The tools to be
used are chosen for their ability to investigate the spe-
cific aspects of the star that is to be studied. Althoush
a few discoveries have been made with poorly undel-
stood equipment, the vast majority of obseruations
have resulted in failure. Just like astronomers, before
we investigate and learn about the Microchip PICP
microcontroller (the PIC16F684 specifically), we want
to know as much as possible about the tools we are
going to be using.

The PICkitrM 1 starter kit is an excellent tool for
learning about the PIC microcontroller as it includes,
along with its programming capability, a basic test cir-
cuit that you can use with a PIC MCU. As shown in
Figure 1-1, the PICkit starter kit provides from 8 up to
12 individually addressable LEDq along with a button
input and a potentiometer for variable-voltage inputs.

S e c t i o n O n e

The builtin programmer interfaces to the develop-
ment PC via aUSB port, which is preferable to serial
or parallel ports. Overall, the PICkit 1 starter kit is
almost a perfect tool for learning how to program the
PIC MCU and interface to hardware.

When I described the PICkit 1 starter kit as beins
almost perfect. it probably set otf some alarm bells in
your head-this type of qualification is normally used
to describe things like a used car or a blind date. In
this case, I am being as literal as possible. The PICkit 1
starter kit is an extremely good product and an excel-
lent first tool (probably the best that I know of) with
which to leam to program and interface to the PIC
MCU. The three potentially negative issues I would
like to bring to your attention regarding the PICkit 1
starter kit are actually quite minor and, to some
extent, can be exploited to help you better understand
how the PIC MCU works.

The biggest issue that will have to be addressed in
this book is the organization of the PICkit 1 starter
kit's LEDs. If you were to follow the wiring of the
eight LEDS and the four I/O pins they are connected
to, you would notice that only two of the pins can be
outputs (as shown in Figure 1-2). And if all the I/O
pins to which the LEDs are connected (RA5, RA4,
RA2, and RA1) were made outputs, you would have
multiple LEDs lit if you make any of the I/O ports
high. The solution to this problem is to enable only
two pins as outputs at a tirne (one high and one low).
This allows eight individually addressed LEDs, but
not an arbitrary number of LEDS to be on at any
siven time.

--ri .,
I -

I

Figure l-'f Equivalent PICkit I starter kit circuit

1 3

=:-
--ri "

I -

I

Fiqurel-e PICkit I stqrter kit LED on

Arbitrary numbers of LEDs can be turned on by
scanning through the LEDs, just as a TV's electron
beam scans across the cathode ray tube, turning on
phosphors one at a time.This trick will be demon-
strated later in the book and will be used to display
eight bits of data at a given time. The organization of
the eight LEDs (along with the button and poten-
tiometer) was made to support eight- and 14-pin parts
in the PICkit 1 starter kit's socket. That organization
and the choice of pins (and how they are organized on
the PIC MCUS that fit in the PICkir 1 starrer kit's
socket) is actually quite inspired, as it leaves the six
pins of the 14-pin microcontroller's PORTC available
for other uses.

The second problem is that it takes a few mouse
clicks to turn off the power going to the programmed

part. I seldom remember to turn off the power, and I
doubt you will either. Although the different PIC
microcontrollers are very robust devices from the elec-
trical overload perspective, you should never pull them
from a socket while power could still be applied to
some of the pins. Although lhe zero insertion forca
(ZIF) socket, which I show you how to install later in
the book, goes a long way in mitigating this problem,
you should still be cognizant that you could potentially
be damaging the PIC16F684 every time you plug it
into and unplug it liom the PICkit 1 starter kit while
the Plckit is still connected.

The final issue to be aware of is the potential liabil-
ity of the USB port used to connect the PICkit 1
starter kit to the development PC.Although most
commercial and home PCs have built-in USB ports
and versions of the Microsoft Windows operating sys-
tem that can access the PICkit 1 starter kit very simply,
there are a number of PCs in educational and institu-
tional settings that do not have the required ports or
software.There is no easy fix to this problem other
than trying to find the fastest, biggest, and most mod-
ern memory PC to be used as a programming station.

None of these three issues are major show stoppers
-they are really just speed bumps, and they can be
overcome f airly easily.

Experiment 1- l /0 Pins

Arguably the most important feature of the PIC MCU
is its set of inpttt/oLtlp&l (I/O) pins. The 12 pins avail-
able to the application developer allow the microcon-
troller to sense the outside world and output in
different ways.The PIC16F684t I/O pins are capable
of many different functions including analog and dif-
ferent digital signal processing. But as I first start intro-
ducing the chip, I will treat the I/O pins as simple

digital I/O, capable of sensing or outputting simple
binary signals.The more advanced features will be
addressed later in the book when you become more
comfortable with programming and working with the
PIC16F684.

The basic PIC MCU digital I/O pin design is shown
in Figure 1-3.The IR/S bit controls whether or not the
pin can output the value saved in the PORZ bit. The
term TRIS is an abbreviation ofTii-State and refer-
ences the tri-state driver that can drive the PIC MCU'S
pin. When the TRIS bit is low (0), the value in PORT is
driven onto the pin, and the pin is said tobe rn output
mode.whentheTRlS bit is high (1), the PIC MCU pin
is held in a high-impedance state, and the data level at
the pin can be read without being affected by the con-
tents of the PORT bit.This is known as input mode.
Remembering which TRIS state accounts for which
mode is cuite easv to remember:A TRIS value of 1

T 4 l , a 3 P I C o l ' l C l J E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

CONFIG(INTIO
IJNPROTECT \

& UNPROTECT &

i n t i , j ;

nain()
{

PORTA = 0t
CMcoN0 = 7r / /
ANSEIJ = 0r / /
TRISA{ = 0r / /
TRISAs = 0t

w h i l € (1 = = 1)
(
f o r (i = 0 r i
f o r (i = 0 ; i

RAI = r i / / DO

& WDTDIS & PWRTEN & !,ICLRDIS &

BORDIS & IESODIS & FCMDIS) '

o

co
(5
o
o

Figirre 1-3 l/O pin

puts the pin in input mode, and a TRIS value of 0 puts
the pin in output mode.The TRIS bit value approxi-
mates the first letter of input or of output.

By convention, you will see I/O pins referred to
using the format

a,&*

where the ampersand (&) represents the port, and the
number sign (#) represents the port's pin. So PORTA,
pin 4 is known as RA4. This shorthand can be a bit
confusing because it refers to both the pin and the
PORT register.The TRIS bits are usually wdtten in the
rormat

TRIS&*

with & and # being used in the same way as they are in
lhe PORT bil/pin definilion. These naming conven-
tions are used for both C and assembly language pro-
gramming.

When I first presented you with the cFlash.c in the
Introduction, the manner in which the LED was
turned on and off is not easy to see. To help you see
the operation of the I/O port and how it affects the
PICkit 1 starter kit's D0 LED,I created cPins.c, which
turns on and off the LED using the PORT and TRIS
bits more explicitly.

* incluale <pic.h>
/* cPiaa.c - Exalnine Operation of PIC MCU PinE

This Progran is a moalificalion of -cE1a6h.c-

wiEh nore e:.plicit writea to the TRIS and PORT
b i t s .

RAA - IJED Positive conn€ction
RA5 - IJED tilegativ€ cona€ction

nvke Drealko
0 4 . 0 9 . 1 5

Turn off Comparatola
turn of,f, ADC

Make RA4/RA5 Outputs

//].oop Forev€r

< 255, i.all // sinple Delay Loop
< I29, j1-1-1,

LED ON

i < 255r i11) / / Si1np16 Delay l roop
j < 429, jaa),

D0 tED Of,f

i < 255, i11) / / Simple Delay loop
j < L29, jaL>,

RA{ = 0t

t o r (i = O t
O t

RAA = li // D0 LED On AEain

for (i
f o r (j

TRISA4

= 0i i < 255, i11) / / s inDle Delay r .oop
= o i i < L 2 9 , i t L) ,

= 7i // EltlE RA4 irto rnput !{oale

// LED lrrrned Off
out

f o r (i = 0 r i <
f o r (j = 0 r j <

Eue to RA4 Not Dfivirlg Culrent

255r i11) / / s i f i rp le Delay] .oop
r 2 9 i j ! ! , i

aA4 = Oi ll Reslole oliginaL op€ratingr
TRISA4 = 0, // conditions
| / / erillw

) // Enal cPins

Before entering the "while (1 == 1)" statement, the
code puts the RA4 and RA5 pins in output mode
(writes a 0 to them) after clearing them (setting all bits
to zero). After the while staiement, the code delays for
a half second and then loads RA4 with a 1, which
drives or sources current from RA4, through D0, and is
laken in,or sinked., by RA5.The code then waits
another half second before loading RA4 with a zero,
tuming off D0. This should be fairly easy to understand;
current flows from RA4 through D0 and into RA5.

Next, the program waits another half second before
loading RA4 with a zero, turning off D0.After another
half-second delay, RA4 is loaded with a one, and D0 is
tumed on again. After another delay, the LED is
rumed off by purting RA4 into inpur mode (the PORT
value of RA4 does not change). With RA4 in input
mode, no current can flow through D0. After another
delay, RA4 bit is put back into output mode with the
PORT bit being low so the LED will be off. At this
point, the program repeats.

Section One U n d e r t h e C o v e n s o f t h e P I C l b F h A q L 5

This program is a very simple example of how the
PORT bits work.With the basic PICkit 1 starter kit cir-
cuit, only one LED can be turned on at any one time,
which gives you an opportunity to try and decode the
schematic of the PICkit 1 starter kit and try to turn on
different LEDs or a series of LEDS in sequence. Later
in the book,I will present you with code that will do
this. But for now you might want to try and modify

One way the various PIC microcontrollers differ from
the other chips out there is in their ability to have cer-
tain operating configuration parameters set when they
power up. The configuration parameters are specified
by writing to a special word in program memory,
known appropiately enough as the Configuration
Word. When most users start working with the PIC
MCU, understanding how this word is configured is
ignored until it is time to program a chip and test it in
an application, at which point they try to figure out the
correct values for the conliguration word, often getting
an incorrect value. Most incorrect values will cause the
PIC MCU not to power up or apparently reset itself
every lew moments.

To avoid this problem, when I presented you with
the initial cFlash.c program, I included the proper con-
figuration word specification in the program, which is
automatically recognized by the PICkit 1 starter kit
programmer and stored in the PIC MCU, so that it will
power up corectly without any interyention lrom you.
Setting the configuration fuses manually leaves too
much of an opportunity for error.

The configuration word specification is the follow-
ing statement and starts with two underscores in the
leftmost column of the source code:

-CONFIG(INTIO & WDTDIS & PWRTEN & MCI.RDIS &
UIIPROTECT \

& BORDIS & IESODIS & FCIIDIS);

This statement enables the internal oscillator of the
PIC16F684, disables the Watchdog Timer, the external
reset pin, the low-voltage detect circuitry, and the
advanced clocking options. Along with this, code pro-
tection is disabled, meaning that the contents of the
chip can be read out. Note that the parameter words
(called labels) have different values for different PIC
MCUs, and different PIC MCUs may have different
oarameter words all together.

cPins.c to turn on other LEDS by putting RA4 and
RA5 into input mode, and then selecting two other
pins to put into output mode and turn on another
LED.When you do this, just use the explicit writes to
the PORT andTRIS bits that I do in cPins.c and save
the more sophisticated methods for controlling the
LEDS for later.

Each of the parameters of the -CONFIG state-
ment is ANDed together to form a value that is saved
in the configuration word when the PIC MCU is pro-
grammed.This value could be calculated manually by
reading the "Special Features of the CPU" section of
the PIC16F684 datasheet and creating the correct 14-
bit value, or you can take the values built into the
PICC LiterM compiler or MPASMTM assembler include
files listed in Table 1-1 and AND them together as I
have done in the previous statement. ANDing together
the include file values forces the compiler or assembler
to calculate the configuration word value for you, sav-
ing some time and ensudng that the values are correct.

When specifying the values for the configuration
word, make sure that every bit of the configuration
word is represented. If a bit is forgotten, then chances
are the other values will make it a 1, which may or may
not be the value that you want for the configuration
word bit.To emphasize the importance of having speci-
fied a label for every configuration word bit, I want to
point out that trying to figure out why a PIC MCU
won't run properly when a configuration word bit is
misprogrammed is incredibly difficult.

As I will discuss later in the book, the PIC16F684
has a high-accuracy internal clock, negating much of
the need for an external clock (although one can be
added), the 1N71O, in the -CONFIG, specification
enables this clock and saves you from having to add
your own clock circuitry The other options that I have
selected were chosen because they tend to make your
life easier and alleviate the need for you to come uP
with any special external circuitry to the PIC microcon-
troller.

As you work on your orm applications, you may
want to change some of these values and experiment
with configuration word options. Chances are you will
end up with a situation where the selected options put
the PIC MCU into a state where it cannot run prop-
erlv If you end up in this situation, remember to

Experiment 2-Eonfi guration tl jord

1 6 l , a 3 P I C o I I C l J E x p e n i m e n t s f o r t h e E v i I 6 e n i u s

Table 1-1
Eonfiguration Fuse Parameter SFeciftcations utth Hffected Bit(sl Listed First

Bk # PICC LIte Label MPBSM Fssembler Label Comments

rr1
t/

u
t v

F "

l y
F*

N)

I

n
;J
!'tl
| J .

q

Ft
0,

F .
o
5

{o
H

lJ-

09-08 SBOREN _BOD_SBODEN Brownout Detecr/Reset Control by SBOREN

13-12 N/A N/A

11 FCMEN _FCMEN_ON

11 PCMDIS _FCMEN_OFF

10 IESOEN _IESO-ON

10 IESODIS _IESO_OFF

O9-O8 BOREN _BOD_ON

09 {8 BOREN_XSLP BOD_NSLEEP

09-08 BORDIS _BOD_OFF
07 UNPROTECI -CPD_OFF
07 CPD _CPD_ON
06 UNPROTECT _CP_OFF
06 PROTECT -CP,ON
05 MCLREN _MCLRE_ON
05 MCLRDIS _MCLRE_OFF
04 PWRTDIS _PWRTE_OFF
04 PWRTEN _PWRTE_ON
03 WDTEN _WDT_ON
03 WDTDIS _WDT_OFF

Unimplemented; Read as 1

Fail-Safe Clock Enabled

Fail-Safe Clock Disabled

InternallExtemal Switchover Mode Enabled

InternallExtemal Switchover Mode Disabled

Brownout Detect/Reset EDabled

Brownout DetecvReset Disabled in Sleep

Brownout Detect/Reset Disabled

EEPROM Data Memory Protect Disabled

EEPROM Data Memory Protect Enabled

Program Memory Protect Enabled

Program Memory Ptotect Disabled

_MCLR Pin Function Active

_MCLR Ptr Function Inactive/Pin is Input RA3

70 ms Power Up Delay Timer Disabled

70 ms Power Up Delay Timer Enabled

Enable Watchdog Timer

Disable Watchdog Tlmer

Extemal Clock on RA5, RA4 I/O Pin

High Speed (4-20 MHz) Crystal on RA4 & RA5

Nominal Speed (1-4 MHz) Crystal on RA4 & RA5

Low Speed (32 kHz-1 MHz) Crystal on RA4 & RA5

24 RCCLK _EXTRC_OSC_CLKOUT I RC Clock, RA5 Ctockout
_EXTRC

24 RCIO _EXTRC_OSC_NOCLKOUT I RC Clock, RA5 t/O pin

_EXTRCIO

24 INTCLK _INTRC_OSC_CLKOUT I Intenal Oscillator, RA5 Ctockout
_INTOSC

24 INTIO _INTRC_OSC_NOCLKOUT I Intemal Oscillator, RA4 VO pin

.INTOSCIO

24 EC _EC_OSC

24 HS _HS_OSC

24 XT _XTTOSC

24 LP _LP_OSC

change the configuration fuses back to the default change each option individuatly, trying to find the one
value that I have listed here, and use for most of the that caused the application to stop working.
experiments. Once retumed to this valuq you can

S e c t i o n O n e U n d e r t h e C o v e r s o f t h e p I C I t F h A r + L 7

L,!
,:4,',

;.;

i. .:l

*:.,,

,.:

..t

.'-t:i*

:.,:
...:

: r . ;

,,a

.*

t;
t:
:>;.x
!"j
*:
r1 .

X
i . ' i

In the introduction,I outlined sorne of the differences
between a microcontroller (such as the PIC rnicrocon-
troller) and a PC, and I noted that one of the big dif-
ferences in the application code was the need for
providing code to initialize variables. Another differ-
ence is how the application code loaded into a PC or a
PIC microcontroller and how it is organized.In this
experiment,I will explain these differences (and the
need for them) and help you understand how informa-
tion is organized in the PIC MCU and some of the
issues that you must be aware of when you are pro-
gramming the PIC16F684.

When computer architectures are presented for the
fimt time, something like Figure 1-4 is shown, which is
the standard Prlnceton or von Neumann architecture,
The important feature of this architecture is that the
memory space is a single address area for the program
memory, variable memory, and stqck memortes;the
addresses for these application features are presented
as being arbitrary and could be placed annvhere in
this address space. An interesting side effect of this
computer architecture is that an errant program could
escape from the program memory area, start executrng
through the variable memory stack RAM, register
areas, and treat the data as program statements.

When a program is built for loading into a target
Princeton computer system, the file that is loaded into
the computer is organized to reflect the memory
organization of the memory space. As shown in Table
1-2, the program file is broken up into segments,each
at a different location, with a different size, and with
different information. This is a simple example;large
PC applications can have literally dozens of different,
code, variable, data, and stack segments whereas a

Memory
SDace

Figure f-t l Princetonarchitecture

microcontroller application often only requires only
four (reset, code, data, and stack). The compiler and
other application build tools are responsible for speci-
fying and allocating memory in the application.

Table 1-2
Princeton Computer Frchitecture Flpplication File
5egmenl and Function

ExFeriment 3-PlE MEU Variable Memorg, Flegisters,
and Program Memorg

Reset

Code

Data

Stack

Function

Address application starts executing at. Usually a
golo at the start ofthe application code.

Application code. Starting address and size specified.

Variable space for application. Starting address and
size specified. Initial values for variables.

Program counter and data stack.

The PIC MCU is designed to use the Ilarvard com-
puter architecture (see Figure 1-5) in which the pro-
gram memory and variable memory/register spaces are
kept separate from each other. Along with this, the
program counter's stack is also kept in a separate
memory space. The advantage of this method dudng
program execution is the ability of the processor to
fetch new instructions to execute while accessing the
program memory/registers. Bad programs can still exe-
cute, but at least they won't try to execute data as
instructions. The disadvantage of this method is a loss
of flexibility in application organization (i.e., changing
data or stack segment sizes to accommodate different
applications).

Figure f-5 Harvard architecture

Data Processor
and Register

lnterface

r.8 l , a 3 P I C @ I I C U E x p e n i m e n t s f o n t h e E v i l G e n i u s

The program files loaded for PIC MCU and other
Harvard computer systems are much simpler than the
files loaded into the Pdnceton computer systems.
These are produced by the MPLAB IDE, end in the
extension .hex, and are usually referred to as ,,hex

files."A typical PIC MCU hex file consists of two or
three segments, one for application code (starting at
the reset address), one for the configuration fuses, and
an optional one for electrically erasable programmable
read-only memory (EEPROM) data. For the applica-
tions presented in this book, the hex files will consist
only of the code and configuration fuse segments.
There is no need for defining different areas in the
memory space.

This last point is subtle, but extremely important.
Whenyots declare a variable in a Princeton computer
system, you are speciflng the label to be used with the
variable as well as reserving a space in memory for the
variable. When you are declare a variable in a Harvard
computer system (like the PIC MCU), you are simply
specifying the label to be used with the variable; there
is no need (or any mechanism) to reserve space for the
variable. This means that the location for variables in a
Haryard computer system can be chosen with much
less rigor than in a Princeton computer system, and the
Harvard application can still be expected to run.

The separate memory areas also mean that initial
variable values cannot be loaded into the data segmenL
in the Harvard computer system variables are initial-
ized from program memory. In terms of hex file space,
you save on the need for a data segment, but you do
require more for the initialization space. For microcon-
trollers, this is not an important point because in either
computer architecture, variables will have to be initial-
zed by code, because the applications are not loaded
[]to memory as they are wirh a PC.

Although I've probably given you the perception
that variables can be placed any.where willy-nilly in the
PIC MCU, the truth is a bit more complex. As I work
through the book,I will explain the variable memory
and register space in more detail, but for now I just
want to note that they share the same space and
explain a bit about the function of the registers.

What I am casually calling the registers in this
experiment are refefied lo as the special function regis-
ters by Microchip (and, similarly, what I am calling
variable memory is more properly called the file regis-
ters), the special function registers (SFRs) listed in
Table 1-3 are used to monitor the status of program
execution as well as provide an interface to the hard-
ware peripheral functions of the PIC MCU. As you
read through the book, the function and addressing of
these registers will be explained to you.

Table 1-3
PlEl6FEBq Microcontroller 5DeEial Function
Fleg isters

Name Flddress Function

INDF 0x00 & 0x80 Index Data Register
TMRO 0x01 TMRoValue
PCL 0x02 & 0x82

STATUS 0x03 & 0x83

FSR 0x04 & 0x84

PORTA 0x05

PORTC 0x07

PCLATH 0x0A & 0x8A

INTCON 0x0B & 0x8B

PIR1 0x0C

TMR1L 0x0E

TMR1H 0x0F

T1CON 0x10

TMR2 0x11

TMR2CON 0x12

CCPR1L 0x13

CCPR1H 0x14

PWM1CON 0x15

ECCPAS 0x16

WDTCON 0x17

CMCON0 0x18

CMCON1 0x19

ADRESH 0x1E

ADCONo 0x1F

OPTION 0x81

TRISA 0x85

TRISC 0x87

PIE1 0x8C

PCON 0x8E

OSSCON 0x8F

OSCTUNE 0x90

ANSEL 0x91

PR2 0x92

WPUA 0x95

IOCA 0x96

VRCON 0x99

EEDAT 0x9A

EEADR 0x9B

EECON1 0x9C

EECON2 0x9D

ADRESL 0x9E

ADCON1 0x9F

Low 8 Bits of the Program Counter

PIC MCU Processor Status
Register

PIC MCU Index Register

PORTA I/O Pin Value

PORTC I/O Pin Value

Upper 5 Bits ofthe Program
Counter

lnterrupt Control Register

Peripheral Interrupt Request
Register

Low Byte of TMR1 Value

High Byte of TMR1 Value

TMR1 Control Register

TMR2Value

TMR2 Control Register

Low Byte of CCP Register

High Byte of CCP Register

CCP PWM Control Register

CCP Auto-Shutdown Control
Registet

Watchdog Timer Control Register

Comparator Control Register

Comparator Control Register

High Bits of ADC Result

ADC Control Register

PIC Operation Control Register

PORTA Data Direction Pins

PORTC Data Direction Pins

Pe pheral Interupt Enable
Register

Power Control Register

Oscillator Control Register

Osciilator TLning Register

ADC Pin Enable Register

TMR2 Period Register

Weak Pull-Up Enable Register

Interrupt on Port Change Select
Register

Comparator Vref Control Register

EEPROM Data Register

EEPROM Address Register

EEPROM Control Register

EEPROM Write Enable Regisrer

Low Bits ofADC Result

ADC Control Register

! & !

&,!,
ta

ft\

$-*

L, i ,

1t'

9.i

i . i

I

E*tl

".,.t-

v
a:*gn
:x
iLJ

i1r
F.t

tf':

ti i
it;*.d

yt"

it

fil

{r?

Section One U n d e r t h e C o v e r s o f t h e P f C l t F b g q 1 9

Experiment U-Simulat ing cFlaEh.c in MPLHB IDE

The simulator built into the MPLAB IDE is probably
the least used and understood tool available to you,
which is unfortunate because it is the most effective
tool that you have to find and debug problems.The
reasons why applications are nol simulated is due to
the perceived notions that it is too much work and that
the program is either very simple or based on simple
changes to a working program. Old hands will cringe
at these excuses and remember how they learned the
hard way. PersonalIy,I never attempl to burn a pro-
gram into a PIC MCU without first simulating it and
making sure that it works properly. I always do this
before seeing if it will work in the application circuit;
by simulating it first you have confidence that the pro-
gram should run.

In this experiment, I will work through the basics of
setting up the simulator for an MPLAB IDE project. I
have a few comments regarding how it should be used
but, for the most part, I recommend that you use it for
all the experiments in this book. Some of the initial
programming (C and assembler) experiments are
designed to work only in the simulator, but once again,
you should simulate the experiments that access hard-
ware before burning them so you can understand how
they work and what they are expected to do. As you
gain experience with the simulator, you should also
develop personal standards for displaying data and
understanding what the simulator is telling you in
order to find problems and gain confidence in your
program.

After you have created a project and have built the
sourcecode to ensure there aren't any syntax elrors
(language formatting errors), you should enable the
debugger by clicking on "Debugger," then "Select

Tool," and "MPLAB Sim" as shown in Figure 1-6.
After enabling the simulator, the simulator toolbar
(see Figure 1-7) will appear. The toolbar will allow you
to do the following:

. Run the simulated program at full speed. On a
2.4 GHz Pentium running Windows XP, I find
that 1 simulated second executes in about 3
seconds,

Stop execution at any tirne. A breakpoint,which
forces the application to stop at a specific loca-
tion, can also be put in the application code as I
will show presently.

Clicking 'Animate" causes the program to run
relatively slowly, so you can watch the flow of
the program. I find that this feature is best used
to illustrate the operation of basic operating
concepts.

The program (subroutine or function) can be
executed one step at a time by clickin g |he Step
In icon.

If the operation of a subroutine or function is
well understood and felt to be correct or if it
takes a long time to execute, clicking the S/ep
Over icon will cause the simulator to execute
the code in the subroutine or function at full
speed and stop at the statement following the
call to the subroutine or function

If you find yourself in a subroutine or function
that is going to execute for a while, you can
Step Out of it. After clicking this icon, execution
will run at full speed, stopping at the instruction
after the subroutine or function call statement.

. To restart the simulation from power up, click
on the Reset icon. This icon will cause the simu-
lated PIC MCU to return to power up condi-
tions and reset the Stopwatch and Stimulus
functions as well.

'fo set abreakpoifi (which causes execution to stop
when it is encountered) in your program, double-click
on the statement at which you wish the breakpoint to
be placed. Execution will stop when the simulator is
running or animating an application, when a break-
point is encountered. The breakpoint's statement is not
executed but will execute if the Run. Animate, or one
of the Step icons is clicked. Figure 1-8 shows cFlash.c
with three breakpoints set and the execvtron run arrow
pointing to the first statement in the program.

At this time, you may want to start up your cFlash
project, enable the simulator, and put breakpoints at
the three locations I have in Figure 1-8. Once you have
done this, click on the Reset icon and you'll see that
there is no run arrow. If you click on one of the
Step icons repeatedly, the alrow won't appear and you
may think that you have not enabled the simulator
properly.

If you click on the Run icon, the program will stop
and the run arrow will appear at the first breakpoint
(at "PORTA : 0"). Before the C program startE there

l , e l P I C @ l ' l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

D d k . , . i

'CIPlCCLrTE\Bll.{flCl a4' C E cfl.sh @, cF ash.c'-O'cF dsh lbf,Zg9 .O .O MA_AA ,t EFOB4'CleLCO-rT€\all.dPlCt E€'-E cFllsh.lde,'C\vvitig\8to Eli Gei],s\Gd;\cl ash\cFt&h ob , O"cFtash cot -0..F 4i hef -O -MPI-IA -l6FdB1

({) b v ! €
s0070 s0031 (1) b t res

s000s I 5) byls !o!ar Bnd 0 RAlt

Figure l-6 Enabling MPLAB simulator

is some code that sets up the execution environment
and calls the C program. Placing a breakpoint at the
first statement in the program and then clicking on the
Run icon after resetting the simulator, will provide you
with an application that is ready to go from the first
statement.

Now would be a good time to start single-stepping
through the program.

When you get to the for statements,you'll see that
the alrow doesn't move for each click of the Step icons
or even seemingly for the Animate icons.These state-
ments provide a half-second delay for the program-
you can execute through them quickly and stop at the
statements after them by clicking the Run icon.

To understand better how long an application is
taking to execute, click "Debugger" and then,,Stop-
watch" to display the Stopwatch window shown in Fig-
ure 1-9.This window will show you how many
instruction cycles have executed and how long it would

have taken if you were working with a PIC microcon-
troller running at 4 MHz (which is the default execu-
tion speed of the PIC16F684).The simulated execution
speed can be changed by clicking on "Debugger" and
then on "Settings;" this pop-up also allows you to
change other operating parameters of the simulator.

You can also monitor the values of resisten and
variables in your program by adding a Wuch winclow
(see Figure 1-10).To add a register, select it in the pull-
down to the dght of 'Add SFR" and click on ,Add

SFR;" to add a variable, select the one you want from
the pull-down to the right of 'Add Symbol" and click
on 'Add Symbol." For your initial programs, I recorn-
mend that you always put in the I/O (TRIS and
PORT) registers as well as all the variables in your
program. When you are putting registers and variables
into the Watch window, you may feel that the method
in which they are displayed is suboptimal.You can
change how they are displayed by right-clicking on the

5ection One U n d e r t h e C o v e r s o f t h e P I C l h F h A q 2 L

l-,;;;;

l* ,,Run,,
"Animate"

: z1€

. ' ' ;

iir:

,*.*

91ri

i-1..*

::d

'irj

:

t:
'.r-i
? .

; : 1 :

:;;.t

i.i

"Pause/Stop" "SteP ln'

Figure l-7 Simulator active

Execution
at Breakpoint
(Arrow Over
'8")

Breakpoints
Set

Figure l-B Setting breakpoints

2 2 l , a 3 P I C o I I C I J E x p e r i m e n t s f o r t h e E v i l G e n i u s

14

H

t U
L*

3*t

{u

t
t

?"t
*,

l 1

."{

?";"{

C J

nr

1 d

Slopwatch
Window
Active
(46 Cycles)

Figure l-9 Adding Stopwatch

"Watch" Window

s u r * * e
L!4t 'd6 qdt . | 4

'r rd6r | l.@f---Effi

Figure 'f -10 Addine aWatchWindoh,

S e c t i o n O n e U n d e r t h e C o v e r s o f t h e P I C l , t F h A r + 2 3

D d l l r * C a l . t

Select
RegisterNari
Display Type
Size and
Other
Parameters

vdPs1tAetodt

!d@---- l

kl!b---l

'*li;----:j

rro&l:-.+ l

l F l r , i i I b * l 4 1 4

h t r f ' G q J f @ l @ - t r _ - f f i

t r o @

; ; : i* ,- . ; ; ; '

L"t

'"t
.S'r

H

U'
*n{

IJJ

Fi qure I -'f
'f

Changing Watch data types

variable, selecting "Properties," and then changing the
data format as shown in Figure 1--11.

With the information I have presented here, you
can simulate most of the functions of the code written
for the experiments in this book. Right now, you can
just monitor the operation of the code, but in a later
experirnent,I will show you how to set specific input
and register stimulus, which will help you see how your
application runs under different conditions.
For now, you can change register values by double-
clicking on their value in the Watch window and put-
ting in new values manually.Adding stimulus to a
simulated program takes a bit more work than the
execution, breakpoint, stopwatch, and variable display
steps I've shown here, but it provides you with a way to
test your application under constant conditions, rather
than depending on remembering to set certain values
manually.

One of the nice features of the MPLAB IDE simu-
lator intedace is that it is the same as the ICD 2
debugger and ICE 2000 emulator interfaces This
means that when you start working with these tools,
there should be only a minimal learning curve going
from the simulator. The simulator features I've pre-
sented here are also present in the debugger and emu-

lator. Debuggers and emulators provide hardware
interfaces to the application circuit (actually replacing
the PIC MCU in the circuit) that you can monitor, set
breakpoints for, and repeat over different sections of
code,just as you would in the simulator.

At the start of this experiment, I suggested that
you use the MPLAB IDE simulator to test all the
application code in this book (and any that you
encounter) before burning it into a PIC MCU. By
doing so you will gain experience with the simulator
and learn to come up with strategies that work best for
you. Additionally, you can experiment with placing
your editing, watch, and stopwatch windows on the
MPLAB IDE desktop in positions that make the most
sense to you and that allow you to debug your applica-
tions efficiently.

For Consideration
When people start investigating Microchip PIC micro-
controllers for the first time, they are generally over-
whelmed by the number of different part numbers
(microcontrollers with different lealures) that are

2 4 l , e 3 P I C @ l ' l C l J E x o e r i m e n t s f o r t h e E v i I 6 e n i u s

available. As I write thiE there are over 250 active PIC
MCU part numbers to choose from, not including
packaging options. Most PIC MCUs are available with
at least three different packages; each part number is
available with two operating temperature mnges, and
the older parts are available in different voltage
ranges This means, when all is told, there are about
2,000 different PIC MCUs and options to choose from.
Over the next two pages,I would like to make your
choice a bit simpler.

There are six rnajor PIC MCU families to choose
from as I have outlined in Table 1-4. The PIC16F684
that is featured in this book may seem like one of the
lower-end PIC MCUs, but it is actually a quite flexible
member of the mid-range.

The low-end PIC MCU processor architecture is
available on many of the entry-level parts. The proces-
sor is very similar to the mid-range architecture (which
is used in the PIC16F684) but does not have some
immediate instructions, does not support interrupt
requestq cannot support large amounts of variable
memory and does not have any advanced peripherals.
The mid-range PIC MCU architecture is the most pop-
ular architecture (and used in the PIC16F684), as it
supports moderate amounts of variable memory
advanced peripherals, and interrupts. The PIC17 high-

end architecture is somewhat unique to this familv of
microcontrollers although it does iave some simjLri-
ties to the low-end and mid-range. The PIC18 architec-
ture is really a superset of the mid-range architecture
and it offers a number of features that allow it to
access more program memory variable memory, and
peripheral registers as well as instructions that will
simplify and speed up traditional applications. Once
you are comfortable with programming the mid-range
chips and have worked through the experiments in this
book, you shouldn't have any problems learning how
to program and working with the other PIC MCU
architectures

Most new users and hobbyists limit themselves to
the parts listed in Thble 1-5.These devices are all easily
programmed either by the PICkit 1 starter kir, PIC-
START@ Plus,ICD 2, or a homegrown programmer
(of which there are many different designs available
for dornload from the Internet). The Microchip ICD 2
is a debugger interface that gives you many of the
capabilities of an ln-circuit emulator (ICE) without the
extreme cost of an ICE.

I want to make a few comments on each of the
devices listed in Table 1-5. The PICSTART Plus is a
development programmer produced by Microchip,
which can be used for all PIC microcontroller Dart

qt
\J

n
n

$l
!-.
p-
o
r-t
8'
al
F.
o
t

Table 1-4

Il::::!il llc yi::?:::,T1P,'-. l"'"iIi*
PIC MCU Pmcessor
Familg FlrchleEture

Programmlng PtugEm
Plgqrithms and ICD Memory Tgpe Memory Slze Begt4er Size lO Plns Featues

PIC10 Low-End (12 Bit) ICSP and ICD

PIC12 Low-End (12 Bit) ICSP

256 to 512 16 to 24 bytes
instuctions

512to\,0u 25 to 41 bytes
instructions

512to2,048 25 to 128 bytes
mstructrons

4096 instructions 192 bytes

512 to 2,04a 25 ro 73 bytes
instructions

512to8,192 72 to 368 bytes
instructions

4 Comparator

6

6 Compamtor
and ADC,
Advanced
Timers

20 Comparator
andADC,
Advanced
Timefi

121o20

12 to 33136 ADC,Se al
to 52 for I/O, Advanced
LCD Timerg

LCD, USB

33 to 66 Extemal
Bus, Serial
I/O, Advanced
Timers

16 to72 ADC,Serial
I/qAdvanced
Time$

Flash

EPROM (OTP)

PlC12 Mid-Range (14 Bit) ICSP and ICD EPROM (OTp)
and Flash

PIC14 Mid-Range (14Bit) ICSP EPROM (OTP)

PIC16 Low-End (12 Bit) Parallel,ICSP EPROM (OTp)
on Flash Parts and Flash

PIC16 Mid-Range (14Bit) ICSP and some ICD EPROM (OTp)
and Flash

PIC17 "High-End" (16 Bit) Parallel EPROM (OTP) 2k to 16k 272to902bytes
rnsrucnons

PIC18 "PIC18" (16 bit) ICSP and ICD EPROM (OTp) 8k to 64k 6,10 to 4,096 bytes
and Flash instructions

Section Bne U n d e r t h e C o v e r s o f t h e P I C I E F h A t + 25

numbers-in some cases adapters are required to pro-
gram the parts. In some cases, another PIC MCU part
number has to be used to implement the ICD 2 func-
tion for a specific PIC MCU. Although the PICC Lite
compiler is either restricted or not available on some
of the PIC MCUs listed in Table 1-5, the full product
supports each of these PIC MCUs and does not limit
the program size or number of variables required for
the application. Each of the listed PIC MCUs has flash
program memory! which means that they can be erased
by the programmer before burning a new application
into them. All of the PIC MCUs except the PIC16F54
have the mid-range processor architecture. I included
the PIC16F54 because many early introductory books
and web sites reference the PIC16C54. and the
PIC16F54 can be used in its place for these applica-
tions. Another traditional beginner's part is the
PIC16F84A, but I would recommend that you consider
more advanced and feature-rich chios such as the

PIC16F627A instead.These more advanced chips have
additional peripheral features as well as built-in oscil-
lators, eliminating the need for you to add oscillator
circuitry to your application.

I chose the PIC16F684 for this book because it is a
mid-range architecture part (14 bit), can be pro-
grammed by the PICkit 1 starter kit, and has ICD 2
and PICC Lite compiler support. This chip also has a
built-in precision oscillator and is tolerant of a wide
range of operating voltages. It also has a wide range of
peripherals that make it appropriate for use with appli-
cations like robotics.To summarize,I feel the
PIC16F684 gives the best cost-to-performance ratio
(when the PICkit 1 starter kit and PICC Lite compiler
is included in the decision) for a mid-range part that
could be used in a wide variety of different applica-
tions and would be easy for somebody learning to
work with the PIC microcontroller.

Table 1-5
Flecommended First PIE MEIJs

Pan Numbs PtugEm Va able
Number Df Plns Memog Mem1rg

PIC16F675 6 1,024 inslructions 64 bytes

PIC16F630 12 1,024 instructions 64 bytes

PICI6F6U4 12 2,048 instructions l2tl byles

PIC16F54 13 512 instructions 25 bytes

PIC16F84A 13 1,024 instrlctions 68 bytes

PICI6F627A 16 1,024 instructions 224 bytes

PICl6F87x 22 to 33 4,096 to 192 to
8,192 instructions 368 bytes

PeipheBls

ADC,Timers

Comparator

ADC, Comparator,
Timers

None

None

Comparator,Timers,
Serial I/O

ADC,Timers,
Serial l/O

and Debugqel

PICkit 1 starter kit,
PICSTART PIUS,ICD 2

Plckit 1 starter kir,
PICSTART Plus,ICD 2

PICkit 1 starter kit, PICSTART
Plus,ICD 2 Using PICI6F688

PICSTART Plus

PICSTART Plus

PICSTART Plus,ICD 2

PICSTART Plus,ICD 2

PICC Lite su1pott

Yes

No

Yes (Limited Size)

No

Yes

Yes (Limited)

Just PICl6F87?A
and Limited

2 6 l , P 3 P I C @ f l C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

Introductoru f Programming

1 P r c 1 6 F 5 8 4

I often see the C programming language described as
the Universal Assembly Language by people trying to
put it down.This isn't a very fair characterization
because C is an extremely flexible programming lan-
guage that was the development tool of choice for vir-
tually every operating system in use today, as well as
for a long list of successful business applications and
games. Along with common computer science applica-
tions, C is used to program more artificial intelligence,
computer-aided design systems, aerospace control sys-
tems, and supercomputer applications than any other
programming language. Despite acknowledging C's
widespread use and popularity, detractors tend to
focus on a few points.

C is an incredibly rich language that makes it suit-
able for a wide variety of different applications. This
richness can be a two-edged sword; instead of forcing
every developer into following a common program
layout, C allows a wide of programming styles. As I
will discuss at the end of this section, multiple C state-
ments can be combined, which can make code unread-
able to even the most expert programmer.An
acknowledgment of C's capability to be written into
incomprehensible code is the single point of the
yearly "International Obfuscated C Code Contest"
(www.us.ioccc.org/) in which the most confusing code
possible is created for prizes.

The richness of the code is often given as a reason
for why C is hard to learn. I regularly contest this with
proponents of BASIC, JAVA, and other programming
languages. All these programming languages have a
similar number of statement types, and I do not believe
that any one has advanlages over another to make

S e c t i o n T w o

programming with it more efficient. In terms of read-
ability, poor code can be written in any language. Good
programs are not the result of the language designer;
they are the result of the programmer thinking about
how to approach a problem and clearly expressing in
their code what the programs are doing.

Additionally, C is heavily dependent on pointerE a
programming concept that many people find difficult
to work with, debug, and understand, especially when
reading other people's code. I admit that I like working
with pointers, but this is due to spending many years
understanding what pointers can do when pro-
grammed in C and how they can be used most effi-
ciently for most applications. In this book, I will
introduce you to the basics of C pointers and try to
emphasize only the things you have to know to work
with the language. For most C applications, pointers
are minimally required and are often quite transparent
to the operation of the program.

My major complaint about the C programming
language is one that few people comment on;in its
ANSI standard form, C cannot access data smaller
than bytes. The version of C used in this book can read
from and wdte to bits, but you will still require some
very convoluted code to carry out some hardware
interfacing.

Despite these concerns, C has a number of charac-
teristics that make it well suited for use in this book
and for individuals learning about programming.
Firstly, because the language is over thirty years old, a
plethora of books has been written about learning and
coding it. Secondly, it is actually quite easy to wdte
efficient and readable code in C, and a good portion of

27

the text in this book is devoted to teaching you to do
just that. Lastly, I believe HT:Soft's PICC LiterM com-
piler is the best highJevel development tool available
for the PIC16F684 microcontroller, and I'm pleased
that it can be used in this book to teach you about the
PIC@ microcontroller.

PICC Lite compiler has three things going for it
that I feel are critical to its use in the book and for use
by new users. First, it integrates extremely well with
MPLAB@ IDE. As shown previously, PICC Lite com-
piler works not only with MPLAB IDE's basic opera-
tions, but it produces the necessary information
needed by the MPLAB IDE simulator, MPLAB IDE
debuggers, and ln-cCircuit emulators (ICEs) to allow
source-code-level debugging. I feel this is critical for
producing, testing and analyzing applications.

Second, PICC Lite compiler produces very efficient
code.In Section 12,I demonstrate how I would solve a
number of math problems using assembly language
programming. At the start of each program, I have
written out the operation of the program in C;you may

want to cut and paste this example code into separate
C source-code files and see how efficient my assembler
is to the code produced by PCC Lite. I would be sur-
prised if my code had more than 10 percent fewer
instructions than any application, and I wouldn't be
surprised if there are cases where PICC Lite version
created code with fewer instructions than I did.

Finally, the price of PICC Lite compiler cannot be
beat. PICC Lite compiler is not a crippled version of
the full productiit includes a1l the capabilities, includ-
ing code optimization and simulator/debugger/emula-
tor support, of the full product.This is an important
point because with PICC Lite compiler integrated into
MPLAB IDE, you have a development environment
with capabilities that would normally cost well over
$1,000 dollars. Thken together, the C programming lan-
guage, with applications written with an eye toward
readability and efficiency and implemented in the
PICC Lite compiler, is the best method of learning
about the PIC microcontroller, microcontroller pro-
gramming, and application debugging.

Experiment 5-Variable Declaration Statements

Declaring variables in PICC Lite compiler is generally
as simple as:

int variableNamet

before the main statement of the application. This will
create a 16-bit variable with the label VariableName
(or whatever variable name you want) that can be used
anywhere in your program. In this experiment, I would
like to discuss a few issues regarding variable and hard-
ware register declarations to help you make sure that
you can successfully create applications even though
you have worked through only a few experirnents in
the book.

VariableName is a label and can start with any
upper- or lowercase letter or the underscore character.
After the starting character, the rest of the label can be
any letter, number, or underscore character. Blank
characters cannot be used in a label;if blanks are
encountered, the compiler will try to divide the charac-
ter strings to determine which of them are program-
ming statements, directiveg or defines.These character
restrictions are also used for subroutine and function
names,

For standard variables, two options exist that you
should be aware ol The first is the ability to initialize
the variable when it is declared. By adding an equals
sign and a constant value, you can set your variable to

a specific value for the program without having to add
another line later in the code. To initialize the variable
r to 47, you would simply key in:

Another option that is available to the declaration
statement is the const ke1'word, which converts the
declared value from a variable to a constant:

conat in! xconstant = 47t

In the declaration of xconstant, anytime the label
xConstant is encountered, the compiler replaces it with
the value 47. By declaring xconstant as a constant, you
can no longer write to it. For example the statement:

xconstant = 48t

will return an error.

If you were to look at the pic16f684.h file that was
put on your hard file when PICC Lite compiler was
installed in the \PICCLITE\nclude folder, you will see
a number of statements that look like:

static volalile unsigneal char tMRlIJ e 0x08,

These are hardware register declarations and
involve additional options that you do not need to be

2 8 l , a l P I C @ l ' l C U E x o e r i m e n t s f o n t h e E v i l G e n i u s

concerned with, because HT-Soft has taken care of
declaring all the hardware registers in the PIC16F684
microcontroller for you.

I want to say a few words about variable names.
Please try to make an effort to make them representa-
tive of what they are being used for. I see many stu-
dents create programs with variable names like Reg3
when the name Remainder or PWMValue is much
more representative of what the variable is used for in
the application. Although I recognize that the variable
memory is limited in the PIC MCU, please do not feel
you have to use one variable for multiple functions; try
to use each variable for one purpose. Using the same
variable for multiple purposes can make writing your
program more difficult and cause problems when dif-
ferent functions change a variable in ways that screw
up the operation of other areas.

One area that always gets new programmers con-
fused is in the area of counters. I recommend that you
use the conventional variable names of i, j, k, and n.
These values came into use with Fortran, the first high-
level programming language, and by using them for
this function consistently, they are immediately under-
stood when reading the code. By naming variables
approp ately, you will find the tasks of tracking how
data is being processed by the application and of
debugging the code much easier.

As I explain more about the C programming lan-
guage to you, I will expand the variable definition to
include arrays, pointers, and local and global variables.
For the time being, if you keep with the simple format
of the variable declaration that I have qiven you here.
vou will not have anv Droblems.

ExFeriment 6-C Data Tgpes

The bit value is not supported by the C language stan-
dard, and I would recommend that you do not use it
for variables. I realize that a single bit is useful forlag
variables rn aprogram, but because the bit is not avail-
able in other C implementations, you will not be able

Table 2-1
PICE Lite ComEiler Data Tgpes

Depending on your programming experience, the need
to specify variable data types might seem new and
somewhat ominous to you. The restricted variable
memory available to you in the PIC microcontroller
under the PICC Lite compiler can make the decision
on what values to specify seemingly more ominous.
There really is no need for this apprehension;most
variables can be declared using the lnt data type wilh-
out problem.

The data types available to you are listed in Thble
2-1. For the most part, the data types follow Americon
National Starul.ards lnslinrle (ANSI) standards, or what
I call Standard C values, and are available in C compil-
en for other processors.This allows you to import pro-
grams or parts of programs (usually referred to as
snippets) that have been created for other applications,
but you would like to use on the PIC microcontroller.
Similarly, if you were to come up with some good pro-
grams or algorithms, this could be exported to other
systems quite easily.

Three deviations exist in the PICC Lite compiler
data types to ANSI C that I have marked in Table 2-1.

Tqpe Bit Size

bi l I

Comment5

Boolean value-Note: Not a Standard
C data type

ASCII character/signed integer (-128 to
127)

Unsigned inleger (0 1() 255)

Signed integer (-32,7681o 32,767)

Unsigned inleger (0 to 65,536)

Signed integer (-32,768 to 32,767).
same as shofi

Unsigned iDteger (0 to 65,535);same as
unsigned short

Signed integer (-2,147.483,648 to
2.14'�7 ,483,64'7)

Unsigned integer (0 to 4,294.961.295)

Reat (0 to 1/-6.81(10r3);Assume 3 dig,
its of accuracy/default floating point
modc;Note:Not a Stanldard C data type

Real (0 to 1/ 6.81(10r3)r Assume 6 dig-
its of accuracy/specified using PICL -
D32 compilation option Note: ln
Standard C, this is float, not double

unsigned char 8

short 16

unsigned short 16

int 16

unsigned int 16

long 32

unsigned long 32

float 21

5ection Tu-ro I n t n o d u c t o r y C P n o g r a m m i n g 2 9

to import the code directly to other implementations
of the C programming language, and you may end up
getting in a bad habit of working with bit variables.
Note that I do not make the same comment for indi-
vidual bits in a special purpose register.The register
bits are unique to the PIC MCU and, as such, would
not be involved in a code export to another device.

me float and doubk (floating point) variable types
are substantially smaller in their PICC Lite compiler
forms than in their high-end processor forms. For the
most practical applications, you will not see a differ-
ence between how they execute, but you may have
issues with very large numbers or numbers having
many digits of precision.

As I have indicated, the C data types are strongly
typed, and when you are equating values between
typeE you may get a waming or an error from the
compiler indicating that a type conversion is required.
If the data is stored in a format compatible with the
destination, the simplest way of resolving this is to use
the type cast, which consists of placing the desired data
type in parenthesis before the source variable. For
example, if the variables i and j were different tlpes
but data could be passed between them, a simple type
cast. as shown here. could be used:

i = (iTr 'ee) j ,

The experiment for this application is quite simple;
just a few lines of code demonstrate what happens
with type conversion:

*incluale <DLc,h>
/* cTlDe.c - rave6tigate Dala Type operation in
PICC lJite cdE)iler

Tbie Program shosra the D€eal for TtrD€ Casling of
variab].es

wheu dlata iE tsransf€rretl.

ThiB plograln is tlesigrned tso run unaler the MPr.al
IDE Siltrrlator

on1y.

nlrhe prealko
0 { . 0 9 . 1 5

whi le (1 == l l r / / Loop Forever
) // Enal cTtrp€

When you compile this application, you are going to
get the message:

warningt000l C:\ Evil Genius \c!P!.De\cTtDe. c 27 :
iq)licit converEioa of float to inlege!

This message is telling you that the statement "i = j;"
involves a data conversion. When this message comes
up, you have to decide whether or not to resolve it by
using a type cast or by leaving the warning as is
Remember that the two data types store data in differ-
ent ways (which can be inferred from Table 2-1); cast-
ing the float type to a char is a bad idea because with
the type cast, the fkst byte of the float type could be
passed to the char without being modified. In this case,
you would leave it as is.

For virtually all the applications in this book and for
virtually all the PIC MCU applications that you will do
on your own, you will only require the int data type.
This 16-bit bit-variable data type will handle a reason-
ably large range of values as well as work with ASCII
characters. This data type is handled well natively in
the PICC Lite compiler, but for long and floating-point
data types, additional libraries will have to be added to
the final application. These libraries take up quite a bit
of space and can slow down the execution of the appli-
cation significantly. To avoid this space issue and
reduced execution performance, I recommend that
these data types not be used unless absolutely neces-
sary and the impact of their operation is well under-
stood. Later in the book, I will give you a couple of
thoughts on how to simulate the operation of these
data t)?es using 8- and 16-bit vadables.

char it
f loat j t

main ()
t

i = 47 t

j = i; // can vou

i = i , / / can you

Plac€ char into f,loat?

Place float inEo char?

u t

{ ! I

H-l

ff4

t,,l
t t !

'&&*

3C

30 l , a 3 P I C @ l l C U E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

Experiment 7-Constant Formatting
l-+1

. aJ

iU

i-

't rt

l ' a -

!i,

i:?

1=
i:-;;

When I introduced declaring variables, I suggested
strongly that variable names should be representative
of what the data is used for, and if the variables are
used for common functions (such as counters), they
should be given conventional names.This plea is
common to many programming books, but what isn't
all that comrnon is a pointer to speciq/ing constants
in the most appropriate data type for the situation.
The readability of a program can be enhanced or dam-
aged by program formatting, by variable names, or by
comments.

Table 2-2
Eonstant Formatting OFtions and 5uggested Best
UseE

-CONFIG(INTIO & !{DTDIS & PWRTTN & IICIJRDIS &
T'NPROTECT \ & I'NPRC},IECT & BORDIS & IESODIS &
FC!'DIS) t

main()
{

PORTA = 0t
CMCONo = 7i // Turn off Corq)arators
ANSEIJ = 0r // Turn off JU,C
TRISA - 0*49t // E':able PORTA IJED Oull>uts

whi le(l == 1) / / I joop Forever
{
i f (0 = = (P O R T A & (1 < < 3)))

PORTA = '3'- // Tuln on Fou! LED8
eLse

PORTA = 4r // Turn on Remaining Four IJEDS

) / / er ihw
) // Enal cconfu8e

Chances are, you could not understand what
cConfuse does by just looking at it.You will probably
have to look at a schematic for the PICkit 1 starter kit
LEDs and application input hardware. By making four
changes to this prograrn (and turning it into cClear.c), I
think you'll agree that the function and what is hap-
pening is a lot easier to understand.

* incluale <pic.h>
/* ccLear.c - *cconfuse.cz af ter pasaing through
a Deobfuscator

T]hia is lh€ same program as $cconfuse. c-, but with
rrore appropriately chosen constant tlata values.

nyk€ predlko
0 { . 1 1 . 1 s

CONI,IC (IIITIO & WDTDIS & PWRTEN & I{CLRDIS &
IJNPROTECT \ & I'IIPROTECT & BORDIS & IESODIS &
FCI'IDIS) i

nain()
{

PORTA = O'
Cl.fCONo = 7; // \tr'r ofg Cornpalators
ANSEIJ = 0t // I'urn off ADC
TRISA = 0b001001i // EnabLe PORTA LED Outsputss

wr! i re(1 == 1) / / looD Forever
t
i t (0 == 8A3)

PORTA = 0b010010t / / But ton Presseal , D0, D2,
D4, D7 On

PORIA = 0b000100r // BI'rt.Eo'r Releaaeal, D1, D3,
D5, D5 On

, // eli'nw
l // Enal cclear

Constant Definition Fomat

Decimal ##

Hexadecimal

Binary

ASCII

Best Use

Default Value

0x## Register CounterValues

0bf#ff i fr fr f Noncounrer RegislerValues
'#' Human Interface Values

There are four ways to specify comments, as is listed
in Thble 2-2 along with the situations where they are
best used. In cconfuse.c, I have created a simple appli-
cation that uses data in different formats; before burn-
ing it into a PIC16F684 and running it in a PICkitrM 1
starter kit, try to figure out what it does.

* incluale <pic.h>
/r ccoffus€.c - wri!€ to plcki! Interface
Ilaralware in a Confuaing Way

This program Derforms a simple task. but ils
function ia obfuscated b!' poorly chosen dtata
t]lDes.

fiE'ke prealko
0 4 . 1 1 . 1 5

5ection Tulo I n t r o d u c t o r y C P r o g n a m m i n g 3 1

Three of the changes were to convert the TRISA
and PORTA register assignment values to binary from
decimal, hex, and ASCII. I think you will agree that
they were effective and helped you see what was hap-
pening in the application and the output values. The
fourth change was to eliminate the complex test of the
RA3 (button input pin) and simply do a bit compare.
With the bit compare, you could easily look at the
PICkit 1 starter kit schematic and see that RA3 is con-
nected to a pulled-up push button.

When deciding which constant format to use in
your program, you might want to follow these rules:

. Use decimal by default. For basic variable and
variable functions, decimal is probably most
appropriate and easy to read.

. Use binary when you are working with a regis-
ter that does not contain counter data. An

example of this is loading the OPTION register
with the value 0b10011111.

. Use hexadecimal for register counting or result
data, Comparing a counter's current value with
a hexadecimal constant would be most appro-
pnate.

. Use ASCII data when human interfaces are
involved.This includes text messaging as well as
user input.

. Data sizes should be appropriate. Use six bits
for the two sets of six-bit PORT and TRIS reg-
isters. For other registers, use eight bits.

I think what I am trying to say in this experiment is
best summed up by the maxim: "There are 10 types of
people in this world: those that understand binary and
those that don'1."

Experiment 8- Rssignment Statements

.:t,13

$
.i.i l

-i-,

i t t

a::-i

.rj
r",
il i:

t_'j'

1l'-.€

.'].{

,t:;

I

c;

.:;".1

....

ill1.:

1::

If you are familiar with other highJevel programming
languages, you are aware of the statement type called
the assignment statemezl, which is used to store data of
a variable of a specified type. In the previous experi-
mentE I have detailed different data types as well as
how variables are declared. In this experiment I will
present how assignment statements are written in C.

The basic form for a C assignment statement is:

ValldbleNam€ = E <pressiont

The label VariableName is a variable. declared as
shown in the previous experiment. The single equals
sign indicates that the variable is going to have a new
variable value stored in it. I point out the single equals
sign because the appearance of two equals signs is a
logic operator, as I will explain in a later experiment.

The expression is a data type value that is the same
as VariableName. An expression can be a constant, the
contents of a variable or a series of mathematical oper-

ations.Although C is somewhat tolerant of assigning
different data types, you should always try to make
sure that the expression's type is the same as the vari-
able's, and if it isn't, make sure you understand any
potential issues.

An example of a potential issue between dissimilar
types is saving a L6-bit value in an eight-bit variable. In
this case, the upper-eight bits will be discarded, which
could be a good thing (you are provided with a simple
way of stripping out the most significant bits) or it
could be bad (with data lost). To avoid this problem, I
tend to declare all variables as int (16 bit).

Finally, the assignment statement (and virtually all
other statements) is ended with a semicolon character
(;).The semicolon is used by the compiler to indicate
the end of the statement.The only statements where
the semicolon is not required are the ones that end in a
right brace (l) character.When in doubt, put a semi-
colon at the end statement; even if it is unnecessary, the
compiler will treat it as a null stutement and
ignore it.

To demonstrate the different forms of the assign-
ment statement.I have created cAssign.c:

* includle <pic.h>
/t cAssign.c - A brief l,ooh at Assignment
Stat€ments

This Program Demonstrales how AaEigrment
Statements work in C.

32 l , e 3 P I C @ l l C u E x o e r i m e n t s f o r t h e E v i I 6 e n i u s

nJake prealko
0 4 . 0 9 . 2 4

) // End cAsaigTl

The filst assignment statement is the initialization
of the variable j. There is no difference between initial-
izing a variable at its declaration and assigning a value
to it in the ffust line of a program. You may find that
initializing a variable at declaration is easier to read,
making its function easier to understand in the pro-
gram.The next two statements are basic assignments
of a constant value and a variable value, respectively.
These statements are common to other programming
languages and their operation should be obvious.

The last assignment statement is probably some-
thing that you have never seen before in BASIC or
other beginner programming languages; the value of i
is given the value ofj, which itself is being loaded with
a new value.This is one of the many capabilities built
into C that can be used to both simplify application
programming and obfuscate the function of the appli-
cation code. This ,lultiple assignment statemen1which
has multiple deslinalions [or the expression. is reason-
ably clear, but as I will show in the next experiment,
multiple assignment statements can become quite

complex, with their function being confused with the
built-in assignment statements.

Access (read and write) of PIC16F684's registers
and I/O Pins is accomplished using standard assign-
ment statements such as the ones demonstrated in
cAssign.c.The registerg bits, and pins are all declared
in pic16f684.inc, which is loaded in by pic.h. cl-ight.c is
a simple application that simply turns on D0 on the
PICkit 1 starter kit and illustrates how registers can be
written to 8 bits at a time, just as 8-bit variables (of
type char).Indivrdual bits are read from and written to
in exactly the same way.

#incLude <pic.h>
/r clisht.c - Sinple c Program lo Turn on an LED
on a PIC16F584 in the PICki t 1

aA4 - LED Poaitive Connection
a-45 - r,ED Negative Connection

myke predlko
0 { . 1 1 . 1 0

i r t j = 23,
/ / udi t iaLized var iabl€ D€clarat ion
// valiabl€ DecLareil with Initial
/ / value assisnment (In i t ia l izat ion)

The variable \ri', aBsigned (or loaaleal
with) the conalanl value 47
rhe variable "i,, aaEigneal contents

// "i" axud "j" aasigneal the Ean6 va1ue.

nain()
t

CONFIG(II\TIO & WUTDIS
UNPROTECT \ & UNPROTECT
FCTiIDIS) ,

nain()
(

CMCoN0 = 7; // Tlrr|
ANSEIT = 0r // A\rrL
TRISA{ = 0r // rtake
TRISAs = Oi

aA4 = 1r // '\ErL

n-4,5 = 0t

vr{h i le(l == !) , / / hoop

l // End cliqht

&
PWRTEN & IICI,RDIS

BORDIS & IESODIS

off conpalators
off ADC
RA4/RA5 Oueputs

on LED

Experiment 9 - Expressi ong

In the previous experiment, I really skipped over what
an exnression is. This is unfortunate because a lot of

potential exists in the capabilities of the C expression
statemenl thal can make your programming easier and
more efficient. Unfortunately, this potential comes at a
cost: it's easy to create expressions that do not execute
as you would expect, and are very hard to debug. In
this experiment, along with looking at different types
of expressions that can be used in your applications, I
will present some of the potential pitfalls you may have
to navigate around.

To demonstrate the operation of C expressions, I
came up with cExpression.c, which examines different

Section Turo I n t r o d u c t o r y C P r o g n a m m i n g 33

naitt()
{

i = 3 t
j = i ;

i = j * 1 1 ,

i = j * 0 x 0 B t

formats for expressions and data. As you read through
the description of this program, I suggest that you load
and single step through cExpression.c so you can bet-
ter see the points that I am making.

*incluale <pic,h>
/* cE.Dression.c - Look at E {pressions

Thia Program tlenronstrates a variety of
Dif,f,er€nt E apr€aaions that can be createal ilr C.

nyk€ Drealko
0 4 . 0 9 . 2 3

Haralware Notea:
ThiB Program has be€n wlit.ten to run in
the MPtAa IDE Simu!.ato! ONLY,

contents of i are the expression and they are saved in j.
These are assignment statements,just like the ones in
the previous experiment.

The next three statements have the same expres-
sions (x 11).The difference between them is the num-
bering system (radix) used to express the constant 4.
This is a review of the C DataTypes experiment in
which I discussed how using bases other than 10 makes
it harder to immediately see what is happening with
the code.

In the assignment statements following the three
j x 11 statementq I am applying the basic arithmetic
operations (addition [+], subtraction [-], multiplica-
tion [*], and division Ul, along with the modulus oper-
ator [%]. The modulus of two numbers is the
remainder of the division operation. In the next exper-
iments, I will look at some of the other operators avail-
able in expressions The next statement has an
expression that you have probably never seen before; I
am adding the contents of the variable j to the ASCII
character zero (which is specified in single quotes as
'0').The value of this expression (and the value stored
in i) is 51 decimal, or if you change the Watch window
display format for i to ASCII, you will discover that it
is'3'.This may be a surprising result, but if you were to
review a table of the ASCII codes, you will see that the
numeric and alphabetic characters are defined
together; so if you have one character's value, you can
jump to another character simply by adding or sub-
tracting the difference between them. This property of
ASCII codes is used in a number of places in the book
to algorithmically change values instead of relying on
decision structures to change lhem.

the "i : C - 5) % 7;" statement has what is known
as a compkx. expressioz: that is, multiple operations are
performed within the statement. Looking at the first
statement, it should seem obvious that five is added to
the value ofj and the sum is found using rnodulus 7.
Right after this statement, I have repeated it with
parenthesis around the "j - 5" expression removed.
When the full expression is evaluated, you will see the
result (stored in i) is different than in the previous
expression.

The reason for this difference is due to the order of
operations of the operators used in these statements.
The multiplication and division operators have a
higher order of operations, or what you could refer to
as execution priority, than addition and subtraction
instructions have. Even though the addition operator is
encountered before the modulus operator, the modu-
lus operator executes first because it has a higher
order of operations. To avoid these problems, you
should enclose higher priority operations in parenthe-
sis (indicating that their contents must be evaluated
before they are used for other operations) to ensure

// n3" iB the E qr!€aEion
/ / \i" fa the ErqrleEEion

// Siq)le AriEbmetsic E <Dlession

// !4r1tip1y bg a Hex value

{r,{

*;

i t l

r.,,.:l

l

i r

t : :

...i

i = j + 0b00001011, / / uulr iDLy by a Binaly
value

i = r0, + Ai / / Load. i wi th ASCII $8, ,

// change 'watscb,, winalow aliaplay
ll Eoflnag Eo ASCII to verify
/ / lo . ret i f .y .

j = 4e / 4t / / Ba6ic Div is ion

i = (i - 5) %7, // c@s,lex Arithmetic E q)reEsion
// Involvingl Two Ogeratsion8 anal
// !'otced. Oraler of Operatlon6

t / i = l i - 5 1 % 7
// = lL2 - 5 ' % 7

i = j - 5 %7, / / Same AB previous but ao
I / Eoicad Oralet of Operations

/ t L = j - s % 7
/ / = L 2 - s % 7
/ / = L 2 - s (5 % 7 = s)

i = (j = i / 6, * 2t // BrbeaLleil asEighment:
/ / j = r / 5

/ / i = i t 6 \ * 2

while (1 == a)t / / IJooD rorev€r

) // E'rd cE.pteaaion

The first two statements should be pretty straight-
forward.In the first stalement. the expression is a con-
stant value (3) that is stored in the variable i. Next, the

3 4 l , A 3 P I C o l l C l J E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

they execute before other operators execute.As you
look through the code in this book, you will see that I
am in the habit of always using parenthesis to ensure
expressions are evaluated in the order l want them to.

The final statement before the "while (1 =: 1):"
statement may look like a syntax error or some kind of
comparison, but it is an example of what I called a
multiple assignment statement in the previous experi-
ment. Neither is true; the expression saves the interme-
diate calculation of i./6 in the variable j before
completing the evaluation and storing the result in the
variable i. This ability to embed assignments within
expressions can help you simplily your programs
and/or make them completely unreadable. When you
first start creating your own C programs, I recommend

that you do not try to combine statements as I have
done here. But when you gain some confidence then
you might want to look for opportunities to take
advantage of this capability. Especially look in situa-
tions wbere the intermediate value of a calculation is
needed elsewhere in your application.

With the five basic arithmetic oDerators and the
abi l i ty to create ca lcu lat ions wi lh mul t ip le operators.
you have the ability to develop expressions for the
vast majority of applications that you are going to be
work ing wi th. Before going on. t ry lo wr i te y our own
application like cExpression. Test out different expres-
sions with the five operators listed above and with con-
stant data in decimal, binary, hexadecimal, and ASCII
Iorma ls.

Experiment I 0-Bitr-r.rise Operators

As well as being able to perform mathematical
operations on the contents of variables, the C program-
ming language has a number of operators that allow
you to perform Boolean arithmetic on the bit contents
of variables. These operators allow you to easily
process bit information, but they must not be con-
fused with the logical operators described in the next
expenment.

The four basic bitwise operators are as follows:

. & -bitwise AND. When two values are
ANDed together, each bit in the result is loaded
with the AND value of the corresponding bits
in the two values (ser if both the bits are set).

. I bitwise (inclusive) OR. When two values are
ORed together, each bit in the result is loaded
with the OR value of the corresponding bits in
the two values (set if either bit is set).

. ^ -bitwise XOR. When two values are exclu-
sively ORed together, each bit in the result is
loaded with the XOR value of the correspon-
ding bits in the rwo values (set if only one of the
two parameter bits is set).

. - -bitwise negation.This operator will return
the negated or complementary value for each
bit of the single input parameter (invert each
bit). This operator must never be confused with
the ! logical operator, which will be shown to
invert the logical value, not the bitwise value.

Using these four operators, standard bitwise
Boolean arithmetic operations can be performed on
different values, as I show in cBitwise.c. After compil-
ing cBitwise.c,I suggest that you work through the
code (including modifying values) in the MPLAB IDE
simulator as much as possible until you fully under-
stand the operations work. When you are doing this,
you should display the variables (i, j, and k) as binary
values in the Watch window.

* incl"ude <pic.h>
/* cBi tswise.c - Bi twise C operatols

This Prograln Denonstlates how bitwis€ Boolean
arithrnetic oD€latioas wolk in c.

Note: Display the valiable values as \Bina!y".

nyke predko
0 4 . 1 0 . 0 2

char i , j , k i / / use 8 Bi t . var iablea

nain()
t

Section Turo I n t r o d u c t o n y C P n o g n a m m i n g 35

j = a 3 7 i

k = i & i t

r r = i I i ;

k = i ^ i t

k = - i ;

k = (i * 2)

// Alitlu[€tic
w h i l e (1 = - 1) t

l / / End cBi twise

The operation of bitwise operators is very straigh!
forward. Going through the example cBitwise experi-
ment in the MPLAB IDE simulator, you should see
the Boolean arithmetic operations clearly when you
display the variables as binary in the order i, j, k. The
Watch window will display the two parameter values
directly over the result, allowing you to compare the
inputs and outputs to the logic gates directly. As shown
in the last statement, bitwise operators can be com-
bined with arithmetic operators without any special
considerations.

Although the bitwise operators are straightforward,
you can run into some difficult-to-debug situations
when you write to registers in a PIC MCU (or any
other hardware device).To illustrate what I mean, con-
sider the last statement of cBitwise and have it load a
port directly. For this example, assume that the hard-
ware device attached to this port saves the least signifi-
cant four bits of the PORTA, and bit 7 of PORIA is
connected to a deyice clock. When the clock is pulsed
high (or strobed), the hardware device saves the four
data bits.The statement could be:

poRTA = (i * 2) - j + (1 << 7) r / / w r i r e Da ra

::"1::"-"'"
and knowing that it ends up as 0x055 fi'om the simula-
tion of the program, you are comfortable knowing that
bit 7 of PORIA is never loaded with a high value (i.e.,

from j, which has bit 7 set). This is a dangerous assump-
tion as you do not know how the expression is evalu-
ated by the compiler and whether or not the
destination is used for storing temporary values.
Because the operators outside the parenthesis execute
on the same order of operations, you can assume they
execute from left to dght. In this case, PORTA is
loaded with the product of i * 2, and then has the con-
tents ofj subtracted tuom it with the value of 0x0D5
being temporarily stored in PORIA. Finally, 128
(1 << 7) is added to the value in PORIA to clear bit
7.In this case, you will have inadvertently strobed the
four bits of data into the device connected to PORIA
(because when j was subtracted from i * 2, bit 7 was set
and the final add cleared it). You have probably
strobed in an unwanted value as well.This type of
problem is extremely hard to find and debug; simulat-
ing the application will not reveal the problem, and
you may need an oscilloscope to see bit 7 changing
during the instruction's operation.

The fix to this potential problem is to use an inter-
mediate value for all complex expressions that are
going to be loaded into a hardware port.This changes
lhe s ingle s ta lement in to the lwo thatyou can see
below:

k = (i * 2) - j + (1 << 7)' ,,
X::n"::";":i..

PORTA = k,

As a general rule, never write the result of a com-
plex expression directly to a hardware register without
first storing it in a file-register-based variable. If you
follow this rule, you will guarantee that the value being
stored in the register is exactly what you want with no
potentially problematic intermediate values.

It will probably be surprising to you, but the opera-
tors normally reserved for conditional logic are part of
the numeric expressions, just as the adthmetic and bit-
wise operators discussed in the previous two experi-
ments are. This gives you some unique opportunities
for clever programming as well as an opportunity for
errors that are very difficult to find and debug.

/ / h i l ia l ize values

// AND Values togethe!

// OR valueB together

// xoR values together

/ / wLvetE the ai ts in " j "

- j + (1 << 71, l l r t ix BirLat !
opelacors vrith

5 0 l , e l P I C o 1 1 (U E x p e n i m e n t s f o n t h e E v i l 6 e n i u s

The logic operators available to you in C are listed in
Table 2-3 and return numeric true or false values. It is
important to remember that logic operatorc are differ-
ent from bitwise operators as they return essentially
binary values (Tiue or False), where the bitwise opera-
tor returns the logic operation for each bit.

Table 2-3
Logic Operatorg

Lagic
Operator Operalion

// E.DreaBion value

== jt // r'IhaE is the value f,or
Falae?

l= j t / / Value f,or Tru€?

> jt // vallue f,or Falae?
< i t / / val lu.o for Tru€?

!= j) && (i > j) , / / va lue f o r
trrue AND
FalB€?

t = i) l l (i > i) t / / v a l u € f o r
Tru6 OR
Fala€?

H
vt

F'

in
i-lr)

}J"
r."8

!"{

*r
H

a

F

tq
F.r.

t d
gj

P

FI
X

rd
r-9
{D
{0
{n
t-,..

Tru€ If Both
Tru€ if one

= 1 & &
= i & &

Experiment 11-Logical Expressions

0 4 . o 9 . 2 7

i n t i = 5 ,
tnt j = 10,
int ElpvaLuet

rnain ()
(

Expvalue = i

E.pvalue = i

E:.9va].ue = i
E Dvalue = i

E.DvaIue = (i

E:.pvalue = (i

E .DVaIu€
E:.DVaIu€

E.Dvalu€ = t l l 0t

E <Dvalue = lit
S: .DValue = ! (! i) t

w h i l e (] . = = 1) t

) // Endl er,ogic

valuea != 0?l , / /

A = = B Return Tiue if the two values are equal.

A != B RetumTlue if the two values are different.

A > B ReturnTrue ifthe first value is greater than the second.

A > = B Return True if the first value is equal to or greater than
the second.

A < B RetumTrue ifthe fi$t value is less than the second.

A<=B RetumTrue if the first value is equalto or less than the
second,

A && B Return Tiue if both values are true (not equal to zero).

A !l B Return Tiue if either value is hue.

!A Return the inverted logic level ofthe value.

The experiment's program (clogic.c) tests these
arithmetic operators for two different values. This
program should be run in single steps through the
MPLAB IDE simulator with the Watch window set up
and ExpValue displayed. As you step through each C
statement, you will see the result of the logic expres-
sion saved in ExpValue.

*incluilo <pic.h>
/* clogic.c - Quantify Logic E:.greEaior Valu€B

// What abouts ORing?

// r'rvetE *i" r,oglc value
// DoltbLe ravelt *i. logic

value

// LooD Eoreve!

By stepping through each statement of this pro-
gram, you will make a few conclusions: the first being
that Ti.ue is given a value of 1 , and False a value of 0.
You will also see that the first six assignments work
exaclly as you might expect based on your experience
with other programming languages. (Although the
idea that the result of a comparison can be used as a
numeric may be somewhat novel.)

The last five statements probably are surprising, but
they do emphasize the point that logic operators are
similar to standard operators: Nonzero values are
treated as Tiue, and the zero values are treated as
False. From these five statements, you should see that
the same rules that are applied to logical values (zero
and one) are also applied to standard numeric values.
This should be kept in the back of your mind, because
it allows for some clever programming tricks such as:

i F 0 x 1 2 3 { * (i > {) r l l i , f , l i > 4) i a T r u € ,
lh€D 1 relulneal

Thia Plograrn looks at lhe
€rg)r€aaiotr vaLuea enil lh€
D?ofluceal by thdr.

Thia proglam Is to be ua€al
ainulator.

lEike D!€alko

aliffe!€nt logic
valuea lhal ar€

wilh juat th€

Section Tr.r.ro I n t n o d u c t o r y C P r o g r a m m i n g 37

which is equivalent to:

i r (j > 4)
i = 0x123{ t

els€

The advantage of this type of programming trick is
its apparent elegance. Although the single line looks
like it is much simpler than the full iflelse solution, you
might find that it uses a greater number of program-
ming statements and file registers and that it takes
longer to execute due to the need to include the multi-
ply routine. Additionally, the lack of gotos or diver-
sions to different statements could result in a
statement that has a constant execution time, which
can be a significant advantage in some applications.
And although it may not necessarily be more efficient,
you should note that its operation is not intuitively
obvious, and you and others will probably not under-
stand what is happening in the statement by simply
looking at it. Statements like this are interesting
curiosities that should be avoided unless there is a tan-
gible reason requiring their use.

The pitfall that you can run into with C logic opera-
tors is with the eq&ak to (==) statement.The double
equals sign is a good solution to the problem of differ-
entiating between the assignment equals and the com-
parison equals, but it does not take into account the
conditioning of people who work with other languages
like BASIC, in which a single equals sign in an i/or a
while statement rndicates a comparison. It is very easy
to forget yourself and put in a single equals sign when
two are required for a comparison.

If a single equals sign is used in an expression like

instead of the required double equals sign:

the program will behave the same as if i was always
equal to 47.To make matters worse, if you put a break-
point to check the value of i after the comparison, it
will seem like the value is always 47. What makes the
error so hard to debug is that it /oofr right. To avoid
this problem, generally two approaches can be used.
The first is to make sure constant values are placed to
the left of the comparison. If a constant is to the left of
a single equals sign, the compiler will return an error
stating that it cannot write to a constant value.

The second solution will seem more drastic, but it is
effective 100 percent of the time. Simply do not per-
form an equals comparison. Instead, the result of a not
equals comparison should be NOTted as shown below
in the expression that is equivalent to i : = 47:

! (i ! = 4 7)

I am not being facetious by suggesting that you
never use the equals logical operator. If you are com-
fortable programming in BASIC or other program-
ming languages that have a single equals sign as a
compadson operator, you will have a great deal of dif-
ficulty with the double equals sign in your logical
expressrons.

Throughout the book, I discuss how you can make
your programs more efficient by Iooking at different
ways of solving the application requirements. It is a bit
of a fine line to walk because some features of the C
programming language allow you to use fewer key-
strokes to solve a problem, but often at the cost of pro-
gram readability. (The example at the end of this
section illustrates this very well.) What you should be
looking for are optimizations that do improve the
readability of the code, improve its efficiency, and
reduce the total application size.

A great example of how this is done can be illus-
trated by looking at the first C program you were
given (cFlash.c) and looking at what its basic require-
ment is (i.e., to toggle the LED at RA4/RA5 on and
off). In the original code I gave you,I explicitly turned
on and off the LED, but by thinking of the problem
from another perspective, for example, that you want
the LED to be toggled, you might think in terms of
basic Boolean algebra and consider changing cFlash.c
to something like the following:

* incluale <pic.h>
/* cFlash 2.e - Sinple C Program !o Flaah an LED
oa a Prc16E684

This Plograln is an optimizeal version of "cFlaEh

2 . c " .

- LED Positive connection
- LED Negative Connection

aA4
RJA5

nyke predko
04 . t a .a2

-CONEIG(IICIIO & WDTDIS & PUIRTEN & MCI,RDIS

I'NPROTECT \ & TINPROTECT & BORDIS & IESODIS

FCMDIS) t

i r r t i , j t

nain()
{

PORTA = O;

CI4CONo = 7r //
ANSEI, = O' //
TRrsa4 = 0r / /
TRISAs = O'

&
&

Turn of,f, Cdparators
lPurn off ADC
Make ItA4/RA5 Outputs

3 8 l , a 3 P I C @ l ' l C U E x o e n i m e n t s f o n t h e E v i I 6 e n i u s

{

f o r (i = 0 t

BA4 - A,A{ ^ f, // Toggle LED St'ale
) / / e l ihw

) / / End cFlash 2

The change in ihe code was to change the two RA4
assignment statements to one in which RA4 is toggled
(XORing a digital value with 1 will always invert, or

toggle, its state).This allowed me to eliminate one of
the 500 ms delay loops, thus eliminating an opportu-
nity for error (i.e., keying in the second delay loop
properly), which resulted in a better than 36 percent
decrease in final application size. Along with these tan-
gible improvements, the readability of the program has
been improved because the cornment after the XOR-
ing of RA4 states clearly what the statement is doing
and it can be directly related to the basic operation of
the program.

1) //].oop Forever

i < 25s; i++) / / Sf inple 500ns Delay
j < 7 2 9 , j + + \ i

The basic form of the if statement in C rsi

i f ($er€ssion) / / Test t 'o Be€
is Not zero

! 5 0
else // Optional \'else,, statement which
Statement // Executes if E:{pression is Zero

and is similar to the operation of the if statement in
other structured languages, although a few points
should be noted. The first is that the test expression
does not have to be only a simple comparison; it can
consist of complex terms, which may or may not have
comparison operators in it.The two expressions in the
if statements below are equivalent

int
int

(0 != (j / 3)) // Execute followins slatenent
| / if. "i / 3" is no! zero

(i / 3) // Execute f,ollowing ataternent
/ / i t " j / 3" iB not zero.

In both cases- the next statement is executed if the
result ofj divided by three is not zero. The second case
is not that much more difficult to follow, and it avoids
any issues with comparisons with constants.

As the if statement is written above, you might think
that only one statement can be executed conditionally.
This is not true because of the use of braces ({and}) to
collect multiple statements into one. To demonstrate

Experiment l2-Condi t ional Execut ion
Using the lf Statement

i f .ErrDression"

if \E>!I)r€ssion"

the operation of the braces, I modified cAssign.c to
create cstatement,c as follows:

#incluale <pic.h>
/* cgtat€ment.c - A quick qrperiment legarding
stat€ments in c

This Prosran further er.amines hovr statenents
work in c.

m]'ke preflko
0 4 . 1 0 . 0 5

i t l l uni l ia l ized var iable Declarat ion
j = 23t // variabLe Declareal with hitial

/ / value assigrhent (In i t ia l izat ion)
nairl()
{

i = 47i / / The var iabl .e \ i " assisned (or

// Loaaled with) the constant value 47
{ // ca Blaces B€ Put in before a slatement?
i = ir // The variable "i" assisned conlents

/ / o t \ j t .
i = j = 1, // \\i,, and '.j,' aasigneal the Bame

ll vatlte.
, / | E'rd. of State$e[t

w h i l e (l = = 1) ,

) // Enal cstatement

Using braces changes the basic form factor of the if
statement to:

if (Expres8iorr) // leet if 'Expression- is
// Not zeio

| // ope'ri'rg Blaee to colLect stat€lr€nts
statelrentr // Multiple statenents that

// Errecute if, E>(I)lession
Statelr€ntr // i.s Not Zero
gtatementt

Section Tuto I n t r o d u c t o r y C P r o g r a m m i n g 3 9

. r"*

_,t

9 3

w
5'

l>et-i

i-g't

f'{

- l

",={
.r*

;

g-{

' r .- t

9,*

*r..;

else // Execute if, E:<pr€asion is zero
{ // Opening Brace to Col1€ct Statem€nls
Stalemeatr // Uulliple Statements lhal E.ecule if
Slat€lrent r // E.preEaion ia zero
Slatement t

I / / f i

This is the recornmended format for people just
starting out programming in C. The braces can be elim-
inated if there is only one statement following the il
for example:

i f (a = = b)

But to avoid problems remembering whether or not
braces can be used, you should always put them in and
then stop using them when you are more comfortable
programming in C.

In the basic form of the if statement, you might
have noticed that I indented the statements that exe-
cute conditionally (i.e., on the value of the expression).
This is a common programming technique to visually
indicate which statement's execution is dependant on
the higher-level decision structure. I indent by four
spaces for each level simply because this is what the
Microsoft Visual Studio editor uses. and I am simolv
following its example.

When you look at other people's code, you may see
that the opening braces are not at the start of the next
line, they could be placed at the end of the previous
line as shown in the following:

if (E qEession) | ll Te6t- if .ExDressioa" is
// \loE zeio

Statem€ntt // !firLli.Dl€ Slatetnenls that Ex€cut€
stat€tnentr // if E <I)ression is Not zelo
gtalementt

) // closins Brace to Eail
else { // Execute if, E:.plession is zelo
Statsem€nlt // Uuttiple Stat.ementE tshat Execute
stal€menlr // if Er.pleaaion ia zero
Stalementt

| / / t i

The compiler really doesn't care about the position
of the braces They can appear anywhere after the if
statement. (The is also true of the closing braces.) I
recommend the placement shown here because it is
very obvious visually whether or not the braces are
present or missing.

You have probably noticed the "fi" comment placed
after the last closing brace of each if statement. The
reason for this comment is to remind me of the pur-
pose of the closing brace; when you have a very com-
plex and long program, the reason for the closing brace
can be forgotten or confused. I mark all program state-
ments that produce a brace with their letters reversed

to help keep track of what the program is doing. For
simple programg it is hard to see the importance of
this trick, but as you work with more complex applica-
tions, the need will become obvious. You'll find it nec-
essary when the compiler comes back with the
message that there is either a missing or an extra clos-
ing brace. This is a good habit to get into and will later
save you time and grief debugging syntax errors in
your program.

To demonstrate the operation of the if statements,I
created the cllc application as follows:

*includle <pic.h>
Oreration of \if"

Thia program dlemonslrateE lhe operalio[of th€
1f gtatement.

myk€ pr€alko
0 4 . 1 0 . 1 8

i = 4 4 i
j = 0 t

^ = 2 1 ,

int
int

nain()
{

i f (44 == f , / / " i " equaLs a cotrstant
{
n = n + 1r // Inc!€lle|rt Nn/ if $iz == 44

]
€lse

t
n = n - 1i // Decretnent if Not EquaLs

i f ((j = (i 1 3 1 1 = = 7 l
{

j = j + 1 ,
| / / f i

i f (k = 22)
|t = n + 1i // hcrem€'lt Nn/ if Nk' equala 22

e L s e
a - a - 1i // Note that there Ia a aingle

// stateneat, ao no bracea requireal.
w h i l e (] . - - 1) ,

, / / Er i t c tg

When you simulate this application, you should
notice that I didn't put in the braces for the last if
statement. As I indicated previously. they aren'l
absolutely necessary, but they are a good idea when
you are starting out.

There is a mistake in this program that should have
become evident when you simulated it.The final if
statement, if (k : 22), always executes as if k is equal
to 22. This seems strange until you can see exactly what
is going on. Remember, the single equals sign (=)
a/ways behaves as an assignment, and a double equals
sign is required for a comparison. If you change this

4 0 l , e 3 P I C @ l ' l C U E x o e n i m e n t s f o n t h e E v i l G e n i u s

single equals sign to a double one, you will find that
the program now works properly.

The problem of incorrectly keying in one equals
sign instead of two is very common with new C pro-
grammers. To avoid the problem you can reorder your
program so that you never require an equals compari
son. For example, the last four lines of the application
could be changed to the following:

i f . lk != 221

n = n + lt // Increment \n/ if \k' equalE 22

I don't highly recommend this method because it
involves negative logic.That is, you must first figure

out how your code is supposed to work and then do
the reverse.

Another strategy is to always put constants first as in:

LE 122 -= k)
n - n + 1i // Increments sn' if \kz equals 22

€lse
tr = n - 1t // Declement if Not Equals

This is marginally better but doesn't protect you in
cases like "if (a : b)," where the comparisons are both
variables. In such a case, forgetting to put in the second
equals sign causes the value of one variable to be
assigned the value of another.

t".i

,.1

ri;
**J

i.;
,t!
'.,{i

:",'

F, -;r

t

I

11;
!'ir)

t*i
iat

a1
fx

r."i"

*...!.

f*r
1{

i t ,

{,'.l

1 i

&{

i_ld

Experiment 13-Nested Conditional Statements

Some people are born troublemakers. When I was 16,I
had to go to a two-hour defensive driving course
because I had too many points for speeding. Everyone
in this course was given a Driver's Education Mqnual
with the basic rules of the road. Several minutes into
the course, somebody put up his hand and noted that if
a police officer was directing traffic in a manner con-
trary to a set of traffic lights, then you must follow the
policeman's directions, and if a farmer herding animals
was directing traffic in a manner contrary to traffic
lights, then you should follow the farrner's directions.
He then asked the question: "So, what do you do if
there is botlr a police officer and a farmer that are giv-
ing contrary directions to the streetlight?" I'm bringing
up this little story because in the previous e>.periment,
I presented the idea that the next statement after the if
statement (or the following else statement) would be
executed.And when I presented this concept to a set of
high-school studentq I was quickly asked the question,
what happens if you have an if statement following
another if or else statement?

A logical suggestion would be to place the second if
statement (along with the statements that execute con-
ditionally with it) within a set of braces after the first if.
This would look like:

i f (i > j)
(

i f (k < n)
(

// Statsement(a) Ex6cut6al if "i > j" and \k < a/
)
else
{

/ / s !at6m€nt(a) Executet l i f " i > j " ani l \k >= n/
, / / f L

, / / f r

Another solution is to notice that there are only two
areas in the code above that execute conditional state-
ments, and they could be accommodated by two if
statements:

i f ((i > j) & & (k < n))
(
// stat€ment(a) ttrecut€al if "i > j" and *k < n,,
)
e l a e i f (i > j)

t
// Statse$ent(E) Executeal j.f "i > j" and \k >= n/
I / / t i

This method isn't bad, but could become very long if
statements are wdtten for both the if and the else. And,
depending on how the compiler generated the code,
this method could be very inefficient in terms of code
size and execution time.

Section Tuto I n t r o d u c t o r y C P n o g r a m m i n g 4 1

s)

s)

6

*-{

w

.ii"[

#
",".d
!s{
c.'
L;

EJ

l r i

r 1

iiJ

&5F
S.-{

!
!

d

- , i

UJ
.s"

6""*

The generally accepted method of combining condi-
tional execution statements like this is to recognize
that the if statement and the conditionally executing
statement(s) following it are all one statement and can
be nested underneath the original if statement as in
the following:

a E (r > t ,

i f , (k < a)

{
// slat€nenl(a) Execul€al if *i > j" enal *k < n"
)
elae
(

// StalelBent (a) ExecuEeal if "i > j" andL \h >= nz
| // fi-

I should point out that this method of nesting does
not apply only to the if statement. It applies also to all
the conditional execution statements in the C pro-
gramming language. As you work through the book,
you will see many examples of nested programming
statements of different types. Actually you've seen one
already, the 500 ms delay code that was used in the
cFlash.c program consists of a for statement nested as
part of another for statement.

To demonstrate how nesting can simplify a pro-
gram,I created cNoNest.c. This program flashes differ-
ent LEDS on the PICkit 1 starter kit in a somewhat
random order, but it is hard to follow and see immedi-
ately what is happening in the application:

*incluale <Dic.h>
/* cNoNesl.c - aluJnlr B€tsw€e! LEDE with ifa

This PlogrEnl wif!. .tunp b€tsw€ea aliffelent LEDE
alue to itiffelent coatlitiona.

The LED values a!e:

LED Anoale Cathoale
DO NA{ RA5
Dl RA5 RA4I
D2 RA4 RA2
D3 RA2 RA{
D{ A.E5 RA2
D5 RJA2 RAs
D5 RJA2 RA1
D7 A:A1 RA2

lErhe D!6alko
0 4 . 1 1 . 1 5

-CONFIG (INTIO & VIDITDIS & PWRAEN & !,ICLRDIS &
I'NPROTECT \ & I'NPROTECT & BORDTS & IESODIS &
FCUDIS) t

i n t i , j , k , r t

Inain ()
t

PORTA = 0,
C!4CONo = 7r // r'rr! off conl)alators
.ANSEL = 0r // Turn of,f, ,rDc

k = ot // k & n ale special tests valueE

whl.1e(1 == 1) // Loop Foreve!
t
for (t = 0r i < 255t i++) // siry)te Delay rJoop

f o r (j = 0 r j < L 2 9 t j + +) l

i f (0 - - k)
{

i f (0 = = n)
{

PORTA = 0b0000100OOi / / I la t � } l L
TRISA = 0b011101011t

l
e ls€
{

PORTA = 0b0001000OO, / / IJaEb 2
TRISA = 0b011001111,

, / / f , i
)
e l a e / / K ! = 0
t
i f ((4 = = k) & & (0 = = n))
{

PORTA = 0b000000100r / / Path 3
TRISA = 0b011101011t

k = - 2 i
)
e13€ i f (4 == k)
{
poRTA = 0b000000100t / / PaEb 4
TRISA = 0b011111001t

k = - 2 ,
)
elae
(

i f (0 = = n)
{

PORTA = 0b000000100r / / Path 5
TRISA = 0b011011011t

)
else
t

PoRTA - 0b000010000, / / Path 5
TRISA - 0t011001U1,

| l l E i

| / / f i
k = k + 2r / / N€xt Tin6, co to \e1a€/

| // e�rihw
] // Enal cNoNest

Once I had the program working, I removed the
redundant braces and looked for places where the
multiple if statements could be combined into some-
thing simpler. I came up with the following cNest.c:

* incLuale <Dic.h>
/* cNest.c - Jurltr Betsween IEDg rrilh ifs

Ithl.6 Program rrill NeEt lhe various \rif"

statenenta of ocNoNeBt.c" !o lry anal get a

Drogram that ia eaaier to f,ollow.

42 l , e 3 P I C @ l l C l J E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

The r,ED valuea ar€!

LED Anoate Catboale
DO RA{ RAs
Dl RAs RA1I
D2 RA4 RA2
D3 NA2 RA{
D{ NAs RA2
D5 AJA2 RAs
D5 RA2 RA1
D? RA1 A:A2

rvk€ Dledlko
0 { . 1 1 . 1 5

_CONFIC (INTIO & lfIllDIS & P!{RTEN & !,ICIJRDIS &
T'I{PROTECIII \ & IJNPROIECT & BORDIS & IESODIS &
FCMDIS) t

i n r i , j , k , n t

nain()
{

PORTI = 0t
CfiCONo = 7r // 'l''rt off CdEaratola
AIISEL = 0r // Tura off ADC

k = O, // k & n ale SD€cial Test ve].ues

whi le(l -= 1) / / Loop For€ver
t

for (1. = 0r i < 255, i11) // Sirqlle Delay IrooD
f,or (J = 0r j < L29, jLLl t

i f (0 = = k)
i f (0 = = n)
t

PORTA - 0b000010000r / / Path 1
TRISA - 0tr011101011,

)
elEe
t
PoRTA = 0b00010000O, / l PaE}r 2
TRrsA = 0b011001111t

I l l f r

til
X

rd
r1\
F.(

Nr"

;J
;

b.E>

Ig
*

{'d

m
?- '

I J

;t

t l t

a l

(tl
f'r'
L '

'J

m
rr
&,

a
5
o
,",{

ExFeriment lt l-The 5ulitch Decision Statement

eLse if, ((4 == k) && (0 == o.l) // Cdlbitr€ the

,
,/ Teat Coaalitions

PORTA = 0b0000001OO, l l Pat j r 3
TRISA = 0b0U101011,

k = - 2 t
)
elEe i f (4 == k)
{
PORTA = 0b0000001OO, // PaE}r 4
TRISA = 0b011u1001t

k = - 2 ,
, / t f r
elae Lf (0 == n)
t
PORTA = 0b000000100r / / Patsh 5
TRISA = 0b011011011,

)
elEe
{

PORIA = 0b000010000r / / Path 5
TRISA = 0b011001111t

I l l f r

k = la L 2? // N€xt Tine, co tso *e].se/

) // elihlr
) // Enal cN€st

I admit that cNest.c isn't a huge improvement to
cNoNest.c in tems of readability, but by reducing the
number of unneeded braces, I did manage to reduce
the amount of space the main loop of the application
takes and made it easier to look through the ent e
application. This is an example of what you will see if
your task is to support an application that has been in
use for a long time and has been modified to reflect
new requirements and fixes to various problems that
have been encountered. In these types of applicationq
it is often impossible to understand exactly how the
code is working, and you end up making small changes
that perpetuate its increasing complexity.

Cases exist where multiple statements are required
because of multiple constant values against which a

single variable must be tested. Multiple if and else
statements can be combined to meet the reouirements
quite simply.The code below demonstrates ihis:

(4 == L') ll Go south If raalex et {

Dir€ct ion = 180,

15 == L, // Go North if Intt€x at 5

Dir€ctioD = 0t

(7 == l, ll co East if, rDtlex a! 7

t

'
ela€ i f
{

)
e].e€ if,
t

5ection Tuuo I n t r o d u c t o r y C P n o g r a m m i n g 4 3

a l

n !

s
.t-,'
f,f)

b.{
j ' t

f 5

{ t I

r t r

*-r
" . {

{ i !

;
il

"ir-'
i-i

a i)

ii{

(a

r!1

ld54

}{{

Ls$

Dilect ion = 90t
)
else // Go Iqeat for €verylhinq €Ise
t

Direct lon = 270t
I l l f !

If you were writing your application in BASIC, you
would probably us e the seLect/case statements like the
switch/case statemenrs used in cswitch.c listed below:

*incLual€ <Dl.c.h>
/* cswlEch.c - Detlonstrat€ cE)eratLon of ttsltilch"

fhl,s Drogram alemonstratea tsh€ op€ralion of lbe
awiEch atatdlent.

rq.ke prealho
0 { . 1 0 . 1 8

i n t i = { t
int Di !€ct ion = -1t

nain()
{

switcb (i)

t
caBe 4. // cio South lf Ind€x == 4

Dir€cl ion = 180t
bzaaki / / r.eave switch stat€$eat

c�aBe 5t // Go Norlh if Iaal€x aE 5
Direct ioa = 0t
bieaki

case 7 . I / Glo Eaat if halex at 7
Di lect ion = 90;
b!€aki

default: // co west fo! Even thlng E1a€
Direct ion = 2?0t

) // hcti\ta

! t h i l € (1 = = 1) t

| // E^d. crf

This application provides the same function of
responding to multiple possible conditions that are
listed in the multiple if statements at the start of this
experiment. By using the switch statement, the code is
actually a lot simpler. The case statement's parameter
combined with the switch statement's parameter forms
the if statement:

if (SwitchPalameter =- cas€Pafameler)
t

// Slaternentss after the \Case/ Slatem€ut !o the

// sb!€ak" or nd{t Ncase Slatern€nt
\ / / f L

The use of the case statement is obviously a lot eas-
ier to key and a lot less likely to have a syntax error
like you had with the if statement.

The "default:" condition works exactly the same as
the else statement in the if statement; the statements
after it execute only if all parameters don't match any
of the case statements.

This is all there is to the switch/case statements
except for one point: the break statemetu. This state-
ment causes execution to jump out of the current
switch statement and execute the statement following
it. You can do some interesting things if the break
statement inside a switch block is not included. For
example, if the switch block was being used to record
the direction of motion (keeping in the tradition of the
wheel direction), it could increment the counter for
each 90 degrees rather than placing a hard value in the
counter variable. The example code for this implemen-
tation is:

I = 0t // Clear Di!€ctLoa Cour1tet
awitch (Dir€ctioD)
(
caae 7"gO / / Goiug aouth Inalex = {

caee O . // Goirg Norlb Itral€t = 3
j = J + 1 ,

ceee 9Or ll Going EaBt Itrale* = 2
j - j + 1 ,

b!eaki
tt€fault: // Gol.ag Weat IEdl€x = 1

] // hcliws

Obviously, you have to plan for situations where
you can eliminate the break statement in your switch
code, but when you do, you really have a feeling of
accomplishment-and there's a good chance you've
simplified the amount of application code required for
the program. Wh€n you are starting out, you will prob-
ably use the switch/case statements for situations like
this one, where multiple if statements exist, and all of
them are comparing to a constant value and executing
a break statement at the end of the case.

4 4 l , e 3 P I C @ I ' l C U E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

Experiment l5- fondi t ional Looping

#ineLut le <pic.h>
/* cFlaah !'lhile.c - ginE)le c Program to Elash an
I.ED on a PIC16E584

|!hi€ Program is a noalif,ietl version of \tcFlash.c,,

to uae ..whil€,' Loops
iDsleaal of \fo!', loops

ir* i
ili

,,?{

t i : :

a-ii

:,- "

i:

F

t \

l ' i

it-,,'

! - : .

a;

ar!

i-J

;-i

l-,

Connecti,on

1

(

= t + 1 t
(i > 2s5)

// Loop Foiever

2 s 5) l l (j < 7 8))

ll \E oft Corparatora
// Tuln of,f ADC
// !,take RA4./RAs OutDutg

// Incronent S!fiaLL Counte!

// Ro11 Ov€! to Larg€ Counler

& PWRTEN & MCLRDIS &
& BORDIS & IESODIS &

RA4 - r,ED poailive

ItA5 - IJED Negative

There are a couple of rnethods of implementing condi-
tional loops. In this experiment I will look at the most
common method: the bastc while loop. The while loop
allows you to repeatedly execute a set of instructions
while a test expression is true. That is, the while loop
can be used for conditionally repeating code. But it can
also be used to implement infinite loops in your appli-
cations. Some programming philosophies do not use
the basic while loop, but they also do not provide you
with the simple readability of the basic while loop.

The while loop is a programming construct that
tests an expression before allowing execution to take
place within the loop. If the expression is not zero, then
execution will take place within the while loop, and at
the end of the loop, execution will return to the expres-
sion test and the process will repeat. If the expression
evaluates to zero, then execution will skip past the loop
and continue at the statement after it.

To show how this works, the following statements
can be used:

whi le (i < {)
{

i = i + 1; // WhiL€ lJoop Coale
) // elih!,r

In these statements, the variable i is initialized to
zero. Next, it is compared to 4, and if it is less than 4
(i.e., the expression is true or returns a nonzero value),
the code inside the while loop (incrementing the vari-
able i) is executed.When i is no longer less than 4, the
while expression becomes false (and returns a zero
value), the code inside the while loop is skipped over,
and execution continues at the statement after the
closing brace of the while loop.

To demonstrate the operation of the while state-
ment in an application, I have modified cFlash.c into
cFlashWhile.c in which the two for statement delays
have been replaced with a single while loop that incre-
ments the two variables i and j until they are both
greater than 255 and 78, respectively:

J = j + 1 ,
, / / f i

) / / e l ihw

R:A{ = RA4 ^ 1, // ToggLe LED
| // eLihw

, // wrd. cFlaah while

Although cFlash While.c is a direct copy of cFlash.c,
I found if I used the same test values for i and j (255
and 129, respectively), the delay would increase to 833
msecs rather than the standard value of 500 ms By
running cFlash While.c in the MPLAB IDE simulator,
I was able to empirically determine the value for j that
would result in an approximately 500 ms delay.

As you work through the code, you will discover
that I use the while statement

whi le (1 == 1)

a /ot. This is my loop-forever code, and I use it either as
the overall loop in an application (like this one) to

I'ke pretlko
0 { . 0 5 . 1 9

-CONFTG (INTIO & WDTDIS
IJNPROTECT \ & T'NPRoIECT
ECMDIS) t

nain()
{

PORTA = 0t
CMCONo = 7t
ANSEI = 0t
TRISA4 = 0t
TRISAs = 0t

whi le(1 == 1)
t
i = 0 ,
j = 0 ,
whil€ ((i <
{

5ection Tulo I n t n o d u c t o n y C P r o g r a m m i n g 4 5

encompass the I/O and processing code, or I place it at
the end of the application to stop it from returning to
the caller (and end up executing again repeatedly).The
statement could be simplified to:

whi le (1)

The PICC Lite compiler can detect statements like
this where the test expression is always true (or 1) and
replace the statement with something like:

| / / Code Ex€cuteal insiale vthile loop
goto IJooPt

There is another form of the while loop. It is the
do/while, which takes the following format:

alo
t

// Coale Ex€cutetl inside the alo/whil"e loop
)
whi le (orDreasion) t

I try to teach programming as I was taught, and that is
to emphasize the capabilities of the different functions
built into the language and how to use them approprF
ately in applications. Some people, however, seem to
think they can use the for statement in virtually any sit-
uation where conditionally looping code is required. I
guess the theory behind using the for statement in dif-
ferent situations is to reduce the number of statement
types that are in your programrning inventory. In this
experiment and at the end to this section, I will show
that the for statement is a wonderfully flexible state-
ment, but that it can make code a lot more complex to
understand and debus.

This is a subtle modification of the original, where dur-
ing the first time through the loop, the expression is
not lesled to be true; you are guaranteed lo execute
the code inside the loop at least once. The advantage of
using this form of the while loop is that variables or
hardware register values that are tested in the while
exoression do not have to be initialized to force execu-
tion to work through the code at least once. Some C
implementations h ave the do/until statement,whrch I
do not like because it forces negative logic into your
program (i.e.,looping until a condition is true is the
logical negative of looping while a condition is true).

Two keywords are also used in while loops: break
and continue. "Break" will force an exit of the while
loop, and "continue" will force execution to retum to
the while statement where the expression is evaluated.
Personally, I do not use these statements because they
act as gotos in the program, changing execution with-
out regard lo the slructured Programming stalements.
And I do not recommend that you use them in your
programs, as they can be difficult to debug and can
lead an application to behave unpredictably (especially
if you are new to programming).

The design of the for statement is actually quite ele-
gant and results from the question, "what are the
requirements of repeating loops?" The statement for-
mat ls:

for (Initializationi l.oop 'lesu E {pressioni Loop

Incr€nent)
Statemeat

and its operation is similar to the BASIC code for a
loop. Initialization is the process of initializing vari-
ables that are (ideally) required for the looping opera-
tion, but the process can also include other assignment
statements.The /oop test expression is an exPression.
similar to that used in the while statement to test
whether or not the loop should repeat. Finally, the /oop
increment statemenl is normally used to increment the
loop counter after each iteration of the loop.

The for statemenl is typically used when you need a
loop that repeats a set number of times. It might look
like the following:

for (i = Or i < ua*Nlrrib€tt i++)

slatementi // gtatenent Executseal Repeatedllv by
nfor,, IJoop

Experiment l5-The For Statement

PXekit* L

4 6 l , e 3 P I C o l l C U E x p e r i m e n t s f o n t h e E v i l G e n i u s

and could be modeled as:

$rhi1e (i < Maxl{llmber)

{
Statementr // Statenent Executeal Repeateally by

\tfor,, Loop
i = i + 1r / / Equivalent to Ni++"

) / / e l ihw

nvke prealko
0 4 . 1 1 . 0 9

CONFIG(INTIO & WDTDIS & PWRTEN & DTCIJRDIS &
UNPROTECT \

& UIIPROEECT & BORDIS & IESODIS & ECMDIS) t

int j . . j . k , nt

nain()
t

PORTA = 0t
ClilCONo = 7, // Tlvr'r off Conparators
ANSEL = 0r // r'urn off ADC

k = 0t / / S!a! t at LED 0

In this for statement, a counter is initialized to zero
and is incremented (using the "i+ +" statement, which
is equivalent to i = i + 1) until it is equal to MaxNum-
ber. This should be quite easy to understand and use in
your own applications.

The use of the for statement becomes more com-
plex when you consider that multiple initialization and
loop increment assignment statements can be used
(with each separate statement separated by a comma).
lf commas are not used to separate the assignment
statements, the compiler will become confused as to
how to parse (convert) the statements correctly.The
following for statement is completely valid:

for (i = 0, j = 47i i < MaJdilumberi i++, j = j - 2)
Statetnentr // Statement Executefl Repeatedly by

\forz Loop

In this for statement, both i and j are initialized, and
both variables are changed in the loop increment por-
tion ol the for statement.

To demonstrate how versatile the for statement is, I
have created an application that cycles each of the
PICkit 1 starter kit's eight LEDS. (It will be explained
in more detail later in the book.) Rather than explain-
ing how the for statements work in the application, you
should work through them on your own (it's really not
very hard-especially with the provided comments).

for(r r) / / r .oop Forewer
{

for (i = 0r i < 255r i++) / / s imple Delay
f o r (j = 0 r j < ! 2 9 t j + + l t

f , o r (n = 0 r (0 = = k) & & (0 : = r r) , n + +)
{ / / s i rnuLate \ i f (0 =- k)"

PORTA = 0b010000i
TRISA = 0b00L111t

j // '.of
f o r (n = 0 r (1 = = k) & & (0 = = n) r n + +)
t / / s i m u l a t e \ i f (1 = = k) u

PORTA = 0b100000;
TRISA = 0b001111t

f o r (r I = 0 , (2 = = k) & & (0 = = n) t n + +)
{ / / S i n u l a t e { i f (2 = = k) /

PORTA = 0b010000t
TRrSA = 0b101011t

| / / tof
f o r (n = 0 , (3 = = k) & & (0 = = n) r n + +)
{ / / s i n u l a t e ' i f (3 = = k) /

PoRTA = 0b000100,
TRISA = 0b101011,

, // t.of
f , o ! (n = 0 r (4 = = k) & & (0 = = n) r n + +)
{ / / s i m u l a t e ' i g 1 4 = = k) "

PORTA = 0b100000t
TRISA = 0b011011t

| / / rof
f o r (n = 0 , (5 = = k) a & (0 = = n) r n + +)
{ / / s imulate t r i f (s == k) /

PORTA = 0b000100i
TRISA = 0b011011t

f o r (n = 0 r (6 = = k) & & (0 = = n) t n + +)
{ / / s i n u l a t e \ i f (6 = = k) /

PORTA = 0b000100,
TRISA = 0b111001t

j l / rof
f o r (n = 0 r (7 = = k) & & (0 = = n) , n + +)

{ / / Simulate Ni f (7 == k) /
PORTA = 0b000010 t
TRISA = 0b111001t

J / / rof

IJoop

* include <pic.h>
/* cPKr,ED 2.c - Ro1l lhrough PICkit 8 LEDE using
oII].y \for?'

This Program r,ri11 ro11 throuEh each of the I
rrEDs built inlo the Prckit PcB.

The LED values are:

r,ED Anoale Cathoale
DO AA4 R.A5
D1 RA5 RA4
D2 RA4 NA2
D3 ai[2 RA4
D4 RA5 R]A2
D5 RA2 AA5
D6 RA2 RA1
D7 RA1 RA2

Using only $for/' slatements.

The original nam€ was going to be 'cFor", but
that se€neal too potentially explosive.

k = (k + 1) % 8r // rncrement k within range
/ / o f o - 7

, / / Erl..l CPKI,ED 2

5ection Truo I n t r o d u c t o r y C P r o g r a m m i n g

i = S t a l t * 7 t
. j = star t t

For Eonsideration
At the start of this section, I noted that C is notorious
for its ability to allow programmers to create very eff!
cient but very difficult-to-understand program state-
ments. In the last experiment, I showed how the for
statement is very versatile and how it can be used to
replace all the traditionally used conditional execution
statements.The motivation for writing complex state-
ments is usually to minimize the amount of keying
required for an application, although sometimes it can
seem like the author of the code is simply trying to
demonstrate his or her mental superiority.

For example, in looking at an example application,
you might run across a statement like the following:

for (i = (j = star t) * ?. Match = 0r (Malch =
(P O R T C ! = (P o R T A ̂ = s e q u e n c e l j + + l))) & & (i + + <
2 5) i r ,

// Sequence Match confirnation?

At fint glance, it is probably impossible to under-
stand what this statement is intended to accomplish,
and, to make matters worse, the comment is no help at
all as it does not seem to relate to anything in the
statement. You may feel like giving up and looking for
another example, but you can do this;you can decode
statements like this surprisingly easily.

When I presented the for statement, I noted that it
was in the lollowing format:

for (Initial izationr lJoop TeEt E:.pressioni Lootr)

sta!emen!

and each part (which consists of a C assignment state-
ment or expression) of the for statement can be bro-
ken out into pieces and rewritten into pieces that make
more sense. For example, the initialization assignment
statement of the for statement is:

i = (i = s t a r t) * 7 i

and takes advantage of the ability of C to save an
intermediate value in a complex expression. Because j
is equal to Stafi and it is a factor in the initialization of
i, the author has compressed the two following lines
into one:

Similarly, the comparison expression of the for
statement can be broken out and understood by rec-
ogn2ing that comparison values are arithmetic values
(zero for false, and not zero for true).To take

advantage of this point,lhe Match v^riable (the first
part of the comparison) is loaded with the result of the
comparison of PORIA (which has been XORed with
a value from the Sz quence array) to PORTC. When an
arithmetic or binary operator is placed before the
equals sign in an assignment statement, the line is
translated as the destination value operated on by the
other parameter. I might write out the comparison part
of the for statement as follows:

PORTA = PORTA ^ Sequencetilr // Same aB 'PoRTA

j = j + 1r // rnclemen! *r., "." ilT#"
" "

r{atch = 0t
if (PoREc == PoRTA)
Match = 1t

Both parts of the comparison use the unary incre-
ment (++) operator to increment the variables i andj
d/€r the expression has finished executing. When the
unary increment or decrement operator is put to the
lelt of the variable, as in the following example

+ + J i

the variable is incremented before the statement exe-
cutes. Similarly, if the unary operator is on the right
side of the variable, the variable is incremented after
the statement has executed. I recommend the use of
the increment and decrement unary operators in your
coding, as they are a lot easier to key than the com-
plete statement

j = j + 1 t

and they are generally accepted as the shorthand ver-
sion of these statements,

A null statement is used for the increment pa of
this statement. This is a bit unusual, but the unary
incremenl operators in lhe comparison expression pro-
vide this function.

Just as the null statement is used as the for state-
ment's increment statement, a null statement is used as
the looping statement or statements that follow the for
statement. If you look at how I have broken out the
comparison expression, you will see that there is an
assignment statement to PORIA, which could be
moved to the looping statement area of the for state-
ment.

If I were to write equivalent code to the for state-
ment given at the stafi of this discussion, it would look
something like this:

i = S t a r t * 7 t
j = star t ,
tilatch = 0,
$ h i l e ((0 = = u a t c h) & & (i < 2 5))

4 8 l , a 3 P I C o I I C t J E x o e n i m e n t s f o r t h e E v i] G e n i u s

t
PORTA = PORTA ^ Sequenceli] t
if (PORTC == POREA)
Malch = 1r // s€quedce Malch Coafifinalion?
j = j + 1 ,
i = i + 1 t
) / / €1ihr t
i = i + 1 t
j = J + 1 ,

You should be able to relate this code to the origi-
nal, and I'm sure the comment makes more sense now.
What might not make sense is the incrementing of i
andj after the while loop; these statements were put in
to make sure the values at the end of the equivalent
match the values at the end of the orisinal for state-
ment.

In terms of readability and decodability, I am sure
the series of statements I have come uD with are vastlv

superior to the single for statement. In terms of effi-
ciency, the number of instructions created for either
solution is not substantially differenq nor is the execu-
tion speed of the two solutions dramatically different.
The major difference between the two statements is
the amount of keying required for them; the sequence
of statements requires many times the number of the
keystrokes of the short for statement.

It should be no surprise that I recommend that
when you program, you avoid heavily compressing
statements unless a strong reason exists to do so.
Although you may save a substantially greater number
of keystrokeg you should ask yourself how much time
you might later lose debugging or decoding one com-
pressed complex statement.

h{

L C

n

9--,

T U

TJ
4

Section Tr.uo I n t r o d u c t o r y C P n o g r a m m i n g 4 9

S e c t i o n T h r e e

Simple PIC@ MCU Hppl icat iong

Before going on,I would like to walk through a modi-
fication to your PICkitrM 1 starter kit. This minimizes
the chance for damaging either the PIC microcon-
troller you are programming to put into another cir-
cuit or the PICkit 1 starter kit you are using to
program the PIC MCU Although the PICkit 1 starter
kit is an excellent tool, the machined receptacle socket
that is built into the PCB is not designed for many
repeated plug/unplug cycles. Looking at manufac-
turer's datasheets, military-grade dual inJine chip
package (DIP) sockets are qualified for 48 cycles. The
specified number of plug/unplug rycles for industrial-
grade sockets is 50 times (although they are not tested
to see if they meet this specification). As you work
through this book and your own experiments, you will
easily exceed the maximum number of plug/unplug
cycles for a military-grade socket, and chances are at
least one or more pin receptacles in the socket will
wear out and stop making reliable contact.You will
find also that plugging and unplugging parts in the
machined receptacle is difficult and that it's easy to
bend the pins, have them fall ofl or get stuck in the
PICkit 1 starter kit's sockets. You can avoid these
problems by addin g a zero insertion force (ZIF)
socket to the PICkit 1 starter kit.

Follow the steps outlined here. To add the ZIF
socket you will need the following:

1 PICkit 1 starter kir with snap-off PCB still
attached

1 14-pin ZIF socket (3M/fbxtool 214-3339-00-
0602J recommended)

Prc16F68 4

14 -p in Z lF socke t
(3MlTextool 2L4-3339-
00-0602J reconmended)

0 . 01 p ,F capac i t o !

3-foot length of 28- or
30-gauqe sol j .d core

1 0.01 pF capacitor

1 3-foot length 28- or 30-gauge solid core wire

Weldbond glue

Solder

The tools you require are as follows:

Soldering iron

DMM with audible continuity tester

Needle-nose pliers

Clippers

Wire strippers

A ZIF socket is similar to the machined receptacle
socket already on the PICkit 1 starter kit. The differ-
ence is that the pin receptacles can be opened or
closed by moving the lever on the socket. The open
position is shown in Figure 3-1, and the pin recepta-
cles are closed when the lever is pushed down. This
socket will be added to the open 14-pin DIP socket
area on the prototyping snap-off PCB on the right
side of the PICkit 1 starter kit (see Figure 3-2), and
each pin will be wired to the corresponding pin of the
machined receptacle socket already on the PICkit 1
starter kit. Expect that this task will take an hour.

51

Figure 31 14-pin 3M/Textool ZIF socket

Fiqure 3-a 14-pin ZIF socket added to the
prototyping area of the PlCkit I storter kit

The steps for adding the ZIF socket are as follows:

1. Solder in the ZIF socket with its lever up (i.e.,
pin receptacles open). This will ensure proper
operation. If you solder the ZIF socket in with
the lever down, you will find that the recepta-
cles will not open properly. You may find that
you have to prop up the PCB with ZIF socket
to make sure the lever stays up during solder-
ing. If, after soldering, you find that some pins
stick or don't open easily, move the ZIF
socket's lever up and remelt the pin's solder to
see if that relieves the stress.

2. Using point-to-point wiring, add the 14 connec-
tions between the machined receptacle socket
and the ZIF socket (see Figure 3-3). Pin 1 of
the PCB socket should go to Pin 1 ol the ZIF

Figure 3-3 Point-to-point wiring used to connect
ZIF pins to PICldt I starter kit programming socket
ptns

3 .

4.

socket, pin 2 of the PCB socket should go to pin
2 of the ZIF socket, and so on. When I have
done this,I try to keep my stripped pin lengths
to r/:z inch (1 mm). There are two rows of holes
beside the 14-pin socket holes in the prototyp-
ing snap-off PCB;to these holes you can attach
one side of the wires rather than soldering
them to the pins of the ZIF socket. When you
are adding the wires, it is a good idea to leave
the ZIF lever up to make sure that, rt the ZIF
socket pins remelt, there won't be problems
later with any of the receptacles.

lest your wi r ing us ing the mul t imeter conl inu-
ity tester function. Each pin of the machined
receptacle socket should be tested against the
corresponding pin on the ZIF socket, as well as
against its adjacent pins to make sure no short-
ing exists.

When you are comfor lab le that your u i r ing i '
correct, solder the 0.01 p,F in the two holes
above the 14 holes used by the ZIF socket. I
soldered the 0.01 pF capacitor on the backside
of the PCB because the ZIF socket covered the
holes on the topside. When soldering in the
capacitor, make sure the leads are as short as
possible, that it lies against the PCB, and that it
does not extend beyond the rubber feet on the
bot tom oI lhe P]Cki t I s lar ler k i t .

The f ina l s tep is to gJue dol r n the wir ing us ing
the Weldbond glue. If you put on a reasonably
thin bead, the glue should set to a hard, clear
consistency in 6 to 12 hours. To make sure the
wires don't extend beyond the rubber feet on
the bottom of the PICkit 1 starter kit, you may

5.

52 l , e 3 P I C o l ' l C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

want to hold down the wires with a weight or
tie them down while the glue hardens. I use
Weldbond because it can be Dulled off later
without damaging the PCB.

Once you've completed the six steps and the glue
has hardened, you have a ZlF-socket-equipped PICkit

The cFlash.c program presented in the introduction to
this book included a simple two "for" statement delay.
For the application, I wanted a delay of a half-second
(500 ms) so the LED would flash on and off with a
period of one second. Finding the end values of the for
statements was done empirically; I used the simulator,
as I will show in this program to time the delay and
then adjusted the values until the delay was approxi-
mately 500 ms. In this experiment, I wanted to go back
to the cFlash.c application and see if there was some
way in which I could quantify the delay so I could use
it in other applications.

To test the application, I modified cFlash.c slightly
as you can see in the source code below:

* incluale <pic.h>
/* cDlay.c - Try to fluantify Delay VaLues

Ihia Program iB a rnodificalion of \cFlash.c,. anit
u36al to qua.Dtify the value of th€ enat of the
tlelay valiabl€a anal the time dl€1ay on the
FlaBhitrg D0 I,ED.

ThiB Drog!€m is !o be usetl with botb th€
ainulator andt the prckit x pcB with prc16P684
iEEtalLef l .

- I.ED Poaitive Connecliolr
- I,ED Negative Connectsion

1 starter kit that will stand an indefinite number of
plug/unplug cycles. And, it is still connected to the
other functions of the PICkit 1 starter kit, which allows
you to experiment with the LEDS, buttons, and poten-
tiometer intedaces built into the PICkit 1 starter kit.

OutBifle l,oop value
Inaiale Loop value

tura off Comparalora
turn off ADC
Make IIA4/RA5 Outputss

whiL€(1 == 1) / / loop Foreve!
(

$oPo ,

N O P () t

RiA4
aA5

aa4 = aA{ ^ 1r // Toggle LED
] / / € l ihw

) // Entl cDLay

The first change to cFlash.c for this experiment was
to add two variables, iEnd and jEnd, that I could
change easily to test the operation of the application.
The second change was to place two statements you
have never seen before (NOP0) before and after
the delay code. The reason for the first change should
be apparent:The variables allow the loop values to
be changed easily without affecting the program
statements. The second modification adds two instruc-
tions that don't do anything, and I could use them for
breakpoints without affecting the operation of the
application or breaking an instruction that is used mul-
tiple times in the application.

The points made regarding the NOPO;statements
are probably confusing and might not make a lot of
sense at this time. First, the NOPO; statements are
replaced with "nop" or no-operation assembly lan-
guage instructions, which I will discuss in more detail
later in the book.And stated previously, the PICC
LiterM compiler NOPO;statement can be used as a

ExFeriment 17 -Basi c Del a gs

inh iEnd = 235r / /
i'rt. jRnA. = 23st //

nain()
{

PORTA = 0t
CMCONo = 7r / /
ANSEIJ = 0r //
TRISA4 = 0; / /
TRISA5 = 0t

h*

*
;ii:

" ;

l;t

fi
''5

.-- 1

I
!

Jj!

,l 1

il;
|-r:*

{*

0 { . 0 5 . 1 9

_coNFIe (INTIO & WD4IDIS & PICRTEN & UCITRDIS &
I'NPROIIECT \ & I'NPROTECT & BORDIS & IESODIS &
FCMDIS) t

// BreakpoinE Eele

i < iEnal ; i++) / / Delay roop
j < jEndr j++) t

// Breakpoint Eere

5ection Three S i m p I e P I C @ l l C U A p p l i c a t i o n s 5 3

breakpoint without affecting the operation of the C
program. Second, you will find that the PICC Lite
compiler has a very efficient built-in optimizer, which
looks for opportunities to ffeate executable code that
is as small and efficient as possible.This optirnizer will
try to reuse code that performs the same function in
diflerent parts of the program.What the optimizer
considers to be the same function is not necessarily the
same thing you or I would consider the same function.
Therefore, you will find situations where execution
will jump around to different locations in the applica-
tions without apparent reason. By adding the NOP0:
statements, you are putting an instruction explicitly
before the start and after the end of the two delay tbr
statements.

To measure the time of the delay, I enabled the
MPLAB@ IDE simulator and then added the Stop-
watch function (see Figure 3-4) to the project.The
Stopwatch funciion will count the number of instruc-
tions that execute after the start of the application or
after being reset.

To measure the delay for different values of iEnd
and jEnd,I put a breakpoint at each of the two NOP0;
statements. I did this by moving the cursor to the line
where the NOP0;statement was found, right-clicking,
and selecting "Set Breakpoint." I then reset and ran
the program, and when it stopped at the first NOPO;
statement, I clicked on the stopwatch's zero button to
reset the stopwatch, then clicked on the run button
again, and waited for the next breakpoint to stop exe-
cution.

I was expecting that the iEnd and jEnd values could
be reversed.This is to say that the delay of iEnd equal
to 50 and jEnd equal to 100 would be the same as iEnd
equal to 100 and jEnd equal to 50.This turned out not
to be the case; the delay varied by several percent
when the iEnd and jEnd values were reversed.To try

Processor Requency IMHz) fllooo6''
It Clear Sinulstion T irne 0n Eeset

Stopwdtch Totalsimddted

r -lI!.'| Inskuction cycresf---1iDE67 l-**iffii66'
l - I T i h o f q . . . l I a . n . n E r I r n A - n .

@l
rime tsecsl l-----'iro-i6571-m

Fiqure 3-q MPLAB IDE Stopwatch function

i = iEndtt
j = jEndt

and come up with a simple, repeatable formula that
could be used for the application, I tried making both
values the same and came up with the following rough
formula:

De lay (seconds) = 1 .8 (10 -5) x iEnd

This formula is reasonably accurate for the range of 50
ms to 2 seconds.

Thinking about the optimizer and thinking about
the code,I realized that the optimizer didn't do an
obvious optimization and that is why I replaced the
two for statements with the following statements:

Without anything happening in the inside for loop,
the two loops are not doing anything other than exit-
ing with i and j being changed. In this case, the for loop
code is still included in the application, but you will
find cases where the ultimate optimization that I listed
previously will be produced by the compiler and its
optimizer.

Delays are critical operations in microcontroller (or
any real-time) programming, and I will be showing you
a number of methods to implement delays in your
applications. Although you might want to get your
delays exact (in terms of time or instruction cycles),
remember that this is often close to impossible and
usually not required. As I discuss different applica-
tions, I will point out whether or not the delay's
absolute accuracy is critical or if an approximation
(usually within 10 percent) is acceptable for the
aDplication.

5 4 l , e l P I C @ l ' l C l J E x p e r i m e n t s f o r t h e E v i I G e n i u s

t l t

*{. !

*s4

t ! t

! i

,
ii

! ;

e"f

: - -

**'ti
f 1

1 r .

! :

fe

Experiment lB-Sequencing PlCkit 1 Starter Kit LEDs

Table 3-1
Plckit 1 Starter
Values

LED TBI5B

Kit LED Uisplas TBISH and PoFTF

POETE

DO

D1

D2

D7

B ' 1 1 0 0 1 1 1 1 .

B ' 1 1 0 0 1 1 1 1 '

B ' 1 1 1 0 1 0 1 1 '

B ' 1 1 1 0 L 0 1 " L '

B ' 1 1 0 1 1 0 1 1 '

B ' 1 1 0 1 1 0 1 1 '

B ' 1 1 1 1 1 0 0 1 '

B ' 1 1 1 1 1 0 0 1 '

B '0 001000 0 ,

B '00100000 ,

B '0 001000 0 '

B '00000L00 '

B '00100000 ,

B '00000100 ,

B '00000100 '

B '0 000 0010 '

As you have gained insight into PICC Lite compiler
PIC microcontroller programming and the PICkit 1
starter kit, you have probably started asking yourself
how did I know to turn on the LED marked "D0" to
make the PIC16F684's RA4 and RA5 pins outputs,
and then output a 1 (or high voltage) and a 0, respec-
tively. The process that I went through is quite simple
and only required looking at the schematics for the
PICkit 1 starter kit. It did not require any probing or
trial and error.

When you look at the LED circuitry in the PICkit 1
starter kit's schematic (fowdin the PICkit I Flash
Starter Kit Userb Guide),yor see that each of the eight
LEDs is wired as part of a pair,like I show in Figure 3-
5.To turn on one LED, current must flow in one direc-
tion. and to turn on the other- current must flow in the
opposite direction. When I started this experiment,I
had hoped that I could make active more than just the
two I/O pins connected to the LED output. But when I
followed the various connections, I discovered that if
more than two I/O pins were active at any time, there
was a good chance that a second LED would be inad-
vertently lit.

With this knowledge,I came up with Table 3-1,
which lists the TRISA and PORIA register values
needed to turn on each LED on the PICkit 1 starter

PIC MCU
l/O Pin

PIC MCU
l/O Pin

Fisure 3-5 LED wiring

kit. To test this knowledge,I came up with the follow-
ing program, which turns on each LED in sequence.
The program uses the same delay that we used for the
original cFlash (flashing D0 LED) program to show
clearly if each LED lit and if they lit in the correct
order. Note that in the program, the information from
Table 3-1 is part of the documentation.

#idcLutl€ <Dic.h>
/* cPKtED.c - RoIL Through Prckit 8 LEDg

This Prograll will ro11 through each of, the I
LEDg t'uilc inlo Che PICkit PCB-

The LED valuea are:

LED Anoal€ Cathotle
DO RA4 RA5
D1 RA5 R]44
D2 RA4 RA2
D3 RA2 RAd
D4 RiAs RA2
D5 RJA2 RA5
D5 RA2 RA1
D7 RJA1 RJA2

nyke 9retlko
0 4 . 0 9 . 1 0

COIII'IG(ITVIIO & VIDITDIS & PICRTEN & UCIJR.DIS &
I'NPROTIICT \ & IJNPROTECT & BORDIS & IESODIS &
FCUDIS) t

i n t i , j , k ;

nain()
(

PORTA = 0t
CUCONo = ?r // t\rn off cdnlraratsors
ANSEIT = 0t // Tuln off A.DC

k = Ot / / Star t a! IED 0

5ection Three S i m p l e P I C @ l l C l J A p p l i c a t i o n s 55

f , o r (i = 0 r i
f o r (j = 0 r j

while(1 =- 1) // loop Eolev€r
{

< 255r t++) // Si{E)le Delay Loop
< L 2 9 i i + +) ,

switch (k) | / / seLect� wblch r,ED tso Display
c a B e 0 :

PORIA = 0b010000t
TRISA = 0b001111t
bleakt

caa€ 1:
PORTA = 0b100000t
ERISA = 0b001111t
breakt

c e s e 2 :
PoRTA = 0b010000,
TRISA = 0b101011,
breaki

cas€ 33
PORTI - 0b000100t
TRISA = 0b101011t
breakt

gAB€ 4:
PORIA = 0b100000t
fRIsA = 0b011011t
br€akt

c a E e 5 l
PORTA = 0b000100t
rRISA = 0b011011t
b!€akt

caae 5:
PORTA = 0b000100t
TRISA = 0b111001,
bleekt

PoRTA - 0b000010,
TRISA = 0b111001,
b!6aki

) // hctiw8

k = (k + 1) % 8i // Incr€ment k wilhin range of
o-7

) / / e l ihw
} // End cPIGED

Looking at the program, its function should be
fairly easy to understand. The large switch block of
code passes execution to the series ofTRISA and
PORTA register wdtes that are specific to the LED to
be written. I could have wdtten to individual bits
rather than the entire pod, but I felt that the entfue
port write was easier to follow and understand.

I would consider this application to be quite large,
clumsy, and not particularly well written. The use of
four register writes per LED took a long time to key in
(even with cutting and pasting), and there was a very
good chance of making a data entry mistake, or typo.
As you work through the experiments in this book,
(particularly the ones in Section 4), think about how
you could improve the way a piogram is written. For
example, in this preyious example I believe I could
reduce the total number of lines to less than a quarter
and eliminate the repeated data values used to tum on
and then turn off each LED.

This program could be considered an initial version
of a Cylon Eye from Battlestar Galactica, which is also
called a "Knight Rider Eye" from the TV show. After
trying out the program presented in this experiment,
you might want to see if you can make the LEDs
reverse direction after reaching one extreme. To do
this you will require an additional variable, this one
storing the direction of the LEDs and changing its
value each time the on LED is either D0 or D7. Along
with the direction variable, you will have to make sure
that theTRISA and PORTA bits are returned to their
original state (i.e., loaded with zeros for output and in
input mode) before tuming on the next LED in the
seouence.

Experiment l9-Binarg Number Output Using PlEkit I

{J
r-(

P.{
v
Ft

o
g
s,

r.L{

z
h
$..
6
L.
'r.l

m
I
I

t *
()

s
.l-l
t .
H

s
P{
X

l;'rl

Starter Kit LEDE

In the previous experiment, I demonshated how each
LED on the PICkit 1 starter kit could be turned on in
seouence. I noted that onlv one LED could be turned

on at any time, meaning that the PICkit 1 starter kit
cannot simultaneously display more than one bit of
data at a time. In this experiment, I will show how you
can display an incrementing eight-bit counter on the
eight bits of the PICkit 1 starter kit.

The method used to display data on all eight bits
simultaneously is the same method that I will demon-
strate for multidigit LEDS and dot array LEDs. To give
the appearance that all the LEDs are active at the
same time, we will rotate through each LED in
sequence and, if the bit the LED is representing is set,
then the LED is turned on for a set period of time. If
the bit is not set. then the LED is left off for the same

5 5 l , e 3 P I C @ l ' l C l J E x o e r i m e n t s f o r t h e E v i l G e n i u s

amount of time.This ensures that the brightness of
each LED will be constant regardless of the number
turned on, and that constant timing for the application
is provided.This method is also the basis for control-
ling multiple rnotors and servos (as in a robot) and
should not be considered applicable only to the
devices shown in this book.

The rule o[thumb lhat I use when sequencing
LEDs is that each one should be turned on 50 times
per second. For this application,I wanted each LED to
be on 100 times a second, which means that each LED
is turned on over a 0.01 second (10 ms) period. For
each LED to be active in the 10 ms time period, it
should be turned on for 1.25 ms (10 ms divided by
eight).To create this delay,I used a single for loop with
the delay value found empirically.

The program I came up with increments a counter
once every half a second, and the current counter
value is displayed on the eight LEDS of the PICkit 1
starter kit:

*inclual€ <Dic.h>
/* cLEDDlEp.c - use D0-D7 a6 an incrementing
counter

Using \ePKLED.C,, as a base, cycl€ lhrough each
IED at 100x Der secondl (1250 uB b€tlraen IJEDa).

nyke p!€tlko
0 4 . 0 9 . 1 2

-CONFIG (IIIIIIO & WMDIS & PIIIRTEN & IICIJRDIS &
I'NPROTECT \ & I'NPROTECT & BORDIS & IESODIS &
FCMDIS) '

i n ! i , j t
in! Value = 0t
ints Dlay = 67, / / LE'D Time on Delay VariabLe

main()
{

PORTA = O'
CMCONo - 7, // Tuln off cd|I)aratols
ANSEIJ = 0r // I'urn off ADC

J = o, // R€set tlre Dis!)lay counte!

whi l€(l == 1) / / IJoop Eorever
{
NOPOT
for (i = 0r i < Dlay, t++)r / / siry)Le Delay

looD
i f ((v a 1 u e & (1 < < 0)) = = 0)

PORTA = 0t
eLa€ // DispLay the Value

PoRTA = 0b010000t
TRISA - 0b001111,

NOP O T
fo! (i = 0, i < DLayi i++);

i f ((v a l u € & (1 < < 1)) = = 0 ,

= j + l, // Incremenl lhe Counter every 1/r g
(i > = 5 0)

value = value + 1t // Increments Digplay Count€r
j = O, // Reaet the counter

| / / f . r
l / / eLiYLw

} // En.I CPKIJED

I chose the 10 rns display time because it allows sim-
ple calculations for counting a set number of loops for
larger delays. I take advantage of this for inqementing
the Value variable,which is displayed on the LEDs

Two points should be noted regarding the code I
used to determine whether or not a specific LED is
turned on in this experiment. The first is the use of
shifting the bit ANDed with "Value" to see if the bit in
"Value" is set. Rather than putting in the decimal,
binary or hexadecimal equivalent of the bit, I chose to
shift one up by the bit number. By doing this, we can
see exactly what bit is beingANDed with "Value"

rather than having to do a mental calculation. You may

PORTA = O'
elae // DiEplay the value

PORTA = 0b100000t
TRISA = 0b001111,

for (i = 0r I < Dlayr L++)t
i f ((V a l u e & (1 < < 2)) = = 0)

PORrA = 0t
elae / / Diar.lay the valu€

PORTA = 0b010000t
TRISA = 0b101011t

f o ! (i = 0 r i < D L a y , i + +) t
i f , ((v a l u e & (1 < < 3)) = = 0)

POREA = 0t
else // Display the value

PoRTA = 0b000100t
TRISA = 0b101011t

f ,or (i = 0r i < Df,ayr i++)t
i f ((v a l u e & (1 < < d)) = = 0)

PORTA = 0t
elae // Diaplay th6 va1u6

PORTA = 0b100000,
TRISA = 0b011011t

for (i = 0, i < Dlayr i++)t
i f , ((value & (1 << 5)) == 0)

PORTA = 0t
elae // Diaplay the value

PORTA = 0b000100,
TRISA = 0b011011t

for (i = 0, i < D1ay, i++)t
i f ((v a L u € 5 . (1 < < 5)) = - 0)

PORTA = 0t
€15e // Display the vaLue

PORTA = 0b000100,
TRISA = 0b111001;

f o r (i - 0 i i < D L a y r i + +) ;
i . f ((valu€ & (1 << 7)) == 0)

POBIA = 0t
else // Display the Va1ue

POREA = 0b000010t
TRISA = 0b111001,

b!,1

t u

f 'J,

\.L;

i
I

$=3 "

6"{

r-5
e.€'!

*:S
d*.{

B.{

frt'
tn
t i S

i?t

j
i f
{

5ection Three S i m p l e P I C @ l l C U A p p l i c a t i o n s 5 t

feel more comfortable using an equivalent value. Sec-
ondly, I chose to OR the value in PORIA with zero if
the bit is not set to make sure that either path takes up
the same amount of time. This can be extremely impor-
tant in timed applications, and although it makes the
code a bit more complex, it ensures that your timing is
as consistent as possible, regardless of the path taken.

This program will be the basis for displaying binary
data in future experiments. I must point out that it is
actually programmed in a very inefficient manner. In
Section 4, I will provide you with features of the C pro-
gramming language and programming techniques that
will make this application more efficient both in terms
of soace used and execution time.

ExFeriment 20-Basic Button InFuts

f!r...

:4

t x

&-*

g-*.*

f :

r:!
:iY1

I

.i'{

b.t
n !

d\

on RA3 is low, and then RA5 (DO's cathode) is pulled
low. When the logic level input on RA3 is high, RA5 is
driven high. The program, cButton.c, is quite simple:

#incluale <pic.h>
/* cButston.c - Stnltl€ C Progra$ to Turn on a!
rJED wh€n Buttotr La Prea8€al

Thl.6 Program ia a moalification of .cFlash"

a:A3 - Button Con!€ctsLon
a:A4 - IJED PoaitsLve Conn€cEio!
a:A5 - IJED Negative CotrnecEion

nyke preflko
0 4 . 0 5 . 2 4

The simplest form of user input you can put into a PIC
MCU application is a button. This is usually accom-
plished by a pulled-up pin with a momentary on button
that pulls the pin to ground (see Figure 3-6). The
PICkit 1 starter kit has a very similar switch circuit on
RA3;it can be used for either controlling the reset of
the PIC MCU (which will be presented later), or it can
be used as an input with which you can experiment. In
this experiment as well as the next one I will demon-
strate how this switch can be used as an input device.

The software for this experiment consists of simply
reading the switch and then determining whether or
not the D0 LED on the PICkit 1 starter kit should be
turned on. When the button is pressed, the logic level

PIC MCU

Figure 3-5 Pulled-up switch

-CONFIG(IN:IIO & WDTDIS & PIIIRTEN

T'NPRCTIECT \ & I'IIPROTECT & BORDIS

ACMDIS) t

& !{CIJRDIS

& IESODIS

nain()
{

PORTA = 0n3F, // Atl Bits are Hish
CMCONo = 7t // $En off. Cdll)arators
ANSEL = 0, // Turn off A.DC
TRISA4 = 0r // Uake RA{/RAs Outputa
TRISAs = O'

whiLe(1 == 1) / / tooD Eorev€r
(

if, (0 == Rll,3) // s€t velu€s usiag *if"

ata!e[rent

RA5 = lt
l / / f r

I / / e l ihw
) // Endl cButEon

cButton.c is written as if the author was familiar
with C, but had only recently started working with the
PICC Lite compiler. In traditional C programming,

{
RA5

)
€lse
{

58 l , a 3 P I C @ I ' l C l J E x o e r i m e n t s f o n t h e E v i l G e n i u s

5))r / / Lon, Mal t6
RAs IJow

PoRTA = PoRTA I (1 << 5) // Hish, Make RA5 Hish
, l l f . r

but the author, seeing the defined pins in the include
files, probably realized that the pins could be read and
written directly rather than having individual bits
ANDed and ORed as I do above. What the author
probably did not realize is that an input pin value can
be passed directly to an output pin as I do in the fol-
lowing cButton 2.c:

* inclu i le <pic.h>
/* cBuwon 2.c - SirtrDlifieal C Prograll to Tuln on
an IED wb€n Butlon is PleEs€al

This Program ia a nodlif,ication of, scButton"

n-L3 - Bulton Connection
RiA.4 - LED Poaitive Conneclion
RA5 - IJED Negalive Conaeclion

& PWRTEN & IICIJRDIS

& BORDIS & IESODIS

nain ()
(

POBTA = 0x3Er // A11 BitE are High
C!4CONo = 7, // \rt'l off Cdnpaialora
aNSEIT = 0r // nrra off ADC
TRrgA{ - 0, // uake 8A4/!tA5 outputa
TRISAs - 0,

whiLe(l == 1) / / IJooD Eorever
{
RA5 = AA3; // Si.nE)Ier: Pass Value through to RA5

) / / € l ihw
) // End cButlon 2

This is a fairly sirnple optimization of cButton, but it
illustrates how the pin variable type of the PICC Lite
compiler can be used to greatly simplify the source
code of an application.

where no bit inputs are used, the button read and LED
. mvke Dlealkooulpul woulo plooaDly tooK |lKe Inls: on -tt--oz

: u

. '

;+
*1

!3

a:l

i r 1

t--i

r,i\

r*{

':., r:
a i .

r-1

raI

l. tt

t :

'
else
{

i f (0 == (PoRra & (1 << 3 r l l l

{
PORTA = PORTA & (0x0FF ^ (1 <<

Ia RA3 Hi.gh

-CO![FIG (IIITIO & WDTDIS
I'NPROTECT \ & I'NPROTECT
FCI{DIS) t

i n r i , J t

If you have some experience with digital electronic cir-
cuitq you'll know that handling button input is a sur-
prisingly challenging task with a bit of science behind
it, which you will have to understand before you can
successfully process button inputs from the application.
The most critical aspect of understanding button oper-
ation is to debounce the incoming signals. Knowing the
cunent button state and how you want the application
to work is integral. In this experiment, I will demon-
strate a simple program to change the state of the D0
LED each time the RA3 button on the PICkit 1 starter

Experiment 2l-Debountring Button lnputs

kit is pressed. I will demonstrate also how the MPLAB
IDE simulator can be used to verify the operation of
an application before a PIC MCU is bumed with an
application.

Each time a switch (or button) state changes, the
contacts literally bounce against each other as shown in
the oscilloscope pictured in Figure 3-7.This happens
both when the contacts are made and when they are
broken. To interpret,or debounce,the change in switch
state, the line is typically polled until it stays in the
same state for 20 ms The basic code for polling a
switch input line and exiting when the line has changed
state for 20 ms is as follows:

I / waIE 20 ms fo! Butlon t p
(i < Twentt|ms)

i = 0 ,
!,rhi1e
t

Section Three S i m p l e P I C @ l l C l J A p p J . i c a t i o n s 5 9

sl

LJ

"

b&4

r6{

f , ' $

i
!

q i €

w

, ;d i

$"{
d r

,&

Figure 3-7 Debounce

if (0 == RA3) // Button Dowa/Stsalt over
{

i = 0 t
)
€ls€ // Butston UDllacrement CouDt
{

i = i + 1 t
, / / f . r

) / / e l ihw

Using this code snippet, the following cDebounce.c
application was developed:

*incluile <pic.h>
/* cDebounc€. c - Debounc€ Butlon Iry>ut oa na3

ThL6 Program polla lb€ bullon at RA3 anal cha.dgeB
tlt€ atate of Rias aft€r lhe DreEa haa beeD
alebounceal. use a 20 ns al€bounce perioal.

RA3 - Butston CorbectLon
RA4 - IJED Poaitiv€ ConaectLon
RA5 - IJED Negativ€ Connectsi.on

rryke Dretlko
0 4 . 1 1 . 0 7

-CONFIG (INTIO & 1iID!DIS & PWRTEN & IICLRDIS &
I'NPROIIECT \ & I'IIPROFECT & BORDIS & IESODIS &
FCMDIS) '

iDt it

consl int Tw€ntf'ms - 1150, // Declar€ a Coaataat
for 20 mE Delay

naia ()
t

POR!a = 0x3Fi // All Bits ere High
Cl'lCONo = ?t // 'I'ttta ol.t Colll)alators
AI{SEL = 0r // Turn of,f, ADC
TRISA{ = 0t // Make RA{/RAs Outputs
TRISAs = 0t

whi l€(1 == 1) / / IJoop Forever
{

/ / ttlaiE 20 I[s for Bulton UI)
(i < Twent!,ms)

if (0 == a.a3) // Butlor Down/Slarl ov€!
t

i = 0 t
)
else // Buttson qp/IncredFnt counl
{

i = i + l t
| / / E l

, /l eLi}lw

N O P () t
i = 0, // Wait 20 rns for Butslon Dolrn
rdhile (i < llwenlyns)

if (1 == RA3) // Bulton ltDlslarts over

else // Bulton Down/Incr€drent Count
i = i + 1 t

RA5 = RA5 ^ Ii ll 'loggLe Rlas to Tuln oN/oFF r,ED

l / / e l ihw
) // End cDebounce

In the cDebounce.c application, I first wait for the
RA3 line to be high for 20 ms and then I wait for RA4
to be low for 20 ms before toggling the D0 LED out-
put state. In the application code, for the first
debounce loop (debouncing button going high),I
added all the braces for conditional code. But for the
second debounce loop (debouncing button going low),
I eliminated the extra braces because only one state-
ment appears after each conditional execution state-
ment, and these statements take up a relatively large
amount of space. For the rest of the book, I will be
using braces only when more than one statement exe-
cutes conditionally.

The NOP0; statement may seem out of place in this
apptcation. When I wrote this application, I found that
I could not place a breakpoint at the i : 0; statement
following the first debounce loop, so I put in the nop
instruction, which gave me a place to set the simulator
breakpoint.This is a good trick to remember when you
are developing your own application.

You might think that the first debounce loop
(debouncing the button input going high) is redundant
or not needed because we just want to execute when
the button is pressed, but you must remember that the
PIC MCU is operating at MHz speeds. The debounce
and LED toggle operation executes very quickly, and,
without the button up debounce loop, you'll discover
that the LED toggles at roughly 50 times per second
rather than once, each time the button on the PICkit 1
starter kit is pressed.

Before I burned this code into a PIC MCU on the
PICkit 1 starter kit MCU,I simulated it using the
MPLAB IDE simulator. If you were to enable the sim-
ulator and start executing the code, you would discover
that it would get stuck in the f st debounce loop
because the default value of RA3 is 0 (or a low logic
level).To change the state of RA3 in the simulator
(and add a digital signal input), you can use thewhile

{

6 0 l , e 3 P I C o l " l C l J E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

ft*[1@

Figure 3-B Stimulus window

MPLAB IDE Stimulus window shown in Figure 3-8.
The important part of the stimulus window is the area
at the bottom, which looks like a spreadsheet; the
changing input pin values are specified along with the
time (number of cycles) the change takes place.

To set up the stimulus window, you will go through
the following steps:

1. Click on the Debugger pull-down, and click on
"Stimulus Controller."

2. In the MPLAB IDE Stimulus window. click on
the File Stimulus tab.

3. Next. to start a stimulus file. click on 'Add" in
the Input File Box, and select a file name.

4. Make sure the stimulus file name is highlighted
and click on "Edit" in the Input File box to
bring up the spreadsheetJike input area.

5. Click on'Add Row" and then select the
desiied options (discussed in the following
paragraphs) to build an input waveform io the
application code. In Figure 3-8, the stimulus list
puts the input line high, glitches it down, and
then holds the line low.

6. Save the stimulus file and then define and save
the project's stimulus file (click "Save Setup" in
the File Stimulus box of the Stimulus window).

A number of different options exist for defining
stimulus. In this experiment I simply worked with pre-
defined pin stimulus, but you can also specify asyn-
chronous pin states using the Pin Stimulus tab. To
change or set specific pin states, click on a button on
the window. When you specify the predefined pin stim-
ulus for each row, you will have to specify the follow-
rng:

. Tiigger On-either after executing for so many
instruction cycles or when execution hits a spe-
cific address. For most pin stimulus applica-
tions, you will lvant to trigger on a set number
of instruction cycles.The specific address func-
tion is useful for applying a test value to an
internal register.

. Tiigger Value-the number of cycles or
addresses.

. Pin/Register-the I/O pin or hardware register
to be written to. More than one pin or register
can be referenced in a single stimulus file.

. Value-the 1 or 0 for a pin or a hex value for a
register.

. Comments-gives you a chance to note what is
happening.

In previous versions of MPLAB IDE, stimulus files
were produced by a text file that was loaded into the
simulator. The cuffent Windows version makes it eas-
ier to implement simple stimulus inputs like this one,
but I feel that for more complex operationg the Win-
dows version is a lot more work and more difficult to
implement correctly. If you have a complex stimulus
for the MPLAB IDE simulator,I suggest that you
write it out fi$t and then enter the data carefully
rather than on the fly, as I did for this application.

I-ooking back at the first book I wrote about the PIC
microcontroller, I was amazed at the amount of space I
devoted to the topic of reset and the -MCLR pin, which
is used to control whether or not the PIC MCU is to
execute. The PIC MCU I wrote about in that book, the
PIC16F84, required a separate reset circuit that, ideally,
held the PIC MCU reset until the power supply ramped
up to the operation voltage, held off clock start until

cq!

&3

@

s
5J

&"'
;t

{&
ry
$

il.}
A , r

i
N

:
t' +tr

rh
t ,
N
s
{"J

{ U
*"$
nr

v'
._*

Experiment aa-_MELFI Operation

5ection Three S i m p I e P I C @ l l C U A p p l i c a t i o n s 6 1

,rl

fd
${
\v
>.-l

*-{
f l
re'{

I

I

t

{'"f
ry

+)

s!
s
"*l
&

t a.{
tr:

i ? t

any initial fluctuations had passed, monitored the
power supply, and reset the microconholler if it fell
below a specific value, as well as allowed the user to
control the operation of the PIC MCU. Although some
shortcuts existed, they could be irnplemented only if
you understood the application and PIC16F84 opera-
tion well and if you understood what the tradeoffs of
the selected method were. One of the big changes
since then is the sophistication of the reset circuitry
built into PIC microcontrollers; most of these issues
are no longer a concem when designing PIC MCU
applications

A complete reset solution for the PIC16F84 is shown
in Figure 3-9 and takes advantage of a chip like the
Panasonic MN18311 reset supeffisor chip. This chip
will not allow the microcontroller to execute until the
input voltage has had a chance to stabilize, and if the
power supply voltage drops below a specific point
(known as brownout, the PIC16F84 will reset. Not
only does a modern PIC MCU have the voltage-moni-
toring hardware built into its reset circuitry, but it is
also able to work over a much larger voltage range
(from 2.0 volts to 5.5 volts compared to 4.0 volts to 5.5
volts for the PIC15F84), so brownouts are much less of
a concern.

The PIC16F684 has the built-in reset features
including the brownout detection and built-in start-up
delay that were requhed to be added to PIC16F84
applications. Along with these features, the new chip
includes a number of bits in the STATUS and PCON
registers (listed in Table 3-2) that can be polled to help
determine the cause of a PIC16F684 reset. For most
applicationg these bits can be ignored, but in some
cases it is important to understand why an application
has started executing.

For this experiment,I would like to demonstrate
how the reset pin (also known as -MCLR) can be used
to reset the PIC16F684 while power is active. And by
polling the _POD bit of PCON the program will indi-
cate whether reset was caused by power on or by mak-
ing the _MCLR (RA3) pin on the PIC MCU active.
Normally,I disable the -MCLR function of the RA3
pin and rely on the internal hardware to properly reset
the PIC MCU. For this cReset.c experiment, I enabled
_MCLR and used the button on the PICkit 1 starter
kit to cause a reset of the PIC16F684.The program is
based on cPKLED and when the program first powers

Vcc

Signal to
Microprccessor

Fisure 3-9 MCU reset

up and -POR is low, I set the program to run so the
LEDs will light in incremental order. On subsequent
power ups, if the CPKLED bit is set, then I run the
LEDs in decremental order.

* incluale <pic.h>
/t cRese!.c - RoIl Tlrrough Prckits S rrEDE

ThiE Plogrem will roll through each of the I
rJEDE buiLl intso the Prckits PcB-

Th€ LED values at6:

IJED Anodle cathoale
DO RA4 RA5
D1 AA5 RAII
D2 A;A4 !lA2
D3 AJA2 R,A4
D{ RAs N,A2
D5 AA2 RA5
D6 BA2 RA1
D7 RA1 RAz

rq'ke prealko
0 4 . 0 9 . 1 0

-COIIFIG (INTIO & TiIITIDIS & PWRTEN & MCI.REN &
I'NPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) t

// llotse \!{CLREN/ insteatl of \IICIJRDIS'

Turn off ConrDaratora
Turn off lU)C

int i . j , k t
int Polarityt

naia()
{

PORT.a, = 0,
CUCONo = 7t //
ANSEL = 0t / /

k = 0t // Stsalt at LED 0

if (0 == POR) // Check PCON Resister for Star!
UD

(
Polal i ty = 0t
poF. = 7, // rntlicat€ Prc ltcu Powerefl UP once
)
6La€ / / Reset
PoLallty = Lt ll Go Backwardls

while(1 == 1) // Loop Folevet
(

for (i = 0, i < 255t i++) / / s i ry) le D€l 'av I ,ooD

f o r (j = 0 t J < 1 , 2 9 i j + +) ,

(// select lihich rJED tso DisDlaY

0b010000 ,
0b001111,

0b100000 t
0b001111t

0b010000 ,
0b101011 ,

swlEch (k)
caa€ 0:

PORTA =
TRISA =
b!eaki

PORTA =
TRISA =
breaki

case 2 r
PORTA =
TRISA =
breaki

62 l , e 3 P I C @ M C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

c a g e 3 !
PORTA = 0b000100t
TRISA = 0b101011t
bleakt

PORTA = 0b100000t
TRrSA = 0b011011t
breakt

case 5:
PORTA = 0b000100t
TRIaA = 0b011011t
breaki

cas€ 5:
PoRTA = 0b000100t
TRISA = 0bU1001,
breakt

PoRTA = 0b000010t
TRISA = 0b111001t
bleak,

] / / hct iws

i f (0 == Po!.ar i ty)
k = (k + r l % a i / /

e lBe
k = l] E - L r % a r / /

) // Enfl cReael

l.'J

0
r)

F*

th
r!.t

L !

e3
t " 1

r

ir1

!|"J

*{

c t I

DFf

tsr,,

t5r

f t

ExFeriment 23-Ending Fppl icat ions

Table 3-2
Bits FlesDonsible for Indicating Beasans for
FlEset

Bit
Name

negislef
BiT Function

_TO STATUS,4

_PD STATUS,3

ULPWUE PCON,s

SBODEN PCO\4

POR PCO\1

BOD PCON,O

Normally Set, Reset after aWatchdog
Timer Reset

Normally Set, Reset after Executing a
Sleep Insffuction

Set to Enable Ultra Low-Power wake-
Up

Software Brownout Detect Enable

Reset on Power Up-after Power On
Set Bit

Unknown Value on Power Up after
Power On Set Bit

racrement k within
o f 0 - 7

Decr€nent k within
For virtually all applications that you create, you

can safely disable the _MCLR pin and use it as an
input-only pin. The only circumstance where I would
expect you to enable the -MCLR pin is when you are
debugging an application and expecting the applica-
tion to fail and hang up periodically, requiring a low-
reset value.

through D2) in sequence and then end. I enabled the
-MCLR pin so the application could be restarted
rather than requhing you to download it again to start
the execution process again.

*incluale <pic.h>
/* cEud.c - I,ighl 3 LEDg anal Return

lghis Proglarl will Lighl D0 to D2 Ltr Seguenc€ anal
lhen Enfl,

rDJake pretlko
0 4 . 0 9 . 1 2

Before going off to rnore complex applicationE I
thought it would be useful to discuss how your PICC
Lite compiler application executes in the PIC MCU. In
particular, the manner in which the hex code is loaded
and executed may be confusing and, therefore, worth
discussing. You are probably familiar with running pro-
grams in your PC: when a program ends, control
doesn't return to the operating system. Obviously, this
is not true for the PIC MCU, which does not have an
operating system; so you might expect that when the
program completes, the PIC MCU just stops. This
experiment was written to test this expectation.

The cEnd.c application was written for the PICkit 1
starter kit. It will turn on the first three LEDs (D0

-CONFIG (INTIO & WIiIDIS & PI{RTE!{ &
IJNPROTECT \ & T'IIPROIECII| & BORDIS &
ECUDIS) t

i n t i , J ,
int iEnal = 235i // :, Seconal D€lay

nain()
t

IICI,REN &
IESODIS &

PORTA = 0,
O(xlICONo - 7r // '!J.tin of.f conparalorE
aNSEL = 0; // Turlr of,f, A.DC

PORTA = 0b010000t / / D0

Section Three S i m p l e P I C @ l l C U A p p l i c a t i o n s 63

TRISA = 0b001111;
f o r (i = 0 r i < i E n i l t

f o r (j = 0 r j < i E n a l i

PoRTA = 0b100000r / /
TRISA = 0b001111t
f o r (i = 0 r i < i E n a l t

f o r (j = 0 r j < i E n d t

PORTA = 0b010000, / /
TRISA = 0b1010U,
f o r (i = 0 r i < i E a t l t

f o r (j = 0 r j < i E n a t t

PORTA = 0b000000r / /

TRISA = 0b11u11t

PORTA to Initial

/ / wht le(] . =- L) , / / l rorrra l Enal
// SIJEEP O, // Allernative Endl

l // Enal cEntl

When you run the program as it is presented here,
you will discover that instead ofjust stopping at the
end (D2 turns on and then off), D0 lights again and the
program seems to run again. I suggest that you now
run it on the MPLAB IDE simulator, put a breakpoint
at the first statement (PORIA : 0;) and at the last
statement (TRISA : TRISA | 0b011111111), and
start the program executing (with the stopwatch dis-
played).The ftst time the program executes, it will
stop at "PORTA : 0;" indicating that it has executed
in 100 instructions. Click on "Run" again and the pro-
gram will execute for a few momentq finally stopping
at the "TRISA : TRISA I 0b011111111;" statement
with 3,006,075 executed instructions on the stopwatch.

Now, click on "Run" a third time. You might expect
that the simulated PIC MCU never stops executing or
that it immediately stops and resets the simulated PIC
MCU. Actually, neither happensiexecution returns to
the first breakpoint (PORIA : 0;) and the stopwatch
displays 3,006,175 instructions. From these results you
can conclude that program starts again after 100
instruction cycles. What is happening is most easily
illustrated when you are familiar with assembly lan-
guage, but the short explanation is that when the PIC
MCU reaches the end of program memory, instead of
stopping, the program counter resets itself and starts
executing from the start again.

To prevent this from happening,I norrnally end my
programs with a statement like the following that puts
the PIC MCU into a hard loop that execution cannot
escape from:

w h t L € (] . = = 1) ,

Although you will see that I have noted this with a
comment (or "commented it out") in the previous pro-

gram, to test the operation of this statement, delete the
two slashes to the left, rebuild, and retry the program.
You will find that it will stop after D2 has been turned
off and won't start until you press "SW1" (the reset
button) on the PICkit 1 starter kit.Along with the
while forever loop, you can also use the SLEEP0; PIC
MCU instruction, which is set off as a comment after
the while statement.This instruction puts the PIC
MCU into a low power state, and then allows it to be
restarted by pressing the reset button on the PICkit 1
starter kit. In most microcontroller applications, the
program is continually looping, so the need for the
while statement or sleep instruction is not required.
But in applications where a single operation is being
carried out (like the examples in this book), you will
need the while statement or sleep instruction to pre-
vent the program from executing repeatedly.

For Consideration
So far in this book, I have relied upon the PICkit 1
starter kit exclusively for putting in the circuitry but
you can build these circuits on a breadboard very easily
if you have a limited number of PICkit 1 starter kits
available (such as in a classroom). Another case in
which you might want to build a PIC MCU circuit on a
breadboard is when you require different circuitry than
is available on the PICkit 1 starter kit. In the following
paragraphs, I will quickly introduce you to putting a
PIC MCU on a breadboard and some issues that you
should be aware of when building your own circuits.

The basic parts required for wiring a PIC MCU on a
breadboard include the following:

1 Small breadboard

1 Breadboard wiring kit

2 AA or AAA batteries and clip with bread-
board wires

1 0.01 mF capacitor (any type)

1 Power switch (E-Switch's EG1903 is recom-
mended)

LEDs

Capacitors of various values

Optional parts that you will want include the fol-
lowing:

Pushbuttons with breadboard wires

Potentiometers of various values

j + +) t

D1

j + +) t

i + +)

j + +) t

Retula
stale

silrp1€ Delay
for D0

sirE)le D€lay
fo! D1

// sinple Delay
f.oi D2

U
, f-t

*r
; i,!

\t,
'".d

' P .

ill

l t

h-

6 4 l , E 3 P I C @ I I C U E x p e n i m e n t s f o r t h e E v i l 6 e n i u s

Small plastic parts box

The tools thal you will rcquire include the follow-
lng:

Small flat screwdriver

Needle-nose pliers

Wire clippers

Wire strippers or knife

This probably seems like a modest list of parts and
should not cost you much more than $20.00, and with
them you can create a wide variety of different PIC
MCU applications outside of the breadboard. What
may surpdse you is the usefulness of the two "radio

batteries" that together provide about 3 volts (for
alkaline batteries). The PlC16F684 (and most other
new PIC MCUs) will work with voltage inputs ranging
from 2.0 to 5.5 volts. Many modern peripheral devices
also work at these voltage levels, so rather than using
something like a 9-volt battery and a voltage regulator
to get 5 volts, you can simplily your circuit by powering
with two radio batteries. A complete kit is shown in
Figure 3-10 and can be purchased from a variety of
sources (including Radio Shack and Digi-Key).

The kit consists of a breadboard, a breadboard
wiring kit, some LEDs, resistors or dilferent values
(100 Ohms,220 Ohms,330 Ohms,470 Ohms, 1k, and
10k are good values to start with), capacitors (0.01 pE,
10 pF, and 47 pF will be useful), a momentary on push
button, an SPST switch, and a two-cell AA or AAA
battery pack. As you create more complex applica-
tions, you will probably want to expand this kit. It
would be a good idea to get a small tool kit as well.

Figure 3-110 Breadboard with basic parts neetled to

run the PIC|6F84

Pin through hole (PTH) chips (like the PIC16F684
microcontroller), resistors, capacitors, and breadboard
wiring work without any modifications to the brcad-
board and only a few to some of the components.
Although it will take a bit of work. For a power switch,
the E-Switch EG1903 SPDT (available from Digi-
Key) will work with a breadboard without modifica-
tion. Unfortunately, I have not found a momentary on
switch or battery pack that will work with a bread-
board without modilication; I solder wires onto stan-
dard parts as shown in Figure 3-11 to get this
capability.

Once you have the parts, you can wire together the
cFlash.c circuit (Figure 3.12) in just a lew minutes, and
the resulting circuit should look something like Figure
3-13. Although the circuit seems quite simple, there are
three things to be aware ol The first is to wire both
sides of the breadboard with power (Vdd/Vcc) and
ground (Vss/Gnd) on the common bars on both sides
of the breadboard (see Figure 3-13). This will n.rake
your wiring simpler when you have multiple devices

Figure 3-ll AAA battery clip and momentary push
button modified with breudboard wires soklerecl t<t
them

#
2x 'AA'

Baitery

Figure

VSS

Breadboard circuit

-:
-f

I

.L
3-le

5ection Three S i m p I e P I C @ l l C U A p p l i c a t i o n s 6 s

o !
E P

Figure 313 Breadboard wiring to demonstrate the
cFl.ash.c operation

on the breadboard and you won't have to cross over
chips wheri you are connecting power and $ound.

Secondly, make sure tJrat a switch is located on the
positive terminal of the battery pack b efore power s
passed to the common bars on the breadboard, and
don't just place the switch on the Vdd pin of the PIC
MCU chip @in 1). ff power and ground are available
on other pins of the PIC MCU, you will discover that it
will run, even if no connection to the Vdd and Vss pins
exists. The clamping diodes on the UO pins of the PIC
midocontroller will allow current to pass tlrough
them as shown in Figure 3-14, and frequently this will

2x'AA' -:
or'AAA':
Bat tery:
Pack

Figure 3-lq Parasitic power

be enough to run the application. This is often called
parasitic power ard. problems with it can be avoided if
you control power at the source, rather than at the PIC
MCUchip.

It's important to remember to remove gently the
PIC MCU chip after programming and insert it before
reprogramming.The easiest way I have found to
remove chips is to stde a small flat-blade screw driver
under the chip and twist; it will pop up from the bread-
board. Before inserting the PIC MCU chip, make sure
all the pins are aligned before pushing the chip onto
the breadboard.You can even roll the chip on a table
top to bend the pins inward. Bent pins can be straight-
ened using a pair of plie$, but by taking a bit of care,
you'll never have to.

t
LED
Can
Ptc

c
o
.rl

{J
(I,
${
o
€
.r{

v,
g
o
U
t{
o
F.

5 6 l , e 3 P I C @ l ' l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

S e c t i o n F o u r

f Language Features

In this section, I will present many of the advanced
features of C that will help you more efficiently pro-
gram your applications. These features allow you to
more quickly create applications that are smaller, run
faster, and handle data in different formats. Before I go
on to the more advanced features of C.I would first
like to address the topic of making your applications
more readable.

Readability of a computer program is a function of
five different parameters:

e Appropriate file name
. Header information
. Intelligent comments
. Adherence to formatting conventions
. Conventional statement usage

This list of parameters should not be surprising, but
I am amazed at how few people think to use them
when they are under a deadline. Actually, these rules
often fall by the wayside in normal programming, caus-
ing a lot of grief when it's time to go back and try to fix
something or even to use the code in another applica-
uon.

The filename that I have used for the code pre-
sented in this book and the folder in which it is stored
follows the convention:

nl"anguag€extl\rnctioaI ftselalionl .languageext,rr

"Languageext" is "c" or "asm," depending on the
language the application is coded in. I put the language

type at the start of the file name for two reasons. The
first is so I can use the folder name to differentiate
between similar programs-those coded in C or
assembler. The second reason is that the extension is
not displayed in the folder window of Microsoft Win-
dows, and I want to make sure I know at a glance what
language the program is written ir..

The main part of the file name (Function, in the
previous convention line) is simply what the program
does. Personally, I would like this to be arbitrarily long
so I could create file names like "Single Button
Debounce," but the 64-character limit imposed by the
MPLAB@ IDE simulator makes this difficult. So I stick
to a single surnmarizing word. If I am going to produce
multiple versions of the application, I keep track of
them by a version code separated from the rest of the
file name by a blank.

Remember to keep each application in its own sep-
arate folder. Multiple applications in the same folder
(or even on your PC's desktop) are difficult to sort
through to find specific applications. By keeping every
application in its own folder, you will ease the work-
load required to find a specific application, help you
manage the applications, and identify which ones are
needed and which aren't.

Every program should have a header block with the
following information:

. Summary of program operation

. Detailed description of what the program does

. Hardware information

. Author's name

. Date last updated (ideally with comments
explaining what was done)

The purpose of most of this information is to allow
you or somebody else to scan through and see if this is
the application required. You might be looking
through previously wdtten applications for samples
that use specific hardware, or for a particular applica-
tion that requires a fix.

67

,A

0)
t{
Fi

{J
d
\y

[&l

ry
b
d

bt

6
*4

t \

!

\J

r,t

f.t't

o
'r{

r l(_,

$

Intelligent comrnents explain the purpose of a block
of code. How the code works should be self explana-
tory. The following is an example of what not to wdte:

I = i + 1r // Incteneut Couat€r i

This comment is not helpful as you would assume
that the reader knows C well enough to understand
what the code is doing. Instead the comment should
explain why the code statement is there. A better com-
ment for the statement might be:

i = i + 1' "::::1":::'"::"*

In university,I had a professor that took marks
away for every comment in an application. His logic
was that the code should be written in such a way that
it is self-commenting. I can see his line of thinling,
although it is probably the other extreme of volumi-
nous, redundant commenting. I would suggest that you
follow the rule that comments should only add infor-
mation.

When you've been taught to program and when I
have presented different statement typeq they are for-
matted in very traditional ways. You may be unaware
that C and most other highJevel languages are very
loose with their formatting, and an if statement like
this one:

i f (A > B) i = i + 1 ,

j + 1 ,

is just as valid to the compiler as the traditionally for-
matted statement like this one:

eLse
j = J + 1 ,

In C, the semicolon (J is the ending of the state-
ment. Until the semicolon is reached, the statement is
parsed as if it were all on the same line, or formatted
traditionally. You might think that a different state-
ment format will make the application more efficient,
but it will only make it frustrating for others to read
and debus.

When I am formatting code, the rules that I use are as
follows:

. Each statement is on its own line.

. Nested conditional execution is indented by
four spaces.

. If statements are longer than lhe page (or
screen) width, find a natural break and start
them on the next line, indented four spaces
from the start of the previous line.

. Comments all start on the same columns.

Simple, clear code that is written in a consistent for-
mat that is easier to read-even if it is formatted dif-
ferently than you are used to-than code that does not
follow a single format and uses different conventions
for indentations and variable names. For example, the
number of indentation spaces I suggest is based on
what Visual C11 uses and I have become used to. You
may find that two or eight spaces for each indentation
makes more sense to you.

I do have one warning regarding indentations. Try to
resist the urge to rely on tab characters when moving
code or comments to a specific column;use space char-
acters instead. Different editors and web browsers
interpret tab characters differently, and by using tabs in
your code, you will find that your neatly organized pro-
gram will become virtually unreadable in other tools.

The final comment is similar to the previous one. As
shown, C is a remarkably flexible language, and there
are a lot of different ways of doing things My recom-
mendation is this: Do not try to be creative in how you
code your applications. Instead be as conventional as
you can.The space savings and speed improvements (if
any) made by creatively organLing the code of your
application will be offset by the increased difficulty
reading and understanding how the code works. I put
the caveat "if any" in parenthesis because the optimizer
in the PICC Literu compiler is very sophisticated and
very good at identifying situations where repeated code
is integrated into a subroutine or even reorganizing the
code to avoid redundant blocks of code.

To summarize this introduction, I quote the credo of
the poor coder: "If it was difficult to write, it should be
difficult to read." And the corollary is also true: If you
work at making your code easy to read, you will find
that it is much easier to wfite. The added benefit will
be that your teachers, supervisors, and coworkers will
appreciate your efforts over those programmers who
do not try to make their code easier to read.

i f (A > B)
i = i + 1 t

68 l , a 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

Experiment 2t-.1-Functions and 5ubroutines
pl
t.?

dn

11

q

;.,
tt)

r-ts

h3

I

trl

e"a

/-!

$r.

$d

{*

nr
*"{

p,

{n
1.,
F

Ft

r{
.+
,r.
H

TE
t 3

type
t

!€tur|r EactvaLu€i

, // ElLd Factoral

nain()
{

Faclval,u€i

Facloral(j.nE Nt|rib€r)

f,or (Faclvalu€ = 1r N\jlib€r > 1t N\rntber--)
Faclvalu€ = lactvaLu€ * lludberi

If you were to Google@ the C programming language
for a definition, you would discover that it is "procedu-

rally based."This means that the language is designed
to implement subroutines easily so that prograrnming
tasks can be broken down into smaller pieces for eas-
ier programming and reduced opportunities for errors.
Subroutines in C will allow you to simplify your pro-
gram, but I am more excited about C's ability to create
functiors ,which offer much greater utility to your
applications Just so the terms are straight, I use the
word rn voke synonymously with cal/ when I am refer-
ring to subroutines and functions.

Subroutines in C are declared in the followins format:

SubroulifleName (t].D€ Var1, ...)
{

// gubroulin€ stat€drentB her€

| // EnA subroutineName

and must either be declared before the subroutine or a
prototype has to be placed before the subroutine is
used. This prototlpe consists of the subroutine declara-
tion statement with a semicolon after the input param-
eters. Prototy?es are often placed in include files
(ending in .h) that are loaded at the start of the C
source code. For the previous example, the prototype is
as follows:

Subloutsin€Ndne (ty9€ Var1, ...) t

Personally, I put subroutines and functions above
the mainline to avoid the need for protot)?es. The only
time I use prototypes is if I have previously compiled
the subroutine or function and I'm linking them with
the mainline. In these cases, I will load them all in a .h
include file. One important reason to place subroutines
and functions before the mainline is to avoid the
bother of maintaining the prototypes if the functions
themselves change. If you change the input or output
parameters of a function and do not change the proto-
type. you will get an error message.

Functions are very similar to subroutines except
they retum a single value. The declaration statement
for a function is very similar to the subroutine, but dif-
ferences between the two relate to the declaration
statement's ability to return data to the caller:

zunctslonNam€ (ty9e var1, . . .)

// Funclion statelreats h€r€

return ReturnvaLue i

, // tud. subroutia€s

To invoke a function, a statement in the following
format can be used:

1= Funct iot iNam€ (in l rutParanat€r, . . .) t

Or a subroutine invocation can be used:

gubloutineName (inputPalam€ler , . . .) t

If a function is invoked as a subroutine, then the
return value is ignored upon return.

To demonstrate the operation of a function in a pro-
gram, I created cFactoral.c, which calculates the fac-
torals of the first eight integers:

#inclual€ <Dic.h>
/* cEactoral.c - Calculale Factorala of
Inlegera

Thia Plogram Calculatses lh6 Factorals fldr 1 to
1 0 .

rrl|ke D:.eflko
0 4 . 0 9 . 1 5

int
tnt

int
(

Section Four C L a n g u a g e F e a t u n e s 6 9

j = FactoraL (i) t

w h i l e (1 = - 1) ,
, // E^d. cEactoral

The program multiplies the integer by each decre-
menting values until it reaches one. This is not the tra-
ditional way of calculating factorals. In C, this function
is normally shown as an example of a recursive func-
tion. I will not be discussing recursive functions in this
book for two reasons: (1) It is beyond the scope of this

book. and (2) the PIC16F684 microcontroller cannot
suppot it easily.

When you simulate cFactoral.c, I suggest you dis-
play the Watch window for the four variables used in
the program: i, j, FactValue, and Number. When you
run the program, you will notice that each of the four
vadables, except for Number, is displayed at all times.
Unless execution is within the Factoral function. the
variable Number has the message, "Out of Scope." The
reasons for this message will be explained in the next
exDerlment.

f o r (i - 1 r i < = I r i + +) // Return the
Factoral of
1 t o 8

// aaBume lhe
value ia prime

2) + 1)) & & (0 ! =

/ / r f Div iEib le

value iE
// NOT Prime

// Retuln the
Prime Fl.ag

Experiment 25-6lobal and Local Var iables

nl'ke pr€dko
0 4 . 0 9 . 1 6

Plinecheck (int value)i.nU
t

In C, you have the ability to redefine variable names,
so long as they are declared within functions and sub-
routines and not outside the main statement. This fea-
ture is known as /o cal variables and allows you to reuse
common variable names (such as i, j, k, and n) without
fear that the contents of a variable will be changed or
corrupted by other functions and subroutines in the
application. To demonstrate this capability, I created
the program cPrime.c, which has the function
PrimeCheck that uses the same variables as the main-
line uses.When you run the application and try to
monitor the values for the counter and flags (i and j,
respectively in each function), you will discover that
MPLAB IDE has trouble monitoring the correct value
for the variables and may even stop single-stepping
correctly!

#include <pic.h>
/r cPr ine.c - F ind Che Pr imea in the f i rs t 200
Integers

This Prograr works through each of th€ prime
rumbera frorn 1to 200 anal indicates which ones
are prine h,t att€lpting bo divide every integer
fron 2 to ((Nur lb€r / 2) + 1) .

Thia program is alegigrteal to run under the MPLAB
rDE simulator

On1Y.

j = 1 ;

fo ' . l i = 2, (i < ((vatue /
j) r i + +)

i f (0 = = (v a 1 u e % i))

j = 0 ;

letu ln j t

) // ead. Plinecheck

main()
{
i n t i , j t

for (i = 1r i <= 2OOi i++) / / T6at Every

j = Primecheck(i) i / / i : : : : :" '= t
l + n r a r i f i

is P].ime

whi l6 (1 == 1)r / / Loop For€ver
) // E ral cPrirne

The problems are caused by the confusion the
MPLAB IDE simulator has regarding which i or j it
should be displaying. This doesn't mean the program
isn't working properly, but that MPLAB IDE cannot
properly display the values of i and j.

In this program the i and j local variables that are
specific to each function are unique to one another as
well as to any variables that are declared outside all the
functions of the program.The variables that are

7 0 l , a 3 P I C @ l l C l J E x o e r i m e n t s f o r t h e E v i I 6 e n i u s

declared outside all the functions are known as global
variables and they can be accessed within any function.
When debugging functions, you will probably want to
change the variables that are local to the function into
globals so that you can debug them using the full fea-
tures of the MPLAB IDE simulator. From a program-
ming quality perspective, this is not necessarily a bad
idea; by testing and debugging individual functions
before integrating them into an application, you to
ensure that they are correct before they are used and
simplify your application debug.

The big question you are probably asking yourself
from this experiment is "When should I use local ver-
sus global variables?" When I program in C for the PC,
I try to make all my variables local;but I use global
variables onlv for the values that are accessed across

the application and/or that would become cumber-
some if their parameters need to be passed to other
functions. I do not follow this rule when I am program-
ming the PIC@ microcontroller, because the
PICi6F684 processor architecture does not allow for
parameter strings of unlimited length to be imple-
mented efficiently. Ideally, you should keep your input
and output parameters to 16 bits. Additionally, there
could be situations where multiple variables with the
same name are declared but only very rarely accessed,
and therefore there may never be any danger of them
appearing multiple Iimes it nested subroutines (snb-
routines and functions that others call or are called by
other subroutines or functions). For these reasons, I
tend to declare all the variables as globals, except for
counters (i,j, and so on) and temporary values.

Experiment 26-Defines and Macros

In Section 2, when I introduced you to variable decla-
rations, I also noted that constant numeric values could
be declared as well.The constant values that were rep-
resented by the labels would be substituted in anytime
the label was encountered. In this way, commonly used
constant values could be stored as an easy-to-remem-
ber string that should help the readability of the pro-
gram. I did not focus on the constant value declaration.
I try to avoid using it in my programming, because I
believe that its declaration can be easily confused with
variable declarations and because it does not encom-
pass all the different types of data that are used in pro-
gramming.

To declare constant values of all types, I use the
#define directive built into the C programming lan-
guage. The format for the #define directive is as
follows:

*define labeJ. t (Argumert, ...) I Strinsl

When a label that has been declared as a constant is
encountered, the numeric value associated with the
label is returned.When a label declared in a #define is

encountered, the .slrilrg that is associated with the label
is inserted into the program. A subtle but very impor-
tant difference exists between the two, as I will show in
this experiment.

The string returned by the define label does not
have to be numeric only; it can be alphabetic charac-
ters or even C program language statements like if or
for. These substitutions are allowed because the define
substitutions take place in the compiler's preprocessor.
That is, the strings are substituted into the program
source code before compilation starts.

Further enhancing the usability of the #define direc-
tive is the ability to specify parameter strings (the argu-
ments in the previous directive description). These
parameter strings are substituted in the #define string,
allowing you to customize the string for a particular sit-
uation.The addition of parameter strings allows the
#deline to behave as a macro and allows you to easily
enhance the operation of your application.

Macros are seclions of code that are commonly
used, but deemed inappropriate as their own subrou-
tines or functions. In this expedment's demonstration
application, cDefine.c, I show how #defines are used to
define a constant value as well as, with small pieces of
code, to provide simple functions that may be required
multiple times in an application. It isn't unusual to
refer to constant values, declared by using the #define
directive and code strings that are added to the appli-
cal\on as macros .

5ection Four C L a n g u a g e F e a t u r e s 7 L

#incLuale <pic.h>
/* cDefia€ - Denonstrate the Defin€ Dir€ctive
fo! Equales anal Maclos

The C "Defin€' direclive can be useal fo! both
equaling values aa weLI as Droviding basic maclo

Th€ae caDabiLiti€s are ilemonBtrated in thig
proglall.

Halalware Nolea:
PIC15F684 running al 4 M$z ln Sinulato!
ReBet iE li6al ali!€cE1y to vcc via PuLluD/

PrograEniag Haralware

Myke Pletlko
0 4 . 0 9 . 2 6

| / De�elneg
*t[€fine constantva].ue 0x1234

*tlefine ldgbByt€ (valu€) va].ue / 0x0100

*alefine Lowtsyte(value) vaLue % 0x0100

*alefine uDDercase (charact€r) \
((Chafactse! >E ra ') && (Chalacler <= '2,)) ?\
Clraract€r Charact€!

) // Enal cDefiDe

The strange format of the Uppercase macro will
require some explanation. The two backslashes at the
end of the first two lines are line continuance indica-

tors;wh€n these characters are encountered, the pre-
processor moves the next line to the end of the current
one. This allows for multiple-line macros or for situa-
tions like this, where you could cram the macro string
all onto one line. But by using the line continuance
character, the line can be read more easily. Secondly,
the macro has a question mark (?) and a colon (:) char-
acter inserted into it, neither of which seem to make
any sense.

The question mark and colon are part of an altema-
tive conditional execution statement. which has the fol-
lowing forrn:

Conalltq)reBBion ? Tru€E:qrr€BEion :
FaIB€E apr6ssion

When "CondExpression" is evaluated if it is true
(not zero, which is what "true" means), then "TiueEx-

pression" is evaluated;else "FalseExpression" is evalu-
ated.This statement is useful for situations where you
want to set a variable to a specific value, as in the code:

lf (CoaalE:rDles s ion)
i = TrueE qrressioni

€Ise
i = FalseE <Dlessiont

Personally, I do not like using this alternative form
of the if statement except in macros, as its operation is
not always obvious (e.g., the colon can be easily missed
or misread as a semicolon), it does not allow rnultiple
conditionally executing statements, it is not logically
nested with other statementq and it often ends up run-
ning over a single line, which makes its operation even
more cryptic. It is, however, an efficient way of adding
a conditional operation to a macro, just as I have done
in this experiment.

Before ending,I should note that the #define direc-
tive can be used for renaming I/O pins in PIC MCU
applications. Rather than accessing an I/O pin as the
generic label, you can assign a label to it using the
#define directive. For example, if you had an LED
wired to RC2, you could declare it using the following
statement:

*al€f,ine LED RC2

Now, when the PICC Lite compiler encounters it, it
replaces every instance of"LED" with "RCZ."This is a
useful trick for making your applications easier to read
and write.

F4
r l

{q3

qL!

, i t

. r {

ft!

t
I
I

i \ *

r t r
f.i

n l

. *,{

N
a !

&'&4
4.6
trt

nain()
{
iat lilurbell , N\nber2 t
char Char1, Cha!2, Cha!3t

Nunb€r1 = 0x0123t

Iilr,mber2 = ConBtantvaluot

Chart = '1"

Cbar2 = 'b ' ,

Char3 = '7"

// Stantlaral
rn i t la l ize

// LnLEiaLi,ze
witsh Define

// Characte!
hi r ia l iz€

"qpD€rcaaen

llac!o
// only value tso

be Changetl

/ / F in iEhet l ,
Loop Fo!6ve!

lituIl|ber1 = HighByte (Nlrnber2) r // Get Bigh
Byle of,
Nunb€r2

Nllriberl = IJowBt't.e (Nurber2), // eel Lolr EyEe
of Number2

cha!1 = UlrDercase (Charl.) , // ISBE

char2 = UrpDetlcas€ (Cha!2) ,

Chal3 = UDDelCade (Cha!3) i

$hi1e (1 ==] .) t

72 l , e 3 P I C @ l l C l J E x p e r i n e n t s f o n t h e E v i l G e n i u s

Experiment

Array addressing is a common feature of most pro-
gramming languages and provides you with a mecha-
nism to allow you arbitrary variable data within your
application. Array addressing could also be called
indexed addressing, and it utilizes an arithmetic value
to specify a certain variable element in an array vari-
able. Arrays allow you to handle more data than could
be handled normally in an application and to write
applications that would be very difficult without this
capability.

Using arrays in your program is actually quite easy.
In Figure 4-1,I show how I visualize an array-as a
series of memory elements that are given a single vari-
able name. Each element is accessed by specifying an
index value. The index can be a constant, a variable, or
an arithmetic expression. For example, each of the
three statements below will load the variable i with the
contents of the fourth element ofArravVariable:

i - Arlayvariable [3] , // Intlex is a
Constanl

i = Arrawar iabl€ l j l r / / rnd€x is a

i = arrawariabl€ Ij * 1r, ,, rtiJ"'**ff jt = t'

E.presEion = 3

Declared As:
i n l V a r i a b f e N a n e [4] ;

?7-Variable Flrrags

Array elements in C start at an index of zerq not
one as you might expect. You could create your pro-
grams with one extra element and start your index at
one, but this would not follow conventional C pro-
gramrning and would make it difficult for others to
read your program. I should point out that many other
languages (including various flavors of BASIC) all
have their fust array element as zero, so this is a con-
vention that is transferable to other languages.

To define an array variable, the variable with its
same type is specified along with the number of ele-
ments of the array. Along with this, the initial values of
the array can be optionally specified by placing them
within braces as I show in the sample array variable
declaration statement shown here:

int Arratryarlablel(l - 177. L2L, LOi, LOLI i

A common program used to demonstrate the opera-
tion of arrays is the bubble sort (seeFtgure 4-2). In this
simple program, each element of an array is read and
compared to the one next to it (this is the bubble). If
one element is greater than the next, then the two are
swapped using this simple three-statement sequence:

rfl
X

€
tt\l v
l.t

l-"

tn
x

tg
{

I
T

s
r-i
F.
p,
tr
F
{D

F
h1
H
p,

m

Tenp = gortArlay [i].

SortsAffaylil = SoltArrayli +

sortelrayli + 1l = Te pt

// sav€ !h€
eurrent Valu€

1lt // store Next
value ia
Current

// Ilul Ortgl.aal
currents value
in Next

These three statements, which require an extra
Temp variable, are a fast and efficient way of swapping
the contents of two variables, not just array variable
elements.

fll?J,[!*z : s a @rs
"Bubble" Testind \Arrows Show
Array Element

Values
Exchange
of Sort

Figure q-l Array

Section Four C L a n g u a g e F e a t u n e s 7 3

Figure U-2 Bubble sort

// Firriahotlloop

) // Edil cbsoll

So far I have discussed single-dimensional arrays
(arrays with one index), but you can also implement
multidimensional arrays in C by simply adding a sec-
ond set of square brackets as I do in the following
example program. Note that when I came up with the
initial values, I kept the values together according to
the row in which they appear.

f-* *inc].ual€ <pic.h>
. l* clIulArlay. c - UultiDle Dimen6ionaL Array

P1
ffi
&'"{
F-{

'at
Ii

{ :
d{il

{ *

r?a

a
*

{1}

&,{"t

The most basic bubble sort program that I can come
up with is as follows:

#incLudle <Dic.b>
/* cbsoft.c - siry)Ie C Plogram Bubblo Sort

This Proglarr ia a aimple 'Bubbl€ So!t. of 20
values.

l[yke gretlko
0 { . 0 8 . 0 3

Earflware Not€E:
ThiE Progiam haa b€en written to run in the

IIPLAB IDE Sillulalor ONIJY.

iltt i, j, TenD,
char Sor lvalu€E [20] ={33. 5{ , 42, l2O, 37, 5,
9 9 , 1 0 5 , 8 . 2 r , 1 O O , 3 3 , 4 r , 7 7 , 4 1 , 6 9 , t 3 , 8 6 ,
5 1 , 9 0 1 t

nair ()
t

for (t = 0r i < s iz€of (So: . tvalues) t i++)
fo! (J = 0r i < (s izeof(Sor lvalues) - (i + 1)) t

j + +)

i f (sor tvaluest j l > Sortvaluea [j + 1]) {
TdE) = sortvalues tj I .

Sortvalueal j l = Sor lvalueal j + 1 l t
sorlvaluealj + 1l = ledlpt

, // f5-

w h i L € (1 = = 1) t

inl i , j , Produclt
ints I'lutArray [5] I51 = t0, 0, 0,

o , 1 , 2 ,

o , 2 , 4 ,

o , 4 , a ,

0, 0, / / zer�o
Rolt

3, 4, l l o ' re
Row

6, A, / / Tvo
Ront

9, L2, // 'I}rte.e

Row
!2, L5r, / / Eolr] .

Row

rnaia ()
(

i = 3 r i = { t
Proaluct = MuLArray I i I t i l t

i , - 4 t i = 3 i
Product = MulAr lay t i l t i l t

i = o i i = 2 i
Proaluct = MuLAl. lay t i] t i l t

i = l i i = 2 i
Proaluct = MuLArray I i I t i l ;

w h i r . e (1 = = 1) t

l // Ertd. cMulAffay

If you are looking at the cMulArray program, you
might think that it is a clever way to avoid having to
use a complex multiplication routine. Unfortunately,
when the compiler is calculating the address, the row
index (or the first dimension) is multiplied by five and
then added to the column index (or the second dimen-
sion) to calculate the index element to be accessed.
Another way of putting this is that all arrays are actu-
ally single dimensional, and the multidimensional
array format is simply provided as a way to avoid
requiring the programmer to calculate the address.

Before using a multidimensional anay, think about
how necessary it is to your application. Two- and three-
dimensional arrays can use a lot of space that could be
used for other functions. For the cMulArray program,
the MulArray variable takes up 50 bytes (five rows
times five columns times two bytes for each integer ele-
ment). If we were to extend it to three dimensiong the
total memory requirements would become 250 bytes,
which is much more than is available to the application.

From an academic perspective, the bubble sort algo-
rithm is probably the least efficient algorithm for sort-
ing data. Other sorting methods are much more
efficient, but they require resources that are generally
not available in the PIC MCU processor architecture,
and implementing them can be quite difficult. In any
case, for most PIC MCU applications, the bubble sort
is good enough; in fact for the rest of this chapter, I will
look at different ways of implementing it using differ-
ent C language features.

This Program alemoaEtslates how e two
alimenaional array coulal be inpldEntsetl to
sinptify !'luttiplication.

myke pretlko
0 { . 0 9 . 0 ?

Haralware Notes:
ThLa Program haa been wrilten to run in
the llPLAl IDE Simulato! ONLY.

7 4 l , a 3 P I C @ l l C l J E x p e n i m e n t s f o n t h e E v i I G e n i u s

Experiment 28-Structures and Unions

and personal information.The structure declared
below is an example of something that could be used
bv a store to keeD track of its customers:

Cualodnellnfo struct {
char Nalne [6{] t
char Aalalless [128] t
int sonePh[101t

int BusPh t10l ,

char ernail [32] t
CDate !astSalet

int LastsameAmtt

// Custon€r Nane
// Aalalres s
// Ilortre Phone

Nunbe!
// nork Phone

Nudber

/ / Date of , Last
saL€

// Anounts of, Last
sal.e

When processing data or handling multiple data types,
simple arrays are often not the answer to the problem.
What is needed is some way of combining multiple
pieces of disparate data in the same variable.There will
also be cases where single pieces of data may be
divided in different ways for different data groups. The
solution to this problem is actually quite elegant. In the
C language you can define your own variable types
with specific parameters; you even have the ability to
represent data in more than one way.

Tt1e struct lqngu(tge statement ts used, to define a
variable of arbitrary type that can contain multiple
pieces of data.The format of the statement is:

SlructureName st'ruct (
ctype valiab1e1Na$et
ctyp€ valiable2Namet

I siructurevariaure;

When using the struct statement, the Structure-
Name and StructureVariable parameters are optional
(although both cannot be missing at the same time).
StructureName is used as the type for other variables:

Structsurertc'e Variablet

Structures are initialized in declaration statements
in the same way arrays are initialized, with values being
applied to the appropriate variable within the structure
in the same order as the structure is declared:

StructureTEe Variable - {Variabl€1Naneva1ue,
VariabLe2Namevalue.. .) t

Finally, variables within a structure are accessed by
connecting them to the structure name with a period as
in the following statement:

SturctureName.variablelNane = 47t

As I said at the start of the experiment, structures
allow multiple pieces of data to be included together. A
typical application could be in a database listing names

With this information, a store can find out who its
best customers are, who the most recent customers are,
or the store can query other parameters. Once the
store has found the parameter information it wants, it
has all the other personal information immediately
available in the structure. In Customerlnfo, note that I
use the previously defined struct CDate as a type of
one of the variables in the struct; you can imbed structs
into other structs.This is an effective way to make your
application easier to read and work with.

In the previous example, you might be thinking that
the structure could easily be built for a single customer,
but how would it work for multiple customers? Like
numbers can be built into arrays, so can structures. For
example, if a store had 2,000 customers, an array of
Customerlnfo with 2,000 elements could be defined
using the statement:

cuslomerlnfo CustonerDatabaae [2000] t

In the following program, I have defined a 20-ele-
ment anay of a structure in which a value and the ini-
tial array position are stored and then sorted using the
same bubble sort method that was used in the previous
experiment:

#incluale <pic.h>
/t cBtrctsort.c - Structure Baseal C Ploglam
Bubble Sort

This Program is a sinple "Bubble so!t' of
20 Values uBing a'I array of Struceures

nyke preilko
0 { . 0 8 . 0 3

Eartlware NoteB:
This Program has been wlitten to run in
the MPr,ar rDE simuLator oNLY.

Section Four C L a n g u a g e F e a t u r e s

unsigneal i . j t

char h i tvalueal2o] ={33, 5{ , 42, L2O, 37, 5,
9 9 , 1 0 5 , 8 , 2 1 , 1 0 0 , 3 3 , 4 1 . , 7 7 , A L , 6 9 , L 3 , 4 6 .
5 1 ' 9 0) t

strucb Datagtruct {
unsigneal ltritPos, // Initial Sorts Position

the same memory location. For example, if you had a
16-bit variable (ctype int) and wanted to access each
byte individually as separate bltes or together as a 16-
bit integer, you could define a structure breaking up
and a union as:

char valuei
) Sor lAl . layt2ol , Te$)t

// Datastruct T€lnpt

lowHigh atruct (

char Lt
char Hi

unl.on {

I / L5 Bi.t- value aa two 8
Bit valu€a

// 20 El€ment Structure
Asray

// TenDorery Value aa
strjucture

t l

L'J
, t"{

b"ri

lJ

rrq

'r'"c
{ J

$

F

t {
n t

b*4
t.4

l - I

nain ()
t

for (i = 0t i < 6 izeof (h i tvalues), i++) {
soltArray I i] . rnitPos = i;
SorlAffaylil .value = Inilvalues til t

, ll iof

for (1 = 0r i < a iz€of (In i tvalues), i++)
for (i = 0r i < (s izeof(ru i |a lues) - (i + 1)) t

j + +)

i f (sor lArrayl j l .value > sol tAr layt j +
1l .value) {

Terfr = SortArlay [j I t
sor tAlrayl j l = sortarrayl j + 1 l t
SortAlfaylj + 1l = l'€tw|i

l l l f i

for (i - 0t i < a izeof (In l . tvaluea) r i++)
!!€ru) = SortAllay I i I t

// variabl€ as 16 Bil or 2x
8 Bit valuea

lonlligh bt
int it

) tr,

Normally, when you are reading and writing the full
16 bits, you would define the integer n as follows:

n. i = 123{5, l l s �a l 'e !6 Bi t value iu 'n"

To access the individual bytes of n, you could use
the following statements:

Bylevariabl€ = n.b.Ht
Bytevariable = n.b.Lt

which seem very cumbersome, but they are equivalent
and often much more efficiently implemented than
these statements:w b i L e (1 = = 1) t // FiniEh€dloop Fo!€ver

\ // ErLd. cstlclsort

In cstrctsort, note that I treat the entire structure
like a simple variable and copy it in the same manner
as I would with a simple variable. This feature helps to
keep the complexity of an application to a minimum.

There will be times that you will want to share data
in a structure (or access it as if it were a different vari-
able). This is done usrngthe union stqtemenl. The union
statement has the same syntax as the struct statement
and produces a new data type. But instead of each
value within the union being unique, each is located at

/ 255i // Return the High
Blrt€ of "n"

4 256:' // Return the Low
B1.t€ of "n" aa
uodulo 255

Bylevariabl€ = n.i

By!€variabl€ = n.i

Structures and unions are not programming tools
thal you will use a great deal to program microcon-
trollers in C; they are usually required for large-system
programming. Despite the apparent lack of applicabil-
ity, they are useful tools and keeping them in the back
oI your mind could make your programming more
efficient or easier to read and follow.

Experiment 29-Pointers and Lists

Two programming concepts seem to strike terror in the
hearts of computer science students: working with
pointers and working with lists. The concepts them-
selves are not terribly difficult to understand, but
implementing them in a prograrn and debugging the
program can be difficult and frustrating; so difficult
and frustrating, in fact, that many people question their
understanding of the concepts. Philosophically, using

7 6 l , e 3 P I C o l l C u E x o e r i m e n t s f o n t h e E v i l G e n i u s

pointers in programs is curently out of favor. For
example, Java and Msual Basic are designed to hide
the operation of data pointers. But in C, understanding
the basics of pointers is critical to understanding how
to manipulate character strings. Lists are generally
considered a "mainframe" compuler programming
concept for handling large amounts of data, but they
do have some useful properties that you may want to
consider in microcontroller applications.

If you were to guess thal a pointer is a variable that
points to the location of a data object (vadable, struct,
or union), you would be correct. Like other variables,
pointers are typed, with the asterisk/splat character (+)
used in the declaration after the type to indicate that
the variable is a pointer to a specific type of data. For
example, a pointer to an integer would be declared as:

intr IntegerPoint€!i / / DecLar€ an Integ€r
Pointer

The ampersand (&) character is used to indicate the
address of a variable.To store the address of a variable
in IntegerPointer, the following statement would be
used:

IntegerPointe! = &i t / / IntegerPointer
points to =variable
< \ # 3 { > . i < \ * 3 4 >

The value in the variable indicated by the pointer
can be accessed by placing an asterisk/splat in front of
the variable in a statement. In both of the following
statements, the contents of the integer i (which is
pointed to by IntegerPointer using the previous state-
ment) are incremented.

i = i + 1 ,
*IntegerPoj,nter = *Int,egetpointer + 1t

When pointers are used with structures, the values
within the slruclures are accessed by using an arrow
made up of a dash and a greater than sign (->.)
instead of the simple dot, or period, of a struct vari-
able. Creating a struct variable with a pointer to it and
assigning a value within the structure using the pointer
would be accomplished using the following statements:

DtlllPixel->x = xPositiont // AaBigtL a VaLue to
lhe "X" coordlinate

Pointers and pointers to struclures are often used as
parameters to functions. By passing a pointer rather
than a value, the original value can be changed and
much less data can be transferred, resulting in faster
program execution and smaller variable memory
requirements.

This is really everything there is to know about
pointers-in concept they are quite simple and easy to
understand. Debugging programs using pointers is
generally difficult because few simulators and emula-
tors provide pointer information in any kind of mean-
ingful context (such as which variable they are
pointing to). To effectively debug a program that has
pointers in it, two things are required: a good under-
standing of how variables are stored (and where, most
likely, they are in the variable memory) and some
imagination in trying to understand how the code
works. In the next experiment, I will show how point-
ers are used with characters and strings, but for now
you know all the basics and probably more than you
will need for the foreseeable future.

Lisl.r consist of structures with pointers, which point
to the structure built into them. They allow each
instance of the struct data type to point to another
instance and to form a linear chain of structs.The two
lypes of lists mosl commonly used in programming
(see Figure 4-3) are singly linked lists and doubly
linked lists. The advantage of the doubly linked list is
that it allows movement in either direction easily, while
the singly linked list allows movement in only one
direction. The end of the lists are usually marked with
a null (value 0) or -1. Other ways exist for organizing
structures.

For this expedment, I wanted to sort the same selec-
tion of numbers as used in the previous two experi-
ments. Here we will use a singly linked list. The code
itself, which follows, is not much more complex than
the code of the previous experiments, but I experi-
enced a number of challenges debugging and confirm-
ing the application's operation that would make this
experiment unreasonably difficult for an inexperi-
enced programmer.

* incluale <pic.h>
/* cpstrctsort .c - Structure Baaed C Progran
BubbLe Sor!

This Program is a simple "Bubble go!t" of
20 values using pointerB to a Irink€al tist of
S!ructurea

rryke predko
0 4 . 0 8 . 0 3

tlalabrare Notes:
This Proglaft has been writtelr to run in

struct PixelPoint {

in! x t
int yt

) PointvaLue;

Pi.xelPointr ptrPixelt

// Pixel information

/ / Pointer to Pir {€ l
inf,orma!iod structure

DtrPixel = &Pointvaluer // Point to the pixeL

Structure Vari.abl"e

5ection Four C L a n g u a g e F e a t u r e s 7' l

l:lrffi
Doublv T--.

--l
l-.-__-l

iiii""ffi
List Pointers

Figure q-3 Lists

th€ MPITAS IDE Sinulator ONLY.

unsigrlefl it
c h a r h i t v a l u e s I 2 0 l = { 3 3 . 5 4 . 4 2 , r 2 O ' 3 7 ' 5 ,
9 9 , 1 0 5 , 8 , 2 1 , 4 O O , 3 3 , 4 L , 7 1 , 4 1 , 6 9 , 1 3 , 4 5 ,
5 1 , 9 0) t

atruct Datastruct (

sErucl Dataslruct* N€xtDr // gointe! to the
Next Element

char hitElementt // Initial Elenent

ehar vaLuet
) SortA!ray[20], Slartr // 20 Ele';nerft

Structure
Afray/S!art

// Nothing Changeal, Goto lilext

Curren! = current->NextsDt
, / / f r

Enaling = Currentt // Move Bach the Pointer
, / / eralrw

whi le(l == 1) ; / / F in iBhealEooP Forever

, // EtLd. cpEtrctsott

Although building the singly linked list is quite sim-
ple and can be found in the first for loop, sorting the
list by moving pointers is not exactly obvious. In order
to sort the list, I used the Previous pointer as an anchor
to the list and then moved the pointers as shown in
Figure 4-4. When I developed the code, I made a dia-
gram similar to Figure 4-4 to make sure that I under-
stood how the pointers were moving the two list
elements as in the bubble sort swap. Despite making
this diagram, it was still a challenge to get the program
to work properly. I ended up making a spreadsheet
with every element and each pointer and kept track of
how they changed and where they ended up pointing.
Overall, writing and debugging this application took
me about four hours, whereas the other sort applica-
tions presented took Iess than an hour.

The puryose of this experiment is to demonstrate
how pointers can be easily created and point to differ-
ent pieces of data. Lists are generally best suited for
large applications with many data elements that might
be reordered. inserted. or deleted at random.At first
glance lists may not seem to be appropdate for micro-
controller applications, but there are cases where they
are useful, such as allowing easy editing of a robot pro-
gram sequence. I suggest you consider the list concept
when you have a situation where adding, removing,
and moving data elements is required.

P.evaous

Previous

Previous

Previous

P€vious.>NonD> NenO =

Figure Q-Q List sort

Previousi // Pleviou€ Pointer
vaLue

C1ftte':t, // Current Pointe!
value

Enalinqr // Poinler to the
LaEt Elemenl

main ()
t

Start .Ner{ED = &SortArraytol r / / Point to the
start of the
IJist

for (i = 0r i < s izeof (In i tvalues) r i++) (

Sol tAl layI i1 .NextD = &SortAlrayt i+1] t
soltA].lay [i] . hitELem€nt = ii
sol tAr layt i l .value = hi tvalueE [i l t

J // '.of
SortArray t 19I . N€xtD = (structs Datastruct*) -1,

Endl ing = SortAr lay[19] ,NextDt

]tr'hiIe (start.NextD != Endins) t
Previous = &sEatEt // Poinl to lhe Start of,

the Liat
Current = Star t .NextDr / / Point lo the First

ElernenE
lrhile (current.->NextD != Enaling)

if (Current->value > culrent - >NextD- >value) {
Previoua->NextD = Culrent->llextDt
Currenl->NexlD = Culrent->NextD->NextDt
Pr€viou6- >NextD- >NextsD = Cutrent,
Previous = Previoua->NextD;

) 61ae {
Previous = Currenti

Current

7 8 I a l P I C @ l l C l J E x p e r i m e n t s f o r t h e E v i l G e n i u s

ExFeriment 30-fharacter 5trings

Although working with structs and unions can be diffi-
cult, working with pointers and character strings refer-
enced by pointers is quite easy if you follow the basic
conventions outlined here. Unlike other languages
(such as BASIC), C does not natively handle strings of
data. Although it can handle individual ASCII charac-
ters, which are treated like eighfbit numbers, each
ASCII character is stored in an array element to create
a character stdng.To ease the workload caused by
copying each character each time it is used, the starting
address of arrays containing ASCII character strings is
normally used to reference the entire string.These
methodologies combine to make working with charac-
ter strings in C more complex than in other languages
you may have used when learning programming.The
same attributes and methodologies make character
strings much more efficient when you are comfortable
working with them.

When a number ofASCII characters are combined
in a string, they normally end with a null (zero) charac-
ter to form what is known as an'ASCIIZ strins."The
placemenl of the nul l character at the end o[the st r ing
is automatic when it is enclosed in double quotes like
this:

char Mtalame t121 = nq'ke predlkotr r // Def.i')e a

;;-;;.--*'

To declare enough space for the string and the null
character at the end, you will have to count the number
of expected characters of the string and add one to it.

When a string variable is referenced, it is referenced
by the vadable name and it is a pointer to the first
character in the variable array.

char* Ne$rName1, NewNane2 t

Ne$rl{ame1 = lilyNalnei

NerdNane2 - &M]'Nametol; "
ilflilil:l

==

Each individual character in a string is accessed as
an array element.Individual ASCII characters can
either be represented as decimal, binary, or hex num-
bers or the actual characters in single quotes. In the fol-
lowing code snippet, the third character of MyName is
compared against upper case 'K'.

i f (NevNar$el t2 l == rK')
// Stalements executeal if Equal to Uppelcase rK,

elae
// Sla!€llrents ex€cuted if Not l4)pelcase .K,

Along with decimal representations ofASCII char-
acters and the actual ASCII characters in single quotes,
a number of special characters (preceded by a back-
slash [\]) are also available in C. These can be placed
either in single quotes as a single character or as part of
a string listed in Table 4-3 and found in the "For Con-
sideration" pafi of this section.

Depending on the circumstanceq ASCII strings can
be located in either program memory of variable mem-
ory. To allow the compiler to differentiate which is
which, the "const keyword" should be put before the
char in the pointer declaration:

const cha!+ ConstPointeri

The const keyword will make the pointer 16 bits
long (instead of the standard eight bits, which can
access only variable memory). The extra bits are used
to indicate the location of the pointer data as well as
the location within the specified memory. My rule of
thumb regarding the use of the const keyword is to let
the compiler indicate when it is needed; most of the
time it is not required.

To demonstrate how strings of characters are imple-
mented and manipulated as arrays of single characters,
I have modified the sort program to sort an aray of
pointers to strings. I created the stdngCompare and
stringcopy functions, which perform byte-by-byte
operations on the bytes in the strings, because C does
not have this built-in ability.

5ection Four C L a n g u a g e F e a t u r e s 7 9

#include <pic.h>
/* cslrIlsolt.c - sifiD1e C Program Bubble Solt

ThiB Proglam is a simple "Eubble Sortd of
10 Fou! chalecter Stsringa b!'moving them
iD the solt arlay. fhe atring functions
w€re wrilten bY Myk6 Pr€alko.

nvhe pretlko
0 { . 0 8 . 0 5

Earatware Not€B:
Tlris Program hag b€en writlen to run in
!h€ I.IPITAB IDE Simulator ONIY.

unsigled i, jt

char* sorlvalu€a [10] t
char T€alI) [5] t
cha! nameo [5] E trnvketr,

cha! name]. [5] c trtonLn'

char nam€2 [5] = trLofi"

char name3 [5] = trcaren'

cha! nam€{ [5] = trjulent

char names [5] = n].r.ann'

char nrme6[5] = n$aryn'

char nam€? [5] = ilr\ylent

cha! nameg [5] = t rsalan'

cha! nameg [5] = nki ren'

int Etllngcorq)a:.e (char* slringl, chat* gt!lng2)

f o ! (i = 0 r i < 1 0 , t + +)
f o r (j = 0 r j < (1 0 - (t + 1)) r j + +)

l f (atr ingcdE a!€ ((char*) gortvaluea [j] ,
(cha!r) sol tvaluest j + 1 l) > 0) {

stringcoDy(TenD, SortVaIu€B [jl) t
atrinqcolDr(SorlvaLuea [J L Sor|alu€stj + 1l)t
sEringcopy (Sorlvalu€e [J + 1]' !!eq>) t

I / / E L

!'hi1e (1 == 1) t

| // Errd. cEtlmgort

// FinisheauJoop Fo!€ver

u!
St
l-{
"r{

H

?n

F.{

4J
t !
ru
p"{

ru
"Li
F \

i
I

#
he

P*

&€4

{

i n t j = 0 ,

return j; // Return ConrDare ReEull

In the program you'll see that I first initialized
arrays for each name and then passed the address of
each name to the SortValues variable. In standard C,
you could initialize a pointer variable to a series of
double quoted ASCIIZ strings, but this is not possible
in the PICC Lite compiler. I suspect that the reason
why it's not possible is due to the memory organiza-
tion of the PIC MCU; the initial values are stored in
program memory, which is completely separate from
the variable memory. Before a variable pointer can
be assigned to a value, the value must be stored in a
variable.

After writing cstrmsort, I noticed that I could
improve the performance of the sort routine by simply
moving the pointers to the strings in the sort instead
of copying the strings themselves. This program is
listed here:

* incLudla <Dlc.h>
/* cstrDsolt.c - sil[I,le c Program Bubble sorl

llhis Proglem la a ai!E)1€ "Bubble So!t" of
10 Four Cha:.actse! Stringa with novlng
atr ings.

!vk6 Dr€alko
0 4 . 0 8 . 0 {

llartlwar€ lilotea:
fliis Progran has b€en l|rl'!t€n to run in

*,

"n" ** IDE Sirmrlator o$[Y.

char* SoltvaLuea [10] t
charr TettE)i
cha! narreo t5j = "mtk6"t

cha! nenel [5] = ntoDin '

cha! n€me2 [5] = ' lo l in '

cha! neme3 [5] = t rcalarr i

cha! neltr€{ [5] = njune"

cha! nene5[5] = n lf'tlntr '

char name6[5] . ulrar1rn'

char Dame? [5] = "ryra"'

char '1ame8 I5l 5 trsara'r

char name9 [5] = "kira"

// cd|tr)are two Strl.aga

fo r (i = 0 r (' \ 0 ' l = S t t i us l . l i l) && (0 == j) ,
i ++)

j - stsl tnslt i l - str ins2ti l ,
// j < 0 ff, S!!ing]. < string2
// j = 0 if stringl. = string2
//) > 0 if strins2 > st':.ing2

Cry

, // E'l'd atlingcotDpale

EEringcoDy(clEr* stsfing1, cha!* strl.ng2)
I I / coDy stltng2 into stringl

Striag].t0! = String2 [0] r // Cor4, E}l.e t.ilsl Byte
f o r (i - 1 , . \ 0 , ! = S t r i n g l l i - 1 l t i + +)

st l ingl t i l = sEr ins2 [i] ,

, ll E!.d. stringco9y

nain ()
t

SorlveLuea [0] = nam€ot
Sortvaluea [1] = na.nelt
Sortvalues [2] = aame2,
sortvaluea [3I = narne3,
Sortvalu€s [{I = n€$€4t
sortvalu€s [5] = nane5 t
sortvalueB [5] = nam€5t
so!tsva1u6a [7] = nam€7 t
gollvalueB [8] = nam€8t
sortvaluea [9] = nam€g t

8 0 1 , 2 3 P I C @ l l C U E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

lnl alringcorq)are (ctla!* Stringl, char* String2)
| // contr'ale two slllngs

f o r (t = 0 r i < 1 0 r i + +)
f o r (i = 0 r i < (1 0 - (t + 1)) r i + +)

if (Btringcompa!€ ((chalr) Sortvalues tJ 1,
(char*) Sol tvalu€s t j + 1 l) > 0) (

T€d|D = Sortvaluea [j I.
Sortvalueal j l = Sortvaluesl j + 1] t
gorlvalues [j + 11 = TerD;

| / / f i

i n t j = 0 ,

for (i = 0, (' \0, !- srr inslt t l) && (0 ==
j - slr inslt l l - str ins2l i l t

/ / i < 0 i f str insl <
// j = 0 tf str insl =
/ / j > O i - E S t r i n g 2 >

r€lurn Jr // R€tsutn CdlDare Result

I // Eird. slringcon[)are

!!aid()

t
unaigneal i, jt

Sorwalues [0] = nam€o t
Solwaluea [1] = nalne].t
Soltvaluea [2] = name2 t
Soltvaluea [3] = nane3t
goltvaLua3 [{l = nalle4t
goltvalueE [5] = narlesi
gortvalueE [6] = aam65i
Soltvaluea [7] = nar€? t
Soltvalues [8] = aameSt
Sortvalu€a [9] = aame9i

i) ; t + + 1

Sl!1ngl2
String2
String2

m
lt:

{*

t-J "

d\

r*d

r
t
i

t-l

r*"

9,,! i

F
tsd

t"/

q

F"t

! d

Fr.

XIn the previous experiment, I showed you how to com-
pare and copy each byte in an ASCIIZ variable array.
Klowing how to create these functions in C is impor-
tant, but it is not always necessary for most applica-
tions. As part of the C language specification, you can
take advantage of a collection of functions that will
take some of the load off you when you are program-
ming. These functions (along with the PICC Lite com-
piler C language statement definition) are included in
the "For Consideration" part of this section and are
part of the "C run-time" library that is linked with your
application at run time.

For example, I replaced the stringcompare and the
stringcopy functions in the previous experiment's code

// Finiah€alt ooD Eorev€r

! ll ErLd cstrpsort

The updated version of this sort is recommended
and demonstrates the important functions of pointers
that you should be comfortable with in order to pro-
gram in C. To recap, these functions include the follow-
rng:

. Declaring pointers

. Assigning pointers to the start of variable
stnngs

. Accessing (reading and writing) pointer values

. Defining ASCIIZ strings

. Accessing specific characters inASCIIZ strings
as array elements

with strcmp and strcopy, respectively, and added the
string.h header to get the following:

*inclutl€ <plc.h>
#iaclutl€ <atlLng.h>
/* cstrf,Sorl.c - SirE)le C Program Bubble sort

Ihis Program ia a siq)Le nBubbl€ Sortn of
10 Four Chal.acle! SlringE blr noving them
in lhe soll array. CdE)arison anal litovemeDts
ar€ provial€al by l"ibrary Funclions.

llyk€ prealko
0 4 . 0 8 . 0 5

Harflware Noles !
ThiE Progr€m has been wrilt€n to run in
th€ MPLAB IDE ginulato! ONLY.

u.Eaig!€d i, j,

char* SortvaLu€s [10] t
char TerDIr [5] t
char nameo [51
char nam€1[5] = " !oni" -

char name2 [5] = n lor inr

chat nam€3 [5I E ncaran-

char nam€4 [5I - ' june"t

char nan€5 t5l = nltrnntr -

char !€.ne5l5l = "nar't'".

w h i L € (1 = = 1) t

Experiment 31-Librarg Fundions

Section Four C L a n g u a g e F e a t u r e s d I

cha!
cllar
char

! t h i l e (1 = = 1) , // Fini ahefltJoop Foreve!

| // EE.d. cal:.fsofl

The resulting program takes up just about as much
space as the previous one and runs in roughly the same
amount of time, which means that my routines are sim-
ilar in efficiency to the provided library routines. The
big difference is that the first program was shorter and
required less effort to debug. (I assume that the strcmp
and strcpy functions work properly and this assump-
tion is extended to all the built-in functions of the run-
time library.) For the most part, I would recommend
that the run{ime library functions are used in your C
programs wherever possible.

One caveat exists to the previous statement and
that is the linker brings in only the library functions
that are called by the application.If a function is not
called, then the function is not linked into the final
application hex file. I'm pointing this out because in
small devices,like the PIC16F684, you can very quickly
use up all of your available space with libraries and
application code. It is important to remember to bal-
ance the number of built-in and user-written functions
so you don't use up the program memory available to
your application.

For Eonsideration
For modern systemg C is the programming language of
choice because it is available for a wide range of sys-
tems and processors (including the PIC microcon-
troller). This ubiquity requires anyone who is planning
on developing an application for processing systems to
have at least a passing knowledge of the language. The
following information is specific to the HT-Soft PICC
(including the PICC Lite) compiler:

Application mainline/entry point is the main func-
tion:

nain()
{ // ADpltcaEton Coile

| // N)plication Codle

! ll E'rd ApDllcatiorr

Functions are defined in a similar forrnat to the
main function:

R€turn_Ttz9e Frnctlon(TtT)e Paramet€r [, T]ZI)e
Parameter. . J)
{ // nrdctioa stsalt.

. // zunction Coal€

leEuln valuei

| // EnA l\tnction

The function can be placed before or after the mdn
function (not inside), but if it is placed afterward, there
must be a function prototype, like this one, before
main:

Retu!n_T!'D€ l,lractl.on(llyl)e Peraneter [, lPt pe

P a r a m e t e ! . . 1) ,

PIC MCU configuration register fuse values can be
specified using the "_CONFIG(x)" define (found in
the pic.h include file). The specified values are ANDed
together to form a complete configuation register
value. I recommend that a value for each bit be speci-
fied to ensure proper operation of the microcontroller.
Table 4-1 lists the PIC16F684's configuration fuse bits,
the HT-Soft defined constant's option values, the AND
valueq as well as the Microchip defined assembly lan-
guage constants I have noted also recommended val-
ues when I felt it was imDortant.

narLet [51 - '4yran t
nameS [5] = rrsaratr t
name9 [5] = "k i ra" ,

nain ()
(

Sortvaluea [0] = nameot
sortvalueE I1l = 'rameli
sorwalu€a [2] = name2 t
sortsvaluea [3] = naltre3 t
sortsvalu€a [{l = nalle4 t
Sorlvaluea [5] = namest
soltvalu€s [6] = name5t
So:atvelu€s [7] = !a!re7 t
Sortvalu€a [8] = lr€lneSt
Sortvaluea [9] = aame9 t

f o r (i = 0 r i < 1 0 r I + +)
f o r (j = 0 t j < (1 0 - (i + 1)) t j + +)

i f (s l lc lE)((char*) Sor lvalues l j l ,
(chai*) Sor lvalues t j + 1 l) > 0) (

strcDy(T€dlp, Sortsvaluea [j I),
strcDy(Sortvalu€a [j L Sortvaluea tj + 1]),
strcpy (sortvalu€a t j + 11, Teqr) t

| l l f i

l,
.,-t

P
EIJ

t+
a t
l.Lt

ls
"*t

r,J

3*t

f l

H

e&{

82 l , e 3 P I C @ I I C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

Data declarations are very consistent, starting with where the last character is an ASCII null (0x{00).
the constant declaration: Array dimensions must be specified in the variable

declaration statement. Multidimensional arrays are
coaat inr tJabel = value, defined with each dimension separately identified in

., square brackets ([and]):vanaDtes oeclared Instde a Iuncfion (rncludlng the
main vaiable) are known as local variables, are acces-
sible only within that function, and may be different int rb'eeDspac€ [Din1l tDn!21t

upon entry into the function. Variables declared out- pointers are declared with the asterisk (*) character
side of all functions are termed, global, as they can be after the variable type:
read and updated anywhere in the application.

tlzp€ rra.t €l t= valu€l,
char* glrinq'

Finding the address of the pointer in memory is
Value is an optional initialization constant. The dif- accompliJred using the ampersand (&) character:

ferent types are listed in Table 4-2, with the data value
ranges are in parenthesis. EtsringAda! = &strins,

Single dimensional arrays are declared using the
form:

l l ' I)e Labeltsizet [= { hit ial izat ion values..} l t

Strings are defined as single dimensional ASCIIZ
uuTays:

char striDgl 17 I = "I'his is a gtridg"t

Table 4-1
PIE'l6F58q Configuratlon Fuse Values

qt
o
rt

o
o
5
u
f-r.
p-
o
rj
9'
cF
,J .

o
5

Connguration PICE Ute
Bit Compller Value Microchlp Value Ualue-Functlon

Bit 11-FCME\ Fail-Safe
clock Monitor Enable FCMEN (Default), FCDIS (Recommend) _FCMEN_oN -FCMEN_oFF 0X03FFF,0X037FF

Bit 1o-IESO,Intemal
Extemal switchover IESoEN (Default),IESoDIS (Recommend) _IEso_oN _IEso_oFF 0X03FFF,0r03BFF
Bit 9|8-BODEN, BOREN (Default), BOREN_XSLP, _BOD-ON _BOD_NSLEEB
Blownout Derect Enable SBOREN, BORDIS _BoD_sBoDE_BoD_oFF 0X03FFF,0X03EFF.
0x03DFF,0x03CFF

Bit 7-CPD,
Data Memory Protect UNPROTECI (Defaulr/Rec), CPD _CPD_OFF,_CPD_ON 0X03FFF,0X03F?F

Bit 6- _CP,
Program Memory Protect UNPROTECT (Default), PROTECI _CP_OFF, _CP_ON 0X03FFR 0{3FBF

Bit 5-MCLRE, Extemal
_MCLR Pin Enable MCLREN (Default), MCLRDIS _MCLRE_O\ _MCLRE_OFF 0X03FFR 0X03FDF
Bit 4-_PWRTE, PWRTDIS (Default),
Power Up Timer Enable PWRTEN (Recommend) ,PWRTE_OFF, _PWRTE-ON 0x03FFR 0rt3FEF

Bit 3-WDTE,Watchdog
Timer Enable WDTEN (Default), WDTDIS (Recorffnend) _WDT_O\ _WDT_OFF 0X03FFF, 0x03FF7

0X03FFF.0I{3FFE.
_EXTRC, _EXTRCIO, _INTOSq 0X03FFD, 0X03FFC,

Bit 2:0-FOSC, RCCLK (Default), RCIO, INTCLK, INTIO _INTOSCIq _EC_OSC, _HS_OSq 0X03FFB, 0X03FFA,
Oscillator Selection (Recommend), EC, HS, XT, Lp _XT_OSq _LP_OSC 0x03FF9,0x03FF8

S e c t i o n F o u r C L a n g u a g e F e a t u n e s 83

Table 4-2
PICE Llte EomDiler Bata TgFeg

Table 4-3
C BackElash Eharacterg

Btt
Size Comments

Eharacter nSC Value FunEtion
Tcpe

bit 1

char 8

unsigned char 8

short 16

unsigned short 16

int 16

unsigned int 16

BooleanValue

ASCII Character/Signed lnteger (-128 to
rn)
unsigned Integer (0 to 255)

Signed Integer (- 32,768 to 32.'7 6'7)

Unsigned Integer (0 to 65,536)

Signed Integer (-32,768 to 32J67);same as
short

Unsigned Integer (0 to 65,535);same as
unsigned short

Signed Integer (2,147,483,648 to
2,147 483,647)

Unsigned Integer (0 to 4294,96'l,295)

Real (0 to 1/-6.81(1033); assume 3 digits of
accuracy/default floating point mode

Real (0 to l /-6.81(10'3): assume 6 digits of
accuracy/specilied using PICL -D32 compi-
lation option

long

unsigned long

float

double

Calculating the address of a specific element in a
string is accomplished using the ampersand (&) char-
acter and a string array element:

Strinssterts = &Striagtnl,

The variable's type can be overridden, or cast, by
placing the new tlpe in front of the variable in
brackets:

(long) StrtngAaLl! = 0rr0123450000t

The C assignment statement is in the following
format:

variable = E:lplesEioat

Expressions can be constants, variable values, or
mathematical statements in the format:

[(. .1 variable I Constant topelator [(. .1
variable I colEtsant I [) . .1]

Constants can be decimal, binary, hexadecimal, or
ASCII characters enclosed in single quotes. Table 4-3
lists the special backslash characters that can be placed
in single quotes so they lvill be evaluated as single
characters. Note that a single backslash character is
interpr€ted as a line continuance.

Mathematical operators include the ternary opera-
tor and those shown in Table 4-4 and Table 4-5.

The ternary operator is the form:

TestE<p ? E:gt1 : E<p2

and executes in the following manner: ifTestExp is not
zero, then Expl is evaluated. IfTestExp is equal to
zero, then Exp2 is evaluated.

The binary operators listed in Table 4-4 can be sim-
plified to the modified equals statement if the destina-
tion variable is one of the parameters of the expression.
Table 4-6 lists the resulting compound assignment
statements

C decision structures include the ifstatement,

\0

\b

\f

\?

00x00

0x007

0x008

0x009

0x00A

0x00B

0x00C

0x00D

0x05C

0x03F

0x027

0x022

Null Character

Alert/Bell

Backspace

Horizontal Tab

New Line (Line Feed)

Vertical Tab

Form Feed (New Page)

Cariage Retum

ASCII Backslash Character

ASCII Question Mark

Single Quote

Double Quote

'r{

fta

t l
q,
(J

' d

o
r l

$4
w
f:.t

i f (E qr !€sBion)

{
// Ex€cut€ if &q)reEaion ia no!

) e la€ (

// Ex€cut€ if E qtlession ia zelo

the while statement,

(" f ,a ls€")

while (E .preEsion)
t
// E:tecute whil€ E)q)toaaion i€ aot zero ("true')

, ll eLlhv

and the for statement,

fo!

{

)

(initialization, E:.DresBioni LooD Increment)

Execute !"hile ltt€ E:rpleasion is not zero

8 4 l , e 3 P I C @ I ' l C U E x p e n i m e n t s f o n t h e E v i l 6 e n i u s

Table 4-4
E Binarg 0peratorg

Table 4-5
C lJnarg Operatol-s

LJ
r)

"/"

+

Dpepto, Pnonry Flltctio?
* Highest Multiplication

if true, zero iffalse) : Bitwise OR

& Bitwise AND ^ Bitwise XOR

itwise XOR +: Add to Destination

Bitwise OR Subtract ftom destination

&& Logical AND Multiply destination

Lowest Logical OR l= Divide destination

Operator Function

2's Complement negation

Division ! Logical negation (Return zero if value is not zero and
Modulus retum not zero ifvalue is equal to zero) { #

Addition < Bitwise negation S

Subtraction 11 Increment variable a_f?r expression evaluarion if on fs

Shift Left
the vadable's right-hand side; increment variable ;
belblu expression evah",i." ii"" irt" r".i"ilr" rlr, m

Shift Right hand side) $*,
I€ss-than comparison (Return not zero if Decrement va able arel expression evaluation if on f}J
true,zero if false) the variable's right-hand side;decrement vaiiable 1

Less-than or equals comparison (Return not
beloreexpressiir evaluation ifon the variable's left- {S

zero if true, zero iffalse) - t{

,'iT:il:|?1"::;Hii:,:i3iarison
(Return ru

creater-than comparison (Return not zero Table 4-6 r|

if true,zero if false) E Eompound Fssignment Statement Bperators &J.
Fquafs-to comparison (Rerurn nol zero i[Operatot Function O
true, zero if false) S-{
NoFequals-to comparison (Retum not zero &: BitwiseAND **

'/.= Divide destination and return modulus

I n t h e f o r s t a t e m e n t , m u l t i p l e i n i t i a l i z a t i o n a n d l o o p > > �
increment statements are separated by commas.
Putting in multiple initializations and increment state-
ments can make your applications difficult to follow To execute conditionally according to a value, the
when you are first programming in C. To avoid this switch statement is used:
extra complexity,I recorrmend that you stick to just
having a single initialization and loop incremenl when
you first use the for statement.

"**:lj:T:i::1""' '

For looping until a condition is true. the doiwhile " *fi:::*;i trE:q)ression" == nvaluetr

statement is used:
,, ,r";i3'i!i""' sratsementss are rru€

ato l

t
// Executs€ until the E qrression iE zero (',fal6e") Finally, the goto Label statement is used tojump to

)
while (E:{Dression),

To jump out of a currently executing loop. a break soco r'abeLt

statement is used.The continue statement skips over Labet:
remaining code in a loop andjumps directly to the
loop condition (for use with while, for, and do/while
loops).

a specific address:

5 e c t i o n F o u r C L a n g u a g e F e a t u n e s 8 5

o
"'.{

JJ
|6
g
0,
t
CI

o
t ' l

l.l
c
tr*

To return a value from a function, the return state-
ment is used:

retuln Stat€m€ati

Directives are executed at compilation time and
used to modify th€ source code for the application and

Table 4-7
E Directives

Directlve Functian

are listed in Table 4-7. Each directive is given its own
line and, if necessary, continues onto the next line by
use of the backslash (\) character.

The PICC Lite compiler pragma options are used
by the compiler to change its operation and are listed
in Table 4-8. Note that for the code presented in this
book, these options are not requfued.

In the PICC Lite compiler manual, you can find
additional information, including error and warning
descriptiong information on including assembly lan-
guage programming in C applications, and file format
reference information that is not critical to performing
the experiments in this book but may be useful to you.
I have not included the list of PICC Lite compiler
options in this section because you should be able to
successfully run the PICC Lite compiler under
MPLAB IDE without having to change any of the
operating parameter$

In Thble 4-9, I have provided a cursory list of the
library functions that are available in the PICC Lite
compiler. I have arranged the functions by alphabetical
order within the include file rather than by overall
alphabetical order, as this should make it easier to find
specific and related functions. Unless otherwise speci-
fied. assume that the label is for a function. For more
information, you should consult with the PICC Lite
compler User's Gulde (available for download at
www.ht-soft.com), the .h files in the PICC Lite com-
piler INCLUDE folder, and standard texts on the C
programming language.

Table 4-8
Flvailable PIEE Lite Eompller Pragma Eirectives

Pragma OireEtive Function

Allow interupt functions to be called
by main line code.

Enable JIS (Japanese) character han-
dling in strings,

Disable JIS character handling in
strings (default condition).

Use printf formatting conventions for
string checking.

Change the object file psect name.

Specify registers that are used in inter-
ruPt handler'

#assert Condition

tasm

#endasm

#define Label (Optional
Paramete$) Text

#undefLabel

#line Number ListFile

#include <File>

*include "File"

#error Text

#warningText

#if Condition

#ifdef Label

#ifndef Label

#elif Condition

#else

#endif

#pragma String ke).tords

Null directive; do nothing.

Force an ellor if condition is false.

Indicate the start of inJine assembly.

Indicate end of inline assembly.

Define a label that will be replaced
with the specified text when it is
encountered. If optional parameters
are specified, instances of them h the
text will be replaced by the parameteN
specified when the label is invoked.

Delete the defined label.

Specify the line number and file name
Ior listing.

Load the specified file found in the
INCLUDE folder path.

Load the specified file by fi$t looking
in the cudent folder and then in the
INCLUDE folder path.

Force a compiler eror (stop compila-
tion) and output text for error informa-
tion.

Force a compiler warning and output
text for waming information.

If the condition is true, pass following
code to next #else, #elif, or #endii

Ifthe label has been defined, then pass
following code to next #else,#elif, or
#endii

If the label has not been defined, then
pass following code to next #else, #elil
or #endii

This directive is an else/if, and the con"
dition is tested only ifthe previous if
directive is not true.

Invert pass following code status.

End a +tif, #ifdeI, #ifndef, #elif, or #else
condition.

Pass the specified string to the compiler
(seeThble 44).

interrupllevel 1

Jis

Nojis

p ntf_check(printf) const

psect text = newpsecrname

regused Registers

8 6 l , E l P I C @ l l C U E x p e n i m e n t s f o r t h e E v i l G e n i u s

Table 4-9
PIEC Lite Compiler Libraru Functions and Macrog

Library Functlon Description

conio.h Bitkbhit(void);

ctype.h int isalnum(char c)

int isalpha(char c)

int isascii(char c)

int iscntrl(char c)

int isdigit(char c)

itrt islower(char c)

int ispdnt(char c)

int isgraph(char c)
i n r i e n n n . r / . h , r . \

int isspace(char c)

int isupper(char c)

int isxdigit(char c)

int toupper(int c)

int tolo{er(int c)

int toascii(int c)

double acos(double f):

double asin(double f);

double atan(double f);

double atan2(double f double x)i

double ceil(double f);

double cos(double a);

double cosh(double f);

Skeleton of keyboard hit function

Macro testing if c is alphanumeric

Macro testing if c is alphabetic

Macro testing for seven-bit value

Macro testing for ASCII control character

Macro testing for ASCII decimal digit

Macro testing for ASCII a through z

Macro testing for p nting character

Macro testing for nonblank printing character

Macro testilg for nonalphanumeric character

Macro testing for space, tab, or newline

Macro testing for ASCII A thrcugh Z

Macro testidg for ASCII hex digit

Macro to convert ASCII character to upper casb

Macro to conveit ASCII character to lowercase

Macro to ensure parameter is valid ASCIImath.h

Retum the arc-cosine in radians of the input value

Retum the arc-sine in radians of the input value

Retum the arc-tangent in mdians of the input value

Retum the arc-tangent in radians of the input value

Retum smallest whole number not less than f

Retum the cosine of the radiatr argument

Retum hyperbolic cosine for argument

double eval-poly(double x, const double* d, iDt tr); Evaluate the polynomial with coefficients stored in array d at point x

qr
o
rl

o
o
p
a
F,
p-
o
Ft
g,
ct
P.
o
Ft

double exp(double f);

double fabs(double f);

double floor(double 0;
double ftexp(double f, int* p);

double ldexp(double I int x);

double log(double f);

double log1o(double l);

double modf(double f, double* iptr);

double pow(double f, double p);

double sin(double f);

double sinh(double f);

double sqrt(double f);

double tan(double f);

double tatrh(double f);

pic.h di(void);

Retum the value of er

Retum the absolute value of f

Retum largest whole trumber not less than f

Brea.l(real number into integer and fraction

Integer is added to real and result retumed

Retum natural logarithm of f

Retum base 10 logadthm of f

Split f into integer and ftaction parts with same value as f

l(etum t'

Retum sine of the mdia! argument

Retum hyperbolic sine for argument

Retum the square rcot ofthe argument

Retum tan of the radian argument

Retum hyperbolic tangent for argument

Disable intedupts

eeprom_write(unsigned char addr, unsigned char value); Store the specified byte at the specified address in the PIC MCU's data
memory

ei(void); Enable interrupts

unsigned char eeprom_read(unsigned char addr); Return the byte at the specified addrcss in the PIC MCU'S data
memory

stdio.h unsigned char pdntf(const char* f, . . .); Standard C print routile; before using sdtout must be defined for appli-
cation

unsigned char sprintf(char* buf, const char* f, . . .); Convert C pdntf fomat parametels to stdng at buf

unsigned xtoi(const char* s); Convert ASCII hexadecimal string to integer

S e c t i o n F o u r C L a n g u a g e F e a t u r e s 8 7

Tabfe 4-9 (continued.)

Librara Function Description

stdlib.h int abs(int j); Retum the absolute value (positive) of the input

double atof(const char* s); Convert ASCII string to double variable type

int atoi(const char+ s); Convert ASCII string to integer variable type

long atol(const char* s); aonvert ASCII string to long variable type

div_t div(int num, int divisor); Divide and return quotient and remainder

ldiv t ldiv (long num,long d); Divide and return quotient and remainder

int rand(void); Retum random number fto/JJ 0 to 32,767

void srand(unsigned int seed); Initialize random number generator

string.h const void* memchr(const void* block, int val,size_tn); Search string for specific byte

int memcmp(const void* sl,const void* s2, size_t n); Compare two blocks of memory

void* memcpy(void* d, void* s, size t n); Copy n bytes of data between pointers

void* memmove(void* s1, const void* s2, size_t n); Copy n bytes under all circumstances

void* memset(void* s, int c, size_t n); Fill block ofmemory with specified character

char+ strcat(char+ sl,const char* s2); Concatenate s2 at the end of s1

char* strchr(const char* s, int c); Search string for first occuffence of c

chaf strichr(const char* s,int c); Search string for first occufience of c in upper- or lowercase

int strcmp(const char* sl, const char* s2); Compare two strings

int stricmp(const char* sl, const char* s2); Compare two strings without regard to upper- or lowetcase

char* strcpy(char* sl,const char* s2); Copy s2 into buffer (character aray) pointed to by sl

char* strcspn(const char* s1, const char* s2)t Find number ofcharactels from the start of s1 to the part ofthe string
that matches s2

size_t strlen(const char* s); Find the length of the ASCII stringchar* strncat
(char* s1, const char*s2, size-t n); Concatenate n characters from s2 onto the end of s1

int strncmp(const char* s1, const char* s2, size_t n); Compare two stdngs for up to n characters

int strnicmp(const char* s1, const char* s2, size tn); Compare two st ngs for up to n chamcters without regard to upper- or
lowelcase

char* strncpy(char* sl,const char* s2, size_t n); Copy n characters from s2 to s1

const char+ strbrk(const char+ sl,const char* s2); Return a pointer to the lirst instance ofs2 in sl

const char* strrchr(char+ s,int c); Search for character starting at the end of the string, rather than ftom
the front

size_t stmpn(const char'r'sl,const char s2); Retum the length of s1, starting ftom the start that contains characters
rrom sz

const char* strstr(const char* s1, const char* s2); Find the first occurrence of s2 in s1

const char* stristr(const char* s1, const char* s2); Find the first occurrence ofs2 in sl without regard to upper- or lower-
case

char* strtok(char* sl,const char+ s2); Break s1 into a series of tokens, separated by s2

time.h char* asctime(struct tm* t); Convert the variable ofthe tm struct type into an ASCIIZ string

char* ctime(time_t* t); Convert time in seconds to ASCII string

struct tm* gmtime(time_t + t); Break down time into type tm

struct tm* localtime(time_t* t); Break down time into type tm

time_t time(time_t* t); Skeleton oftime read function

\J
,"*

JY{

k
d t

,.{
I l

. J

{l}

T '

t l

t{
0

8 8 l , E 3 P I C o l ' l C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

S e c t i o n F i v e

Plfl SFEBq Microctrntrol ler
Built- in Functions

DMM

NeedIe-nose pl ie!s

Breadboard

Wil ing ki. t

Jewe le r ' s sc l ewdr i ve r

A big question asked by software developers is
whether or not to rewrite an application. The reasons
for doing a rewrite are usually good and noble; the
author may have figured out or leamed ways the appli-
cation could be made more efficient, new hardware
may be available that makes the task easier, or there
may be too many potential errors in the software that
only a complete rewrite of the code will prevent prob-
lems in the future. Pcrsonally,I am of the opinion that
applications should never be rewritten unless a tangible
reason exists The question, "what will happen if the
changes are not implemented?" has to be asked, and
unless the answer includes something about cost sav-
ings (e.g., the application could be used in a cheaper
nricrocontroller), then the rewrite should not be
attempted. This may seem like an off-topic way to
introduce a section about the builfilr features of the
PIC16F684, but it is surpdsingly relevant because many
of the builfin features of the PIC@ MCU introduced in
this section replace software functions that you may
have written to imDlement different function*

Ptc16F584

tl t31? adjustable volt-
age legulator in TO-220
package

Io-LED balg.aph dispLay

REd LED

Creen LED

100C) ! es i s to r

330!) res istor

4?0O 10 -p in l es i s t o r

10k breadboald mount-
able potentj .ometer

1 lk bleadboard mountable
potentj .omete!

2 0 .01 pF capac i t o l s

1 Breadboard-mountable
Jrur swrEcn (!--5vr1!cI l
8G1903 recomnended)

1 9-vol. t batte.y pack

1 g-volt battery

1 Three-cel l AA battely
c l i p

3 AA battel ies

I Two-cel l AA o! AAA bat-
tely pack

2 AA o! AAA batteries

The builfin featues of the PIC MCU can make
your application a /ot smaller, easier to write, and eas-
ier to debug. For example, in Section 3, I introduced an
application that displayed an incrementing binary
value on the eight LEDS of the PICkitrM 1 starter kit.
It did so by sequencing tbrough each of the LEDs
simultaneously to give the impression that they were
all on continuously, when in fact no more than one

89

LED was on at any given time. I feel that the code was
fairly clumsy and unnecessarily long. The length made
it very difficult to follow values from top to bottom,
and as such errors had a good chance to make their
way into the different statements of each group of
statements written to optionally tum on an LED.

In Section 4,I showed you arrays, and you might
have thought about using them to rewrite the CLED-
Disp.c application. I have done this and listed the pro-
gram here:

#incluale <pic.h>
/* CLEDDiED 2.c - 2trd velaiorr of D0-D7 aE a!
increm€nt ing counter

Using "CPKLED.C" aa a bas€, cycl€ lhrough each
LED at 100r(p€r Eecondl (1250 ua betw€er LED6).

fhiB i6 th€ geconil v€rsion lrhLch ia rewrilten to
take aalvanleg€ of Arrays lo leAuce the amounl of
space lequireal b!| th€ aDplicatsiolr.

tni'k€ Drealko
0 , r . 0 9 . 1 2

COIAIE(IN'IIO & IID|TDIS & PI{RTEN & IICIJRDIS &
IINPROIECT \ & IJNPROTECT & BORDIS & IESODIS &
FCMDIS) ,

in! value = 0,
int Dlay = 65i // LED Tine on DelaY variable
cof ls ! char PoRTAvalue [8] = {0b010000, 0b100000,

0 b 0 1 0 0 0 0 . 0 b 0 0 0 1 0 0 ,
0 b 1 0 0 0 0 0 , 0 b 0 0 0 1 0 0 ,
0 b 0 0 0 1 0 0 , 0 b 0 0 0 0 1 0] ,

coasts cbar TRISAvalue tgl = {0b001111, 0b001111,
0 b 1 0 1 0 1 1 , 0 b 1 0 1 0 1 1 ,
0 b 0 1 1 0 1 1 , 0 b 0 1 1 0 1 1 ,
0b111001' 0b111001) t

const char NOIPORTAI8I = (0, 0, 0, 0, 0, 0, 0, 0 ' ,

nain ()
t

EORTA = 0,
Cl'tCONo = 7t ll Tlt!'j off conltalatola
AI{SEL = 0, // T)n ol.t atlc

j = 0; // ReE€l the DisDLaY counte!

while(1 == 1) // I,oop Foreve!
{

f o r (i = 0 r i < 8 r i + +)
| / / Loog through Each of th€ I IJEDS

for (n = 0t n < D1ayt n++) i
l f ((v a I u e & (1 < < i)) = = 0)

PORTA = NqIPoRTAIil,

€ la€
PORTA = PORTAvalus I i I t

TRISA = TRISAVaIUe lil t
, // tof

j = j + 1r // Inerdl€nt lh€ Counler €very
! / 2 s

i f (J >= s0)
{

v a l u e = v a 1 u e + 1 i

j = 0 ;
| / / t i

) // 61ih!t

I I / E'ld clEDDiaD 2

// Incldlent DisDLaY
Counter

// Reset the couDter

U,.

, t l
r !

l f

0.4
'.l

&E

r t

taEr

qrl

k{qs
r€
f l
H

I
!

F
. * {
?-
t:r{

g

#
(-)
a t

{,*

This application takes up less than half of the space
of the original (both in terms of lines of code and
instructions required), although it uses only four more
variable b1'tes. By just about any measurement, this
rewdte is substantially better than the original, but still
I would consider replacing the original with it only if
the application required more program memory than
was available. Therefore, you should keep the knowl-
edge regarding using an array to implement the multi-
ple LED display code in the back of your mind until
you have to implement a similar function.

The built-in hardware featues of the PIC16F684
provides similar opportunities when you are looking
over working applications. As you first start program-
ming, you will implement basic input and output func-
tions using the standard digital I/O capabilities of the
microcontroller pins.These functions will simplify gen-
erating motor control signals, help you process analog
data, and help you more easily communicate with
other devices. Although these built-in features will
seem dauntingly complex in the beginning, they will
become easier as you become more familiar with
developing applications for them. I can promise you
that you \ryill look back and consider rewiting the
applications to take advantage of the hardware
"behind the pins." But remember my advice:You
should rewrite this code only if there is a concrete rea-
son for doing so.

Of course, you can avoid the whole question of
whether or not to rewrite to take advantage of hard-
ware features by implementing the features in your
application right from the start. In this section,I intro-
duce the different built-in functions of the PIC16F684
along with some sample applications that illustrate
how thev work and what can be done with them.

9 0 l , P 3 P I C o l ' l C l J E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

In a previous experiment I explained that when I first
started working with the PIC MCU and writing about
it, various specialized circuitry would have to be added
to provide reset with brownout protection for the
application. The PIC16F684, like other recently
released chips, has these features built into it, allowing
you to take advantage of these features without adding
to the cost or complexity of your circuitry. Unfortu-
nately, you may find that the work required to add the
advanced reset functions to your application code is
not trivial. In this experiment, I will demonstrate how
the brownout detect and reset circuitry built into the
PIC16F684 works and provide you with some clues as
to how to decipher the datasheets when a hardware
function doesn't work.

The PIC16F684 is designed to work in the voltage
range of 2.0 volts to 5.5 volts, which makes it ideal for
battery power without a voltage regulator. When the
voltage goes below 2.0 volts, the PIC MCU can no
longer operate reliably, it may stop, it may run different
parts of the program memory, or it may execute the
instructions incorrectly. To help avoid these problems
the brownout reset (BOR) can be enabled in the con-
figuration fuses to detect low voltage conditions and
enable the PIC MCU'S reset.

To demonstrate the operation of the PIC16F84's
brownout reset, I created the test b/ownout detect (or

Prc15F68 4

1M317 adjustable volt-
age lelfulato! in TO-220
package

1k bleadboald mountable

Potentiometer

REd LED

Gleen LED

330C) l /4-vratt resisto!

0 .01 p "F capac i t o r (any
tYpe)

B!eadboa!d-mountable
SPDT switch (E-Sr{i tch
8G1903 lecoaunended)

g-volt batterY pack

g-volt battery

BOD) circuit shown in Figure 5-1. This circuit uses a
variable-voltage power supply (based on the LM317
chip) to reduce the operating voltage from 5 volts
(nominal) down to 1.25 volts. Note that even though I
am using the brownout detect reset function of the PIC
MCU, I did not enable the MCLR function of RA3.

The LM317 (see Figure 5-2) is a nice little
adjustable linear voltage regulator circuit that is ideally
suited for a task like powering the PIC16F684 in this
ckcuit to test its brownout detect function. The lower
end of the chip's output is 1.25, and the upper end is
defined by the V'" power source. Its output is defined
by the formula:

V * r = 1 . 2 5 v x (1 + (R 2 l R 1)) + i $ s s d x R 2

Figure 5-l BOD circuit

Experiment 32-Brournout Fleset

1

1
DMM

Jeke le r ' s sc l ewdr i ve r (f o r
lk potentiomete!)

Need le -nose p l i e r s

B!eadboa!d

Wil iDg k j . t

frt
X

{}

;3
(D
: l

{^J
}'.l

t
I
I

H

L"'

pt

H

(0

1

1

t

L

Ptc16F684

-a: .

I

S e c t i o n F i v e P f C l , t F E A q l ' l i c r o c o n t r o l l e r B u i I t - i n F u n c t i o n s 9 1 .

.)

LM317
Label

Adjust V.

Basic Circuit

il".
Figure 5-? LM3l7

but, as Io,r, is only 100 u.A, the product of it times R2 is
normally negligible. This is why in Figure 5-2,I have
the simplified formula. For this application,I used a 1k
potentiomcter for R2 and a 3300 resistor for Rl; this
gives me an output voltage range of 1.25 volts to 5.00
volts when a g-volt battery is used for application
power.The small size of the breadboard-mountable 1k
potentiometer meant that I had to use a jeweler's
screwdrivcr to change the potentiometer (which can
be seen in my prototype wiring in Figure 5-3).

The plan was to have the PIC16F6U4 light the green
LED on RC3 after reset, but if the reset was caused by
a voltage brownout, thc red LED on RC2 would be lit.
Thc original application code was based on cReset.c in
which the _BOD bit (known as BOD in PICC LitefM
compiler) of PCON was set after power up. Along with
setting and checking this bit, the BOREN label,
instead of the typical BORDIS label, was used in the
configuralion fuse specification.

Figure 5-3 Assembled broytnout detect experiment
ctrcLutry

I should point out that a number of different
options exist for brownout reset, including ignoring
brownout reset during sleep (or low-power) mode and
allowing brownout reset to be controlled by applica-
tion software. Also, a number of bits are set in the fac-
tory. which will tune the actual brownout reset voltage.
For this application, I avoided the more complex
brownout reset options, wanting simply to stay with a
hardware reset when the voltage became too low.

With this setup, the red LED always lit on power
up, regardless of the voltage input and whether or not I
set or reset BOD on power up. Additionally, I tried dif-
ferent configuration register values-all with no suc-
cess. Untbrtunately the use of the brownout reset in
the Microchip datasheets, or apnotes, is not shown and
a Google search did not reveal any code that uses this
feature. As I scoured the datasheets. I noticed a differ-
ence in hov{ the PCON register bits were specified for
power up. For the BOD bit, in one case it was marked
as "unknown" instead of 0 at reset. which meant that
for it to have a valid value after a brownout reset, it
would have to be set manually. With this information
in hand, I then recoded the cBOD.c application so that
it would first check for a power on reset, at which time
it would set the BOD bit. And on subsequent resets,
the state of the BOD would be checked.

#include <pic.h>
/* cBOD.c - Moni tor Reaet o l r

This Program !vi11 light an r,ED
nras reset (Powe! Up or Browtt

Bfown Out Det€ct

baseil on how it
out)

Polrer Suppliedl to the PIc16F681l comes fron an
LM317 wired to provia le 1.5 to 5 Vol ts

LEDS are connecteal to:
RC3 - Power Up Reset
RC2 - Brown Out Res€t

myke predko
0 4 . 1 1 . L 0

-CON!'IG(INTIO & WDTDIS
I'NPROTECT \ & UIIPROTECE
FCMDIS) t

nain()
t

PORTC = 0i
Cl,lCONo = 7 t
ANSEL = 0t
T R I S C = 0 b 0 0 0 1 1 0 0 1 1 t

i f (0 = = P o R) / /
t

P O R = 1 r / /

& P!\IRTEN & MCI,RDIS &
& BOREN & IESODIS &

// <- Note "BOREN"

I

B O D = 1 r l l
R c 3 = 1 r / /

i f (0 := BOD)

/ / .r\arn off Comparator6
/ / Flrrn of f ADc
// RC3:RC2 as Outputs

Power-on Reset occulred

rrralicate Powe! Active
Make suf€ BoD se!
Set Polrer uplcood r,ED

// Cheek PCoN Regist€r

9 Z l , e l P I C @ f l C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

! rh i1e(1 == 1)r / / IJoop Forever

) // Elral cBoD

cBOD did not simulate well, which added to my
problems in trying to figure out what was happening.
Now, when cBOD is run in hardware, the hardware
powers up with the green LED, and when the poten-
tiometer is adjusted to a lower voltage, the green LED
dims a bit and then tums off completely. And, when the
LM371's voltage output is raised, the red LED tums
on, indicating that the application code (and hardware)
has recognized a brownout voltage situation.

In every PIC MCU datasheet, Microchip marks
each bit when a register is defined. Each register is
defined and then labeled as Register #-x (where # is
the datasheet section and x is the number of the regis-
ter definition in the section), and the ability to read
and/or write the bit along with its power up value is
specified. Read and write are specified with a R and W,
respectively, as would be expected, but as I show in
Table 5-1, there are four initial values that you should
be aware oi

Microchip documentation is uniformly excellent,
and it is very unusual to find a mistake like the one I
found. (In case you are wondering, the mistake is in
Register 3-1: PCON Register of DS31003.{, pages 3-
14, and I have notified Microchip of this error. So
hopefully it will not appear in later datasheets.) When
you are confronted with a problem, as I have been in
this experiment, where the code doesn't work as
expected. you should do the [ollowing:

1. Check over the code to see if you can find the
problern. Simulation (although not possible in

this experiment) of the program is always a
good idea.

2. Reread the datasheet to make sure that you are
using the function properly. Often the data-
sheet will have example code that you can use.

3. Look for apnotes on the Microchip web site
that illustrate how the function works. Don't
expect there to be an apnote on every feature
built into the chip that you are using. You may
have to look at how the function works (and is
programmed or wired) in another PIC MCU
part number and understand any differences.

4. Look for example circuits on the Internet using
Google or anolher search engine.

5. Compare resources to find any discrepancies or
clues as to how the feature works by cornparing
the different descriptions.

It's important to know that these instructions are
for getting a hardware feature of the PIC MCU work-
ing; they should not be considered the most appropri
ate way to debug a failing program. Later in the book I
discuss some of the techniques for finding a logic prob-
lem in a program and making sure that you have fixed
it correctly.

Table 5-1
Microchip Eatasheet Inilial Flegister Bit Value
qno. i f i - r t inn<

Eit PouJer
Up Value MPaning

0 After Reset, the Bit value is 0.

1 After Reset, the Bit value is 1.

u After Reset, the Bit is the same value as before
Reset.

x After Reset, the value ofthe bit is unknown.

If you were to look in the PIC16F684'S datasheet, you
would discover that the function of the analog-to-digi-
tal (ADC) function is explained over eight pages. I find
this description of the ADC function, although thor-
ough, a lot more complex than it needs to be. Using the
ADC itself is surprisingly simple and does not require
a lot of code or understanding of how it works. In this
experiment I am going to explain the function and

rd
f3

w

!_t

ia'

l"j&J

t

i

f i !

(J

t $
|'{

r"*'

5

(
RC2
RC3
BOD

)

= 1r // BOD EaDDeneal
= 0, // Not a Gooal Pow€r llp
= 1, // Inallcat€ Prc Mcu Powereil

UP Onc€

// No Browa Ou! Detect Reset

Experiment 33-FUE Operation

S e c t i o n F i v e P I C l t F h B t l l l i c r o c o n t n o l l e n B u i l t - i n F u n c t i o n s 9 3

characteristics of the ADC and give you an example
experiment that samples an incoming analog voltage
and displays it on the eight LEDS of the PICkit I
starter kit.

The ADC function of the PIC16F684 can be seen as
a simple block diagram like the one shown in Figure 5-
4;the line with voltage to be measured is connected to
a capacitor in the ADC. When the ADC operation
starts, this capacitor is disconnected from the input and
the voltage from the capacitol is passed to a compara-
tor input.The other input to this comparator is con-
nected to a slreep generator.which produces a ramping
voltage at a known rate. To measure the voltage (which
can be a maximum ofVdd), the sweep generator is
started and the time when the sweep generator's volt-
age to be grealer lhan the capacitor's vollage is
recorded using a counter. This is really all there is to it,
although you should know a few other things, includ-
ing being familiar with the registers used to control the
ADC. The operation of the ADC is quite simple and
easy to integrate into your applicatrons.

Because the ADC operates with the sweep genera-
tor, it does not execute over a single instruction cycle;
it takes at least 20 ps to perform the 10-bit data con-
version operation. You should also allow at least 12 ms
between samples to ensure the capacitor charge has
changed to reflect any change in voltage. The time
required for the capacitor to charge is why Microchip
recommends that the impedance of the signal should
be less than 10k.These delays mean that samples
should be made after 32 ps or so, resulting in a maxi-
mum sample tiequency of about 30 kHz.This is fast
enough to implement audio sampling, but not fast for
many real-time data-monitodng activities.

Five registers are involved in working with the
ADC. The ANSEL register is used to select which of
the eight possible ADC inputs (RA0 to RA7) will be
connected to analog inputs. On reset, the ANSEL reg-
ister, which controls which of the eight bits are analog
inputs, has all its bits set. lf you look back at previous
experiments that use the PICkit 1 starter kit, one of the
hardware initialization statements used was to clear

Figure 5-q ADC bl.ock diagram

the contents of the ANSEL register. For this experi-
ment and any application that requires analog inputs
be measured, the bits representing the analog input
pins are left set.

The next register is the ADCON0, which controls
the operation of the ADC.This register is used to
enable and start the ADC hardware, to select which
pin will have its analog input sampled, and to set the
output fomrat.Thble 5-2 lists the function of the differ-
ent bits used in the ADC.

The sweep generator has an internal counter, which
is run from a built-in RC oscillator or the processor's
clock and is known as the A/D Conversion Clock. It
has the timing signal TAD. Its source and prescaler
value are selected by bits 6:4 of the ADCONl register.
In Table 5-3, I have listed the different ADC clock
options and the resulting prescaler values. The TAD
value should be between 1.6 ps and 6.4 ps for proper
operation of the ADC, and this time is calculated by
simply multiplying the PIC MCU's clock period by the
TAD operation listed in Table 5-3. If you don't want to
calculate the TAD operation that will give you the

Table 5-2
FUE0N0 Bi t Funct ions

Bit Name Function

7 ADFM Output Format:0 = Left Justified (ADRESH
has 8 Bits):1= Right Justi f ied (ADRESH
has 2 Bi ls)

6 VCFG Voltage Relerence biI : I = Vrel Pin (RAl);
0 = V d d

5 Unused

4:2 CHS Analog Channcl Sclcct:000 = RAo;
0 0 1 = R A l i . . . l l l = R A 7

1 GO/_DONE ADC OpeIal ion Staft/End Indicator

0 ADON 1= Power ADCr0 = ADC Off

Table 5-3
FDC0NI B i t Func t lons

Bit TRD Operation
'/

6:,1 0oo-Period : '2

001 Period r'3

010-Period * 32
xl-Internal,{ Us RC
100 Pcriod * 4
I01 Period * 16
110-Peiod * 64

3:0

Commentg

Unused

Example: For a PIC16F6B4

running at 4 MHz-

Clock Period = 250 ns

Desired TAD = 1.6 !s to 6.,1 Fs
Clock Pe od +TAD Operation 001
= 2 5 0 n s * E

= 2 ! s

UnusedGenefatof

9 4 l , a 3 P I C o l l C U E x o e r i m e n t s f o n t h e E v i l G e n i u s

fastest ADC operation, you can simply select the built-
in resistor-capacitor (RC) clock-this runs at a nomi-
nal 4 r.r.s and will allow the PIC MCU'S ADC to
operate under all conditions.

The fourth and fifth registers are ADRESH and
ADRESL, respectively. These two registers store the
10-bit result of the ADC operation.The 10 bits are dis-
played as eight and two, with each register having
either two or eight bits. I recommend that you left jus-
tify the data, or store the eight most significant bits in
ADRESH and the two least significant bits in
ADRESL.The two least significant bits are generally
considered to be in the noise region, and their value is
not accurate; by reading only the most significant eight
bits, you should be getting a reliable eight-bit analog to
digital conversion.

With the registers set up, you will set the
GO/_DONE bit (known as GO in PICC Lite com-
piler) and wait for it to go low. Hopefully, my descrip-
tion of how the ADC works hasn't confused you,
because to carry out an analog-to-digital conversion on
a PIC16F684's RAO pin, only the following six C state-
ments are required:

INSEL = 1r // Just RAo iE aa Analog hput

ADCONo = 0b000000001r / / Turn on the } I rc
/ I BlE 7 - I.eft ilustifietl sarDl.e
/ / Bi t 6 - uae vDD
ll BiE 4t2 - channeL 0
/ / BiE L - Do not Stalt
/ / BiE 0 - Tulr on ADc

A.DCONI = 0b001110000r / / Select th€ Inte lnaL
RC Clock

CONI.IG (II{TIO & WDTDIS & PWRTEN & IICIJRDIS &
IJNPROTECT \ & ('T{PRO!!ECT & BORDTS & IESODIS &
FCMDIS) '

i n t i , j ;

int e.Dcslale = 0, // K€€p Track of ADC
OI,eration

lnt ADcvaluo = 0;
int Dlay = 53r // LED Tirre on Delay Variable
cotrst char PORTAvalue [8] = {0b010000, 0b100000.

0 b 0 1 0 0 0 0 , 0 b 0 0 0 1 0 0 ,
0 b 1 0 0 0 0 0 , 0 b 0 0 0 1 0 0 .
0 b 0 0 0 1 0 o , o b o o o o 1 o l t

const c l tar TRrgavalue [8] = {0b001111, 0b001111,
0 b 1 0 1 0 1 1 , 0 b 1 0 1 0 1 1 ,
0 b 0 1 1 0 1 1 , 0 b 0 1 1 0 1 1 ,
0 b 1 1 1 0 0 1 , 0 b 1 1 1 0 0 1) t

const c l ra! NOIPORTA t8l = t0, 0, 0, 0 ' 0, 0, 0, Ol l

s -J
L"{

. r r

q !r'

' ;

:--3

i*

ti;"*

a t

; , i

rurl-

lat
rt
-*1'

i i i

'.:
i""4

nain()
{

PORIA = 0t
CUCONo = 7t
ANSEI = Li

I / ll.fi'l- oft Conpa?alorE
// Juat ItAo ia art Aaalog Input

A.DCONo = AI'CON0

while(IGODONE) t

| (1 << 1)r / / could l a lso be
ncODOl[E = 1rtr

// wait for A.Dc Eo
Completse

ADCValue = ADSESE' // save sarll)le value
After Operation

For this experiment, I have used the scanned eight-
bit LED display code to display the value of the ADC.
To ensure that it does not negatively affect the opera-
tion of the LED display code,I have programmed the
ADC operation in cADC.c as a state machine,with the
sample taking place over several passes of the LEDs.
This will avoid spending too much time with any one
LED lit longer than the othe$.

+inclutle <Dic.h>
/* CADC - DiaDlay the Prcki! Po! hpu! Value on
the builts in rJEDs

This program salnpl€s the voltage on RAo uEing
the A.Dc aaal DisDlayE the value on the 8 IJED3
uaiag .cr ,EDDisD 2" as a base.

rnfke 9realko
0 4 . 1 0 . 0 3

ADCONo = 0b00000OO!i // Tlta olr th€ ADC
// BiE 7 - I"ef,t ,tustifieal Salnlrle
// Bits 5 - Uae vDD
// BiE 4r2 - Chann€1 0
/ / B,.E L - Do nol Start
// Bfi- O - Tuln on A.DC

LDCON1 = 0b00010000r / / Select lhe c lock as
Foac/o

whi le(1 == Ll / / Loop Foreve!
(

f o r (i = 0 r i < g r i + +)
I I / t oor, thlough Each of tshe I LEDS

for (i = 0t i < Dlay, i++)t / /DiEPlav "on' r

Delay Loop
i f ((ADcvalue & (1 << i)) == 0)

PORTA = NOIPORTA til t

PORTA = PORTAVaIUe lil t
TRISA = TRISAVaLUe lil t

l // '.of
acrilcb (A.Dcstatsel ll ADC State Machine
t

case 0: // EiniBhefl, starl Next' salllple
CiODONE = Lt
LDCgtat€++t
bleak;

case L, / / waits for ADC to codnplete
if (lGoDoNE)

ADCStsate++, // Sarple PiniEheal
breakt

cas€ 2: // Save Sanple value in
"ADCvaIue "

ADCVA].rIE = ADRESH'
ADCSlate = 0t
bleak;

l // hctirtr's
) / / e l ihw

) // End clrDc

When you run this code on the PICkit 1 starter kit,
you will be able to change the value displayed on the
LEDs by changing the potentiometer (marked "RP1"

on the PICkit 1 starter kit). You may find that the least

5 e c t i o n F i v e P I C l , h F E g q f l i c r o c o n t r o l l e r B u i l t - i n F u n c t i o n s 9 5

significant bit flashes with certain settings:This is due
to slightly different readings each time the ADC oper-
ates. If the least significant two bits were also shown,
you would probably see significantly more flashing at
other potentiometer settings. What you should con-
clude from this experiment is that the most significant
seven bits of the ADC output will be accurate and the
least significant tbree bits should be ignored.

For this experiment, I am using the circuit built into
the PICkit 1 starter kit shown in Figure 5-5. This circuit
consists of a potentiometer wired as a voltage divider
with a currentlimiting resistor and a capacitor.The
voltage output of this potentiometer circuit can be

Figure 5-5 ADC circutt

read more than one way, as I will show in the next two
experiments.

ExFeriment 3t-.1-EomFarator Operation

r 1

rt;
t i

$i-a

r!*

tr*

1-t

I
,

1 ' J

f1

!i.ii

, ! !

11

One of the measurements that I use to gauge the diffi-
culty of applications in this book is whether or not the
circuit I design and the code I write works the first
time.When I started this experiment,I had a perfect
record of 72 applications that worked the first time I
built them, and burned their code into a PIC16F684.
Other factors further bolstered my confidence for
first-time success for this experiment: My plan was to
base the code on the previous experiment and my
familiarity with the PIC MCU's comparator and inte-
grated variable voltage reference circuits. In this
experiment's write up, you'll get an explanation of the
operation of the comparator, plus you'll get a story of
hubris on my part.

The comparator circuit built into the PIC MCU is
quite simple. It consists of two comparators with differ-
ing input and operating options, which are controlled
by the CMCONO register explained in Table 5-4.
Beyond the CMCON0, a COMCON1 register is used
to control the operation of one of the built-in timers
and synchronize one of the two comparators' output
with a timer. I have passed over this CMCON0 register
because these options are required only for specific
applications

The CM bits of CMCONO select the operating
mode of the comparator (see Thble 5-5). In most

Table 5-4
EMCON0 Begister Bits and Eomparator Operation

Bit FunEtion

C2OUT Comparator 2 Output.

if (0 == c2rNV)

C2OUT= 1ifC2Vin1 > C2Vin,

else // if (1 == C2INV)

C2OUT= 1ifC2vinl < C2Vin-

C1OUT Comparator 1 Output.

if (0 == clrNv)

CIOUT- I i f ClVinl > ClVin-

else // if (1 == CIINV)

C IOUT= I i f C l v i n l - C l v i n -

C2INV Set to IDvert the Comparator 2 Output
Condition (See C2OUT)

ClINV Set to Invert the Compantor 1 Output
Condition (See CIOUT)

CIS Comparator Input Switch, Used when CM bits
== 010

if (0 == crs)
RA1 is Clvin-

RC1 is C2 Vin-

else // if (1 == CIS)

RAO is Clvin-

RCo is C2 Vin-

When CM bits == 001

if (0 == crs)
RA1 is Clvin-

else // if (1 == CIS)

RAO is Clvin-

CM Comparator Mode Select Bits (see Table 5-5)

I--

9 6 l , a 3 P I C @ l " l C U E x p e n i m e n t s f o r t h e E v i I 6 e n i u s

Table 5-5
Eomparator Bperating Mode 5elected bg the
EMEONO EM Bits

EM 2:O Operation of Comparators

111 (7) Comparators Off Required setting to use RAo, RA1,
RC0, and RC1 as digital I/O.

110 (6) Comparators On, RCo is common Vinl for two com-
pamtors. RA1 is Clvin-, RA2 is C1OUT, RCl is
C2Vin-, and RC4 is C2OUT.

101 (5) Comparator 1 Ofl Comparator 2 On. RCO is C2Vin1
and RC1 is C2Vin-.

100 (4) Both comparators operating. RAo is C1Vin1, RA1 is
Clvin-, RCo is C2Vin1, and RCl is C2Vin-.

011 (3) Both comparators operating with commonVinl on
RC0. RAl is Clvin-,and RC1 is C2Vin-.

010 (2) Both comparato$ operating with common Vinl ftom
Vref module. Clvin- and C2Vin- are selected by
CMCON0 CIS (see Table 5-4).

001 (1) Both comparatom operating with common Vinl on
RCo. Clvin- selected by CMCON0 CIS (see Table 5-4)
and RC1 is C2Vin-.

000 (0) Comparators OflAnalog input on RA0, RA1, RCo,
and RC1. Default setting.

applications presented in this book,I have tumed the
comparator bits off by writing 0b0111 to the CM bits.
For this experiment,I want to use RAO as a compara-
tor input along with the controllable Vref voltage
source to measure the voltage coming from the
potentiometer built onto the Plckit 1 starter kit.

The Vref source is available only to the comparator.
In some other comparator-equipped PIC MCU part
numbers, the Vref value can be output to other
devices. This circuit consists of a tapped voltage ladder
with different voltages passing through a 16-to-1 ana-
log multiplexer. The VREN bit of VRCON controls
the power, and VRR selects the operating mode (see
Figure 5-6). Figure 5-6 also lists the output voltages
based on the state ofVRR and the VR bits of
VRCON which are listed in Thble 5-6.

To demonstrate the ability of the comparator and
Vref circuitry as an analog to digital converter,I used
cADCc as a base for the eighth LED output control
loop, and I used the state machine to poll the ADC. I
came up with cComp.c in which I found the potentiome-
ter's wiper voltage by using a binary search algorithm.

lliacluile <pic.h>
/* ccoq) - R€aal th€ PICkit Pot laDut Vollage
uBing conpalator/cr€f

Thia Drogrrm arrrpleE the voltag€ on RlAo uaiag
lbe CorE)arator rdith the Cref Dtotlule anfl DiEplayB
tsbe four bit r€Eults on th€ l€aEt Eigaificant
LEiDa on Eh€ PICkit PCB.

Figure 5-5 Vref circuit

Table 5-6
VFEON Flegister Bit Bescription

To
Comparator
Inputs

f'1
X

F0

o
r-t
F.ss
5
rt

w
*r

I

\ J

o
!{
u
gl
Ft
)r,

I 7

}{

o
U

l{

F'
c+
F.
L)
X

Blt Name Functlon
'7

6

5

4 N r u
3:0 VR

VREN

N/U

VRR

vref Module Power Enable

Not Used

Vref Voltage Select (1 = Low Range; 0 = High
Range)

Not Used

Voltage Selection Bits (see Figure 5-6 for formula)

lth€ ADC oDelation consiatg
algoritbrn

Ilyk€ predlko
0 { . 1 0 . 0 5

-CONjrIG(INTIO & WDITDIS & PWRTEN & T''CLRDIS &
I'NPROTECT \ & I'IIPROTECT & BORDIS & IESODIS &
FCUDIS) t

cdDstate = 0r / /

Nextvrefvalue;
vrefvalu€ t
Di69value = 0t //

Dlry = 53r / /

K€€p Track of Comparator
ODeration

DisDlay value to avoLtl
F].ashirg
LED !!ime on Delay
variable

= { 0 b 0 1 0 0 0 0 ' 0 b 1 0 0 0 0 0 '
0 b 0 1 0 0 0 0 , 0 b 0 0 0 1 0 o ,
0 b 1 0 0 0 0 o , 0 b 0 0 o 1 0 0 ,
0 b 0 0 0 1 0 0 , o b o o o o l o] ,

of a binary aearch

LnE
lnt

int

coaat char PORTAVaIUe [8]

S e c t i o n F i v e P I C l , b F b A q i c n o c o n t r o l l e r B u i l t - i n F u n c t i o n s 9 7

aNSEI, = 0t

w h i l e (l = = 1)
{

// No ADC hputa

// Loop For€ver

corr6t char TRISAVaIUe [8] = t0b00X111, 0b001111,
0 b 1 0 x 0 1 1 , o b x 0 1 0 1 1 ,
0 b 0 1 x 0 1 1 , 0 b 0 1 1 0 1 1 ,
0 b 1 1 1 0 0 1 , 0 b 1 1 1 0 0 1) ,

colrst char NOTPoRTAI8] = t0, 0. 0. 0, 0, O, O, O],

nain()
t

PORTA = 0,
CMCONo = 0b00011010r / / Ia i t ia l ize Conparators

// BiE 5 - Conp 1 Output
// BiE 4 - Inverts corlr (v- > v+ = X)
// BiL 3 - RtAo C1 Inpur (RcO C2 rnpur)
// Rit 2tO - CofirDarator with Cref

VRCON = 0b10L00000r // Vr€f MoaluJ.e Control
/ / B i t 7 - E n a b l e
/ / BiE 5 - Low Range (0 - 2/3vdd)
/ / BiE 3.O - anaJ.og Lev€Ls

of 16 to four. A binary search algodthm used in com-
parison operations like this one continually halves the
comparison increment until nothing is left. As I show
in the following pseudocode, a test value is used, and if
the value is greater, it is left as is, else, the value is
removed. After the comparison is complete, the test
value is divided by two again and added to the com-
parison value.This is repeated until the comparison
value is zero.

ComparisonvaLue = Maxinu! / 2;
// Stalt at 1/2 Maximum

ConDarevalue = Conparisonvalue;
// add to the Cofiurarison value

u'hiL€ (0 != Coq)arisonvalue)
// Repeat while a value to Add

{ I / Deternine if vaLue to b€ Saneal
if (Conparevalue > InputvaLue)

Cornpar€Value = Compalevalu€ - Conparisonvalu€i
comparisonvalu€ = cdll)arisonvalue / 2t

// R€peat O!|eration
Conparevalue = Comparevalu€ + ConDarisonvalu€,

| / / eli})w

The binary search is ideal for digital systems
because it works natively with binary bits. The previous
code is not significantly more complex than code that
does an incrementing compare, and the operational
speed gained is significant and grows in significance for
each additional bit to compare.

As I alluded in the introduction to this exDeriment.
when I first rurned on the original code nothing hap-
pened.I was very sure that the hardware was good (it
worked fine for cADC.c), so the problem was clearly a
programming problem. This is a very difficult program
to debug because the MPLABo IDE simulator will not
simulate the operation of the comparator and Vref
module with an analog input. To find the problem I
reviewed the operation of all the program,s statements
(fortunately it's a short program) and found the fol-
lowing one line

i f (1 = = (C M C O N o & (1 < < 5)))

that never behaved as if the expression was true. This
instruction ANDS the contents of CMCON with bit 6
set and returns true if it is equal to 1. My initial
response was to reread the comparator section along
with previously written applications to figure out if I
was doing anything wrong. The code looked great. I
then changed the program so every hardware register
was renamed to a variable (for example, CMCONO
became CMCONO) and went on to try different val-
ues of _CMCONO to find out if there was somethins I
wasn'l seeing. Using lhis merhod I discovered there
wasn't a value for _CMCON0 that would cause the
expression to be true.

I looked at the expression "1 == (CMCONO & (1
<< 6))" in the if statement, and when I checked its

f o r (i = 0 r i < 8 r i + +)
| / / Loop through Each of the 8 r,EDS

f o r (j = 0 , j < D l a y r j + +) ,

//Display "on" D€tay Loop
i f (0 = = (D i s D v a l u e & (1 < < i)))

PORTA = NOTPoRTAlil,
e 1 6 e

PORTA = PORTAVaIU€ [i] ,
TRISA = TRISAVaIUe [i] ,

l / / rof
svritch (Conpstate) // CdtE)arator Stat€ l4achin€
{

// Filrished, Start N6xt
Salnple

Nextvrefvalue = 8t // sEatL witsh rligh value
vrefvafue = 0;
vRcoN = 0b10101000t
Compsta!e++i
b!eaki

/ / waiE for ADC to conpl€te
/ / i f lO != (o ' tcol ro & (1 << 6))) / / v !^ > vtef?

i f (1 == c lou!) / / v in > vref?
Vrefvalue = Vrefva1ue + Nextvrefvatue,

€tse // No - Take Alray fron Vref
VRCON = VRCON - Nextvrefvalue,

I I Ttr \e'*E bit of binary search
Nexlvrefval"ue = Nextvrefval"ue >> 1;
VRCON = VRCON + Nextvrefval.uet
if (0 -= Nextvrefvalue)
(/ / Einisheat, Display New vaLue
Dispvalue = Vrefvaluet
Conltstate = 0i

// and Restart Analog lt€asurement
, / l f i
break;

) / / hct iws
) / / e l ihw

) // Erd cconp

To measure the potentiometer voltage, you could
have used a simple algorithm that started with the Vref
voltage at a minimum value (VR = 0b00000) and
incremented it until the comparator changed state. I
used the binary search algorithm, because it requires
the logarithm base 2 comparisons of the number of
bits instead of potentially having to run through each
bit. In this case, using the binary search algorithm
reduced the number of comparisons from a maximum

9 8 l , e 3 P f C @ i l C U E x p e r i m e n t s f o n t h e E v i I 6 e n i u s

result using the simulator, I discovered the error: the
expression can never equal 1-it will equal
0b01000000, but never 1.When I changed the expres-
sion to test for not zero the program worked fine (this
is commented out statement in ccomp.c above). Fur-
ther improving on the statement, I simply polled the
C1OUT bit to be high, rather than manipulating the
contents of CMCONO.

This description ofwhat I did to solve the problem
wasn't put in to scare you.You probably aren't com-
fortable yet doing this kind of debug, especially consid-
ering the simulator cannot simulate the operation of
the comparator and Vref hardware and registers. But I
want to point out the steps I followed:

1. Check over the hardware documentation to
make sure the hardware interfaces are properly
coded.

2. Test the operation of each statement. If neces-
sary, change from a register to a variable; a vari-
able can be declared by using a register name
with an underscore (_) character preceding it.

3. Clearly articulate what the problem was. For
me the problem was that the register expres-

D}4M

Needle-nose pl ie ls

B!eadboard

I t i l ing k i t

T\e Watchdog Timer (WDT) is built into all PIC
microcontrollers to provide a reliable method of reset-
ting the rnicrocontroller if execution ever stops follow-
ing the expected execution path. This can happen when
the PIC MCU runs in a high electrical-noise environ-
ment, such as near the flyback transformer of a TV set
or near a car's ienition svstem. When the WDT is

sion "(CMCON0 & (1 << 6))" could never be
equal to the comparison value (1).

4. Fix the problem according to what you feel the
problem is.

5. Test the fix using the simulator tools created for
the task of discovering the problem.

6. When you are satisfied, burn the new program
into the PIC16F684 and see if this works better
ror you.

You should be able to follow these steps in debug-
ging your own applications, and although they may
seem slow and tedious, you will find the problem and
have an idea how to fix it.

I want to point out that the root cause of my prob-
lem was my dogged insistence on programming appli-
cations using standard C and not using PICC Lite
compiler extensions where they make sense. As I have
said, C is not well designed to manipulate individual
bits, but PICC Lite compiler gives you the ability to
access bits individually, and all the register bits are
coded in the include file.

Ptc15F58 4

10-LED bargraph display

0 .01 pF capac i t o ! (any

t l pe)

Breadboard-mountable
SPDT switch (E-Switch
EG1903 reconmended)

Two-cel l AA or AAA bat-
t e lY pack

AA o! AAA batteries

enabled, it continually counts down a set delay, and if it
is not reset within this period (using the clrwdt instruc-
tion), the WDT resets the PIC MCU and execution
starts over. Personally, I have never used the WDT in
any of my applicationq and I can think of only one
commercial application that takes advantage of it.
Along with this, the advanced reset functions of mod-
ern PIC MCUs eliminate much of the practical need
for the WDT. Chances are you will never require it in
your applications, but you should be aware of it and

rs:
*

*e4

fl1

r)

*\r
;-i

,.-*

9 . 1

r :ai

!

.1,::9
'_*11

i , i

;:.,ir,:

.{:-:

;.t r.

i
lfi

Experiment 35-l-Uatchdog Timer

1

1

I

S e c t i o n F i v e P I C I h F h g q f l i c r o c o n t r o I l e r B u i I t - i n F u n c t i o n s 9 9

H
0,

, J

r
en
rt
"r{

t r ,

rv

tF-

a
!
t

4""{

&.}
1,".

, r.{
FI

r't I

14{
a,

r-1

how it operates as there is one trap you will probably
fall into when you work on your own applications.

That trap is to not correctly disable the WDT in the
configuration fuse specification. Many new PIC MCU
application developers will specify only the labels for
the configuration fuse functions that they believe are
required for their applications. Unfortunately, the con-
figuration fuse functions are both positively (bit set)
and negatively (bit reset) active, and not specifying a
value for the bits could result in an unwanted function
being active. The most common unwanted function
being made active is the Watchdog Timer.

When the Watchdog Timer is enabled inadvertently
in a simple application, with no clrwdt repeatedly exe-
cuting in the application, the PIC MCU will reset itself
after two seconds or so. The reason for the reset is indi-
cated as the _TO bit of the STATUS register being
reset on power up. The problem ig that the application
will have executed for a couple of seconds, giving the
appearance that the application started correctly, but a
software problem caused it to reset itself and start over.

The reason for the reset can be clearly seen by run-
ning the MPLAB IDE simulator, by setting a break-
point at the first executing statement and adding the
Stopwatch function. If the WDT is active, the program
will execute the first statement a second time, about
2.1 seconds after the start of the simulation. Ifyou see
this behavior at any time during your application
development, you can fairly confidently assume that
the WDT is becoming active.

The circuit that I used to test the operation of the
WDT reset is shown in Figure 5-7 and wired on a
breadboard as shown in Figure 5-8.The test code is
cWDT.c and increments the number of LEDs that are
lit on the 10-LED bargraph display once every 500 ms
To disable this function, simply change the WDTEN
argument to WTDIS in the _CONFIG macro. Unless
you are going to use the WDT in your application,
then the WDTDIS argument must be present in every
application that you create.

You should find that after you turn on power to the
application, the first four LEDs light but are then
turned off when the tenth LED is lit, and the process
repeats itself over and over again. The 2.1-second
delay between WDT resets is determined by hardware
within the PIC MCU. I will discuss it in more detail
later in this chaDter.

1O LED
Bargraph

Figure 5-7 WDT circuit

Figure 5-8 Test application to demonstrate the
operatton of theWDT reset

Previously I stated that I know of only one applica-
tion that takes advantage of the WDT. That is the Par-
allax BASIC Stamp (and BASIC Stamp 2). In these
PIC Mcu-based devices, the WDT is used to time the
s/eep statement, which puts the BASIC Stamp to sleep
for increments of 2.3 seconds (the rnaximum WDT
reset interval for the PIC MCU chips that are used as
the basis of the BS2).

-:-
- - -E, ,

t -
I
I

Side

1 0 0 l , e i P I C @ f l C l J E x p e n i m e n t s f o r t h e E v i l 6 e n i u s

Experiment 36-Short Timer Delags Using TMF0

For most of the experiments presented in this book, I
use some kind of incrementing or decrementing loop
for producing delays. In the latter half of the book,I
show how you can create very precise delays by count-
ing out the execution time of the instructions and loops
of instructions. But when a delay is required for pro-
gramming in C, I tend to create a simple loop and then
tune the delay values empirically using the MPLAB
IDE simulator's Stopwatch function. The empirical
approach works well for most large (i.e., tens of ms or
longer) delays, but for shorter delays that require some
precision, this method just isn't good enough.

A better way of producing accurate delays is to use
a timer.The PIC16F684 has three builrin timen that
you can use for producing delays of known lengths as
well as for some of the hardware peripheral functions
built into the microcontroller. In this experiment, I will
introduce you to the operation of TMR0 (or Timer 0)
and how it can be used to produce accurate delays up
to 256 ps. In the following experimentE I will present
the other two timers, their standard operation, and
how they work with peripheral devrces.

TMR0 is an eighfbit timer that can be driven either
from an external source or from and internal instruc-
tion clock. Most applications use the instruction clock
as a method of providing a set delay. In TMR0's basic
configuration while running in a 4 MHz PIC MCU,
delays of up to 256 ps (23) can be added to the applica-
tion. An external source can also be used. And. as
some people have noticed in the datasheets for differ-
ent parts, the PIC MCU TMR0 module can take up to
50 MHz of input,leading to some interesting possibili-
ties for measuring very high-speed signals.

Control for the input source forTMR0 is the T0CS
bit of the OPTION register (see Figure 5-9). The
OPTION register provides a number of execution con-
trol bits for the I/O pin internal pull ups,Watchdog
Timer/TMRO operation, and interrupt operation
(Table 5-7). When you are working with the different
hardware capabilities of the PIC MCU, you will find
the OPTION resister to be a verv useful resource.

When TMRO overflows, it sets the T0IF bit of the
INTCON (interrupt control) register; to do so is an
interrupt request. I do not discuss how interrupts are
implemented in this book, but this bit can be useful to
poll to find out if TMR0 has overflowed.In the low-
end PIC MCUs, no interrupt capability exists and no
T0IF bit exists so the contents of TMR0 will have to be
continually polled.

The T0IF overflow bit is set when TMRO changes
from OxFF to 0x00 and is the basis for basic delay tim-
ing. Assuming that the internal instruction clock is
used for TMR0 and this clock is 1 MHz (the instruc-
tion clock speed of a 4 MHz PIC MCU), the formula
for determining the delay is:

De lay (i n ps) = (256 TMRo In i t i a f Va lue)

So, to specify a 200 ps delay, the formula can be
rearranged to find the TMRo initial Value:

TMRo Init ial Value = 256 DeLay
= 256 - 200

In cTMRO.c, the operation is demonstrated first by
the while loop in which the incrementing of TMR0 can
be seen.This is done by single-stepping through each

TOCKI

Fosc

Figure 5-g Basic TMRq

Table 5-7
OPTI0N Flesister Bits

Bit Name Number Function

_RAPU
'/

INTEDG 6

PS2:PSo 2:0
?Psr:Ps\

Enable PORTA pull ups

Select the edge for RA2 inlerrupt
request (1 = Rising)

Select the TMRo clock source (1 = RA2,
0 = lntemal Clock)

Select the <dge lorl MR0 updating (l -
Rising)

Selecr rhe pre"caler device (l wDT.0
TMRO)

Selecl prescaler \ alue (Prescdler \ alue -

S e c t i o n F i v e P I C I t F t A q f l i c r o c o n t r o l l e r B u i I t - i n F u n c t i o n s 1 . 0 1

Experiment 37-Using the TMH0 Prescaler

I t

*-{

:jc{

i : 1

i a -

=t\-i

-:,-,

*i

,l

i'4.{

statement. Each C statement is made up of multiple
PIC MCU assembly language hstuctions, so the dif-
ferent values by which TMRO increments should not
be a surprise.

*inclutl€ <Dic.h>
/+ cTu8o.c - 1'!tR0 Opelat.ion ant[Short Delays

Thia Drogram dlenonstrates the oD€ration of th6
TllRo Harakra!€.

rE ke Drealko
0 { . 1 1 . 2 4

// Enabl€ T!4R0 Oeerflorc to Request Ints
rcht le (!ToIF),

/ I Wai.E for 1l!4R0 !o O'lrerflow
NoP O t

// Breakpoint Here - ,Iim€ to Previous

0b11011111t
Bun TMRo from the Cloch OEciLlator

a fairly pr€clae 200 us tl€Iay

// I.ooD Foreve!

In the second part of cTMR0.c, I demonstrate how
to code a 200 ps delay controlled by TMRO. The first
statement is putting in the TMRO Initial Value, which is
followed by a statement resetting the TOIF bit, and
then one setting the T0IE bit to enable the interrupt
request. In the while loop, I am simply waiting for T0IF
to become set when TMRO overflows

By clicking on "Debugger" and "Stopwatch," and
then placing breakpoints where I have indicated in
cTMR0.q I was able to time the execution from the
setting of the TMR0 Initial Value to the final NOPO;. I
found the delay to be 207 instruction cycles, which is an
effor of seven instruction cycles. This translates to a
delay of 3.5 percent. For most practical applications,
this error is acceptable. Although some applications
require absolutely precise timing, when providing a
basic delay, an error of a few percent will not nega-
tively affect the operation of the application and will
keep you from carrying out what is essentially useless
debugging.

w h i l € (1 = = 1) t

] // Enal cT!,1R0

-CONUG(INTIO & WmDIS & PV|RTEII & I'ICLRITIS
UI{PROTEC! \ & I'NPROTECT & BORDIS & IESODIS
FCMDIS) t

{

OPTION =

// Denon6tra!€ Opelatl.on of TMRo
nhi16 (1 < 1000)

t = i + 1 t

TgRo - 55t
l / I'riEi,alize TlR0/Blealrl)oin! Here

T o I F = 0 t
/ I \$n oft Peniling rnt€rrupt Requ€stE

When you looked at the OPTION register definition
(see Table 5-7), you probably noticed the PSA bit,
which selected whether the prescaler was passed to
TMRO or the Watchdog Timer (see Figure 5-10). The
prescaler is a programmable counter that can be used
to change the TMRO (or Watchdog Timer) timeout

interval. This converts these delay interuals from just a
few hundred ms to several ps or even seconds

The prescaler can be used with either TMRO or the
Watchdog Timer, and its use is selected by the PSA bit
of the OPTION register. When the prescaler is
selected for the timer, it divides the incoming clock sig-
nal according to the OPTION register's PS bits, with
the divider being the zPs2'Ps. When the prescaler is
used with TMR0, the signal is slnched with the inter-
nal instruction clock, which results in another division
by two. So essentially, the prescaler divides the TMR0
input by 2Ps2'Pso * 1.

In cTMROPre.c, I specify that TMRO is driving by
the internal instruction clock, and I also reset the T0CS
bit, which passes the clock signal through the prescaler.

102 l , e i P f C o i l C U E x p e n i m e n t s f o r t h e E v i l 6 e n i u s

whi l€ (l t ro lP),
NOP(), // BreaLDoint II€re - Tine to

PteviouB

ffi

i.1:

{}
t1
; " ' i ,

.$
s
t:,

l/ Exec\rEe 255 ci'cle
Delay/Breakpoint flele

< 10r i++), l l waj . t a Eew cycles
0x80r / / set Bi t 7 Again

// BreakDoint Hele - Time t'o
Previous

Figure 5-10 Complete TMR}

Because the prescaler bit selection (from PS2 to PS0)
is still set, the prescaler delay is 1:256. Or, put another
way, TMR0 is updated once every 256 instruction
cycles.

*iacludle <Dic.h>
/* ctMRoPle.c - TuRo operatioda with th€
P!€acal,er

This Drogram alenonsllet€s lbe oDelation of the
r!!Ro anal P!€sca1€r.

rryke Drealko
0 4 . L L . 2 A

-CONFIG (INTIO & WDTDIS & PWRTEN & !4CIJRDIS &
I'NPRC'IECT \ & I'NPROTECT & BORDIS & IESODIS &
FCr{DrS) ,

nain()
{

OPIION = 0b11010111t
// Rua T!{Ro with 1:255 Pleacaler

// Use Same Coat€ as fairly preciae 200 us al€lay
of uct ! [Ro.c"

TURo = 55r // Initialize I'llRo/BreaLpolnt
He!€

ToIE = 0i // 'I'luin off Penaling Intelrupt
Requ€atE

ToIE = 1t // E[able TURo Ov€rflow to
Requ€st Ints

rrhile (!T0Ir)r ll WaLE fot I'MRo to Overf,low
NOPOr .// Breekpoinl Here - Time Eo

Previous

OPTION = 0b11010001r / / Run TuRo wi th 1!{
PreacaLer

m{Ro = 0x6t / / Execute 1000? cycle
D€Ia1'/Bleal<Doint Here

TURo = oxFFt

T o I F = 0 t

f , o ! (i = 0 r i
I'rtRo = TI.,IRo I

l rh i le (! ToIF) t
NOP O T

l th i1e (1 == L>i / / Loop Eorever

) // Enal cI'MROPre

Like cTMRO.c, cTMR0Pre.c requires the MPLAB
IDE Stopwatch to understand what is going on. In the
first TMR0 delay,TMR0 is loaded with an initial value
of 56, and the time taken to reach the NOP0; is 51,208
rycles. This is 256 times 200 plus 8.The product of 256
and 200 is exactly what was specified by the TMR0 Ini-
tial Value, and the eight additional cycles are similar to
the seven-cycle overflow of the previous experiment.
Using the prescaler, a delay can be specified as:

Delav = 2r"""ur"" I X (256 - TMRo Init ial

Value)

where the prescaler value is defined as the base 2 loga-
rithm of the delay divided by 256 (the maximum
TMRO value). This is a complex way of saying which
power of 2 would produce a number large enough to
store the value of delay. For example, if you wanted a 1
msec delay, you would use the following process:

Presca le r = Log , f n t (1 ,000 /256)
= Log, 3

Now to find the TMR0 Initial Value, the formula is
rearranged again to the following:

TMRo Init ial Value = 256 - (Delay /
2P'4€Ler + 1)

= 2 5 6 - 1 1 A 0 0 / 2 t ' r)
= 256 - 17A00 / 2 ' �)
= 2s6 - t1400 / 4)

The second delay in cTMR0Pre.c shows the delay
produced by this calculation and executed in 1,009
cycles according to the MPLAB IDE simulator.

The final two timer delays demonstrate what hap-
pens if you incorrectly pollTMR0 during its operation.
In both cases, I set TMR0 to OxFF, and with a 1:256

lo IF = 0,
roIE = 1,
whi le (! T0Ir) t
NOPOT // Brealeoint ll6re - TLne to

Ptevioua

OPTIoN - 0b11010111r / / Run , ITtRo wi th 1:255
pteacale!

i:

i:.L

].tr'

'r i:l

f::iJ

t**:

t1''f

,: :i

{r}

f-1

i*i
,€:

$IRo = o:iFF; // Execute 256 Cyc16
D€lay/BreakpoinE Eere

TOIF
TOIE

S e c t i o n F i v e P I C l h F b A q i c n o c o n t r o l l e r B u i I t - i n F u n c t i o n s 1 0 3

Experiment 38-Long Timer Delags Using TMHI

Table 5-8
TICON Flegister

Eit Name

;*'9

ra

tfi

nal

rrt

9""S
f i !

&{

{tt

.r*
'.L

t

Lir
&.;
iJ
x

i

] I

! -

,?r

*i

t . .

!&

i . ;

prescaler, you would expect that the delay would be
256 plus 7 or 8 extra cycles. And, this was what I got
(264 cycles specifically). In the second case, a few cycles
in,I write to TMR0 again: This could be considered a
no operation because I am writing TMR0 with the
same value as the one already stored in it. When you
time the second case, you will discover that the delay is
significantly different than the first. In my case, it was
429 cycles instead of the 264 of the first case.

The difference is that I am writing to TMRO. Even
though I am not changing the value of TMR0 (and this
can be confirmed in the simulator), the write operation
always resets the prescaler. This is true for wdtes to any
timer that has a prescaler (e.g.,TMR1). For highJevel
programming, this is not an issue, but it will be when
you are programming in assembler and you just want
to test the value in the timer. Make it a rule to always
save a timer value that has been read somewhere else.

Number Function

TlGINV Timerl Gate Invert (1 = ExternalTMR1
control bit is active low)

ExternalTMR1 Control Bit Enable (1 =
TMR1 controlled by extenal control it
when TMR1ON is set)

TMR1 Prescaler Select (0b11 for 1:8.
0b10 for 1:4.0b01 for 1:2,0b00 for 1:1)

Enable Extemal Oscillator when set

Reset to Synchronize External Clock to
Instruction Clock

TMR1 Clock Source Select (1 = Extemal
clock,0 = Internal instruction clock)

Set to EMble TMRl

TMR1GE 6

Once you have worked with TMR0, you will not have
any problems using TMR1 ro provide the same delay
functions. Looking at a block diagram of TMR1 (see
Figure 5-11), you should see a lot of similadties to
TMR0. The major differences are thatTMRl's opera-
tion is controlled by a dedicated register (TMR0 has
some functions specified in the OPTION register),
TMR1 can have a unique oscillator assigned to it, and,
most important,TMR1 is 16 bits in size. These differ-
ences make TMR1 quite a bit more flexible than
TMRO and one that you should consider using in all
your applications.

The T1CON register (see Table 5-8) is used to con-
trol the different execution aspects of TMR1, including
its source and prescaler value. In rnany applications, a
32.768KHzwatch crystal is connected to TMR1, giving
the PIC MCU a real-time clock capability. The over-
flow output of the clock can be used as an interrupt
request source, similar to TMRO. Or it can be used in

Figure 5ll Basic TMRI

T1CKPS1:0 5:4

T1OSCEN 3

_TISYNCH 2

TMR1CS 1

TMR1ON O

two functions of the Enhancetl CapnrdCompard
PI{M (ECCP) module, which will be demonstrated in
more detail in the next experiment.

I created cTMRl.c to demonstrate the code
required to create a 300 ms delay:

* incluale <Dic.h>
/* c1'!tR1. c - T!|R1 Denonstslalion

This Droglam tlemonBlrat€s the op€raEion of the
TllRl Haralware.

myke prealko
0 { . 1 1 . 2 9

CoNFrG(INTIO & WDIIDIS
I'NPROTECT \ & UIIPROTECT
FCr'rDrs) ,

P!9R,TEN & MCIJRDIS
BORDIS & IESODIS &&

1 0 4 l , A 3 P f C @ i l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

nain()
t

// Itse Tl41 for a 300 ns alelay

T1CON = 0b0011000L, // Tva�L O|r/lnternal
8x Preacale!

rql
X

b
o
t t
1.,,.
3o
F
rf

(r)
6

I
r
o
4

q

€
l,r,
u
o
X

U
o
ts
0,\<
CI

a
F.
5q

Fl
Kn
H

PI{RTEN & !{CLR.DIS &
BORDIS & IESODIS &

Table 5-9
Comparing TMFII to for Lcop DelagE

cTMEl.c cTMElBna.cParameter

PIC MCU Instructions

File Register Bytes

Programming Iterations

TMR1E =

ITMR1IJ =

TIIRIIF = 0t // lllJ,i off Peatliag InlerruDt
RequeatE

TUR1IE = 1r // Eaab1e |!URl. O!'erflow to
Requesl rnts

while (lTuRlIF)r // waits fo! tn{R1 to Ovelflow
NOP()' // Br€alr9oirt Here - Tfurc lo Previous

lrhile (1 == tr, ll Loop For€ver

] // Enil cT!41

Looking at cTMRl.c, I was impressed with its sim-
plicity and wondered how it compared to the standard
for loop delay that I use in most of this book. The test
case I ffeated is the following cTMRlAna.c:

*incluale <pic.h>
/* cTMRlAna. c - coale Baseal 300 ms Denoastlatl,on

lhis proqlen al€nonstrat€s th€ equlvalent coale
solution to cllMRl. c.

qyke plealko
04.rL.29

22

0

1

2

l)

f o r (i = 0 t i < 2 7 2 7 2 , 1 + + t ,
NOPO, // Brealgroinl Eer€ - T:i:r0€ to P!€vLoua

whi l€ (1 =- 1)r / / Loop Forevor

| // ba cT�MRltAna

Table 5-9 compares the two programs over a num-
ber of parameters. The Programming Iterations param-
eter is the number of times I changed the final value of
the constant in both programs to get a delay that was
within 300,000 cycles. This measurernent consists of
how many times I had to change the code, rebuild it,
and retest it with the simulator's Stopwatch to get the
specific delay. I wasn't surprised that using TMR1 for
longer delays was better than the for loop; I was sur-
prised at hovt much better TMR1 was Aside from pro-
ducing code that is two-thirds the size of the for loop,
the TMR1 delay was also much faster and easier to get
working correctly.

The obvious question that arises from this analysis
is why people use the for loop to create delays. I
believe two answers exist to this question. First, most
low-end PIC MCUs (and low-end microcontrollers in
general) do not have a 16-bit counter available for
delays, so they have gotten into the habit of creating a
delay using the for loop. Second, simply nobody has
thought to do this analysis before. But if they had, the
better delay would be obvious, and maybe somebody
would have written a macro to produce the delay.

(55535 - (300000 / 8 \ l >> a i
/ / Inl t ialLze a 300 ma alelay

(55535 - (300000 / 8)) & oxFE t
a, ll Enable PeriDhelal

In!€rrul)ts

CONFIG(INTIO & }IDTDIS &
UNPROIrECT \ & T'NPROIECT &
FCUDTS),

ungigrr€at int It

rnain ()
(

// uee coae for a 300 ns alelay

NOPO r // BreakDoint H€re

S e c t i o n F i v e P I C l , b F h A q H i c r o c o n t n o l l e n B u i l t - i n F u n c t i o n s 1 0 5

Experiment 39-Comparing Clock Osci l lators
;*

;.*

*
.pl
,$

t :

"r!

t-:
d3

*E
ij
e

a--.:

."
t-

i*
,:-*

{'i
{*,

tlx
i:-:
{.-f

{ ' f

t

,sl
.:*

;*

di
#

".4
:,.t
$
{,1<

i..a
,'.:

1:l:

DMM

Need Ie -nose p l i e r s

Breadboa!d

Wiring kit

Part of the evolution of the PIC microcontroller has
been for Microchip to provide accurate built-in oscilla-
tors, freeing the application developer from the chore
of selecting and wiring a clock circuit into his or her
applications. For people leaming how to develop appli-
cations for the PIC, this was another potential problem
area: If the clock circuitry was not correctly wired, then
the application wouldn't work.This is not a concern for
you. The oscillators built into the PIC16F684 and
PIC12F675 are surprisingly accurate, allowing you to
use them instead of external oscillators. In this exoeri-
ment.I want lo look at the accuracy oI the different
oscillators available to the PIC MCU.

The most efficient method of testing different clock-
ing circuits is to use a frequency counter or an oscillo-
scope with a measurement option. I realize that most
people do not have this equipment available to them,
so in this expeiment I will use a very simple circuit
that will give you a good visual indication of the accu-
racy of the different clocking methods. I will run two
PIC MCUs (a PIC12F675 and PIC16F684) at the sarne
time, using the same program, and then pass a
counted-down output to the different pins of an LED
(see Figure 5-12). For simplicity, I put both PIC MCUs
on the same breadboard as shown in Figure 5-13, using
a long breadboard to allow for lots of space for the dif-
ferent clock options.

If the two freQuencies are identical, the LED will
light and the brightness will not change. If the frequen-
cies are different. the LED will flash on and off. The

I

1

1

I

I

1 Three-cel l AA battely
c r i p

3 AA batteries

slower the flashing, the closer the two frequencies are.
If you are familiar with tuning a musical instrument,
you will understand exactly how this works.

In this circuit. I will tse a canned oscillator to drive
the PIC12F675; this device is a highly accurate clock
(usually to within 10 Hz for a 4 MHz device) that is
used as a reference clock. The PIC16F684 clock will be
changed to one of the four different types available to
it.Along with the internal clock, or canned oscillator
like the PIC12F675 uses, the PIC16F684 can be
clocked using one of the three circuits show in Figure
5-L4.These circuits are connected to the oscillator pins
of the PIC16F684. For this experiment, I am assuming
that each clock is running at 4 MHz (the most common
clock speed for PIC MCU applications).

The code I used for the PIC12F675 was called
c675Clk.c and uses TMR1 to count down 5 ms before
toggling the output of GPIO0.The PIC16F684 uses
appropriate register names and similar code, except it
divides the constant by 4 rather than the 8 of
C675Clk.c.

To test the different oscillators, the only changes
made to the PIC16F684 code were in the confisuration

PIC16F58 4

Prc12F5?5

2 MIIZ osci l lator

4 MHz clystal

4 MHz celamic resollato!
vri th internal capacitols

4 . ?k t es i s to r

470O res i s to r

l0k breadboard-mountable
potentiomete!

0 .01 p ,F capac i t o r s

33 pF capacitors

22 pF capacitot

SPST breadboald-mount-
able switch

L 0 6 l , P 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

Prc16F684 PtclzF675

2 MHz Osc

Enable

0 . 0 1
uE

0 . 0 1
uF

Oscillatof Pins

-

t '
I

I
:

Figufe 5-la Clock circuit

fuse clock specification.The clock polling loop does
not produce an exact 100 IIz output;it actually outputs
99.78 IIz due to overhead of the loop and the polling
of the TMR1 registers I could have tuned this to an
exact frequency, but by keeping the code constant
between the two PIC MCUs,I didn't feel this was nec-
essary. The differences in clock speeds would show up
as flashing LEDs. In Table 5-10, I have listed the differ-
ent PIC16F684 oscillators used, their output ftequen-
cies measured by my oscilloscope (nominally 100 Hz),
their LED flashing rate, and the configuration fuse
specification used for each.

To try and improve upon the accuracy of the resrs-
nr/capacinr (RC) oscillator,I replaced the 4.7k resis-
tor with a 10k potentiometer and tried to tune the
signal. This proved to be quite difficult, and I never was
able to closely match the PIC16F684's output fre-
quency to that of the PIC12F675.

Next, I drove the PIC16F684 using the canned oscil-
lator to look at the accuracy of the PIC12F675's inter-
nal oscillator. The PIC16F684's internal oscillator
automatically uses a programmed calibration value,

Figure 5-13 Long breadboard used to test different
PIC MCU 4 MHz clocking options

but the PIC12F675's internal oscillator can optionally
run with calibration. I was curious to find out how
accurate this clock was.The results are in Table 5-11.
To enable the PIC12F675's calibration. the followins

14x
tld

o
Fl
F .
3o
5
ct

(,

to

I
n
o
3

id
s,
n
Fr.
p
q

o
ts
o
o
?f

o(n
o
Fr.
F
ts
0,
ct
o
rt
a

S e c t i o n F i v e P I C I h F h B q H i c n o c o n t r o l l e r B u i l t i n F u n c t i o n s 1 0 2

Resistor/Capacitor
(Rc)
T"

Prc Mcu ?un
clkln -----
Pin I

T"O'
I
:

PIC MCU

Crystal

l
Clkln
Pin

PIC MCUl"ru Muu T
Clkout ^--ilr\,----l--l
Pin

Ceramic Resonator

Optional
100 - 200 Ohm

PIC MCU
Clkln------------l
Htn +

PIC MCU
ClkOut
Pin

H

a ' !

F{

r-f
.rl

U
v,
O

,r4
t l

r-l
t !

s
Li
"FN

LI
rr{

i
I

(J t

f,n

(l
H

. - {

1{
a)
*J'.1

X
td

#aam
ba f 3 , 5

RPO
caLL 03FFh

Getscalibrat€vaLu€
010h i morrlrf

RPO
*enalaam

i b.f gTATus,

t cal l

OSCCAL ^ 0x90
r bcf STAIUS,

Figure s-lq Clock options

code statements (taken from the PIC12F675
datasheet) were added to the start of the application:

// loaat cLock Ca1iblation

tor for one complete output cycle. Using this factor, the
PIC16F684's internal oscillator runs at 3,987976H2
(0.3% error);the resonator runs at 3,995,992H2 (0.1%
error); the crystal runs at 4 MlIz; and the RC oscillator
runs at 3,330,662 Hz (16.77o enor).The PIC12F675's
uncalibrated clock is 4,2U/49 Hz (5.6% effor), and its
calibrated clock runs at 4,092,784 Hz (2.3Y" enor).

The obvious conclusion from this experiment is that
the PIC16F684's internal clock and the PIC12F675's
clock are quite good and are sufficiently accurate for
virtually all applications. The applications where these
clocks are not adequate would be timing measurement
(e.g., in frequency counters and real-time clocks).In
these cases, either a canned oscillator or an extemal
crystal would have to be used. In older parts without a

Table 5.11
PlE|aF675 Internal Oscillator Fccuracg

Ealibration
Measured
Frequencg LED Flash EaIe

To get the PIC MCU's actual operating frequency,
the scaling factor 40,080 is multiplied by the 100 Hz
output. This is the ratio between 4 MHz and the 10,022
cycles that were measured in the MPLAB IDE simula-

Table 5-10
EomFaring Oifferent PlClSFEBr.l Clocking 0ptions
to a Fleference

Clock
Tcpe

Measured LEU
Frequencg Flash Eate

_CONHG clock
Parametef None

Using Calibration Code

105.4 Hz

102.7 Hz

severavsecond

several/secondIntemal

Resonator

Crystal

RC

INTIO

XT

XT

RC

99.5H2 3 flashes/second

99;7 IIz 2 flashes/second

993H2 1 flash/6 seconds

83.1I{z many/second

l .08 l , P 3 P I C @ l ' l C U E x p e n i m e n t s f o r t h e E v i l G e n i u s

builtin oscillator, the RC oscillator can be used. But
remember, you can't expect the accuracy of the oscilla-
tor to be in the same range as that of the crystals and
ceramic resonators.

I should point out that the results of this experi-
ment, although reasonable, are not completely accu-
rate due to the limited sample sze of parts. Still the
purpose of the experiment was to show the different
oscillators available to the PIC MCU. how thev are

wired to the chip, and how they compared. When you
repeat this experiment, you may find that different
parts behave differently, and although the overall
results will be similar. the measured values will most
certainly be different from mine. For this experiment
to be completely valid, a large sample size of the differ-
ent parts would be required, and these parts should be
chosen over a wide range of manufacturing dates.

P rc16F58 4

10 LED balgraph display

10of,) res i"stor

10k breadboard-mount-
able potentiometer

470 f ,) 10 -p in res i s to r

0 .01 pF capac i t o r s

SPST b!eadboard-mount-
able switch

fhree-cel, I AA battery
c l i p

AA ba t t e r i es

would know that the Parallax BASIC Stamp II has the
ability to time how long it takes for a charge to pass
through a resistor (see Figure 5-15). In Figure 5-16,I
show what the electrical signal looks like. First the
capacitor is charged by an I/O pin, and then the I/O pin
changes to an input to allow the capacitor's charge to
pass through the resistor, with the delay from being
fully charged to reaching the I/O pins high-to-low
threshold being approximately proportional to the
potentiometer's resistance.

As a rule of thumb, the maximum time delay for the
circuit in Figure 5-15 is:

T i m e D e l a y = 2 . 2 X R e . t X C

So, for a 10k potentiometer and a 0.01 pF capacitor,
you would expect there to be a maximum time delay of
approximately 220 ps. I say "approximately" because
potentiometers and smali capacitors are not known for

1.,'.

Need le -nose p l i e r s

Breadboard

Breadboald wil ing kit

Even if you are a teenager, I'm sure you've seen the
early video games (like "Pong"), in which the user was
given an analog control. The first home and personal
computers also had analog controls, the joystick being
the most common. But did you also know that 20 years
ago, analog-to-digital converters (like the ones built
into the PIC MCUs) often cost rrore than basic micro-
processors? The ability to read position information
was very important in these early games and simple
computers, but adding an ADC chip was out of the
question because the cost.

Imagine yourself as a designer of one of these sys-
tems. How would you provide the ability to read a
potentiometer (which was normally used to read the
position information)? You could use a comparator
and a programmable voltage reference as I have used,
but there is a much easier way to do this-by measur-
ing the time it takes a charge to pass from a capacitor
through the potentiometer. If you have read my previ-
ous 123 Robotics Expeiments for the Eytl Genius,you

'f:',1

i1'
i'-:j:

L:i

l:1;,

i i :
r:,. i

f, !':l

tlr

rl":

,,,".,

ExFeriment t-.|0-Timed l/O Pin Flesistance

tl.;i
!.' J
1t

:: ar

, , , - , ' i '

Measurements Usine the CCP

I

1

1

t

2

1T,oo1 Box

S e c t i o n F i v e P I C l h F h 6 t { I ' l i c n o c o n t n o l l e n B u i I t - i n F u n c t i o n s 1 . 0 9

I"
vcc

Fiqure 5-15 rctime function

Figure 516 Pot rea(l

their accuracy and you could have yariances of up to
20 percent.

Unfortunately, the rctime lunction isn't available in
the PICC Lite compiler library of functions, and it can
not sately be programmed in by simply using a few C
statements like the lollowing:

RCPiflTRIS = 0r // Make RCPin an Output
RCPin = 1r // C}rarge Capacitor
for (i = 0r i < onensr i++)t / /

: i : : " i : ;
RCPinTRIS = 1r // l4ake RCPin anal hput
f o r (i = 0 r ((i < f i v e m s) & & (0 ! = R C P i n)) r i + +) t
/ / " i " contains a value ploport ional to the

Resj.staltce

This is true for two simple reasons: the execution time
of the second for loop is not known and the returned
value for i is proportional to the resistance of the
potentiometer. If you have looked at some introduc-
tory PIC books, you may think this statement is wrong:
many PIC books present code that can be used to find
the resistance of a potentiometer, but the example
code and projects in these books are written in assem-
bler where each instruction (and the time required to
execute) is known, not in a high-level language like C.

The obvious way of timing the code would be to
start a timer and save its value when RCPin changed
state as in the following code:

RCPinTRIS = 0i // Make RCPin an Output
RcPin = 1., // c})arge capacitor
for (i = 0r i < onerns r i++),

/ / waiL fot Charging
RCPinTRIS = 1r // llake RCPin anal Intrrut
TMRo = 0r // Rese! the Tirne!
whi le (0 l= RCPin) t

/ / warL for Pin to Go Low
Potvalue = lltlll.O i // Save the Pot Value

// 'i" contains a value proportionaL to the
ResiBtance

But a better way is to use the Capture mode of the
ECCP Timer Generator. This function will save the
contents of TMRl at an external event. Using the
ECCP module, there's no need to save values or worry
about how many instructions take place in a loop or
before or after the loop. The circuitry for this experi-
ment (see Figures 5-17 and 5-18) is quite simple as is
the code, which I call cPotTime.c.

Figure 5.117 Pot read circuit

Figure 5.18 Breadboard wiring for the
potentiometer read circuit

--�--

1 1 0 l , P 3 P I C @ l l C l J E x p e n i m e n t s f o r t h e E v i l G e n i u s

When you look through the cPotTime.c code you'll
notice that it was written without using any variables.
All the delays are provided by TMR1, which is loaded
with constant values instead of the contents of vari-
ables. I have not explained the operation of the Cap-
ture mode of the ECCq because when you are first
starting out, there aren't that many applications like

The PWM generator function built inro the PIC
MCU's ECCP is the latest and probably the most
sophisticated and useful pulse width modulation
(PWM) generator that I have seen on any microcon-
troller.The PIC16F684's PWM generator departs from
the typical design by providing the capability to intelli-
gently interface directly to high-current motor drivers
without intervening logic or sophisticated software. As
I will show in a later experiment, it is an ideal base for
an intelligent DC motor controller.This experiment,
however is somewhat more modest. It will simply
introduce you to the operation of the PWM generator
hardware and demonstrate how an LED's brightness
can be changed with a PWM signal.

Before explaining how the PWM generator works, I
should probably spend a few lines explaining what a
PWM signal ls. A PWM signal (see Figure 5-19) con-
sists of a repeating digital signal in which the time on is
varied to control the amount of power that passes to a
device. PWMs are typically used in DC motors to con-
trol their speed because they are much more efficient
than a variable-voltage output power supply.The tirue
on is usually referr ed to as the duty cycle and is meas-
ured as a percentage of the total cycle time of the
repeating signal.

The heart of the PWM is the TMR2, which is a
repeating timer driven by the PIC MCU's instruction
clock. When enabled. this timer will count to the value

this one where you can take advantage of it. But you
should be able to figure out how it and Compare mode
work if you feel they have capabilities that you would
want to take advantage ol The lesson I want to impart
with this experiment is that if you have a problem, it
can often be solved by looking at the datasheet.

in the PR2 register and then reset itseli TMR2'S oper-
ation is controlled by the T2CON register (see Thble
5-12) and has a prescaler, which divides down the
incoming clock, and a postscaler, which divides the
reset signal down, all to provide a delayed event indi-
cation. The postscaler is not required to use the PWM
generator. When TMR2 is run in a PIC MCU that has
a 4 MHz signal, a prescaler value of 1:1, and PR2 equal
ro 0xFF (255), the TMR2 (and PWM) period is 255 ms
(or 3,922 kHz),

The PWM generator circuit (see Figure 5-20) uses
the reset command ftom the PR2/TMR2 magnitude
comparator to set the output in an RS flip flop. The
current value of TMR2 is continuallv compared

Experiment Ul -Eenerating PtUM
Sisnals Using the CEP and TMRa

I LED

Duty Cycle = PWM On
PWM Period

Fisure 5-19 PwM

S e c t i o n F i v e P I C I t F h g q i c r o c o n t r o l l e r B u i l t - i n F u n c t i o n s 1 1 1

Table 5-?
T?CON BegiEter Definition

Table 5-13
ECPIEON Flegister Bits Belatins to the PIIJM 6en-
eratorLabel FunctionFtc..

7

6:3 TOUTPS

Not Used

TMR2 Output Postscaler, 0b0000 is a 1:1
Postscaler, 0b1111 is a 1:16 Postscaler

Must be set for TMR2 to be operational

TMR2 Prescaler

0b1x for 1:16 Prescaler

0b01 for 1:4 Prescaler

0b00 for 1:l Prescaler

Blts Label Funclion

7i6 P1M PWM Output Configuration Bits

0b11 for Full-Bridge reverse output (P1B Mod-
ulated, P1C Set,P1A/P1D Reset)

0b10 for Half-Bridge output (P1A, P1B Modu-
lated, P1C/PID Port Pins)

0b01 for Full-Bridge forward output (P1D
Modulated,PlA Set, P1B/PlC Reset)

0b00 for Single (standard) output (P1A Modu-
lated, P1B/P1OP1D Port Pins)

5.4 DC1B Least significant two bits ofPWM compare
value

3:0 CCP1M ECCP mode select bits

0b1111 for P1A/P1C:/PlB/P1D Active Low

0b1110 for P1A/P1CActive Low, P1B/P1D
Active High

0b1101 forPlA/PlCActive High,P1B/P1D
Active Low

0b1100 for PlA/P1C/P1B/P1D Active High

0b0000 for CCP/PWM Off

Motor
Power

u,
r-{

m
brt
.r"i
CCI

\r
F
Fg{

trt
l.{

"tJ
d
11
0

$
13
I
I

?.,{

<rr

1J

, t l

.-l

s
P..
X
KT

2 TMR2On

1:0 T2CKPS

Figure 5-20 PWM block diagram

against the value in the CCPR1L register, and when it
is greater than the value in CCPR1L, the RS flip flop is
reset. If the value in CCPR1L is greater than the value
in PR2, the PWM output will always be high. This is
what the basic PIC MCU PWM generator provides.
But the PIC16F684 has additional circuitry known as
the output controller, which can be used to simplify the
control of different types of motor controllers. In Thble
5-13,I have listed the relevant bits of CCP1CON as
they relate to Ihe PWM generator.

when I work with the PIC MCU CCP PWM,I gen-
erally work only with the most significant eight bits of
the PWM Counters and ignore the two least significant
bits. The extra accuracy provided by the least signifi-
cant two bits is generally not required. In Figure 5-20, I
imply that the PWM compare register (CCPRIL)
value is compared against the value in PR2. This isn't
strictly the case; the value of CCPR1L is buffered and
used until PRz is reset.This is done to ensure a larger
value for CCP1RL is loaded in, causing the PWM out-
put to go high unexpectedly. To keep everything simple
for your initial PWM applications,I recommend that
you either pass a single PWM signal from the module
(on P1A, or RC5) or work with full H-bridges con-
trolled as shown in Figure 5-21 . When the UO pins are
described in the Microchip PIC16F684 datasheet, the
labels P1x (where x is A, B, C, or D) are used exclu-
sively. To try and avoid some confusion, in this experi-
ment, I have included these labels but also included the
traditional pin names as well.

Figure 5-?l PWM full H-bridge contol

I realize that I have thrown a lot of information at
you regarding the PWM generator built into the
PIC16F684, but it is actually very easy to set up and
work with. I will show just how easy in the following
expedment, which varies the brightness of an LED
according to the position of the PICkit 1 starter kit's

PlA
(Foruvard

Active)

P 1 B
(Reverse

Modulated)

P 1 C
(Reverse
Active)

P 1 D
(Forward
Modulated)

1 1 2 l , A 3 P I C @ f l C U E x p e n i m e n t s f o r t h e E v i l 6 e n i u s

potentiometer. Unfortunately, none of the PWM out-
puts are connected to any ofthe LEDS on the PICkit 1
starter kit, and, further complicating manners, P1A
(RC5) is not available on the PICkit 1 starter kit's in-
line socket. Fortunately, RC2 (P1D) is close to the
socket's ground pin, so you put an LED into the
PICkit 1 starter kit to demonstrate the operation of
the PIC MCU'S PWM by varying the perceived bright-
ness of the LED.

In this experiment, I wanted to take advantage of
cADC.c, which reads the voltage coming from the
PICkit 1 starter kit's potentiometer but also displays it
as a binary value on the eight LEDs. A single LED can
be wired from RC2 (P1D) to ground on the PICkit 1
starter kit (see Figure 5-22) to demonstrate the opera-
tion of the PIC16F684's PWM generator. The code
written for the application (cPWM.c) is quite simple,
with the only additions to cADC behg the TMR2
enable, the PWM enable in full-bridge output forward
mode,and the ADCValue read by the PIC MCU's
ADC passed to the PWM value register (CCPIRL).

*includle <Dic.h>
/* CPWU - Dia!,lay lhe PICkit Pot Input Value aB
r! LED Brightnesa Level

Thia Drogram aarq)leg the voltage oa RAo uElrlg
lhe ADc ana DiaDlaya lt usl.ng a Pwtt va1u6 on
trP1Dn (RC2). ThiE Program ia ale8lgn€al fo! the

rryk6 pletlko

-CONFIE (INTIO & IID1IDIS & PIIRTEN & IICIJRDIS &
I'NPROIECT \ & IINPROTECT & BORDIS & IESODIS &
FCMDTS) t

ints i , j , k t

Fieure 5-?? LED anode wired into the PICkil I
starter kit connector at RC2 (third pin from bottom)
with its cathode wired. to ground (bottom pin)

conal char PORTAVaIUe [8] = {0b010000, 0b100000,
0 b 0 1 0 0 0 0 , 0 b 0 0 0 1 0 0 ,
0 b 1 0 0 0 0 0 , 0 b 0 0 0 1 0 0 ,
0 b 0 0 0 1 0 0 , 0 b 0 0 0 0 1 0] ,

conBt cha! TRIgAValue [8] = {0b001111, 0b001111.
0 b 1 0 1 0 1 1 , 0 b 1 0 1 0 1 1 ,
0 b 0 1 1 0 1 1 , 0 b 0 1 1 0 1 1 ,
0 b 1 1 1 0 0 1 , 0 b 1 1 1 0 0 1) t

const char NOTPORIAI8I = lO, O, O. O, O, O, O, Oj t

nain()
t

PORTI = 0t
CltCoNo = 7r // E'tr'.a of.f Colllrarators

ANSEL = l.t // .tuat RAo is an Aralog Input
ADCONo = 0b00000001,

// Turn on the Alc
// BiE 7 - Left .tuEtified S.np1e
// Bil 6 - Itae ltDD
// BiE 4r2 - Channel 0
/ / BiE L - Do dot Stalt
// BfE 0 - Turn on ADC

ADCON1 = 0b00010000, // Seldrct lh€ Clock aE
Eoac / I

PR2 = 0x0EF, // wolk Eh€ Ful1 Range
T2coN = 0b00000100r // I'uR2 on wltsh No

PrescaLe!

iDt ADCSlale = 0t

iat ADgvalue = 0,.
iat Dlay = 53,

ccP1coN

Ptcu].coN
TRISC2 =
CCPR1IT -

caEe 1: / /
if (lGoDoNE)

ADCState++t

// KeeD rrack of ADC'
Operation

// r,ED Tlm€ oa D€lay
variabl€

tr1
X

F?{

$
t1
} J .

F{

7 V

F)

.'ts

s
F

,
I

6)
&
t-t

T U
F"t
vt

,-, "
}{

q

ry
,Zt
td
Ft

&3
F,.

€
tsa

gr

#3

= 0b01001100r / / EaabLe PwM with P1D
Active Eigh

- Ot ll No Tura on/off Delay
O, ll ttake RC2/P1D OutDuts Active
0x040,

// Stall PWU at Iatellnedliate valu€

whil€(l. == 1) // Loop Foieve:.
t

f , o r (i = 0 r i < 8 r i + +)
| / / Loop through Each of, lhe 8 I,EDS
fo r (j = 0 t j < D IaY t j ++) t

// Diaplay tron" Delay lJoop
if ((aDcvalue & (1 << t)) == 0)

PORIA = NOTPORTAIiI t
€1Ee

PORTA = PORtAValue [L] ,
TRIIIA e TRISAVaIlle lil t

, / / rof

ErtrlEch (A.DcstaEe) // ADc staEe uachine
t

caBe 0: // Finiaheil, star! N€xt salllrl€
GODONE = 1,
ADqgtat€++i
breakt

wait for ADc tso conDlete

// S€mp1e Finishetl
break;

case 2: // Sav€ SarDLe Value in nADCVaLu€tr

ADcltalu€ = ADRESII,
.e.Dcgtat€ - 0;
breakt

, / / rLcEiwa

S e c t i o n F i v e P I C I h F h A T + l l i c r o c o n t r o l l e n B u i t t - i n F u n c t i o n s 1 1 3

) / / e l ihw
l // Enat cPl'Dl

Two points should be noted about this application.
First, because I decided to use the full-bridge output
mode of the PWM generator, pins RC5 (P1A), RC4

An often overlooked feature of the PIC MCU is the
EEPROM data memory that is built into the flash-
based chips. EEPROM is an acronym for electrically
erasable programmable read-only memory. In the PIC
MCU, EEPROM consists of a number of bytes that
can be written to with the expectation that the value
written will still be there when the chip is powered
down and then powered back up some time later.This
expectation cannot be made of the static random
access memory (SRAM)-based file register's that
loose their values when the PIC MCU is powered
down. EEPROM data memory (often referred to as
srmply EEPROM) rs called nonvolatile to indicate that
it retains its contents even when powered down. Not
surpdsingly, the SRAM-based file registers are said to
be volatile. The flash program memory used in the PIC
MCU is a variation of EEPROM with sliehtlv differ-
ent operating characteristics.

To access the EEPROM data memory a series of
assembly language instructions are used. Fortunately,
the PICC Lite compiler provides two library functions
that can be used to read and wdte the EEPROM.
Their prototypes are as follows:

unsign€al cha! EEPROM,REA.D (unaign€al cha!
EEPROMAdItITeS s) ;

(P1B), and RC3 (P1C) cannot be used in the applica-
tion. If this were a stand-alone application, I would rec-
ornmend that you use the single-output mode of the
PWM generator (CCPICON loaded with 0b00001100)
and the LED connected to RC5 (P1A).The second
issue is that when I simulated the application (in
MPLAB IDE version 6.60), there wasn't a CCPR1L
register available; instead there was a CCPRL register,
which performs the same function. This discrepancy will
orobablv be fixed in later versions of MPLAB IDE.

EEPROU_WRITE(unsigneat cha! EEPROltIAalalresE,
ulsigneal ehar EEPRouData) i

The PIC16F684 has 256 bytes of EEPROM while
the PIC12F675 has 128 bytes of EEPROM. Therefore,
the maximum EEPROMAddress is 0xFF and 0x7F for
the PIC16F684 and PIC12F675, respectively. The data
value is a full eight bits, which means the value stored
at each EEPROM location is in the ranse of zero to
0xFF (255 decimal).

The typical uses for the EEPROM include saving
calibration values or saving constants instead of creat-
ing constants.To demonstrate the operation of the
EEPROM,I created cEEPROM.c, which will initialize
the EEPROM memory of a PIC16F684 with a stan-
dard pattern (0x00,OxFF, OxAA,0x55) so that on sub-
sequent power on cycles, the stored value will be
recognized as valid. The value at the next address (or
zero if this is the first power cycle) will be displayed on
the eight LEDS of the PICkit 1 starter kit.When the
button is pressed, the ADC will be read and the value
will be displayed on the LEDs, and when the button is
released, the ADC value will be stored in EEPROM
for the initial display when the PIC MCU powers up.

* incLude <pic.h>
/t CEEPROM - Display the Saveal EEPRO!{ Value/llDc
if Butston Preeseal

Thia program Displays a gaveat EEPROM value
ItnleEE th6 Button on RA3 is D!€ss€tl and then the
a.DC is Displayeal. When the Button is Released,
the ADC Value is Saveal in EEPROM. Thia coale is
baseal on ncADc.cr .

ttvke prealko
o 4 . 1 2 . 2 0

-CONFIG (I1!:!IO & WIITDIS & PWRTEN & !'ICIJRDIS &

I . = (k + 1) % 1 0 t

i f (0 - = k)
CCPR1IJ = ADCVaLue,

// Irl)date PVIM Every 100

// sinply Change the PWM
Value to Change the
I.ED Output'

Experiment U2*5toring and Fletrieving
Data Using EEPFOM Memorg

1 1 4 l , e 3 P I C @ l ' l C U E x o e r i m e n t s f o n t h e E v i l G e n i u s

I'TVpROTECT \ & IJNPROTECT & BORDIS & IESODIS & Lf (0 != RA3) // Button R€leaseal
FCUDIS) t

I n I I , J '
int AItCStsat€ = Ot ll KeeD Track of ADC Ol,€ratioa (
irlt ADgvalue = 0t
int Buttsonstat€ = 0i
lnt Dis91ay, olalDisDlayt

A.Dcgtale - 0t // Resel .e.DC Operation
if (0 != Butlonslate) // Diaplay HaE AI'C

value

EEPRO!{_!fRITE (4, Disl)lay),
DLaDlay - OlalDisDlayt
Buttonstale = 0i

// Button PreEs€al

0b011011, 0b011011, ADcgtsat€++t
0b111001 ,0b111001) r b roak i

conat char M)rPORTAISI = {0, 0, 0. 0, 0, 0, 0, 0}t case 1: // WaL1c fot }DC to cornplete

0 b 1 0 1 0 1 1 , 0 b 1 0 1 0 1 1 ,

// Loop Forever

GODONE =]'t

In in()
{

PORTA = O'
C!|CON0 = 7, // T.lrrd off comparator8
.aNSEL = 1r // .fus! RAo is an Ana1og Inpu!

AItCONo = 0b00000001r // T.Irln on lhe ADC
I / BLE 7 - IJeft iluslif,iedl Samlrl€
// Bil 5 - Use vDD
ll Bi,E 4r2 - chaDnel 0
/ / Bj.E L - Do nol SlarE
/ | BiE O - tnrrn on ADC

I

en

F.t

lsa

s

F
r'n

ht

ADcoNl = 0b00010000, // soromct the clock as To test the application rather than continually plug
FoEc/8

the PICkit 1 starter kit or the PIC16F684 in and out.
if ((0 == EEPRoT'r-READ (o)) && you can control the power to the PIC device in the

(o'rFF == EEI'Rorr READ(1)) && plCkit 1 starter kit by clicking on,.programmer" and

l3lfi ==ll|l!il_ffili]i,* thenon"Properties"intheMPLABlDE.rhewindow
Dispray = EEPRoM-READ (4) r that comes up will give you the option of turning on or

;t""
off the power to the PIC MCU in the PICkit 1 starter

EEpRoM-wRrrE (o , o) , kit's socket as well as passing a 2.5 kHz clock into the
EEpRo!'r,wRrrE (1 , onEr) r PIC MCU'S RA4 pin. 5
EEPROM WRITE(2, Ox55) '
EEpRoM_wRrrE (3, o,rAA), To test this application, burn the cEEPROM.c code 41-
EEpRoM wRrrE({, o)r // No rnirial value into the PIC16F684 and let the PICkit l starter kit exe-
Diaplay = 0t

whi le(1 == 1)
t

cute as it would normally. Next, press the PICkit 1
starter kit's button and turn the PICkit 1 starter kit's
potentiometer to some value (which will be displayed
on the PICkit 1 starter kit's eight LEDs). When the
button is released, the power up value will be dis-
played, but after cycling the power on, the PICkit 1

f o r (i = 0 r i < 8 r i + +)
{ / / Loor, thlough Each of th€ I IJEDS
for (j = 0, j < Dlayr j++),

ll Di-Bp�lay "On" D€Iay l,oop
i f ((D i B p I a y & (1 < < 1)) = = 0)

PORTA = NOTPORTAIiI t
e lg€

PORTA = PORTAVaIUe [i] t
ARISA = TRISAVaIU6 lil t

j ll Eof

stader kit the PIC16F684 will display the value previ- t"r,
ously set into the EEPROM using the button and the fia
potenbometer. ly

\
r,,.
H
*J

! ' . l

F-t
\J

$!
-*

n !
i4

tql
X

trd

0
r-{
F .

{0
Ft

if (lcoDorrE)
ADcstate++r // sarE)le Finishedl l&

bt€akr t\ I
c�ase 2. // Save sarq)le velue in trADcvalu€n

if (0 -- Buttonstale)
oLtlDiaDlay - Displayt

Buttonstate = Ii
DiaDl.ay = ADRESET
ADCgEate = 0t
breaki

) / / hct iwg
) / / e l ihw

I // Entt clDc

iat Dlay = 53i // LED Tine on D€Iay varlable | ll fi
conet cbar PORTAvalue [8l = {0b010000, 0b100000, }

0b010000 , 0b000100 , € I s€
0b100000, 0b000100, Ewilch (nlrcSlate) / / ADC State Machine
0 b 0 0 0 1 0 0 , 0 b 0 0 0 0 1 0) r t

conat char TRISAVaIUe [8] = {0b001111, 0b001111, case 0: // riaiBh€al, gEar! Next SsrDIe

S e c t i o n F i v e P I C l , h F h A q H i c r o c o n t r o l l e r B u i l t - i n F u n c t i o n s 1 1 5

S e c t i o n S i x

Interfacing Proietrts for the PIC@
M icroctrntroller

Before I start demonstrating how the PIC MCU inter-
faces to other digital electronic chips, I feel it would
be useful to review the basics of digital logic and note
some of the important characteristics to keep in mind
when you are creating applications with the PIC
MCU There are literally dozens of different logic
technologies, each with different operating character-

P lc16F68 4

7 4 5 1 3 8 3 t o 8 d e c o d e r

74LS174 hex D fL i p f l op

2N3906 PNP transistols

fwo-l ine, 16-colulrm LCD

1N914 (1N4148) s i l i con d iode

Seven-seghent coilnon cathode LED
displaY

1 Dual seven-seghent corlnon ano<Le
LED display

1 Seven-row, f ive-column LED matl ix
display

l k r es i s to r

DMM

NeedIe-nose pl ie!s

B!eadboa!d

Wil ing kit

2

1

470 f) r es i s to r s

100f,1 resistors

0 .01 pF capac i t o r s (any t ype)

16-button svri tch matrix keypad
with an eight- o! nine-pin bread-
boa!d inte!face

Breadboard-mountable SPDT sw j. tch
(E-Switch EGl903 reconanended)

Breadboard-mountable momentary On
push button

Three-cel l AA battery pack

Two-cel l AA battely pack

AA alkal ine battel ies

1

1

3

istics. I've listed the most popular ones in Thble 6-1.
For the different varieties of TTL, C, AC, and
HC/HCT logic families, the part number starts with
74, and the 4000 series of CMOS chips have four-digit
part numbers, starting with 4. Table 6.1 lists the char-
acteristics of the different types of logic chips you will
want to work with:

I

I

1

1

1

I

' , 1 7

Table 6-1
Digital Logic Technologies uith Electdcal Characteristic-5

thlp Tcpe PoLuer Supplg 6ate Delag lnput Threshold O Dutput I Output Output Sink

PIC MCU

TTL

LTTL

LS TTL

S TTL

AS TTL

ALS TTL

FTTL

c cMos
AC CMOS

HC/HCT

4000

V d d = 2 t o 5 . 5 V

Vcc : 4.5 to 5.5 V

Vcc - 4.5 to 5.5 V

Vcc : 4.5 to 5.5 V

Vcc - 4.75 to 5.25 V

Vcc : 4.5 to 5.5 V

Vcc = 4.5 to 5.5 V

Vcc = 4.5 to 5.5 V

V d d = 3 t o 1 5 V

V d d = 2 t o 6 V

V d d = 2 t o 6 V

V d d = 3 t o 1 5 V

vdd - 0.7

3 .3V

3.4v

3.4v

3.4v

Vcc-2V

VcN - 2V

3.5 V

0.9Vcc

Vcc-0.1V

Vcc-0.1V

vdd-0.1v

N/A

8 n s

15 ns

l0 ns

5 n s

2 n s

4ns

2 n s

50 ns

8ns

9 n s

30 ns

50% vdd

N/A

N/A

N/A

N/A

N/A

N/A

N/A

0.7Vcc

0.7Vcc

0.7Vcc

0.5 vdd

0.6 v
0.3 v
0.3 v
0.3 v
0.5 v
0.3 v
0.3 v
0.3 v
0.1Vcc

0.1 v
0.1 v
0.1 v

25 mA

\2 nA

5 m A

8 m A

40 mA

20 mA

8 m A

20 mA

3.3 mA*

50 mA

25 mA

0.8 mA*

VT

r !

H

F,r.{

htr

" t {

t l

6
t!F{

ti
$
.&,r

X
t"J

I

n
'.'d

t l

dll

X
.*l

Tt1e output sink ctfrrents are specified for a power
voltage of 5 volts If you increase the power supply
voltage of the indicated CMOS parts (noted with an
asterisk), you will also increase their output cunent
source and sink capabilities considerably.

In this table, I marked TTL input threshold voltage
as not applicable because TTL is current driven rather
voltage driven. You should assume that the current
drawn from the TTL input is 1 mA for a 0 or low input.
CMOS logic is voltage driven, so the input voltage
threshold specification is an appropriate parameter.

Knowing that each TTL input requires a current
sink ofjust over 1 mA and most TTL outputs can sink
up 20 mA, you might expect the maximum number of
TTL inputs ddven by a single output (which is called
fanout) to be 78 or 19. The actual maximum fanout is
eight to ensure there is a comfortable rnargin in the
output to be able to pull down each output in a timely
manner. Practically, I would recommend that you try
to keep the number of inputs driven by an output to
two but never exceed four. Some different technolo-
gies that you will work with do not have the same elec-
trical drive characteristics and may not be designed to
pull down eight inputs of another technology;so, to be
on the safe side, always be very conservative with the
number of inputs you drive with a single output.

The output current source capability is not specified
because many early chips were only able to sink cur-
rent. This was all that was required for TTL and it
allowed extemal devices, such as LEDs to be driven
from the logic gate's output without any additional
hardware, and it simplified the design of the first
MOSFET:based logic chips. The asterisk (*) in Table
6.1 indicates that the sink cuffent specification is for 5
volts of power; changing the power supply voltage will
change the maximum current sink capability as well.

There are three basic output types: totem pole, open
collector, and the tristate driver, which is presented
later in this chapter. In cases where multiple outputs
are combined, different output t)?es shorj'ld never be
combined due to possible bus contention.

The TTL output (see Figure 6-1) is known as a
ntem pole outputbecause of its resemblance to its
namesake. If you were to connect a totem pole output
to a TTL input and measure the voltage at the input or
output pins, you would see a high voltage, which the
gate connected to the input would recognize as a 1.
When a low voltage is output, the TTL gate will
respond as if a 0 was input. What you are not measur-
ing is the current flow between the two pins.

"High"

Output
Control
Current

"Low"

Output
Control
Current

Output
Pin, Can
Either Source
or Sink
Current

Figure 6-'l TTL totem pole output

1 1 8 l , P 3 P I C @ l l C l J E x o e r i m e n t s f o r t h e E v i I G e n i u s

Output
Control
Current

Output
Pin,
NPN
Transistor
Can ONLY
Pul l Pin to
Ground

Figure 6-a TTL open-collector output

There is another type of output that does not source
any current and is known as the oper?- collector (or
open-drain for CMOS logic) output (see Figure 6-2).
This output typically has two uses. The first pulls down
voltages that are greater than the positive voltage
applied to the chip. Normally these voltages are less
than 15 V and can source only 10 to 20 mA. For higher
currents and voltages, discrete transistors must be
used. The second use is for dotted AND busses in
which multiple open-collector/open-drain outputs are
tied together with a single pull-up-the output is at a
high-voltage level as long as all the output transistors
are off.

Totem pole outputs are the recommended default
gate output because you can easily check voltage levels
between intermediate gates in a logic string. You can-
not use a volt meter or logic probe to check the logic
levels if a TTL gate is driven by an open-collector out-
put. Additionally, if a CMOS input is connected to an

Effective Operation
Sional
,^-__,,, _-,- ulrpu

<j"'p"r I "'
I

Tn-gate Conirol

Logic Symbol

Figure 6-3 Tri-state driver

open-collector/open-drain output then there will be no
high voltage for the gate to operate. An open-collec-
tor/open-drain output can be used with CMOS inputs
if a pull-up (typically 10k in value) is added to the ouf
put.The only cases where an open-collector/open-
drain outpul should be used is when you are wiring a
dotted AND gate or are switching a power supply that
is operating at a voltage different from the gate's
power.

The third output type,the tri-state driver, can nol
only source or sink current but can be turned off to
electrically isolate itself from the circuit that it is con-
nected to (see Figure 6-3). This type of output drivers
is used on the PIC MCU IiO pins.

Except in the condition of open-collector/open-
drain drivers being used to ddve CMOS inputs without
a pull-up resistor, these three output types can work
with all of the digital logic inputs listed in Table 6-1.

t , : , !

i'i'i

:-*1

:.

t - ; : .

t - r i

;,.€

h'r'
t'fi

ai,1

Experiment q3 - Driving a Seven-Segment LED Displag
Directlg from the PlElSFEBq

P rc 16! '68 4

Seven-segrmeot common
cathode LED display

0 .01 pF capac i t o r (any
tYpe)

Breadboa!d-mountable
SPDT switch (E-Switch
8G1903 recomnended)

Two-cel l AA battery
pack

AA batteriesDMM

Need le -nose p l i e r s

Breadboard

Wiring kit

S e c t i o n 5 i x I n t e r f a c i n g P r o j e c t s f o r t h e P I C @ t l C U 1 1 9

I found this experiment to be very satisfying. In about
a half-hour, I was able to make it display each of the 10
digits on a seven-segment LED, with a half-second
delay in between. This included modifying code that I
stole from other applications to execute the applica-
tion finding out the wiring was nonstandard on the
seven-segment LED I used for my prototype. I expect
that you will be able to create your own version of this
application and see how easy it is to create a useful dis-
play using a single PIC microcontroller in short order.

The basis for the experiment is the seven-segment
LED display (see Figure 6-4), which is normally wired
rn a common cathode or common anode configuration.
The schematic diagram for the seven-segment LED
display in Figure 6-4 shows how a common anode dis-
play would be wired. Even if you have a nonstandard
seven-segment LED display (as I have), you can plot
out the common pins and the pins for each segment in
just a few minutes.

The basic 10 digits can be displayed by turning on
the LEDS for the different segments as shown in Fig-
ure 6-5. Additional characters can be produced using
different segments. Although other than the six most
significant hexadecimal digits (A, B, C, D, E, and F),
you will be hard pressed to come up with all the alpha-
betic characters that look good on this display (for
example, M). The liquid crystal display (LCD) display
discussed later in this section is a much better tool for
this task.

The circuit for this application, not unexpectedly,
consists of a PIC16F684, powered by two alkaline
radio batteries and driving a seven-segment LED dis-
play (Figure 6-6), and can be wired very simply on a
breadboard (Figure 6-7).The actual circuit is very simi-
lar to others that you have created although with a dif-
ferent LED display. Simitarly, the application code
(cTSegment.c) should not hold any surprises for you.

3

Figure 6-q Seven-segment LED display */

7-Segment
LED

Figure 6-6 S ev en-s e gment L E D circuit

Figure 6-7 Single seven-segment LED experiment
circuit on a breadboard

* incluale <pic.h>
/* c?SegmenE.c - RoIl thlough 10 Digits on 7
Segment LED Diaplay

Thia program will aliaplay each of the Decilra1 10
dligilB on a 7 Segmen! Cormon Calhodle LED
Display.

Earalware Notes:

nl'k€ pr€ilko
0 { . 1 1 . 1 0

aA5 - Segment a
RC5 - Segrnent b
RC{ - Seg:nent c
RC3 - Segment tl

: Rc2 - segment e
'

Rc1 - seqment f
Rco - gegment g

Fiqure 5-5 Seven-segment numbers

CONFIG(ITVIIO & I'IDTDIS & PWRTEN & MCLRDIS &
IINPROTECT \

& UNPRCTIIECT & BORDIS & IESODIS & FCIIIDIS) t

i n t i , i , k t

codst char LEDDigit t10l = {

L20 l , e 3 P I C o l l C l J E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

// RRRRRRR - PIC15F584 Pin
// ACCCCCC
/ I 554321-0
// abcdef,g - LED Segmonl

0b1111110,
0 b 0 1 1 0 0 0 0 ,
0b1101101,
0b1111001,
0 b 0 1 1 0 0 1 1 ,
0b1011011,
0b1011111,
0 b 1 1 1 0 0 0 0 ,
0b1111111,
ob1].11011) t

// DLgit zeto
/ / Digt t One
// Digir rwo
// Digit Three
/ / Diq i t Fou!
/ / Diq i t F ive
/ / Dis i t Six
// Digit Seven
// Disit Eight
/ / Dis i t Nine

/ / TIlxIL oft Conparatsora
// Tuln of,f, tlDC
// RA5 iB an Oulput
// A1t BibB of PORTC are

olrtputa

fo! (i = 0r i < 255r i++) / / Sinl l ' le Delay l ,oop
fo r (j = 0 r j < a29 , j ++ \ ,

RAs = LEDDisi! [k] >> 6, //
li;"??!"

"t"" ""

PORTC = rEDDisi t tk l & 0x03F,

k = (k + 1) % 10, ,,
llillil"olr*,"nr"

l / / e l lhv
, // E'rdl cTgegmenl

In the application code, I do want to point out that I
stored the digit pattems in a 10-element aray and that
I tried to make the bit specifications as simple as possi-
ble for the programmer (including marking the seg-
ment letters and the I/O pin over each bit of the
array). With only seven wires running from the PIC
MCU to the display, I felt I could work at making the
program as simple as possible for the programmer to
coffectly define the set pin outputs required for each
disit.

nain ()
t

PORTA = 0,
PORTC = 0,
C!|CON0 = 7,
ANSEIJ - 0,
TRISA = 0b01U11;
TRIsc = 0b000000t

Ld

i-r

:

:!.;4
r.

' t l

n
L

i t

. t)

p

Experiment qq - Multiple Seven-Segment LED Bisplags

k = 0r / / Star l a l Dig i ts 0

$ht1e(1 -- !> / / Loop Foreve!

Needle-oose pl j ,ers

Breadboa!d

Wiring kit

There are a number of ways to add multiple seven-seg-
ment LED displays to an application. You could route
seven (or eight, if the decimal point is required) PIC
MCUs to each display. You could use a comrnercially
available seven-segment LED driver chip (the7447 is
most commonly used) for each display. You could also
use a commercially available multidisplay controller

Prc16F68 4

2N3906 PNP t lansistors

Dual seven-segmedt com-
mo!! anode LED display

1o o,f) resistols

0 . 01 FF capac i t o r (any
tYpe)

B!eadboa!d-mountable
SPDT switch (E-Switch
8G1903 recornmended)

Two-cel l AA battely
pack

AA alkal ine battel ies

chip (such as the MAXIM MAX7219). Or you could
program the application's PIC MCU to sequence
through the displays. The latter method is surprisingly
easy to do and involves the least amount of hardware.
There are a couple of points that you should be aware
ol however, that I will present in this experiment.

S e c t i o n S i x I n t e n f a c i n g P r o j e c t s f o r t h e P I C @ t l C u L2t

The first is, you cannot drive the common anode or
cathode pin using a PIC MCU I/O pin.The PIC MCU
I/O pin cannot source or sink enough current to light
all seven segments. Instead, I use a common NPN
bipolar transistor for common cathode (see Figure 6-8)
displays or a PNP bipolar transistor for common
anode displays.These transistors can be controlled by
either a PIC MCU IiO pin with a proper base-current-
limiting transistor or by a data-selector logic chip (as I
will show in the next section). You might be surprised
to discover that common anode displays are most
often used because they can be used with 74xr series
logic data-selector chips and PNP bipolar transistors.

To sequence through multiple seven-segment LED
displays, the controlling interface device outputs the
value for a specitic display while enabling only its com-
mon pin transistor as shown in Figure 6-8.To give the
appearance that all the displays are active at the same
time and avoid flickering, you must run through the
entire sequence at least 50 times per second. This
means that for the four seven-segment display exam-
ple, each display can be active for a maximum of 5 ms

To demonstrate the operation of multiple seven-
segment LED displays,I created the simple circuit
shown in Figure 6-9. I have not been specific on the
type of dual common anode LED display to use
because quite a bit of variance exists in different pafis
and you may find some inexpensive ones that are
wired differently than the standard displays.All dis-
plays should have connections for the segments as well
as common anodes for each digit display.The displays
that I used wire a single pin to each segment, necessi-
tating two connections for each segment, which
resulted in the rather messy wiring of the circuit as
seen in Fieure 6-10.

Second

---'-----*

<-

Fourth Digit Displayed Third Digit Displayed

Figure 6-8 Multiple LED operation

Figure 6-9 Dual seven-segment LED circuit

Figure 6-10 Breadboard wiring for clual seven-
segment LED display circuit

#incluale <pic.h>
/' c2*?Seg.c - Ro11 through 15
7 Segment LED Display

ThiB program nri11 aliBplay each
aligits on two 7 Segm€nt Codfiron
Displays.

DigitE orl a Dual

of the Her. 15
Cathoal€ LED

The codle/wiling is baseat on "cTsegment.c'i Noting
that Nesativ€ Activ€ LED wiring is useat.

Eardlware Notes:

aA5 -

RC5 -

RCll -

RC3 -

RC2 -

RC1 -

RCo -

Segment a
Segnent b
S€gment c
segment tt
Segnent e
Segiment f
segment g

Right 7 segment Display
Ireft 7 segment Display

Inyke prealko
04 .42 .09

r,m
ffiffi

Dual 7-Segment Common
Anode LED Display

1 I

L22 l , E l P f C @ C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

_coNrlc (Ilv�rlo & v{EtlDIs & P!{R!EN & MCLRDIS &
I'NPROTECT \

& I'NPRCIIIECT & BOBDIS & IESODIS & FCUDIS) '

L , j ,

DisDlal^Ialue, DisDLeylEDt

RA5 = r,EDDisit [(Diapla]ryalue >> {) & 0r0Fl >> 5t
PORlrc = IrEDDigtt t (Dl.ap1ar/Va1u€ >> 4) & 0x0Fl &

0x03F,
| / / f i
TRISA = TRISA ^ 0b0111ur // Sloap leftlBighl
PORTA = PORTA & 0b1U100, // Make gure BitE

DiEplayLED = DisDIayIrED ^ lt // oE}ret DI'LE
Ne'I!

t l t

t d

Errt

*, }

t_* -

p

!

's

l 1
p '

ffi

41X

r*,t

tsr€

-.{:

t t *

l'at
iat

)
eLse

// RRRRRRR

/ / 5543210

LEDDigit tl = {
- PIC16F58{ Pin

segmellt

Tinids
10 ma Delay
IJoop
Tining

// Increm€nt lhe
counler

for another 1/4 geconal

// abctl€fg - r,ED
0b0000001 ,
0b1001111,
0b0010010 ,
0b0000110,
0b1001100,
0b0100100 ,
0b0100000 ,
0b0001111,
0b0000000 ,
0b0001100 ,
0b0 001000,
0b1100000 ,
0b0110001 ,
0b1000010,
0b0110000 ,
0b0111000) t

nain ()
{

l
i f
t

= j + 1r // Inc!€menl th€ counler?
(25 == j) / / 1/4 Seconal Paaaeal?

NoPOr / / Usef l fo! 10 ma
f o r (i = 0 r i < 5 5 0 , i + +) r / /

NoPO, / / usei l for 10 mB

Diaplayvalue++t

j = 0t // rte3el
I / / 1 A

] / / e l ihw
| // E^d. c2x?Seg

PORTA = 0,
POREC = 0,
CMCONo = tt // $tra| of,.f Cornpalatola
ANSEIJ = 0, ll $)zn otf. AN
TRISA = 0b011101t // R}5/RA1/RA0 are OulDuta
TRISC = 0b000000; / / Al t Bi tsB of POBTC are

Outputa

The basic application, incrementing the display once
every 250 ms to count from 0x00 to OXFF, is quite sim-
ple and is called c2xTSeg.c.There really should be no
surpdses in the code other than the fact that segment
values for each bit are reversed from cTSegment.c
because the PIC MCU are connected to the display's
cathodes instead of anodes. The two NOP0;instruc-
tions around the final for loop were placed there to
give me somewhere to break and to ensure the appli-
cation delayed 10 ms, giving a 50 times per second
update speed for the two displays.

After creating c2x7Seg.c, I thought it would be fun
to come up with a czxTSegPc in which the lighted seg-
ment seems to run around the two displays. These
types of displays are quite easy to write and a lot of fun
to watch. After watching this, I can't help but think
there must be a simple graphical game that could be
created using seven-segment LED displays.

Di aplat4lalue = 0t
DiapIaYLED = 0i

w h i l e (l = = 1)
{

// Stalt DiBplayl.ng at 0x00
/ / DlB!,lay lhe 1a fLrat

// IJooP Forever

if (0 == DiEDlayrJED)
{

RA5 = IJEDDigir lDiaDla]ryalu€ & 0x0Fl >> 5,
PORTC = rJEDDl.ltLr[Dlsplat/Value & 0x0F1 & 0x03r',

S e c t i o n 5 i x I n t e n f a c i n g P r o j e c t s f o r t h e P I C @ l l C U L23

Experiment r-15-LED Matrix Displags

1

1

t

Need le -nose p l i e ! s

B!eadboard

Wi r i ng k i t

Seven-segment LED displays are excellent for display-
ing numeric data, but when you have character data,
their usefulness reaches the end very quickly.A num-
ber of different a/p hanumeric LED displzys exist. The
most basic type is the 14-segment LED display, which
is similar to the seven-segment display that you just
experimented with. However, due to the specific posi-
lions of different segments, it's difficult to make all the
different characters recognizable on a 14-segment dis-
play.T\e dot-matrix LED display allows arbitrary
characters to be displayed while using fewer I/O pins
than the 14-segment LED display, but it requires more
work to use and plan how to build your characters.

The dot-matrix LED display (which I call just an
LED matrix) consists of a number of LEDs arranged
with their anodes and cathodes as shown in Figure 6-
11. By pulling a column connection to positive voltage,
individual LEDs can be lit by connecting the appropri-
ate row anodes to ground. For this experiment, I used a
5-column by 7-row LED matrix, but if you look
around, you will discover a number of different sizes
are available. Regardless of their size, they will be
driven using the same methodology as shown here.

Using a 4700 resistor, the battery clip, and a couple
of wires, you can figure out the wiring of your display. I
started by connecting pin 1 (the top left corner) to neg-
ative voltage and then scanning the pins to try and
identify the seven anodes. I was not successful at light
ing any LEDs, so I repeated the procedure with pin 1
connected to positive voltage. Once I started getting
LEDS to light, it was a simple task of identiflng the
functions of the various pins and mapping them out on

P lc16F68 4

7 4 S I 3 8 3 t o 8 d e c o d e r

Seven-!ow, f ive-col,umn
LED display

4?OO tes i s t o l s

0 .0 I pF capac i t o ! (any
tYpe)

B!eadboa!d-mountable
SPD! switch (E-Switch
8G1903 reconmended)

thlee-cel1 AA battely
p ack

AA a l ka l i ne ba t t e r i es

a sheet of paper. In doing this, I discovered that the
rows consisted of the LED'S anodes and the columns
were the LED'S cathodes.

The 5X7-LED matrix display that I used requires
12 pins to operate;although the PIC16F684 is quoted
as having 12 I/O pins, it actually has only 11 I/O pins
and one input pin. RA3 can only be used as an input,
so to take advantage of all 35 LEDs of the matrix that
I used, I had to come up with some way to multiply the

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Figure 6-11 LED matrLr

ColColColColCol

L 2 4 l , E 3 P I C @ I ' l C l J E x p e r i m e n t s f o r t h e E v i I G e n i u s

5x7 LED

Figure 6-l? MatrLr circuit

number of operational pins. In this application, I used
a 74S138 decoder to provide the column negative
power supply select. The selection of the S technology
decoder was selected over the more common LS tech-
nology to sink the most cunent (LEDS fully lit) as pos-
sible. This allowed me to use three pins to select
between five columns, requidng a total of l0 pins to
control the LED matrix.The circuit that I came up
with for this application is shown in Figure 6-12. Note
that I tried to arrange the wiring in such a way that the
anodes (rows) are all driven by PORTC (with the sev-
enth bit being passed to RA4), while the cathode's
(columns) pull-down decoder is selected by the three
least significant bits of PORTA.

To test out my mapping of the LED matrix and how
I presumed to wire the application (see Figure 6-13),I
created cMatrix 1.c, which turns on each LED in the
matrix in sequence.

With the LED matrix and driving circuit behaving
as I expected,I then created cMatdx 2.c in which a col-

Fisure 613 5x7 LED matrix driven by a
PICl6F684 and 745126

umn of LEDs is wdtten at the same time and each col-
umn is scanned.This is similar to the dual seven-seg-
ment LED display experiment and gives the
appearance that each column is active at the same
time. cMatrix 2.c runs through the first four characters
of tlie alphabet.

#includle <pic.h>
/* cMatr ix 2.c - Display Soine Let lera on 5x7
r,ED DiEplay

8 A 0 - D e c o a l e ! 0 g e l e c t
RA1 - Decoale! 1 Select
R t 2 - D e c o a l e r 2 S e l e c t
aA{ - Anoale 5
Rco - Anoale 0
Rc1 - A$oale 1
Rc2 - Alotl€ 2
Rc3 - Atroale 3
Rc{ - Alotl€ 4
Rc5 - Anoit€ 5

nyke predko
0 4 . 1 2 . 0 4

-CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \

& UNPROTECT & BORDIS & IESODIS & FCfiDIS),

int i , j , k , n, Dlay, CurLet ter t

const char lJ€t tsers[] = {0b1111110, / / Star t wi th

0 b 0 0 1 0 0 0 1 ,
0 b 0 0 1 0 0 0 1 .
0 b 1 1 1 1 1 1 0 ,
0 b 0 0 0 0 0 0 0 .
0b1111111. / / Next r ,et ter

0 b 1 0 0 L 0 0 1 ,
0 b 1 0 0 1 0 0 1 ,
0 b 0 1 1 0 1 1 0 ,
0 b 0 0 0 0 0 0 0 ,
obo1,141,1,o, // nct

0 b 1 0 0 0 0 0 1 ,
0 b 1 0 0 0 0 0 1 ,
0 b 0 1 0 0 0 1 0 ,
0 b 0 0 0 0 0 0 0 ,
0b1111111, / / Einal

0 b 1 0 0 0 0 0 1 .
0 b 1 0 0 0 0 0 1 ,
0 b 0 1 1 1 1 1 0 ,
0 b 0 0 0 0 0 0 0 1 t

nain()
{

PORTA = 0i
PoRTc = 0b000001t
CMCOIiIo = 7t
a.NsEt = 0 t
TRrSA = 0b101000t
TRrSC = 0t

Cur let ter = 0t

/ / ALl Bi ts are Low
// stalt with Top lreft
ll altrrL off compalatols
// $rrn off rrDc
// na5/RA3 Input8

/ / s tar t wi t 'h 'A"

-:

- --r-

l
I

74L5174

S e c t i o n 5 i x I n t e r f a c i n g P r o j e c t s f o r t h e P I C o l l C l J 1 2 5

while(J. == al ll Iroop tlorever
t

for (Dlay = 0r Dlay < 50r Dlay++)
f o r (i = 0 r i < 4 , i + +)
t // 20 mB to Diaplay Character

j = Leteera[(Cur lJet t€r * 5) + i l t
k = (j > > 2) e 0 b 0 1 0 0 0 0 ,
P O R T C = j & 0 b 1 U 1 1 1 ,
P O R I T A = k + i t
f o r (n = 0 t n < 2 5 9 r n + +) r / / 4

| / / tof

Cur l fet te! = (Cur let ter + 1, , e.4, l l

) / / e l ihw
| / / ED,d cMatrix 2

Need le -nose p l i e r s

B!eadboard

Wiring kit

Creating applications with LCDS has a reputation for
being difficulr. I would disagree with this statement,
noting that if you follow a simple set of guidelines you
really won't have any troubles. The circuit presented in
this application can be built and programmed in as lit-
tle as 5 minutes. And, if you would like to enhance (or
change) the output message or add more functionality
to the application, you will find it to be quite easy (as I
will demonstrate in the next experiment).

In 123 Robotics Etcperiments for the Evil Genius,I
included a fairly comprehensive explanation of how to
interface to Hitachi 44780 controlled LCDs. I am not
going to repeat that information here but will point
you to my web site (www.myke.com) where you'll find
information regarding interfacing to these LCDs and

It is interesting to see that the character display is
not substantially longer or more complex than the first
set of code that moves the lit LED across the LED
matrix. Most of the work was spent tuning the 4 ms
delay in the display loop (the concept used was to
cycle through each character over 20 ms, requiring 50
repetitions to display the character for 1 second).After
mapping the LED matrix pins and before wiring the
application, I spent a few moments thinking how to
most efficiently wire the application and wfiting out
some code to figure out the wiring arrangement that
would keep the code to as few instructions as possible.

r. Prcr.5F68 4
1 Two-l ine, 16-column LCD

1 10k breadboard-mount-
able potentiometer

1 0 .01 pF capac i t o r (any
tYpe)

Breadboa!d-mountable
SPDT switch (E-Switch
8G1903 recomrnended)

Breadboard-mountable
momeotary On push button

Three-ceLI AA battely
pack

3 AA alka1i.ne batt eries

programming them.Along with these two references,
you'll find additional references on 44780-based LCDs.
I should point out that 44780-based LCDS are text
based only and have a 14- or 16-pin interface, and you
can probably find some surplus or old products forjust
a dollar or two. Graphic LCDs have a different inter-
face and require a completely different interface.

The circuit that I used for this experiment is shown
in Figure 6-14, and there are two things I want to bring
to your attention. Most LCDs require 4.5 to 5.5 volts,
not the 3 volts I have used up to this point on bread-
board circuits. To provide the LCD with the correct
voltage level,I used three alkaline radio batteries in a
series clip to provide 4.5 volts. If rechargeable batteries
are to be used (which produce 1.2 volts per cell, instead

mE Delay

Increnent
IJettser

ExFeriment t l6-LCD Displag

tri

, . 1

;'-':,:

t . a

- ; - i

:;i.a

r , : , f

L26 l , e 3 P I C @ l ' 1 C l - J E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

This Ptoglaln rnitializes tlitachi 44780 Baaedl LcD
in 4 Bit Moate anat then vrriues a sfurD1e atring to
it. The simulator nras useal to tir€ alelay values.

'.cD write Infomalion can be founal at
hltp: / /www. rnyk€. con

rnyke prealko
0 4 . 1 1 . 0 8

CONFIG(INEIO & WDTDIS & PITRTEN & I'ICLRDIS &
IINPROTECT \

& UNPROTEC!! & BORDIS & IESODIS & FCIiIDIS) i

in t i , j , k , n i / / Use c lobal var iables for
Debug

// f23t567B91f23455 <- usedt to organize Display
const char TogMessage [l = r r PIc Mcu " i

const char BolMessagel] = " Evil- Genius "i

Figute 6-lq LCD circuit

Fisure 6-15 LCD breadboard

of the 1.5 volts per cell of alkaline batteries), you will
have to use four in series.

Normally when I present an LCD application for
the first time,I use the full eight-bit interface.In this
case, because the PIC16F684 only has 11 pins with out-
put capability, there would be no pins left for interfac-
ing.Therefore,I use a four-bit interface. To reduce the
required pin count to six,I also tied the positive active
read, negative active wrlte (RJW) low and don't poll the
LCD. The six-bir interface uses all of PORTC,leaving
PORIA free for interfacing to other devices.

When you look at the schematic in Figure 6-14, you
might be surprised at some of the pin wiring choices. I
wanted to make sure that the circuit could be wired
easily and clearly on the breadboard (see Figure 6-15).
Secondly, I wanted to arange the bits so that the pro-
gram could handle them easily with a minimum of pro-
cessing.

#incluate <Dic.h>
/* c lcD.c - wr i te a Str ing to a 4 Bi t Ei . tachi
4{780 LCD r /E

RC3:RCo -

RC4
RC5

+def ine E Rc4

*ilefine Rs RC5

I . c D I / O D 7 : D 4 (P i n s 1 { : 1 1)
I.cD E clocking Pin
LCD R/S PiN

// Define the LCD
contlof Pins

const int TwenEf.nr6 = 4250i // Declare a
for 20 ms

const int F ivems = 300t
consl int TvroHundlrealus = 10t

r,cDwrite (int tcDData, iflt Rsvalue)

{

con8tant
Delay

PORTC = (',CDDaCa >> {) & OxoE i // Gel Hish {
Bi ts f ,or
OutsI)ul

/ / Toggle the High 4
Bits out

0x0Ft // GeL Low 4 Bils for
Output

/ / aoggfe the TJow 4
Bits Out

RS = Rsvaluet
E - 1 r E = 0 t

PORTC = IrCDData &

RS = Rsvaluet
E = 1 t E = 0 ,

i f ((0 == (LCDData & oxFc)) && (0 == RsvaLue))
n = Eivemsi // Set Delay IntervaL

else
n = Tvollunalrealu s t

for (k = 0r k < nt k++) i / / DeTay fo ' . c lEractel

) // Enal LcDlsrite

nain()
t

PoRTc = 0, // Start vrith Ev€rything !or,t
CMCONo = 7t // B)tn otf Comparators
aNSEr, = 0t // Turn off iulc
TRISC = 0t // Alf of PORTC are Outputs

/ / a')iEi.aJ-i,ze LcD accortling to the web Page
j = tltenttzns,
for (i = 0r i < j r i++)r / / wai t f ,or IJCD to

Power Up

-:

I
I

S e c t i o n S i x I n t e n f a c i n g P r o j e c t s f o r t h e P I C @ l { C U L2 '7

i?. r:

qi;

--},,:

i"{

#-4

.r-.9

f ! i

j.=.*r

a :

.#
! ' ?

-"1

3.,.{

x
:

i , :

l'a
, 1 ..-

,:'€

i.;
, i ! !

i...-;

PORTC = 3,

E = T ; E = U '

J = Fivemat
f o r (i = 0 r i < j t

E = 1 r E = 0 t
J - TwoHunalrealuBt
f o r (i = 0 r i < j ,

E = r ; ! = u t

/ / s tar t In i l ia l izal ion

// Senal R€a€t. Cdunanal

i + +) t

// Repeat Reae! Colnnanfl

i + +) t

// Rep€at Reset cqmanal
Third Tine

IJcDwl i le(0b0000U10, 0) ,

for (i = 0t TopMessagel i]
IrCDWril€ (TopMeEEage I i l ,

LcDwri te(0b11000000, 0) t

for (i = 0, Botuessage l i l
LCDWrite (BotMe€sage Ii] ,

w h i l € (l = = 1) t

) // Erd cr,cD

// ?urn On IJCD antl
Enable Culsor

t = 0 r i + +)

// Move Curaor !o
th6 geconal].ine

l = 0 r i + +)

/ / Ein ishedj = TrroHunalrealus;
f o r (i = 0 , i < j r i ++) ,

PORTC = 2, // Inittalize LCD 4 Bir
Mode

E = r t E = u t
j = TwoHurar€aluat
f o r (i = 0 r i < j r i ++) t

IJCDWritse (0b00101000, Ott / l

LcDvlr i t€(0b00000001, 0), / /

I ,cDwrite (0b00000110, 0), / /

Need le -nose pL ie r s

B!eadboard

Wiring kit

People are usually surprised to find out that producing
random numbers in a computer system is an incredibly
hard thing to do. Probably one of the most creative
methods for generating random numbers was created
by Silicon Graphics, Inc. engineers who pointed a video
camera at a "Lava Lamp" and used the digitized out-
put as a random number. Computers are poor random
number generators simply because they are designed
to work the same wav everv time. and for most com-

LCD displays in electronic applications are useful
from a number of perspectives; first they allow you to
create verbose, useful messages either to yourself (as
debugging iniormation) or to the user. Secondly, they
add a level of commercialization to an aoDlication that
gives the appearance rhal a lot more woik has gone into
it than actually has. Although requiring a bit more work
to add to a microcontroller project than, say a few LEDs,
LCDs can add a lot to your application, and I recom-
mend that you consider them whenever it is possible.

PIC16F58 4

tvro-l j ,ne, I6-column LCD

10k bleadboa!d-mount-
able potenti ,ometer

0 . 0 l pF capac i t o r (any
tYp€)

Breadboard-mountable
SPDf st{ i tch (E-Switch
8G1903 reconmended)

B!eadboard-mountable
momentary On push but-
ton

fhree-cel1 AA battery
pack

AA a l ka l i ne ba t t e r i es

puter applications, random results are not a good thing.
Although very few large (on the order of billions of
bits) random numbers are required within microcon-
troller applications, you'll discover that there are a
number of applications where a few bits of random
data would be useful. Computer games are a common
computer application that uses random numbers, as are
other applications that interface to humans The ele-
ment of randomness can make a game more interest-

I.CD is { Bit
!/t. 2 tJlne

Clear]JCD

llove Curao! After
Each Characle!

Experiment Q7-Producing Flandsm Numbers

I

1

1

L28 l , P 3 P I C @ l ' l C l - J E x p e r i m e n t s f o r t h e E v i l G e n i u s

ing or help keep an application fresh to the user. In
this experiment,I will show you how the users them-
selves can be used to create the random numbers for
an application.

This might seem like a paradox How can a user
generate random numbers for an application that
apparently behaves randomly for the user? The answer
comes from the unexpected time the user takes to
respond to program output. By running the TMRO
eight-bit timer at full speed and adding a debounced
button on a pulled-up input pin to the LCD display
application, a computer system that generates and dis-
plays random numbers can be built very easily (see
Figure 6-16).

In cRandom.c, I have enabled the PORIA pull-ups
to allow me to wire to ground a simple momentary on
switch as my random input device. When the user
pushes the button to produce a new random number,
the cunent value of TMR0 is read and converted into
a decimal number to display on the LCD.

This technique is very simple and, other than
adding the switch, doesn't require any extra hardware.
High-end randomizers produce their data from such

Need le -nose p l i e r s

B!eadboard

Wiring kit

A six-wire LCD interface is a great improvement over
the full 11-wire original interface. It's still a lot of I/O
pins, especially for the lirnited number in the
PIC16F684 or the PICIZF675 (which also came with
the PICkitrM 1 starter kit).What is needed is some way
of converting a serial signal.A serial signal would be
ideal, and a number of serial LCD interfaces are on the

Figure 6-'f E Random circuit

esoteric sources as the electrical noise inside a diode.
Granted, the high-end randomizers can produce essen-
tially limitless strings of random bits, but for most PIC
microcontroller applications, the eight bits that are
produced every time a user presses a button are more
than adequate.

l

. l

l . , i,:.
Prc12F6?5 ' r,l

74LS174 hex D f t l p f l , op

. . :

Experiment t-.18-Ttno-Bit LED Displag

1N914 (1N4148) s i l i con
diode

Two-l ine, 15-column LCD

1k res i s to r

10k breadboard-mount-
able potent iometer

0 .01 pF capac i t o r (anY
t l pe)

Breadboa!d-mountable
SPD! switch (E-Switch
EG1903 recor nended)

Three-ceLl AA battery

market. These devices have three drawbacks. One is
their cost: These interfaces can cost anywhere from $20
to $100. Secondly, they do not work at the speed of the
microcontroller. Lastly, neither the PIC16F684 nor the
PICIZF675 have an asynchronous serial interface.
These issues do not eliminate the use of a serial LCD
interface;they simply make its use more problematic.

I

1

I

1

1

1

-Ti.:

I

S e c t i o n S i x I n t e n f a c i n g P r o j e c t s f o n t h e P I C @ l l C U 1 2 9

A better solution is the two-wire synchJonous serial
interface shown in Figure 6-17. The shift register
allows the minimal condition six-wire intedace to be
used with the LCD module. This circuit combines the
most significant bit (which should only be set when all
the other bits are loaded) and the data line to form the
E clock. This method is obviously quite a bit slower
than the method demonstrated in the previous experi-
ment, but for most applications, the speed is not a
major concern.

The actual operating waveforms are shown in Fig-
ure 6-18. First the contents of the shift register are
cleared by shifting in six zeros and a high bit. Next the
RS bit followed by the four data bits for the nibble are
passed to the 74LS174, which is wired as a shift regis-
ter. When the data is valid, the data line is strobed high
and low to load and store the new character or instruc-
tion into the LCD. When I created the code for this
experiment's circuit, I used the code from the previous
experiment as a base.

For this experiment (see Figure 6-19),I used the
PIC12F675 that came with the PICkit 1 starter kit.You
could use a PIC16F684, but I wanted to use the
PIC72F675 as anLCD enabled sensor controller in a
(much) later experiment. By creating this experiment
using the PIC12F675,I created the base that I would
need for the later sensor experiments:A PIC16F684
(or any other PIC MCU) could be substituted in the

Figure 6-f7 Two-wire block diagram

Dab --f
-Ti]-TB-T l];-l tr l

61651ffi

F---]-;-EE-fii-r"-

2q-,o. ;,0. a
r-T]JT*-TilitTu-ii-

36-:c. -,e.- a" f-T.iiTfil1;iir-

4e-iao -roo-2oo-la" --T-$-E?;-

5Q- 5 ro - !oo - rae- ,0

6 A _ 6 1 0 - 5 o o - ! € o - : 0 . - , o o - ' o c

E 4
'E Active(60. Data)

---l' -_1

J !

l.-{

T I

. _ ;

. -+

!.!"9
:

; i i

{..

t

{ l i

e'i

!"*

t-t{

,i-?

Figure 5lB Two-wire waveform

Figure 6-fg Two-wire circuit

circuit. You would simply have to change the Clk and
the Data #define statements in the cLCD2Wire.c
application with the pins and device that you are using,
and then make sure the special function peripheral
analog pin controls will allow these two pins to execute
as digital I/O.

When I wired my prototype circuit, I used a long
breadboard to allow a comfortable amount of sDace
for the 74LSl74 shj[t register. I also spent some rime
trying to keep the wires as neat as possible because I
want to use this circuit in later experiments. If possible,
put this breadboard circuit aside until you work up to
the sensor experiments. which use this circuit as a base.

1 3 0 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I G e n i u s

Experiment t. l9-5tuitch Matrix Kegpad Mapping

N e e d l e - n o s e p l i e r s

B!eadboard

W i r i n g k i t

I

1

I

1

I

1

I

A switch matrix keypad can be a very useful tool for
entering arbitrary data into an application or for appli-
cation control. It can be so useful, in fact, that you will
consider paying the often-exorbitant fee for a single
keypad. New, they cost anywhere from $25 to $100 for
a 4x4 switch matrix keypad. With a bit of hunting, you
can probably find useable surplus switch matrix key-
pads for a few dollars. But, as they don't come with a
datasheet, you will have to figure out how they are
wired on your own.The task of r??rpping, or decoding,
the keypad is surprisingly easy and can often be done
using the same hardware as you will use for the final
application that uses the keypad.

Figure 6-20 Keypad mapping circuit consisting ot'
a keypad connected to a PIC16F684 driving an LCD

PIC16F68 4

74LS174 hex D f l i p f l op

1N914 (1N4148) s i l i con d iode

Two-1ine, 16-column LCD

1k l es i s to r

10 -p in , 10k res i s to r S IP

10k breadboard-mountable
t iomet e !

po ten -

The keypad I chose to map for this experiment is
the l6-pin keypad, shown in Figure 6-20, and has nine
pins on the backside that can be pressed directly into a
breadboard (which is why I chose it). The circuit used
to map the keypad is based on the two-wire LCD
interface shown earlier in this section. but instead of
the PIC12F675,I used a PIC16F684 to take advantage
of its 1l I/O pins.The circuit used in this application
simply wires each pin to a pulled-up keypad pin with
the two leftover pins connected to a two-wire LCD
interface (see Figure 6-21).

Figure 6-el Keypad decode

I

1

3

0 .01 pF capac i t o l s (any t ype)

16-button switch matrix keypad
with an eight- or nine-pin blead-
boa rd i n te r f ace

Breadboard-rnountable SPDT switch
(E-Switch EG1903 recoftnended)

fhree-cel1 /dA battely pack

AA a l kaL ine ba t t e r i es

S e c t i o n 5 i x I n t e n f a c i n g P n o j e c t s f o r t h e P I C @ l l C U 1 3 1

The mapping software (cKeyDcode 2.c listed after t
th is paragraph) i s qu i te s imp le . I r con t inu l l l v make5 ._ - .
one pin a low output and scans the remaining pins to
see if any are low (a key is pressed).If an input goes Data = 0t
low, it is assumed to be a row, with the column b"eing for (i = 0' i < 6i i++) // clear the shift

the output pin.These two pins are displayed on the cir- {
R€Eiseer

cuit's LCD.When the key is lifted,the LCD values are clk = 1, // irusr rossle rh€
cleared and the program resumes its scanning.I have c1k = 0,

clock

not debounced the inputs, as multiple keypresses , // 1.or
would be invisible to the user and not affect the oDera-
tion of the application.I have not included the l isting IJcDout = rcDout | (1 << 5) | {(Rs & 1) * (1 << 4))t

ior cKeyDcode 1.c, as it is a copy oi;a;-rwi,."".-*
ror (i = 0' i < 5' i++) // shirt Data c'ut

modified for the PIC16F684 and created as a base for if (0 r= (r,cDou! & (1 << s)))
cKeyDcode 2.c. Data = 1t // shift out the

Hiqhegt a i t
e lse

#inclut te <pic.h> Data = 0t

/* cK€yDcoale 2.c - Ket pail Decoale util.ity lcDout = LcDout << 1t // shift up the Nett
Bi t

This ProEram constantl.y Ecarrs the Ketrpaal wireal C1k = lt // Clock uhe Bi! iltto

to RAO-RA2 andl Rco-Rcs ba makingr one pin a tow the s/R

output (t rColunnn) anal lhen scanning the pul leat -ctk.=
0t

up r€naining pins (trRowr) to 6ee if any are Low) // rof

anal lhen alisplays the trCathoale" and nltnodle" oa
an at tacheal 2 Wire LcD Inter faee. NoP() t

Data = 1r / / Clock the Nybble

This coat€ is based on cKeyDcode 1.c
NOPO,

int the LcD

R:A4 _ Data Data = 0,

RA5 - clock
] // End Nybbreshift

AA0 - Pin 9 of Ket|I)aal
LCDW?ite (int lcDData, i'It Rsva]"ue)

aA2 - Pin 7 of Kelrpaal | / / send Bvte to],cD
RCo - Pin 6 of, Ket paal
RC1 - Pin 5 of Ketrpaal anc r, li
RCz - Pi.n 4 of, Kepaal
RC3 - Pin 3 of, Ketrpaal Nvbbl€shi ft ((r,CDData >> {) & 0x0F, RsvaLue) t
RC4 - Pin 2 of Ketzpaal NvbbJ eshift (r'CDData & 0x0F' Rsvalue) t
RCs - Pin 1 of Kq4)aal // Shift out Bvte

myk€ pret lko j . f ((0 == (rJCDData & oxFC)) && (0 == Rsvalue))
04.12.05 i = Fiv€ms, / / Set Detay Interval

e l s e
-t a = TwoHuftl-ealst

-coNFrc(rNTro & wDTDrs & pwRTEN & Mcr,RDrs & for (j = 0t j < i; j++)t // Delav f,or charactel
I'NPROTECT \

& uNpRorEcr & BoRDrs & rEsoDrs & FcltDrs),] // Enat lcDwrite

/ | orz34567ago!2345 rnain ()

const char TopMessage [] = nRc'xr:

const char Bot l4essaEe [] = , 'Cohlnn: " t
in t i , j ;

#alefine Clk AA5 / / Defi'Je the IJCD Serial
control PinE PoRTA = 0t // starl with Evervthing Low

*alefilre Data RA{ CMCONo = ?i // ConEarator Off
ANSEI. = 0; // rurn off ADC

eonst int Twenlyms = f25O, // Declare a TRISA4 = 0, // Enable r/O Pins

Constant fo! 20 TRTSAs = 0t

ms Delav
const in! Fivems = 300,

-
// IniEialize LCD accoraling to th€ Web Page

const int TwoHundreilus = 10r j = Tweatlansi
for (i = 0r i < j r i++), / / Wai t for r ,CD ro

Nybbleshifr (inr !cDou!, j.nr Rs) // shift out rhe Po\rer I'I)

Nybble

L 3 2 l , a l P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I G e n i u s

lBrbblesbifl (3, 0), // gtart InltlallzaEion
Proc€aa

j = Fiv€ost f o r (j = 1 r j < = 9 , j + +)

swi lch(j)
t
case 1l

i f , ((i l = j) && (0 == Rcs))
{

I ,cDtf l i te (0b1000 0101, o) ;
LcDwribe(j + t0 ' , 1) , / / wr i t€ Rol t
lcDwrl tse (0b110 0100 0, o) t
lcDwrl . tse (i + r0, , 1) , / / vrr i re colurn
l thLl€ (0 == RCs),

rDabbleshifr (2, 0)r // raitialize I.cD { Bit breahi

f o r (i = 0 r i < j r i + +) t

Nybbleshift(3, 0)t // ReDeat R6aet Cormaatl
j = T$oHuadlr€ilust
f o ! (i = 0 , i < j ; i + +) t

Nybbl€sbift (3, 0), // R€peat R€set cdurenal
rhirit Tinre

J = Tarofluntllealua i
f o r (i = 0 r i < j ; i + +) ;

uod€
j = TaroHuadr€auEt
fo ! (t = O , I < J , i ++) ,

l I ,CD0EIf i te (0b00101oOO, olt / / LcD is { Bit r /F,
2 Lin€

LcDwrite (0b000 0000L, Ol, / / C1€ar LCD

T,CDw:.it€ (0b0 0001L10, Ot, ll rurrr On LCD anal {
Eaable curaoi

for (i = 0t lloDll€asag€ [ll l= 0, l++)
LcDlltite(TogMeEsagetil ' 1) t

Seconal IJl,ne

for (i = 0r BotMeesag€l i l t - 0r i++)
LCDwrit€ (BotM€ssage til , 1) t

rcbile(J. == a) ll Einiah€al - Scan the
Ket'9eal

t
f o r (i = 1 t i < = 9 t i + +)
{

// Seltl Res6t Corutantl

Fiail 'Colu![ns"

caa6 2:
t f ((I t = j) & & (0 = = R c 4))
{
lcDwrtte (0b10000101, 0) t

LCDwrit€(0b10000101, 0),
IJCDDrri t€ (j + r0,, 1)r / / Writ€ Row
I.cDwrite (0b11001000 ' 0) t
lcDvEite (i + r0' , 1)r / / l l r i te Co1tr l [n
while (0 -- RC3)t

trl
X

b
o
Ft
F.
=1
o
F
af

I
I

a
{
f-,
cr
or

9'
cf
r-l
l-r.
x
X
or<

rd
0,
g

3p,
s
6
F.
Lt

uq

I,cDwlite (0b000 001LO, Or, ll llov€ Cursor After breakt
Each Cbaracler

r,cDwrlte(J + r0', 1)r / / wti le Rolr . t \
LcDwrite (0b11001000, 0) t
lcDvEite(i + t0,, 1)r / / wri te Colur|a tA
while (O == RC{)t v

, l l f L

c a s 6 3 :
i f ((i l = 5 1 6 9 1 9 = = R c 3))

LCDWrit€ (0b110000 OO, Ol? ll llove Culsor to the I ll ff
breakt

caae 4 :
i f , ((i r = j) && (0 == Rc2))
t
tCDryri te(0b10000101, 0),
LcDwrite(j + r0,, 1)r / / Wri l6 Rolt
LCDwrite (0b11001000, 0) t
lcDt{r i te (i + r0' , 1); / / wrl t€ coluan
wbile (0 == RC2)t

| / / f i
avLtcb (i)

{
caa€ 1:

TRISC5 = 0,
b!€akt

caae 2:
IiRISC{ - 0t
breakt

cage 3l
TRISC3 = 0t
breakt

caaa { :
liRISC2 = 0,
br€akt

caae 5:
ERISC1 r 0,
breaki

case 5:
TRISCo = 0t
breakt

caae 7t
TRISA2 = 0,
br6akt

caae 8:
TRISA1 = 0t
bleakt

c a s o 9 :
TRISTAo = 0t
br€akt

) // hctilta

// PuII Down Each Pi! to b!€akt
caae 5 :

t f ((i ! = j) & & (0 = = R c 1))
t
LCDwrIt€{0b10000101, 0),
LcDwrLt€(j + r0' , 1)r / / vlr i le Row
Lcryrrtr€ (0b11001000. 0) t
LCDIYIi t€ (j . + r0,, 1)r / / Wri le Colu$!
while (0 -- Rc1) t

, ll ti-
breakt

case 6!
i t ((i l = j) & & (0 = = R c o))
t
LcDvfritse (Ob10 000101, 0) t
lcDwri le (j + r0,, 1)r / / Wtite Rort
LCDwrit€(0b11001000, 0);
IJCDg{rile (i + r0,, 1)r // Wtile Coluffi
vhi le (0 -- Rco)t

breakt
caaa 7l

l f ((i ! = j) && (0 == R r2))
{
LcDwrite(0b10000101, 0) t
lcDyElto(j + r0' , 1), / / wri tse Row
LcDwri le(0b11001000, 0),
LCDWtile(i + r0,, 1), / / Wrlt6 CoIutB
while (0 == RA2) t

I / / EL
br€aki

S e c t i o n 5 i x I n t e r f a c i n g P r o j e c t s f o n t h e P I C @ l l C U 1 . 3 3

After running the program, I created a table that
maps the rows and columns for each of the keypad's
pins (see Table 6-1). The numbers after "Row" and
"Column" indicate the keypad pin numbers, not some
definition of row and column.

As I said previously, I used a keypad with a nine-pin
interface-pin 9 is never listed as a row or column.
Testing the keypad with a digiral multimeter (DMM),I
discovered that pin 9 is an additional row pin that gets
pulled low when the "2nd" key is pressed. This feature
allows "znd" to be pressed along with the number keys
to indicate a hexadecimal number. I will use this key-
pad (and the information provided here) as part of a
sensor control module, and, instead of using pin 9, I
have come up with a method of enlering in hexadeci-
mal values by recording that "2nd" was pressed.

Table 6-1
Sample KeUpad Decoding N4atrix lNumbers
beside "FIDLU" and "Column" are the kegFad's Fin
numbersl

Eolumn I Eolumn 2 Column 3 Column tl

Row 8 "2nd"

Row 7 9

Row 6 u

Row 5 '7

DownArrow Up Arrow ENTER

6 3 HELP

5 2 0

4 1 CLEAR

When I see an interesting keypad or switch matrix
keyboard (often built for old home computer systems),
the ease by which it can be decoded is what leads me
to finally choose it. In this experiment,I showed you
how to map a keypad; the process of mapping a key-
board is exactly the same-it simply requires more I/O
pins. Although you might be tempted to map the key-
pad using a DMM, why don't you try out this applica-
tion with something like a PIC16F877A? This chip
(supported by the PiCC LiterM compiler, so the ckey-
Dcode 2.c application can be used as a base) provides
up to 33 I/O pins, which means that you will be able to
map keyboards with up to 31 I/O pins with two pins
Ieft over for the two-wire LCD interface.

For EonEideration
Although it is going beyond the scope of this book,I
did want to present you with the concept of interrupts
and how they can perform some pretty amazing tricks.
Interrupts are special software subroutines that exe-
cute when a hardware event (e.g., a timer overflowing,
a pin changing state, data being received, or a conver-
sion operation being completed) takes place.These
subroutines are usually wdtten to be independent of
the mainline code, with flag bits or data variables pass-
ing the results to the mainline code. Interrupts can
reduce your application code requirements by up to 80
percent and variable requirements by 30 percent or
more. It can be difficult structuring an application to
use interrupts and making sure they do not negatively
affect the operation of the applicatlon.

The execution flow of the interrupt subroutine, or
handler, is shown in Figure 6-22 and stafis with a hard-
ware event requesting a response from the intenupt
handler.When the processor responds to the request,
the curent program counter is saved and the state flip
flops in the processor are set to indicate that an inter-
rupt is being handled. Execution control is then passed
to the subroutine handler, and the registers required
for all program execution (called the context registers)
are saved before the registers are changed for the
interrupt handler.The interrupt handler itself should
execute as quickly as possible to avoid interrupting the
flow and resDonsiveness of the mainline and to make
sure it isn't executing when another interrupt request
is coming in, which could result in the second inteffupt
being missed.

I must emphasize that interrupts are requests;the
application code can choose to not respond to them
immediately or even simply to handle them as part of
the mainline code.This range of variability must be
accommodated in the application to make sure inter-

i f ((i ! = i) & a (0 = = R A l))
t
r,eDwrile(0b10000101. 0) t
L c D w r i t e (j + \ O ' , L) i / /
rcDwriLe (0b11001000. 0) t
l c D w r i t e (i + \ O ' , r) , l /
$rhi1e (0 == RA1) t

I / / f I
break;

i f ((i ! = j) & & (0 = = R A o))
t

write Column

colurn

LcDwri te (0b10000101, 0) t
r , c D w f i t e (j + . 0 , , 1) r / / w r i r e
Lcrf i r i te (0b11001000, 0) t
L C D W r i t e (i + \ 0 , , 1) r / / w r i t €
w h i l e (0 = = R A o) ;

l / / f r
bleakt

) / / hct iws
lcDwri te (0b10000101, 0) t
I ,cDwri te(' ' . 1) , / / Clear Row
lcDwri le (0b11001000, 0) t
I ,cDwri te (r \ , 1) , / / C1€ar Column

TRIsc = 0b111111,

TRISA = 0b001111t
j / / rof

) / / e l ihw
, / / E'ld cKeyDcoale 2

// Restore Everything
lligh for Next

r 5 { l , e 3 P f C @ l l C U E x o e r i m e n t s f o r t h e E v i I 6 e n i u s

rupt requests are not lost or handled in the wrong
order, which can happen quite easily. Once the inter-
rupt handler has finished executing, the context regis-
ters are restored to their pre-interrupt values, the
interrupt request hardware is reset, and the execution
retums to the mainline, as if nothing had happened.

Despite these warnings, interupts can be added to
an application quite easily as shown in cPKLEDInt.c.
This application is another of the PICkit 1 starter kit
LED sequence programs in which TMR1 is allowed to
run at clock speed (4 MHz) with a divide-by-8
prescaler. Every time TMRl overflows, which happens
after a little over a half second, an interrupt request is
made and responded to by turning off the current
LED and turn ing on the next one in sequence

#incl"ual€ <pic.h>
/* cPKLEDht.c - Roll Through PICkit LEDS Using

TriIRl Int

This Program rrilL ro11 through €ach of the 8
LED€ built

into th€ PICkit PCB. When the T1 intelrupt ia

The r,ED valu€s are:

rrED A.noale cathoale
DO RA4 AA5
D1 RA5 AJA{
D2 nA4 Ri[2
D3 RA2 R'[4
D4 RA5 RA2
D5 RA2 R]A5
D5 AA2 RA].
D7 RA1 RA2

myk€ plealko
0 4 . 0 9 . 1 0

i n t k = 0 t

const char lEDvalue[8] = t0b010000, 0b100000,
0b010000 ,0b000100 ,
0 b 1 o o o o o , o b o o o 1 o o .
0b000100 , 0b000010) t

consr char TRrsvalue[8] = t0b001111, 0b001111,
0b101011 ,0b1010 ! .1 '
0 b 0 1 1 0 1 1 , 0 b 0 1 1 0 1 1 .
0b111001 . 0b111001) t

voial interrupt tlnr].iat (void)

| / / Respollal lo Tiner 1
Inte!rupc

TMR1IF = 0, // Reset rlne! InternPt
Requ€st

pORrA = IrEDValue lkt r // Point to lhe Culrent
I,ED

TRISA = TRISValue [k] t

k= (k + 1) % 8, // hcrement k q'ithin

range of 0-7

) // tn.rlint

nain()
t

PORTA = Ot

cucoNo = 7t // rurn
ANSEIJ = 0t

T M B 1 I J = T M R l B = 0 t

T ICON = 0b00110101t

off Compalators
// Turn off ADC
// Reset Tiner 1
// Enable Tr,lR1

CONFIG(INTIO & WDTDIS & PWRTEN &
TINPRC/IECT \

& UNPROTECT & BORDXS & IESODIS &

IICLRDIS &

EC!4DIS) t

PEIE = 1r // Enable Perigheral' Interrupcs
GIE = 1r // Enable Gl.obal Interrupta
TMRLIE = 1; // Enable Tiner 1 Interrupts

whi le(] . == 1) t / / LooP Fotever

l // E'ld. CPKTJEDInI

The main interrupt operation control is the INT-
CON register's globql interruPt enable (GIE) bit,
which, when set, allows interrupt requests from the dif-
ferent hardware sources in the PIC MCU. For every
interrupt source, there is a register that ends in "lE"

(for interrupt enable). And when this bit is set, an inter-
rupt will be requested and the interrupt subroutine will
be called. In the PIC MCU, there can only have one
interrupt subroutine, and in the subroutine, the differ-
enl interrupt requeslrflag (IF) bits are polled to see the
source of the interrupt. In cPKLEDInt.c, there is only
one interrupt enable bit set (TMRIIE for TMR1 over-
flow interupt requests), so I don't bother polling the
register.

The PICC Lite compiler makes working with inter-
rupts quite a nice experience; it places the interrupt
subroutine handler code at the correct address within
the PIC MCU and handles the conlext regis ter . sa\ ing
and restoring for you. When you are ready to start

E x e c u t r o n J u m P

H a n d L e r

E x e c u t r o n
M a i n l i n e
R e l u r n

Main L:L n e
Code
E x e c u t i o n

M a i n l i n e
Coaie Execut- ion

ftty uaraware
v I n t e r r u p t P e q , J e s L

Figure E-aa Interrupt flow

H a n d l e r

S e c t i o n 5 i x I n t e r f a c i n g P n o j e c t s f o r t h e P I C @ l l C U 1 3 5

trying out interrupts in your own application, I highly
recommend using the PICC Lite compiler before
assembly language.

Comparing the application hex file size of
cPKLED.c and cPKLEDInt.c, you'll see that
cPKLED.c is 130 instructions and uses 10 file register
bytes, while cPKLEDInt.c is 102 instructions (a 20 per-
cent reduction in size) and uses nine file register bytes.
What is really amazing about this application is that
the mainline, consisting of the single "while (1 :: 1);"
statement now, could be used for another task because
the TMR1 interrupt driven subroutine is completely
independent of the mainline code. And because it

requires approximately 38 instruction cycles out of
every 574,288, only 0.0075 percent of the available
instruction cycles are lost.You can have a complete
application running while the LEDs are active and not
even notice a drop in performance. This type of
improvement in program parameters is pretty typical
when interrupts are added to an application. When you
are comfortable with programming the PIC MCU in C
and assembler, you will be very ready to start to imple-
ment interrupts in your own projects.You'll learn how
they can make a program more efficient and (ironi-
cally) easier to write because complex hardware inter-
faces can be independent of the mainline code.

- J

1 "

t t l

1-;

i,f

1 3 6 l , e l P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

S e c t i o n S e v e n

// Microcontlo1l€r Aslmchlonoua
InI)u! ApDLicalion

// coate organization

// valiabLe/Pelipheral InitiaLization
// (Tiiner) Delay Initialization (if requir€d)

w h i l e (l = = 1)
{

// Main Loop

// Perf,ot Interface Outsput O9elation
lrai.n ()

{
Nex! IJoop

Delay

for (i = 0r i < Dlayr i++) / /

{
// Input Poll/Proceaaing

| / / tof

// variable/Peripheral Initialization
/ / (r iner) Delay In i l ia l izats ion (l f fequireal)

! rh i1€(l == Lt / / MaiD Loop
t

/ / Petfotfr Int€rface operat.iorl

// (rin€r) D€Iay bef,ore lhe Nexts Loop/Interface
oDelatiod

) / / e l ihw
I // wrd sampLe c Baseal ADplication

There really isn't much to this type of application,
although I should point out two very important
assumptions:

. The output response to a given set of inputs (or
internal state values) takes essentially zero time
-the outputs are based on a calculation of the
lnputs.

) / / e l ihw
I ll ErLd. sarE)le C Basefl Application

This organization of the application code allows
asynchronous inputs to be recognized without affect-
ing the output timing. The reason for maintaining the
output delay is to allow any output interface circuitry
to complete their operation and any devices connected
to them to accept the complete output from the micro-
controller and respond appropriately. For proper oper-
ation,I recommend using a timer instead of a for loop
as I have shown previously, and as the input is polled,
the timer value should also be polled.

The two code samples shown here should not be
surprising; I have been using them for many of the
experiments' code and will use them as a base for the
applications contained in this section. In most practical
applications, a greatnumber of fuad time execution

Sample f Microcontrol ler
Hppl icat ion5

nain()

t

// BaBic Microconlloll€r
Aflplication Coale Orgaaization

A certain perception is held by many hobbyists that
practical microcontroller applications have lobe coded
in assembler. The reason for this feeling is based on the
expected superiority of assembly language applications
in terms of speed and size. These expectations as to the
superiority of assembly language really don't hold any
water; modem compilers, such as PICC LiterM com-
piler, produce machine code that is often just as effi-
cient as that using assembly language for a given
operation or statement. And no reason can be given to
use assembly language except in situations where cus-
tom interfaces are required and not available in
prewritten libraries. Being able to write applications in
C is prirnarily dependant on the ability of the program-
mer to design application code that is properly organ-
ized.

For some reason, properly organizing the microcon-
troller application seems to be quite difficult, when in
fact they usually only need to use the following tem-
Dlate:

. There is no chance that an inDut state will be
missed.

As a rule of thumb, you can assume that "essentially

zero time" means less than 5 percent of the next loop
delay. Any longer than this (especially if it is variable),
then you will find that the application will respond
erratically and certainly not the way you expect.

If the application's inputs are asynchronous and
there is a chance that something will be missed, then
you will have to modify the application organization to
poll the inputs while the next loop delay is executing:

137

Experiment 50-Pumpkin LED BiEplag

1

1

I

1

t

:*'t

;13

b.a{
t*t

L i

* "

*,:

i i

I

l ! ,

. !-,lr

;.-!

i i i

:-:
!'! t

, l ' , .

4,it
irl:

cycles exist that are not required for application execu-
tion.And the code samples presented here take advan-
tage of this characteristic by organizing the input and
output operations to best implement the application.
By correctly organizing your applications execution,
you will have a simple base that can be easily modified
into providing the required functions. Most impor-
tantly, these sample applications can be written in
either C or assembler with equal execution efficiency.

DMM

Need le -nose p l i e t s

Soldering irod

Solde r

I am breaking new ground in this book. In all my previ
ous books,I show how to take advantage of linear feed-
back shijt registers (LFSRS) to create a seemingly
random display for the holidays. In this book, I am
going to use LFSRS to create a random-seeming "can-

dle" (see Figure 7-1) to put inside pumpkins at Hal-
loween.The project idea was taken from Mark
McCuller's "Pumpkin Light LED" project presented in
October 2004's ,eslgrz News and uses resistor- and
capacitor-based reflex oscillators to flash LEDs on and
ofi I felt that the original would be quite complex to
assemble and a PIC9 MCU application would allow
me to decrease significantly the number of parts
required (and the work required to assernble it). I
daresay my version is somewhat cheaper to build as
well. Despite the project's simplicity, it actually works
quite well and won't burn and dry up the inside of your
pumpkins the way a regular candle does.

The Purnpkin circuit uses a 4.5V power supply (pro-
vided by three AA batteries) that serves as the base for
a small, cut-down prototyping PCB to which a switch, a

You probably have noticed that I have not included
a list of parts and tools for the experiments in this sec-
tion. This is deliberate, as each experiment is unique
and independent of the others in the section. I have
included the list of parts and tools required for each
erperiment, however, so you can build them on your
own,

Prc16F68 4

1A-p in socke t

Hi9h-intensity orange

0 .01 pF capac i t o ! (any
tYpe)

1 ,20V 8 -p in S IP

Prototyping PCB
tex t)

Thfee-cel l AAA
pack

AAA battel ies

PIC16F684, a 0.01 p,F capacitor, a 120O SIP resistor,
and the six high-intensity orange LEDs are soldered.

Fisure 7l Pumpkin artificial cantlle on a three-cell
AA battery pqck

(s e e

b a t t e r y

1 3 8 l , e 3 P I C @ l l C u E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

This cilcuit (see Figure 7-2) should not be a surprise to
you, and is very similar to the previous experiments in
this book. I was able to solder together the cilcuit
neatly on a cut-down prototyping PCB. To further sim-
plify the assembly work,I used an eight-pin,l200 sin-
gle-inline package (SIP) resistor, which contains seven
resistors, each connected to a common point,

To mimic the flickering candle, I wanted the LEDs
to turn on and off seemingly randomly, for random
periods of time (ranging from about one-tenth of a
second to one or two seconds).The most obvious way
of implementing this is by an LFSR, and I decided on
using a six-bit LFSR for the six LEDs on PORTC of
the PIC16F684 and a four-bit LFSR to specify the
length of time the LEDs would be in a specific state. I
expected the code to be very simple and similar to
some of the earlier experiments. However, before
blindly writing the LFSR code and attempting to
debug it in the application circuit, I decided I would
simulate it first.

The LFSRs for this application each have a single
tap, which is XORed with the most significant bit and
fed into the input of the first bit of the shift register.To
test and demonstrate their operation, I created the
application CLFSR.c:

* include <pic.h>
/* cLFSR.c - Test LFSR Taps

Thi6 plogfaln Te€ts 6 antl 4 bit L!'SR Ta!,6 to nak€
sure they Perform a

Maxinlllln Numb€! of timeE ((2 ** n) - 1)

myke Dreatko
0 4 . ! L . r 7

int fourBitlFsR, sixBitLFSR,
int fourBitcount, sixBilcountt

nain ()
t

fourBitr,EsR = 1, // start at 1
f,oulBilcount = ft // Kee�r, Track of Slate *

fourBi l l ,FsR = ((fourBi t tFsR << 1) & 0x0F) +
((fourBi t lEsR >> 3) ^
((f o u r B i t I J F s R > > 2) & 1)) t

Figure 7-2 Pumpkin circuit

(fourBi t l rFsR << 1) & 0x0F) +
(fourBi t IJEsR >> 3) ^
(f o u r B i t I J E s R > > 2) & 1)) t
fourBitcount+ 1r // Keep Track

of, slate #

/ / s tar t at 1
// Keep Track of Stale #

while (fourBitIJESR != 1)
t

fourBitTrFSR =

sixBi tLEsR =

fourBilcount =

I / / eLi�lrw

s ixB i t IJFSR = 1 t

sixBitcount = 1t

(s ixBi t lFsR << 1) & 0x3F) +
(s i r rBi tLFSR >> 5) ^
(s i x B i t l F s R > > 4) & 1)) t

whi le (s i r ra i t lFsR t= 1)
{

sixBi t lEsR = ((s ixBi tLFSR << 1) & 0x3F) +
((s i t rBi t lFsR >> 5) ^
((s i t r B i t L F S R > > 4) & 1)) t

sixBitcount = BixBilcounE+ a, ll Ke6D Ttae]f�
of State #

l // eti'}r'''

w h i l e (1 = = 1) t

) // End CLFSR

The two countvaiables are used to determine how
many iterations of the LFSR would execute before the
value returned to 1, at which time it would start all
over again. When the LFSR taps are properly placed,
there should be 2'' - 1 iterations (15 for the four-bit
LFSR and 63 for the six-bit LFSR). Amazingly
enough, the two taps (those at the shift register's
second to last bit) produced perfect results, and they
were integrated into the cPumpkin.c application code:

#include <pic.h>
/i cPumpkin.c - Ranalomly lJight IJED6 on PORTC

This Prograltr will run cofltifluously tufiing on
],EDs for varying Lengtlrs of time to simulate a
candle in a Pumpkin. Six Y611ovr anal Orartg€ High
Intensily LEDa shoulal be useal with this ploject.

Haralware Notea:
PrC16F684 Running at 4 MEz
RCs:RCo - 6]JEDS

iryke Drealko
0 4 . ! L . r 7

CONFIG(INIIO & I{DTDIS & PWRTEN
UNPROTECT \

& IJNPROTECT & BORDIS & IESODIS

i n t i , j , k ;
int fourBiUIFSR. sirrBitLFSRt

main()
t

fourBi tLFSR = 1,
si.xBitLFSR = 1t

CIIICONo = 7 t

& !,ICLRDIS &

& FCMDIS),

/ / Star l at . 1
/ / Star l at ' 1

/ / $)rn off coinpalators

S e c t i o n 5 e v e n S a m p I e C l 1 i c r o c o n t r o l l e r A p p l i c a t i o n s 1 3 9

.lll\IsEr, = 0, // Tuln off aDc
IRISC = 0t

lrhile(l == L\ // IJoop Foreve!
t

f,or (k = 0r h < fourBitsLEgR, k++)

= 0 , i < 2 5 5 r i + +)
= o t j < 2 4 , j + + r ,

PORTC = sirrBiLLFSR | f,ourBitrFsRt

The code is quite simple and straightforward except
for two places I would like to bring to your attention.
The first is in the delay loop: I changed the end values
in a 500 ms delay so that it was 100 ms, and then I
added another for statement to multiply the delay by
the value of the four-bit LFSR. Similarly, rather than
just pass the six-bit LFSR to PORTC,I decided to OR
the two LFSRS together to get the maximum number
of LEDs on at any given time.

The application works quite well and for a surpris-
ingly long time. I must caution you against trying to
stare into the high-intensity orange LEDs. They are
bright enough to give you a headache and produce
spots before your eyes.

Prc16F68 4

l4 -p in socke t

1o-LED bargraph display

10 /rF electrolyt ic
capacito!

0. 01 /rF capacitot (any

tYpe)

10k ! es i s t o l s

10 0C, resistors

SPST switches

Prototyping' PCB (see
tex t)

Two-ceII AAA battery
pack

2 AAA batteries

The reaction-tirne tester circuit (see Figure 7-3)
probably looks similar to the c cuit used in the previ-
ous experiment.The difference between the two cir-
cuits is simply a 10-LED bargraph display and two
buttons. You should also note that there isn't a power
switch built into the application; I take advantage of
the low-power sleep mode of the PIC16F684 micro-
controller as well as its ability to run on the power pro-
vided bv two AA battedes The button connected to

fo! (1.
for (j

// Delay
0 . 1 8 x 4
BiE IJFSR

I / \t€.:ri.llize
+ o f
IrEDs on

0x0F) +

Experi ment 5l - Reacti on-Time TesIer

1

I

I

1

t&l

F t

&4

n i

f-d

ri

t !

as,

t
:

I l.'l

,."a.�
'-'r

,i?

1"3

" r I

fi-!
f ; t

i{{

t\
t < r

foutBitLFSR - ((foulBitLFSR << 1)
((foulBi tLFSR >> 3)
((foulBitlFsR >> 2)

(ai*BitLFSR <<
(Ei*BitLFSR >>
(air{Bilr,FsR >>

// End cPurekin

DMM

NeedIe-nose pl iers

Solderj,ng iron

Solder

Wire-wrap wire

Weldbond adhesive

A gimmick that became quite popular when I came of
ddnking age was the reaction-time, or sobriety tester,
that consisted of a simple circuit that would run a
series of LEDs until a button was pressed. The reac-
tion time being tested was that of an individual who
had been drinking, and of course, the reaction time
would vary according to how much he or she had to
drink. The circuit presented here can be built forjust a
few dollars and an hour's worth of time.

airiBitLFSR =

& 1)) ,

0x3r) +

1)) t

1) &

4) &

I

1 0

I

1

1 4 0 l , e 3 P I C @ l ' l C U E x p e r i m e n t s f o n t h e E v i I G e n i u s

RA2 will start the test, and the button at RA3 is the
user respond button, which is to be pressed when the
user sees the LEDS start to sequence on and off.

The operation of the circuit is quite simple, after
power is applied (i.e., when RA2 is pressed), the circuit
delays at some random interval (using the current
TMR0 value) between one and two seconds. If RA3 is
pressed during this time, the test stops and the two
extreme LEDS start flashing. After the random inter-
val, the LEDs are sequenced on until RA3 is pressed.
If RA3 is pressed during the sequence, the operation
stops at the currently displayed LED. If the user does-
n't respond, then the last LED starts to flash.The
flashing LED(s) or just one LED will stop, and the
PIC MCU will go into sleep mode after 1 minute
unless RA2 is pressed and another game is started.

When I built rny prototype circuit (see Figures 7-4
and 7-5), I used a basic prototyping PCB that had
some generic signal and power traces, and then filled in
with poinlto-point wiring for the remainder.When I
was finished,I used a bead of Weldbond adhesive to
hold down the wires. Before writing the application,I
created two test programs.The first, which tests the
two buttonq is cReact 1.c:

i l inc lude <pic.h>
/r cReact 1.c - C Program to TeEt IJED Buttons
on Reaction test€r

ThiB Prog!€m is a nodtification of "cBuEton"

l{42 - Buttoa Connectior (Stalt/Porder On)
RjA3 - Button Connection (Reapond)
R,AO - I,ED1O
&A1 - LED9
RiA4 - LEDS
RiA5 - LEDT
RCo - IEDS
RC1 . IJEDs
RC2 - tEDll
RC3 - IJED3
RC4 - LED2
RC5 - I,ED1

myke prealko
0 { . 1 1 . 2 I

-CONFIG(INTTO & WDIIDIS & PWRTEN & MCIRDIS &
I'ITPROTEC! \

a ITNPROIIECT & BORDIS & IESODIS & FCMDIS) t

nain ()
t

while(1 =- r, // Loop f,oteve!
(
aA1 = AA2i // Po'lrer On switch (to LED9)
RC5 - RA3i // Respond sxrilch (to LEDI)

) / / e l ihw
, // End cReact 1

The second program, "cReact 2.c" tests the
sequence operation of the LEDS and was based on
"cPKLED.c":

#include <pic.h>
/* cReact 2.c - c Proglam tso T€st LED
Connections on Reaction Test€!

This Plogra$ is a rnoalification of, ncPKLEDn

RAz - Button Connection (Start/Polre! On)
RA3 - Button connection (Respond)
RAO - I.ED1O
RA1 - LED9
RA1I - I,ED8
RA5 - I.ED?
RCo - tED5
RC1 - IJEDs
R C 2 . I J E D 4
RC3 - LED3
RC1I - IJED2
RCs - tEDl

nyk€ predko
0 4 . L 1 . 2 8

-CONFIG (IN:IIO & I{DITDIS & PWRTEAI & MCI,R.DIS &
T'NPRCI'IECT \

& T'NPROIECT & BORDIS & IESODIS & FCTITDTS) '

i n t i , j , k ,

nain()
t

PORTA = 0x3Ft

PORTC = 0x3Ft
CTiICON0 = 7,
eNsEL = 0t

/ / AI1 Bi ts are high
because LEDS

// are negativ€ active
/ / Truqt off coinpalatols
// !u!n off ADc

PORTA = 0x3Fi

PORTC = 0x3!i
CMCONo = ?,
ANSEL = 0t
TRISA = 0b001100,
TRISC = 0,

// ALL Bitsa are high becaus€
IJEDs

// are n€gative active
/ / Tnt off comparatols
// Tuln off ADc
// aA2/aA3 ale inputa
/ / All ot PORTC are outputss

TRISA = 0b001L00; / / BA2 /BA3 are inputa
TRISC = 0; // A1,1, of PORrrc are outpula

1 O L E D
Bargraph

This End

Figufe 7-3 Reaction-t ime circuir

S e c t i o n 5 e v e n S a m p I e C l ' l i c n o c o n t r o I I e r A p p l i c a t i o n s 1 4 1

Fiqure 7-q The prototype retrction-tester circuit was
built on a prototyping PCB

whiLe(1 == L') / / Loop Forever
(

for (i = 0r i < 255r i++) / / Sinple Delay lJoop
f o r (j = 0 r j < 4 2 9 , j + + r ,

PORTA - 0x3Fr // turn off LEDS
PORTC = 0x3Ft

switch (k)
{

cas€ 0: l l LEDT
R C 5 = 0 ,
breaki

case 1: l / LED2

Figufe 7-5 Backside point-to-point wiring used. on
the prototype reaction-tester circuit

Rc{ = 0;
break,

case 2: / / I ,ED3
RC3 = 0t
break,

case 3: / / LEDA
RC2 = 0t
break,

case 4: l l LED5
RC1 = 0t
breakt

caae 5: / / LED6
RCo = 0t
breaki

case 5: // r,E,D7
Ria5 = 0t
breakt

case 7: ll I'EDB
R [4 - 0 t
bleakt

case 8: // I'ED9
Rl[1 = 0t
breaki

case 9: // t'EDrO
RlAo = 0t
breaki

) / / hct iws

k = (k + 1) % 1 0 i

I I / ell}:w
] // End cReact 2

After using cReact 1.c to verify the operation of the
buttons and cReact 2.c to show the LEDs were wired
correctly, I created cReact 3.c, which is the reaction
tester.

In cReact 3.c, you'll see a couple of things that
won't be obvious to you. The first is the group of
nested for loops that also polls button and falls out if a
button is pressed unexpectedly or out of turn. When
you look at the loops, try to imagine their operation
with both the button pressed and with it released. You
can also simulate this code to see exactly how it works
by using the synchronous stimulus function of
MPLAB@ IDE.

The second piece that will seem unusual is the
sequence of instructions leading up to and following
the SLEEP0;function. This is not a function, it is an
assembler instruction that causes the PIC MCU to go
into a low-power mode, or sleep, and it can be awak-
ened either by cycling the application's power or caus-
ing an interrupt request on RA2.There is quite a bit of
theory behind the sleep operation and the different
modes that can be employed with it. Tiust me; the
"INTE : 1;/SLEEP0;NOPO;" statement sequence
will put the PIC16F684 into a low-power mode and
will resume operation when the RA2 button is
pressed.

L 4 2 l , a 3 P I C @ l ' l C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

ExF e ri m e nt 5 2 - Fl o ke n b u k@ M o no ra i l/Traffi c Li g htE

t

2

2

1

DI'',M

Needle-nose p l iels

Dremel tool with ablasive

c ^ l r a r i n ^ r F ^ n

so lder

Wi.!e-w!ap vri !e

2 mrn heat-shrink tubiog

Weldboad adhes ive

s-minute epoxy

Crazy g lue

My daughter and I love to play with our Rokenbok
remote-control building system. The toy consists of a
number of remote-control construction vehicles that
interact with building materials used to create different
buildings and structures.To help enhance the experi-
ence, I wanted to modify a monoraiVtrucklevel cross-
ing so that dummy warning lights would flash when a
train approached (see Figure 7-6). This seemed like a
perfect project for a PIC MCU I always find that hack-
ing toys to be something of a challenge; the electronics
built into the toys do not lend themselves to intedacing
with rnore general-purpose electronics (generally the
electronics selected were the lowest cost available and
have their own special characteristics), structural fea-
tures are difficult to cut through or modify without sig-
nificantly changing the look of the toy, and the weight
of the additional electronics can seriously degrade the
performance of the toy. I can happily say that this mod-
ification went quite well, with the only major surprise
being in the operation of the PIC MCU.

The theory behind the modification is quite simple.
Two light deperulanr reslstars (LDRs) were placed at
either end of the crossing, by soldering them to cut
down prototyping PCBs and gluing the PCBS into

t

1

1

PIC I5F68 4

14 -p in socke t

Red LEDS

YelLow LEDS

10 pF e lec t ro l y t i c
capac i t o !

0 .01 ru,F capacitor (any
tYpe)

LDRs

10k res i s t o r s

100 Ohm res i s to r s

Prototypinq PCB

Three-cel l . AAA battery
pack

AAA batteries

track pieces (see Figure 7-7). On power up. it is
assumed that the train is not over the LDRs. and there-
fore they sample the ambient light eight times and
average the result. When the train moves over the
LDRs, it is assumed that the ambient light to them is l
cu l o f f and the change in the LDR resuhs in a change
in the value read by the PIC MCU's ADC ot greater
than 25 percent.This causes the LEDs placed in the
vehicle warning lights to flash for as long as either sen-
sor is covered plus 10 seconds. Despite the simplicity of
operation, the circuit works very well and is actually
quite impressive.

Two nice things about this circuit are that the LDRs
do not need to be wired to specific ADC inputs (either
one will do) and, practically speaking, LED colors do
not need to be matched. These advantages eliminated
the need for testing each wire for a specific connection,
and thus eliminated the difficult task of sortins out 10
two-foot wires in a small toy.

The installation of the LDRs is quite simple.The 2-
footJong pieces of wire were soldered to each of the
LDRs' leads and covered in heat-shrink tubing. I used
the three square black structural rods for the track and,
using Krazy Glue, I attached the PCBS to the inside of

S e c t i o n 5 e v e n S a m p I e C I ' l i c r o c o n t n o 1 I e r A p p l i c a t i o n s L 4 3

CI
.tJ

bt
,l.l

FI
@

lr/,

CI
*a

0,
J1

g,

c{
r n

g
(u
H

.Fl

$.1
g
g.
X
kl

Figure 7-6 Rokenbok monorail-level crossing with
train sensors and flashing waming lights

the middle square of the structural rod. At this posi-
tion, the monorail and its trailer would cover both sen-
sors I was surprised to discover that Krazy Glue
behaves as a solvent for the black plastic, literally
welding in the small PCBs without need of another
glue.

Red and yellow LEDs were installed in two
warning lights that snap into stalks. I did so by drilling
% -inch holes in the plastic on one side and 1/z -inch
holes in the other to allow the flanges of the LEDs to
fit through and the ends of the LEDs to poke out the
other sides. Like the LDRs, the 2-foot lengths of wire
were soldered to the LEDs, but with a few modifica-
tions. The cathodes of the two LEDS were joined with
a 2.5-inch length of wire, and single cathode wire was
used for the two LEDs. I then soldered a 100f,) resistor

Figwe 7-7 Monorail LDR soldered to a small pi.ece
of PCB and glued inside the black monorail track
(one on each side of the tossing)

to the anode of each LED that had a 2-foot piece of
wire soldered to it and put heat-shrink tubing over the
length of the resistor and its solder connections These
solder connections allowed rne to easily identify which
wire was used for which purpose. A simpler method of
keeping track of the wfting might have been to use dif-
ferent color wires.

I threaded the wires through the structural rods and
the bottom side of the crossing. Using a Dremel tool, I
cut away ribs in the center of the crossing to allow the
wires from one side to pass through without causing
the crossing to rock when a vehicle or the train went
over it. These wires were held in place using s-minute
epoxy.

With the toy modified and the wiring in place,I
then created a prototyping PCB with the circuit shown
in Figure 7-8. The 10k pull-up resistors on the LDRs
will convert the LDRs into a voltage divider circuit
that can be measured using the PIC MCU's ADC This
is actually quite a simple circuit, although you will find
it quite difficult to wire using the different wires lead-
ing from the toy. When planning your PCB, make sure
you keep the wires from interfering with the monorail
train as it passes over the crossing.

To test the circuit,I created a simple program
(called cRok 1.c) that simply flashed the LEDs for 30
seconds, and then I jumped right into the application
(cRok 2.c):

*inclual€ <pic.h>
/* cRok 2.c - RokenJroh ApDlLcation

Thia Program will fj.rat s.iq)le lhe erDbi€at liqht
oa the two LDRa for 8 SEfiD1e6, 50 n6 aDart.
WLth th€se Sarq)les, tshe cotl€ will er.€cute,
waitilg for lhe SeEsors lo be cov€reil anal tb€n
uicover€d. $!r€n 6itbe! i6 Cov€raeal (IJDR Vo].lage
changea bL 25% o:. nore) lhen the LEDa f,Iaah.
Ighen both are left uncove!€tl, the lighta flaEh
for an aalalitional 10 B€coDils.

PIC15F68{ Pl .nE:
RAO - I,DRI
RA2 - IJDR2
RCz - I,ED1
RC3 - I,ED2

4yke p!6tlko
0 { . 1 1 . 3 0

-CONTIG(INTIO & WDTDIA & PWRTEN & IICIJRDIS
T'!{PRCIIECT \

& I'NPROTECT & BORDIS & IESODIS & FCMDIS} '

i , j , k ,
LighbTiner, FlashTi.nert
IiDRo, IrDR2t // LDR Av€rage Valuea

int
int
int

co!6t int fiftynB = 3333, // 50 mB Delay

L 4 4 l , P 3 P I C @ f l C U E x p e r i m e n t s f o n t h e E v i l G e n i u s

nair()
{

PORTA = 0,
PORTC = 0,
CMCON0 = 7,
ANSEL = 0b00000101,
ADCONo = 0b00000001t

ADCON1 - 0b00010000t

T R I S C : 0 b 1 1 0 0 1 1 ,

LLghtsliner = 0t
FleshTine! = 0t

// alrin of.f. CdrE aralora
// ADC ON RAO & RA2
// llurn on lhe AIrC

// g€lect the clock as
EoBc / I

// RC2 & BC3 ar6 IrED
Driv€r6

// Nothlag Flashing Yet

for (i = 0, i < 5, i++) / / DeLey Eo r .et Power

I.DRo = 0,
f o r (j = 0 r j

{
GODONE = 1,
while (IGODONE) t

I J D R o = L D R o + A D R E S H t
for (i = 0r i < f l f ts lzns, i++),

, / / io f

L D R o = L D R o / g t

get!L€
i < f l f t ! 'nEr i++) t

< 8, J++) / / cer BA0 risht
Average

IJighlTiner = lO + 2Oi // Flash f,or 10 gecoDtla

i f (0 :E (PoRTc & 0b001100))
| // If Not Flashing, Start

PoRTc = 0b001000t
FLasbTinler = 10,

| / / t i
l l l E i

if (LightTilne! l= 0) // Stsi11 FLa8hiag?
{

LighlTimer = LightTiner - 1t
if, (0 == LightTLn€r)
| // Finisheal Elashlng
FlaahTlner = 0, // Finish€d Flashingl
PORTC = 0t

J / / f i

if (LightTlm€r != O> ll Chang€ ELashing?
{
FlaahTimer = FLeshTimer - 1i
l f (0 == Flasht iner)
| // Chans€ Flaahing

Ligh!s
FlaEhTirn€r = 10r // Res€t F1aah Tiner
PORTC = PORTC ^ 0b001100t

, / t f L
| // fJ-

\ / / elilLv
] // Ena cRok 2

When I created cRoc 2.c, I expected it to work with
minor tweaking. I was surprised to discover that when
power was applied, the LEDs flashed continually. This
is probably the most dreaded situation imaginable; I
had a problern with a hardware device that was not
supported by the simulator (which had worked cor-
rectly when I simulated it), and I had not designed any
way of passing data out of the application. After about
3 hours of working at characterizing the problem,I dis-
covered that to get an accurate reading for comparison
to the average value, the ADC needed a dummy read
after changing channels When you look at this code,
you'll see that I actually loop through each ADC's
channel twice before I compare the result to the aver-
ased amount for the channel.

'Len Tfain "Righl'Tmin
Signal Signal

Figure 7-B Train crossing circuit

// Bi,E 7 - Ir€ft ilustif,ietl garnple

// Bit 5 - Uae VDD
ll BiE lt2 - Chan'lel 0
/ / BiE L - Do Dot Stalt
ll git. 0 - fur|t on ADC

ftl
v
/!

tld

T U
|"{

f",.

ts t

I
t

la{

rl
tn
ry
*r.a

n
?r

L

r",

Ul
h3

ADCONo = 0b00001001, // Sample on ItA2
I,DR2 = O,
f,or (i = 0r J < 8, i++) // c€l RAo Lighl Av€rage

// sarDLe aAo

// Ciel Average R€ailiDg

// Saq)le RAoGODONE = 1,
!rhi1€ (t GOITONE),

L D R 2 = L D R 2 + A D R E S H t
fo! (t = 0, i < f i f t t 'nsr i++)t

I / / to€
IJDR2 = IrDR2 / 8t // cet Averag€ R€ading
for (i - 0r i < f i f , t t 'mar i++),

J = 0 t

$hL1€(1 -= 1)
(

i f (j < 2)
{

// uE6 J fo! chatulel
se1€c!

// Loop Eorev€r

// ItAo Read

A.DCONo = 0b00000001r // serI)].e on RAo
fo! (i = 0r i < f l f t ! 'nsr i++)t

GODONE = 1t // Do aDc Reaal
wbj.le (IGODO$E) t

k = (I,DRESH a 100) / LDRot
j a j + 1 , ,

)
elEe
t

GODONE = 1,
nhil€ (IGODONE),

k = (A D R E S H * 1 0 0)
j = (j + 1) % { ,

, / / t i

// Incr€{reat sarE)le

/ / g€.nE)l€ on RA2

ADCONo = 0b00001001, // S€4p1€ on RA2
for (i = 0r i < f l f l lmsr i++),

// Do A.Dc Reaal

I LDR2I

i f ((0 = = (j & 1)) & & ((k > 1 2 s) l l (k < 7 s)))
| // Start/conlinu€ Flashi'lg

S e c t i o n 5 e v e n S a m p 1 e C l l i c n o c o n t r o l l e r A p p l i c a t i o n s 1 4 5

To find the problem, I first simulated the applica-
tion to make sure it worked as I expected it to. You will
find that the simulator executes straight through the
ADC operations with the GODONE bit being imme-
diately reset after it is set. Using the Watch window
register value update feature (double-click on the reg-
ister's value to bdng up an edit window),I tested the
application for different ADC return values and made
sure lhat the code worked properly. Next,I com-
mented out all the code for one of the two channels
and I found the application started working, until I
returned the commented out code. Next, by flashing
the LEDS, I output the value read versus the value
average and discovered they were different. Finally, I

tried to do a dummy read of the ADC channel before
the live read, which was checked against the averaged
value.

The previous paragraph does not convey the frus-
tration and annoyance I felt in working through the
problem. But, by working step by step, ensudng the
program worked in the simulator as I expected, check-
ing my assumptions rigorously, and not presuming the
root cause of the problem beforehand, I was able to
debug the application. This is a useful sequence you
can use when you are faced with an application that
doesn't work or behaves in a manner that is totallv
unexDected.

ExFeriment 53-5even-5egment LED Thermometer

DMM

Sc ien t i f i c ca l cu la to r

Need le -nose p l i e r s

So lde r

9l ire-yr3p 9i36

Weldbond adhesive

Probably the most popular PIC MCU project I have
ever designed was a three-digit digital thermometer
for the PIC16C84 that was wdtten in assernbly lan-
guage. For some reason this circuit and software was
extremely popular and was used as the basis for a wide
vadety of different applicationq including monitoring
the temperature of a chicken incubatorl The original
digital thermometer used a timed I/O pin resistance
measurement of an RC network. Two input pins were
used to calibrate the thermometer output, and the cali-
bration value was saved in the data EEPROM of the
PIC MCU. The original circuit works quite well, but I
wanted to eliminate the need for the calibration value

1

I

PIC16F68 4

?4HCT138 three to e j ,ght

decoder

14 -p in socke t

2N3906 b ipo la r NPN
t rans i s to r s

Thelmistor (Radio Shack
271 -110 reco r nended)

0 .01 pF capac i t o l s (any
tYpe)

100O res i s t o r s

330f,) res istors

10k , 1 -pe rcen t t o l e ! -
ance resLs to r

SPST switch

fwo-cel l AA battery
c 1 i p

as well as write the application code in a high-level lan-
guage that did not obfuscate the operation of the ther-
mometer.To meet these objectives,I used the
PIC16F684's ADC along with the PICC Lite compiler
language and its floating-point number capabilities.

The circuit (see Figure 7-9), although fairly com-
plex, is quite straight forward. One common anode,
seven-segment LED display is active at any one time,
and the application sequences through each LED dis-
play 50 to 64 times per second, giving the appearance
that all four are active at the same time. The seven-seg-
ment LED displays are powered by PNP transistors

L 4 6 l , P 3 P I C @ l ' l C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

-l-
I

-L,:
Figure 7-9 Digital thermometer circuit

that are, in turn, driven by an eight-bit decoder.This
may seem like an ungainly method of driving the
seven-segment displays, but it is required due to the
lack of available pins from the PIC16F684 to ddve the
segment common pns.

I built my prototype on a fairly small PCB (see Fig-
ure 7-10) and used poinlto-point wiring to create the
circuit as shown in Figure 7-11.There are a lot of wires
to solder, and when you have completed the circuit, I
suggest you test it with cThermo 1.asm. This will initial-
ize the PIC16F684 and display the ADC value for the
resistor/thermistor voltage divider. I used the Radio
Shack thermistor because it is reasonably priced and
the back of the package lists the thermistor's resistance
for different temperatures, which is nice to have when
debugging software.

* inclut le <pic.h>
/. cTherno 1.c - Display the ADC Value

This program will alisplay the curlent PrC16F584
ADC Value on four 7 gegnent Conmon Anoile LED
Displays.

The Codle/wiring is baseal on 'c4x7s€9.c" Noting
that Negative Aetive LED Wiiirlg iB useal.

Eartlware Not€s:

AA5 - Segment a
RC5 - Segment b
RC4 - Segment c
RC3 - Segment al

Fiqure 7-10 Digital thermometer top with
thermistor by the on/off switch

RC2
RC1
RC0

RAO

- Segment e
- Segment f
- segment g

- Right 7 Segtnent Display
- Left 7 Segment DispLay

lryke prealko
0 4 . 1 2 . 2 3

-CONFIG(INTIO & WDTDIS & PWRTEN & ITCIJRDIS &
UNPROTECT \

& ITNPROTECT & BORDIS & IESODIS & !'C!IDIS) t

Ptc16F684

G 1 V d d

B C

.G2A/B

Y 3
\ 2
Y 1
Y O

RA5

RC5

RC4

RC3

RCI

RA4 RCO

"o 2x Dual 7-Segment Common
Display

S e c t i o n 5 e v e n S a m p 1 e C l " l i c n o c o n t n o l l e r A p p l i c a t i o n s L 4 7

${
o
(,

g
o
br
t l
(l

Lr

n
trl
Fl

"P

l{
s,
Etn
0,
w

I

l-N

CI,
F
{l
rn

I

\v

H
--l
$..1
\u
P{
X

|lI

DisDlatvalue - Oi // Seatt. Dl.splayl.ng at
0 x 0 0 0 0

Disl,laylED = 0t // DisDlay the 16 filgts
j = 0t // slalt counting at zelo

whi le(1 == 1)
t

| / l2oo!, Eotevei

Figure 7-'f'f Digital thermometer backside showing
pointto-point wiring

Diq)IatDigir = (DisDleyvalue >> (DiEplat'!@ * 4))
& 0x0Ft

PORTA = ((LEDDigit lDisp1a]'Digitl >> 1) & 0x020)
+ (1 << 4) + (3 - DiEI) IayLED) t

PORTC = r,EDDigit [DiEplayDigitl t

DiEDlariIrED = (DtEplayIJED + !, % 4t // Ne*E
Digrit

NoPOr // uged for 5 ms Timinsl
fo! (1. = 0r L < 32"1, i++r, / / 5 ma

Delay
Loo9

/ / veed fot 5 ms Iimingl

// rncldrent !h€ couat€r?
// 1/{ Secolal Paaaeal?

// R€set for anothe! 1/4
geconal

NOP O T

j E j + 1 '

i f (s0 = - i)
(
j - o ;

lnE DLapla!ryalu€, DLsplalrDlgLt, DlEplayriED,
lnt ADcstate = o,

conEu char IJEDDigittl = {
// RRRRRRR . PIC16F581I PIN
// ACCCCCC
/ / 55432LO
// abctlefg - IJED Segrlent

0b0000001 ,
0b1001111 .
0b0010010 ,
0b0000110 ,
0b1001100 ,
0b0100100 ,
0b0100000 ,
0b0001111,
0b0000000 ,
0b0001100 ,
0b0001000 .
0b1100000 ,
0b0110001,
0b1000010,
0b0110000,
0b0111000) t

natn()
t

PORTA = O'
PORTC = 0,
CMCONo = 7t
AI,ISEIJ = 1 << 2t

/ / 'r\l�zn off comparatorE
// 8A2/ (AN2) la a.|t Analog

awl.tch(aDcstsat€)
(
case 0: // gtsart ADc operation

CiODONE - 1t
ADCSlat€ = Li
bleak;

ca6e 1:
ADCSlate = 0t
DiaDlat4talu€ = (.a.DRESH << 8) + ADRESIJt
b!€aki

] / / hct iws

| / / et"rbw
| / / E^d cTherno 1

When cThermo 1.c is running, you can test the oper-
ation of the ADC and the display by breathhg on the
thermistor or by putting it in the sun or in a refrigera-
tor. After you have verified the operation of the display
and thermistor, I suggest that you coat the back of the
PCB and all the wires with Weldbond or epoxy to hold
them down and prevent them from being damaged.

The next program demonstrating the operation of
the circuit is cThermo 5.c, which displays the current
resistance of the thermistor (in 10O increments). I
found that the resistance displayed was almost exactly
the resistance specified on the back of the thermistor's
package.

The thermistor and 10k, 1 percent resistor form a
voltage divider, which is read by the PIC MCU's ADC.
The formula for the 10-bit ADC value (assuming that
the full range is 1,023) is as follows.

A D C / j . , 0 2 3 = 1 0 k / (1 0 k + & n " _ , * " ,)

Rearranging this formula, R*"-'.,o. can be calcu-
lated as:

rn
! J '

Input
AItCONo = 0b10001001, // $rr|t on the ADC

/ / BfiE 7 - Right .IustifL€d S€lnlrle
// BLt 6 - u6e rrDD
l l BiE 4.2 - Chaanet 2
ll Bft L - Do not start
// BLE O - Tuln or ADC

A.DCONI = 0b00010000r // 5€1€ct the Clock as
Fosc/8

TRISA = 0b001100, // RA5/RA1/RAo a!€ outl)uld
TRISC = 0b000000r // ALl Bits of PoRTc ar€

outDuta

1 4 8 l , e 3 P I C @ I I C U E x o e n i m e n t s f o r t h e E v i l 6 e n i u s

& * * ' " - . = t (1 , 0 2 3 x 1 0 k) / A D c l - 1 0 k

This is the formula used in cThermo 5.c to calculate
the thermistor resistance value before it is converted
to indiyidual decimal digits and displayed. I broke the
formula into different pieces and put them in a state
machine to make sure that the floating-point opera-
tions would not delay the operation of the TMRO-
based digit display code.

cThermo 5.c was my first experience with floating-
point numbers and variables in the PICC Lite com-
piler, and I must say it was an educational one. In the
code for cThermo 2.c through cThermo 4.c, I tried a
number of different approaches to solve the problem
and discovered something that should have been obvi-
ous. The functions that provide floating-point opera-
tors in the PIC MCU take up a lot of instructions. I
found that to best implement the PICC Lite compiler
code with floating-point operatorE I should restrict the
number of operations to three.

In the previous code, you will see the three opera-
tors:

. Floating-point-to-integerconversionusingthe
"(int)" type cast

. Floating-pointsubtraction

. Floating-pointdivision

To convert the thermistor resistance to a tempera-
ture, I found that the resistance varies negatively with
the temperature. This was confirmed by a table on the
datacard that came with the Radioshack thermistor.
This means that as the temperature of the thermistor
goes up from a nominal temperature of zs"C,the
resistance goes down. Similarly, when the temperature
of the thermistor drops, its resistance increases. With a
little bit of experimentation with a calculator, I discov-
ered that the resistance varied by 1.039 percent for
every degree Celsius of temperature change. This rela-
tionship seemed to be true for +/-40"C from 25'C,
which was within the range of temperatures for a ther-
mometer to be used around the home.

When you order a specific thermistor, you can find
this information in its datasheet, otherwise you will
have to come up with some kind of way of experimen-
tally finding this information. This is not easy to do.
The temperature versus resistance information printed
on the packaging is why I selected the RadioShack
part.When you look at the datasheets, you'll see that
the percent resistor change per degree Celsius is not
constant across all temperatures, and the manufacturer
will often include a formula for a temperature range of
several hundred desrees Celsius.

To keep the application reasonable,I just kept the
operating range to +^ 40"C with a center point of
25"C and came up with the voltage{o-temperature
function for the thermistor and 10k, 1 percent preci-
sion resistor voltage divider:

Voltage*, = Vdd X 10k/(10k * &n"-r"-.)

Because I used the full 10 bits of the ADC for this
application, the ADC value could be converted to a
voltage using the following equation:

VoltageRA2 = Vdd X ADC/1,023

And combining them, I could solve R*"**o, from
the ADC value:

Vdd X ADC/1 ,023 = vdd X 10k / (10k +

R*.*;**)

Rrr,._i"rc, = l l1-,023 X 10k) /ADCI , 10k

This calculation is carried out in states 65 and 66 of
cThermo 5.c.

The next step was to convert this resistance into a
temperature change from 25"C. Knowing that the ther-
mistor's resistance changed by a set percent for every
degree Celsius change in temperature, the resistance of
the thermistor could be expressed as:

&h"-t"t . ' = 10k x (1 039'5"c r)

Plugging this value into the ADC equation for
Rrh"*nto., the temperature difference from 25'C could
be wdtten out as:

t (1 , 0 2 3 x 1 0 k) , / A D C I - 1 0 k = 1 0 k X
(1 . 0 3 9 , s o c a)

Removing the common 10k term, the equation
becomes:

(1 , , 0 2 3 / A D ' c) - 1 = 1 . 0 3 9 ' � 6 k - r

Now, depending on how much mathematics back-
ground you have, this may seem insolvable. But, by
knowing the following:

NunPowei = e1n(Nu)
x Pawer

t$

fit

t**

tr1
p.{

f&

I 1 1

t
6

tflr

{u
-\

l ! l

lqE

*
{ f l

t i ,

9{

t i.F

.J

F
Frl
n

|"{

o
h{
t
o
5
o
$
t v
F'

S e c t i o n 5 e v e n S a m p I e C l l i c r o c o n t r o l l e n A p p l i c a t i o n s 1 4 9

where e is the base of the natural logarithm (ln), and
by using this relationship on the previous equation,
along with a bit of algebra, you can find:

T e m p = 2 5 o C - { L n t (1 , 0 2 3 I A D C) -

1 l l 1 n (1 . 0 3 9)]

Even if you understand exactly what I've done here
and have had the necessary instruction in algebra, rela-
tions, and functions, I'm sure your brain is hurting. I
suggest that you stand up and take a break. I know I
had to. The temperature formula is deceptively simple:
It took me four days to work through the circuit and
equations to come up with this equation, which is spe-
cific ro the PIC16F684's 10-bit ADC and independent
ofVdd. Calculating the temperature using a formula
that is independent ofVdd allows the circuit to work
with different voltage power supplies without having
to change the software. It is actually quite an important
feature of the formula.

It seemed like a cruel joke to me, but the worst part
of developing the application was yet to come. Despite
having a seemingly simple conversion formula, I found
that I had a fairly serious size problem; the code
seemed to be 100 to 110 instructions too large for the
1024 instructions available to the PIC16F684 PICC
Lite compiler.

The problem with the code size was the need for
including the C natural logarithm function (known as
log in C, not ln as is normally used in mathematics).
This function seems to take over 400 instructions, and I
could only allow 300 or so. I was very surprised at this
situation as I believed that the natural logarithm (and
exponent) functions were required for the floating-
point division operator. Further complicating the situa-
tion was the fact that the MPLAB IDE simulator
continually flagged a subroutine return underflow
before executing the application code.

It took me another three days, but I was able to get
the application working for the previous formula. By
carefully managing integer variable sizes and looking
for opportunities to share application code as much as
possible, I was able to shoehorn the application in, with
a dozen or so instructions to sDare. and it seemed to
work. cThermo 6a.c is a modification of the final result,
and I found that the digits would occasionally flash
noticeably. I made the assumption, first, that the log (C

natural logarithm function) took longer than the 4,000
cycles (4 ms) available to it between LED display
updates, and then I enabled the 8 MHz clock and dou-
bled the number of cycles between LED display
updates so the 4 ms delay stayed constant.

Looking at the work that went into this experiment,
along with the trials and t bulations I had to endure,
you're probably asking yourself if the effort was worth
it. This is an especially germane concern, considering
that I could have spread it out into three experiments:
driving four displays, a seven-segment LED Ohmme-
ter, and the final digital thermometer. I would have to
say yes, because it gave me some practical experience
with floating-point values in the PIC MCU and,
despite all the problems I encountered, the voltage-to-
temperature formula is fairly easy to observe and
check visually.

I was able to come up with the following rules when
working with floating-point operations in the PIC
MCU:

. Limit the number of floating-point operations
you are going to use to three: subtraction, divi-
sion, and floating-point-to-integer casting.

. Do not use any ofthe logarithm or trigonomet-
ric functions in a PIC MCU where only 1k of
program memory space is available unless you
absolutely have to.

. If you are running display loops with floating-
point operations executing inside the delays,
recognize that the floating-point operations
take a lot of time, and plan accordingly.

r Do not obfuscate your floating-point calcula-
tion code in order to make them more efficient.
If you are going through the effort of including
floating point in your application, make sure
the theory behind the floating-point operations
is sound and the formulas and algorithms you
are implementing are reduced as far as reason-
ably possible. Try also to avoid many of the con-
versions and leaps that are necessary when
fitting integer operations into a task that
requires data manipulation.

1 5 0 l , a 3 P I C o I I C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

Experiment sr-.|-PlC MfU "Piano"

1

1

t

Dl''!M

Need le -nose p l i e r s

So lde l i ng i r on

Solder

Wire-wrap wire

Iodel ibLe ink malke!

Weldbond adhesive

In Figure 7-12, you will see that I have arranged 10
momentary on push buttons in an arrangement that is
similar to a piano's keys. This probably doesn't seem
like such an amazing application; the PIC16F684 has 12
pins and 10 of them could be easily connected to indi-
vidual buttons, leaving two pins for driving out the
musical signal. In the previous section, I introduced
you to switch matrix keypads. So you might think that
the 10 keys are wired as a switch matrix, resulting in
only seven (five columns of two rows) pins being used.
Actually, neither method is used. Instead, the wiring
used in this application requires only six wires to inter-
face to the 10 buttons. If you have a small number of
button inputs for an application (and you have
designed it to work with only one button at a time
pressed), you will find cases where this is the most effi-
cient method of widng your application's button input.

The method used to provide the 1O-button input can
be seen in the piano's schematic (see Figure 7-13). For
six of the natural keys, there is a traditionally pulled-up
momentary on button. However, for the four sharp
keys, a momentary on button connects the adjacent
natural keys to ground through a silicon diode. When
the sharp keys are pressed, current will flow through
the diodes, pulling each of the adjacent natural keys
low. Therefore, to sense when a sharp key is pressed,
the two adjacent natural keys have to be polled.

PIC16F68 4

14 -p in socke t

1N914 s i l i con d iodes

0 , 47 I tF
tYPe)

0 . 0 1 p F
tYpe)

10k res i s t o r s

P iezo speake r

Three-cel l AA battery
c l i p

AA ba t t e r i es

Prototyping PcB

capac i t o r (any

capac i t o r (any

1

I

3

1

This method can be used in a number of different
applications. Remember that you are not limited to
wiring the in-between momentary on buttons to just
two standard pulled-up buttons;you can use this
method with really any number of standard pulled-up
buttons. ln doing so, you will discover that locating the
multiple diodes for each button in between can be a
problem. I am bringing this up because it was a bit of
an issue for me. However. I was able to find a

Fiqure 7-la PIC16F684-based I0-note "Piano"

S e c t i o n 5 e v e n S a m p 1 e C l ' l i c r o c o n t r o l l e r A p p l i c a t i o n s 1 5 1

_:-
'-r'

__L

o
c
(d

.F{

A

p
U
E
U
H
A

I

lJ
c
(l

.r{

h
o
9.
X
fsl

<rr
LN

Figure 713 Piano circuit

prototyping PCB that would allow multiple connec-
tions at a single point, and by experimenting with how
I placed the pull-up resistors and the diodes, I was able
to come up with a scheme that was quite easy to wire
and did not use up an excessive amount of space. In
Figure 7-14,I show how the diodes are wired to the
backside of the PCB underneath the natural kev but-
tons.

cPiano.c is the application code I came up with for
this expedment and it delays 50 ms and then polls the
six input pins to see if any buttons are pressed. If a pin
is pressed, then a PWM period and duty cycle is saved
in the TMR2/CCP hardware and pin RC5 is put into
output mode for the PWM signal to pass the sound to
the Piezo speaker. To corne up with the delay periods, I
started with a table of the different note frequencies. I
then converted them into microsecond periods and
divided them by four so they could be loaded into the
PR2 register for driving out the different frequencies.
You'll find that the final output may be a bit flat or
sharp; this is due to rounding errors that came with
converting the periods into integers that TMRZ could
work with.

*itlcluae <pic.h>
/* cPLano.c - 10 Not€ "Piano"

Thl"a aDDllcation noaLtorE 10 Diano keys via 6
I/O Dina anal Dlaya th€ aDprolrliale note aB IoDg
aa lhe k€y La pleEsea[for 50 ps incr€meata. Th€
PRU outDut ia u6ed for the nolea !,rith a 4x
Drescale! .

Figure 7-lt{ Backside of PIC16F684-based piano
showing how the diodes are wired underneqth the
buttons

G* - RAo/RAl - L,662 rrz - 602 pa - PP = 150
A - RAo - 1,750 Hz - 558 ps ' PP = 1{2

garalware Nolea:
PIC15F58{ Rutrning at { uEz with Iut€rnal
oEcLl la lor
RC5/P]-A - Pw!{
RC2:RCo - Soulal InDut BilE Notetl Ab<w€
RA2:RAo - Souril Input Bils Noteil Abov€

rvke Dreflko
0 5 . 0 L . 2 2

-CONFIG (INTIO & WD4IDIS & PWRTETI & MCIJR.DIS &
I'}IPROTECT \

& ITNPROTECT & BORDIS & IESODIS & FCMDIS) t

int j t

char Ke!ryaluei
char Freqoutst

tnain ()
t

C!'ICONo = 7t ll rI\En oft CdE)aratora
iNSEI = 0t // truln off AIrc
E2CON = 0b00000101r ll r|/�,F.,2 ',aa 4r. Preacal€r
CCP1CON - 0b00001100t ll E,nable PDU Oulput

rrh i l€(1 == 1)
(

// Loop Forever

The Keya are alefineal as:
!'liild].€ C - RC2 - 1,0{5 Ez - 955 ps

C* - RC1/RC2 - 1,108 Hz - 902 ps
D - RC1 - L,L74 vz - 852 p,e
D* - RCo/RC1 - 7-,248 Hz - 8O2 p,a
E - R c o - 1 , 3 1 8 H z - 7 5 8 p B
F - RA2 - 1,395 Hz - 715 r lE
F* - R-e1/RA2 - 1,d60 Hz - 675 pB
G - RAI - 1,558 Hz - 638 Es

NoPO r / / 50nE D€lay
l o r (f = u i 7 < 4 5 5 5 i 7 + +) i

N O P O ,

Ketrvalu€ = ((PORTC & 7) << 3) + (PORTA & 7);

i f (0 = = (K € W a l u e & (1 < < 0)))
Lf (0 != (Kewalu€ & (1 << 1)))

Fleqout = 1{2r / / A
€ 1 a e

- P P = 2 4 0

- P P = 2 0 0
- P P = 1 8 8
- P P = 1 8 0

Freqout = 150, t/ e*
elae i f (0 == (Ket^Ia lu€ & (1 << 1)))

i f (0 ! = (K e w a l u € & (1 < < 2)))

152 l , e 3 P I C @ l l C U E x p e n i m e n t s f o r t h e E v i I G e n i u s

F!€qoul = 150r / /
e ls€

, Fleqout = 158i / /
else if, (0 == (K€]|value &

Fleqout = 180r / /
else if (0 == (Keyvalu€ &

i f (0 t= (Kef l ta lue & (1
Freqout - 188i l l

F eqout = 200r / /
elEe if (0 == (Ket4/alue &

i f (0 l= (Kewalue & (1
F!€qouts = 212, / /

e lEe
FreqOuE = 225, / /

e lBe i f (0 == (Keyvalue &
Fr€qoul = 240r / /

e lBe / /
Er€qouts = 0,

' i J

5-l

t,:t
.al

i - f

i ?i!

I

',AJ

'i.r;
*",i,

g'

i.,"*4

a"

;

t d

r.{

ra
. ,
fi

F*
(1

D*
(1

D

< < 2 l) l

< < 3)))
4)))

< < 4)))
s)))

(1 < < 5)))

Nothing Presaeal

Nothing Presaetl
Tuln OFF Output
setup PwM

Ouqntt 50% Dtrty Cycle
Pwu sigrnal

ltRISCs = 0r // Output Signal
j / / f i

) / / € l ihw
) // Enal cPiano

I should point out that this circuit is not limited to
only 10 pins. For my application, the limiting criterion
was space for buttons on the prototyping PCB. Using
this method, if I had used all 11 available pins on the
PIC16F684,I could have supported up to 22 keys. This
is a good method to remember when you have a fair
number of input buttons to poll but don't want to go
through the hassle of the switch matrix code. Gener-
ally, this scheme requires one-half the buttons as I/O
pins, and it can be extended far beyond the 10 buttons
presented in this experiment. As a point of reference, it
seems that 20 is the number of buttons where a switch
matrix keypad is more efficient (in terms of I/O pins)
than the method Dresented here.

t f (0 == Freqout)
TRISC - 0x3F,

elEe
{

PR2 - F!€qout t
C C P R 1 L - F ! € q O u ! / 2 t

Experiment 55-Model Flailurag Suritch fontrol

1

1

1

1

1

DMM

Osc i l l oscope

NeedIe-nose p I ie!s

Soldel ing iron

SoIder

Wire-wrap wire

HO scaLe remote t lain
switch

flain poi.e! supply

Compared to other hobbies, model trains have
changed very little since I was a kid. When I go to a
local train store, I'm always depressed to see that
power supplies are still based on a Variac (variable
transformer) train Dower control and a transformer for

1

1

1

1

PrcL 6F68 4

14 -p in socke t

fRIACs (Radio Shack
276-1000 reconmended)

5 .1V , 1 Anp Zene ! d i ode

lN9 l4 s i l i con d iode

330 pF e lec t ro t y t i c
capacitot

0 .01 / u ,F capac i t o r (any

tYpe)

2204, !-watt resistor

l 0k l es i s t o r

Two-posit ion telminal
b l ock

Thlee-posit ion terminal
b l ock

Prototyping PCB

18-Volts AC accessory power. I realize that the DCC
system does bdng the hobby into the twenty-first cen-
tury, but these control units as well as the remote units
are very expensive. What is needed is a low-cost way of
providing computerized control of trains and the

S e c t i o n S e v e n S a m p 1 e C l ' l i c r o c o n t r o I 1 e r A p p l i c a t i o n s L 5 3

I

r !

*P

J'l
tu

r-{

iq

&

,
t!

I J J

! t r

H

!d-.!

;€

layouts so that hobbyists of moderate means can
experiment with computer control of their layouts. In
this experiment, I will show how a PIC microcontroller
can be used to control a switch using the accessory
power from the standard train power supply.

Before going further, I want to note that this ctcuit
is powered by a/renr ating current (AC). The AC used in
this experiment is the benign 18-VAC accessory power
available from a hobby train power supply. The cir-
cuit's power supply is not designed for use with house-
hold AC (110 or 220 volts depending on where you
live), which can bum or electrocute you. Although the
methods used to design the power supply are the same,
and I show how I calculated the values for this experi-
ment, the component values are not valid for house-
hold AC. If you want to interface your application with
household AC power (or any AC voltages other than
the 18 volts used in this experiment), make sure you
consult with an engineer or electrician before connect-
ing the circuit to the power supply. Be sure you have
selected correct values and have wired the circuit
according to your local code.

The control circuit is quite simple (see Figure 7-15),
and I was able to wire it on a small prototyping PCB
(see Figure 7-16).The PIC device is powered by a 5.1-
volt Zener diode with a 220O resistor and standard
resistor to rectify and regulate the current. The 330 pF
capacitor ensures that the voltage is smooth.The PIC
MCU continuously polls the SPST switch, and if it
changes state, one of the two TRIACS is driven for a
few milliseconds to change the solenoid in the track
switch. If you are wondering, the application could be
easily expanded to handle multiple switches. Although
due to some of the issues that I had. there are some
considerations that you should be aware of that I will
share with you at the end oI the experiment.

To calculate the value for the components, I
assumed I would run the PIC16F684 at 5 volts, so I
used a 5.l-volt Zener diode (which has a constant 5.1
volts across it) and a silicon diode and resistor to rec-
tify and limit the curent flowing through the circuit.
The RadioShack TRIACs I used require 25 mA of cur-
rent to operate, so I wanted to have a maximum of 50
mA (25 mA for the TRIAC and 25 mA for the PIC
MCU and other components). To find the correct resis-
tor value, I used Kirchoffs and Ohm's Laws:

= 1 2 . 2 v o l t s / 5 0 n A

= 244Q

I used a 220.0 resistor in the circuit because it is a
standard value. For its power rating, if 50 mA is passing
through the resistor,0.55 watts of power is being dissi-
pated.To ensure that there wouldn't be any power
issues, I used a 1-watt-rated resistor.

With the power supply circuitry selected, I built the
cfucuit on a prototyping PCB using small terminal
blocks to connect the c cuit to the 18-volt power sup-
ply and to the train switch using the wires that come
with the train switch. (For this, I bought an ATL
Remote Right-Hand Switch, item number 851.) Before
burning a PIC MCU with code, I tested its operation
by shorthg pins RC4 and RC5 to ground to make sure
the TRIACs (which are simply AC switcheq controlled
by current) would change the switch solenoid's state.
In my application, I kept the I/O pins driving the TRI-
ACs in input mode until the solenoid was to be driven.

When I tried the PIC16F684 in circuit, I found that
the circuit worked fine to change my switch to one
state, but had problems with the other state. In this
state, the switch would start chattering, and the sole-
noid got very hot. When I put an oscilloscope probe on
the I/O pins, I discovered that both of them were
becoming active. Further investigation revealed that
the solenoid state seemed to require so much power
that the 18 volts ofAC was reduced to zero. After con-
sidering the problem, I decided the simplest solution to
the problem was to use the PIC16F684'S EEPROM
data memory to save the state of the switch in case the
PIC MCU was reset.This was a fairly minor modifica-
tion to the original code, and I called it ci[rainz.c:

#incluale <Dic.h>
/* cTraln 2.c - controL Ac Dliv€n Train control

This Drogram ia a modlif,ication of "clrain" Eo
take adlvanlag€ of, the EEPROM Data lilemory !o
recoral the laal aelting of the PIC Elritch

RA3 - Button CoDnectioa
RC4 - Train 1!RIAC1
RC5 - Train TRIAC2

ntzke Drealko
0 4 . 1 2 . 3 0

VAc = V-{zener} + Voi"a" + Vn."*.".

1 8 v o l t s = 5 . 1 v o l t s + 0 . 7 v o l t s +

V"""r".".

Vnesistor = 12.2 volts

R = V / I Figure 7-'15 Train

(J

I

AC Common

1 5 4 1 e 3 P I C @ l l C U E x p e n i m e n t s f o n t h e E v i I 6 e n i u s

whi le ((
i f (0 r =

else

Bstale = 0t
EEPROM WRITE (4,

f o r (i = 0 t i <
TRISC4 = 0i

f o ! (i = 0 i i <
TRISC4 = 1t

i < 1 1 0 0) & & (0 = = R A 3))
P"A3)

// switch Bounce

// Increment Debounce

// rnalieale state Active
0)r / / a.ecof i l in EEPROM
5 5 5 5 r i + +) r / / 1 0 0 n s

// Enable RC4 as Output
5 5 6 5 r i + +) , / / 7 0 O n e

// Finished Dliwins Solenoid

]
e l s e i f ((0 ! = R A 3) & & (B s t a t e ! = 1))

// Sttr'ilch chaflge

{

w b i l e ((i < 1 1 0 0) & & (0 ! = R A 3))

Fiqure 7-16 Sintple hobby train switch control
ctrcuit thot replaces standard mechanical switch block

i f (0 == RA3)

i = i + 1 t
Bstate - Lt
EEPROM_WRITE (4 ,
f , o ! (i = 0 t i <

TRISCs = 0t
f o r (i - 0 t i <

TRISCs = 1t
J / / f r

) // el-ihw
J I / E']A cTrain 2

// switch Bounce

// Itteremen! Debounce Count€r
// halicatse state Active

| / 'tecord, irr EEPRoM

-CONFIG(IIIIIO & WMDIS
UNPROTECT \

& T'NPROTECT & BORDIS

int Bs€ate = 2t

tnain ()
{

& PIIIRTEN & IICI,RDIS &

& IESODIS & FCMDIS) i

5666 r i ++) r / / 100 ns
// Elable Rc5 as Output

5 6 6 6 r i + +) r / / 1 0 0 n s
// Finished Dliving solenoid

PORTC = 0t
CltlCONo = ? t
ANSEL = 0;

f o r (i = 0 t i <

// Output BitB are].ow
// turn off Conll)alatol.s
// Turn off aDC
// No output6 {Yet)

1 8 0 0 0 r i + +) / / 2 5 0 m s I n i t i a l
Delay

When you build this application, you may find that
you do not need to save the state of the solenoid in
EEPROM data memory. I have tried this application
on only one train switch. As the saying goes:YMMV
(1tour mileage may vary). You may find that you
require the EEPROM for both solenoid states or you
might find that you don't require it all.

This application can be easily extended to multiple
switches (using a single PIC16F684, you could control
four switches), although I suspect that you will find a
certain amount of variation between the switches,
which could lead to some problems.To minimize the
chance of power problemq make sure you engage only
one solenoid at a time;if four switches are active at the
same time, you should sequence through them with
some delay between each solenoid activation.To
ensure there are no power problems, you may want to
pass the Vdd voltage supply through a diode and then
have a large capacitor (47 pF to 100 pF) provide a
temporary power supply if a solenoid reduces the
accessota voltase to zero.

if ((EEPROM-READ (0) == 91 ag
(EEPROT'' READ(1) == oxFF) &&
(EEPROM-READ (2) == 0x55) &&
(EEPROM-READ (3) == 0tAA))

Bstate = EEPROM_REiAD (4) t

t
/ / rn i t iaLize the Slate

EEPROM_WRITE (0, O) '

EEPROM_$RITE (1, oxFF) t
EEPROM_I{RITE (2, O'.55) '
EEPROM,WRITE (3, O:.AA)'
EEPROM-VTRITE (4, 2) t

, / / f i

// Put in Check

// Nolhing set Y€t

whi le(1 == L) l l Loop Forever

t
i f ((0 = = R A 3) & & (B s t a t e I = 0)) / / $ t i t c h

S e c t i o n S e v e n S a m p 1 e C l l i c r o c o n t r o l l e n A p p l i c a t i o n s 1 5 5

Experiment 55-PC 0perating Status Displag

DMM

NeedLe -nose p I i e r s

So lde r i ng i r on

So Ide r

Wile-wrap wire

Weldbond adhes ive

One PC peripheral that has always fascinated me is the
remote status monitor that provides you with an alter-
native form of feedback regarding the operation of
your computer in the form of an LCD display, a glow-
ing ball, or a series of LEDs. In this experiment,I have
created a simple 10-LED operations display controlled
by the parallel port that can be added to a Windows PC
in just a few hours. It's important to note that although
the PIC MCU side of the experiment is fairly simple to
build (and is very similar to the other experiments in
this section), the PC software, despite nol requidng a
specialized device driver, is fairly sophisticated and
plobatrly cannot be replicated or modified easily.

The circuit (see Figure 7-17) consists of a
PIC16F684 connecting to a PC's parallel port and has

Figurc 7-17 PerfMon circuit

1 P r C 1 6 F 6 8 4

I I 4 -p in socke t

? 1N914 s i l i con d iodes

1 1o-LED bargraph disp lay

10 4700 res i s to r s (see
tex t)

47 g ,F e lec t ro l y t i c
caPac].tor

0 .01 pF capac i t o r (any
tYpe)

PrototYping PCB

DB-25M solder cup con-
nector

the ability to turn on a single LED because it's pow-
ered by the PC's parallel port. Power is provided by
seven of the parallel port's eight output pins. These
pins are pulled up intemally by the parallel port and
source 1 mA of current. which should be sufficient for
running the PIC MCU and a single LED. The remain-
ing I/O pin is used, along with the printer strobe bit, to
latch in a bit of data. When I built my application (see
Figure 7-18),I used a 470O SIP and a 470O resistor for
limiting the LED current. You can use either this solu-
tion or 10 individual 470f) resistors.

The application code (cPerfMon.c) waits for eight
bits to be sent to it and then XORS the first four bits
against the second four bits, and, if the result is all bits
set, the specified LED tums on.

* incluale <pic.h>
/* cPerfllon.c - Display Performalrce Value from

This program conneets to the paralle1 por! of a
Pc and u'i11 receiw€ eight bits of, alata on RA3
(Clock) and RA4 (Data) anal compare the first
fou! bits $rith the second antt if they are
conpl.ementary, will alisplay the BCD value ort a
10 LED bargraph alispLay.

Thia prograrn was wlilten to r'rork erith

Hardlnrare Not€s:
PIC16F581I Runtring at 4 MHz
AA3 - Printer Polt CLock
RA4 - Printe! Polt Data
RC5:RCo -]Jow 6 Bi ts of the Display
RA2:RA0 - Bi ts 8:5 of the Display

L 5 6 l , e 3 P I C @ I ' l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

RA5 - Bit 9 of the DiBplay

llyke prealko
0 5 . o L . 2 2

-CONFIG(INTIO & WIXTDIS & PWRTEN & ITCLRDTS &
UNPROTECTr \

& I'NPRC"IECT & BORDIS & IESODIS & FCUDIS),

char BltcounE,
char Bitvalue = 0t
char Bitcotnp = 0t

natn()
t

PORTA - 0x3Ft
PORTC = 0x3Ft
CMCONo = 7,
.ANSEI, = 0 t
TRISC = 0t
rRISA = 0b011000t

osccoN = osccoN | (1 << {), // Run Prc ltcu at
g !|Itz

cPerfMon.c has a simple, but quite effective method of
error detection; if after eight bitE the XOR'd result is
not 0x0F (all bits set), it then waits past the next bit
and repeats the process with the next eight bits until
the XOR'd result is 0x0F. With the PC software send-
ing data once every tenth of a second, it will take up to
three-quarters of a second for the PIC circuit to
become synchronized with the PC output.

Although the PICC Lite compiler code for the
PIC16F684 is quite simple, the PC code to produce the
dialog box shown in Figure 7-19 and monitor the
amount of main memory that has been allocated by
the different applications running in the PC will be
very complex the first time you look at it. An impor-
tant attribute of this application is that it does not
require any special printer device drivers. If you have
enough experience with the PC, you will know that
most pdnters require specialized device drivers to pro-
vide bidirectional communications or even status mon-
itoring to suspend sending data until the current
buffered data has been printed. In this application,I
simply open the LPT file device and send the eight bits
of data as one bit of a byte (the other seven bits are
high to ensure the hardware is powered by the parallel
port). This is possible because the parallel port is wired
as Loopback port.As such, it appears to the basic
printer software as a "dumb" ASCII printer and will
have data sent to it at full speed (roughly one byte
every 50 ps).

The application code is written to be built under
Cygwin and run under GCC, and it consists of five
modules that are compiled and linked together.To
debug the application, I used DDD, also running under
Cygwin.The application and files should be buildable
under Visual Studio. Using the open-source tools for
development means that you can replicate the applica-
tion and avoid the costs of using Visual C+ + or Visual
BASIC. If terms like GNU Project GCC C compiler,
DDD debugger, and Cygwin Windows interface are
Greek to you, don't worry; as you leam more about
programming PCs and gain understanding of how to
create and build Windows applicationq these terms
(and tools) will become more familiar to you.

The basic application itself was written in C (for
GCC), is called PerfMon.c, and is listed below. This
application can access either LPT1 or LPT2 or neither,
and it remembers which one was active by using the
PC's registry for storing the last used port. I originally
wanted the application to display the PC's current
load, but this turned out to be problematic because
each version of Windows uses a different method of
computing the current load. Instead, I display the cur-
rent memory usage, which can also be a useful load
indicator in a PC if it starts running very slowly. Along
with the source code, ".rc" files are required that can

ir.g
:.!',i

is
i{

ir,
i!"{

tn
l"1i

i:-

f g a

l,p j

N

*rt

1,"{- :

ft?
! :

;.-;

r11

!i'l

LJ
?"J,
t A

{-}
g-."3

! \ r

t

{

/ / Diar,lay Negative Active

/ / T11r'r off Conrparatsora
// Turn off aDC
// A1l 5 Bi.ta outDuLa
// RiA{:8i43 lry)uts

rphile (1 == 1)
{

(
lrhiLe (RA3) t

{
while (RA3) t

/ / l2ooE Eotevet

for (Bltcounl = 0r Bitcount < {t Bilcount++)

Bi tvalu€ = (Bi tvalue >> 1) + (RA{ * 8) t
whi le (lRA3)r / / Make Sure Bi t ia s ish

l / / zof

fo! (r Bitcount < 8, BiEcount++)

Bi tcoq) = (Bi tconp >> 1) + (aA{ * 8) t
whi le (tRA3), / / l tak€ gure ai t iB t r igh

, ll rof

/ / Get Fi rst { Bi ls
// Igail f,or Bit

// Get Seconal { Bita
/ / wai t for Ei t

// Reaet th€ corq)ali€od
valu€a

((Bitvalue ^ Bilcdll)) t= 0x0F)

q'h i le(nA3),

while (!RA3) t
)
€ L s e

// No Match, wait 1 Bit
// wait fo! Low
// wait fo! Hish

// Data oK - r,ight
Agpropriale LgD

(BitvaLu€ < 5)

PORTC = 0x3F ^

PORTA = 0n3Ft

/ / o E o 5 0 %
(1 << Bi tvalue),

// Eisrh LEDE Off
)
etse i f (Bi tval .ue < 9)
{

PORTC = 0x3Ft
PoRTA = 0x3F ^ (1 << (Bi tvalu€ - 6)) t

// 9O%+
)
elEe
{

PORTC = 0x3F,
PORTA = 0x1F,

, / l f i

Bitvalue = 0t

BttConP = 0,

) / / e l ihw
) // Enal cPerf!4on

S e c t i o n 5 e v e n S a m p l e C l ' l i c r o c o n t r o I I e r A p p l i c a t i o n s 1 5 ?

Memorl' Usage: 75%
LFT $elect: LPT2

Select LPT1

ry!!f] i . q
elect

Figufe 7-lB The PerfMon applicotion's circui.t
connects to and is powered by a PC's paralleL port.

be found on the PICkit I Starter Kit's CD-ROM or at
http://www.myke.conr.

Thc application icons wele created using Paintbrush
and then convefied into ico format.To build the entire
application and be able to debug it using DDD,I used
the following statements in the Cygwin X-Windows
box:

winalr€s %l.rc -O cof f -o %1.!es
gcc -mwinalows -nno-cyg$rin -g -o %L.exe eo1.c
%1.res - tgdi32 - l .user32

Due to the untimely demise of my PC on which I
normally use to create PC and PIC MCU softwarc,I
had to break up the PC and PIC MCU software devel-
opment tbr this experiment onto two PCs. Amazingly
enough, when the two pieces of software werc brought
back together, the appllcation worked quite well,
although occasionally the lit LED would change to an

Figufe 7-i9 PerfMon operati.ng

unexpected value.The solution to this problem was to
run the PIC MCU at 8 MHz, rather than at the stan-
dard 4 MHz, using the theory that the incoming data
and changing bit values were too tast for the 4 MHz
device.This change eliminated the problcm with the
errant LED, and the application has been running per-
fectly ever since.

Twice in this section, I encountered situations where
the application worked well, but needed to be sped up
to work perfectly. I want to make sure that you under-
stand that in both cases, the problem was reasonably
well defined and the clock doubling was used to
address these issues. I mention this because I do not
want you to think that by increasing the clock speed
you can fix the problem evely time you have an appli
cation that occasionally runs errantly. Befbre attempt-
ing any fix, you should have a theory behind the cause
of the problem and what you expect to gain by the fix.
If you don't, chances are you will not fix the problem
or you'll end up with an entirely new problem requir-
ing its own fix.

1 5 8 l , a 3 P I C o l ' l C U E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

S e c t i o n E i g h t

Introdutrt ion to PIE@ MfU Hssemblg
Language Programming

PICk i t - l S ta r t e r K i t

P rc16F68 4

So far in this book, I have shown you the highlevel C
programming language and how to use it to program a
PIC16F684 to perform various tasks. You should now
be reasonably comfortable with programming the chip
and coming up with applications that perform useful
functions. You should also have used the simulator that
is built into MPLAB@ IDE to help you verify the oper-
ation of your program before you program a chip or to
help you debug your program once you discovered
your program doesn'l work exactly as you thought it
might. You are now ready for the next step on your
journey: learning assembly language programming.

The computer program that converts an assernbly
language program into the .hex file and is then pro-
grammed into the PIC@ microcontroller chip is known
as an assembler.'fhe assembler is analogous to the
compiler program that converts high-level language
statements into a .hex file. Unlike the PICC@ Lite com-
piler, the PIC MCU assembler (known as MPASM@
assembler) is built into the MPLAB IDE and is loaded
automatically when you insrall MPLAB IDE.

Assembly language programming is usually looked
upon with a great deal of trepidation; it is perceived to
be more difficult to learn than a highJevel language
like C for programming applications and debugging
failing applications. Another perception is that code
written in assembly language is more efficient than
code written in a highJevel language. I would disagree
with all of these statements. Assembly language pro-
gramming is not more difficult to learn than a high-
level language; it is merely different.

The difference is in the basic statements and in
understanding how they are used to create applica-

tions. Once you are comfortable writing code in assem-
bly language, you will find that it is just as much mental
work as writing an application in a high-level language.
You may find that an assembly language program
takes more physical work (keying) than a high-level
program, but this is due to the increased granularity of
the assembly language instructions; each one performs
a much smaller task than a highlevel language state-
ment. Additionally,I would say that debugging in
assembly language is a lot easier than in a high-level
language, because there is much less ambiguity about
what the program is doing. You probably appreciate
this statement knowing some of the strange things that
can happen in C statements. Finally, an application that
is poorly written in assembly language will not outper-
form an application that is poorly written in a high-
level language.

The most important parameters of any program are
its readability and the efficiency of the algorithms that
are used to implement the required functions. If the
program cannot be easily read, you will have problems
completing it, getting it running, and debugging it. If no
thought is put into the operation of the application,
then it will not run appreciably faster. Regardless of
the programming language, these parameters must
always be considered when designing an application.

An excellent analogy to the differences between a
highJevel language (like C) and assembler can be
illustrated by the commands needed to explain how
to walk across the room and pick up an object.In a
highJevel language, the command statements will
look something like the following:Turn right, Step for-
ward six times, Bend over." Assembly language

159

Experiment 57-The asmTemplate.asm File and

€',
.{
'".1
lel

w
{d

0,
.tJ
ff

F{

p{

o
$"t
H
E}
tu

f l l

tla

h

i
I

l J '

n !

" !*{

instructions for the same task would look like this:
"shift weight on left leg, lift right leg two centimeterg
move right leg 10 centimeters to the right, lower right
leg." Both will get the job done, but the assembly lan-
guage instructions work at a much lower level.

In this introduction,I have used the term instruc-
,ions to descdbe the assembly language statements. At
its most basic level, an instruction is a collection of bits
that command the processor to carry out a simple task.
For arithmetic operationq these bits specify the task,

where input parameter(s) come from, and where the
result is stored. If multiple arithmetic operations are
required to carry out a task, then multiple instructions
are required. In addition to arithmetic instructions, a
variety of other t)?es of instructions exist that control
the operation of the processor, the microcontroller in
which it is built, and specify where and how the code is
to execute. I will explain these instructions in this sec-
tion. As I said previously, these instructions perform
the same operations performed by the high-level state-
mentE just in much smaller steps.

Before starting an assembly language program, I gen-
erally begin with a template similar to the one I intro-
duced you to early in the book for C programming.
This template is used to remind me of the basic infor-
mation required in a program and the basic program-
ming heading information needed to get a basic
program running. The asmTemplate.asm file that I used
for the programs presented in this book looks like:

title "asmT€nlrlate - AsselibLy Language Coaling
Tet[)Ia!efl

Basic Directives

Bt te, Plrt in ".*B!rtses"

Requiretl for Debugg€r

P.EGE
; SubroutineE

€nd

Let's go through the lines of this file to help you
understand the different features of the template file.
This will also serve to introduce you to some of the
information that you will need to carry out assembly
language programming.

The first line contains the /il/e directive and will
place the string in quotes on the first line of every list-
ing page as a header. Directives are commands to the
assembler that are used to control the assembly of the
program.The title line that I use consists of the name
of the file and a brief description of what it does; this
helps me find a program with a specific function as well
as identify the file in which it is contained.

The next series of lines are comments and use the
semicolon (;) character to indicate that everything to
the right is a comment and can be ignored. These are
similar to C's double slash (i/) comments. They explain
the following:

. The operation of the program
r Analogous C code (if appropdate) to explain

how the highJevel function is to be imple-
mented

. The author ofthe program and the date that it
is written

The /isr directive is used to specily different assem-
bly and listing commands to the assembler program,
which then converts the assembly language program
into the hex file of instructions to be programmed into
the PIC MCU. If you look at the list directive parame-
ters (shown at the end of this section), you will

E:rplaiD the Ogeration of the program.

"c" Equivalent cofle:

// P1.rt "C" Equivalent zunction Eele

Autshor
Date

IJIST R=DEC
I}{CLUDE',p15f 684. inc"

i Valiabl€s
CBIOCK 0x20

t Put Variabl€ Names Here
t If Variable lJonger thsr! 1
EIIDC

PAGE
org 0

aop t NoP

r Mainline Coale

-CO}TFIG _FC!'EN_OEF & _IESO-OFF & _BOD OI'F &
-cpD_oFF & cP_olr & _!!C!RE_ON & _P!{RTE_ON &

wDI_oFF & INI,OSCIO

1 6 0 l , e 3 P I C @ l " l C U E x p e r i m e n t s f o n t h e E v i I 6 e n i u s

discover that there are quite a few, and many will seem
like you should use them. However, the single parame-
ter that I have specified as a list directive sets the
default number base to 10 (decimal). (I feel that rhis is
the only parameter that should be specified.) Adding
additional list directive parameters can affect the oper-
ation of the final application, how it is programmed,
and the difficulty to port the code to another PIC
microcontroller part number.

T}:.e inclutle dtective loads an information file that
adds additional directives and instructions to the pro-
gram file. The pic16f684.inc file is found in the folders
loaded during MPLAB IDE installation. These folders
are used to define the various registers and functions
of the PIC16F684, relieving you of the responsibility of
having to do this (exactly as the "#include <pic.h>"
directive did in the C programs).When you are devel-
oping rnore complex applications, you may find it use-
ful to put common definitions and code in .inc files to
avoid having to key repeatedly in the same informa-
tion and provide a central repository of definitions
and codes for all applications in your working curent
proJect.

The _CONFIG directive is used to specify the con-
figuration word bitqjust as the _config(directive did
in C programming. Like the C version, each parameter
is ANDed together to specify which bits are reset and
which are set. Note that _CONFIG has two under-
scores and cannot start in the leftmost column. Also
note that when the directive is listed here in the book,
the parameters are generally printed on two or three
lines, but they should all be in the same line. I have
avoided putting this directive in applications that will
not actually be programmed into a physical chip,
because the double-line formatting can make it diffi-
cult to read and key coffectly into the experiment's
program if it is not necessary.

T\e CBLOCK and ENDC directives are used to
declare program variables. I will explain how this is

accomplished and, later in this section, I will note the
points to take under consideration when declaring
variables.

Next, the reset address (address 0x000) is specified
using the drg directive, and the application code starts
after it.The assembler initializes its program counter
to zero before starting to convert instructions into bit
patterns, but it is customary to specify zero to ensure
the memory location starts at the reset address. The
nop (pronounced "no-op") string is actually an instruc-
tion, which commands the processor to do nothing
ovel one instruction cycle. The value of this instruction
will be explained later in the book;it is a lot more use-
ful than you might imagine. Placing the nop at the
reset address is necessary for using the MPLAB ICD2
debugger, and, although you may not have an MPLAB
ICD2 debugger, it is a good idea to put this simple pro-
vision in for when it is needed (i.e.. when the MPLAB
ICD2 debugger is available).

Finally, the assembly language program can be writ-
ten out in the file. Unlike in C programs, in assembly
language I put subroutines aJ?er the mainline program.
The assembler reads through the assembly language
source file before stafiing to create the .hex file so that
the address of labels (including subroutine labels) are
identified and available when the .hex file is being cre-
ated.This is different from a C compiler, which doesn't
identify subroutine and function headers after they are
used. I could place subroutines at the start of the pro-
gram, but this would necessitate making the mainline
of the program jump over the subroutines, which
makes the program more difficult to read and follow

I realize that in this assignment, I still have not
given you enough information to start programming
your own assembly language application. In the next
few experiments, you will be able to start programming
on your own.

ExFeriment 58-5pecifging Program Memorg Fddresses

When I am programming in assembly language, I really
don't care where the instructions are being placed in
the PIC MCU's program memory. The MPASM assem-
bler that is part of the MPLAB IDE does a very good
job of managing program memory addresses and
relieves the programmer of the responsibility for calcu-
lating the addresses themselves. By following a few
simple conventions, you can write assembly language
program without ever being concerned with the actual
address of an instruction.

S e c t i o n E i g h t P I C o l l C U A s s e m b l y L a n g u a g e P r o g r a m m i n g 1 6 1

New Program paper with each address, and actual jump addresses
would be entered manually into the program.The code
snippet below, which toggles an output pin seven times,
is written out with the addresses for each instruction to
show how this is done:

Counter
Addfess

Dala Bus

PC lncrement

(Goto/Call)

Program
Memory
Read
Address B Element

Program
Counter
Slack

0x01234 Inovlltr' 0x07 i
0 x 0 1 2 3 5 b s f 0 * 0 5 , 0 i
0: .01236 bcf 0x05, 0 i
0x01237 addlw oxFF i

0 x 0 1 2 3 8 b t f s s 0 x 0 3 , 2 i

0r{01239 goto 0x1235 i

Loop 7*
P O R T A , P i n 0 = 1
P O R T A , P i n 0 = 0
subtract 1 fron
Loop Counter
I f Zero Bi t Set
Skip Over Next
Else, R€pea! Bi t
Pulse

Figufe 8-l Program counter

The program counter is a fairly sophisticated
counter that keeps track of which instruction is to be
executed next (see Figure 8-1). In normal operation,
after an instruction is read in for decoding, the pro-
gram counter is incremented causing the address out-
put to point to the next instruction in the program.The
value in the program counter can be changed four dif-
ferent ways:

. A new address can be imbedded in some
instruction, and this address can be loaded into
the program counter.

. The program counter can be changed algorith-
mically by the executing program.

. Cefiain instructions will increment the program
counter when specific conditions are encoun-
tered.

. The plogram counter can be updated via a last
in-first out (LIFO) stack.

As you become familiar with assembly language
programming, you will become comfortable with using
all four methods, but right now you should just concern
yourself with changing the program counter using a
value in an instruction.

The instructions that change the program counter to
explicit values are the aptly named grn and call
instructions, which change execution to the specified
address or invoke the subroutine at the specified
address, respectively. Looking at the goto instruction in
its most basic form, its execution could be summarized
as follows:

golo 0x???? t Ptoglam count 'ef = 0x0????

The value 0x0???? is known as an lmrz ediate , or lit
eral, value or number. It is part of the program mem-
ory and cannot be changed during program execution.
When people first started programming, this value was
literally a number. Before entry into the computer
system, the program would be written out on a sheet of

This method of programming was very tedious and
had the potential for many errors.

As time progressed, the ability to specify character
strings for specific addresses was added to assemblers.
By placing the label in the first column of the plogram
file and ending it with a colon (:), the assembler could
recognize it as a label and assign the address value to
it.Then, when the label was encountered again, the
assembler would substitute the address value for the
Iabel and avoid the need for the programmer to keep
track of the address manually.The label also makes the
program substantially easier to read. Using this ability,
the snippet above becomes:

Loop:

bsf

aaLllw
b t f s s

goto

0x07 ; Loop 7* - At AaLlless
; O*OL234
r Label halicatiltg llthele to
; Return Execution

0 x 0 5 , 0 , P O R T A . P i n 0 = L
0 x 0 5 , 0 ; P O R T A , P i n 0 = 0
oxFF r S.rbtraet 1 frcm]"oop Counler
Ot<O3, 2 i If Zelo Bit Set Skip Over

t Next
I/oop t Replace

r hstruction with Aildresa
r value (0x01235) $'hen
t assefiibling program

Labels are strings ofASCII alphanumeric charac-
ters that start with ato z, A Io Z,or and can have 0 to
9,atoz,AtoZ,or for any of the remain ing charac-
ters. Labels can be up to 255 characters in length (the
maximum width of an MPASM assembler source file)
and can optionally end in a colon. A label can be either
on the same line as an instruction or on its own line. I
recommend that labels are on their own line and
always ended with a colon (as I have done with loop in
the previous snippet). This will help you recognize
labels in the program and not confuse them with
instructions, directives, macros, or variables when you
first read through an application.

This one simple ability to keep track of the address
value for a label has been expanded to the three differ-
ent methods shown in the following program:

L62 l , e l P f C @ C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

Demonslrate the 3 methoalB of speeifying
program menory addresses in the PIc rllcu uaing
MPASlil assenbl.er.

Hardware Noles:
PIC16F684 running at 4 Msz in SinuLator

Mtake Prealko
0 4 . 0 9 . 1 0

LIST R=DEC
rNcr,uDE "p15f 584. inc "

PAGE

ofg 0
nop

goto Mainline
i 1st Methott: Jump to Progranmer
r sp€cified Address

org 47
r User specifieal Adalress with ra.be1

title ,'asrnAddresE - Different ways of
specifying Addrerses"

instructions themselves will start at the desired
address.

The need for explicitly setting the starting address
for a block of instructions is ra[e. The only situation I
can think of where this is important for the PIC MCU
is when you are setting the address of code that is used
to implement the interrupt handler. The code
addresses should be explicitly set if the application
goes beyond the fint code page in memory. Some peo-
ple like to move blocks of code to specific areas of pro-
gram memory to make debugging simpler. Because
you will not be working with interrupts in the PIC
MCU, and because the PIC16F684 does not have more
than one page of program memory, there is no need
for explicitly setting code addresses. The availability of
the MPLAB IDE with the source code simulator elim-
inates any advantages of putting blocks of code in spe-
cific locations. You will find that i1 is faster to wdte an
application with the different parts of the code butted,
or concatenated, together.

The $ symbol in MPASM assembler retums the
address of the instruction in which it is used. Jumping to
the $ symbol turns the instruction into an endless loop.
By adding o[subtfacting constant values to the $ sym-
bol, going to addresses relative to the current address
can be done quickly and easily, without the bother oI
trying to come up with a meaningful, unique label.

The third method is to use a unique label and goto
it. This is generally the prefered method of most new
programmers.The problem comes with trying to come
up with unique labels for complex programs (the point
I made previously).The conventions I tend to use for
labels are as follows:

r There can only be one Loop and one Done
label, and they are in the mainlinc.

. Within subroutines,I try to keep to one Loop,
one Skip, one Done, and one End label suffix,
with the label prelix being the name of the sub-
routine.

. Labels should be reasonably descriptive. Single-
letter labels like a, n, and so on. make a pro-
gram more difficult to read than if they
describe their purpose.

If you have been doing some research about the
PIC MCU, you would have discovered that the pro-
gram memory page slze is 2,04f1 instructions. Jumping
between pages requires updating a register known as
PCLATH before executing the goto instruction. This is
not an issue when you are working with the PIC16
F684, which has a total of 2,048 instructions, but is
something that you will have to undentand if you were
working with a PIC MCU, which has more than 2,048
instructions.

MainI i .ne:

s o l o t + 1
t 2nd Method: Use Relative AdLIreBs

Loop:
r 3!d Method: ,funq) to Label ,ratalress

goco tJoop
, Plovideal by MPASM assetnbler

end

Wren you oeate the project for an assembly lan-
guage program, you are going to do it in the same way
you do it in a C language project. Betore you attempt to
link the assembly language source file to your project
using Add File, click on "Project" and then on "Select

Language Tool."You can then select "MPASM Assem-
bler," followed by "OK" to specify that the project
involves an assembly language program instead ol a C
program. Press Ctrl+F10 to build the assembly language
program just as you would build a C language program.

The first method involves specifying a location for
execution to jump to, putting in a label that is automat-
ically given the address, and then executing a goto the
label. The new address is specified by the org directive.
This directive forces all subsequent instructions to br:
placed in program memory starting at this address.
Instead of using the org directive,I could have set the
goto address as a constant value or I could have just
put the desired address in the instruction (e.9., goto
47). Although both of these methods seem simpler,
there is the increased potential for either an incorrect
address to be entered into the goto instruction and for
the instructions at the address to be incorrect. By using
the org directive to set the start of subsequent instruc-
tions at the label, the goto address will always be the
instruction to start at the desired address, and the

S e c t i o n E i g h t P I C o l l C U A s s e m b l y L a n g u a g e P r o g r a m m i n g L 6 3

Experiment 59-Loading the I-UHEE and Saving
Its Contents

Unlike a highJevel language in which data can flow
through any variable, all the data in a PIC MCU
assembly language program will always pass through
the working register, which is known as WREG. In
other microprocessors, this register is known as the
accumulator and is the midway point when data is
being transferred from one location to another, as well
as one of the source points and a possible destination
for mathematical operations. Despite the WREG'S
responsibility in assembly language programming.
when you look at it, only three things can be done
with it.

accessed.The value in this register is passed through a
zero check module and then either passed back to the
register or stored in the WREG This action has caused
me in the past to characterize the movf instruction as
having a primary responsibility of testing whether or
not the value of a register is equal to zero and a sec-
ondary responsibility of loading WREG with the con-
tents of the register.

I think of the zero test module as a dotted AND bus
(see Figure 8-4) with each bit being a control input to
one of the pull-down transistor switches, and the bus
output being the zero bit (called simply Z) of the STA-
TUS register. If any of the bits are set, the line (and the
Z bit in the STATUS register after the instruction exe-
cutes) will be low.

In the description of the instruction, I noted that
the contents of a register could be optionally stored
into WREG or stored back into the register. The deter-
mination of where the register contents goes is made
by the d or destination-bit parameter of the movf
instruction.The destination-bit parameter is used by all
instructions that move the contents of a register
through WREG; it will become clearer as you work
through the section.

In some references, you will see that if d is 1, the
destination is the register, and if d is 0, the destination
is WREG. In all of my code, and I adamantly suggest
that you follow this convention, the letter/is used as
the register destination and lr is used as the WREG
destination. In all of the Microchip files included here, f
is equated to 1, and w is equated to 0, so the values are
the same. But by using the letter codes, you should sim-
plify the effort in remembering which number is used
to initiate which action.

. The first thing that can be done with the WREG is
- to load an eight-bit numeric value (known as a literal

or immediate value) into it. This is typically done using
the movlw value instruction, which stores value (or the

. least significant eight bits of the instruction) directly

. into the WREG (see Figure 8-2). This instruction exe-
. cutes without affecting any other resources in the PIC

. . MCU.

Regbters are lhe name given to a group (or a bank)
of 128 addressable bytes, some of which can be used as
variables in your application and others of which can
access built-in hardware functions of the PIC MCU.
The variable bytes are calledfle regisrers. and lhe
hardware control function bytes are known as speclal
function registers.These registers can be moved into
the WREG using the "movf Register, d" instruction
(see Figure 8-3).

The least seven bits of the mod instruction are the
' address of the resister in the bank that is to be

Specified

"14-Bit lnstruction

Figure 8-2 Immecl.iate load (movlw) instruction Figure 8-3 Dtrect load (movf) instruction

1 6 4 l , A 3 P I C o l l C U E x o e n i n e n t s f o r t h e E v i I 6 e n i u s

o a o B i t 7 l

titl€ ,,asmwREG -

Saving $REG
IJoatlilg anal

Bit o]

Dotted AND
Bus Ouiput
"1" if all
lnputs =: 0

This progran dlenonstrates
',ckwnr 'movfn aaal n$ovwf" inEbruction
o9eration alal bow they ale useal crith

WREG to move alata withia bhe PIc !,lcu.

Figure B-q Zero test module

The final instruction, movwf Register, saves the con-
tents of WREG into a register (see Figure 8-5). While
the movlw uses literal addressing to store a specific
value in WREG, the movf and "movwf" use direct
addressing to transfer the contents of a register to or
from WREG.

asmWREGasm demonstrates the operation of the
three instructions discussed in this experiment along
with the clrw instruction.The clrw instruction performs
the same operation as the movlw 0 instruction but also
sets the zero flag (Z) of the STATUS register:

Fiqure B-5 Direct save

One of the most difficult concepts for programmers to
understand when they are programming the PIC
microcontroller in assembly language is that variables

at { MHz in simulato!
Eardlrdare Notes:

PIC15F584 runnins

Myke Prealko
0 4 . 1 1 . 1 7

LIST R=DEC
rNcr,uDE "p15f 684. inc n

PAGE

org 0
noD t

novlw f23 i

cLrw

novlw 55

rnovlw 0x55

novLw b'00110111'

novlw rU'

FSR

FSR, f,

FSR, W

R6quireiI

Load WRSG

for MPLAA 1CD2

nrith t iteral

cLrw

novf

movf,

goEo

enal

Clear/I,oaal $REG rrith 0

Loaal WREG ldith Decinal
IJi.t6ra1
I-oad WREG nitsh Eex
I,iteral,
loaal WREG lrith Binary
! i teral
IJoaal WREG wi.th ASCII
chalactse!

stor€ WREC ilr a Registe!

clear WBEG

set zero Elag Accoraling
co cont€nts of Regiater
Iroatl VIREG with Register

Fini€hed, Everythins
Okay

: _ '

. : '

Experiment 5U-Def in ing Var iables

are not declared. To me.the lerm variable declaration
means that memory is set aside for the variables used
in the application and is kept separate from the appli-
cation's code. In addition to specifying the memory
used by the variables, often the application hex file will
include initial values that are stored in the variables
when the hex file is loaded.When you are specifying
addresses for variables in the PIC MCU. that's all
you're doing; you are not setting aside memory, and
there is no ability to initialize the variables for specific
purposes. In this experiment,I will present you with a
way to specify variable addresses in the PIC MCU that

S e c t i o n E i g h t P I C @ l l C U A s s e m b l y L a n g u a g e P r o g r a n m i n g 1 6 5

is both efficient and resistant to user declaration
EITOIS.

The idea that PIC MCU assembly language vari-
ables are not declared as in a traditional system, with
memory set aside for the variables in the hex file, may
be confusing. You might ffy ro specify the variable
addresses manually using an equate (equ) directive.
The equ directive is used to associate a label with a
numeric value, and it could be used to declare vari-
ables in the following manner:

declared variable is at the same address as one of the
cblock-declared variables O and, when written to, will
overwrite the cblock-declared variable j.

t i t le "asnDeclare - Def in ing var iables in PIc
MCU Assenbler"

j.

l
k

equ 0x020
equ 0x021
equ 0x022
equ 0x024

t Decla!€ 8-Bi! Coulltels

t D€clale 16-Bit Counter
r Declare Eollowing 8-Bit counter

This coale demonstrat€s how variablea are
aleclareal in PIC l,Icu Assenibler usiflg the
"cb1oek" a l i rect ive.

Hardware Notes:
PIC15F584 running at 4 MEz in Simulator

Myke Prealko
0 4 . 0 9 . 0 4

IIST R-DEC

rNctuDE rp16f684. ine"The biggest problem with this method should be
immediately obvious-it's a lot of work! Not only is it
work to write out each variable and make sure it has a
unique address, but inserting or deleting variables
requires updating addresses to make sure there aren't
any holes. Another issue is how multibyte variables are
declared and maintained. In the example declaration
of the four variables above, it is easy to forget that k is
16 bits and takes up two bytes, and the next variable in
sequence must start at an address two higher than the
l6-bit variable.

In the mid-1990s, when I fint started programming
the PIC MCU, this was the accepted method of declar-
ing PIC MCU assembly language variables. It certainly
wasn't perfect and it was responsible for a lot of diffi-
cult-tolocate errors. A few years ago, Microchip added
the cblock dtectr\e (with the endc directive ending) to
MPASM assembler to make it easier to create
sequences of numbers for a series of labels.The format
for the cblock directive for declaring variables is:

i i Single 8-Bit variabLe
j , k r rwo 8-Bi ! var iabLes
Datastr ing:s r r t ru l l i -Byte str ing var iable

ENDC

Al"lernalive_i EQU 0x21
i "ALternative_i " , sane ailalress aa rrjn

PAGE

org O

t variables
CBLOCK 0x20

movlw

47 ; Load trin with Literal value

33 r Loadl "j' with T,iteral value

)

novlw 22 ; Ovenr'rite "j'

movwf Alternative i

goto Loop
r Firisheal, I,oop Foreve!

cblock
Label1
Label.2

Labe13
endlc

In the previous example, if lStart Addressl was
0x020. Labell would be associated with the constant
value 0x021, Label2 with 0x022, and Label3, which fol-
lows the 16-bit variable Label2, will have the value
0x024. These values are assigned to the labels at assem-
bly, or build, time without requiring any effort on the
part of the programmer-including if you were to add
or delete some values between builds.

To demonstrate the cblock directive as well as the
equ directive methods of declaring variables in PIC
MCU assembly language programs, I created asmDe-
clare.asm. In this program, I have created three single
byte vadables (the latter two on the same line and sep-
arated by a comma) and a multibyte variable.The equ

enal

The body statements of the program are initializa-
tion statements for the variables, and the values that
get stored in them can be displayed in the Watch win-
dow of the simulator. These are the same statements
that were presented in the previous experiment, but
applied to variables.

When you simulate asmDeclare.asm, you will dis-
cover that the vafiable j is overwritten when Alterna-
tive_i is written to. The reason for this is simple:Both
variables are at the same address and a wdte to one
variable will affect the other.This would not be the
case if variables were truly declared in PIC MCU
assembly language. An obvious conclusion to this
experiment is that you should never mix cblock
declared variables with equ declared variables. I would
go further and say that variables should be declared
using cblock only.

lstart Adalressj
r First variable

Size in Bttesl r Seconal. mult i-byte
, variabLe
i Thirat variabLe

t66 l , e 3 P I C @ l ' l (U E x o e r i m e n t s f o r t h e E v i l G e n i u s

Along with declaring variables, the cblock directive
can be used for declaring data structures and for enu-
merating labels for applications such as State
Machines. Using cblock defined label values in these
cases will allow simpler coding as well as eliminate

Bitwise boolean operators are the most basic data pro-
cessing instructions that can be performed in a proces-
sor.These instructions can be built out of standard
gates quite easily and do not have the same opera-
tional issues that are present in addition and subtrac-
tion instructions. These instructions pedorm the basic
Iogic functions over all eight bits of two parameters,
one being WREG and the other being a parameter
specified in the instruction.

Two-parameter bitwise instruction (i.e., AND, OR,
and XOR) execution for direct addressing (those that
end in wf) is shown in Figure 8-6. In this case, the con-
tents of a register are operated on with the contents of
WREG using one of the three Boolean operations.The
destination of the result can be either in the WREG or
back in the register using the d parameter of the
instruction. The ability to return the value to the regis-

much of the maintenance required of individual equ
directive defined labels. The dynamic nature of the
cblock directive (it is updated every build cycle) makes
it ideal for use anywhere that changing nuneric label
values is reouired.

ter may seem to be unnecessary, but, as I will show in
the next two sections, it can be extremely handy.

The data flow of bitwise Boolean operations that
can be performed against the contents of WREG and a
Iiteral value (causing the instructions to end in lw) are
shown in Figure 8-7. These instructions behave simi-
larly to those with a direct address except that they
have only one possible destination,WREG.In both
cases, if the result of the operation is zero, then the zero
(Z) STATUS bit is set, otherwise it is reset.

There is also a single-parameter bitwise instruction,
called comf Register, d. This instruction complements
(i.e., does not negate) each bit of the specified register
and returns the result in eitherWREG or the source
register. If you wanted to complement the contents of
the WREG, you could use the following literal XOR
instruction:

xorlw oxEE t complement each bit of WREG

In this case, asmBitwise.asm demonstrates the oper-
ation of the different bitwise PIC MCU assembly lan-
guage instructions.

Experiment 61-Bitt-uise lnstructionE

14-Bit lnstruction

Figure 8-6 Two-parameter direcr Figure B-7 Two-parameter literal

S e c t i o n E i g h t P I C @ 1 1 C U A s s e n b l y L a n g u a g e P r o g r a m m i n g 1 6 7

litle 'asmBitrdise - Demonstrale Bitwise
Inatructi.ons" r . f r i = t ^ o r . F F

t = 0x3B ^ oxFr
t = o:rc{
i 'IREG ltnchangeal

This Dlogram al€nonBtrat€s the oD€ratioD of
!b€ Bitwia€ instructions on $rREc anal a Fi16
Regisler incluiling !h€ oDeration of the zeto
Status F1ag.

Ilaralware No!€a:
PIC15F6g4 ru$ing al 4 MHz ia Simrlator

Myk€ Pleilho
04. LL. !7

IJIST R=DEC
INCIITDE n915f 58{.incrl

CBI.OCK 0x20 t VallaltL€ Declaration

ENDC

PAGE

org 0
nop

novlw 0x3F
mor rf i
movllc 0xF3
movDrf j

movhr L23
analwf i, w

r Initialize WREG
, WREG = WREG & i
i = 0!r7B & 0:.3F
r = 0x3B
t Z = 0 , i U n c h a n g € a l

, Initialize WREG
r i = = W R E G & i
i = 0t<7B & 0x0F
t = 0x3B
i Z = O, WREG Uachangeal

x o r w f t . f r i = w R E c ^

t = oxt.B ^

t = 0t<3F
xorwf i ,w , WREG = WREG

t = oxFE
t = 0xc4

, r o r $ t f i , t t i = W R E G ^

t = 0 x 3 B '
t = O*FB

i
oxc4

^ i
^ 0x3F

0xc4
u)
L.
n
.-l
.lJ
U
|ill

r.l
{J
gt
k

l-t

s
(.,
.r{

.rl
'd
1d
4
!
!

{\

t'l

du

"p4
t .

fit

!.,.{
f,.d

f -'l

j , w r w R E c = w R E c l j
t = 0x7B + 0r.E3
t = oxFB
t Z=O, j l r nchaDgea l

The PIC microcontroller's addition instructions are
very similar to the bitwise instructions of the previous
experiment: Data is set up in the WREG it is arith-
metically combined in some way, and the result is put

goto S r Finished, Ev€rything Okay

enal

Before going on,I would like you to consider the
three XORS at the end of the program. I didn't explic-
itly summarize what they are doing. However, if you
were to look through them, you would discover that
they not only demonstrate the operation of the xorff
statement with different optionq they also are a code
snippet that you should keep handy. The following
three instructions swap the contents of WREG with
the contents of a register, and they are much more effi-
cient than coming up with the equivalent assembly lan-
guage statements for the traditional register swap:

// EltaD "i 'r aud

i = i ;
J = i ;

When you perform traditional highlevel program-
ming, there aren't a lot of opportunities to use the
bitwise instructions, but in assembly language pro-
gramming, they are critical to your ability to create
very efficient applications.

back into either the WREG or a source file register.
What makes this instruction different from the bitwise
instructions is the production of two carry values that
can be used as test values for controllins the execution
path of the program.

T\e carry and digil carry STATUS register bits are
normally referred to as C and DC, respectively, just as
the zero bit is referred to as Z. These abbreviations are
used in PIC MCU assembly language programming to
indicate these bits and should never be used for vari-
able or label names

After passing the s]om to the Operation Result,the
carry bit of the addition operation is saved as bit 0 of

r Requiredl fo! UPIllB ICD2

r hltialize Varl.abLes

rlovlw L23
anahflf i, t

Experiment 5a-Fddition Instrutrtions

1 6 8 l , e 3 p I C o l l C L J E x p e n i m e n t s f o n t h e E v i l 6 e n i u s

the STATUS register and is used to indicate if the
result of the addition operation is greater than 0x0FR
This bit is often used as an indicator for 16-bit (and
greater) operations to indicate the results that addition
to lower bytes has on the higher bytes.

The digit carry bit (bit 1 of the STATUS register)
performs a similar operation but for the least signifi-
cant four bits of the result. Digit carry is not the same
as bit 4 of the sum.The digit carry is the carry result of
bit 3 of the sum; it is difficult to illustrate this in dia-
grams (see Figure 8-8), but its operation can be illus-
trated clearly using a test program like asmAdd.asm.

When you simulate asmAdd.asm, I suggest that you
display the contents of the STATUS register (and
WREG) in a Watch window. The contents of the STA-
TUS register should always be displayed as binary
rather than the default hex. I realize that the state of
the carry, digit carry, and zero bits, along with the con-
tents of WREG are displayed at the bottom of the
MPLAB IDE desktop, but still I find it useful to have
them in the same Watch window as the other registers
and variables used in the application.

tille "aamAaLl -

Ins!ruc!Lons"

w t W R E G = W A . E G + k
i = 0tr2D + 0xF0
t = 0x(1) 1D
t = 0x1D

, WREG = I{BEG + 0xE3
i = 0x1D + 0xE3
r = 0 x (1) 0 0
, = 0x00
, Z = !, C = 1, DC = 1

r l t

9"i:

t?q

f l

&:i

tr-h

f\3

:
*

b,

&r"

9.3 '

rr
h

6*d

trn
r*

q . {

t r !

q

rA

WREG
0xLE
O*2D

0x0F

0xF0

t ICREG =

+ 0x0F

Thia Drogram alenonstlates tshe operaEion of
the aatalition iEst'rucliona inclualing the
oDeration of tlre Zero, Carry arral Digit Calry
Statsua Elags.

Haralware Notea:
PIC15F58{ running al 4 !,ItIz in Slmulalor

Mtzke Plealko
0 4 . 0 9 . 2 7

LIST R=DEC
INCLI 'DE'rD16f 684. inctr

CBLOCK 0x20

ENDC

PACiE

or9 0

Adtlitsion

, Variabl€ Declaralion

goto $; Eini6heat, Everyuhing Okay

entl

The first addition operation (zero plus 0x0F) has a
nonzero result, and the three STATUS flags indicating
the result of an addition instruction are all reset. I then
add 0x0F to the value in WREG again and, as
expected, the result is 0x1E.This second addition has a
lower four-bit sum and a (digit) carry to the next larger
four bits, so the DC STATUS bit is set. I should point
out that coincidentally bit 4 of the sum is also set.

To prove that bit 4 being set is a coincidence, I
repeated the addition of 0x00F to 0x1E in the WREG
In this case, the sum is 0x2D, but you will see that the
digit carry flag is still set even though bit 4 of the sum is
reset. The digit carry can be confounding and difficult
to predict its value. For your initial PIC MCU assembly
programming, I suggest that you ignore it and just
focus on the carry and zero STATUS register bits for
retuming addition instruction information.

The final addition operations cause the sum in
WREG to be greater than OXFR causing the carry flag
to be set. Note that up to these instructions, the carry
flag is reset because the results are always less than
0xFE The first addition produces a result of 0x11D, and
the most significant bit is used as the carry This can be
done because, unlike the digit carry, no other bits are
part of the final sum.

The last addition value was chosen to produce a
zero result, but when you simulate the program, you
will notice that all three STATUS register bits will be
set. Not only is the carry bit set because the sum is
greater than 0x0100, but the zero bit is set (because the
saved eight bits are all reset) azd the digit carry bit is
set (because the sum of the least significant four bits
are greater than Ox00F).This may not seem important
for addition, but this result will be very important in
caffying out subtraction, as I will discuss in the next
exDerrment.

r Requireal for MPLAB ICD2

r In i l ia l lze var iabLesfiovLw
{rovwf

clrvt i cLear WREG
, z = L

i WREG = WREG + i
, = 0 + 0r<0F
; = 0x0F
i Z = O , C = 0 , D C =

t VIREG = WREG + i
i = 0 x 0 F + 0 t 0 E
i = 0x1E
, z = O, C = 0, Dc =

5 e c t i o n E i g h t P I C @ n C U A s s e m b l y L a n g u a g e P r o g r a m m i n g L 6 9

Experiment 63-HddLibs: Strange 5imulator FleEults
WREG = I'|REG + i

140 + 140
2ao
b , (1) 0 0 0 1 1 0 0 0 ,
b , 0 0 0 L 1 0 0 0 ,
0x18
24

titl"e "a€'lAaLl 2 -

Before going on, I want to show you how the simulator
will seemingly fail and produce an incorrect result for
an arithmetic operation.The code for this experiment
was taken from a high school quiz.The base code was
given in the test, and the students were asked to verify
what it did using the MPLAB IDE simulator. When
the students entered the code the simulated result was
totally unexpected.

I would like to ask you to load the following code,
asmAdd 2.asm. into the MPLAB IDE and enable the
simulator.

After building the code, single-step through the
code to the addwf instruction. After executing it, the
simulator stops with a value of 0xB5 in WREG (my
result), but as shown in the code's comments, the
expected results are 0x018 or 24 (decimal).

What happened? The answer is no instruction is
given after the addwf where the simulator can stop at,
and therefore it executes a number of instructions in
the simulated chip program memory before stopping.
You can better see what is happening by clicking on
"View" and then on "Program Memory." The instruc-
tions for the start of the application match the asmAdd
2.asm code, but the instructions afterward are all
"addlw 0xf!" and so it appears that the simulalor has
executed for 256 (0x100) instructions after executing
the "addwf I, w" instruction before stopping.

This is actually a good example of how small pro-
grams work in a PIC MCU Even though they take up
a small fraction of the program memory available in
the chip, the program memory is still present and they
execute as addlw 0xFF instructions.

To avoid this issue,I tend to use an endless loop
(goto $) although many others like to use a nop. Any
instruction will do. I like the endless loop as it will
keep the simulator from executing additional instruc-
tions, which can change the contents of registers or bit
flags.These instructions will give the simulator an
instruction to stop at rather than having the ambiguous
situation of this application.

I realize that I have indicated the need for the
instruction which ends the application, but the kids in
the high school course were told this as well.It's easy
to forget unless you have to work through it and try
to understand what is happening, as I have in this
experiment.

Simulatot

r variable DecLaratiolr

This program Shows how the Sinnrfator can
apparently alispLay t'he wrong re€u1t to an
atldition o!'eration.

llarflware Notes:
PIC16F584 running at 4 MEz in Simulator

Myke Pletlko
0 4 . 1 , 2 . 0 9

LIST R=DEC
INCLUDE "p16f,584. i ! rc"

CBLOCK 0x20

ENDC

PAGE

org 0
nop

movlw 140
movwf, i

r Requir€al for ltPLAr ICD2

r In i l ia l . ize Var iabl€

1 z o l , E 3 P I C o l l C l J E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

Experiment 6l-l -5ubtracti on I nstructionE
ff

X
U

t v
e :

._{

*;l

i
!

{*

ry

t*

n

t*"
o
Ft

H
: l

I,\

l{

t ,
,r+

H

V'

Subtraction in PIC MCU assembly language will prob-
ably be the most consistently difficult thing you will
have to work with. This is due to the nonintuitive way
the instructions execute. You'll find that the data is
handled backwards and the carry and digit carry flags
will not work as you would expect. Many PIC MCU
assembler programmers try to avoid working with the
subtract instructions all together, instead creating simi-
lar capabilities with other instructions In this experi-
ment, I will show you how the PIC MCU subtraction
instructions can be used in different situations.

The first point to remember about the subtract
instructions is that they always add the negative con-
tents of WREG to the instruction's parameter. The
actual subtracting circuitry is really a modification to
the addition circuitry with either the negative value of
WREG or the unchanged value added to the second
parameter (see Figure 8-8).

In grade school, you were probably told that sub-
traction was the same as adding the negative, that is:

Direct Valle

Lite€l Value

Add/Sub

Figure B-B Subtraction

A _ B = A + (- B)

but when working with digital logic, this is not quite
true. To negate a binary value (convert it to its comple-
ment in base 2), you complement the bits and incre-
ment the result:

- g = (B ^ o x F F) + 1

When this 2's complement value is added to the sec-
ond parameter, the eight-bit result is the same as you
would expect for subtraction (again remembering that
it is WREG taken away ftom the parameter). But the
carry (C) and digit carry (DC) STAIUS flags are not
what you might expect. To simplify, don't worry about
DC, but focus on predicting the state of the zero and
carry flags based on different values (see Table 8-1).
The carry flag after subtraction is often referred to as
the negative borrow flag, because, when it is reset, the
subtraction result is negative and a one should be bor-
rowed from the next highest byte.

Further confusing the operation of subtraction is
the apparent reversal of the instruction from what
seems intuitive. In other processor assembly languages,
when you see some instructions like the following:

nov Acc, Velue].
r Loaal Accunulator with the Subtractenal

Eub Acc, va1u62
; Subtract Value2 f,rom Va].uel

you expect it to execute like this:

Acc = Valuel-Value2;

But, in PIC MCU assembly language, the analogous
instructions:

movf, va1ue1, w
i loail Accrurulalor lritb lhe Subtractor

subwf value2, !t
i Perform the Sublraclion O9elalion

Table 8-1.
Zerc and Earru sTFTU5 Bits Ffte. subtraction
OBeration

WBEG Parameter Flesulls of Parcmeter + |-WEEGI

WREG:0xFF(-1) ,C = 0 ,2 = 0

W R E G = 0 , C - 1 , 2 - 1

W R E G : 0 x 0 1 , C : 1 , 2 : 0

0x02

0x02

0x02

0x01

0x02

0x03

S e c t i o n E i g h t P I C o t l C U A s s e m b 1 y L a n g u a g e P n o g n a m m i n S L 7 7 -

produce the actual operation:

W R E G = V a l u e 2 - V a l u e 1 ;

This can be both confusing and frustrating when
you are new to PIC MCU assembly language program-
ming. There are a number of things that you can do to
make the operations simpler. The first is to add the
negative. Instead of trying to figure out how to use the
sublw (subtract WREG from literal), you can add the
negative. That is:

aalill$ -47 i wREc = I|REG - 4?

Another method is to only use the subtraction
instruction the same way, all the time. You could start
with the basic subtraction statement:

A = l l - c

and you can convert it to PIC MCU assembly lan-
guage using the instruction sequence:

trovf c, w
aubwf B, w
movwf a

In this sequence, if B or C is a literal value, then
insert sublw and movlw in their placeq respectively. If
B is the same as A, the last insftuction (mov*f) could
be eliminated and the subwf instruction changed to
subwf B, f.

Finally, the method I recommend is to add the sub-
tract instructions to your application as you think they
will work, but write out what you expect the opera-
tions to do as I have in asmsubtract.asm. Then, when
you are simulating the application, you can compare
the actual results (both in WREG or the file register
and in the STATUS register) to the expected values
you marked in the application and on which you have
based the application's operation.

title tra$rlsubtracl -
InBtructsi.onEn

cBIrocK 0x20 t variable DoclaratLon

ElIDC

movwf

0
t Requirotl for UPLAI ICD2

0x01 t hitlalize varj.6b1€s
i
0x02
J

novf, i, \r r Stsarts with j - i
s u b r f j , r d r W R E C = j - l { R E c

, = O,iO2 + (WREG ^ orcF) + 1
r = 0x02 + (0x01 ^ oxF!') + 1
t = O' tO2 + oxEE+ 1
t = 0x02 + oxFF
, = 0 x (1) 0 1
t WREG = 0x01, C = 1, DC = L, Z = O

j , w r N € x t i - j
i , w t V l R E C l = i - W R E G

r = 0x01 + (wREc ^ o:<Fr) + 1
r = 0x01 + (0x02 ^ oxFF) + 1
; = 0x01 + oriFD + 1
t = 0t!01 + otrFE
t = oriFF
, WREG= otFF. C = 0, DC = O, z = O

n o v f i , w t N o ! r , i - i

s u l r f f i , ! r T V I R E O = i - W R E G

PAGE

nop{0
L;
L'
.Fl

v
r l

H

t)

H

o
. F {

P

d
H
i l

*{

3
?n

I

t

s
r n

11

$
6

.rl
l{
ql
P{
X
14

novf
aulntrf

= 0:101 + (WREG ^ oxFF) + 1
= 0x01 + (0x01 ^ orlFF) + 1
= 0!101 + o:.FE + 1

ovlw
aub1rd

6ub1tt

, = 0x01 + 0:{rT
r = 0x(1) 00
t WREG = 0x00, C - 1, DC = a, Z = 0

0x01 r WREG E 0x10 - 0x01
0x10 r WREG - 0x10 - $REe

r = 0x10 + (WREG ̂ onFF) + 1
; = 0x10 + (0x01 ^ oxFa) + 1
t = 0x10 + oraFE + 1
t = 0x10 + otcF
; = 0x(1) 0F
; WBEG = 0x0F, C = 1, DC = O, z - O

0x01 - 0x10
0x01 - WREG
0x01 + (WREG ^ oxFF) + 1
0 x 0 1 + (0 x 1 0 ^ o x F F) + 1
0 x 0 1 + o x E F + 1
0x01 + 0xF0
0xF1

0x10 , WREG =
0x0 r I{REG =

Subtract

goto $;

waEC = 0:€1, C = 0, DC = L, z = 0

AlniEhett, Ev6rylhing Okayfhe Subtract Instsructions ale a bi! rBore
codE)lex in operalion tha! th€ atlalition
inalructions:

RBIEMBER, tshe Negatlv€ Contetts of, WREG are
Add€il lo thg instsruetsion algl'ment,

Halt\rare Notses:
PIC15F664 runninq at { MHz itt SlfiuLator

!&rke P!€flko
0 { . 1 1 . 1 9

LIST R=DEC
INCIjIDE trD16f 58{. inc "

€ntl

Hopefully,I have not made the two subtract instruc-
tions scarier than they actually are. You might want to
create an application like asmSubtract.asm and put in
different values. But the best way to learn the subtract
instructions is to use them in your own application and
confirm they are working by using the simulator. By
doing this you will be farniliarizing yourself with the
subtraction instructions work and becoming more pro-
ficient with the MPLAB IDE simulator.

L t2 l , P 3 P I C @ l l C U E x p e r i m e n t s f o n t h e E v i l G e n i u s

Prekir* 1

Experiment 65-Bank Fddressing

So far, you have been introduced to how programs are
structured, the Microchip PIC MCU include file, exe-
cution changes (gotos), register/variable declaration,
and data processing. By all rights, you should be ready
to start creating code for actual hardware applications.
Unfortunately, the next topics don't build on each
other as easily as the previous ones did, and to be able
to code software to run in a physical chip you need the
information in all the topics. To try and break this
deadlock, I want to skip to what is normally one of the
last topics, the PIC microcontroller register banks, and
show you hoq with the instructions and information
you have been given so far, you can create your own
applications.

Earlier in the section.I said that there are seven bits
set aside in each instruction to accesses a register. They
are the register's address.This means that each instruc-
tion can access up to 128 different byte-size registers.
This isn't a bad amount of memory but the PIC MCU
designers wanted to be able to provide more, so they
d.ecrded Io bank the registers and provide up to four
banks in the midrange PIC MCUs. Each bank consists
of a number of common and unique special function
registers (processor and hardware control and inter-
face registers) and general purpose, or file, registers.
These registers may or may not be shadowed between
the PIC MCU's register banks, and there will always
be the need to access registers in more than one bank
in your application.The concept of register banks can
be difficult to understand, but you must if you are to
create PIC MCU applications.

The most vivid example I can give of the PIC
MCU's banks is a spice rack;when I was a kid, a
friend's mom had a spice rack her husband had made
her.This rack stood on her kitchen counter and was
able to hold many spice bottles. It was built to hold the
spices on either side and was mounted on a small
turntable. When a particular spice was required, the
rack would be tumed to expose the side that held that
bottle of spice.This arangement seemed to work well,

although the rack had to be turned repeatedly during
the preparation of a meal because there was no way to
prearrange the bottles so that a single dish would use
spices from only one side of the rack.

The banks ol registers in the PIC MCU are very
similar in concept to this spice rack (see Figure 8-9).
The different registers are arranged in such a way as to
provide most of the useful functions on one bank (one
side of the spice rack), but you may have to change the
side that that is exposed during an application.The
control for which side is exposed (or execute from) is
the RPO bit (bit 5) of the STATUS register. When this
bit is reset, bank 0 is accessible;when this bank is set,
bank 1 is accessible.

As can be seen in Figure 8-9, STATUS and a num-
ber of other registers can be accessed from either bank
(like there was a hole cut in the spice rack so a bottle
could be reached from either side). For transferring
data between the two banks, the file registers in the
address range of 0x70 to 0x7F are common between
the two banks. Along with these corzrn on, or shad-
owed, registers, a number of other registers exist (both
special function and file registers) that are unique to
each bank. For most of your initial applications, you
will be able to run almost exclusively out of bank 0.
The only registers you will have to access are the TRIS
registers and the ANSEL registers.

Changing the current bank can be accomplished by
using the following code:

novf STATUS, w
iontrf 1 << 5 r Set RPo - Change to Bank 1
movwf sTATus

R P O = 0

RP1

Shaded Registers
Are Shared

Between Banks

Figure8-S PIC16F684 banks

S e c t i o n E i g h t P I C @ t l C U A s s e m b l y L a n g u a g e P r o g r a m m i n g L 7 3

anal

novf, STATUS, w
analwf oxrF ^ (1 << 5)

firovwf sTArus

r R€set RPo - Change
, to Bank 0

T\e leJt shijl operaror (<<) in the statements
above, shifts 1 to the left by the specified number of
bits. I use this method of specifying bit constants rather
than using decimal, hex, or binary constants because it
is very difficult to screw up. With constant values, you
must always remember which digit, column, or value
each bit value has. By using the left shift operator,
remembering these values is not required. When set-
ting or resetting individual bits, I recommend using this
format for constant values, because it avoids the need
to verity the value used for the specific bit.

When you are changing STATUS register bits, you
cannot take advantage of the ability of the andwf and
iorwf instructions to change all the bits of the STATUS
register using code such as the following:

movlw 1 << 5 ; Set RPo - Change to Bank 1
iorwf STATUS. f

The STATUS register's C, DC, and Z bits are
affected by bitwise and arithmetic operations, so the
PIC MCU designers decided to not allow statements
that can change these flags to also write to the STA-
TUS register simultaneously. The reason is simple:
After the instruction. it is difficult to define which bit is
valid. By forcing the user to read from and write to the
STATUS register explicitly, there is no ambiguity in
determining which value for which bit is to be used by
the application code.

After changing to bank 1, if you were to access reg-
isters in that bank directly as you would in bank 0, say:

movf TRISA. w

you would get the assembler message "Message[302]

C: {Filename/Line Number}: Register in operand not
in bank 0. Ensure that bank bits are correct." because
the address specified in the PIC MCU include file
gives TRISA the address 0x85.The number 0x85 is 133
decimal and uses eight bits, not the seven that is
required for addressing the contents of the bank.

The simple solution to this problem would be to
change the TRISA definition to 0x05, which seems
correct because the TRISA register is at address 0x05
in bank 1. But I am going to suggest that the label is
Ieft as is and have the constant value XORed with
0x80, which will reset bit 7 of the address.The first is
the index register uses it to differentiate between regis-

ters in bank 0 and bank 1 (it is an eight-bit value and
can access each byte of the two 128-byte banks).This
can be used in your applications to effectively optimize
some code functions as well as to provide arrays in
both banks that can be accessed easily.The second rea-
son is that XORing every eight-bit address while exe-
cuting in bank 1 will serve as a reminder to you to
make sure the correct bank is executing. If the message
comes up and you are in bank 0, then you should look
over your code and add the corect bank switch com-
mands. Similarly, if you are accessing a bank 0 register
while in bank 1, by XORing the address with 0x80, you
will get a warning message stating that bit 7 is set
(telling you that you are accessing a bank 0 register
while executing in bank 1).

With the information you now have, you can create
a complete PIC MCU application and to demonstrate
this.I created asmFlashNada.asm, which will flash
"D0" in a PICKiITM 1 starter kit:

titLe ,,asnFlash.Naala - prc15F584 Elashing rJEDn

This Plogram FlaEhe6 tshe PICKit D0 I,ED
betvreen AA4 (Positiv€) anal R.A5 (negative) at
appro*imatsely 2x De! secondt without u€ing
any aalvanceal control instructions.

Ilaralwale Not€s:
PIC15F684 running at 4 MHz Using lhe hterlral
c lock
Intelna1 Reset is usedl
B,A4 - LED Posicive
BjAs - LED Negative

llyke Predko
0 { . 1 1 . 1 9

LIST R=DEC
INCIUDE trp15f584. inc"

-CONFIG FCMEN OFF & _IESO_OFF & _BOD_OF!' &
,CPD OFF & CP OEE & _!{CIJRE_ON & _PWRTE_ON &

WDT Or'F & IN:IOSCIO

, Variables
CBITOCK 0r.2 0

Dlay:2
EIIDC

PAGE
r Mainline

org 0

no9

c]rf, PORTA

movnf CMCONo
novf STATUS, w
ior10 1 << 5
nov$rf STATUS
clrf ANSEL ^ 0x80

r For ICD Debug

r In i ts ia l ize I /O Bi ts to

r Tuln off Coq)araCora

r s€t the RPo Bit (Bit 5)
r to Execut€ in Page 1

r Al1 Bi ts are Dis i ta l

L l q l , e 3 P I C o l l (U E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

t t lov lw b '001-111'
Output s

movlrf TRISA ^ 0x80
novf STATUS, vt
anallw oxFF ^ (1 <<
novwf STATUS

IJooP:

cl r f Dlay + 1
clrf Dlay

Dlayloop:
movld 1

subvrf Dlay, f
movf sTArus, nt
andlnr | << 2
adarlrf PCL, f

goto DlayIJooD
nop

nop
noD
novlw 1

Bubrdf Dlay + 1, f
movf sTATUg. w
analLv ! << 2
aatallrf PCIJ, f
goto DlaylJoolt
trop

nop
nop

movlw L << 4
xorwf PoRTA, f

RA4/RAs are DiqitaL

Clear RPo

Return llere aft'el. D0
Toggle
sigh 8 Bits for Delay
Irow 8 Bits for DeLay

Decrenent the Inside
IJoop

Zelo Elag Set?
check Bit 2
AaLl to the Program
Counte!
Zero, loop Arounfl
space change in
Address due

Zero Flag Being Set

Decremenl the Oulgiale
loop

Check for Zero

i Repea!

€nd

There are really no new instructions in this applica-
tion, at least none that you haven't been shown previ-

In the previous experiment, I discussed the concept of
banks and the ability of the assembly language pro-
grams to access any register directly. I also showed

ously.There is however one pafi of the application that
will require a bit of instruction. This is the idea of con-
ditional jumps. No if, for, or while statements exist in
PIC MCU assembly language, and so, to implement
jumps that are conditional to the status of the previous
instruction, I take advantage of one of the most won-
derful features of the PIC MCU, its ability to access
any register directly in the application code.To imple-
ment the conditional jump,I add the STATUS regis-
ter's zero bit (bit 2) to the lower four bits of the
program counter (the PCL register). The code works
as follows:

Program Counter = Program Counter + 1 +
(S T A T U S & (1 < < 2))

If the zero flag is reset (the previous instruction did
not result in a zero), this code will simply continue on
at the next instruction. If the zero flag is set, then the
program counter will be loaded with the cuffent
instruction plus four (because bit 2 has a constant
value of 4). I added the three nops, or no-operation,
instructions to space out the code and make sure exe-
cution, when the zero flag of the STATUS register is
set, takes place at the correct address. In the following
experiments,I will show how conditional execution is
implemented in a more conventional manner.

Tiicks like the conditional jump using data move-
ment and arithmetic operators are one of the reasons
why I really like working with the PIC MCU The PIC
MCU, more than any other small processor architec-
ture that I know has been designed with the flexibility
required to perfom some amazing tricks that will help
make your applications more efficient and help you to
think through problems in different ways.

how banks were changed and how bank 1 registers
(including, most importantly, the TRIS registers) were
addressed in an instruction so no message was pro-
duced by the assembler. Finally, the operation and
access of the STATUS register was presented, and
then a method of changing the program counter condi-
tionally was presented. In short,I dumped a lot of new
information on you.

The bit set (bsf) and bit reset (bcf) instructions pre-
sented in this experiment are somewhat less demand-
ing but will be used as much in your assembly

r Space
i dlu€
i Zero

change in aaldress

Flag Being Set

Tossle RA4 (D0)

Experiment 56-Bit InEtructions

S e c t i o n E i g h t P I C @ l l C l J A s s e m b l y L a n g u a g e P r o g r a m m i n g 1 2 5

s)

t.}
'-{

+r
U
; -
).{

m
t 4

tsd

a !

,- t

ar.4

t
I

r \

qJ

,;-g

!.1,3

6d.N

f'rt
a { l

language programming. These two instructions will
allow you to change the state of a register's bit in one
instruction, without the need for ANDing or ORing
the contents of the register. bsf and bcf are incredibly
useful instructions and will reduce the size of your
application code as well as make it easier to read.

In the previous experiment, when I discussed how to
set and reset the RPO bit of the STATUS register,I was
also describing how the bsf and bcf instructions
worked. Here are the bsf and bcf instructions:

, bsf R€giater, Ail Oporatlo!
trovf Regisl€r, nr
iorwf 1 << Bit r Set Bit
movlrf Regist€r

r bcf Reg1ster, Bit oDelelion
movf R€gLBter, w
andbtf onEl ^ (1 << Bit) r Reset Bil
movwf Register

This description may be surprising, but this is
exactly how they work. They do not, as you might
expect, only set or reset the single appropriate bit, but
they read in the entire register, modify the appropriate
bit, and retum the value to the register. I am pointing
this out because there will be cases where. if some of a
port register's bits already have the desired value and
you want to change just one bit, the bcf and bsf instruc-
tions may not be the best instructions for the job.To
get around this case, you should never use bsf or bcf in
the port registers or other registers that can be written
both by software and hardware.

To demonstrate the operation of the bsf and bcf
instructions, I modified asmFlashNada.asm by replac-
ing the instructions that could use bsf and bcf with
them. It is not a major change to the application, but it
does shorten it a bit. Like the previous experiment,
asmFlashBit.asm can be run on a PIC16F684 in the
PICKit 1 starrer kit.

rl[cLIrDE "D15f 584. incn

_coNFIG _FC!{EN_OFF & _IESO_OFF & _BOD_OFF &
CPD OlF & _CP_OEF & _!{CLRE_ON & _PWRTE_ON &
ICDT_OFF & _IMIOSCIO

t varLableE
CBLOCK 0x20

DLay:2
ENDC

PAGE
, Mainline

nol)

clrf PORTA
off

novlw 7
novwf C!|CONo
bef STATus, RPo

cllf ANSEL ^ 0:100
bcf tRIsA ^ 0x00,

bcf I'RISa ^ 0x00,
bcf STATUS, RPo

Loop:
Toggle

cllf Dlay + 1
c1!f Dlay

Dlaylroolr:
rnovlw 1

Eulfff DLay, f
novf sTAqrs, w
antlLw L << 2
aitdwf PCI., f,

goto Dlal'Lop
nop

Addreaa alu€
nop
nop
bovlrd 1

IJoop
aubrf Dlay + 1. f
novf gTATuS, w
atrdLw L << 2
aaLlwf PCIJ, f
goto DlayrJoop
nqD

Atlflr€aa tlue
nqp
nqD

nrovlw 1 << {
xorwf PORTA, f

r For ICD D€bug

, InitLallze r/o Bitss to

i Turn off Ccdq)aratorg

i Replaces:
t novf, SIATUS, !t
t iorlw 1 << 5
t rEv$'f, EIAAITS
, A1L Bils are Digital
i Replacea:
r novllr b'001111'
, rEvwf TIiISA ^ 0x080
i Replacea:
r novf STA1'I St, rt
r .tld.I!r o:aFF ^ (1 << 5)
, rlrovrrf SIATUS

t Retsurn H€re afte! D0

, Itlgh 8 Blts for Delay
r IJow 8 Bile for D€lay

; Decr€ql€nl the Inside
t looD

t Z€lo FIag Set?
t Check Bit 2
r Add to the Prograf,r
t Counter
t Zero, Lop Alounal
t Spac€ Cbarlgo in

r z€ro FIag Being get

t D€clenent tlr€ outsiale

; Ch€ck for zero

i gpace Cbanqe ia

i Z€ro Flag Being S€t

t Toggl.e RA{ (D0)

i R€Peat

title nasmFtashBit - Prc15F684 Flashing rJED"

Thls Program Flashes the PICKit D0 IJED
b€tw€en RA{ (Posilive) a'ral RA5 (a€gative) at
approxinatseLy 2x pe! secondl vrith o[ly uaing
the Bit Set anal Reael InEtructiona

Earalware Notes:
PIC15E58{ ruDning at { MHz Uaing the Int€rnal
c lock
Intselnal Reset is Useal
RAll - IJED Poaitive
RA5 - LED Negative

!61'ke Pr€dlko
0 { . 1 1 . 1 9

IJIST R=DEC

IJoop

L t 6 l , e 3 P I C @ I I C I J E x o e n i m e n t s f o r t h e E v i l 6 e n i u s

tsitLe raamFlaEh - PrC15A584 FLashing LEDiI

llhia Program la the equivalent !o "cFlaah.c"

but !,,!itt€n Ln aaE€dibLy lan$rage, laking
aalvanlage of AlIr the featureE of PIC UCU
aB8dibly langnrage - bit instsrucEion6, bit
skiD in8truclions anal dlecredrent anat Ekip
inEtruct lona.

Hartbrale Not€a:
PIC16E584 running at 4 MHz UEing the InternaL
clock
InternaL Reae! ia Uaefl
RAll - IJED Positive
aA5 - IJED Negative

llyke Preilko
0 4 . 1 1 . 1 7

IJIST R=DEC
INCIITDE np15f 5811. incn

When you first look through the PIC16F684 instruc-
tion set, you will find execution address change goto
instructions as well as subroutine call instructions. But
nowhere will you find conditional gotos, branches, or
other conditional execution address change instruc-
tions that you traditionally find in microprocessor and
microcontroller architectures.What the PIC16F684
(and indeed all PIC MCU family microcontrollers) has
instead is the ability to skip the next instruction based
on whether or not a register bit is set or reset.The
skipped instruction could be a goto address or it could
be a single instruction that executes when the condi-
tion is false (and is not skipped over).\\ese bit skip
instructions, although being somewhat difficult to
understand and apply when you are first learning to
program the PIC MCU, are very powerful instructions
that provide an amazing amount of programming flexi-
bility and single-instruction capabilities rarely matched
in other processors. And all this can happen in less
than three instructions. In this experiment and the
next, I will introduce you to the bit skip instructions
and give you some pointers on how to implement
them in traditional programming methodologies.

The two-bit skip instructions are:

btfac Regial€r, Blt , Skip the No:<! Iastruction
r i f 'B i t " of "RegLster"

r i s R e a e t (" 0 ")
btfas RegiE!€r, Bit r skip the Next rngtructior

r if "Bil" of, "Regiateln is
r S € t (n l n)

In asmFlash.asm, I have changed the jumps based
on adding the zero flag of the STATUS register to
"btfss STATUS. Z" instructions. which will execute the
next instruction if the zero flag is reset or the one fol-
lowing it if the zero flag is set. By doing this,I have
reduced the number of instructions to change the exe-
cution from seven to two, based on the zero flag.

tn
}d

8-!ij

an

rj

i.i

;..3

f?

i"r'i
..-.1

1
l:.i;

, t_ '

f{*

!,t J

v'.
1,1,,

r:*l:l

i.'a

a4
,:?
!1
'r='
ril

i r .
F.:
t 1

i,r

Experiment 67-Bit 5kip lnstructions

_coNFIq _FCMEN,OFF & _IESO_OEF & _BOD_OFE &
_CPD_OFF & _CP_OTF & IICIJRE ON & PWRTE ON &
_!iIDIT_OFF & _INTOSCIO

r Valia.bleB
cBloCK 0x20

D]'all:2
ENDC

PAGE
i ltainline

olg 0

nop

clrf mRTA

I|oop: i

cllf Dlay + 1 i
cllf Dlay i

DLaYIJooP:
g o t o $ + 1 i
nqp
novlw 1- ,

t For ICD Debug

i Inilialize I/O Blt6 to

irovllr 7 i Turn off CdrEraratols
nov$f cllcoNo
bsf STATUS, RPo r Execute ou! of Bank 1
cL].f ANSEL ^ 0x090 r AIL Bits a!€ Digital
bcf TRI61A ^ 0x090, 4 r BeDlac€s:

r movLw b'0011L1'
bcf TRI61A ^ 0x080, 5 r rnovwf TRISA ^ 0x080
bcf STATUS, RPo r Retsurn E €culion to

r Bard! 0

R€lurn Here aft€! D0
Toggl€
High 8 Bl.ts for DeLay
I.ow 8 Bitsa fo! Delay

Th!€e c:zcle D€lay

D€clement the InBial€
IJoop

subwf Dlay, f
btfss STArqS, z r Skip if Zero FIag ia

t Set

S e c t i o n E i g h t P I C @ t l C U A s s e m b I y L a n g u a g e P r o g r a . m m i n S L 7 7

al€cf

btfEE
goro

golo Dlaf&oop r EIse, IJoop llgain
t ReDlaces:
t tnovf S!!AT['S, w
r andllw L << 2
r aaLlwf PCI,, f,
t golo DIayI/ooE,
t nop
t nop
r nqp
t Decrqlent th€ Higb
t Blte ltnttl
t Il EqualB Zelo
i Replacea:
t novlw 1
t aublrf Dlay + 1. f
i novf gTAT{rg, w
t andll1w ! << 2
, addlrf rc!, f
i llotso DIarrIJooD
, nop
t nop
t noD

r loggLe aiA{

, AA{ iE Off, ltrrn il On

, RA{ i6 qr, Tura it Of,f

i Repeat

Dlay + 1,

sTATtts, z
DLetiloop

At the end of the application, when I toggle RA4 to
turn the LED on or ofl I test its current state. I do so
using the btfsc instruction to illustrate that the btfsc
and btfss instructions can be used on any bit in any
register and not just on the status bits. This ability to
test individual bits allows you to implement code like
this:

i f (1 == aA{) lb€n
RA{ = 0t

in two instructions like this:

Experiment 68-tonditional Execution

t i

"|J

t l

f.€

t'"t

-l

{u
14

" r.N
,-f"{

l*l

g 1

r
,

t"*

}-r

:&
L&.{

btfac
golo

RA{Reaet !
baf

RMSet:

bcf
goEo

€nfl

PORTA, 4
RAISets

PORTA, 4
]Joop

PORTA, 4
I,ooI)

btfsc PoRTA, rl

bef PoRTA, {

instead of these four:

novf PORTA, w
andlLw L << 4

btfEs STAmS, z

bcf, PORTA, 4

t Skip Ove! if, RA{ ia
Reaet

i Else, Uake RAI
Reset

t Reaal in PORTA
t Tesl RA4 to see if

il is high or low
t If zero aet, therr

akip nel.t

After working through the previous experiment, you
may be wondering how to implement the first decision
structure that you were ever introduced to-the if
statement. If you have worked through the subtraction
instructions and the bit skip instructions experiments,
then you probably realize they can be used together to
implement code that will jump on condition.You may

which perform the same task. But the btfsc solution is
obviously more efficient (as it is implemented in fewer
instructions and executes faster) and is much easier to
read.

also be afraid of the amount of work it will take to
implement the function. You will likely be surprised to
discover that there is a four-instruction template that
you can use to implement this function for comparing
two eight-bit values.

The four-instruction template that implements the
"if Condition then Label" decision structure are:

novf Subtsraclor, w
sulrwf Subtrac!€ntl, rd
btf,B* STATUS, F].ag

goto Label

where Table 8-2 lists the different values for the
optional Subtractor, Subtractend, #, and Flag. For the
less-than and greater-than comparisons, the subtraction
is arranged so the expected lower value is the sub-
tractend, and if it is less than the subtractor, the carry

1 7 8 l , a 3 P I C @ l l C U E x p e n i m e n t s f o n t h e E v i I 6 e n i u s

Table 8-2
Eifferent Values for Comparison Template , !&'ke Pledlko

, 0 4 . O 9 . 2 L

IJIST R=DEC
INCIjTDE,tp16f 684. inc.

CBIJOCK 0x20
D€claration

ENI'C

r4
tq

h?$

I l t

*d

l " .

1 g
i,{

rf

s'\
f)0

I

t

r-{

H,
,*

l.J.

CI
s
ni
H

EI
X
{D

i J

hr.
o

PAEE

, VariabLe

r R€quireil f,or MPLAB ICD2

, Initialize Teats Variable8

novf i, n ; if i > j tshenErrorlooD
subwf j, w
btfs6 sTATus, c

goto ErlorlJoop

movf j, w , if i >= j !he! Efror].oop
subwf i, !t
btfsc STATUS, C

golo Errorl,oop

novf, i, w , Lf i == j lhea ElroltooD
aubnf j, w
blfac STATttg, Z

"lf Statement Subtractor SubtBEtend # Flag

ifA > B then goto Label

ifA >: B then goto Label

ifA < B then goto Label

ifA <: B then goto Label

ifA == B then goto Label

ifA !: B then goto Label

It s C

c C

s C

c C

s Z

flag is reset (zero).This code template may seem like
an advanced usage of the carry flag, but you should be
able to figure out operations like this by reading
through the PIC16F684 datasheet and experimenting
with the subx{ instruction. Do your experimenting
with different values previously loaded into WREG
and check the results (both the numeric result of the
subtraction operation as well as how the STATUS bits
are set).

When using this template, remember that the
WREG's contents as well as the state of the C. Z. and
DC STATUS flags have been changed.

The asmCondition.asm program demonstrates how
these four statements are used to implement different
decision structures using the information in Table 8-2
(and embedded in the source code):

litle "aamconaition - DemonEtrate rif,

OgeraEioDs ia Assenbler"

goto $ r Finish€il, Evertrthing Okay

Errorloop: r ComDare Operation ilidn'l
i wolk correctly

goEo ElrorlrooD

eaal

Looking at the four-instruction template and the
code for this experiment, you can probably understand
how to apply the four instructions, but, you may be
unsure how to apply it when one of the condition
parameters is a constant. In these cases, the literal
instructions movlw and sublw replace movf and subv{,
respectively. For example, to implement the highlevel
if statement:

if (1 > 47) th€n goto Lab€l

you would use the code:

llovf i, w , if i > 47 thea Label
Bublw 47
btf6s STA!!US, C

goto label

Using the four-instruction template for the "if Con-
dition then goto Label" decision structure, I suggest

novhr L2
novwf i
novlw 34
movwf j

:ghls exD€rim€nt il€tnonEtrates a silE)Le se! of
four iastructions that simulates tbe oDeration
of a .if (conititioD) goEo IJab€Ln high 1evel
langnrage slat€ments.

The fou! iDstluctsion6 a!e:

rlovf, Subtractor, w
subwf SubElactendl. w
btfB* sTATus, FLag

gotso Labe1

i Ithere the nsublraclortr, nsublractenAn, r*tr
andl nFlagn ale DefLneA as:

r "if Statdlant" lsulrtractor lS\rbtractenal l * lELas
t --- ---- --- ----- --+-- --- --- --+----
rif l|>B then !ab€1
r i f JD=B
rif A<B then Lebel

B l s l c
A l c l c
A l s l c
B l c l c
B l c l z
B lB l z

B
r i f A<=B
tif A==B
t i f A l =B

i lleldlware !ilote6:

r PIC15F584 running at 4 UEz in Sfumrlator

S e c t i o n E i g h t P I C @ 1 1 C l J A s s e m b t y L a n g u a g e P n o g n a m m i n g L 7 g

that you try to come up with ways of implementing
highlevel statements such as:

l i t le r raamDecfaz - alecfEz LooD',

i f ((A < B) && (A > C)) then soto Ranse].ab€I

or:

wbi le (A < 4?)

After the previous experiments showing how condi-
tional execution and decision structures are imple-
mented in the PIC MCU, the simple if, while, and for
statements of C probably sound good. Although these
statements are not built into the PIC MCU assembly
language, there is one instruction that makes repeated
looping quite a bit easier.It is the basis ofjust about
every PIC MCU assembly language program ever
written.

The decfsz (or decrement file register and skip on
zero result) can be used to execute a loop a set number
of times as demonstrated in this experiment's program.
This instruction decrements a file in a similar manner
to the decf instruction, which decrements the contents
of the register by one and stores the result either back
into the file register or the WREG. But the decfsz does
not change any of the STATUS register bits. Instead if
the result of the decrement is zero, then the program
counter is incremented before the next instruction is
fetched. When this instruction is used in a loop, it will
count down and cause execution to fall out of the looo
after a set number of iterations.

in PIC MCU assembly language. It is actually easier
than you might imagine, although before you start
looking at different programming structures, you
should assume they can all be implemented using the if
statement (presented in this experiment) along with
the goto instruction.

// Finishett, Loop Forev€r

ExFeriment 69-decfsz Looplng

) / / e l ihw

l th i l .e (1 == 1) ,

u|l

.r{

iJ.i

U

b{

t a t

l l t

sl/

I
I

!. z-i

{T

ci3

,;-j
{ .
F-i

i v t

Hartlware NotseE:
PIC15F684 ru ring at 4 MHz in Simulator

Ityke Pr€tlko
0 4 . 0 4 . 1 4

LISI R=DEC
rNcr,uDE "p15f 684. inc"

t varLablea
CBLOCK 0x20

j'

ENDC

PAGE

olg 0
nop

movLw 7
nowrf i

nop

alecf,az i, f,

goto IJooP

i loop h€re 7x
t Do nothing in LooD

; i = i - 1 , i f r € s u l t = = 0 ,
i akip

goco

enal

r Finiaheal, just loop arounal

Domonatrate
Lnstruction

rohi le (i

lhe Operation of
for r,ooDing.

the ualecfsz"

Along with the "decfsz" inshuction there is the
"incfsz" (increment file register and skip on zero
result), but this instruction does not have a "stan-

dard" use like decfsz. As I familiarize you with how
the PIC MCU works and how you can optimize your
applications in very surprising ways, you will find that
both the decfsz and incfsz instructions can be used to
make your applications very efficient. Until then, as
you first start working with the PIC MCU and write
your first applications, I recommend that you remem-
ber to use decfsz as just a way to execute a loop
reDeatedlv

,,Cn Equlvalent Coale 3

! = 0)

t = i - 1 t

// LooD Arountt 7x

// Do nothing in the Loop
// Declenenl loo9 Counler

1 8 0 l , e 3 P I C o l ' l C U E x o e n i m e n t s f o r t h e E v i l G e n i u s

When you are leaming to program the PIC MCU in
assembler, it may seem like every instruction has some
special little trick to be aware of Fortunately, this is
really not the case for adding subroutines to your pro-
gram. They can be added quite easily, and the issues
that you have to be aware of are quite standard for
small processors. The operation and different aspects
of subroutines are demonstrated in the asmSubr.asm
program, which can be simulated in MPLAB IDE.

Experiment 70-5ubroutines

9ub1: i
cal.L Sub2

sub2: i
call Sub3

caLt Sub{

sub{! t
call sub5

Subs: t
call s\rb5

sub6: i
call subT

SubT: i
cal.L SubB

SuIt8: t
ceLl Subg

(-J
\.

/t\

F,
L-t

&
r{

r*"

*"1

!
!

tr?}

Fq

**

F .
ry
in

Ir€Dth Check, Call Next

DeDlh Check, Ca11 Next

D€I)th Check, Ca1l Next

Depth Check, Call N$<h

D€pth Check, CaII Ner€

D€Irth Clr€ck, caU Ner(!

DeDth Clteck, CaIl N€xts

D€pth Check, Ca11 Next

tltsL€ 'raar6ubr -

ODeration,l
subroutsine

!lyk6 Pr€atko
0 { . 1 1 . 2 0

LIST R=DEC
INCT,IIDE trDl5f 68{. inc"

PAGE

olg 0
aoD t R€qui!6al for MPIAB ICD2

nlovlw 0x55 t Ca1l Subroutine with "rer1w"

caU SubRetLw

lrcvlw 0x7B i Trt agai4 with a Subloutsine
caLl StlReturn i With',raturn"

calL Subl r see if you can trest 10
; Subroutiaea

golo $; When &aecutiqr Returzrs Uere,
i Loop Eorever

subg: , FiniBhed, IieEurn...

eaal

Data is t'?ically passed to the subroutine either by
using global variables or loading WREG (and, option-
ally, FSR) with the input data. Returning data can be
passed using either one of these two methods, by set-
ting STATUS flag (carry, digit carry, or zero) values, or
by returning a constant in WREG. The first subroutine
in asmSubr.asm returns data using the retlw, which
loads WREG with a constant value before retuming.
This method probably seems somewhat redundant and
even uselesE but it is critical to implementing read-only
arrays in the PIC MCU. It is also the method used to
return from a subroutine in the low-ranse PIC MCUs.
so it doesn't hurt to be aware of it.

The program counter stack in the PIC MCU is only
eight-values deep. Calling rnore than eight nested sub-
routines (as I do in this experiment) will result in the
code becoming lost in the subroutines and continually
running thJough each of them. You may have dis-
covered this when you simulated asmsubr.asm, but
you will never approach this limit in normal program-
ming. The only time I would expect you to have some
problems with losing execution return for a subroutine
is when implementing a recursive subroutine (or a sub-
routine that calls itself).

This program Ehows holr Subloutsines work in
th€ PIC UCU.

llaldkoaie Notes:
PIC16F68{ rultding al { t{Uz in SimulaEor

r subloutines
Subnetlw:

lellw 0nAA

SubR€tun:

i Retuh a value in $REG

t Stanalaltl Subloutirre ttetuh

S e c t i o n E i g h t P I C @ t l C l J A s s e m b l y L a n g u a g e P n o g r a m m i n g 1 8 1

ExFeriment 7l-Def in ing and lmplement ing Rrrags

The last major assembly language programming con-
cept to learn is declaring and accessing the data within
arrays. Like other small processors, the PIC16F684
microcontroller processor provides a single irulex regis-
ter (called FSR in the PIC MCU). which can access all
the registers, both variable memory and the special
function registers.The concept of indexed addressing is
simply using an index register to access array elements.
The PIC MCU implements indexed addressing a bit
differently from other chips, as the registers pointed to
by the index register are accessed via the use of a
shadow register called INDF. In practical terms,
indexed addressing is not any more difficult to imple-
ment in the PIC MCU than in other processors:The
only issue is remembering to specify INDF when read-
ing from or writing to the register pointed to by FSR.

Therefore, to read a byte from an array at position
n, you would use the code:

firovf n, w t Get offset of A.fiay Ele!$ent
aaLllw tlfiay r Adal stalling atLlless of the

i Arlay
rnovwf FSR r Stole in FSR (Inalex Regdster)
tnovf INDF, w r TJoaal WREG with n}.rraylnl n

Similarly, to wdte the contents of WREG into an
arrav element n. vou would use the code:

cbLock 0x20

Array: 6

enalc

The last operation that you should be aware of is
that of initializing array elements.The simplest way of
accomplishing this is to write directly to each address
of the variable. For example, if Array was to have the
first six prime numberq it could be initialized as:

mowlw L i First Element
novwf Array
novlw 2 i Seconal Ef,ement
novwf Affay + 1
itrov1w 3 i lhird El€n€nt
monnf array + 2
movlw 5 i Forth El€ment
nowrf array + 3
movlsr 7 i Fifth ELem€nt
rnovwf array + 4
novl\d 11 t Sixth E1ement
novwf Array + 5

When doing this type of initialization (or even
directly accessing alray elements), remember that the
first element has an offset (and index) of zero, and
each element has an inderoffset that is one less than
the element number.

This is really all there is to working with indexed
addressing for byte arrays.

asmPCKLED 3.asm is a demonstration application
in which rhe LEDs on the PICKit 1 starter kit flash
from D0 to D7, and it was wdtten using arrays for the
PORIA and TRISA values.

movwf Tenrp

adau.\r Array

t Tefiporarily atore the value
r G€t Of,f€et of, the Al.ray
r EL€ments
; Afltl starting address of, the
r Brray
i Store A.rlay ELenent Addless

rd t Retrieve saveil vaLue
r Save value.

title "asnPKI.ED 3 - PIcKit Running LED"

This program copi€s th€ op€ration of CPKLED.e
and Flashes the 8 LEDg on the PICKit J. PCB in
Sequence by Storing the vaLues fo! the IJEDa
anal lhe TRIS registers in Arlays

Haralware Notes:
PIC15F68{ running at 4 MHz Using the
InternaL cLock
circuit Run6 on PrcKit 1 PcB

Oris inal code:

novwf !'SR
novf, Tenp,
movwf IIIDF

Declaring array variables is very easy to do with the
CBLOCK directive, as is the ability to specify the dif-
ference to the next label. For example, for the previous
reading and writing example code, if the Array variable
was six bytes in size and you wanted to make sure the
next variable did not occupy the same space, you
would Dut in the followins statement:

i n t i , j , k ,
cha! r,Efrya1uel6] =

char TRrsvalue [8] =

0b100000 .
0b000100 ,
0b000100 .
0b000010) t
0b001111 ,
0b101011 ,
0b011011,
0b111001) t

(0b010000 ,
0b010000 ,
obL00000 .
0b000100 .

t0b001111 .
0b101011,
0b011011,
obx1100 t ,

t82 l , e 3 P I C @ l ' l C U E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

r main()
i {

, PORTA = 0t
, CMCONo - 7t
, ANSEL = 0t

; whi l .e(1 == 1)
, {

movh, b,001111, i lJoaal TRISvatue
E*plicitly

nrovwf TRISVaLue
novwf TRISValue + 1 ; NO[E: LEDS are in Pairs

// T1u,tii off Cdq)arators Inovlltr' b'101011,
// Turn off, ADc

// Start at I,ED 0

// loop Forever

novwf rRlsvalu€ + 2
novr,rf Tlllgvalue + 3
novlvr b,011011,
rnovwf TRISVaIUe + 4
movwf TRISVaLue + 5
movlw b,11X001,

r for (i = 0r i < 255i i++) // Snqple Delay toop movwf rRrsvalue + G
r t o r (j = o , j < 7 2 9 t i + + l i

c l r f k

i PORTA = TJED\ral.u€ [k] r // slecify LED Outpur r6op: ' Return after Delay arlal
r TRISA = TRISvalue [k] r r RBO Toggle
i cltf DLay r Eigh I Bits for Delay
i k = (k + a) ea A, // Increnenr k within clrw
i range of 0-7 goto $ + 1
, g l o t o s + 1
i j // eTi}lw aattlLw -1 r D€crenrent the conlents of
, } // E!r'I CPKLED , WREG
t btf,ss SAATUS, z ? 256;{
t s o t o S - 4
i ilecf,€z D1ay, f t Repeat 255x
r lil]ke Predko goto S - 5
; 0 4 . 1 1 . 0 7
t i PoRTA = LEDValue lkl

I,rST R=DEC novf k, rnr r lJoad the Offset for
INCLUDE "p15f684, inc" ; IJEDvalue
-CONFTG FCIIEN-OEI' & -IESO OFF & _BOD_OFF & addl"w IJEDvalue r AtLl to Start of I;EDvalue

_CPD OFF & _CP_OFF & I4CLRE ON & _PWRTE ON & r Array
_WDT OFF & _INTOSCIO novt^'f FSR r Store AaiitresB in hdlex

r Register
r variables novf INDE, w r cet rJllDvalue [k]
cBr,ocK 0x20 mowrf poRTA , save in poRTA Register

LEDvalu€:8. TRISValue:8
Dlay r TRISA = TRrsvalue [k]
k rnovf k, w r c€t lhe Offset for

ENDC ; Trrsvalue
aaldtut T&ISValu€ r AtLt to the Start of Array

PAGE rnovnf FSR r Slore Adalress in Index
r Dlaj.nline of asrnPKJ,ED r Register

rnovf INDE, w r Get TRrSValue [k]
olg O O"t STAIUS, RPo r Save in TRIS:A Register

irovwf TRISA ^ 0x80
nop r For ICD Detrug bcf STATUS, RpO

cllf PoRTA i Initialize r/o Bits incf k. w , rncrefi€nt the Active LED
i to Off anallw 7 i Keep Withia lange of O-7

novLw 7 i turn off Cdpar.ators novwf k
Inovwf OTCONo
bsf STATUS, RPo goto Loop , Repeat
clrf ANSEIJ ^ 0x80 r A11 Bits are Digital
bcf STATUS, RFo

end

novwf TRISValue + 7

For ConEideration
In this chapter, I have reviewed the basic assembly lan-
guage instructions and given you a basic programming
template to work from. Along with this, you have expe-
rience with the MPLAB IDE and with programming
in C. You should be ready to start programming a PIC
MCU in assembler, only you may not feel that confi-
dent in your abilities to do so from scratch. Chances
are if you have a programming assignment, you will be

, Start with D0

novl.\r b,010000, r Load I,EDvalue E>E,l.icitly
novwf IiEDValue
novLw b'100000,
novwf LEf,ivalue + 1
novl . \ r b '010000,
no\rwf IJEf,iVaIu€ + 2
novln b '000100,
novwf LEDValue + 3
movlxr b,100000,
movwf LEDVal.ue + 4
nrovlw b,000100,
nolr!!-f IJEDValue + 5
novlw b,000100,
nol'$rf IiEDVal.ue + 6
novl$ b,000010,
rno\rwf lEDVaIue + 7

S e c t i o n E i g h t P f C @ i l C U A s s e m b l y L a n g u a g e P r o g r a m m i n g L 8 3

fr
"r"{

s
t{
rU

.F{

u)

. ' \

l"l

k{

able to copy asmTemplate.asm into a specific subdirec-
tory for your application, rename it to the application
name,load it into MPLAB IDE, and then just stare at
it because you don't know where to begin. Before
going on to more complex programming assignments, I
would like to give you some guidance in structuring
and wdting PIC MCU assembly language programs.

The basic parts and sequence of the assembly
language program are as follows:

1. Use nop as the first instruction so an MPLAB
IDE incircuit debugger (MPLAB ICD) module
can be used to help you debug your application
in circuit. Although you may not have an ICD
(or ICD 2) that you can use for debugging, it's a
good idea to always put this instruction in so
you are in the habit of being ready to debug
your code with the ICD.

2. Perform the necessary bank 0 initializations. I
like to put in the variable initializations first,
followed by the hardware initializations.
Remember that variables should always be ini-
tialized (even to zero) using a clrf instruction.

3. Perform the necessary bank 1 initializations.
These should just be hardware initializations;
you should not put any variables in bank 1 until
you are very familiar with PIC MCU assembly
language programming. Remember to XOR
the register addresses with 0x080 to ensure you
do not get a message indicating that you are
accessing a register in the wrong bank. When
you work with other PIC MCUs that have
hardware (and variable) registers in banks 2
and 3, you will have to repeat this step for each
one of the registers.

4. Virtually all microcontroller applications will
execute forever, taking in input, processing it,
and then passing it back out. After the initial-
izations, the code should start executing the
loop code.

5. Next, read your inputs. This can be simply
polling the I/O pins or reading hardware regis-
ter values.

6. The inputs are then processed. This processing
can include comparisons to expected values or
arithmetic computations.

7. Once you have processed the inputs and under-
stand what should come out of the application,
you can output them. Just as when you read
your inputs, outputting could consist of writing
directly to I/O pins or to hardware registers.

8. If some delay is required in the prograrn, it
should be done here. Creating delays will be
explained in the next section.

9. The loop code is complete. Jump to the start of
the loop and begin again.

10. Define the variables to be used in the program.
I like to define them last because chances are I
added one or two when I created my program,
and this way I can go back and make sure
everything is defined using MPASM assembler
(when the program assembles cleanly, then all
the variables are defined).

To illustrate how a program is created using this
methodology, I created asmButton.asm. In this pro-
gram, I have put in comment lines that start with ####
to indicate which of the 10 steps is being implemented
in that and the following lines of code.

!181€ "asnButton - prc15r58{/prcKit Butstotr
IJED ONN

i Thia Program luras ou tlr€ PrcKit,s D0 rrED
t lrheu the Button at RA3 is Dreaseal.

i Haralwale Notea I
t PIC16F58{ run'riag a! { MHz UaiDg the
t Internal Clock
t External Rea€l ia U6etl
t RA3 - PICKit Button
t RA4 - LED Poailive
t RA5 - IJED N6ga!iv6

i
r Uyk€ P!€tlko
, 0 4 . L L . O 7

IJIST R=DEC
I!|CLUDE "p16f68{. inc.

_coNrrc _EcltEN_oFF & _rEso_oFF & _BoD_oFF &
_CPD_OFF & _CP_OEF & _IICIJRE_OFE & _PWRTE_O!{ &
_IIIDIT_OFF & _INTOSCIO

t valiablea
CBIOCK 0x20

r *lt** - 10. Put in Ehe valiab16a (if requir€tl)
Tetlp

ENDC

PAGE
t l,lainliae of cButton

or9 0

r #### - 1. Put ia nnoD" inatructsion r€quir€al for

nq9 r ror ICD Detnrg

r **#* - 2. Prrt ia "Bsnlr 0 rnitializalions"
trbvltr oriFF ; !'lake AU PORTA Bits High
novwf PORTA

1 8 4 l , e l P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

rcvhr 7 i Tuln off Cclq)arators bovwf TdE) , Store for RA3 Check
Iovwf CIICINO , #*** - 5. Proc€ss rqrutss

r #**# - 3. Pul iu .BaDk t InLtializalionsn e'vbr 8,011111' r DO G?
bsf ATAttlS, RPo btf,sc Tetq�r. 3 t If, RA3 ls g6t tb3n trYesi
clrf .NISEI. ^ 0xg0 , A11 Bits ar€ Digltal novlw 8,111111' t No, Off
novlw orroFF ^ ((1 << 4) | (1 << 5)) t **** - 7. Outpur proc6s6edl rDput

t RA{/RAs a!€ Digita]' OutDuta rdvtrf PORTA
rcvwf IRISA ^ 0x80 r **#* - 8. D6tay (tf Required)
bcf sTAnts, Rpo r lt#lt* - 9, Relu!'r to the start of th€ L.oolr

golo IJooD , Rerr€ats
, **** - {. LoD Ertry Poiat
IJoolr I
t ##** - 5. R€ad ln Intrirls end

rcvf, PORIA, w t Want to chech R.tr3

qt
o
rt

o
o
p
0t
f",
g
o
Fl
t,
ct
h..
o
5

S e c t i o n E i g h t P I C @ f l C l J A s s e m b l y L a n g u a g e P n o g r a m m i n g 1 8 5

PIE@ Microcontrol ler HEsemblg
Language FleEource Floutines

1

1

1

DMM

Need le -nose p l i e r s

Wi r i ng k i t

If you were to ask me whether using C or assembler
language is the most efficient method of creating com-
plex PIC MCU applications, I would answer that the
best applications are written using botlz programming
languages. C is excellent for high-level program flow
where complex conditional and adthmetic statements
are normally used. Assembly language programming is
necessary when you have a precisely timed interface
requirement or logic/arithmetic operations that must
be very efficiently implemented. Although in the rest
of the book, I concentrate on assembly language pro-
gramming, I want to point out that you have the
opportunity to add assembly language code to your
PICC LiterM compiler applications. There are a num-
ber of things you will have to be aware of before you
stafi adding assembly language code to your PICC
Lite compiler application.

The first issue to be addressed is whether or not
your application code will consist of a mix of C state-
ments and assembly language instructions or if the
application code will have only one of the two pro-
gramming languages. Even without looking at how the
PICC Lite compiler's built-in assembler works (which
is required for an application that has both C state-

S e c t i o n N i n e

1

I

1

Prc16F68 4

Red LEDS

Ye l l ow LED

0 .01 / rF capac i t o r (any

tYpe)

100O res i s to r s

Breadboard

3-cel1 AAA battery pack

AA ba t t e r i es

ments and assembly language instructions), I would
tend to go towards having separate files for assembly
language and C source files. The two code sources
would be individually compiled into .obj files (often
called object files), which would then be linked
together. MPLAB@ IDE handles the compiling, link-
ing, and source-codeJevel debugging chores very effi-
ciently, with each source code file displayable. An
important advantage of using multiple source code
files is that subroutine files can be shared very easily,
especially as source code, which would eliminate the
possibility of a developer changing code that is already
runmng.

The problem with linking multiple files into an
application is the additional learning and work that is
required. For the applications in this book, I don't feel
that it is appropriate to attempt linking multiple files
together. Instead, the examples of mixed code sources
will primarily use PICC Lite compiler C source code
with inline assembler statements.The assembly lan-
guage instructions can be added individually using the
directive:

asm(, 'PIC UCU Instruct ion") t

' t87

..:::

" r1i
: l

.i{

:*-'i
11

.!.i

r,{a

a ' i
'.-'j
i"r;;
a'\

l-: i

t::ii

i 1'r

i.t')
f',,,.,

..-t

t ' i

i--:
f -l .

a:\!

|*

+]
i ']

J i1

,*

,,,{

! t

ir**
il:*a
ri,l

i .1

Experiment 72-LoSic 5imulation Using the PlEl6F6Btl

1

I

1

P rcr.6F58 4

Red LEDS

YelIow LED

0 . 01 pF capac i t o ! (any
tYPe)

100O !es i s to r s

Breadboard

3-ce11 AAA battery pack

AAA batteries

2

1

I

I

or they can be added as a predefined function state-
ment. Earlier in the book, I used the NOPQ; builfin
function in a number of applications. This function
inserts a single nop insffuction in the code and allows
me to set simulator breakpoints in the application
where the statements or operations either do not seem
to skip randomly to other instructions or to set break-
points results in an MPLAB IDE simulator message.
Along with the nop instruction, the clear theWatchdog
Trmer (clrwdt) instruction can also be added to a PICC
Lite compiler application in this manner.

If you have a nurnber of assembly language instruc-
tions, you should indicate to the compiler that assem-
bly language instructions will follow by using the #asm
directive, and that you are finished by using the
#endasm directive.These directives and instructions
are best placed in unique subroutines like the follow-
rng one:

int Aaaenibl:rDomo (Lnt SqvaLue)
(// Calculate lhe Squale of nvaluen

golo ASIrooP t Retura lo Trl. agaitr
*entlaBm

!€turn Squalei

, // wrd AaaeniblyD€mo

There are five things you should note about the
code in this function:

. The addition of the leading underscore to vari-
able names in the in-line assembler code.

. The need to declare most variables as" char
unsigned" variables. This isn't readily apparent
in the code, but each byte variable should be
declared as "char unsigned" to avoid negation
issues when execution crosses between C and
assembler.

. The lack ofbit labels for status or any other
registers.

. Declared registers are all lowercase.

. You do not have the $ operator to help you
avoid coming up with your own labels. You will
have to put in labels for every for loop.

For the most part, these differences do not make
writing inJine assembler more difficult,just different.
This is why I recommend that you add inline assem-
bler instructions only when you have to. The PICC Lite
compiJer is a remarkably efficient compiler. and there
will be only limited situations where it is best to com-
bine C statements and assembly language instructions
together.

ai = SqVaIue,
// save value to
// aaa€lible! caa

*aam
movf _al, w
clrf _gquale
clrf _gquare + 1

ASt ooD:

Squar€ in Mesrory lJocation
access uniquely

// Get uulliDlicand

atLkcf gquale, f i
b l fac Etatus, 0 i

incf _gquare + 1,
alecfaz _ai , f i

Loop Back to

Afldl Value to
ou€rflow?
f

Iler€ until

sguale

Decrement Rep€atedl
Aalalit'ion Counter

DMM

Need Ie -nose p l i e r s

tt ir ing kit

1 8 8 l , e 3 P I C @ l " l C l J E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

I hope that I have impressed you with the power and
capabilities of the PIC MCU. Now I'm going to try to
underwhelm you and show you the minimum that they
can be programmed to do.This is a good time to go
back and show you how truly good the PICC Lite
con.rpiler is and show you a little trick tbr creating your
own PIC MCU applications. In this application,I am
going we will create a two-input AND gate from a
PIC16F684.

The circuit that I have come up wlth is very
simple (see Figure 9-1) and can be wired on a
breadboald (see Figure 9-2) in iust a couple of min-
utes. I wanted the LEDS to be lit when the input was a
1 and off when an input is 0.To do this, I take advan-
tage of the half Vdd voltage threshold on the PIC
MCU pins. Red LEDs have a voltage drop of 2.0 volts,
which is greatcr than the 1.5-volt threshold of thc PIC
MCU input pins when the PIC MCU is powered by 3
vol ts . Wi lh a I { l { lQ current- l imi l ing res is tor in ser ies.
the LED can either be shorted to ground (and turned
ofl) for a 0 or left on in circuit to pass a 2.O-volt input
to the PIC MCtl. I\n pointing this out because this cir-
cuit will /rol work with a 5-volt power supply.

Fisure 9-l PIC microcontrollar AND gute

Here is the first experiment lor you to try out. Find
the voltage level at which the PIC device transitions
from a 0 to a 1, and when the red LEDs are wired as in
this circuit. As part of this exercise, make a guess at
what thrs translation voltage wrllbe before you add the
variable voltage supply.

The assembly language code for the application,
asmlogiccate.asm, is very simple as you would
expect. It makes all the input pins digital I/O and then
polls the two input pins (RC3 and RC4).Then when
the inputs are both high, the output of RC2 is driven
high, and the LED connected to it is lit.

t i ts le r rasnlogiccate -

s inulat ionrt
Losic

r For ICD Debug

r This program causea lhe Prc15F684 to behave
r like a Eingle 2 hput a.ND Gate.

i garalxrare Noles:
, PIC16F584 rurlniflg at 4 !I$z Uairg the hEernal

Clock

Eardlware Notes
RCA:RC3 - hpul
RC2 - Output

llyke Predko
0 4 . 1 1 . 1 9

LIST R=DEC
I N C L U D E ' r p 1 6 f 6 8 4 . i n c r l

-CONFIG -FCI,IEN-OFF
CPD OFF & CP OFF &
WDT OFF & Ir\ITOSCIO

t variables
CBLOCK 0x20
ENDC

PAGE
t Mainl ine

org

nop

c l r f

& _rEso_oFF & _BoD_oFr
I]IICLRE ON & .PWRTE_ON &

nov$rf CMCONo
bsf STATUS. RPo
clrf AlilSEL ^ 0*80
nov1n b '111011'

rnonr,rf TRISC ^ 0x80
bcf STATUS, RPo

IJoop:

bt f ,ss PORTC. {
goto NoMatch{

bt fss PORTC. 3
goto NoMatch3

noP
bsf PORTC, 2
goto],oop

Ini t ia l . ize I /o Bi ts
to Off
Turn off comparators

Al .L Bi ts are Digi la l
RC4:RC3 hputs, RC2
Output

Relurn llere af€er
Delay
'f€st Input Bits

Match cycles to se!
Both are set

Breodboard AN D gate circuit

PIC16F6B4

Fiqure 9-a

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s r.8 9

Nouatch4 ! t 1\ro Cycles Past
Noltatch3

goto Nolrlatch3
NoMatch3:

bcf PORTC, 2 t ReEeE the OttDuts
goto Loop

end

To compare the operation of my assembly language
code to what the PICC Lite compiler produceq I cre-
ated a similar application, clogiccate.c. This program
polls RC3 and RC4 and outputs a 1 on RC2 when both
inputs are 1,just like in asrnlogicGate.asm.

Sinclu i le <pic.h>
/* clogiccate.c - Sinulate an AND cate on a
Prc15F5g4

Thia Plogram outputg a "f if Two Inputs ar€ a

2, /+ cLogj.ac�ale. c - Simulate an AllD Ciate on
PIC15F6

{: This Program outputs a "1" if rlro In!,uta a?e

t t i

J | 3

t !

!,-!l

L t _ :

u ,

;'d

lJ"6

8 :

1 0 :
1 1 :
L 2 .
1 3 :
L 4 l

L 7 z

1 9 :
2 0 l
2 L l

2 3 1

RCA - Iq)ut
RC3 - Iry)ut
RC2 - o|rtput

myke pretlko
0 4 . 1 1 . 1 9

CONFTG(TNTIO & W!||IDIS & PYIRTEN
UNPROTE
& TTNPROTECT & BORDIS & IESODIS &

ints i , j ,

rnain ()
(

& IICIJRDIS

ECMDIS) t

RC{ - Input
RC3 - rnput
RC2 - Output

ml'k€ grealko
0 4 , 1 1 . 1 9

-CONFIG(INTIO & ICDTDIS & PWRTEN &
UNPROEECT \

& I'ITPROTrECT & BORDIS & IESODIS &

int i , j ;

nain()
t

PORTC = 0,
CMCOIiIo = 7t
ANSEIJ = 0,
TRISC2 = 0i

w h i l e (l = = 1)
(

i f ((1 = = R c 4
Rc2 = 1,

else
RC2 = 0,

24: PORTC = 0t
0003F3 1283 BCE 0x3, 0x5
00038{ 187 CLRF 0x7
25: CllCONo = 7r // rurn off coltll)ara
000315 3007 !4OvLw 0x7
0003F5 099 uovuF 0x19
26: iNSEL = 0r // Ilurn of,f ,rDC
000387 1683 BsE 0*3, 0 ' r5
0003F8 191 CLRF 0x11
27t a&lsc2 = Oi // Make RC2 Oulput
0003F9 L10? BCF 0x7, 0x2!4CLRDIS &

FCMDIS) , 29 : wh iLe (1
3 0 : (

0003FA 1283
0003F8 1A07
0003Fc 1D87
OOO3FD 2BF9
32t RC2 =
0003F8 1507

-= 1) // Loop Forever

= = R c {) e & (1 = = R c 3))
BCF 0x3, 0x5
BrFSC 0x7, 0r.4
BrFSS 0x7, 0x3
GOTO 0x3f9

a, ll Both Hlgh, OutsDut
BSF 0x7, 0x2

| / / er|tu"
, ll Endl closiccate

As a follow-up to the introduction of this chapter, I
want to show you the efficiency of the assembler
instructions generated by the compiler. After I tested
the operation of both applications,I took a look at the
code generated by the PICC Lite compiler by clicking
on "View" and then on "Disassembly Listing." The fol-
lowing code was displayed in a new window on the
MPLAB IDE desktoo:

You can make a couple of conclusions from the
resulting assembly language code.The first being, the
disassembly lbting is not complete. The closing brace
for the "while(1 - - 1)" statement and a"goto 0x3fa"
instruction. which returns execution to the start of the
comparison, are both missing.To simulate this applica-
tion, I used the asynchronous "pin stimulus" feature of
the debugger to change the states of the input pins.

The second conclusion you can make is that the
PICC Lite compiler isn't stupid. It was able to convert
the two-term if statement into just three assembly lan-
guage instructions. And at the same time, it was able to
note that resetting the TRIS bit RC2 in bank 1 is the
same as resetting pin RCZ in bank 0. Later in this sec-
tion, I will provide you with a set of macros that will
allow you to virtually write your own highJevel code
in PIC MCU assembly language without having to
understand how the different instructions operate. But
the code produced by these macros will in no way be
as efficient as the previous snippet of code.

// Turn off CdnDarators
// Turn off aDC
// Make RC2 Output

// Loop Forever

) & & (1 = = R c 3))
// Both High, OutDut Eigh

// E1s€, Low output

- - - C: \wr i l ing\Prc Evi l
Geniua\Cotle\cT,ogiccate \cIJogiccate. c
1r * inc lual€ <plc.h>

1 9 0 l , a 3 P I C @ l ' l C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

The three-instruction code demonstrates how
sophisticated operations can be created in the PIC
MCU using just a few instructions. Two-bitinput AND
statements and OR statements can be produced using
the following templates:

i 3 Instruclion AND Code
btfsc Regis ler l , b i t l r I f F i rst Bi t Input

is 0, Jump to not
True

btf,ss Register2, biL2 i rf Seconil Bit lnput
iB 1, .runp to True

goto SlitDNotTrue r One or Both Bit
hpurs is 0, nnotn

If you are a student, I should remind you that it is
not a good idea to w te your application in C and then
use the PICC Lite compiler to generate assembly lan-
guage code for your application for a number of rea-
sons. First, the display does not label registenlif you
were to hand in the code from the disassembly window
unchanged, I suspect that even the most dim-witted
teacher would notice that something was amiss. Sec-
ond, the code displayed in the Disassembly Listing
window does not have any goto labels, and you will
find it to be a significant challenge to correctly move
the location of the code produced by the PICC Lite
compiler to the locations required for your application.
Chances are it will take more time and effort than if
were to do it yoursell Finally, the worst thing that
could happen is that you correctly label the registers
and add correct goto labels, and then your teacher is so
impressed by your work that you are asked to explain
to the whole class how the code works. If you're having
problems solving an application in assembler, create a
C program and lun it through the PICC Lite compiler
to see how a professional would code the application.
But remember, it's in your best interest to take what
you learn from the Disassembly Listing and apply it to
your application, rather than trying to use the code
that's disDlaved.

ANDTrue:

oRNot True:

r Coale E:.ecutedl if
Both Bits are 1

I
r coale Execut€al if

Both Bits are 0

; 3 Instruction OR Coale
bt fss Register l , b i t l r I f F i rst Bi t ia 1,

iIump to "True"

bt fsc Register2. b i l2 r I f seconal Bi t is 0,
Jrrnp to "Fafse"

goto oRTrue: t one or Bolh Bits are

These two snippets assume that Tiue is high. They
can be easily modified ifTiue is low for one or both
bits;simply change the btfss to btlic, and visa versa.

ExFeriment 73- lmplement ing the f "5ur i tch"

Statement in Hssemblg Language

If asked when I first learned to program,I like to reply
that it has been going on for 25 years now.The implica-
tion is not that I am somewhat dim, but instead that
there are so many different ways to solve programming
problems. I bring this up because the code for this
expedment, which was wdtten after the code for the
following experiment, is a lot mole efficient (i.e.,
smaller) than the code in the following experiment.
Logically, the programs should become more sophisti-
cated and efficient as you progress through the book. I
wanted to illustrate a particular point, so I placed this
more efficient program before the less efficient one
that follows it.

In this experiment, I would like to show how the C
switch statement can be implemented in assembler:

switch (var iable) (/ / value lo be testeal
c a s e 2 :

/ / Statenents to E.ecute i f nval iable == 2n
breakr // Exit the "switeh" Statenent

c a s € 2 3 :
// statenents to Execule if, 'variable == 23

br€akt

// Statenenls Uo Execute if nvariable == 47
b!eaki
defaul t : / / "var iabl€" l= 0 o i 47

/ / s tatenents to Execute i f , "var iable != 0" and
"var iabl€ t= 47"
] / / hct iws

There are several ways in which the switch and case
statements could be implemented in this block of code
to execute specific code if the contents of a variable
match a specific value, but for this experiment, I will
focus on the general case code.

One way to implement this function is with multiple
comparisons. lf this were to be written in a language

S e c t i o n N i n e A s s e m b I y L a n g u a g e R e s o u r c e R o u t i n e s 1 9 1

{J
c
ct
Eo
.p(s
.tJ
q

"q
()

{J
''.1
B

q

U

c,
IJ

with an "if then goto" statement, the switch statement
could be implemented as:

if (2 == Variabl€) th€n gotso Nots2
// == ?LraE gwitch CaEe
// StaEenelts to tlr.ecute lf "Variable == 2'

goto gwitcbDone

Not2:
if (23 == Vrriabl€) th€! goto No!23

// == s€coaal Snitch Case
// Staldl€rta to Execute if ,'variable -= 23

goto swilchlrone
Not2 3:

tf ({7 == Variable) th€n golo Not{?
// == Thirit S:nitch Caa€
// gtaldlellta to Execute if trvariabl€ =- {t

goto switclDone
Not{7:
// trD€faulli - Stat€arenlB to Executse if

rrvari.rbl€ != 2' anal

rrvariabl€ != 23' anat

nvar iable != 47tr
SwitchDoE€:

This isn't a terrible base to work from, but we can
do better. The secret to doing better is to load the vari,
able into the WREG and then compare its contents
using the xorlw instruction repeatedly. Take advantage
of the MPASMTM assembler built-in calculator and
XOR the value to be tested with the Drevious value. Bv
doing this. the previous XORed valui in the WREG is
returned to the original state and then XORed with
the new value. To show you what I mean, I can con-
sider the if equivalent to the switch statement as:

rva l iab l€ != {? t r

SwitchDone:

This method of implementing the switch statement
in assembler is quite efficient and easy to code, as I
show in the code for this experiment, asmPKLED
Z.asm. In this code I have tried, as much as possible, to
dfuectly convert the highJevel statements of cPKLEN.c
to assembly language statements:

lit].e naamPKIJED 2 - PICkit 1 starEer hit
Ruaning LED"

r This program allrectly copies the op€ratio! of
CPKLED.c antl Elaaheg
, the I LEDa oa the PICkil 1 alarter LLt in
Sequenco.

i Hartlwar€ llotses:
t PIC16F68{ rutlDing at 4 llllz Usltrg the rnternal
Clock
t Exterttal Resel ia Ua€fl
r Circuit Runa oa PICkit 1 Etart€r Lits

t Original Coale:

r i n l i , J , k t

r nain ()
t t

t

r PORTA = 0t

t ANSEIJ = 0i

, k - 0 ;

t w b i l e (l = = 1)
// IrooD Eorever

// Turn off Cdrlraratoig
// Tufi off A.Dc

// starts a! LED 0

z€lo

| "o"o switchDone
I Not2:

xor l rc 23^2 , WREG = (WREG ̂ 2 l ^ (23

1Y1
^ 2)

t = W R E G ^ 2 3 ^ 2 ^ 2

t-
t

^ Hnoi
23 (B€cauae 2

btfaa gTATUg, Z
goto Not23

// gtelen€nts to tir.ecute if "Valiabl€ -= 23
goto switchDon€

Not23:
r.orLlr 47 ^ 23 , wREc = (WREG ^ 23) ^

l A 7 ^ 2 3)
, = W R E G ^ 4 7 ^ 2 3 ^ 2 3
, = vlR.EG ^ 47 (Becatnae 23

^ 2 3 = 0)

1J
c
c,
c

.Fl

t{
(,

9{
X
rd

movf, variab1e, !t
r.or1!r 2 , "tf (2 == variable)

thea goto Not2r
btfaa sTAlt'os, z

gtoto Not2
// Staletrents to Ex€cute tf 'varia.b16 ^ 2n equal

bbfa8 STATUS, Z
golo !bt{?

// Stalen€nla to E lecule Lf "variabf,e == {7
goto grditclrDone

No!{ t :
// "Defaultrr - Stsatenenls lo Execute if,

"Vari.rbl€ t= 2" aDil

"valiable l- 23n atd

r f ,or (i = 0r t < 255r i++)
// sirnDle Etelay IJooD

fo r (j - 0 r j < 129 r j ++) t

, alritch (k) t
ll geLecL Whicb LED to DieDlay
t c a a e 0 :
t PORTA = 0b010000,
t TRISA = 0b001111,
t breah,
t c a a € 1 3
r PORTA = 0b100000t
r TRrgA - 0b001111t
i breakt
i caae 2r
i PORTA = 0b010000t
t TRISA = 0b101011t
t braakt
i caae 3:
r PORTA = 0b000100t
, TRISA - 0b101011,
t breaki

t PORIA = 0b100000,
t TRISA = 0b011011;
r breakt
t case 5:
r PORTA = 0b000100;
r TRISA = 0b011011t
i breekt
i cese 5:

L9z l , e 3 P I C @ l l C U E x p e n i m e n t s f o n t h e E v i l 6 e n i u s

r PORTA = 0b000100t
r TRISA = 0b111001t
i br€aki
; c a a 6 7 t
i PORTA = 0b000010,
, TRISA = 0b111001,
i breelr
r l // hctL$3

, k E (k + 1) ? 8 t
// IDcr@ent k lrithi! reig€ of 0-7

, l / / € l ihw
,) // Enal CPKLED

t

t liEfke P..tlko
t 0 i 1 . 1 1 . 2 8

'IST R=DEC
INCLI'DE nD15f 58{. iDc"

_WDI*OFF & -INTOSCIO

r Varlabl€g
CBI,oCK 0:.2 0

Dlay
Actj.veBj.t r Recoril tsb6 Activ€ Bil

E![DC

PAGE
t uailline

or9 o

*o!lw 0
btfBs slATUg, z

goto EryD].

, Start r'ith D0

, Dlsplay Dl?

t DisDlay D2?

r DIaDIay D3?

E4
X

16
o
Ft
F.
3o
5
rt

(^,

I
4r
o
o

Q
{
F.
rf
o

CN
d
p,
ct
o
3o
p
a+

movlw 8'010000' i Turrr on D0
novwf PORTA
fiovlw 8,001111, , SetuD TRIS for th€

Nd.t Disglay
mov$f II{DF
goto LEDIron€ , Einisb€al, Rep€at

TryDl:
r<orlw 1 ^ 0
btfaa STATUS, z

goto TrfrD2
novlw 8 '100000' i Tuln on D1
rovlrf, PORITA
movlw 8,001111, i getuD fnIS for the

Next Dj.aDlay
movlrf MDF
goto IiEDDoa€ t FiniEhed, R€9eat tr.|

Trr/D2:
_cowrrc _ltllEN_oFF & *IEgo_oFF & _BoD_oFF & xorl$ 2 ^ L

_CPD_OF! & _CP-O!F & -!|CLRE_ON & _PIIRTE_ON & btfss gTAtgg, Z
golo Trt'D3

movltp 8'010000, i Turn on D2
novfif PORTA
rnovlw 8,101011, t S€luD TRIS for the

Next Dis9Lay
rtrovwf INDF
goto IJEDltole r Finiahedl, ReDeet

Tr,yD3 !
xorlw 3 ^ 2
btsfaa Sf[lTUg, z

goto Trl'D{
lrov1w 8'000100' r Tuln on D3

EoD t For ICD Delntg movrrf, PORIIA
lrovlw 8'101011' t getup IRIS f,or th€

clrf PORTI r hitialize I/O Blts to Off NdrE Dl.aDlay
novlv 7 , Turn off lovwf MDF

coqraralors goto LEDDone t Finishedl, ReDeat
novn"f Cl.lCONo
baf gTAfUS, RPo TryD{: i DigPlay D{?
clrf tt{SEL ^ 0x80 t All BitB a!€ Digital ,ror1w { ^ 3
bcf srATus, RPo btfaa grATItg, z

goto TrtDs
clrf AcElv€BLt r gtalt rdith D0 novlw B'100O00' i Turn on D{

ovnf PORTA
novlw TRISA r PoLnl FgR to TRISA rovltr 8'011011' , getuD TRIS for the

fo! raat TRrsa NexE Diaplay
novl "f FSR t try)alating movlrf INDF

grolo IiEDDoue t Finlahetl, Rep€at
Loo93 i Returl ll6re efter

Delay T4fD5: t DisDlay D5?
xorlv 5 ^ 4

clrf D].ay i High 8 Bits for D6Lay btfa8 sfATlrs, z
clrrl' golo TryD6
aaLllw -1 i D€cr€eeat tlre lrovlrd 8'000100' i Turn on D5

conlenta of VIREG lrovwf PORTA
btfss sT ms, z t 256'* movlw B,01101f i getuD !'Rrg for lhe

goto S-2 N€tr ts DiEI ' laY
tlecfaz Dlay, t t R€Deal 255x movwf INDtr

goto S-{ goto rrEDDone t Finisheil, R€96a1
clrf Dlay i R€p6al Again f,or -

400 ms total Delay Trl'D5 3 r DIaDIay D6?
c l r r ' x o l l w 5 ^ 5
edld].w -1 r Decra€nl th€ blfBs Sf!l!!gs, z

coDt€rrta of WREG goto llryDT
btfaa sTATus, z , 256x movl$ 8'000100' i fuln on D5

goto $-2 novlr ' f , PORIIA
al€cfaz Dley, f. , R€D€a! 255x movlw B'11100f i S€EuD TRIS f,o! lhe

groto S-4 Next Dlat) lay
movlrf MDF

Dovf ActivcBit, rr t Loadl the Bit Nlrmber goto LEDDone t FiniEheal, RsD€al

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 1 9 3

TryDT :
xorL$
btsfaa

goEo
ovht

monwf
novl$

novwf
goro

IJEDI'ON€:

Ldcf

andlw

movwf

qoro

end

7 ̂ 5
STAllrUS, Z

IJEDDone

B '000010 ,
PORTA
B ' 1 1 1 0 0 1 '

I![DF
LEDDon€

AcliveEiE,

7

Acliv6Bits

LooP

, DisDIay D7?

t Turn on D7

r geluD TRIS fo! the
N€xl DiaDlay

There is one last point I would like to make about
aSmPKLED 2.asm, and that is how I was able to
quickly change the values of the TRISA register. In the
code, you see that I loaded the FSR register with the
address of TRISA, and when I had to change the value
of TRISA, I simply write to the register pointed to by
the FsR.Another way of implementing this code
would be to change the bank and write directly to
TRISA (without involving the FSR register), using the
following code:

lrovlw NewPORTAValue r WrLte the nevr PORTA
value

nrovwf PoR!!A
nrovlw NevrTRISAValue , SetuD TRISA f,or tshe

Nexts DispIBy
bsf STATUS, RPo i Ex€culs in Page 1
noverf rRISA ^ 0x080 i Sto:.e lhe New TRISA

Finiahetl, ReDeat

FiniEh€d DisDlayingr
LED
Inclelent the Active
IED
Ke€p witshin rang€ of
o-7

i RepeaE

bcf SfATuS, RPo
VaLue

i Return E:.eculion to
Page 2

Experiment 7U-Defines

{t

c
, t {

{+.{
0,
n
I
,

qr
f*

{J
fr
0l
H

. r-!
(r

CI
g-.

t\,
n
kl

If you have worked through all the experiments in the
previous section, you will have noticed that accessing
UO pins in assembly language can be somewhat awk-
ward due to the need to specify both the port and the
bit number of the pin in the bit inshuctions. As you
start programming your o\an applications, you will dis-
cover cases where you mix up which port is used with
which pin; the program will not work and the problem
will not be easily found by reading through the pro-
gram. You will be able to find the problem by carefully
sirnulating the application and watching its operation,
but there is an easier way to avoid the problem all
together. Instead of associating a pin with an IiO port
register for the bit operations, you can declare them
together using the #define directive.

The format of the #define directive is:

+alef ine Label [(argul lenl [, . . .1)] Str ins

and it behaves similarly to the C language define. That
is, when "Label" is encountered, "String" is substituted
in with and any arguments put into the string. The
string substitution provided by the #define directive
differs from the operation of a macro in the scope of
the substitution. The #define substitutes a stdng on a
line of assembly language code, whereas a macro sub-
stitutes the entire line (and maybe adds additional
lines).

The most common use of the #define directive in
PIC miuocontroller applications is for the combining
the port and bit number for a specific pin. For exam-
ple, if you wanted to declare RA3 as an LCD's clock
(E) pin, you could use the statement:

*dlefine LCDE PORTA, 3

Now, when the label LCDE is encountered, as in the
bit statement:

baf IJCDE

the string "PORTA,3" will be substituted into the
instruction.

To demonstrate the use of the #define for port pins,
I created the asmPKLED.asm, which is a "port" (or
language translation) of cPKLED.c and cycles through
the eisht LEDS of the PICkit 1 starter kit.

L9s l , 2 l P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

r This program cogi€s th6 functioa of cPKrrED. e bcf Docalhod€

litl€ "asnPKLED - PICkil 1 atarter kit Rutralng
I,EDN

DisDlay€dl LED
baf DTcalhodle
bef DoAnoile r E[ab1€ D0 IrEDa

bcf, STlrUS, RPo
b8f Dohodl€
bcf, Docathodle
goto l,EDDlay r rlaiahefl, Repeat

TryDl:
aaltlln -1
btfBa STAfUS, z

goto TryDz
bsf STATUS, RPo
bsf Doaloale i t!ur! olF Previoualy

DisDlayeal LED
bBf Docathoale
bcf DlAnode r EnabLe D0 IJEDa

!!zr/D2,
aaLllw -1

btf56 STATug, z
gotso Trl'D3

bsf STATUS, RPo
bsf DlA.aoale t furE OFF Previously

DiEDlayeal LED
baf Dlcethod€
bcf, D2nnoale r Enable D0 I.EDg
bcf, D2calhodle
bcf SfATUS, RPo
baf D2}Ilodle
bcf D2calhoal6
goto I.EDDlay r rlaiab€al, Repeal

tql
X

b
o
r-l
F.
3o
p
rt

r anfl Fla6hea the 8 IiEDa
i on the PICkit 1 start€r kit ln g€qu€nce.

i Hartlware Notea:
, PIC15r58{ ruDains al 4 Mlz Using the
i In!6rna1 Clock
i Ext€rnal Reaot ia Usefl
, Clrcult Runa oD PICkit 1 start6! kit

; IJED DEfi'tEA:
*alefin€ DoAnotl€ PORTA. 4
*al€fLne Docathoalo PoRTA, 5
#al€fln€ DlAnoA€ PoRTA, 5
*alefi.ne Dlcatshotle PoRTA. {
#a16fitre D2Anoal€ PORTA, 4
*al6fLne D2catbode PoRTA, 2
*defin6 D3Anoal€ PORIA, 2
*alefin6 D3cathode PoRTA, 1l
#alefin6 D4anoale PORTA, 5
*alefin€ D4cathoale PORTA, 2
*ilefine D5anod6 PORTA, 2
*alefine Dscathodle PoRTA, 5
*alefia€ D6anod€ PORTA, 2
*d€fine D6cethoale PoRfA, 1
*il€fine DTAnoale IORTA, 1
*ilefine DTcelbod€ PORTA, 2

i
t lilyke Pretlko
t 0 4 . 1 0 . 0 ' l

LIST R=DEC
INCLUDE "p15f,58{, inc"

_colIFIG _FCUEN_OFF & _rEgO_OlF & _BOD_OrE &

r Recoral the Activ€ Bit

, Eor ICD D6bug

to of f

i Stalt with D0

btfsE STAITUS. Z

; DiaDlay D1?

, Diaplay D2?

r DIapIay D3?

r DiaDlay D4?

i Display D5?

bcf Dlcathotla
bcf STATUS, RPo
bsf Dlt'loil€ --l
bcf Dlcatboal€
goto IJEDDIay t Finisheal, R€Deat |'F

U
o
Hh

t-r.
r-t

r0
m_CPD_OFI'& _CP_OFF & _!!cIrRE_O!{ & _PIIRTE_ON & TryD3 |

_!itDT_oPt' & _rNToscro

t valiableB
CBI,oCK 0x20

Dlay
Activ€Bit

EiNDC

PAGE
, Malnlin€

org 0

DOD

ailtlllr -1

btfsa STATUS, z
golo rrylx

baf STATUS. RPO
baf D2t'lode i Turn orF P!€vioualy

Dis91alreal r,ED
baf D2cathotle
bcf D3Anotle t Enable D0 IrEDa
bcf D3cathotle
bcf STATUS, RPO
bsf D3Anoal€
bcf D3cathod€
goto IJEDDI8y t fidiah€il, ReDeat

TryD{ !
clrf PORTA r hitialize I/O Bita aalillw -1

rnovhr 7 , TurD off CoaE)araEorB golo ErfzDs
rtovwf C!{CONo baf sTATug, RPo
b6f STATUS, RPo bsf D3Anod€ r |IurD OFF Pr€vi.oual.y
cLrf ANSEL ^ 0x80 r A11 Bits ar€ Digital
bcf sTATuS, RPo

clrf lcliveBit r glarts lrlth D0

DiaDlayetl LED
bsf D3celboale
bcf D{Anoale r Enabl€ D0 LEDg
bsf D{Calhodle
bcf STlrUS, RPo

Loop ! i Retura llere aft€r baf D{Anofle
D6lay bct D4cathotle

iacf Actlv€Dit, rd i Loail the Bit Ni'mbe! goto TJEDDIay i Finish€dl, R€Deat

aaLlfuc -1

blfaa STAqrS, z
golo TrJ'D1

bsf STATUS, RPo

TryD5:
aalallrd -1
btfaa STAfI'S, z

goto TryDS
bEf DTAnod€ t tur! OFF Pr€viously bsf STATUS, RPo

S e c t i o n N i n e A s s e n b l y L a n g u a g e R e s o u r c e R o u t i n e s 1 9 5

bsf

bgf
bcf
bcf

bsf
bcf
goto

TryDS:
aaldlftt
bt f ,aa

groEo
baf,
baf,

baf

bcf
bcf
bsf
bcf
golo

TryDT:
atlalllt
bt faa

groEo
bsf
b6f

bsf
bcf
bcf

bsf

goto

IJEDDIay:
c l r f
cl!!t
atlillw

bt fEa
goco

dl€cf6z
goro

clr f

c1let
aaltllrt

b! faa
goto

alecfez
go!o

D{$rotle

D4Catshoale
D5Anode
D5Calbotle
STATUS, RPO
DsAnoale
D5CaEhoale
IJEDDIay

STATUS, Z
Tt!'D1
STATUS, RPo
D5Anodl6

D5Cathodle
D6Aaod6
DSCatlrod€
sTlIus, RPo
D5AIlodl€
DSCalbofle
LEDDlry

STATUS, Z
IJEDDIay
STATUS, RPO
D6Arode

DScathod€
DTenoale
DTCatbode
STATUS, RPO
D7Alodle
DTCathoAe
IJEDDIay

Dlay

- 1

sTATtts, z

Dlay, f
s - 4
DIay

STATUS, Z

DIay, f

Tura OfE Pr€viouBly
Diaplayeal LED

Enabl€ D0 IiEDs

Flnlshedl, Repeat

Dlsplay D5?

Turn OFF Plevioualy
Dl.aDlay€al IIED

ENAbIE DO IJEDA

Eioiahetl, R€peat

Display D7?

luan OFF Pr€viouBly
DiEDlayeat IjED

Enable D0 IEDE

incf ActiveBl.t, !t

enalfto 7

, IncrerneD! lh€ Active
IJED

i Keeg Within range of
o - 7

novwf ActiveBil

gotso LooD ; ReDeal

€Dit

Chances are that if you were to code this applica-
tion (with six I/O port register writes for each of the
eight LEDs) without the use of the #define directive
for the different port bits, you would make several
mistakes. The #define directive simplifies tedious code
operations such as the ones required for this
application.

I don't want to leave you with the impression that
the #define directive is only for simplifying I/O pin
accesses; like the C language define, it can be used as a
shorthand way of adding constant arithmetic opera-
tions to the application without having to type them
repeatedly. Addirionally, bit-flag variables can be
declared using #define directiveg in the same way the
I/O port bits are declared in this application. Remem-
ber that like rnacros, #define substitutions take place
belore the assembly step. As far as the assembler is
concemed, the strings are constant values when it exe-
cutes. #defines can also be used for defining strings
that are used to control the operation of the code build
(This will be discussed in more detail in the next exper-
iment). But the most common define is created by the
MPLAB IDE to specify which PIC MCU part number
information is to be used by the assembler.

As a final point, you'll see that I implemented the C
switch equivalent code in a different manner than in
the previous experiment. In this experiment,I knew
that the values to turn on each LED are arranged
sequentially. So rather than implementing a general-
case solution 1o the problern, I took advantage of being
able to decrement the value by one for each LED and
finally stopping and displaying the LED when the
result is zero. Remember that there is always more
than one way to skin a cat.

ul
()

.Fl
t+{
o
o

t Finlah€al, Re9€a!

I
I

qr
t-

Eigh I Bita for lr€Iay

Declqrenl the
contenta of WRIG

256r.

Repeat 255x

Re9eat AgaLa fo! -

400 ma De].ay

Decremenl th6
contenta of, WREC

2 5 5 x

ReDeal 255r.

.tJ

0,
d

'rl
f{
(,

O{
X
kr

1 9 6 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

Experiment 75-Eonditional Hssemblg

*atefine D€bug

D€bug
ADREgH, Ttr

14
LJ

4 V

ffi

f n

6

r*-

lr,,

|h,

.i:ft

{f,f

I t)
H

t"{rd

,*.i

L-n

novf
€Ise

The example application shown in the previous experi-
ment was a pretty clumsy piece of code. The task of
lighting each of the eight LEDS on the PICkit 1 starter
kit is not something that lends itself to algorithmic pro-
gramming. Although the code for each LED is the
same, but there is no consistency between pairs, which
necessitates writing code for each LED. The final result
is an application that is quite long and cumbersome.
What is needed is a way to minimize the development
effort.The task of lighting each LED in sequence is not
a problem that is easily addressed by using a single
data table. Tuming off the previous LED and turning
on the next one, as I have done here, is not a terribly
inefficient way of implementing the application.
The problem rather is how to efficiently code the appli-
catlon.

A potential solution to the problem is to use the
conditional assembly directives built into MPASM
assembler.These directives allow you to select which
code is to be assembled or even to create code algo-
rithmically that can be assembled into the application.
In the interest of clarity, I must point out that these
directives execute before the code is assembled and
are used to select which code is and isn't part of the
assembly. Although conditional assembly is not a criti-
cal concept, it is something that can make your life
quite a bit easier and allow you to produce higher qual-
ity code.

The basic conditional assembly directives are ifdef,
ifndef. else. and endif. The ifdef and ifndef directives
pass any statements that follow them if the specified
#defined label is present.The else directive provides
alternative code, and the endif directive indicates that
the ifdeflifndef test is complete. I commonly use these
directives with the Debug #define to avoid code that
will not operate properly in the MPLAB IDE simula-
tor. For examDle:

nov].w 0x088
€ratif

r IJoatl in ADC ResuLts
r In Simulator
r sillulaleal Readl

will return 0x088 in WREG if Debug has been
#defined, skipping over an invalid register access.
When using ifdef and "ifndef' to add and take away
instructions to avoid problems simulating the applica-
tion, you should make sure that both paths have the
same number of instructions and execute in the same
number of instruction cycles. This will ensure the appli
cation will execute the same way in the simulator and
once it is bumed into a chip.

As I indicated in the previous experiment a com-
mon declared #define by MPLAB IDE is the PIC
MCU part number, which consists of two underscore
characters followed by the part number. For example,
the PIC16F684 used in this book would have the
#define _16F684. In your application you can test for
this define using the ifdef or ifndef directives. This
capability is useful in cases where different PIC micro-
controllers might be used in the same application. For
example, when you are designing a product, you may
want to use a part that has Flash and can be easily
reprogrammed (like the PIC16F684), but there may be
a cheaper one-time programmable (OTP) part that can
perform the same functions at a fraction of the costs. A
conditional assernbly statement will allow you to use
the same source code for both PIC MCU part num-
bers, with the only difference being the numbers spe-
cific to the different chips.

A single-comparison expression can be evaluated by
the if directive, which also uses the else and endif direc-
tives. You also can define numeric variables in your
application that exec$e before application assembly.
For example, a variable i could be declared using the
variable directive, and later in the application, it could
be tested against different values:

variable i

, i , , "
b8f PORTA. 5

eIa€
bsf PORTA, 0

i = i + 2
enalif

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s L97

Labels declared using the variable directive are just
that-labels.To change the value of a variable, it has to
be placed in the first column of the application source
code as I have done in the previous snippet.

The final conditional-assembly directives are the
while and wend directives, which allow you to place
the same code repeatedly in an application.The format
of these instructions should not be surprising; if you
wanted to put in four nop instructions, you could use
the directives:

CD2cathoal€ EQU 2
CD3anoale EQU 2
CD3cathoal€ EQU 4
CD4Anoale EQU 5
CD4cathoale EQU 2
CDsAnoale EQU 2
CD5cathoal6 EQU 5
CDSAnoale EQU 2
CD6cathotle EQU 1
cDTArode EQU 1
cDTcathode Eou 2

i l,lyke Predlko
, 0 { . 1 0 . 0 4

LIST R=DEC
INCIUDE "p15f684. inc"

-CONFIG FCMEN OFF & IESO OFE
-CPD OFF & CP O!'F & _IICIJRE_ON &
,litDt oFl' & INTOSCIO

r variables
variable LEDCount = 0 t OnLy 7
cBr.ocK 0x20

Dlay
AcliveBi! t Recolal

ENDC

PAGE
r Uainline of asniPKLED

variabl€ i

whi le i < 4
nop

i = i + 1

, h i t ia l ize Counter
i Repeat 4x
t Put j"n notr>
i Inc!€nent Counter
t IJooP Enal

When using the while directive to implement multi-
ple instances of application code, you can use a little-
known directive, which is in the format #v(expr) and
inserts the nume c value of expr into the application
code. For example, if the variable i had the value of 7
and the statement:

novf Va!#v(i)Value

the assembler would process the instruction:

movf Var?Value

This last directive probably seems somewhat eso-
teric, but it allows you access individual labels as if
they were array elements. I have done exactly that in
asmCond.asm, which is a rewrite of the sequencing
LED application and uses the while, il and #v direc-
tives discussed here to produce the identical code to
the previous experiment's asmPKLED.asm), but it
avoids the need to put in the same code repeatedly.

titl€ rrasncond - Coflalitional Asaenibly"

r Thia plograln takes aalvantage of the
t conalilional assernbly
r features of !4PAS!I and instead of repeating a
r block of coale
r seven tines that cycles the I,EDS on the
r PICki l 1 star ter k i t , !h€
r coale is put in algoritlllnicall"y.

t Harflcrare Notes:
, PIC15F584 rulltling at 4 MHz Using the
r hLertral Clock
r External Reset is UBeal
, Circuit Runs on PICki! 1 stalter kit

r LED Def ines:
CD0Anodl6 EQU 4
CDocathod€ EQU 5
CDlanotle EQU 5
CDlcathoal€ EQU 4
CD2Anoale EQU 4

& _BOD_OFF &
_PWRTE_ON &

Bits to Display

the Activ€ Bit

t !'or ICD Debug

r h i t ia l ize r /O Bi ts to
of f

t rurn off Conparators

r AII Bits are Diglital

org

nop

cl.!f

clr f

IJoop:

incf

novl"w 7
novwf Cr?rCONo
baf STATUS, RPo
clrf ANSEL ^ 0x80
bcf STATUS, RPo

Acti.veBit

Act iveBi t ,

r s tar l wi th D0

i Return Here after
Delay

rr t LoadMe Bit Nllnber

r Repeat the coale 8x
i Decrement Bi.t Cou[t

lrhil.e lEDCoun! <
adillw -1

btfas STATUS,
soto $ + 10

baf STATUS,
if 0 == LEDCount , rurn off, D7 if D0

B€ing turn€d on
bsf PORTA, CDTanoal€ i Turn OFF PreviousLy

Display€al LED
bsf, PORTA, CDTcathoale

e l s e
bsf TRISA ^ 0x80. cD#v(IJEDcount-1).eloale
bsf TRISA ^ 0x80. cD#v (lEDcount - 1) cathode

enali f
bcf TRISA ^ 0n80, cD*v(LEDcount)Anoate

; Enable LED,E I /O Pi [a
bcf TRISA ^ 0r.80, CD#v(LEDcour!)Cathoale
bcf STATUS, RPo
bsf PORTA, CD*v (lEDcount.)Anoale
bcf PORIA. CD*v (LEDCount) Cathoale
goto IrEDDLay ; Finishedl, Repeat

IrEDCount += ! , Do the Next, LED
€ntlw

1 g e l , a 3 P I C o l ' l C U E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

IJEDDIAY:
clrf Dlay
clrw
addlw -1

btfss gTATgS,
g o t o l - 2

dlecfsz Dla]', f
g o t o S - 4

clrf DIay

clrw
afltllw -1

blfaE ST.I|luS,
g o l o S - 2

flecfaz D].ay, f
g o t o s - {

incf

aaaU.w

goro

enal

, tligh I Bits for DeLay
When you look through the code, you'll see that I

have replaced the pin defines with equates. This was
done because the #v(expr) directive cannot be used
with other dtectives. As I have emphasized, the previ-
ous and the next experiments' directives exec'rle before
the application's instructions are assembled. Only one
pass is made to the preprocessor that executes the
directives, and if any directives are changed and require
additional execution, the application will fail.

When I created asmPKLED.asm, I did so with an
eye toward repeating it with conditional assembly
statements, but it is still not that inefficient in terms of
execution and program size. The problem with asmP-
KLED.asm is in its creation; although the instructions
for each LED can be cut and pasted, I found it a chore
to change which pin defines are used for each LED
(and I made two mistakes). By using the while direc-
tive and other conditional assembly directives, I elimi-
nated the task of repeating the same instructions over
and over and minimized the opportunity for errors in
the application. This is really the major advantage of
using conditional assembly directives:They help you
minimize opportunities for making mistakes in your
aoolication.

k*t

n4

?- 1;
r*

AcliveBi!, w ;

ActlveBit

IJooD

Decrdn€n! the coutents
of WREG

255'*

R€p€a! 255x

Re9oat Again for - {00
ma Delay

Decrelrenu the contenla
of VIREG

Rep€at 255x

rnclernent the Activo
IJED
Keep wilhin lang€ of
0-7

, Re9eat

=,1
L ' *

:

ExFeriment 76-Macros

,ar:
:: .:.

i:J

i.t:

The next level of code substitution after the #define, in
MPASM assembly language, is the macro. Macros con-
sist of instruction statements that are inserted into an
application along with the other directives when the
preprocessor is active. Although there is not one all-
purpose macro that can be used to illustrate the con-
cept, macros can greatly simplify your application
programming. This is especially true if you take advan-
tage of the #define and conditional assembly directives
presented in the previous experiments.

The format for declaring a macro is quite sirnple:

llacroName maclo }lacfoParaneterl,... I
i llacro coale

enalll

The MacroParameter is a single string or multiple
strings that are substituted into the macro at assembly
time. For example, if a macro was required to load
WREG with a numeric value divided by two, the
macro could be defined as:

novhrDiv2 llacro Div2value
tnovlw Div2value / 2

endm

If the macro was invoked with a Div2Value of 47,
the following code would be inserted into the program:

novlw 47 / 2

Macros can take advantage of the conditional
assembly directives of MPASM assembler, and surpris-
ingly sophisticated functions can be created from them
as I will show in this experiment.

The reasons for using macros in your application
include the following:

. Minimizing program keying

. Reducing program execution time

. Minimizing program .hex file size

. Simplifying the source code

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 1 9 9

. Providing opportunity for optionally compiled
functions

r Providing advanced build-time options
. Simplifying the effort required by new pro-

grammers to create their own assembly lan-
guage programs

Functions and subroutines can be written as macros,
and, depending on their size and the nurnber of times
they are accessed, they can decrease the program exe-
cution time, complexity, and size. Macros can be added
to the program, in the same way a subroutine or func-
tion call is added.The macro avoids the overhead of
the calVretum instructions, and placing parameters in
subroutine- or function-specific variables can reduce
both the total space and variable requirements of an
application. They also provide the assembly language
code with variably added functions, and they do so
without having to save the functions in a library and
hope that they will not be linked into the final applica-
tion.

One important note to newcomers in the program-
ming world about the use of macros: Although you
may not have the abilities (yet) to implement macros
for simplifying your programming workload,I'm sure
you can identify situations where assembly language
programming seems particularly dfficult and, there-
fore, would benefit from a macro. One such example,
which I address in asmMacro.asm, is the if decision
structure in PIC MCU assembler. In this exneriment- I
have created a macro that uses condilional issembly
directives to insert the appropdate four-instruction
template code (presented in Section 8) for a condi-
tional jump based on two variable values.

litle "asrdtacro - Dernonstrate the 'lfgoto,

C6p, Va!2, Deat

t ch€ch fo ! n l=n / t>n / \>= t

i E l a e n > n / r > = f l

c

c

; check for "<"/"<="

i tlaclo
ifgolo ttacro Ver1,

i f (1 CdE) 0)
i f (0 Corm 1)

movf Var1, !t
aubwf var2, !t
btf8a gTATUg, Z

€1ae
if (1 coiq) 1)

novf V€,E2, \r
autMf Var1, w
btfsc sTATus,

elge
novf Var1, w
aubwf Var2, rd
btfss sTATus,

€ntlif
€nalif

6Lse
i.f (0 corll) 1)

if (1 Cofqr 1)
novf Var1, !t
aubwf var2, w
btf,Ec STAIUS,

elae
novf Vat2, w
aubwf, Va!l, w
btf,sa SfATUg,

eDdif
e lae

if (1 Co|sp 1)
movf Var2, w
aubirrf var1, w
btsfac STATOS,

€1a€

(t)
o
l{
U
d
E
I

\o
t\

g
(t
E

' r {

r.l
$
P-.
X

f.1

tflrla a9plicalioa alenonstrat€E the 'ifgo!o"

Mecro lrhich co4Dar€s
lwo valu€a aaal execul€E according to the
sDecif ietl coaalilion.

Harahra!€ Not€6:
PIC15F68{ ruEing al { IqHz in Simulator
Re6€t ia lieal alirectly to vcc vie
PuLLup/Prograrming Earalwar€

6r!0r ltahnowa ,,if,n Conili.tlor^
endif

endif
entlif

goto Dest
endm

org 0
nop

rnovlw 15
trovwf i
movlw 20
alovwf j

i fgoto i , >, j ,

no9
i fgoto i , >=, j ,

nop
i f ,goto j , <, i ,

DO9
ifgolo j , <=, L,

IoD
i fgoto i , ==, j ,

Dovf i, w

novnf j

i f g o t o i , l - , j ,

EO9

, Requiledl for !|PIA8 ICD2

t Ge! !!eal Valuea

EtlolDou€

ErrorDone

E!rorDon6

ErrorDOa€

E!rorDon€Uyke Prealko
0 { . 0 9 . 1 ?

IjIST R=DEC
INCLT DE np15f 58{. idcrl

t geE Equala fo! Not
Equels Teat

r Variabl€a
CBIJoCK 0x20

I , J
ENDC

ErlorDon€

2 0 0 l , e 3 P I C o l l C u E x p e n i m e n t s f o r t h e E v i l G e n i u s

i fgoto i , ==, j , coodDone

EtlolDone:

goEo EfrolDone

GooalDo[e:

goto GooalDone

enit

shouLal be rnatsch,
i rrE) to PloDer Enal

Codte Shoul.tl NEVER
be llele

The ifgoto macro in asmMacro is useful to people
other than new PIC MCU assembly language pro-
grammers. I should point out that the preprocessor in
MPASM assembler will not recognize the difference
between variable labels and constant values. This is
unfortunate because you will have to modify this
macro if you want to perfom a conditional jump
based on the contents of a variable and a constant. The
background for the changes required to modify this
macro to support constant values can be found in the
"Conditional Execution" exDeriment in Section 8.

CouLdl shouLal Enal
He!e

w

i

w
$r.t.

I find that when I am doing actual PIC microcontroller
applications, eight-bit values are simply not enough.
Sixteen-bit variables provide you with a significant
amount of additional programming flexibility in a vari-
ety of different areag including the creation and pro-
cessing of data. Programming for 16-bit variables is not
beyond your capabilities if you have been following
along. In fact, you will find that 16-bit variables are not
that hard to work with, especially if you follow the
rules that I set out in this section.

When I first started PIC MCU programming, the
dfuectives that I will introduce to you in this experi-
ment were not available in the Microchip assembler
products. For example, to declare a 16-bit variable, you
would use the equ directive:

il.o equ 0x20 i Decla!€ a 15 bit variable
starting

iHi equ 0x21 t at aaltlress 0x20

to declare a 16-bit variable as two eight-bit variables.
The declaration format sholvn in this snippet is known
as littk mdianbecause the least significant bytes is
declared at the lower-file register. This is the format
used in many 16-bit processors (e.9., the Intel 8086),
and I feel that it makes intuitive sense.The problem
with this format comes when you are using a debugger
to display variables;in the debugger a number like

ba;
s-,1

fs
rlJ

l-rj

$5

r:nl
6*t

{ }

tn
1_t,

InovLw IJow 0x1234
novwf i

r i = 0x1234

Experiment 77 -16-Bit Val uesA/ari ab I es utith
Flddition, Subtraction, and Eomparison

95X
6J

ts:r{

i U

@

tgx

0x01234 would be displayed in memory as"3412,"
which requires you mentally to rearrange the bytes.
This mental rearrangement is not required in the
MPLAB IDE simulator. You can display 16-bit data in
MPLAB IDE by setting the properties of the Watch
window to 16-bit data, in little endian or big endian
formats.

With the availability of the cblock directive, you can
declare the same l6-bit variable as.

cbLock 0x20
ir2 - " i " iE a 15 bi t ' (2 Byte) val iabl€

enilc

and the low address byte (in little endian format) is
accessed as the variable, and the high address byte as
the variable + 1. To show how thev are accessed. here
is an initialization statement:

movlrr ' 0x123{ - ((0x123d / 0x0100) * 0x0100)
novrdf i r i = 0x1234
novl$ 0x1234 / 0x0100
novwf i + 1

The first instruction of these four lines finds the low
eight bits of the constant value by doing an integer
divide by eight bits (0x0100) and then multiplying it
again by eight bits. After the multiplication, the values
lower than eight bits will all be reset. Subtracting this
value from the original will retum the value of the
lower eight bits. The upper eight bits are simply calcu-
lated by eight bits, or shifted to the right by eight bits.
These two calculations could be built into defines. but
Microchip has provided the HIGH and LOW direc-
tives, which perforrn the same calculations. The four
previous statements then become:

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 2 0 L

{l}
G}

',..{

-a
d

.rl

i{
{$

qt
(,
Fl

r-l
{u

4J
' * {

i{
a
I

\s
r-*

movlw HIGM'.1234
mov\rf i + 1

Understanding how to declare and access 16-bit val-
ues and variables is a good fraction of the work
required to use 16-bit values in your assembly lan-
guage application. The remaining part is to understand
how arithmetic operations pasq carry, and borrow
information from the low byte to the high byte of a
variable. In this experiment's program (asm16Bit.asm),
I demonstrate how declarations, initializations, incre-
ments, decrements, addition, subtraction, and condi-
tional jumps are implemented.

title "es'l15Bit - Ddlotrstlat€ 15 Bit
09€rations"

movf j, w r Deslinalion =
Deatsination - j

auborf D€gtinatioD, f
n o v f j + f . w

btfEs STAEUS, C , If Cerry R€set (Lo!t
By!€ Negative)

lacf j + 1. rd i Tak€ ole ltore Alray
from th€ High Byte

sultrf Destinalion + 1, f

movf i, w
atLlwf J, w
rnofitrf D€stination
m o v f i + 1 , w

blfac STATUS, C

i a c f i + 1 , w

a d a w f j + 1 , w

movwf D€slinalion + 1

sulrwf j, w
n o v f i + 1 , r t
btf6a sTATItg, c

l n c f i + 1 , n
a u t w f j + 1 , ! t
btfss STATUS, C

golo Errolloop

i D e E t i n a t i o n = i + j

i Incrom€at Eigh Bt t€
if, R€EuIt of

t Lo$ B!.ts€ Atltl ie >
0x0Fl' (Carry Set)

; Not€: wlltten for low
a|lal uial-Rang€

r PIC UCUg so no rradlallet

1 t r

D€alonalrate 15 Bit Varieble Declaration,
Initializatioo,
additio[, Eublraction, incr€rr€nting
alecren€nt ing anat cod[)erisod
operations.

Itaralwale NoteB !
PIC15E58{ rulrtriag at { UHz ilr Sinuleto!
Reset ia li€il tlirectly to Vcc vl'a
Pul Lup/ Programl.ag Heralwale

!A[ke Prealko
0 { . 0 9 . 2 1

IJISE R=DEC
INCII 'DE'rp15f 684. incn

CBIToCK 0x20

j:2, Destiaatlon:2
ENDC

PAGE

ors 0
noD

, i f (i > j) goto E! !or

i i is Less than j , i f
ifump Tak6rr, Error

t Finish€d, Everytshing
okay

i Codrpare ODeration
diftn't lrork cofiectly

t vari.abl€ Declaration
r 16 Bi l (2 Byle)

Couater

ElrolLooD:

gtolo ErrorlooD

€Dd

!
f*
r\

i R€quir€dl fo:. l.tPI|IB
TCD2

r rnit ial ize " i" with
123{5 al€cinal

t High Byte Fl.fat

Note that the conditional jump has a bit-skip
instruction that follows the same rules as the eight-bit
conditional jump code presented in Section 8. This
means that the tables used to define which value will
be subtracted (and from where), and the tables used to
define the flag state for the bit-skip instruction are
exactly the same. The conditionaljump code for a
value being equal or not equal to zero is a special case
that can be tested by simply ORing each of the two
bytes of a 16-bit variable together and checking the
zero flap:.

t \

'-{

{,

. F.{

l.{
s
lj.1

'*

movlw IIIGE 1234
riovwf i + 1
lrovlw L@l L23{
lrovwf i

llovlw IIIGII 56789
movwf j + 1
movlw rJow 56?89
nowf j

lncfsz i , f
d e c f i + 1 , f

i n c f i + 1 , f

blfsc STATUS, Z

a l e c f i + 1 , f

flecf t. f

, h i t ia l ize "J.
inovf Lab€I, ct

iolrrf Lab€I + 1, w

, OR Low Btrte rrith
Eigh Bytse

i Z SaE if, reEult (bolb
lrytea) ia zero

i lDcr€ment ui"

i Incremen! High Byte
i f Reaul t of

t Increnenl ing lJolr Byle

i fiecreneat rifl

i D€c!€neat Eigh ByEe
if IJow Btte is

r initsielly equal to

blf,ac STATUS, Z
gotso gL:rteenBilzero i iturll) ia sixteen bit

value ia zero

This example illustrates that although the different
operations presented in asml6Bit are useful and can
usually be used without modification, some cases exist
where better code can be produced without the same
number of instructions. For exarnple, think about how
to implement adding an eight-bit value to a 16-bit

202 l , e 3 P I C @ l l C U E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

variable and what would be changed from the previous
code to do so,

When you have worked through the different oper-
ations listed in asm16Bit, you should have a good idea
how to perform bitwise operations. You should also
recognize that the bitwise operations are somewhat
simpler than addition and subtraction operations

because you do not have to carry or bonow. Multipli-
cation and division are somewhat different than bit-
wise operations or addition and subtraction, but you
should be able to come up with some ideas on how
they can be implemented. (Section 12 will examine dif-
ferent methods of multiplication and division that can
be used as a basis of these 16-bit operations.)

fsl
{lt

L'

6$
r l t

: ' i l

t''i'

'' ,i

i , i "

aa:a

*

:.n

*

:l-.'-

{:i3
!.;}i,

i!!
{r
;t
a;

Experiment 78-Universal Delag Macro
movlr Cyclea
movlrf Dlay
alocfaz Dlay, f

g o t o $ - 1

When I discussed delays in C programming, I probably
seemed pretty nonchalant about it; basic delays could
be implemented using for loops, and more precise
delays using built-in timers and critical signals would
be output from custom hardware built into the PIC
MCU. For C programming and relatively feature-rich
devices like the PIC16F684, this is a pretty good atti-
tude to take. But when you are working with simpler
PIC microcontrollers, which do not have multiple
timers or CCP rnodules, you are going to have to pro-
gram a delay yoursell Programming delays in PIC
MCU can be done surprisingly efficiently as the macro
in this experiment demonstrates.

The PIC's clock is divided into four parts, each of
which provides a different function in the instruction
rycle. By knowing the clock speed, you can easily
derive the instruction-cycle period as the reciprocal of
the PIC MCU's clock speed divided by four. Every
instruction, except the ones that change the program
counter execute in one instruction cycle, and this
knowledge can be used to create simple delays. As you
might expect the nop instruction can be used to delay
one instruction cycle and the following instruction:

g o t o $ + 1 r D e l a y t s w o i a B t r u c t i o n
cycles

will delay two instruction cycles using only one instruc-
tion.

If you need to delay more instruction cycles, you
can use a small loon like this one:

Each loop executes in three cycles, and a maximum
of 769 instruction cycles can be delayed using this
method. Note that I am using the relative address for
looping: Multiple delay loops can quickly run out of
your list of stock labels like BitDelayloop, and you'll
end up with labels like BitDelayloopT. These are not
recommended because the loops are probably copied
and pasted from other parts of the program, and you
may not always remember to update all the label refer-
ences. A jump to an incorrect label can be very difficult
to see in a program. By avoiding their use in delay
loops, you will eliminate a possible source for pro-
oremmino c r rn rc

For longer delayq you will probably see the need for
a 16-bit counter and might want to use a loop like this
one:

i Loatl Countser

i Declenent the count€r
t Loop Back to count€r

r lJoaal 15 Bil Counte!

i Decrement IJow Byte

r Decr€menu Bigh Byte
t I,ooI) Back to Low

By!e

rnovlw HIGH Count
morwrf Dlay + 1
movlw LOW Courlt
novwf Dlay
alecfsz D1ay, f

g o E o t - 1
al€cfsz Dlay + 1, f

g o t o S - 3

This code works well, but it is extremely difficult to
come up with a 16-bit value that will delay a specified
number of cycles. I use this code to give me a quick-
and-dirty approximate 200 ms delay by resetting the
16-bit Dlay variable before entering the loop: It's fast,
easy to code, and doesn't require any thinking on my
part.

The following code is the recornmended way to use
a 16-bit delay counter:

novko EIGE (count + 255) r Loafl 15 Bits

monwf DIay
movlw row (Count + 256)

5ection Nine A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 203

aatal].w -1

btfsc sTATus, z
a€cfsz Dlay, f

g o t o S - 3

t Decldment lJolt
Byt.e

, Decremen! High
ByUe

i IJooD Back

t Varialcle
Declalation

r Requilea 24 Bit
Count.e! (w/ WREG)

i K€eD Tlack of
Rdlalnlng C?clea

lf Cycles > 0*0{FFFF00 r Can't Hanall€ > 93
SeconflE (e { !'lllz)

t Do Ma:rimrm Poasible
IJoo9 Coun!

error "R€quireal Delay is longer than rDlay,

This code has a constant loop delay of five instruc-
tion cycles and requires one fewer instruction and file
register than the more obvious solution. The 256 is
added to the cycle count to ensure the correct number
of loops (otherwise, if the high byte of cycles is zero,
the code will loop 255 extra times, and when it is not
zero, it will loop one time less than you want it to). I
should point out that the last pass though the loop
executes in four cycles, and with the three overhead
cycles before the loop, the cycle delay can be written
out as the following simple formula:

Cycl.eaDe1ay = (Counl * 5) + 2

In the program asmDlay, I have taken advantage of
this delay and the one- and two-instruction-cycle
delays shown previously to create a macro that pro-
vides a precise delay to a specified cycle count. In the
program, I have listed the macro and put in a number
of tests to make sure that it executes for the specified
number of cycles. The nops after each macro invoca-
tion are used to set breakpoints before and after in
order to time the code's execution using MPLAB
IDE'S Stopwatch to test the operation of the macro.

tit.I€ "aamDlay - Creatse a ltnivelsa1 Delay

t The nDlay'r rnaclo Ln lhis loutine r3i1l Droviale
dlelays ranglng
r f r o n 1 t o 1 . 0 0 0 , 0 0 0 c y c l € a .

r Haralware Notes:
t PIC15A584 runrring at { MHz in Slmulato!
i ReE€t ia tied alirectly lo Vcc via
Pullup/PlogrEll[ling llalibrare

i
r l4yke Prealko
, 0 4 . 0 9 . 2 2

LIST R=DEC
INCIjTDE rD16f 68{. inc"

_coNFIG _FCI{EN_OFF & IESO_OFF & _BOD_OFF &
_CPD_OFF & _CP_OFF & _!,ICLRE_ON & _PWR!!E_ON &
_vrm_oFF & _rNTosclo

clrf D1at4ra1u6 + 1

clrf Dlayvalue
dlecf Dlayvalue, f
blfsc s!!a!!us, z

tlecfsz Dlayvalue + 1, f
g o t o 9 - 3

dlecfaz Dla]^lalua + 2, f , ReD€at IJooD
goto Longloop

qlcleal,ef,t = Cycleal€ft - ((IJarge!tum * 327581) +
1 + (L a r g e N u l [* 3))

ontlif r Neeal Irarg€ lJoolt

!{acro caa suDDort,l
6ndif
i f Cyclea > 327581

IJargelnrm = cycfe6l€ft
novlw IJarg€Iilum
novwf DLat4lalue +

LouglooD I

t Ne€dl Large lJoop?
/ 327 6A!

2 t Calculate Number of
t oopa

t R€DeaE for Each
IJoop

.H
t t

rlt

br

&,1

{ t l

&q
G}

. d

L'

!
,

r 1

{t
$,,.

,"{

IJ

\t

P.{
X
sd

if eyclea > 1{ r WilI a IJooD be
required?

rovllr IIIGH (((Cycle6lefE - 3) / 5) + 256)
novwf Dlat^Ialue + 1
novhr l ,ow (((Cyclesl ,ef t - 3) / 5) + 256)
nonrdf Dlay'Va1ue
tlecf Dlayvalue, f t 5 C]'cle Conslanl D€Iay

tooD
btfac STATUS, z

alecfsz Dlat4ta1ue + 1, f,
g o t o $ - 3

CycLeglef ! = Cl 'c leaI ,ef t - (3 + (5 * ((Cyclesl€f t
- 3) / s)))

e|talif ; Fini8hed lrith I,ooD Cotle
vhiLe C'yclesl.efl >= 2 t Pltt- in 2 hatruction

cyclo D€Iay6
g o t o $ + 1

Cyclealef,l = Cyclealeft

i f Cycl€slef l == 1 i

nop
€ntlif
€ndn

PAGE

r Requireil for !@LAB ICD2

r shoulal be goto & nop

r Dolay 4{ CycL€a

t 1 na De1ay

r Delay 0.1s

t Delay 5a

t Delay 50s

; Finish€it. Eve4.thiDg
Okay

- 2

Put ia tslr€ IJast
Requileal Cycle

P-

olg 0
no9

Dlatz 3
nop

DIay 4{
nop

Dlay 1000
noD

DIay 100000
no9

Dlay 5000000
noD

Dlay 50000000

ead

CBIrOCK 0x20

D1a]rya1u€:2

ENDC

Dlay Dlacro CycL€s
variable C'yclesl,eft

varlaltle largeNum
CycleslJefl = CycleE

locaL IJongloop

204 l , e 3 P I C @ l ' l C U E x o e r i m e n t s f o n t h e E v i l G e n i u s

I would consider this macro to be a combination of
showboating and overachieving. If you were to read
through the application, you would see that it is limited
to 83 million cycles (83 seconds in a PIC MCU running
at 4 MHz), and it provides accurate delays to the
instruction cycle. This accuracy is usually required for
long delays, but for short delays, the accuracy this
macro provides is not required. You might want to cut
the macro down for your own use and avoid the initial
loop, which is required for delays lon ger than 327 ,681.
cycles (a third of a second when running at 4 MHz).

If you compare this application to others in the
book that are designed to run only in the MPLAB
IDE simulator, you might think that my inclusion of
the _CONFIG directive is an oversight. Generally it's
not required in the simulator. However, in this case the
_CONFIG directive is required. In the testing of
delays that are longer than 2.9 seconds, the simulated
PIC MCU would reset itself due to the Watchdog
Timer resetting the processor.To avoid this problem,I
added the standard -CONFIG statement to make
sure the Watchdos Timer is disabled.

133

:r!::

: , i , ,

tr:

i l :
. , .n

, l

ExFeriment 79-High-Level Programming in Fssembler

When I first started working after university, I was part
of a team developing a high-performance functional
tester for electronic circuits. One of the tasks we had
was to come up with a programming language for the
tester, and I have always been intrigued by the solution
that was chosen. Rather than come up with a custom
compiler for the programming language, a standard
compiler was selected and its macro processor would
be used to convert programming statements into the
data required by the tester.To some extent, this effort
was successful as it did produce data, unfortunately the
compiler's macro processor could not prodtce enough
of it. Much of the data was in the form of tables, and
the maximum table size the supported by the macro
processor was 32 KB. So far in this section,I have given
you a macro for conditional execution (or if) state-
ments and a macro for precision delays. And, I wanted
to see if I could come up with a macro that would sup-
port assignment statements, because with such a
macro, I felt I could claim that I had developed a high-
level language that ran under the MPLAB IDE assem-
bler.

Unfortunately, I couldn't do it in ore macro. It
required two.The first macro,ASSIG\ was used to
assign the contents of a variable or a constant (literal)
value into a variable. Its format was:

ASSIGN DeB!, Equalsign, alTtt)e, Soulc€

and would produce the following statements:

tbsf STATUS, RP01
novf i, w
tbef STATUS. RP0l
IbEf STATUS, RPOI

rnovwf j

tbcf sTATus, RP0l

for the macro invocation:

ASSIGN J,

or

novlw 47
tbsf STATUS. RP01

novwf i
Ibcf sTATus, RPol

for the macro invocation:

A S S I G N i . = , n . t . 4 7

The setting and resetting of the RPO bit of STATUS
is dependant on the position of the variables. I could
have optimized the macro to eliminate one set of
bcf/bsf statements if both variables were in bank 1, but
I felt this was good enough. The blank () or period (.)
dType parameter before the source macro parameter
indicates whether the source is a variable or a literal.
There is no way the macro processor can determine
which is which.

I originally wanted the ASSIGN macro to be able to
handle not only straight assignment statements to vari
ables, but also two-parameter operations (like add or
subtract). Unfortunately, I wasn't able to discover a
method to determine whether or not a parameter
was present and, in any case, if any parameters were
missing the macro processor would flag an error. So, I
added the second macro:

: . f.-.1

! _ -

: i i i u

.:.tLr.

l - . i

Section Nine A s s e m b I y L a n g u a g e R e s o u r c e R o u t i n e s 2 0 5

OPERjATE Dest, EquaLSigm, alTl.pe1, Sourcel. Ope!,
alTtrpe2, Soulc€2

and would produce statements like:

movl$ 47
lbsf STATus, RPol
Bubwf j, w
tbcf sTATus, RPol
tbsf sTATus. RPol

movwf i
tbcf STATUS, RPol

for the macro invocation:

O P E R A T E i . - , " " , j , - . n . n , 4 7

The OPERATE macro puts in the second parame-
ter was first to load WREG with the subtractor if the
subtraction operation is selected.

To test the ASSIGN and OPERATE macros, I cre-
ated asmAssign.asm:

ti!1e "aslBssign - Experiment with an
Assignment llacro "

OPERATE nacro Dest, Equalsigm, alBrpel, Sourcel,
Oper, ilTtpe2, Source2

variable ,aai = 7, aaj
_aaj Equalsisn -aai

i f (_aai != ,aai)
e l ror "No Equal8 ('=,) in A6signment Statement

i f (d r 5 / p e 2 ! = " . ")
t Equala P!€sent
r variable Dilect

i f (Source2 > 0x7E)
bsf STATUS, RPo r Bank 1 ValiabLe

enali f
nowf Souree2 & 0x7F, w

i f (source2 > 0x7F)
bcf STATUS. RPo r Bank 1 Valiabl"e

endi f
e lae

movlw Soulce2
enalif
i f (a lTtrpel != n.r)

i f (sourcel > 0x7F)
bsf STATUS, RPo

€nalif
i f ((1 o p e r 1) = = 2)

r L i t€ra]

t variabLe Dilect

t Bank 1 variable

r Aaldlilion Operato!

This Drogran tl€monslralea hosr an
assigfirent Inacro f,or
the PIC MCU coulal be createal.

Earahrare Notes:
PIC16E68{ running at 4 r!trIz in Sinulator

Myke Predlko
0 4 . 0 9 . 2 4

LIST R=DEC
INCLUDE ip16f584. inc"

addwf, Sourcel & 0x7F, !r'
eLse

i f ((47 oper 25\ == 22') ; sublract ion
Operator

subwf, Sourcel & oxtF, 1'
etse

i f ((3 Oper 2) == 3) t OR Operator
ionrf Sourcel & 0x7F, w

elae
i f ((3 Oper 2) == 2l ' AND op€rator

anahrf soulce1 & 0x7E, w

i f ((3 ope! 2) -= !) ' xoR operator
xorwf Sou!c61 & 0x7F. w

else
6!!0r "Unknolen Operatorrr

enalif
€ntlif

endtif
entli f

endif
i f , (Sourcel > 0x7F)

bcf STAIIUS, RPo
endif

el"se
i f ((1 o p e r 1) = = 2)

aaldlnr Sourcel
e lse

i f ((47 ope! 25) == 22) r subtract ion
Operator

subLw sourcel
eLse

i f ((3 ope! 2) == 3) r oR operator
iorlw soulce1

el6e
i f ((3 ope! 2 l == 2\ ' .aND operator

anallw Source].
e lse

i f ((3 oI)€! 2, == r , i xoR OPerator
xorlw sourcel

error rrunknown Operatsor"

cBr,ocK 0x20

ENDC

r variable Declaration

t Bank 1 variabl€

t L i te la l
r Aalalition Op€ratorASSIGN macro D€st, Equalsign. flTl.pe, Souree

variabl€ _aai = 7, _aa)
aaj Equalsign _aai
i f (_aai != _aai)

e l ror r rNo Equala ('=,) in Assignnent Sla lement
else r Equals Present

i t (dr ! | I)e != " . ") , var iabl"e Direc!
i f (Source > 0x7F)

bsf, STATUS, RPo , Aank 1 Variable
endif

movf Source & 0x7!'. nr
i f (source > 0x7F)

bcf, STAAUS, RPo
endif

movlw Sourc€
endif

i f (Dest > 0x7F)
bsf stATus, RPo

enalif
mowqrf D€st & 0x7E

if (Des! > 0x7E)
bcf STATUS, RPo

endlif
endif

r Bank 1 Variable

r L iceral

t Bank 1 VariabLe

t Banh l variable

endi f
endif

endif
endi f

endif,
endif,

i f , (Dest > 0x7F)
baf STATUS, RPo

endif
t Bank 1 variabl€

206 l , e l P I C @ l l C l - J E x o e n i n e n t s f o r t h e E v i l G e n i u s

novwf Dest & ox?F
i f , (Deal > ox?F)

t Prc15F584 ruDning in Prckit 1 stalter kit tql
X

b
t 9

ry

endif,
endlif
eadm

PAGE

ASSIGN i , = ' " " ' j

A S S I G N 1 , = , t . d , 4 7
ASSIGI{ J, =, t r n, TRISC

o P E R A T E I , = , " " ,) , + , " . " , 4 7
O P E R A T E i , = , " " ,) , & , " . " , 4 7
O P E a A T E i ' = , " " ,) ' - , " . n ' 4 7

t !'lyke Pledlko

i 0 4 . o 9 . 2 8

I.IST R=DEC
INCI,UDE "p16f584. inc"

t , J
Dlayvalue:2 r Dlay Requirea 2{ Bit

Counter (w/ WREG)
ENIrc

AggIGll nacro Deat, Equalslga, ilFtzpe, Source

bcf STATUS, RPo t Ba.Dk 1 Varia.ble i

collFrc FCIIEN OFF & -rESO_OFF e _BOD_OFF & }J.
r Reguireal for UPIll|l CPD OEF & CP OFF & MCLRE-ON & _P!|RTE_ON & ;-a

rcD2 _lsDn_oFF & TNTOSCTO
5

cBrocK ox2o i variable Declaralion fD

d
(*

{OPERATE OPTIOII_REC, =, n tI OPIION_REC, &, ..n, rr ASSIGN necro sroulce ttot ahown

other in the macro definitiong making the code even nor)

more difficult to follow. Your best resource for seeins

OPEIIAIIE rracro Dest, Equalsign, ttTyDel, gourcel, \S
goto $ t Fiuishetl, Everything Okay ODer, tlTtzge2, Source2

ea(t
t; oPERAIEE not gholoa

DLay llacfo Cl.cL€a

When you test this application in the simulator, you ; t Dlav tnacro Eource not Ehoffn

are going to discover it is extremely difficult to follow ifgoro !{acro varr., conp, va!2, DeEt
the progress ofthe code;execution will bounce ir ifgolo nracro soulce nots Ehovn
between the macro invocations and the lines inside the
code.You might want to look at the Disassembly List-

PAGE

ing, but common statements are listed one after the ors o
t R€quir€tt for !!Pr.At

ICD2

how the macros produce the necessary code is in the assreN poRTl, =, n.s, 0 i hirialize variableg
source code listing, asmAssign.lst, which provides the 1::I9I PoRrA' =. ""' oxrr

inserted macros and indicators for active statements. ff:]:il ff:;y'=;' ,, . ;;' ,t
Unfortunately, the MPLAB IDE simulator does not AssreN rRrsa, =, n.n, b,001111,
step through the listing file. ASSIGN J,

From my perspective, this inability to simulate rJoop: r R€lurn trele when
effectively the application is the biggest drawback to Done

writingcodewitfthesemacros.A;;ondaryconcernis 3}|{o|:tl:t=,,,,, "o*ro,toT]1Y,",1'?."ii""u
the possible difficulty in reading what the source code ifsoto i, ==, j, setDo
is doing from the macro invocations. To illustrate what Assrc!{ PoRrA' =' ""' 0 t Turn off the LED

I mean,I created asmMFlash.asm, which flashes D0 "3i13,
o""o

H

l-,,
€
Fd

!-{

4
&
h

once per second and is written injust the ASSIGN, assrcN poR![A, << {) r Ttrrn oN th€ fn
OPEI{ATE, Dlay, and ifgoto macros (the body of rJED

which I have deleted from the folloritititJ,iiJl,
^

soto rJooD ' R€peat l'"t

eE. 0,
titLe 'a6ro[E].asb - FLash DO usinc Hiah trevel F{

rlaclosn After a lew moments of study. you should be able to H
t understand what is happening in the application code. F

:*-::::^::"n'"-
dlenonstratee how the Eish rever However, if the appticiilon code dio not execute as 1".

i lilacros ca! be use.r to FraEh the Prckiys Do expected when it is programmed into a PIC MCU.I |1
rrED. would think it would be a major effort to find the . X

I aardware Notes, problem in the program logic or the macro code. sd

ry
8-1

5 e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u n c e R o u t i n e s 2 O 7

Pq

Ft
H

Fr
F {

I
t

L,'

d
' t l

l-al

hr

la.{
I-

t
I
I

w

+;

\u

. r.{

l-({

ExFeriment 80-lmplementing Flead-Onlg Hrrags

New Program
Counter
Address
(Goto/Call)

PC lncrement

Pfogram
l\4emory
Read
Address

Read-only arrays are useful and effective solutions to a
number of different programming problems. Typical
applications range from storing ASCIIZ strings
employed as user messages in a format that is reason-
ably space efficient, to providing a translation table for
different applications, and using a jump table to differ-
ent locations in an application. In a von Neumann
processor architecture, a read-only array is normally
implemented in program memory as a series of bytes
that can be accessed by indirect addressing.The Har-
vard architecture of the PIC MCU does not lend itself
to this simple solution, and more complex software is
required to return read-only array data.

To access table data in the PIC MCU, you will have
to perform what is known as a computed goto whercin
the processor will calculate the address where the data
is located and write this address into the program
counter. If you remember that the PIC16F684 has
2,048 instructions (11 bits wide) and the data bus width
is eight bits, you may be wondering how this is accom-
plished.

In the PIC16F684 (and all the other mid-range PIC
microcontrollers), two registers can be written to that
allow program access to the processor's program
counter.The first register is called PCL and is actually
the lower eight bits of the program counter (see Figure
9-3). The upper three bits in the PIC16F684 (and up to
five bits in PIC MCUs with a full 8k of program mem-
ory) of the program counter are loaded from the five-
bit PCLATH register, the contents of which are
wdtten into the program counter any time PCL is
updated.This means that for computed gotos, the
address space is effectively broken up into 256-instruc-
tion address blocks. Unfortunately Microchip has not
give this block of instruction addresses a label, so you
will see awkward terms like "256-instruction address
block." To implement a computed goto, you must first
load PCLATH with the appropriate 256-instruction
address block value and then write the lower eisht bits
of the address to PCL.

8-Elgment
Program
Counter
Stack

Figure 9-3 Full program counter

Although it seems that I've wandered off topic a bit,
I want to note that performing the computed gotos is
half the problem of implementing a read-only array.
The second half of the problem is to load the appropri-
ate array value. Fortunately, the designers of the PIC
microcontroller have provided you with the retlw
instruction, which provides a sirnple method of retum-
ing a read-only array element in WREG To take
advantage of the retlw instruction, a subroutine with a
computed goto is called.Ifyou look at different PIC
MCU applications, you may see a read-only array
implemented in the same manner as the following sub-
routine, which returns the ASCII character for the
nybble in WREG:

Hera'lable: r conv€ft rwbbLe ia I{REG to H€x
cha!

aaLlwf PC!, f
r e t l w r 0 ,

r e l L w t 1 ,

l l !et l l r \2t

let l l r .3 '

re l l l r \4 '

re l l l r '5 '

re l l l r '6 '

!6t1!t
rethr '8 '

re l l l r '9 '

re l l l r rA '

ret l l r rB '

ret l l r 'C '

re l l l r 'D '

lethr 'E '

!e!hr \F,

There are two issues with this function. The first is
the use of 16 retlw instructions. To ease the workload
of creating read-only arrayg Microchip added the dt
directive to the language to pass its parameters to an
appropriate number of retlw instructions The dt direc-
tive's parameters can be ASCII strings set in double

2 0 8 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

quoteqASCII characters set in single quoteq or
numeric values. Different data types can be concate-
nated, or linked, together using commas. The nybble to
ASCII conversion subroutine could be rewritten as
follows:

HexTable:

INCLITDE "D16f58{. inc"

t variablea
CBLOCK 0x20

St'!insr 18

EIIDC

aop

rnovlw

?s1
6!d
r9

tfi

. i

'.r "
ti..C

t-r1

]-t

**

:
t

t*:!r:

l..r
,11

:i..:t:

!".*

f.a

i*r "

i f l

'l�.;.j

sl

!.!:

l'i

F }

i,"*i

h'g

rR
&-d

n;

es

r Converts Nybble in WREG to ltej{
char

ailtlwf PC!, f
d ! " 0 1 2 3 4 5 6 7 8 " , 0 x 0 3 9 , ' A , , \ B ' , r c , ,

The other problem with the read-only array is that
it will work only if three conditions are met: (1) the
table data must follow the "addw{ PCL, f" instruction
(which adds the contents of WREG to PCL and stores
the result back in PCL); (2) the table must be totally
within the first 256-instruction address block (within
the address range of 0x0000 to 0x00FF); and (3) the
PCLATH register (which is loaded when PCL has the
contents of WREG added to it) must be zero and not
changed anywhere else in the program. For many sim-
ple applications written by beginners, these conditions
are not unreasonable.

For rnore complex applications, these conditions can
be very difficult to meet, especially if multiple read-
only arrays are built into the application. For these
cases, a more general read-only array subroutine is
required. In this experiment's application,
asmTable.asm, I have put in what I feel is the best
read-only array subroutine. This subroutine saves the
index value in PCLATH, loads PCLATH with the 256-
inshuction address block of the start of the table, and
swaps this value (in WREG) with the index value in
PCLATH. I must point out that PCLATH is only five
bits, so the maximum number of table entdes that can
use this code is 32. If you want more, you will have to
use code like that presented in the following scheme.
The index value is then added to the lower eight bits of
the address of the table start (and PCLATH is incre-
mented if this value is greater than 0x0FF) and finally
loaded into PCL.

Eltle "asnTalcle - A R€atl Only Atray wilh a
ItteBEage tr

t lhiF apDlicatLon copl.€s tsbe ASCIIZ stsling
i f:.dr a r€ail olrly tabl€ a|tal puts lt into
i a variablo a!!ay.

t
i Haltbrale Not€s:
, PIC15!58{ runainq at { MHz ia gimulalor

i R€se! is li€d ilir€ct'ly lo Vcc via
i PulluD/Progranmins Harfkfare

r ltyke Pr€alko
, 0 { . 0 9 . 1 7
t

or"t *=o""

movwf EgR
clr f i

IJooD:

novf i. w

caLL ReadlTabl€
novwf INDF

incf FsR, f

iorlw 0
btfss STAlr['S, Z

goto Loop

goto $

i subroutines
Readlable:

movwf PCLATH
novllr high ReatlTable

xor\df PCLATE, f

xorwf PCIATE, w

xolwf PCIATE, f

aaLlhr 1ow _ReaalTalcle

blfsc STAgttS, C
incf, PCI,AEH, f

novwf PCI.

_ReattEabl€:

tll nMyk€ tr

a l ts ra ' + rE, - rA,

alts
d t r 2 9 * 4
tll tw' - 4
d r L 6 , 2
retLw 0x77
retlw 0x5F
r€t1ra 0x72
retLw 0x5D
retlw oxt 3
retlw 0

enal

Point !o lhe
Deatination Alray

LooD I'or Each
charac!€r to t{ull
Gets Next Allay
Eldnetrt

sto!€ Chafactse! ia
valiabLe A!!ay
Point !o l{ext R€aa
Arlay Elem€nl
Poiat !o llexts
valiabLe Alray
El€ment
chalacter == 0?

Finisheit, lool)

Save Offset
Calculate PCLATH

S_$rap Conlenls of,
PCI.ATH & WREG
PCLATH = PCLATH ^

WREG
waEG = WBEG ^
(PCI,TTH ^ WREG)
WREG = PCIATH
PCI|ATfl = PCLATE ^
(PCIJATII ^ WREG)
PCIATH = WREG
calculale Table
of fs6t

> 256?
Yes, Pot nt lo N€rrt
255 Atldr€sa BLock
ituJqr to TabLe
Elenent
Readt only Table
Sentsence
Subj ects
Cryptic verb

String

i Noun

t Zero At Endl of
St!iug

Section Nine A s s e m b 1 y L a n g u a g e R e s o u r c e R o u t i n e s 209

When you read through and test asmTable, you will
see that it loads a file register array with the contents
of the read-only array. And, if you display the file regis-
ters, you will see a message that has been (simplisti-
cally) encrypted in the read-only anay.

As an exercise, I would suggest that you try to come
up with your own subroutine code that implements the
general read-only array (i.e., it can be any'lvhere in the
PIC16F684's memory;it is greater than 32 bytes, and
its contents can straddle a 256-instruction address
block). When you try to come up with your own rou-
tine, remember that you have a number of directiveq
such as the if directive that can be used as I have in the
followins routine:

One of the first applications I designed for microcon-
trollers was a Multi-PC printer switch and data
spooler.This device would monitor the printer ports of
multiple PCs, and when one started sending print com-
mands to a printer, the device would pass them along
to the printer. And if there were other PCs sending
data to the printer later, their data would be held in a
memory buffer until the first PC had finished sending
data to the printer. When the first PC had finished (I
waited 15 seconds without a new character coming in),
the circuit would then assign one and then pass the
data of the other PC's data to the printer. Along with
saving data from other PCs, the spooling function
allowed the PCs to pass data to the device, which
"appeared" to be a printer, at full speed. Real direct-
connect printers hold the PC from sending more data
until it has finished the operation it has been given.
These functions allowed all the PCs connected to the
printer to work at full speed and have a minimal pro-
gram delay when sending data to the printer. Today,
modern multitasking operating systems such as Win-
dows and Linux provide separate processes for appli-

E!I6rdtabl6: i

clrf PCIJATII i
i f ((EenTab le & 0x0100)

bBf PCLATH, 0

enalif
i f ((I ler(lable & 0x0200)

baf PCLAAH, 1
endtf
if ((_Ir$c!able & 0x0400)

bsf PCITATH, 2
endif

antllw 0x00F ;
adatln l,ow _H€xTabIe t

btfsc STATUS, C
iacf PCITATE. f

noverf PCI.
_Ile*Tablel

Relurn llex ASCII Char
for Lslvbbl€
in WIIEG

! = 0)

! = 0)

! = 0)

rtust want low€r { Bits
Calculate lhe Correct
off6et

Experiment 8l-Bata Stacks

'0 L23{ 5578 gABCDEF"

cations and printer control, and network-enabled
printers allow data to be sent directly without the need
of the printer switch and data spooler. But the data
storage methods used in this application are important
to know as they will be required from time to time in
your applications.

There are two basic methods of storing data tem-
porarily. The first is known as the s/ack and can be
modeled like the stack of papers in an executive's in-
basket. When data is stored on the stack, other pieces
can be stored on top of it (see Figure 9-4) with the
interesting result that the first piece of data on the
stack will always be the last piece removed from the
stack. For this reason, stacks are knowr as lnst in frrst
oLl (LIFO) memory

To demonstrate the operation of the stack, I created
asmStack.asm, in which I have set up a 16-byte data
array in bank 1 for the storage of data.To store and
retrieve data on the stack,I created the Push sub-
routine:

#
/ l

frt

u"t

d

l \ l

3
I

c-d

,&r
*'{

, i t

/-------\

/ Outgoing

"Stack"

Fieure 9-q Stack

2L0 l , a 3 P I C o I ' l C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

ht Pueh(Data) // Put Deta i! affay trstackn ,rop
| | / Al E1€dl€n! nstackPtrn

if (StackPtr == SlackEop)
leturn ctv€rFlowE:afoli

// The stack Pointer at €ndl of stack

tql
#*: 3;i.

, stalt stack al 0x20 in Bank 1
X

t
o
Ft

r Itah Data onto gtack
F.

els6
t

retuln PuEhcoodl,

] // €nil Puah

// 5ti11 SDace Left novrdf, i
c l l f i

novlr 20

leEuln

blfBc FSR, 4 t A].leafly have 16

r Requi.r€al f,or !4PLAB ICD2

i gee what,s on glack

, Pop ToD of Stack

r Randlom Tab].e

r PoI) rop slack El€rlen! OO

P

, Finiahetl, Loop Forever

I
i Push Value onlo Stack

Elem€nta?
t 16 El€m€nta, Retuln

Error

SlacklstackPlrl = Datai // Save Data
SlackPtr = StackPtr + 1, // Poidt to Nexts PuahlJoop:

E1€n6at novf j, !t
call T€Jr1€Read i Get llanalon value
caLl Push
incf j, f t Gloto Next Va1ue
t l€cfsz i , f

And the Pop subroutine, which operates as follows: goto r\ghTJooD

novlw 20
int Po9() // Relurrl Data a! lhe Top of novflf i

3o
p
(-f

the gtack

{

if ((stackPtr - 1) = stackBolton)
r€tum ltnal€rrlowErroli

// Nothtng ltr gtack
ela€ // "PoD' alatsa off Stack

PoDLoo9 !
call Pop
tlecf,az i, f,

goto PoDLoop

golo $

t t subroutineg
stackPtr = stackPlr - 1r // ltov€ to r,ast Puah.

gtack Eleneat bsf, STATUS, C
r€luln StackIStackPtrl t
]

) // 6nal PoD

I feel that limit checking is important. even ifit is Llj*, il}l"",
"

ignored by the calling code;it ensures that no memory li"i- rs", r
outside the allocated stack array area is accessed. To leturn
simplify the limit testing in asmstack.asm, I took
advantage of the bit a;ngement of a t6-iit uutter

"olo.rr,
oroo

a one, then I know I have gone outside the stack array :::,, srArus' c

and can stop trying to access invalid memory locations.
ollii"rr"t"tu"' "

novf INDF, w
bcf STATUS, C

Eabl€Reeil I

with bit 4 ofthe address always being zero.If it is ever xonrf rsR, w i Notshhs nlt€r€?

i Y€s, Return Erlor
It also means that data can be lost, as you will observe dl6cf FgR, r i Erse, Return toD Brrle
when you simulate asmstack.asm.

ti!1€ "agnslack - Denonstlate Si ple gtacki

i rhis program tl€monsllat€s holt a 15-Eleme!t movwf -T€dE)

u
g,
rF
p,

Q
rt
g,
t a

}f
U'

t slack coulil be
r Irqrl€oenteal La the Prc Mcu.

t llarahcare Not€a:
r PIC16F684 ruELng at { MEz in simulator

i
, lryk€ Pr€tlko
, 0 4 . L 2 . 2 9

t IgT R=DEC
INCIJTTDE n915f 58{. inctr

CBLOCK 0x20 t Variable Declaratiorr

_Tellp
E![DC

olg 0

movlw HIGH ,Tabl€
novwf PCIATE
novf _T€rrp, w
aalfllrd r,ow _Table
btfac STATITS, C

lncf PCIATII, f
nofirf PCL

Table: r PORTA nnd IBISA Bit
Tabl€ valu€B

d t 47 , 23 , 33 , 2 , L90 , 4 t , 37 , A r , 42 , 2 r ,
94 , 74 , 79

dr a, 6a, 54, 29, 37, 9!, t-0O

6ad

When you run asmStack.asm and execute the
Poploop, you will see that the data is retrieved in
opposite order in which it was input. This makes a
stack a poor choice for spooling data in the application
mentioned at the start of this experiment. However, it

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 2 L L

makes a stack an excellent choice for saving data that
may be temporarily overwritten and in need of
retrieval once the operation that overwrote the data
has finished executing. Stacks are used in the PIC
MCU for saving the program counter when calling

In this experiment, I will introduce you to the circular
buffer, which retrieves data in the same order as it was
written and is ideally suited for the printer switch and
buffer application I mentioned in the previous experi-
ment.

The circular buffer consists of a circular, singly
linked list of data elements (see Figure 9-5). The buffer
has two pointers, one pointing to the next location
where data will be stored and one pointing to the next
location to be read from. If both the next store pointer
and next read pointer are pointing to the same ele-
ment, the buffer is empty. Conversely, if the next store
pointer is pointing to the element just pdor to the next
read element, the buffer is full. Just a few instructions
are reouired to imDlement these basic rules.

NextElement

subroutines. The original prograrn counter is saved
before jumping to the subroutine. It is then retrieved
when the subroutine has completed and the original
program counter value is required

Although I've drawn the circular buffer as a linked
list, it can be easily implemented as a simple array. For
examDle. the Put function can be modeled as:

in t Put (Data) // Put Data Into th€
Circular Buffer

Experiment 82-Eircular Buffers

i,n

i , . i

t

j . f (((PutElement + 1) % Buffers ize) ==
GetElenent)

relurn Buffer!\rl1t

€ lE6 / /

t
Buffe! [PutElernent I = Datat
PutElen€n! = (I'utEl€menl + 1) e. Buffelsize,

retuln Putcooali
I / / f i

) // End Put

And the Get function is:

/ / P u t N e x l + 1 = =
ReadNext (FuLL)

Can Slore the Dala El€menl

(
int T€dr!)t

: - .1

t , '

,1' , , t i

j,t,.r.

int Cet() // Get the Next value in
uhe Buffef

if (GetELernent --= PutEl€nents) // NoEhing to

r€tuln Buf felEnutty,
eLse // Elemenl to Retrieve

t
T€trll) = Buffer lcetElement] , // Get lhe

Eleneat
GetElement = (GetE!.€ulent + 1) % Buffersizet

relurn Tetngi // Retuln the ELenent
I / / f i

) // Enal cet

To demonstrate the circular buffer function. I cre-
ated asmCBuffer.asm, which uses the same 16-byte
data area that was used by asmstack.asm (0xA0 to
OxAF).This allowed me to use the same trick to make
sure that data outside the allocated memory is not
allocated (if bit 4 is set, the pointer is outside of the cir-
cular buffer).

Next Element
to Write to

tit.le "aEmCBuffer

Buffer t
c i rcuLa!

how a 16-ELement

be Implement€dl in the PIC MCU.

t This proglam

t Circular
, Buffer coulal

Figure 9-5 Circular buffer
i Earahfar€ NoleE:

212 t r e l P I C @ l l (U E x o e r i m e n t s f o n t h e E v i l 6 e n i u s

PIC15F684 running at 4 UEz in Simulato! t4
X
tn

h{
* .J.

EF{

: U
F"t

s*

R r

t
I

C J
5-i.

[, 4

t--t

H

IAJ

h&
Hr
fft

Fx€

r n

_CBufferPut
_CBuff€rcet

2 0

J

t GeE Nex! value i|t C.
Buffer

novf cBuffercet, rc i rF Put == Get, thea
Notshtnglu!'k€ Pr€tlko

0 r .12 .29

TJIST R=DEC
INCTTTDE nD15f 584. incn

CBIJOCK 0x20

_!!dE)
_CBuf,f,€lPul, _CBuff€rG€!

ENI'C

PAGE

org 0
no9

nrovlv
lrofitrf
clr f

I\tIJooD 3 i
rnovf j, w
caLl TableRead i
cal,I Put
incf j , t i
t lecfaz i , f

golo IttIJoo9

movlw 20 i
movnf t

GetlooD:
caLl cet i

al€cfaz i, f
goto Getl.oop

goto s t

r subroutia€s

movlrf _T€tq)
movf CBuffelPut, w t
movwf FgR i

aaltllrd 1
andlvr b '11101111, t

r.olwf CBuffercet, rt
bsf, STArsS, C
btfac STAtgS, Z

novf _Teq), w i
novlrf IIIDE
Lncf _cBuff€rht, f t
bcf _CBufferPlrl, 4 t
bcf STATI'S, C i

i variable Declaratiof

nonwf FSR
xorwf CBuffelPut, w
baf STAT['S, C
blfac STAT['S, z

movf INDF, w
incf _CBuff,ercel, f,
bcf _CBuf,feleel, 4
bcf, STATIIS, C

TabIeReaal:
novvrf _TerE)
movhr AIGH ,Table
movwf PCI|ATE
movf Te!E), rd
ailillw I,ow _Tab1e
blfac STATgg, C

incf PCIATE, f
movwf PCIr

_T6b1e:

d r 4 7 , 2 3 , 3 3 , 2 ,
9 4 , 7 4 , 7 9

atr a, 64, 54, 29,

6ntl

t Nothing to Get
t Get the Valu€

r Rarlalom Table

Requireal for MPr.aB
tcD2

Stalt Buf,f,er al 0:{2 0
in Bank 1

, PORTA andt TRISA Bit
TabL€ valu€s

1 9 0 . { { , 3 1 , 4 3 . 4 2 , 2 L ,

37, 9L, 1-OO

Put' Dala Into auffer

G€E Rantldr value

Goto Next vaLue

gee !l?rat,s on stack

Gel Next Buffer
E].ement

Finiaheal, IJoop Eorever

Pul Value inlo
cilcu1ar Buffe!

Can,l bave Put == Gel
rf Itnreadl Dala in
Buffer

When you have sirnulated asmStack.asm, you
should have noticed that data is retrieved in exactly the
same order it was placed in the stack. You should also
have noticed that the maximum storage of data in the
circular buffer is one byte less than its total size. This
can be a concern to new programmers who expect the
data structures to store everything available to the
device, but in practical terms, it really isn't a problem.

The important consideration when using a circular
buffer is that the average rate of data removal must be
greater than the average rate of data insertion. For the
printer switch and spooler circuit, I found I had to
increase the size of the buffer to 256 kilobytes of
DRAM before I could reasonably expect to avoid a
condition where the incoming data would fill the entire
circular buffer. At 256 KB, the printer switch buffer
could store about 100 pages of text, which was usually
more than three people working on PCs could gener-
ate before the printer finished printing. In most cases, it
is not practical to keep increasing the size of a circular
buffer to meet the expanding needs of an application;
you will probably have to put in some kind of"hand-
shaking" to tell the sending device the circular buffer is
full and enable data sending only when space is avail-
able for more data.

IIBEG haa
VaIue

8ina1 eet

No llore Space
Slole Value

fncr€Erenl Pointe!
Keep within Range
No Erlor

Section Nine A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 2t3

Experiment 83-Heading and
[Jrit ing the EEPHOM Oata Memorg

Addleaa, vr
F\
*-l

t l t

rr{

IU

et
FEr

t4{

Fll

lei
L*{

$

t q J

rrovf

bsf
novf

r c€l lh€ AfLlleag
to b6 Reaal

STA!!I'S, RPO
EEA.DR ^ 0x80 r g€l lhe aaltlr€Fa

to Reatl
EECON1 ^ 0:.80, RD
EEDAT ^ 0x80, !r r Loatl in Byte at

dadalleaa n

!
!

ar)
ffi

Earlier in the book,I introduced you to the PIC
MCU's built-in EEPROM data memory or in other
words a number of bytes built from electrically eras-
able programmable read-only memory and can be
used for data storage between power on or reset cycles
of the PIC MCU Accessing the EEPROM in assem-
bler is a bit trickier than in C where HT-Soft has pro-
vided you with macros that will read and write the
EEPROM for you. In this experiment, I will present
you with the information and code you need to access
the EEPROM as well as demonstrate its operation
using the same application, but I'11 do so in assembler,
as I used earlier.

The EEPROM control hardware is accessed by four
registers located in bank 1 of the PIC16F684. In other
PIC MCUs, you will find these registers located in mul-
tiple banks, which makes the coding of the accesses
more difficult. Two of the registers are used for passing
a data byte at a specific EEPROM address and are
given the labels EEDAT and EEADR, respectively.
There are two control registers: EECON1 (described
in Table 9-1) and EECON2, which is a key sequence
register used to ensure that data is written correctly.
These four registers are used to read and wdte the
EEPROM data memory.

To perform an EEPROM rcad,the following
instruction sequence is used:

Table 9-1
EEC0NI Fesister Bils

Bits Label Function

bcf STAEUS, RPo

Performing an EEPROM write is abit more
involved as it requires the two-byte write to EECON2
to allow the wdte to take place. In the sequence below,
notice that I store the address in a temporary register
at an address that is shadowed between the two banks
before changing execution to bank 1.

novf AaLlleaa, !t

novwf 0x70

movf Data, .tg

bsf STATug, RFo
noverf EEDAT ^ 0t 80
novwf 0x070, w

novwf EEA.DR ^ 0x80

baf EECON1 ^ 0x80,

movf, EEDAT ^ 0x80,

bcf, STA|!US, RPo
DOp
movlw 0x55

i Get the Aaldresg
lo be R€afl

t Store in
ahailowetl
regisler

r 0x070 ia aame
regiEter in Bank
o / L

t get the aaldreBg
to lllile

WREN r gtsarl writso
oDeratl.on

w r lJoaal Ln Btrte al
"Adlttr€aa.

t gtart of
Requileat
Sequ€nce

i Enal of R€quiled
S€qu€nc€

t wait fo! wflte
to Cdll)L€ts€

movwf EECON2 ^ 0x80
movlw 0rrAA
mofidf EECON2 ^ 0x80
bsf EECON1 ^ 0x80, WR

btfac EECON1 ^ 0x90, WR

g o l o S - 1
bcf STATUS, RPo

UJ
F

€ r

d!!

(f , "

7:4

3 WRERR

Unused (Return 0 when Read)

Set when write operation did not complete
coffectly

write enable bit, set before start ofwrite
operation

Wdte start bit,set to initiate wdte operation

Read start bit

This write sequence is different from what you
would see in a datasheet. I wrote it as a general case,
and it will not return until the write has completed.
In most applications (like the code used for this
experiment), I will not poll the WR bit for completion
at the end of the write; instead I will check it before
starting another EEPROM access, as shown in
asmEEPROM.asm:

2 t 4

WR

RD

l , e l P I C @ l l C l J E x p e r i m e n t s f o r t h e E v i l G e n i u s

till"e t'asmEEPRoM - Display/Save a value using incf FSR, f

the EEPRoMtr cal-L EEPROMRead t EEPRoM(3) == otAA?

; xotlw oxaa

, This program DispLays a saveal EEPRoM btfsc sTAlus. z

t vaLue Unlese lhe Button on goto IIaveEEPROll t Yes' Pattern Gootl

r RA3 is presseal antl th€n the AI)c is Displayeal. InitEEPRoM: t hitialize the EEPRoM

; When t'ha Button is clrf !'SR

; ReLeas€dl, the A.DC Value is Saveil in EEPROM. movlw 0

; This coale is baseit on catl EEPROMWTite
incf FsR, f

' movlvt oxEF
t rlalahrare Notes: call EEPRO!4Write

i PrC16F584 runningr in PIcki t 1 star ter k i t incf FsR. f

; mowlvt 0x55

' call EEPRoIqwrile

r Myke Pretlko incf ESR, f

, O4.72.2a movlw 0r.AA
, call EEPRO!4Wfite

IJIST R=DEC iIICf FSR' f

INCLUDE np16f,684. inc" movll' 0
call EEPROMWTiIe t Start with Nothing

t Registers
HArIEEEPROM:

-coNFrG FCr{EN-oEF & rESO OFF & -BoD oFF & novlw 4 , Initial Diaplav value

-cPD oaF & cP-oF!' & l{cr'RE oFF & -PWRTE oN EEPRo!'I(4)

-wDT oFF & rNtoscro mowf FsR
ea11 EEPROMReaaI

; Variables mowwf DisPlaY

cBLocK 0r{2 0
r, j lJoop: t Displav Loop

Display, OldDisplay movlw 7 i],oop through Each of

ADcstate. Buttonstat€ the 8 t'EDs

Dlay, TemP movwf i

ENDC novf Dia!)lay. w
novwf TemP

PAGE Displayloop:

; I'tainline novf
- 1:-*

t Get the PORTA value

org O calt PORrATabl€Reaal

clrf PORTA rlf Ternp, f t Shif,t up Temp to Test

novlw 7 i Turn of,f comParators btfss STATus, c

novwf CMCONO novll' 0 t Bit Reset' No write

novLr ' b '00000001' r rurn on the ADC with: novwf PORTA
: Left ,Iuslif,ieal novlw 8 t Get TRIS Pattern

; vdll inB€ead of, vr€f adalwf, i' w
; channel 0 ca1l. PoRTATableRead

mov f ADCONO bsf STATUS, RPo

bsf STATUS. RPO t Do Bank 1 Inits movwf TRISA ^ 0x80

movlw 1 bcf STATUS, RPo

nltrovwf ANsEr, a Ox80 i ilust RAO as Analos novl"w IIIGII ((2000 I 5l + 256)

InPut mov$tf, DlaY

novl$r b,00010000' r select the c lock as movl l ' Low ((2000 / 5\ + 2551
Fosc/8 adal t$ -1 t Displav LED f ,or 2 ms

novwf ADCON1 ^ OxgO btfsc STATUS, z

bcf STATus. RPO decfsz D1aY. f

clrf ADcstate r Init state variables qoto $ - 3

clrf Bultonstat€ clrf PoRTA t Turn Off r,ED
Inovlw ! t Take 1 AwaY from the

clr f FSR t EEPROT'I(0) == 0? DisPlaY

call EEPRolrReaaI Eubvtf i' f

xorlw 0 btfsc STATUS, C

btfss STATUS, z goto DisplavLoop , l'oop Until i == O*FF

EoIo IniIEEPROM
incf FSR. f t sanalle Button Press or Ignore

call EEFRO!4ReaaI r EEPROU(1) == O*FF? btf6s PORTA, 3 t RA3 P?esseal?

xollw oxFF grolo ButtonPreaa

btfss STATus, z
groto hitEEPRoM ctrf ADcstate t Button Releasetl

incf FSR, f, btfss Butlonstate' 0 t Ilave Nevt A.Dc value?

call EEPROMReaaI ; EEPRO!I(2) -= 0x55? goto l,oop t No' ,Just Return

xor lw 0x55 c l r f But tonstale

btfss sTAlus, z movlw 4 i Wlite New value

Eolo rnitEEPROliI mo\twf !'sR

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 2 L 5

nlovf Display, w rnovlw oniAA
cal]. EEPROUWTiIe tnovwf EECON2 ^ 0x80
novf OtaLDiBpfay, r' r Roslore Display Value bsf EECON1 ^ 0x80, WR
novwf Diap1ay bcf STATITS, RPo
goto loop letuln

movf ADCStsate, \r i Wbat La the ADc
state?

btfBa SAATUS, z
goto BPADgtalel

btfac EECON1 ^ 0x80, WR t wait fo! Previous
write to cor$)let€

movltrf EEA.DR ̂ 0x80 i glore AaldreaE
b8f EECON1 ^ 0t<80, RD i Reaal Byt€ at

AaLlroaB
movf EEDAT ^ 0x80, r,f
bcf gTATuS, RPo
!€EUrn

For Eonsideration

note that the list directive has a number of arsuments:
these are listed in Thble 9-5.

EEPROUREA'I :

baf STATUS, RPo

r R€adl EEPROU at
Adalresd in FSR

baf ADCONo, GO r Start .eDC Operation goEo S - 1
Lncf ADCState, f ; Increnenl to lhe Ne*t rnovf ASR, rd

goto IJooP
BPADStAt6l:

xollw 1

Stale

t R€aal the ADC Va1u6?

btfaa gtATItS. Z
golo BPA.DSlale2

btfss ADcoNo, co r wai! fol aDC R6aal co
FiniEh

iEcf ADCState, f,

BPADState2:

ffi:" 3iiilll;"I", o
' save Diaplav value? of cEEpRoM.c and performs identically to it (the
i sav€ the sar\9Le varu€ The asmEEPROM,asm code is a direct translation

value saved in EEPROM is shown unless the PICkit 1

Dotentiometer on RAO is read bv an ADC and then

value is stored in EEPROM, to be displayed the next
time the PIC MCU is reset or powered up.

noverf OIdIDiaplay

EEPROI'twlit€:

movr.!' 7. t !{ark Diaplay value starter kit,s button (on RA3) is pressed. when thegav€al
mov!,f, Butlonslate PICkit 1 starter kit's button is pressed, the value of the
nrovf ADmSH, rd , Get ADC vaLue
mov!'r Diaplav displayed on the LEDS. when the button is released,
clrf iu)Cstate r ReEet st6t€ Machine .

' : .
soto rJoop the original value is displayed and the last ADC read

l-t

0
.-{

t!
0)
1d
.*{

w

L)

l*

ts{

r subroutLn€a
PORTATabIeR€aal: r Ciet Table vaLueE f,or

Irigbt Display
noficf PCIATH
novlw ErcH _PoRTAtabLe
xolwf PCIATH, f
xorsf PCIATH, !t
xolwf PCIATE, f

b , 00010 0 ,
i l t b ,100000 , , b ,000100 , , b ,000100 "

b ' 000 010 '
a l t b ,001111 , , b ,001111 , , b ,101011 , ,

b ' 101011 '
d t b ,011011 , , b ,011011" b ,111001 . ,

b ' 111001 '

a'lfllw r'ow PoREArabre Table 9-2 lists the different parameter options for the
blf,ac ST.nmS, C

inc! pcr.Ar*, t 37 instructions that the PIC16F684's (and all mid-
novrdf pcl. range PIC MCU's) processor recognizes. The instruc-

-PoREATable I t PoRTA an'l TRrsA Bit tions are listed in Table 9-3.I recommend that vou trv
Table Values

.rt b,010000,, o,tooooo,,JTJtooooi, to memorize these instructions, a brief explanation of
what they do, and the registers they affect).You will be
able to program more efficiently and be able to think
about what instruction and the algorithm to be used to
solve a programming problem.

The MPASM assembler directives are listed in
Table 9-4. Many of the directives are listed for com-

- pleteness and will not be required during normal pro-
r Wrile Contenta of,'

;;;-";-;;;;,-;" gramming;these cases are marked in the table.Also
FSR

bEf STATOS, RPO

btfsc EEcolt1 ^ 0x80, wR i waits for previous
w'i!e ro cdE)lere In Table 9-4, the message "Use of this dfuective is

solo s - 1 not recommended due to unknown ooeration" indi-
novwf EEDAT ^ 0:.80 i Stote Woral tso Write
novr FsR, w cates the directive is carrying out its function by insert-
novwf EEADR ^ 0x80
bsf EECON1 ^ 0x80, $REN
nop
novlw 0x55 r stalr of Required change with different versions of MPLAB

sequence
novwf EECON2 ̂ 0x80

ing instructions. The instructions used are unlnown,
may affect the contents of other registerq and may

IDE,&4PASM assembler.

2 L 6 l , e 3 P I C @ l ' l C U E x p e n i m e n t s f o r t h e E v i l G e n i u s

Table 9-2
Data and EesllnatlBn sgmbols Used in the PIC
MEU FEEembler lnstructions Listed in Table g-3

Sgmbol FunEtion

D Destination instruction: can be either f for register or
w for WREG

F Register address: seven bits for direct addressing
within a bank

k Bit specification for iNtructions, only 0 to 7 valid

kk Eight-bit constant value: literal inshuction argument

kkk Eleven-bit constant value: goto and call instructiotr
addrcss

p PORT register: for PIC16F684, only 5 (PORTA) and 7
(PoRTC) are valid.

Z STATUS, Z: zero bit

c STATUS, C: carry bit

DC ST:ATUS, DC: digit carry bit

Table 9-3
PlCl6F6Etl (and Mid-Hange PIC) MicroEontroller Instructlon 5et

trl
o
r'1

o
o
p
u
,-,.
g
o
rt
0,
(+
l-r'
o
5

lnstructlon Flass Flffected Instruction Dperatlon

addlw kk Z,C,DC Add constant kk to contents of WREG and store result in WREG.

addwff,d Z,C,DC Add contents of register fto contents ofWREG and store sum either ilr register for in WREG

andlw kk Z AND constant kk with contents ofWREG and store result inWREG

andwf i, d Z AND contents of register f with contents ofWREG and store sum either in rcgister f or in WREG.

bcf f, k None Clear bit k in register f. Inshuction operation is: f = f & (0x0FF " (1 < < k)).

bsff,k None Setbitk in register t Instruct ion operationisf= f l (1<< k).

btfsc I k None Skip following instruction if bit k in register f is reset (0).

btfss f, k None Skip following instruction if bit k in register f is set (1).

cal kkk None Save address of next instruction and load PC with new address kkk.

clrfl Z = 1 Clear (load with 0s) register I

Clrw Z=7 Clear WREG

clrwdt None Clear the PIC MCU'S watchdog Tfter (wDT).

comf f, d Z Tll.e bits in register f are inverted and the result can be stored either in register f or WREG

decf I d Z Decrement the cotrtents of register f by one and store the result in either register f or WREG

decfsz f, d None Decrement the contents of register f by one and store the result in either register f or WREG. If the result
is equal to zero, then skip the next instruction.

goto kkk None Load PC with new addrcss kkk.

incf t d Z lnc'ement the contents of register f by one and store the result in either register f or WREG.

incfsz f, d None I[qement the contents of register f by one and store the result in either register f or WREG If the result
is equal to zero, then skip the trext instruction.

iorlw kk Z lnclusive OR constant kk with contents of WREG and store rcsult in WREG

iorwf f, d Z lnclusive OR contents of register f with contents of WREG and store sum either in register f or in WREG

movl f, d Z Pass the contents of register f thiough the PIC MCU processor's Algorithm,ilogic U t's (ALU) zero
check and save them either back into register f or in WREG

movlw kk None Load WREG with constant kk.

mowvf f None Store the contents ofWREG in register I

nop None No-operation for one instruction cycle.

S e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 2 L 7

Table 9-3 (continued.)
PlCl5F58q [and Mid-Flange PlEl Microcontroller Instruction set

lnstruction Flass Bffected lnstruction Operalion

option None Store the contents ofWREG in OPTION_REG. Notq use of this instruction is not recommended due to
device compatibility issues.

retfie N/A Restore processor intelrupt request hardware to waiting state and retum to instruction interrupled.

retlw kk None Load WREG with kk before loading PC with address saved by callinstruction.

return None Load PC with address saved by call instruction.

rlff,d C Rotate register f to the left with bit 0 being loaded with the curent carry flag. Bit 7 of register f is stored in
the carry flag.The result is stored in either in register f or in WREG

rrff,d C Rotate register f to the right with bit 7 being loaded with the current carry flag. Bit 0 of register fis stored
in the ca y flag.The result is stored either in rcgister f or in WREG

sleep N/A Put the PIC MCU into a low-power mode.

sublw kk Z,C,DC Subtract the contents ofWREG from constant kk and store the difference back into WREG

subwf f, d Z,C,DC Subtract the contents of WREG ftom the contents of register f and store the difference back into register f
orWREC.

swapf f, d None Swap the least significant nibble with the most significant nibble of register lThe swapped value can be
stored back in either register f or irt WREG

t s p None Store the contents in WREG in the specified PORT register. Note Use of this instruction is not recom-
mended due to device compatibility issues.

xorlw kk Z Exclusive OR constant kk with contents ofWREG and store result in WREG

xorwf f, d Z Exclusive OR contents of register f with contents ofWREG and store sum either in register f or in
WREG.

Table 9-4
MPF5M Fssembler Directives

o
,t{

"tJ
tu
f{
0l
d
.r{

{0
L{

U

t"r

trt

DlEctlve Functlon

._badram exprl-exprll,exprf-expr]l Specify registers that should not be accessed.When a direct access to these registers is made,
MPASM assembler flags the instauction with a warning. This directive is normally used only in the
Microchip written part number .inc file to define the PIC MCU part trumber register ranges.

-badrom exprl-exptfl, exprf-exprll Specify program memory address that should not be accessed. When instructions are found in these
regiongMPASM assembler produces a warning or erlor. This directive is normally used only ilr the
Microchip w tten part number .inc file to define the PIC MCU part number address ranges.

-config expr Specify PIC MCU configuration word value. Option specification equates are found in the
Microchip written PIC MCU part number .inc file.

-config expr Speciry 16 bits ofdata to be stored in non-program-accessible memory. Generally used for serial
numbers or program revision information.

_�maxtara expr Directive used to specify maximum file register address. Like _badram, this directive is normally
used only in the Midochip writtet pa number .inc file to define the PIC MCU part number regis-
te{ ranges.

maxrom expl Directive used to specily maximum program memory addres$ Like -badrom, this directive is nor-
mally used only in the Microchip written part number .inc file to define the PIC MCU part number
regtster ranges.

#define label Istringf Declare a text substitution string. Defines do NOT replace complete lines like macro$

#1ncl,Jde include,file Load the contents of the specified file into the assembly language source file.

#undefile ldrel Delete label previously defined. Previous (above) instances are not affected.

#v(expr) Insert ASCII value for expr in the st ng du ng macro processing. Used to differentiate labels algo-
rithmically.

bankisel ldbel This directive will set the IRP bit of the STATUS register according to the value of label. Use of this
ditective is not recommended due to unknown operation.

banksel laDel This directive will set RPURm bits of the STAIUS register according to the value of label. Use of
this ditective is not recommended due to unknown oDetation.

2 L 8 l , a 3 P I C @ l ' l C U E x p e r i n e n t s f o n t h e E v i l 6 e n i u s

Table 9-4 kontinued)

cblock lexpr] Start variable, structure, and equates at specified value. Labels between cblock and endc are given
mcrementing values. Larger value numbers are specified by a colon (:) after the label.

Uabel] code IROM_addressl Used when object file is created for linked applications. Not required for single source file applica-
tions.

const^nt label=er.pt f. . . ,label:exprl Specify a constant value for a label. See also equ.

Uabefl da expr L exp2. . . . , expml Created a packed 14-bit ASCII string (i.e., seven bits per character) in program mernory. The
PIC16F684 cannot access this daia.

llabe\ dat^ expr,l,expr, . . . ,exprl Store data as full instructions in program memoryThe PIC16F684 caDnot access this data.

vabell db erprf,expr,. . . ,exprl ReseNe program memory with packed eight-bit data.The PIC16F684 cannot access this data.

flabel] de expr [, expr, . . . , expr] Define data to be burned in data EEPROM during PIC MCU programming.

llabell dt expr [, expr, . . . , exprl Define table bytes (retlw expr).

flabel] dw expr[,e4r, . . . ,expr] Rese e program memory words. The PIC16F684 cannot access this data.

else Used with if directive to indicate end ofprimary options and stat of secondary.

end Indicate that the end of the source file has been reached.

endc End cblock label assignments.

endif Used to end if conditional assembly. May follow else.

endm End macro definition.

endw End while loop.

label equ expr Assign the value of expr to the label. See set.

error String Force an efior with a message string.

errorfevel {0l1l2l+t1s8ruml-msgnuml Inhibit printing or displaying specific error and warning message numbers.

exitm Exit ftom macro without processing any following macro statements.

expand Expand all macro invocations in the listing file. Used with list and noexpand.

extern Label [, Label . . .] Declare that the specified label is located in a linked file.

Uabe\ flll instuctlexpr, count Fill program memory starting at the current address, with the specified insftuction or value.

global label [,label . . .l Define a label that can be accessed by other linked files.

Uabe\ idata IRAM addrcssl Declare the start of initialization code in a linked application.

lfexpr Begin block of conditionally assembled code. Completed with either else. . . endif orjust with
endii The if code and other conditional assembly code can be nested.

ifdef label Begin block of conditionally assembled code if label is present.The ifndef is a complementary
directive. Completed with either else . . . endiforjust with endif. Can be nested with other condi-
tional assembly code.

lfndef label Begin block ofconditionally assembled code iflabel is ,ot present. The ifdefis a complementary
directive. Completed with either else. . . endif orjust with endil Can be nested with other condi-
tional assembly code.

list llist_option, . . . , list_optionf If just the list directive is on a line, listing is printed. Uses parameters listed in Table 9-5.

local label l,label . . .l Define conditional assembly labels local to the current macro.

label macro farg, . . . ,ergl Declare a macro with optional parameters.

messg"message text" Generate a message in the listing file.

noexpand Turn off macro expansion in the listing file.

nolist Tirrn off code listing.

flabell orgexpr Specify where address code is to stafi.

page Start a new page in the listing file.

p Eesel label Update PCLATH page bits for the specified label. Use of this directive is not recommended due to
unknown operauon.

processorprocessor_rype Specify processor t'?e. Use of this directive is not recommended due to the processor type being
specified bY MPLAB IDE.

ftdix default_radit Specify number radix type. Use of this directive is not recommended. Instead the r: option ofthe
list directive should be used.

q t

i t

fn
li"J,

fl\

gu
' ! !

'-*,

5 e c t i o n N i n e A s s e m b l y L a n g u a g e R e s o u r c e R o u t i n e s 2 L 9

Table 9-4 (continued)
MPFI5M Fssembler Eirectiveg

Dlrectlve Function

flabell res mem_units Reserve specified program memory for other linked files.

label sel expr Assign nume c value to label. Similar to equ directive, but label value can be changed with addi-
tional set directives

space expr Insett expr blank Iines into the listing file,

subtitle "sur_te.rt" Specify second liDe of program title.

title"title_text" Specify st ng for top line of each listing file page.

vabefludatafRAM-addressl Declares uninitialized data area in Iinked object file.

llabeq udata acs \RAM-addressl Declares uninitialized data area in linked object file for PIC18 series line PIC midocontroller$

Uabeq udata ovt lRAM-addrcss] Declares a section of overlayed uninitialized data in linked object file.

Uabell ldata sht fRAM-addressl Declares a section of shared uninitialized data in linked object file.

Variable Label[=expr][, . . .] Declare vadable with optional initial value for assembly.

while expr Loop code within while . . . endw until the expr is rot true (or zero).

Table 9-5
OFtional Parameters Flvailable to the List Eirec-
tive

'
riniiii

":-1
r \

rd
i!'l

0l

"Fl

r l

f-i
n
&x{

b:# Set tab spaces. Eight is the default.

c=# Set column width. Default is 132.

f=hexfileFormat Specif, hex file output format. Default is
INHX8M and can be INHX32 or INHXSS.

F.ee Allow ftee-fomat parser. Default is "fixed."

mm =OFF Turn off memory map display in listing file.

n=# Specily the number of lines per page. Default
is 60.

p:type Specify processor type. Default is defined by
MPLAB IDE processor option. Use of tlis list
parameter is not recommended.

pe=type Specify processor type and enable extended
instruction set.Available onl] in PIC18 series
PIC microcontrollers.

r=radix Specify oct or dec number radix. Default is
hex.

st=OFF Tum off symbol table print in Iisting file.

t=ON Truncate lines. Default is OFF and will cause
lines to wrap to the next one.

w=0 | 1 | 2 Set the reporting message level. See erorlevel
directive.

x=OFF Turn macro expansion ofl Default is ON.

2 2 0 l , a l P I C @ f i C u E x p e n i m e n t s f o r t h e E v i I G e n i u s

S e c t i o n T e n

5ensors

When I passed around a proposed table of contents for
this book, this section caught many eyes, as an intro-
duction to sensors was felt to be useful for robot devel-
opers.At fi$t,I was a bit disappointed by this response

1 P l c l 6 F 6 8 4

1 P I C 1 2 F 5 ? 5

2 tLC251.

1 Two-l ine by 16-character LCD
dj.splay

I ? 4 L S t ? 4

1 Sharp GP2D120 IR ranging module

2 38 KHz IR TV remote control

1 2N3904 NPN t lansistor

1 U-shaped IR opt o- intelrupt e r
(see t ex t)

1 10-LAD bargraph display

3 Higfh-intensitY white LEDS

4 LEDS (anY color)

1]R LED

f fN9 f4 (1N4148) s i l i con d iode

2 10k breadboard-mountable potea-
t iometers

I 10k 10 -p in S IP

Or

I 10k res i s to l s

2 3 .3M !es i s to l s

2 2 . 3 M l e s i s t o r s

1 DMM

1 Wi re s t ! i ppe rs

1 Ne€dle-nose pl iers

2 Bleadboards

1 Wiring kit

1 4 . 7 k f e s i s t o r

1 1k res i s t o r

4 10k res i s t o l s

4 47of,) resistors

2 33oO !es i s to r s

2 2200 res i s to l s

2 10of,) !es istors

1 1k breadboald-mountable poten-
t iOmete!

2 10k l ight-dependant resistols (R

decleases with 1i9ht)

2 47 pE elect:.olyt ic capacitor

4 0 .1 / rF capac i t o r s

4 0 .0L pF capac j , t o l s

1 16-button keypad interface

L electret midlophone

I SPST breadboald-mountable switch

4 bleadboard-mountable momentaly
on pushbuttons

1 Four-celI Ai l battery cl ip

2 Three-cel l AA battery cl ips

10 AA batteries

1 5V lanteln battely

1 55nn black heat-shrink tubing, I
t o 1 .2s inches (2 .5 t o 3 cm) l ong

because the topics I cover in this section are actually
requked in many different microcontroller applica-
tions; it provides you with many of the basics needed
to change enviroffnental parameters into values that

22'�1

can be processed by the PIC MCU This information is
useful for both microcontroller application and robot
developers. The topic of proper sensor interfacing and
data processing would take up a book at least equal in
size to this one, but in this section, I will introduce you
to some of the different sensors that are typically used
with microcontrollers as well as provide you with a
simple intedace that will allow you to create efficient
multi-MCU applications.

An important aspect of implementing sensor inter-
faces is characterizing the parameter being monitored
and the approp ate time interval between sensing
operations. Instead of rusing sensing operations ,I will
use the more commonly used term pol/lng. The polling
interval can vary widely and according to the charac-
teristics of what is being polled. In Table 10-1, I have
listed some different things that are typically sensed in
microcontroller applications along with some ideas
about the appropriate polling interval.

The applications presented in this book are actually
very simple sensor applications. There is very little pro-
cessing done on the data other than magnitude com-
parison. And, in many commercial applications, the
rate of change and projected final values are calcu-

lated. Beyond these calculations, when you are trying
to identify an object or a total environment, the pro-
cessing requirements can be formidable.

To simplily the experiments presented in this sec-
tion as well as eliminate any integration issues you
may have using the sensors with some kind of user
interface, I am going to break from tradition and use a
simple interface as a base for complex, multiprocessor
applications. When most people think of a microcon-
troller interface, they think of an asynchronous serial
interface using the non-retum-to-zero (NRZ) protocol
of RS-232 (the serial interface used in PC Modems).
The problem with this protocol is the need for dedi-
cated hardware to wait for and decode the incoming
signal. The PIC16F684 and many lower-end PIC@
MCUs do not have the built-in serial interface (called
a UART), so different communications methods are
necessary.

The method I choose for this section is a sl'nchro-
nous serial interface that I originally came up with for
Ihe TAB Electronics Buikl Your Own Robot Kitmis
interface takes advantage of the Parallax BASIC
Smmp 2 (or BSZ) built-in SHIFTIN and SHIFTOUT
synchronous serial data transfers. The PIC MCU

Table 10-1
Environmental ParameterE uJith Fppropriate Sensors and Folling Intervals

Parameter Pollinglnteval EommenlsSensor

vJ

L-a

9 i

Ambient Light Level

Sector Light Level

Object Location

Object Distance

Object Collision

Object Collision

Sound Event

Sound Characteristic

200 to 500 ms

200 to 500 ms

15 to 30 ms

100 to 300 ms

50 to 100 ms

20 to 100 ms

1 t o 1 0 m s

50 to 200 ms

500 to 2,000 ms

1 t o 1 0 s

50 to 250 ms

250 to 1,000 ms

5 t o 6 0 s

1 5 t o 6 0 s

Verbal Command Digital Signal Processor

Ambient Temperature Thermistor-Calibrated Tempemture Sensor

Fire, High-Heat Sources Digitized Video, Pyromete$, LDRS

Humans and Animals Pyrometers or IR Reflection

(Air) Pressure Barometers or Pressure Sensors

Humidity Humidity Sensors

Light Dependent Resislor (LDtuCDS Cell)

Lighr Dependenr Resiqlor (LDR/CDS cel

Digitized Video

Ultrasonic Ranging

IR Reflection

"Whisker" or Mechanical Sensors

Filtered Sound Input

Filtered Sound Input

LDR response is generally 100 ms.

Multiple LDRS or a single LDR on moving
turet used to characterize environment.

Object identification; location determination
can change with sensor movement.

Sensor movement requires continual polling.

Usually used in safety applications (robot or
operator); continuous polling required.

Usually used in safety applications (robot or
operator), continuous polling required.

Short,loud events can be easily missed.

Waiting for tone or other easily recognized
characteristic that is present for up to several
seconds.

Speech processing requires a significant
amount of time to complete,

The assumption is that the ambient tempera-
ture cannot change quickly.

Typically a safety sensor with possible requre-
ment for source location, general requirement
to respond quickly.

Typical applications include burglar alarms
and automatic lights.

Pressure changes generally take place very
slowly except in safety applications.

Slow changes in environmental humidity.

222 l , a 3 P I C @ l l C l J E x p e n i m e n t s f o r t h e E v i l G e n i u s

peripheral clocks data in and out using the clock signal
produced by the BS2.The PICSend (sending a seven-
bit command to a PIC MCU from a BS2) and the PIC-
SendReceive (sending a seven-bit command to a PIC
MCU from a BS2 and the PIC MCU responding with
an eight-bit response) are demonstrated here in BS2
IF Base.bs2:

r BS2 IF BAS€

. Basic Bs2 to PIC llCU InEerface Template

r nPrcsendtr aaal ,'PrcsenttReceive'�t are only
r suDgolteal OperationE

I ltrke Prettko

1 0 o . , " " . r .

' {$srar{P Bs2 }
. {$PBASTC 2.5}

' v a r i a b l € s

r Prc Mcu rntserfac€ codle Follows

I r4fke Predko

\ PICSenal Cdmanals are 1 - 8
r PlcsenalR€ceive Conlanils S81 - S88
r Prc Mcu rnterface Pins
PICData vAR Bybe r Data Byte tso senal tolReceive

PD PIN 1
Plcsenal: r setral the Byle in rrPrcDatatr

LOw PC r Holal IJow foi 1 msec b€fore
PAUSE 1 ' shifting in DATA
SEIFTOIJII PD, PC. I.SBEIRST, tPICDatsal
HIGII PC
RETIJRN

PC PIN O

PICSenatReceive !

' IO Pina

{n
I J

i r

$*.

;.J

a-,!

Eid

(u
?a

r 3

r genal Ebe Byle in "PIcData"
r HoLal lJolr for 1 maec befo!€IJOW PC

PAUSE 1
SEIETOUT PD,
PAUSE].

. shiftlng in Data
PC, LSBFIRST, IPICData]

r wait for Op€ration to
r cdll)L€te

\ Mainline

IIIGII PC

ITIGII PD

PAUSE 1OO

' +*#* - Put in progiam Sta!€ments as Shown
r B€lo\t

SHIFTI}I PD, PC, LSBPOS!!, IPICDAtA]

RET['RN

A PIC MCU application that interfaces to this code
can either wait for a command from the BS2 or contin-
ually poll and process the sensor, polling the clock pin
(PC in BS2 IF Base.bsz) at Ieast once per ms in order
to not miss the beginning of any commands. If the
same requirement was given for an application that
interfaced to another device using the NRZ protocol,
the maximum data rate would be approxirnately 300
bps, due to the need to also poll the serial input line
and still be able to perform some useful applications.
In contrast, the BS2 takes about 2 milliseconds to send
a byte, one-fifteenth of the time required for the 300
bps NRZ send time.

I realize that few people have BS2s available for
working through the projects in this book, so in the
first experiment,I will show how you can simulate the
BS2 using a PIC MCU. With the addition of a simple
LCD user interface, you can experiment with different
sensors.

\ High PIC MCU I/O PinE

r Wait fo! PIC MCU to Sets Up

PICDatsa = 1

cosuB Prcsenal

PAUSE 100

. Sendl Basi.c cormanal to PIC
MCU

. tvait fo! Prc to Finish
PrevlouE

PICData = 58L . genal 0x81 anal Receive
RegDollS€

GOST B PlcsenflReceive
DEBUG iPIC Respons€", DEC(PICDat.a) , CR

ENI)

Sec t i on Ten Senso rs 2 2 3

Experiment 8r-l-Plf MCU B5a User Interface

1

1

1

I

0)
U
d

tt-.|
h
o
P
g

H

t l
o
v,
p

c{
as

U
X
U
H
Pr

I
<r
Q

{J
q
(l

' d
t l
, t l

P.t
IJn
gd

DMM

Need le -nose p l i e r s

Breadboard

It ir ing kit

To create the PIC MCU-based, simulated, BS2 user
interface, I used the two-wire LCD display first pre-
sented in Section 6. The application shown in tHs sec-
tion simulates the waveform clock lovoause
lms/shiftout/clock high oI the PICSend BS2 subrou-
tine and the waveform of PlCSendReceive. In Figures
10-1 and 10-2, I have correlated the different features
of these two waveforms to the BS2 statements that
produced them (listed earlier in this section).The data
transfer is based on a 14 g.s clock pulse over a 46 ps
period for each bit (see Figure 10-3). The work to cre-
ate the application code was fairly substantial, and the
need for precise timing gave me a good feeling for

Prc12F575

fwo-l ine by 16-charac-
ter LCD dj. splay

7 4L577 4

1N914 (1N4148) s i l i coo
dj,ode

l0k b!eadboard-mount-
able potentiometels

10k l es i s to r

0 . 01 pF capac i t o r s

B!eadboa!d-mountable
momentary on push-
buttons

Three-cel l AA battery
c l i p

3 AA battel ies

writing assembly language code for the PICC LiterM
compiler. The final result is quite easy to work with,
although I discovered a potential pitfall that you
should be aware of.

The circuit used for the simulated BS2 interface
(see Figure 10-4) uses all the available pins of a
PIC12F675.In addition to the two LCD interface pins,
the circuit assigns two pins to a potentiometer/button
user interface and two pins to the simulated BS2
clock/data lines. The circuit was built on a breadboard
(see Figure 10-5) and is about as complex as I would
like a PIC MCU breadboard application to be.
Included in Figure 10-5 is the application circuit from

Flgure IDJ BS2Send Fisurel0-e BS2Send.Receive

2 2 4 l , a 3 P f C c ' l l C u E x p e n i m e n t s f o r t h e E v i I 6 e n i u s

Fisure f 0-3 BS2 Shifiout dan

the next experiment, to test out the operation of the
interface and the PIC MCU code.

The user interface consists of a potentiometer that
selects which command is to be sent to the PIC MCU
instrument circuit. The user interface is capable of
sending the comrnands 0x01 through 0x08 as well as
the response commands 0x81 to 0x88 by turning the
potentiometer. To avoid the need of precisely setting
the potentiometer, the first half tum selects 0x01 to
0x08 and the second half turn selects 0x81 to 0x88.
Once the command is selected, the button is pressed to

Figure f0-5 BS2 simulntor circuit on a breadboard
and connected to test sensor aDDlication

send the data. If a response command is sent, the
response is displayed on the lower line of the LCD.
This method of specifying and sending the command
and then displaying the response to the instrument
PIC MCU is surprisingly easy and fast to work with. If
you are looking for a simple-to-use interface, you
might want to consider using the method I provided
here.

The application code cBS2 Sim.c provides the LCD,
potentiometer, and button user interface as well as the
two-wire BS2 comrnunications simulation code. The

P1
X

ro
o
Ft
Fr.

o

@
|}5

I
I

ry
H
(/

E
I J

H'
m
r\}

m
o
fi

H
F(r
o
h
r+!
p,
o
t v

T
I
I
I.:

P
1 0 k

C12FC76 1- Clock t To S(
tv I r -Data J Ci rcu

)nsor
its Yoo

1 0 k
; F L

----l- 4
: 1

ir--

l u F

GPIOO
6 P I O 1

G P l O 3

G P I O 5

G P I O 4
Gnd

G P I A 2

74L5174
2

5Q/5D

6Q

CLR
t " " 1Q /2D

2Q/3D

3a /4D

4 a / 5 D

L 2 / 1 4

3
1 5 |,/l

t \a
1N 914

1 k

2 / 4

--J- vc- r d 1 5 dd

| 1 6
5 / 6 | |- I rox

I- l
4 . s v I

0 . 0 1 |u F l
'7

/1-L | |

L 0 / L 3 |

L
I
I

J_.: L I
l

:

Flgure fO-q BS2 simulator circuit

Sec t i on Ten Senso rs 2 2 5

0,
f l

rv
t+{
1.r
{,

g
H

LI
€,
&0
p

rq
VJ
rY1

r t
.*

r 1

tu
ig

4r

,tt

. t 1

&{
n l

i,

basic code was written in C to take advantage of the
code already written for the BS2 two-wire interface
and the ADC (for the potentiometer), although the
tu7o BS2 simulated subroutines are written in assem-
bler to ensure the timings are as close to the BS2's as
possible. As a reference for the simulated BS2, an
oscilloscope was used with the Parallax BS2 datasheets
to make sure the signals were as precise as possible.

*incluile <plc.h>
/* cBS2 Sl$.c - Sfu{rlated Bg2 Senso! Interface

l,lria ProgEam Inltializes the Hltachi {{780
Baaett I|cD in { Bit Uoal€ a.Dd then coatinually
Dolla !h€ lrotenli@r€ler oD cpIO2 as well aE the
Button oo GPIO3. llhen the ButEon iB gress€al, th€
ADC Value (Drocesa€tl aE b€1o$) is Sent to another
PIC lEU as if il wele a
BS2 ComAnal.

|Ih6 ADC value is proc€ss€d as:

ADCValu€ = (.a!RES >> 5) & 0x08,
ADqvaluo = ((ADCtIalue & 0x08) << {) = (ADCValue &
0x07) t
ADCVaIUe = .A.DgvaLue + 1t

ThiB wLl1 nsiufaclure Hex values of eiEher 0x01-
0:.08 or 0x81-0x88

GPIOo - BS2 Interfac€ Clock Pin
CPIO1 - B's2 Inlerface Data Pi.n

IJCD Write Infor atiodr can b€ foural a!
htstD: //w{w.rvk€.cd!

Thls aDDlication uses a cdnbiration of PICC lJite C
arld PIC As6€nib1€r.

NCIE: TSIS APPIJICATION USES tt'HE PIC15r675Ilt

GPIOs - I,cD Data Pla
CGIOII - I,cD Cloch Pin

ryke prealko
0 4 . n . 2 3

-COIIFIG(T'NPROTECT & I'NPROIECT & BORDIS & !'!CIiADIS &
P1IRTEN&IIDII 'DIS&\

r$Tro) t

int IraatADc - -1r // taeb I& value Reaat In
in! ButtotfLag - 0i // Italk Wlren Pre8aed

r'Ilsigrled char €LastADCr // aasenbLer tastADC
ungigned cbar ait // aasembler Countor
uEaignetl char aDlayt // ass€rnbler D€lay

/t oL234557 490!2345
conat cbar rolabaaage I I
conat cbal BotsMaaaage I I = n Rea9onEe 0x00 n.

*defin€ Clk GPIO{
ll Defi-'ie the LD g€lial Control Pitr6
*defin€ Data ePlos
// Lf Etj-ese Cha.nge, CharEe aesesibler

cdrst int Tweftyrn5 = 1250;

// Declate a cdrstant f,or 20 nE Delay
const irrts EiverDs = 300,
con8! Ltrl TaroErmitr€ihrB = 10,

PICSenil (Ints DatavaLue)
{

alaatAllc = Datavaluei
// gave ADc value tso S€nd

*asn
bcf Dorta, 0 r Clock Line iE Lort
novLw lligh ((1688 / 5J + 256

t DeIaY l'!' 1,598 ua
novvrf _aD1ay
novlw ldr ((1688 | 5) + 256t

PsgtartIJdqrDLay:
aaLlLw -1

btsfsc statua, 2
al€cfaz _aDlay, f

goto PsstartlJonDlay
llovlt,r I
rbvrff, ai

PSOutsIoo9:
lrdtrf, Dotta, w

andLw 3lrr
ttf _aLaEts.Al)c, f
btfsc status, 0

iollw 02h
nol^rf porta

iorllr 01h
baf _a.DLay, 2

PSPTeIJooD:
d'ecfaz _a.Dlay, f

grolo PgPrelJoop
[ovlrf Dortsa
a*Uw 3dr
baf, _aDlay, 2

PSCIockIJoop :
tlecfsz _aDlay, f

goto PSCIockIFop
novllf Dorta

rnovwf _aDlay
nqD

PgPoatI6oIr :

al€cfaz _aDlay. f
goto PSPoatLooD

alecfsz ai
goto PSOUtloop

novlto 62

!rcvlrf a!1ay
PsEndlonlLoop :

alecfsz _aDlay, f
golo Pstldrdlrl/ooD

bsf x,orta, 0

i Shif,l Outs the Data

, Set GPIO1
t aDgrolrliale1y

t ltlhia PoinE 14 cycl€s
t befor€ Clock Ei
t Set Clock Blts

t Sav€ Clock Eigh
, Turn Off Cl.ock Aiglb

qr
ce

, Data VaLiat fo! 32
i ci'cles

i R€Deat f,or 8 Cycl€a

i R€turn Clock El.gh
i af,ter 188 cycl€s

r Finally, Clock ia
r High, Cqt!tr.rd Sent

#eudasr
) // End PICSerd

in! PlcsebdRec€ive (ints Iratavalue)
{

aIJaatIDC = Dalavalu€t
// Sav6 ADC value to Senal

{iaEn
bcf 9or!a, 0 r Clock line ia LoI'

226 l , a 3 P I C o l ' l C l J E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

hish ((168S / 5l + 2s6l
; D€LaY b!' 1'588 us

bcf atatua, 0

btfac porta, 1
bsf atatuB, 0

rrf _aIaElADC
novhtr 4
mov{rf _aDlay

PSRlDoneIFop :

b8f stsatus, 5
bcf, I)olla, 1
bcf, slatus, 5

baf porta, 0

; After 25 C:'c1ea, PoI1
; llata

i seve in nalraalaDcn

, Delay {6 clrcleB to
t Ner.t Clock

r !{ahe DaEa Pin Outgrt

r rinally, Clock is
r uigh, CdrlEdril Sent

l*t
1." t

!r3

m
n
H"

fi.
s
i.''."

t

*r{

i-"rl

{. *t

r'rF9
q&
i . , }

8-rl

; *.*

nolwf alrlry
novl lr low ((1688 / 5) + 256)

PsRslartsI,onDlay:
adaulr -1
btsfac Btatua, 2

alecfaz altlay, f
gotso PsRsltartldvrDlay

rnovlw 8

PSROUtsIJOOD :

novf porta, w

€natLw 3Dh
rlf _ar,a6tiaDc, f
btsfec atsatua, 0

iorlw 02h
rnovwf Do!tsa

iorlw 01h
bsf _aD1ay, 2

PSRPrelooD:
tlecfsz _aD1ay, f

Soto PSRPreLop
Inovlrf I)orta
aDdlw 3Eh
bsf _aDLay, 2

PsRclockl.ool, :
d€cf,az _aDlay, f

gotso PSRCIockLoop
movwf porta

Dovwf aDlay
nqD

PSRPoatI,oop:

decfaz aDlay, f,
goto PsRPoallool)

tlecfBz ai
golo PSROutIoop

llov1v high ((1640 / 5) + 255\
t Po1I Response afte!
r 1 . 4 5 0 u s

arovwf _aDlay
abvLw low ((1840 / 5, + 256)

PSRPollDlaylJoo9 :
addlw -L

btfsc Buatsua, 2
decfsz _aDlay, f

goto PsRPollDlaylooD

dlecfgz _aDlay, f
goto PSRPDon€IJooP

al€cfsz _ai, f
gotso PSRPoL!.Lop

rrcvlw high ((3s0 / 5l + 2561
r rinal Clock IJon D€lay

Ilovltrf _aDlay. f
movlw].ow ((350 / 5\ + 255)

PSRFina1T.oorr :
aaltllw -1

btfsc statsus, 2
alecfaz _aDlay, f

golo PSRFiIralI.oop

t ghift o|rt the Data

r Set GPIO1
r r*rDroD?iately

r rhia Point 14 ql'cleg

r before Clock Ei
, geE Clock Bit

r Save Clock High
r Elrrn Off Clock Eigh

t Aftser 14 Ct'clea, Clock

t Dala valifl fo! 32
t q!'cles

t Rel)eat for 8 cycLes

i llake Itata Pin Iaput

t start PoIIing Re6Do(rse

r clock Eigh to PolI

// ,IuBt lioggl€ the Clock

*enalaam

letuln aIJaatADCt
// Return tsbe ReEponae

, ll u\d. PrcsenalReceiv€

lwbblesbift (int T,Cf,iout, iDl Iis)
// shifr our Ehe r,rybble
(

Data = 0,
fo! (i - 0r i < 5r i++) // Clear tshe Sbift Regiater
(
CLk = 1t

CIk - 0 i
, // iof

!r-!i€

tr!

j ;

bsf, slatus, 5
bsf, I)or!a, 1
bcf, alatus, 5
novlcr 8

PSRPoUIJooD :
bsf Dorta, 0
noD
rEvlw 3

PSRPHigbIooD :
atLl].n -1

blfBg FtsatsuB, 2
goto PSRPHighIoop

bcf DorEa, 0

lrovLw 5
PSRPWaitt ooD :

aqp
aaLl]'trr -1

btfEa atatug, 2
gotso PsRPwaitsloop

Clk = l . t

C l k = 0 t
, / / tof

N o P () t

N O P () ,
Data = 0i

| // B^d Nybbleshift

LqDo|r t = Lcmut | (1 << 5) | ((RS & 1) r (1 << {)) t
for (i = 0r i < 5; i++) // Shift Dala Out
{

i f (0 l = (L c D o u l & (1 < < s)))
Data = 1t // shift o{rt th6 Eigheat

Bits

Data = 0t
LCDOut = IrcDouts << 1, // Shift Up the Next Bit

// Clock the Bi! idto
rh€ s/R

// clock tshe NybbLe int
th€ LCD

*-.!
i,J

rn
d $

n !
r',
gt l

Sec t i on Ten Senso rs 22'7

{.}
a ' 1

r$
i.a-{

".i
t,l
.{*}

f-J

ry

ai
r*

itr,

8**,li

f*;
i, ';
".:i

t-f

1
!

+-]
;^,i

ti
s

. r''.:l

i$t

i;i

f-.tl

IJCDWTit€ (int LCDDala, ints RSVatue)
| // Sendl Byte to ICD

i n t i . j ,

NybbLeshift ((LCDDaLa >> {) & 0x0F, Rsvalu€) t
NybbLeshift (LCDDala & 0x0F. RSValue),

// Shifl out ByEe

i f ((0 == (LCDData & oxFC)) && (0 == RsvaLu€))

LcDwri te (0b000 01110. 0)r / / lurD On LCD anal
Enalrle Cursor

f ,or (i = 0r ToDU€a6ag€ [iJ l= 0, i++)
I.cDwrile (ropMesaage t i l , 1)t

LCDWri te (0b1100000 0, 0) t / / ! {ove CurBor to
lhe Seconal lriae

for (i = 0r BotMessasel i l != 0, i++)
IJCDwrite (BotMessage t i l , 1)t

// S€t Delay ht.erva!.

i = llwollunalrealus t

for (i = 0r i < i r i++)r / / Delay for character

) // Enil LCDwrit€

main()
t

i n t i , j t

GPIO = 0b110011t
// gtsart with Inlerface Bits High

A.DCONo = 0b00001001i // ADc Turneal on:
// ADI'U - left .tualifieal
/ / VCEG - Valal Reference
// clls - aN2
// QO - Off
// A.DoN - On

ANSEI = 0b00010100, / / ANSEI Speci f ieal as
/ / Tosc = Toac*8
I / AN2 - Analog laDut

CMCON = 0b00000111r // Disable CofiE)araEor
Uodlule

oPTION = 0b011111!!t // E':abLe pu11 uDs on RAo
& RA1

wPU = 0b000011t
TRISIO= 0b001100t

// Everything Buts cPIo3/aN2 OulDutsa

// Inilializ€ IJCD accoraling to the W€b page
j = $tentlms t
for (i = 0r i < j ; i++)r / / Wai t fo! LCD !o

power UP

N1'bbleshi f l (3, 0)r / / Star ! In i t ia l izat ion
Ploeeag

j = Fivemst // gendl R€set Conmanal
f o ! (i = 0 r i < j r i + +) t

Nybbleshift (3, 0), // RegeaE ReEets Cdmand
j = TlroHultlrealus t
f o ! (i = 0 , i < j , i + +) t

lwbbleghtft (3, 0), // Repeats Reset Cqrdnanal
Thiral Tlme

j = rlroEundlrealus t
f o r (i = 0 , i < j , i + +) ,

l rybbl€shi f t (2, 0) , / / rn iEiau.z€ rJcD 4 Bi t
l4oat6

j = TwoHuntl!€alu€ t
f o ! (i = 0 r i < j r i + +) t

LcDwri t€ (0b001010 00, 0)r / / LCD is 4 Bi t I / r ' ,

IJCDwri te(0b00000001, 0) t

IJCDwl i te(0b00000110, 0) t

(
fo! (i - 0r i < Tw€nl t 'mB, i++)t

// BaEic Delay fo! ADc

CiODoNE = 1t // Stsart ADC operatior
whiLe(1 == GODONE) t

j = (A.DRESH >> 4) & 0x0F, // Ploc€ss Usins
ALgolithm Above

j = ((j & 0 x 0 8) < < {) + (j & 0 x 0 7 } t
j = j + a ,
if (j t= LaatADC) // If Different, Save antl

DiEpLay
t

w h i l e (1 = = 1)

else

// I.oop Through PoLliltg
GPIO3 anal AN2

LcDvlr i te (0b10 0 011OO, Or i / l Mov€ to 10a of
OulDu!

j = (j >> {) & 0x0Ft
L C D W r i t e (J + t 0 ' , 1) t

LaatADC = i t // Sav€ the Nelr ADC Value

IrcDwri te ((LestADC & 0x0F) + r0. , 1) t
, l l f L

i f ((0 -= GPIO3) && (0 == BuEtonalag))
| / / Debounce Buttoa Press

whtle (i < Tnenltlma)
for (i = 0t (i < lw€ntt 'ms) && (0 -- CPIO3);

i + +) t
But.tonFlag = 1r // Button Pr€sseal

i f (ra3ta.Dc < 0x60)
PICSenaI (IJaaEADC) t

// wrile High Dtgits

// Get Remo!€ Statua/Va1ue
t

LaatsA.DC = PlcgenalR€ceive (IJastADC) t
LCDWri te(0b11001100, 0) ;
j = (IJaatADC >> 4) & 0x0Ft

/./ Write High Digit

q*4

i!"!

t f (i > e)
rrcDwl i re (j + ra ' - 10,

else
L c D w r i t e (j + . 0 , , 1) ,

j = l a B t a D C & 0 ! . 0 8 ,
i f (i > 9)

I J c D W r i t e (j + . A ' - 1 0 ,
eLse

L c D w r i t € (j + ' 0 , , 1) t

// write r,ow Digit

1) t

2 IJlne

// clear r,cD

// Move Cufao! After
Each Charact€r

, / / t i
] e lse i f ((1 == gp1g31 && (1 == ButtonFlas))
| // I,ook for Button ReleaBeil

i = 0 t
while (i < Trreatt'ns)

for (i = 0, (t < Tw€nt ldrs) && (1 == GPIO3),
i + +) t

ButtoaFLag = 0t // Buttoa Releaaeal
| / / Er

, / / eri}lw
I / / E'l,d cBs2 sin

228 l , a 3 P I C @ l l C U E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

The assembly language used in cBS2 Sim.c took
longer than I would have expected, this was due to two
factors. The ffust was a mistake on my parl I did not
disable the comparator on the PIC12F675's GPIO0
and GPIO1 pins (used for the BS2 interface), which I
discovered often results in unexpected resetting of a
pin when wdting to a single but different pin. In Sec-
tion 8,I went to geat pains to explain how the bsf and
bcf instructions work, and, in this program, I ended up
with a great example of how they can unintentionally
change a pin value.

In my application code,I set the data pin (GPIO1)
and then I then set the clock pin (GPIO0), using the
standard instructions:

baf GPIO, 1
bsf GPIO, 0

but when I looked at the signals on an oscilloscope, I
saw that the data pin (GPIOI) would go low when the
clock pin (GPIOO) was set high. When I wrote the
application, I was under the impression that the
PIC12F675 had an ADC but not a comparator, but I
was wrong. Like the PIC16F684, the PIC12F675 has a
comparator with its input pins being GPIO0 and
GPIOl.And like the PIC16F684, if the CMCON regis-
ter is not written to turn off the comparator at power
up, these two pins are assumed to be analog inputs
(which always return zero when the port register is
read or used by the bsf instruction). Once I tumed
off the comparator, the pins behaved as I expected
them to.

I'm explaining this because ifyou had an applica-
don that didn't work or if it behaved as mine did, you
might be inclined to assume that the PIC MCU chip
was bad. Remember that you should always assume

first that the chip is good and the problem is software
related, as was the case here: I didn't properly initialize
the chip. Assume second that your circuit/wiring is bad.

Over the 10 years I've been working with PIC MCU
chips, I've encountered only two chips that were bad.
The first time was when I was witing Programming
and. Customifing the PlCmicro@ Microcontroller,in
which I seemed to have worn out the Flash program
memory of a PIC16F84; several instructions could no
longer be programmed. The second encounter hap-
pened when I was debugging this application and I
miswired a PIC16F684 inshument application to this
BS2 simulator; I accidentally connected the BS2 simu-
lator's ground to the instrument application's positive
power. AAer correcting the error, the instrument appli-
cation would work periodically, but required a special
sequence of actions to get it working. (I had to power
up the instrument application first, next power up the
BS2 simulator, then disconnect the two applications,
and finally reconnect the applications) Pro$amming
another PIC16F684 with the same application did not
require any of these actions and would, in fact, work
perfectly regardless of which PIC MCU application
was powered up first.

The root cause of this problem was the use of two
breadboard circuits, each powered separately and con-
nected by three wfues (two for clock/data and one for
ground) as shown in Figure 10-5. This connection
reflects how I wanted the BS2 simulator and the
instrument intedace applications-each as separate as
possible, having only the signal and gound reference
in common. If I were using this application for any-
thing but prototyping, I would create polarized con-
nections that could not be plugged rn error.

f{l
lr,t
a1

ru
t v
Ft
1..
3
t v
!-i

CIo
#t

I
I

ry
H
n
Kn

u,
U)
h,)

m
tn

$

H
4

1n
t l

r.h
sl
(l
fn

Sec t i on Ten Senso rs 2 2 9

Experiment B5-Plf MEU B5a Kegpad Interface
A I

r i
rrt
s{

&,

b'{
d i

T
{'d

:&
a !

"i'ta

F I
q: -':

', .'l

t^-]]

a'l ,

:
i

.i1
a'-r
fi -.:

r-:
s : , 11

ai. .

fi.1.

C'.t,{

!-*1

DMM

Needle-nose pl ie ls

Breadboard

Wil ing k i t

Although the potentiometer-controlled PIC12F675
interface works well,I wanted to see how easy it would
be to create a keypad-controlled interface while at the
same time eliminating the need for the 74LS174 used
as a shift register for the LCD display. Pin allocation
can be difficult in this situation. A four-by-four (16-but-
ton) keypad requires eight I/O pins; an LCD requires a
minimum of six if the two-wire shift register is not
used;and to top it off, two wires are required to pro-
vide the BS2 interface. The total number of pins
required for this application appears to be 16. How-
ever, as I will show, the keypad column and the LCD
data pins can be shared, allowing this application to be
wired into a single PIC16F684 with only 12 I/O pins.

The trick to sharing pins in an application like this is
to look for output pins that can be shared between
interface devices. It should be obvious that clocking or
control pins cannot be shared between interfaces, as
the device being accessed will be confusing. The LCD
data pins and R/S pin can be shared with the four col-
umn drivers used in a four-by-four switch matrix key-
pad. The combination of these two components on the
same data bits worked very well with just a couple of
complications.

For this application, I wanted to keep the LCD data
pins on RC3:RC0 to simplify the programming of the
LCD writes (keeping the data bits in the lower nybble
of a byte). And I also wanted to keep the wiring as sim-
Dle as Dossible on the breadboard. These two condi-

Prc16F68 4

1,5-button keypad inte!-
face

1 fwo-I ine by 16-charac-
te r LCD d i sp lay

1 10k breadboald-mount-
able potentiometer

E i t he r 1 10k 10 -p in S IP

O r 8 1 0 k r e s i s t o r s

1 0 .01 pF capac i t o r

1 SPSf bleadboard-mount-
able switch

1 Three-celI AA battely
c l i p

3 AA batteries

tions were met (see Figure 10-6), although it was diffi-
cult to show the simple wiring to the keypad. The
schematic might be a bit confusing; rather than draw
the rows and columns of the keypad as four individual
wires,I used a bus, which is a thicker line.These four
lines are passed to the rows and columns of the keypad
as shown: The keypad I used (bought from a surplus
store in Toronto) had the rows and columns in two
groups of four pins, which simplified the breadboard
wiing for my prototype.

Note in Figure 10-7, the four column bits (the bus
lines that intersect with the LCD bits) do not use all
four LCD data bits.Instead three data bits and the RiS
bit are used- as this worked best with the breadboard.
This made the software a bit rnore complex but was
worth it, as I did not have to wire each keypad pin indi-
vidually to the breadboard/PlC16F684. Instead I could
simply push it into the same column as the pin-1 side of
thE PIC MCU.

In the apptcation, I pulled up all eight pins of the
keypad. Like when I started the application,I didn't
know which pins were which, and I had to decode
them. When you look at the source files for this appli-
cation, you will see that I created asmsctrll.asm
through asmsctrl4.asm to decode the keypad and
make sure the operation was (reasonably) intuitive.
The final result. asmsctrl5.asm. takes in a maximum
two-hex number command (taking advantage of my
keypad's 2ND key, which I used to shift the key inputs

2 3 0 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

Fiqure l0-7 Keypad BS2

Fiqure l0-6 Breadboard-wired keypad-based BS2
simulator wiretl tr.t sensor breodboard

of 1 through 6 to A through F). The CLEAR key was
used to erase the two-character command, and
ENTER sends the command (and, if the value is 0x80
or greater, it also looks for a reply).

Depending on the keypad you use for this applica-
tion, you may not be able to wire it as simply as I have

for my prototype or the keys on your keypad may
require you to work out a different user interface.
When you create your own keypad interface, follow
the steps that I have:First, get the LCD working;next,
work at decoding the keypad, and model the user
interface; and, finally, add the B52 interface for the
peripheral functions. You will probably find that work-
ing through these steps will take you a few days, but
they should be fairly uneventful, and when you have to
perform this task again later, you'll find that it will take
onlv a dav or so.

Experiment 86-PlC MfU lnstrument Interface

1 P I C l 6 F 6 8 4

1 LED

PIC12 f6?5 o ! P IC16F68 4 -
based BS2 coBnand
s inu la to r i n te r f ace

DMM

Need le -nose p l i e l s

W i !e s t r i ppe rs

Breadboard

Wi l i ng k i t

0 . 01 pF capac i t o r

fhree-ce11 AA battery
c l i p

AA ba t t e r i es

With the BS2 and PIC MCU equivalent intertaces
available, we can create a simple application that turns
on and off the LED connected between RA4 and RA5
of a PIC16F684 remotely (see Figure 10-8).This exper-
iment has only three commands: (1) LED On, (2) LED
Of| and (3) 0x81 - Return LED State. And its code is
based on asmBS2 Template.asm:

5ec t i on Ten Senso rs 23t

RAO

RA1

cnd RA5

Plct6F684

$
g t

ftt

wl

tr
p

0-J

#

fi l

;J
iJ

s
t},t

t ;
*,1

f-1
f l
r*r

1 t

r{
F,ed

a
t

=i*fi

€ r

&d

I BS2
J Interface

liat R=DEC
INCTTTDE'p15f 58{. incn

t R€giatser usag€
CBI|oCK 0rr20 t Sgart of cP R€gistela

i , j , k
Bg2Btrtse , Bg2 Senal/R€ceive Value
Dlayvalue:3 r lrhree ByEes Neetleil for D€1ay

t Macro
ENDC

PAGE

_coNFrG ,E C!{EN_OEF & _rESO_OFF & BOD_OrE &
_qPD_OFF & Cp_OrF & _!{CLRE_OF! & PIVRTE Oll &
_wD1!_OFt' & IN:IOSCIO

. 5 V

t [qaiDline

o!9 0
no9

trovlw 0x0Fr

movlrf PORTA
movhr 7

rnovwf Cllcolro
baf STATUS, RPo
clrf ANSEI, ^ 0x080

i For ICD2

r Make All PORIA
, BLta High

t qodE)arator8

; AlI Bils a!6
r Digita]'

bcf OPTION_REG ^ 0x90, 7 , Eneble PORTA
i pull UI)E

\s
ffi

mov$f WPUA | 0:rg0
t #*l+# - uoatj.f,ylPut 1n Aalditional Porl
Bil/PeriDheral Initializations

bcf SIATUS, RPo

r lrooD waitiag fo! BS2 corEEndt
IJooD:

btfsa Cdclock i Reaal BS2 Eor
t Codmanal

caLl BS2R€aal

t **** - P€rfofir aDy Repeating gub-ns
oDelation8 here

goto IJooD

; Reatl/R€apoaal to BS2 Comlanala
BS2Reaal: i D€coale tsb€ BS2

t CorEraad

movld b '000011' r Enab].e RAo/RA1
r Pull U9a

i Mrnber of Bits
i to Reaal

lnovwf, i

movlw rrrcH (3800 + 255)
movwf J
movle LOw (3800 + 256)

as2RlrooD].s r Wait for Data to
t becdne Active

-T;

I
t:

Figure l0-8 BS2 Demo

Eitl€ "asr8s2 T€!!p1ate - BjISIC StarD II pIC
llcu Intelfacer

This Program Drovidles the baaia for
an Intelligent
BS2 Interface.

Bs2 CorElantla (tso be ilefineal by applicalion)
1 - CdmaaA 1
2 - Comland 2
3 - Cdmanal 3
4 - Codmanal 4
5 - Cormand 5
6 - CoduEnal 5
7 - CodEranal 7
I - CoiElantl 8

Data R€aDo[al Coltnanala (to b€ tlefined by
agl)licaEion)

128 - ResDoutl CorElanil 1
129 - ReaDonal Corrlanal 2
130 - ReaDoail Cortrlanal 3
131 - ReaDonal Cotunarrd {
132 - ReaDondl Cor@aaal 5
133 - R€6Donal Colulanil 5
135 - R€sDontl Comtanal 7
135 - ReaDonil CofinenCl 8

t llaralware No!€a:
r PIC15F684 runnLng at { UHz Uainq th€
r Inlelnal Clock
r Int.elnal Reaets is Useil
t aAs - Clock hput
t ltA4 - Data I/O
t Renaiaing Pins a!€ for VariouE I/O atrd
Fullc!ions

*alefln€ ConData PORTA, 1
*alefia€ Comclock PORTA, O

i
, Uyke Proalko
, 04.LL.25

232 l , P 3 P I C o I ' l C l J E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

btfsc comclock
golo BS2RSkiD3

aflilhr -1

btfsc STA!!US, Z
decf.z j, f

goto BS2R]JooP1

BS2RE!ro!:

baf S!!ATUS, RPo
bsf CdlData

bcf STATUS, RPo
reEur!

BS2RSkID3 !

novlrr 4
novlrf j

BS2RLoop3:

blfEs Cdclock
goto BS2RSkiD{

dl€cfsz j , f
goto Bs2RLoop3

goto Bg2RElrol

BS2RSkiD4:

bcf STATUS, C
btf,sc C@Data

baf STATI'S, C
tlf BS2Bl,t€, f

i l , c f . z i , r d
golo BS2RSkip2

btfBc BS2B!rt€, 7

Bg2RReaponflcdmanal t i.f No, wait for

nop , **## - Cof@and 2 Coale
r .or1w 3^2 r Cor l . r t t 3?
btfBc STA!!US, Z

no9 t **#* - cofdland 3 Coale
r{or1!r l^3 r Cdmant l {?
btf,Ec STATI'S, z

noD t **#+ - Cdmand 4 Cotl€
* o r 1 w 5 ^ { , C d m t D t l 5 ?
blfac STAIrOS, z

nqp t **** - Cddand 5 Coile
x o r l r d 5 ^ 5 r C d m a n d 6 ?
blfac SIeTUS, z

trqp t ##** - cdmand 5 cod€
xor lw 7^6 t Cdirnendl 7?
btfac gTAmS, z

aop t ll**{l - Cqflranil 7 cod€
x o r l w 8 ^ 7 ; C d m a n A 8 ?
btfac STITUS, Z

nop r #**ll - Colnalat 8 Code
goto Bg2$r!or

t otherrdLa€, Itnklownlcodlrl€l€d coiMenat

, **#* - Pu! coulalit t\rDctioas Eele with Filel

i "gtoto Bs2RErlor" to
t **** - evoidl havlng funat' junDa ov€r
i asseribl€f "switsch" corqrariaoDB

BS2RResponalcddandl :
t Retuln lhe R€questseil Ittforllation lrilbin

i 1 lrE to "BS2B!r!e"

i anfl rrgoto BS2RResDondl:
bsf STATUS. RPo i llak€ ConData aa

OutsDut
bcf ComData
bcf STATUS, RPo
novf Bs2Btte, w t Get Eb€ cor@r'otl
laor1w 0x81 i Corltrare lo R€apontl

t C@raad 1
btfac SrAtUS, Z

noD r *##* - R€a9ond Codrald 1 Coal€
xorlw 0x82 ^ 0x81 i CdE ar€ to Responal

t CdEand 2
btfsc srATtrg, z

nqp t *#*l+ - ReEDontl cdalanfl 2 codl€
xor1$ 0xa3 ^ 0x82 r Collpare to ResDordl

t Co!trranal 3
btfac SllAllUS, Z

aop t **** - ReEDolal Conlanal 3 Coile
xorld 0x84 | 0x83 i Cot[tale tso ReaDondl

, CotElald 4
btfsc gfATUS, Z

tro9 , #*## - Iteapoait CotElend { Cotl€
xorlw Ox85 ^ 0x84 i Codpare to ReaDonal

t cdrland 5
btf6c gTATgg, z

noD r l+lf #* - R€apond C@lantl 5 Coale
,ro!1w 0xg6 ^ 0x85 i CoaE ere to ReaDoatl

t codnnenal 5
btsfac gIATttS, Z

noD r li#*lf - ReEgonit C@lanal 6 Code
xolLw 0x87 ^ 0xg5 t CorqDare tso Reaponfl

, CoMlantt 7
blf,sc STAEUS, Z

Dop , ***# - RealtoDd Cotnaatl 7 Codl6
*orlrd 0x88 ^ 0x87 i Coqpar€ to R€apond

t Cdmand g

btfEc STATUS, z
aop , **** - Resgond Cdmanal I Coale

lrovlw 0t 15 r C@la|rfl Not

i coun! Down
tcl
X

id
o
r-t
F,,
3o
5
cl

I
ry
H
o
Koc
H
p
a
d
l-t
6
Io
p
ct

H
p
d
o
rt
Fh
0,
o
o

BS2RSktD2:

novlw 100
movnf j

BS2RIJOOI'2 :

btfac CoitrClock
golo BS2I€kips

t l€cfEz j , f .
goto BS2RLoop2

goto Bg2Rlirlor

BS2RShLps:

al€cfaz ,, f

goEo ES2RSkiD3

BS2Prj.rnarl|c@lanal:

nrovf Bs2Btztse, w
:<orlw 1

, Nothlng Valial
i R€ceiivetl

i Meke gure Datsa
i i5 Iry)ut

i Retuln

t Clock High, wail
i for it lo qo].ow

t Wait 15 Fs for
t Clock Pu1ae
i Activ€

r Clock LowlReatl
r the Data Bil

r sbift in the Bj.t

.i at the rJest Bits?
i - N o . . .

i Bg2 R€sDondl
t C@land?

i Final clock Eigh

, Clock StiU
, Low/Wail f,or High

r wait 500 pE for
r Clock EIgb

r Clock High
r Agai!/finishetl
r with Bit
t Reaal Anothe!

t Cbalge tsh€
t Cd[larrtl ODoralion
r GeE the co@anil
t Cd[)are tso
t C@lanal 1

O
o\

btfac STAIIUS, z
no9 t **#* - comnand 1 code

xolIrr 2 ^ L t Coraltalal 2?
blfac SltrAlrOS, Z

5ect ion Ten Sensors 233

G,}
g t

d
{ r a

}{
,it

L'
IJ

4J

;J

F{

l-a

Usg.i

r*;
r--N
&

I
I

I n

. r {
9 , .

, i !

4",S

; Supgortodl
movwf BS2BtrUe t Bi! Pattern to ghow

t coanection
golo Bs2RR€sDonal

t ***# - Execute RegDontl cotElandts - MusE
Executso ldithL! 1 rns

Bs2RReEpondt:
rnovlw 8

novwf i

goto BS2RError i FiniBh€tl, Retutn
i anal Keep Proceasing

€nd

To operate the application code,I modified asmBS2
Ifasm to get asmBS2Test.asm by making the following
changes:

1. "ComClock" and "DataClock" were changed to
RA1 and RA0, respectively,

2. For "Command l," replace the nop with "bsf

PORTA,4."

3. For "Command 2," replace the nop with "bcf

PORTA,4."

4. The xor*{/btfsc/nop instructions for the
remaining six commands were deleted.

5. For "Respond Command 1," the "btfsc STA-
TUS, Z/nop" was replaced with a "btfss STA-
TUS, Z/goto InvalidReturn." And the following
xorl btfsc/nop instructions were deleted.

6. After "goto InvalidReturn," the following
instructions were added:

novlw HIef l (2500 + 255)
novwf j
lrovl.w low (2500 + 255)

Bs2Rr,ooD4: i

btfsc Cqlclock
golo BS2RSki95

aaLllw -1

btfsc STAmg, z
alecfBz j , f

golo BS2RLoop{
gtoto BS2RError

Bs2RgkiDS: i
rrf BS2Byle, f t

btfsc STATOS, C
bsf, CotnDala i

btfsB STATUS, C
bcf, CdDaEa i

CounE Nunber of
Bita to sentl out

wail for Deta to
becdre Active

OutDut lhe Data
Put the LS Data
into calry

Deta Bit Higb

Data Bi! Lor,t

Bits
Bits

movlrc 4
movlrf j

BS2RLoop5:

btfaB Comclock
goto BS2RSkiDT

dlecfaz j , f
goto BS2RLooD5

golo Bg2REfior

(3000 + 2s5)

(3000 + 255)

btfsc Codclock
goto Bs2RskipS

etLllw -1

btfsc SEATUS, z
decf,az j, f
golo Bg2RIJoop5

goto BS2RErro!

BS2RSkiDS: i
a lecfaz i , f

golo Bs2RSkiD5 i

novllr O ,
btfac PORTA, 1l

{rovlw 1
novwf BS2Blrte
goto Bs2RReapontl

hvaLidlRetur!:
novLw 0xA5 i

novwf BS2Bf.le i

R€lurrt r,ED gtatse

Wait 15 ma€ca fot
Clock PuIa€ Activ€

BS2RShipT :

nrovlw Hrclr
novwf j
rrovhr rJow

BS2RIJoopS:

Wait fo!
to Enal

CorE|anal Not
gu9port6al

Bit PatEertr to Sbow
CoDn€ction

for clockwait 3 na
High

With these changes in place, the PIC12F675 tnter-
face connected to the breadboard with the circuit in
Figure 10-8, and the PIC16F684 loaded with asmBS2
Test.asm, you can nouT remotely tuln on and off an
LED as well as query the LED's state. To turn on the
LED, set the PIC12F675 interface's LCD to 1 and
press the button-the LED connected to the
PIC16F684 should tum on. Similarly, setting the
PIC12F675 ntertace's LCD to 2 will turn off the LED.
Setting the PIC12F675 interface's LCD to 0x81 and
pressing the button will send a command response and
retum zero or one, indicating the state of the LED
connected to the PIC16F684.

uor€ Bit6 to S€nal?

Yea, IJooD Aroundl
Aqain

234 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

Sound input recognition is an interesting and often
useful sensor to add to your applications. With just a bit
of signal-conditioning circuitry, you can add the ability
to recognize sound to the PIC MCU. Before you start
getting visions of adding voice control to different elec-
ffonic devices around your house, I must warn you that
the circuit used in this application is quite rudimentary
and will not recognize sounds of different duration or
frequencies. What you'll get after building this experi-
ment is the front-end circuitry used in the "clapper"

light switches that were popular a few years ago.

The application circuit in Figure 10-9 is probably a
bit more complex than you would have expected.
Along with the PIC16F684 with its BS2 sensor control
interface, I have also included an LED, which flashes
when sound is received, and a two-operational-atnpli-
fer (op-amp) circuit, which is used to filter out high-
frequency sounds (defined as anything above 340 IIz)
and amplify them to useful levels for the PIC MCU to
recognize as logic level changes. The circuit fits easily
on a small breadboard (see Figure 10-10). However, if
you wanted to add any additional circuitry to the
experiment, you would have to use a larger bread-
board.

Prc16F584

TLC251

LED

Elect!et miclophone

3 .3M res i s to l s

2 .3M res i s to l s

l ,ok lesistot

470O res i s to r s

220O res i s to r s

0 .1 pF capac i t o r s

0 . 01 , pF capac i t o r s

I don't want to go into a great deal of explanation
about the operation of the TLC251 op-amps except to
explain their basic operation. I should point out, how-
ever, that the component values are critical to correct
operation of the circuit. If the resistor or capacitor val-
ues are changed, you will find that different parts of
the circuit may go into oscillation. You should be par-
ticularly concerned about matching the impedance of
the electret microphone to make sure that you maxi-
mize the voltage output. If you feel the need to change
any of the component values, make sure that you
understand the ramifications of what you are doing.

The electret microphone produces a relatively
small-scale signal (in the tens of mV, as seen in Figure
10-11).This signal is passed through a dual-pole But-
terworth low-pass filter, and then amplified an extreme
amount. The amplification factor used in this applica-
tion is on the order of ten thousand times for each op-
amp. The reason for the extremely large amplification
factor is that this application can amplify the signal
only to the input voltage extremes. Anything greater is
clipped andproduces the signal seen in Figure 10-11.
The signal from the microphone is the analog signal
shown in the top waveform. By amplifying the signal

Experiment 87-Sound Detection

PIC12F575 - o ! P IC l5F68 4 -
based BS2 conmrand simu-
Iator inte!face

DMM

Need Ie -oose p l i e ! s

I l i ! e s t l i ppe rs

Breadboard

Wiring kit

krt
t -J

;;e"
*{

1 v

t r !

t i

:i-

t{!!

1 a :

! ;a

i i

r&

{ }

Sec t i on Ten Sensons 235

vdd
t,'04

rF-l .e,s
:

vdd

Ptct6F584 Clock

470
3.3M

Data
-

1 l(_L
-

J.2

5 TLC25'I

vdd

0.01uFI

TLC251

. 5 v
-T;

l -
I
I

:

RAO

RA1

RC4

RC5

f t

'(jt

'$i

t-"1
$,4

a
t

a-li I

.&r

flt

" r{

1

!d{

gsi

Figure l0-9 Sound circuit

by such an extreme amount, the more digital-looking
signal is produced and can be passed to the
PIC16F684'S input directly.

There are rrany books available that will explain
the operation of op-amps in greater detail than I will
here. When you look at these texts, you will see that

Figurc lo-'f 0 Sound input test circuit buih on small
breadboard with BS2 command interface providing
signal wiring as well as power

most of them use the LM741, not the TLA57 that I
used in this application. I did not use the LM741 in this
application due to its requirement of at least 12 volts
to operate. The TLC251 works comfortably with the 5
volts used by this application.

There is one problem with this circuit: If the sound
transition occurs when the BS2 interface is communi-
cating with the PIC16F684, the PIC MCU cannot poll
the incoming sound line. When I presented this circuit
tn 123 Robotics Experiments for the Evil Gmtus,l
passed the signal to a14LS74 D-flip-flop clock with

Figure
'f
0-ll Sound operation

2 3 6 l , e 3 P I C @ l l C l J E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

the expectation that the sound would cause a new
value to be latched into the flip flop. To avoid this
requirement now, I pass the conditioned sound output
to the TMR0 input pin. Then, after setting TMR0 to
OXFF and resetting the TOIF bit to find out if sound has
been detected, it is a simple matter of checking the
TOIF bit as I do in the experiment's application code,
asmSound.asm.

The simple ability to recognize that a sound has
happened (even without the sound's characteristics)
can be useful in a variety of different applications,
ranging from the "clapper" to a robot's collision detec-
tor. The collision detector is actually a very useful sen-
sor in robots and often more reliable than whiskers of
the infrared (lR) or ultrasonic methods presented later
in this section.

I --l

.'r|
lt't

1 U
,<,

,1

ai-

&
G8

a

?

H .

t*J

t v

?

h*

ra
i i ,

1.3
?.t

l-r '

Experiment BB - Multi ple M icrosur itch Debouncin g

PIC I2F6?5 o r P IC l6F684 -
based BS2 cofimand sirnu-
Iator inte!face

DMM

Needle-nose pl iers

Wi re s t r i ppe l s

B!eadboa!d

Wiring kit

Previously, in this book,I have shown you how to
debounce buttons, switcheq and keypads (in both C
and assembler).What I have not done is show how
multiple, independent switches can be debounced in an
environment that can be polled periodically. In this
experiment, I will use the BS2 comrnand interface peri-
odically to poll a PIC16F684 wired with four buttons or
switches that must be debounced before a value can be
retumed.This is very similar to what would be
done in a robot that has several whiskers around its
penmeter.

The circuit used for this experiment is quite simple
and can be built on a small breadboard wted to a BS2
command simulator-either the PIC12F675 using a
potentiometer command selection or the keypad inter-
face (see Figure 10-12).When I was designing the
application, I debated whether to use the pulled-up

1 P r c l 6 F 6 8 4

4 10k res i s t o l s

1 0 .01 pF capac i t o r

4 Bleadboard-mountabl.e
push-buttoo or SPST
switches

pins on PORIA, but decided against it when I looked
at how I would poll and debounce the buttons. Instead,
I used the least significant four bits of PORTC, allow-
ing me to come up with an efficient method of polling
and debouncing the buttons.The application itself can
be written out in C pseudo-code as follows:

j = 0 t
whi l€ (1 == 1)
(

f o r (i = 0 t i < 2 1 5 u s i i + +) t
// I.oop takea 250 ua

i f (0 == BS2Clock)
// Clock Lotr' - ES2 Cofidland

BS2Read() ,
i f (0 = = (P o R r c & (1 < < j)) ,

/ / Bit i-a IJow
if (0 == value t i I)

/ / Blt vas P!€viousLy IJow
if (Count. [j I < 20]

C o u n t s = C o u n t + 1 t
elBei

// Count == 20. Do Nolhing
elBe

/ / BiE $ae Pr€viou61y High
t

va lue t j l = 0 ,
Count [j I = 0,

j l l f r
elae

// Bir iE high
if (1 == valuel j l)

/ / B..E vae P!€vloualy High
i f (coun t t j l < 20)
c o u n t = c o u n t + 1 i

Sec t i on Ten Senso rs 2 3 7

e l s e t
// count == 20, Do Nolhing

else
// Bit vraa Previoualy Eow

{
va!.ueti] = 1t
counu t i l = 0 t

| / / f I
j = 6 + a l % 4 t

// Increment j to next value
) / / e l ihw

In this 250 7:.is loop, one of the four switches is
polled, and if its value is different from the previous
poll, the new value is saved and the counter is reset. If
the value is the same, the counter is incremented to 20.
With each loop taking 250 ps and executing four times
between polls, a count of 20 will mean a 20 ms
debounce period.The 216 ps delay loop, when added
to the 34 g.s polling code time, results in a 250 pcs loop.
The assembly code for this operation can be found in
asmUSW.asm.

This code could be expanded quite easily for more
buttons or reduced as required. (Six could be made
available quite simply, by adding RC4 and RC5 to the

PIC12F6?5 o r P IC16F68 4 -
based BS2 comnand simu-
l a to r i n te r f ace

DMM

Need Ie -nose p l i e l s

l { i ! e s t r i ppe rs

Breadboard

Wil ing kit

In the previous experiment, I showed how you could
time share between operations to check values while
polling for BS2 commands.In this experiment, you will
get the chance to experiment with different wiring of

Figure l0lP B32 uSwitch

four already present.) The code executes in just a few
instruction cycles, allowing you to add additional sen-
sors or BS2 functions to the mix quite easily.

Prc16F68 4

L0k res i s t o r s

10k l ight dependant
res i s to r s (R dec reases
with l ight)

10k potent iometer

0 . 01 pF capac i t o r

light-dependant reslstors (LDRs) or Cadmium Sulfide
(CDS) cells as well as Iook at a method of reading
each ADC individually while polling for the BS2 com-
mands.This method of operation is not compatible
with the previoug but either the microswitch polling
method or the one in this experiment could be modi-
fied to work with the other.

To demonstrate the operation of the CDS cells
along with how the ADC works for multiple devices, I
used the circuit shown in Figure 10-13.The SPDT
switch shows the high- and low-voltage level provided
by a simple switch, and the LDR connections show
how the voltage divider output voltage changes with
the LDR resistance values.The in-circuit potentiome-
ter should work exactly as you expect.That is, the

Experiment 89-Light 5ensors

1
Ple!n[t" 1

Tool Box

238 l , e 3 P I C @ I ' l C l J E x p e r i m e n t s f o n t h e E v i l G e n i u s

ADC value returned for the potentiometer is propor-
tional to the position of the wiper.

The application code (asmlight.asm) for the experi-
ment is very straightforward and reads each ADC
value twice before saving the value. Reading the value
twice is simply to ensure that the value to be read is
correct.The code is called asmlight.asm. When you
test this application, you should record the ADC val-
ues for the LDRs when they are exposed to ambient
light and again when they are shielded from the light
by a finger. (The ADC value for the LDR connected to
Vdd should go down and visa versa for the LDR con-
nected to the circuit's ground.)

The application should work quite well, with only
one possible surprise:You may find that value of either
the high- or low-voltage level returned for the SPDT
switch is off by a few digits (a value of 0xFF or 0x00,
respectively, is expected).This is due to resistances
throughout the wires and breadboard, which cause
small changes in the voltages at different points within
the circuit (a single ADC digit represents 17 mV in this
application). The reason for pointing this out is to rein-

Ptc16F684

6".+,,,.
-1;

I
I

. 5 V I

":_r
{"-

-o:i

Figure 10-13 BS2 light

force the idea that nothing is absolute in electronics
circuits, and you must always design your circuitry and
software to accommodate these inconsistencies.

Experiment 90-lnfrared (lFl) Surface Sensor

1

1

I

P IC I6F584

2N3904 NPN t rans i s t o r

U-shaped IR opto-inte!-
l uP te r (see t ex t) : . . , :
LED

3 3 0 0 r e s i s t o r s

IOk res i s to r s

0 . 0 1 g F c a p a c i t o r

Breadboard-mountable
SPDT switch

Three-cel.1 AA battery
c l i p

AA a l ka l i ne ba t t e r i es
(see t ex t)

L

1

1

could make a fairly effective white/black surface sen-
sor.The problem was the cfucuits required a fair
amount of support circuitry due to the requirements of
amplifying the current from the opto-interrupter's
phototransistor and comparing it to an expected value.
The built-in comparators of the PIC16F684 allow you

:

DMM

Need le -nose pL ie r s

Wi l e c l j . ppe l s

Wi re s t r i ppe rs

Breadboa!d

Wiring kit

In 12j Robotics Experiments for the Evil Genius.I
demonstrated a basic line-following robot using two
cut-apart U-shaped IR opto-interrupters. If you look
back at those experiments (numbers 48 and 119 in that
book), you'll see that by cutting apart the two halves of
the opto-interrupter and placing them side by side, you

Sec t i on Ten Senso rs 239

to simplify the circuitry considerably as is shown in Fig-
ure 10-14. With just a few resistors and a transistor, you
can produce a voltage that can be sensed by the PIC
MCU and can be coupled with surprisingly simple soft
ware.

These parts go by a variety of names, including
"slotted IR opto-interrupter" and "IR switch Opto-
NPN" if you were looking in a catalog or online, be
sure you see a picture of what you are getting, because
the devices vary widely. Another issue that you should
be aware of is that if you were to buy the pa s from a
distributor (e.9., Digi-Key, Mouser, Jameco), you'll
probably be quite shocked at the price, especially con-
sidering I'm telling you to cut them apart (see Figure
10-15).There are also IR reflective sensors that
perform the same task as the cut-apart opto-inter-
rupter, but these too can be quite expensive. Rather
than be subjected to the high prices of new opto-inter-
rupterE I buy a few from electronics surplus bins for a
just a few cents apiece.

Buying the parts from a surplus bin means that you
will not have a part number or a datasheet for the part.
Instead, you will have to build a circuit like the one in
Figure 10-16 to determine which set of pins are for the
IR LED and which set are for the IR p hototransLstor
(PT) that make up the opto-interrupter. Assuming that
the wires for each component come out at different
ends, there are only four ways of wiring the circuit. You
can do it by trial and error until the LED lights and
turns off when something is put between the two sides
of the opto-interrupter. Or you can spend a few min-
utes and come up with a strategy that simplifies the
search. For example, to find the IR LED and its polar-
ity, use the LED and a 3300 resistor.Tiy each side with
different polarities for the pins and the LED until the
LED lights.

Once you have identified the components in each
side of the opto-interrupter, record what each compo-
nent is, record which wires belong to each, cut apart the

l0-1q IR white/black circuit

opto-interrupter, and then place the opto-interupter
in a breadboard (see Figure 10-15). This orientation
will allow you to run a piece of paper with white and
black marks over the IR LED and phototransistor.
With this done, add the three-battery power supply, the
resistors, and the transistor (see Figure 10-14).The two
10k resistors and the 2N3904 NPN transistor will pro-
duce an analog voltage that can be very easily sensed
by the PIC MCU'S comparators.

I decided to use comparators instead of the
PIC16F684's ADC because I didn't expect there to be
a need for processing analog values (white/black
should be very binary), and the comparator outputs
can be polled continuously, whereas the ADC must be
initialized and then polled until the operation is com-
plete. As can be seen in the application code, the task
ol polling the comparator and turning on the LED (if
something is reflecting light from the IR LED to the
IR phototransistor) is extremely simple.

Using your DMM, measure the voltage difference
with something white in front of the lR LED/IR pho-
totransistor pair and then with something black. I used
a white sheet of paper that had large black areas
printed on it. For testing the opto-interrupter, I used
with the components specified, the voltage at the
2N3904 was 3.06 volts with the black printed paper in
hont of the phototransistor and 0.20 volts for plain
white paper. For the comparator's VRef module, I
choose 1/21hese extremes or 1.5 volts.

To calculate the value passed to the VRef module, I
measured voltage at the PIC MCU's power pins (as the
VRef module's output is proportional to Vdd) and
found it to be 4.54 volts. For the VRef module. I
decided to run it in low-range mode, which allows for

Figure l0-'f5 IR surface sensor circuit using a cut-
apart U-shaped IR opto-isolqtor

2 4 0 l , e 3 P I C @ I ' l C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

I

Figute lo-f6 IR phototrenststor circuit

voltages up to two-thirds of Vdd with a fraction
denominator of 24. With this information, I calculated
the VRef module's voltage specification value to be:

Va lue = (1 .5 vo l t s / 4 .54 vo l t s) X 24

As you can see in the software for this application
(asmRwb.asm),I put in a value of 8 (b'1000') to the
VRCON register:

tille "aBnIRwb - Us6 Com9arators with IR
whits/BI.ck geDaola"

i

t lryke Preilko
r 0 5 . 0 1 . 0 3

LISf R=DEC
INCrirDE "plSf 584. tncn

-CONFIG _ECUEN_OFF & _IESO_OFF & _BOD_OFF &
CPD_OEq & _CP_OFE & _!{CLRE_OFF & _P!iIRTE_ON &

_lfttt_orF & _INToscIo

t Veliables
CBI.oCK 0x020
ENDC

PAOE
r Ueinlin€

nop

clrf PORrA
movlw b,00001010,

movwf CIICONO

baf, STATUS, RPo
cIrf, ANSEL ^ 0xg0
movln b.10101000,

mofidf VRCON ^ 0x80
movhr 0!a0r
novrdf TRISA ^ 0x80
bcf STATUS, RPo

IJooP:
movlld 0
blfsc C!{CO!{o, CIOU!

lrovLw 1 << {
lrovDrf PORIIA

goto IJoqp

HI
Xrd
(D
ry
f".|,
:t
o
b't

r+

\o
O

I
I

H
l'.{

n
rt
l-h
0l
o
o
w
o
u
o
Ft

t::o,
. l

:L-

-
-T:

I '
-L

, Eo! ICD Debug

t Corqtarato! lrith
t Vref lilodu1e

r Speci fy 1.5 vol t
; Tfansilion

; RC{/RCs OutDulB

t start with LED of,f
t if, Cl.viD+ >
i Refarenc€
t lben lurn on IJED

This PrograD PolLs th€ voltage cooiag flom a
IR LED/PbototralEigtor !!dl turrrB on an
LED lrh€a th€ voltag€
ia is greaE€r than 1 VoIl. tfh€
coq)arator La ua€dl for
tsbl,a op€raELon,

Ea!dfirere Noleat
PIC15r58{ runriDg at 4 ! lz U5lng
th6 Interagl clock
4.{5-{ .5 Vol t Pow€r (3: . nAA' Cel ls}
RAo - Phototrrnaialor Output
RA4l - IJED Anodl€
RA5 - r,ED calhodo

end

The asmRwb.asm code could be easily extended to
up to four IR phototransistor modules by selecting dif-
ferent comparator inputs (two for each of the two
comparators giving you a total of four). Although if
you do this,I recommend you do your best to make
sure the opto-interrupters have the same part number
so you do not have to charactedze the circuit repeat-
edly and provide different comparator (or component)
values for each inout.

Sec t i on Ten Senso rs 2 4 L

ExFeriment 91-lnterfacing to Sharp 6Paila0
Flanging 0biect Sensors

1

1

1

I

1

()

c{

N
tu
t3

l*l

fi

tu

*-r

tTr

l-r
, r {

d{

(u

H

a

r-6
L)1

t

a+

Dldll

Need le -nose p l i e r s

l i i r e s t l i ppe rs

B!eadboard

Wiring kit

Sharp has a number of different IR object detection
and ranging modules that you can interface very sim-
ply to any PIC MCU. In this experiment, I will intro-
duce you to the GP2D120 module, which provides an
analog signal roughly proportional to the distance
between it and some light-reflecting object.The Sharp
modules are designed to work using between 3 and 6
volts, with 4.5 to 5.4 volts being the range where they
work most efficiently. Other than providing reasonably
clean power to the modules, you have to connect only a
single line to a PIC MCU to read distances.

The circuit that I used for this experiment is quite
simple, as you will see in Figures 10-17 and 10-18, and it

PIC16F68 4

Shalp GP2D120 IR !ang-
ing moduLe

1o-LED bargraph di.splay

0 . 01 pF capac i t o r

Breadboard-mountable
SPDT €witch

Thlee-cel l AA battery
c l i p

AA battel ies

should not cause you too many problems in wiring it
together. The basic GP2D120 module has a white plas-
tic connector on the bottom, and to use it with a bread
board,I simply soldered three short breadboard wiring
kit wires to the three pins on the backside of the mod-
ule (see Figure 10-18).

The code for the application is very straightfor-
ward and assumes that the maximum voltage put out
by the GPZD120 is 3.0 volts. Instead of displaying the
distance as a binary value,I use the bargraph as a 10-
position scale with a single lit LED. The application
code (asmGP2D12) tests the voltage output from the
GPZD120 by repeatedly subtracting 15 from the

-:-
-:-_-r_,

I '
I
I

___-L

Figure
'f
017 GP2D12 circuit Figure l0l8 Prototype circuit seen from the rear of

the GP2D120 module

2 4 2 l , E 3 P I C @ l l C U E x p e r i n e n t s f o r t h e E v i l G e n i u s

returned ADC value. The reason for taking away 15
is that 3.0 volts measured in a maxirnum 255 range
for a 5-volt circuit is 150. Therefore. 15 is eauivalent
to 300 mV.

I have been quite cavalier with the GP2D120 in this
circuit because the circuit has only one LED active at
any time and is powered by batteries, and the bread-
board has a lot of built-in capacitance. If you were to
use the GP2D120 (or any of the other Sharp IR
object-detection modules) in an application,I would

DMM

Need le -nose p l i e r s

Breadboa!d

Breadboald wir ing kit

When Ben Wirz and I designed the "TAB Electronics
Build Your Own Robot Kit," we spent about a month
struggling with coming up with a way that objects
could be detected using simple wires that, when
moved, would close or open circuits. An enormous
amount of work was done to come up with a design
that was sensitive (would detect an object with enough
time for the robot to stop), robust (required no bend-
ing of wires back into shape after a collision), reliable
(made no "false" hits), and inexpensive. The solution
that we came up with was a noncontact method of
detecting objects by using a modulated IR light beam
and a TV remote-control receiver. You would probably
be surprised to discover that this method outper-
formed mechanical switches in each area oreviouslv

recommend placing a fairly large (10 pF or greater)
capacitor close to the module's power-supply pins. As I
will show in the following experiments,IR receivers
can be somewhat sensitive to electrical noise, and in an
application that has electrical motors running (e.g., a
robot), you will find that the output may be erratic. By
adding the capacitor, you should be protecting the
module from noise, which could prevent it from oper-
atins correctlv,

Experiment 9?-Do-lt-Yourself lH Object Sensor

?:t

v1
i-

' : ' "
..-:.

1.":

ti1j

I
t

1 -:i

t-x

i?
i . t

f':'

t i

i i {

,:;

P1c16E'�684

38 KHz IR TV remote
control receiver

1 IR I.ED

1 LED

L l 0k ! es i s to !

I l k r es i s to r

1 470O !es i s t o !

1 100O !es i s t o !

1 lk Breadboald-mouotable
potentiomete!

1 0 . 01 pF capac i t o !

1 47 pF e lec t ro l y t i c
caPacj.!ol.

1 Sntn btack heat-shrink
tub i l g 1 t o 1 .25 i nches
(2 .5 t o 3 cm) i n l eng th

1 Breadboa!d-mountable
5 P 5 1 S t d L C C n

1 Three-cel,1 AA battely
c l i p

3 AA battel ies

listed in this book and it was cheaper to implement. In
this and the experiments that follow, I will present you
with some noncontact object-detection methodologies
with which you can erperiment.

When you use a remote control to turn a TV on or
off or change the station or the volume, the remote
control in your hand is usually sending out a modu-
lated stream of IR light pulses. You may have

Sec t i on Ten Senso rs 243

L.{
i-)
!:!a

i t t
* 1

! f I

et
.Y'a

3.3.i1

.r*s

>a

L,-{

!

fq
m
! 1

irt

,rd
{ r

te{

!c.c

discovered that the remote control can "bounce" its
output signal off different objects in the room (e.g., the
wall behind you) and the TV will respond as if you
were pointing the remote control directly at it. This is
the theory behind this experiment; as you can see in
Figure 10-19,light is bounced frorn an IR LED to aTV
remote control via some other obiect. Earlier in this
section, an IR white/black sensor performed a similar
function, but the distance at which it works is limited
to a half-inch (1 cm) or so. The circuit presented here
can detect objects as far as several feet away and will
even give you some idea of its distance, as you will see
in the next experiment.

Considering it costs just a few cents, the TV remote-
control receivers (such as the Sharp GP1UD series)
are amazingly complex devices. They continually moni-
tor the incoming IR light and respond to a signal that
is modulated (turned on and off) at 38 kHz. Inside the
TV remote-control receiver, the input signal is
processed, and if a 38 kHz signal is encountered, the
open collector output is pulled low, which allows multi-
ple receivers on the same circuit. Amazingly it will fil-
ter out any constant signals and continually adapt to its
environment. What I discovered with the TAB Elec-
tronics robot is important: It will learn to filter out any
continuous 38 kHz signal as noise if it is left active for
more than a few milliseconds This is why in Figure 10-
19, I have drawn a PWM signal that allows the 38 kHz
signal to be passed to the IR LED only periodically.
Figure 10-20 shows the signal sent to an IR LED and
the response from a TV remote-control receiver; the
delay of several hundred microseconds in the output is
simply theTV remote-control receiver recognizing the
incoming signal and then recognizing the signal has
stopped.

To demonstrate using an IR LED and TV remote-
control receiver for object detection,I came up with
the circuit shown in Figure 10-21.It's wired with the IR
LED bent over and pointing in the same direction as
the TV remote-control receiver (see Figure 10-22). The

a lR LED
0.5% Outy Cycle
PWM Runnins al20 kHz

Opaque Barrier

IR LED has a f-inch (2.5 cm) piece of black heat-
shrink tubing placed over it to direct the IR waveform
away frorn the TV remote control. The circuitry shown
in Figure 10-22 is actually the circuihy for the next
experirnent. The four LEDS are used to determine the
range from the circuit to another object. Only one
LED is required for this application.

The 1k resistor and potentiometer used in the appli-
cation is to limit the amount of current being passed to
the IR LED and therefore to limit the light output
from the LED which will help set the point where
objects will be detected.This scheme is often used in
robots to limit the detection to 1 foot (30 cm) or so,
even though it is not really a recommended method to
limit the detection distance. A better way will be
shown in the next experiment.

The first application for testing this circuit is
asmlR.asm and simply delays for 50 ms the sending of
10 pulses to the IR LED. As the signal is being sent,
the TV remote-control output is being polled, and if
the signal is active for two cycles, then the application
acknowledges an object is in front of the circuit.

tits1e "asmlR - RoIl Your own IR Obj€ct

i Thi6 Progr€m Outpul6 a 38 KHz Sigrnal
r (25 |rs Periotl) aigual
, for 10 Cyclea anaMonilolE a
; IR Tv Rdlole Contsrol Receiv€!
r for ref lect ionE.

r Haltlware Notea:
t PIC15F68{ running at { MHz

t using the Inlernal Clock
; RC{ - IR R€ceLve! Input
r Rco - rnaicator rJED
i RC5 - IR IJED OulDuts

t
i Myk€ Pretlko

[nnnlnnnt-IR LED

ltltL|il1i1;*__;
**:*:T i*

Reflected
Signal Reception

lJ.oDelctll 5 v 100.tr9

Figufe l0-40 IR operation

Contrcl

ig

5

€
p

u
HSignal 10k?

Figure l0-19 IR detector theory

#

2 4 4 l , P 3 P I C o l l C U E x o e r i m e n t s f o r t h e E v i I 6 e n i u s

rrl
X

,rd
(D
Ff
l-r.
3
o
X

rF

\o
N

I

I

U
H

H
F
ov
o
n
r+

a
o
3
a
o
r-J

l

2 0

; 5 C-ycle Deley I.ooD
i for 20 ma

t nJ. coutrta lh€
r Active IR
r Sead 10 cr,clea. A/2
t c:tcl€ at
t a t:ine
r OutsDuts 8 qlclea anfl
i Count Lotlr Iilt
, Delay Fu].l 13
i C?clea in IlooD

i Poll IR R€c6iv€
i If, Rea€t, Increlrents
i Counler
i roggle RC5

t LooD Aglaia?

i trou! Po1ls lrow?
t Carry get if Four

i Tur! on IJED?

, Cerry s6!, j >= {

llhia Progrem Oulputs a 38 KHz Siqlal
(26 Ea 9erioal) .ignal
for 16 CalcIeE uEing the ECCP Ptt!{
a!41 Monitora a IR fV
Remole Codtrol Recel,v€r for refleclions.

Ealalwale !{otes3
PIC16E584 rurr.oing al 4 llHz Using
the Internal Clock
RC{ - IR Receiver Input
RCo - htlicator LED

Iroop:
novlw HIGH ((50000 / 5) + 256,
novwf Dlay
movLw Low ((50000 / 5 l I 256)
atltllw -1 ; Wait to Repeat tbe

, Test
blfac STATUS, Z

flecfaz Dlay, f
g o t o S - 3

Fisure l0-al IR detect circuit

Figure 10-22 Breadboard circuit used to detect
objects and measure the distance to them

, 0 5 . 0 1 . 0 3

IJISI R=DEC
INCLT DB np16f684. iacn

_colltr'lo _ECME![_oFF & _IESO_OrF & _BOD_OFF &
_CPD_OAF & _CP_OFF & _!'ICLRE_O!F & _plfR!!E_ON &
_}IDT,OFF & _INTOSCIO

t vari€lc1€s
CBLOCK 0x020

i , j
DIay
PORTShadlolt

ENDC

, uainlirre

org 0

€nd

Although asmlR.asm works perfectly,I wanted to
come up with a way of performing the same operation
using the CCP's PWM c cuitry. Instead of having to
come up with the 38 kIIz signal for the IR LED in
software, the PWM can do it and tell me when it is
complete by using the TMMIF flag and the 16-times
postscaler. This has some advantages that will become
apparent presently. The changed application is called
asmlR 2.asm.

tille I'aEnIR 2 - Ro11 Your OleD IR Obj€ct
Detectorn

clr f

movrdf
IRLoop:

goro

goto
bt faa

xo!!rf

fl€cfaz
goto

PORTC, 4

1 < < 5
PORTShaalolr, w
PORTShailow
PORTC

IRIJooIt

novlw 4
aubwf j, w

novf PoRTghatlow, re
aEallw or<FF ^ 1
btfsc SAA!!I'S, C

lorhr 1
lrovwf PORrShadIow
novwf PORIIC

aqD

cLrf PORIA
cllf PORTC
movlw 7

novtrf C!{CONo

t For ICD Debug

i Coqrarators

STATUS, RPO
INSEI. ^ 0x80
TRrAC ^ 0x80, 0 r Vj.6ibte right r,ED

, OulDuts
TRISC ^ 0x80, 5 , IR IJED Oulgut
STATI'9. RPO

, CL€a! lh€ PORTC
, Out9ut Valu€

.T;

l
l

clrf PoRlsbailow

Sec t i on Ten Senso rs 245

: - -
, l'.-J rlovlrtr
r t !
ci,t

r For ICD Detrg

bsf
bcf
bcf

c l ! f

IRIJOOP !

b!fsB

incf
bt f ,Ba

go!o

bBf
bsf

nrovwf

lrovlw
aub$f

movf
anatlw
bt fac

iorLw

goto

end

_CPD_OFF & _CP OEF & -!,!CLRE_OF!' & _PVIRTE_ON &

_WDT_OFF & _INTOSCIO

$yk€ Prealko
0 5 . 0 1 . 0 3

LIST B=DEC
rNcrJr[rE rp16f 684. incn

-CONFIG _FCIIEN OFF & _IESO_OFF & _BOD_OEF &

t Variabl€s
CBI,oCK 0x020

DLay
PORTShadlow

ENDC

PAGE
t Mairline

org 0

RC5 - IR LED Outpu! b , 0 1 1 1 1 1 0 0 '

!!2CON

STATUS, RPO
TRISC ^ 0x80,
STATUS, RPO

i

P O R T C , 4

PIR1, TIIR2IE

IRlooD

STAITUS, RPO
TRISC ^ 0x80.
S|!ATUS, RPo

b , 0 1 1 1 1 0 0 0 '
T2CON

3 0

PORTShatlow, rs
o:tFF ^ 1
sraTus, c
1
PORTShaalow
POBTC

IJooD

Rua 1'MR2 for 15
cycLes

IR I,ED OulpuI ON

"j" eount8 the
Active IR
Output 8 cycle6 antl
Count IJow Rx
If RC4 Eigh, Don,t.
Irlc!€dr€nt coudt

Wai! fo! TUR2 to
Time out

*"4

ni
v*

PORTC
7

cltcoN0

movlrd b'00001100'

mowf ccPlcoll
movl$r 13

Turn off
Cof,E)arators

Enable P!0tiI Modle of
ECCP

get th€ Pvt!! output
Reael Conlrol

5 i IR tED Output off

r Tllrn TMR2 Off

ahilty PolLs Low?

Carry Sel if Four

TUIN ON LED?

Carry Set, j >= {

b..:i

i;
i:.j

s
t:1

. f t

**
* 1

X
i *--1i

baf
c l r f

mov\tf
bcf

bcf

IrooD:

adatlw

btf ,ac
f lecfEz

goco

cLrf
bcf

CCPR].L

sTAllrgs, RPo
ANSEL ^ 0x80

PR2 ^ 0x80
TRISC ^ 0x80,

STATUS, RPO

PORTShaalow

Hrcn ((50000 / 5)
Dlay
I ,ovr ((50000 / 5)
- t

STATUS, Z
D1ay, f

TMR2
PIRI, TIIR2IF

clea! lhe PoRTc
OulDuts Value

, get I'uR2 Perioal

0 i visible r,ight r,ED
r Output

By using the PIC MCU's built-in PWM, I have
come up with a method of performing this task that
does not need counted assembly language statements
to create the 26ps-period wave sent to the IR LED.
Because these assembly language statements are not
required, the application could be written in C (as
dernonstrated in cIR.c).

In cIR.c, you may have noticed that I check the poll
count for only a value of 15 instead of 30, as in the
asmlR 2.asm routine. The reason for this was my use of
the 16-bit variable i as the counter instead of an eight-
bit variable. I assumed that the code would take
approximately twice as long to execute with a 16-bit
counter as it would with an eight-bit counter. The
assumption must be reasonable, as the code works
without anv issues.

+ 256)

+ 256,
r Waits to Repeat tbe
i T€EE

5 Cyc].e DeLay Loop
for 20 ns

CI€ar EMR2
Reaet Inte:arup!
Requeat Flagl

2 4 6 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

t{
tt
tn

ils

t v
t1
Fr.
H
{D
x

(A)

!
,

H
w
o
tf

LJ,

o
t !

ff

F
11!

!"t

(A'{

dJ,

r{

q
' A

/n
4

m
t {

({r=t l t
///

Lighl

ExFeriment 93-lH Obiect-Flanging Sensor

Prc16F58 4

38 KHz IR TV remote-
control !eceive!

1 lR LED

4 LEDS

DMM

Needle-oose pl iers

Breadboa!d

Breadboard wir ing kit

In the previous experiment, I used a 1k potentiometer
to limit the amount of curent that passed the IR LED.
By limiting the current,I dimmed the LED's output
and shortened the detection distance. The problem
with this method is that it is not very reliable and
would be difficult to reproduce in a manufacturing set-
ting.If you look at aTV remote-confol receiver's
datasheet, you would discover that as the IR LED's
modulating frequency changeq so does the sensitivity
of the TV remote-control receiver. If you assume that
a brighter signal is required for the TV remote-control
receiver to recognize it (when the signal was different
than 38 kHz), then you would also assume that a closer
object would produce a brighter reflected signal and
would only be detected at a closer distance. The pur-
pose of this experiment is to test this hypothesis.

To indicate the basic distance to an object, I modi-
fied the circuitry from the previous experiment (see
Figure 10-23).The actual differences are minor;the 1k
potentiometer has been removed and three additional
visible light LEDs and three 470O currenflimiting
resistors have been added.These additional LEDs are
used to indicate whether an object is detected at differ-
ent modulatins frequencies.

I 0k res i s t o !

1k res i s t o r

4? of,) resistors

100O !es i s t o !

0 . 01 pF capac i t o r

4? /rF electrolyt ic
CapaCl ' t ,O l

Smn bLack heat-shrink
tub ing I t o 1 .25 i nches
(2 .5 t o 3 cm) i n l eng th

1 Breadboatd-mountable
SPST snitch

I Thlee-cel l AA battely
c 1 i p

3 AA batteries

The base for this experiment's code
(asmlRDist.asm) was taken from asmlR 2.asm. One of
the reasons for using the PWM to generate the modu-
lating IR signal is that it allows changes to the values
passed to it conditionally. By taking the delay and IR
object detect code of the previous experiment and
placing it in a macro,I was able to come up with a code

'R LEO
Sending 38 Kh2

\\\-
l | l

,/,/l

Figure l0-?3 IR ranging circuit

D
l/R 38 Khz

5ec t i on Ten Sensons 2 4 7

base that could test different modulating frequencies
easily as well as ouFut object detections at these fre-
quencies on different LEDs.

tille "aBnIRDist - lteasure Distance with bhe
IR Objecl Detectori

novhr pelioal
novlrf Plt2 ^ 0x80
bcf gTATuS, RPo

clrf 1'![R2
bcf PIR1, fl{R2IF

nrovlw b,01111100,

novwf T2CoN

bsf STAIIUS, RPo
bcf TRISC ^ 0x80, 5
bcf SIIATUS, R"0

cIrf, i

btfsE PORTC, {

blfaa PIRI, 11{R2IF

g o t o $ - 3

bsf STATUS, RPo
bsf TRISC ^ 0x80, 5
bcf gTATug, RPo

movLv b '01111000'
nrovwf T2CON

nov].w 30
auM i, !t

PAGE
, Maialine

org 0

nop

clrf PORTC
novl\r 7

movrdf C!'CONo

bsf STAIUS, RFo
clrf ANSEL ^ 0x80
movllr 0x30

novwf, ERISC ^ 0x80

bcf SfATUg, RPo

clrf PORTSbatlow

IJooD 3
Dley5 ons

rRT€ats 25, 0

t S€l tt'MR2 Peliod

t Clear I'MR2
i Reget Int€lru9t
i Requeal FIag
r Run 1l{R2 f,or 15
r cycl€a

t IR IJED OutDut ON

i "i" countE th€
i Active IR
i If Rc4 High, Don,l
t fncrernent Coun!

t Wail f,or !t'MR2 lo
t fime Out

r IR LED Out9uts Off

r Turtt I'llR2 Off

r Thirty Po11s !ord?
t carry S€l if Four

${
o
n
c
o
a
Utg

.F{

ttt
c
d

€,
I

{J
t l

c,
.ao
&
H

I

{J
c
(,

g
.l-l

f{
c,
9{
X
kl

fhiE Program outputE a drltl-perLotl
(atarling at 38 kxz sigmal,
26 lra Perlotl antl golng to a 31 llEz
signal, 32 Ea P6!Lot[) aLgaal
fo! 16 cyclea uging tsh€ EccP Ptgll
aad l{onitsors a IR w
R€trole Control R€ce:iver for reflecliong.

D€penallng on whLch
gig|ral Proaluced a reflectioa, e gpecific

LED !ri1L be lit.

![he aclual frequeacy, Pelc€nt off ndBinal
andl Rec€Dliv€ Pelc€Dtag€

ia lidted in the ltaclo invocalionB

Nola! lilacroa ar€ ua€tl ext€nsively ir1
this apDlicabion

Eeralware Not€s:
PIC15F58{ ruDniDg at { MHz Uaing
the Int€rnal Clock
RC{ - IR R€ceiver Input
RC3:RCo - Inilicato! LEDa
RCs - rR r.ED Output

uyk€ Preatko
0 5 . 0 1 . 0 7

IJIST R=DEC
rNcrrtDE .D15f 584. iacn

-CO}IFIG _ECMEN_OFF & _IESO_OFF & _BOD_OFF &
_CPD_OFF & _CP_OFF & _MCIJRE_OFF & _PV{RTE_ON &
_!{DT_OFF & _r!|TOSCTO

mov! PORTShatlorr, w
a'1tllrr oxFF ^ (1 << ledl) i cleer IrED Bit
btf,sc STATUS, C

ior lw (1 << l€d) t Carr tz Set , j >- 30
i so Turn on I,ED

movwf PORTShadort
tnovwf PORTC

endm

0a
O\

t VariableB
CBIOCK 0x020

Dlay
PORTShatio!.

E}IDC

i Macloa
DLay50na !{acro

t Eor ICD Det{rg

t CdE aralorsnovLw HrGH ((50000 / 5, + 256\
novwf DIay
novlw LOIq ((50000 / 5 l + 255.
aatdLw -1 r Wait to R€Dea! the

t Teat
btfac STATttg, z

alecfsz Dlay, f
q o t o $ - 3

eudrtr

IRT€st Macro Deriot!, l€d
novlrp b'00001100' , EDabIe PWM !{oil€ of

r ECCP

t 50 ns D€Iay

t Square Wave Oulput

r 5 Cycl€ Delay IJooD
i fo! 20 n6

i Botston { PORTC
i Bitss are
r visible rJight TJED
t OutDuls

r Clear the PORTC
t outpu! value

r 38 . {6 kHz -
, 1 - . 2%/LoO%
r P€rioal = 25 ua,
r LEDo

lrovwf, CCP1CON
movhr Doriodl / 2
movlrf CCPRI!

baf, SIATI,S, RPo

248 l , e 3 P I C @ l l C U E x o e r i m e n t s f o n t h e E v i l 6 e n i u s

DlaysomE

rBTes! 28,

goro

€nil

D1ay5o:lE

rBTest 30, 2

DLay5oms

IREest 32, 3

6.O%/9O"/"
r Periotl = 28
IJED].

L2.2%/ 60e"
r Periotl = 30
T,ED2

t 3L.25 k'lz -

20.o%/35e"
i P€rioil = 32
LED3

DMM

Need le -nose p l i e r s

Breadboard

Breadboald wir iog kit

Although the IR Light provided a basic level of object
ranging to a sensor, the best noncontact method for
measudng the distance to an object is to measure the
flight time of an ultrasonic signal. A number of demon-
stration circuits are available that you could look at,
but the Polaroid 6500 is very commonly used, as it is
fairly available and very easy to interface to. In this
experiment, I will show you how to add a Polaroid 6500
ultrasonic ranger to a PIC MCU and use it to measure
distances.

The Polaroid 6500 is a high-energy device. When it is
active, it requires 1 ampere of current. This is why I
specified a 6-volt lantem battery for this experiment
instead of the traditional AA batteries. This battery will
provide several amps of current for a surprisingly long

After building the circuit, I tried it with both Sharp
and Liteon IR receivers. I was surprised at the nonlin-
ear distances the different frequencies produced for
both manufacturers' products. With a faster PWM base
frequency (i.e., the PIC MCU's clock frequency), mod-
eling of the application could take place, and a better
understanding of the distance detection versus PWM
frequency could be developed.

1 P l C t 6 F 5 8 4

1 Po la ro id 6500 u l t f a -
sonic ranger

r 10-LED balgraph dispLaY

1 10k res i s to r

1 0 .01 / rF capac i t o !

1 1 , 000 pF e lec t ro l y t i c
capac i t o r (see t ex t)

1 6-voJ.t lantern battely
(see t ex t)

period of time. I chose this battery because it could
also be used to power the controlling PIC MCU with-
out a voltage regulator. When the Polaroid 6500 is
active, it creates on-board voltages in the neighbor-
hood of 400 volts (DC). which will give you a surpris-
ing shock (and I am speaking from experience) if you
are not careful.When you are working with the
Polaroid 6500, make sure you never touch a metal
object that could provide a current path through your
body, and definitely do not touch the metal transducer
(the circular perforated metal piece seen in Figure 10-
24) when it is in operation.

The circuit used for this experiment (see Figure 10-
25) is quite simple, although a couple of things should
be noted when you are laying out your own circuit.
First, you'll notice there is no on/off switch in this
application. When I used the traditional EG1903
breadboard-mountable switch (rated for 200 mA, not
the 1 amp of this application),I found there was a

i..- j

' q-i

l. .j

:-,:,
:*
;r:t
fti

fi-

r.l. ,1

:'!1

i"t
1..:,,

i,t

.{;i

:f;

ia

i1,:1
:l-i

! f'\

fri

nr,!
,f.i;

,.1i
t a

it
i'''l

,|?.

Experi ment 9t-l - U ltrasonitrDistance-Flange 5ensor

Sec t i on Ten Senso rs 2 4 9

tt

"*f ",nn" r,nnu,
f :

i; I
i "rrn" ot itisnr' i
jr - Between Init and.--.--1
: Echo (5.4 ms) .

"Echo"

Response

lr: +
r!1 rlistances are measured) along with the breadboard
Ut experiment circuir and 6-volt lantern battery
b

a i t

r , f :

3
t

I
I

LJI

:*-i

: .

Figure fO-eq Polnroid 6500 ultrasonic ranging
module with circular transducer disk (from which

Figure f0-e5 Uhra circuit

significant voltage drop through it and the breadboard
traces that the power passed through. I put the Vdd
wire directly into the Vcc rail and kept the power pin
of the Polaroid 6500 very close to it. In addition to the
lack of a switch and the need to keep power resist-
ances to a minimum, there is a 1,000 pF capacitor
across the application's Vdd and Vss. The purpose of
this large capacitor is to prevent any large draws from

Figure lO-aE Uhra waveform

the Polaroid 6500 from affecting any of the other cir-
cuitry (i.e., the PIC MCU) in the application.

Although wiring the Polaroid 6500 into a circuit
presents some unique challenges, interfacing it to a
PIC MCU is very easy. As shown in Figure 10-26, the
Init pin (pin 4) is driven high, and then the time
required for the ultrasonic signal to be sent from and
return to the transducer is the time it takes for the
Echo pin (pin 7) to become active.

Assuming that sound travels at 1,127 feet per sec-
ond, it takes 73.94 /rs to travel 1 inch. When deterrnin-
ingtbe time of flighl, you have to assume that the
signal actually takes 147.88 pcs for each inch, to account
for the time out and the time back. In the application
code (asmUltra.asm), I rounded up the tirne of flight
to 148 ps per inch to measure the time it takes from
when the Init pin becomes active to when the Echo pin
acknowledges the signal.

In asmUltra.asm, when you look at the LED bar-
graph, remember that the fust LED indicates the dis-
tance from the transducer is between 0 and 1 foot. The
second LED indicates 1 foot and 2 feet, and so on. If
the distance is greater than 10 feet (or an echo is not
returned), the first and last LEDs are turned on to
indicate the error condition.

2 5 0 l , P 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I G e n i u s

Experiment 95-Hobot lFl Tag

1

I

2

1 P r c 1 6 F 6 8 4

2 38 KHz lR TV lemote-
con t ro l r ece i ve rs

].]R LED

BS2-based robot

DUM

Breadboald wir ing kit

I don't go out of my way to watch them, but anytime
"Robot Wars," "Battle Bots." or other robot combat
shows are on, I love to tape them. It's a lot of fun
watching two robots duke it out with parts flying
everywhere, although I shudder at the amount of work
that is being destroyed in just a few minutes. I would
love to take part in the competitions, but I would like
somebody else to rebuild (and pay for) the robots. In
this experiment, you can have many of the thrills of
robot fighting, without the mesE cost, and effort of
rebuilding.This experiment will let two, or more,
robots shoot at each other with beams of lisht and
record the number of "hits."

The circuit and software presented here were origi-
nally designed for the "Thb Electronics Sumo-Bot
Kit," which I codeveloped, but they could be trans-
ferred directly to any other microcontroller-based
robot fairly easily. In the photograph of the circuit
mounted on a Surno-Bot (see Figure 10-27), you can
see the IR LED cannon, enclosed in a piece of 5mm
heafshrink tubing, along with the IR receivers and
four indicator LEDs. The operation of the circuit is
quite simple, by pressing the one-bar button on the
robot's remote control, a specially coded signal is sent
from the IR LED cannon to anything in lront of the
robot (e.g., another robot). If the robot receives a hit
from another robot (the operation of the application
prevents a robot from hitting itself), it registers the hit

High-intensitY white
LEDs

Yellow/Red LED

4 . 7 k r e s i s t o r

100O les i s to r s

4? OF e lec t l o l y t i c
capae i t o r s

Length of 5rnm black
heat-shrink tubing, 1
t o 1 . 2 5 i n c h e s (2 . 5 t o
3 cm) Iong

and increments a counter. This counter can be set for
one, five, or an unlimited number hits until the indica-
tor LEDs flash, letting the world know that the robot
has been "killed." Normally, three high-intensity white
LEDs flash in sequence to allow light-seeking.
autonomous robots to find and shoot at a human-con-
trolled robot. When a robot has been hit five times. the
counter can be reset from the BS2,

Figure l0-a7 Fronl view ofTAB Electronics Sumo-
Bot showing off its IR LED "cannon," receivers,
LEDs, and controlling PICl6F684

5ec t i on Ten Senso rs 25L

i , '

With the robot controlling the motors and provid-
ing basic guidance, the circuit in Figure 10-28 takes
care of the business of shooting and registering hits.
If you have a Sumo-Bot or a Parallax Boe-Bot, you
might think the circuit will be difficult to wire on the
small breadboards that come with the robots, but this
is really not the case (see Figure 10-29).

There are a few things you should be aware of when
you are assembling the circuit:

. The bright white LEDs should be arranged 120
degrees apart. This is important to allow
autonomous robots a chance to "see" their
competition and know when to fire on them.

. The IR LED must have a piece of 5mm heat-
shrink tubing placed over it. If the heat-shrink
tubing is not in place, the robot's cannon will
have a much wider than 5{o-10-degree field of
fire and be able to hit its competitors very easily.

Figure l0-28 IR tag circuit

Figure 10-29 IR tag layout on aTab Electronics
Sumo-Bot Breadboard

. The IR receivers'leads should not be trimmed
so they stick up high above the robot. As I have
outlined the circuit layout, they should be
placed roughly back to back to ensure they
receive signals from all around them.

. Before starting a tournament,I highly recom-
mend that the two robots are placed facing
each other, and that one shoots at the other
until the other starts flashing.Then reverse the
process. This is less to ensure that the receivers
are in place than to make sure the cannons are
properly aimed. Because the cannons are going
into breadboards, they can be easily dislodged
and put back into the breadboards incorrectly.
Before the competition starts, everybody
should be confident that his or her robots can
fire. This process will also ensure that a com-
petitor has not commanded the PIC16F684 to
turn off receiving hits from the two IR
recervers.

The PIC MCU software has resided on a
PIC16C505, PIC16F630, and PIC16F684. It is quite
versatile and easily ported to different devices. I have
taken out the conditional assembly code for the low-
end (PIC16C505) execution to try and make it as read-
able as possible. (You may think this was a losing
battle.) However, I want to point out that the condi
tional assembly code was used only for disabling the
comparators and ADC (which the PIC16C505 does
not have), changing PORTA in the PIC16F630 and
PIC16F684 to PORTB in the PIC16C505, and taking
advantage of the TRIS instruction of the PIC16C505.
This last change was the most significant and poten-
tially the most confusing when you read the code; to
provide a one-instruction access to the TRISA register,
I placed its address in the FSR register rather than set-
ting and resetting the RPO bit of the STATUS register.

Table 10-2 lists the different BS2 commands that
are built into the PIC16F684 for controlling the IR tag
circuit.These commands were chosen to give the user
as much flexibility as possible. Note that the only BS2
command that returns values is 16, not 0x81 that I use
in the BS2 interface applications presented in this
book. I created this application (asmlRTag.asm)
before starting this book, and I followed the BS2 inter-
face built into the Sumo-Bot rather than thinking of a
more generic standard. Second, notice that the robot
will fire only once a second, and if the hit-counter
value has been reached, it can no longer fire until it is
reset.

Ptc16F684

LEO

I (. , Labels Indicate Robot Power/8s2 Conneclions

252 l , a 3 P I C @ l ' l C l J E x o e n i m e n t s f o r t h e E v i I G e n i u s

I also have listed a sample Sumo-Bot application
(called Max 5 Tournament.bs2) for a five-hit touma-
ment competition.This code is loaded into the robot's
BS2 and allows the robot to be controlled by the
robot's remote control as well as fire at its opponent.

This circuit (and software) has been tested on a vari
ety of different Sumo-Bots and has been built by a fair
number of people.Through quite a bit of testing, we
have found that the five-hit tournament seems to be
optimal, giving a minute and a half of combat and an
opportunity for somebody to come from behind and
win. The toumaments are very exciting and as fun as
watching other people's robots destroy each other
on TV.

Table 10-2
B5e Eommands supported bs the PlEl6F6Br-{ lF
Tag MiErocontroller

Eommand Value Comments

TagFire 1 Fire once per second. No firing when
robot "killed"

Turn off the IR sensors

Tum on the IR sensors (default con-
dition)

All three white LEDS are turned off

All three white LEDS are turned on

Toggle the state of the left white LED

Toggle the state of the right white
LED

Toggle the state of the rear white
LED

white LEDS cycle (default condition)

lndicator LED on

Indicator LED off (default condition)

High counter clear

Maximum t hit before LEDS flash/fir-
ing stops

Maximum 5 hits before LEDS
flash/firing stops

No maximum hits (default condition)

RETURN the number ofhits in the
counler

TaglROff 2

TagIROn 3

Tagwhiteoff 4

TagwhiteAll 5

Tagleftwhite 6

TagRightwhite 7

TagRearwhite 8

Tagwhitecycle 9

Taglndon 10

Taglndoff 11

TagHitclear 12

TagMaxHitl 13

TagMaxHits 14

TagNoMaxHit 15

TagcetHitNum 16

f€t
t
t't

yv4

,4

1tJ
F q

L. ' l

I
i

p
0
FT.

.!. t

$rt

ry

rx*

Sec t i on Ten Senso rs 253

S e c t i o n E l e v e n

Motor fontrol

I

1

I

I

1

4

1

1

t

1

I

I

P rc15F68 4

L293D motor driver chip

2N3904 NPN b ipo la r t r ans i s to r s

2N3905 PNP bipoLa! transistors

1N914 (1N4148) s i l i con d iodes

10-LED barglaph disp lay

Servo connecto! (see text)

470 f , 1o -p in res i s to r S IP

10of,) resistors

10k breadboald-mountable poten-
t iomet e !

0 .01 pF capac i t o r

P IC12F575 o r P IC l6F58 4 -
based BS2 cotnnand
si-mulator intelface

DMM

c ^ 1 r a r r n ^ t r ^ n

Solde!

Need le -nose p l i e r s

Wi re c l i ppe rs

Breadboard

Wiring k j . t

Sc i s so rs

Krazy Glue

B!eadboard-mountable SPST s!r i tch

DC motols

B ipo la r s teppe r mo to !

Unipolar steppe! motor (see text)

Radio control selvos

Fou!-celI A,A battely cl ip

Thlee-cel l AA battery cl ip

AA a l ka l i ne ba t t e r i es

S i x -p in 0 .100 - i nch heade r (see
tex t)

Fou r -p in 0 .10o - i nch heade ! (see
tex t)

Ca!dboard

I expect that you feel you understand small DC motors
very well;you've been exposed to them since you were
a small child, in toys and different devices.You've
probably seen how you can reverse the direction of
motor rotation by switching the polarity of the battery
that drives. And, you surely know that you can change
the speed of the motor by adding more batteries. It
doesn't seem like there is much more to understand.

As it tums out, there's quite a bit more, especially
when you consider that the basis of all types of motors
ts the inductor (or coil). To devise different methods of
controlling current and power to the inductor, you
need to be aware of the moderate to high current that
passes through it and of the "kickback" produced
when the amount of current passing through the

inductor is changed. An inductor stores energy as a
magnetic field. When the current passing through the
coil is changed, the coil resists this change, as it will
cause a change in the amount of energy stored in the
magnetic field. This resistance to change takes the form
of large voltage spikes and current transients.

Figure 11-1 shows a simple NPN transistor control
of an inductor. The diode beside the inductor is a kick-
back diode, designed to absorb the voltage and current
transients produced when the transistor turns on and
off. When using a bipolar transistor for motor control,
this diode must always be present. This circuit can be
used as the basis of a DC motor control by changing
the inductor with a relay and then wiring the applica-
tion. as shown in Fisure 11-2.

255

r{

G
f''l
"tJ

o
U
t4
u

L.i

X
,
,

$
P
CI

!*{

l![

ti
! t

" rg

, t

Eu

' "Kickback" supressing diode

Figure l'f-l Coil control

Fiqure fl-? Relay control

The relay motor-control ctcuit of Figure 11-2 is the
first approach many people use to controlling a motor.
This is disappointing because it is redundant, especially
compared with the single-transistor motor control of
Figure 11-3.There are reasons for using a relay in some
applications; for example, the available driver transis-
tors cannot switch enough current to effectively power
the motor or the voltage drop through the transistor is
too high for the motor selected for the application to
work at full power. But for the most part, you should
be using the simple single-transistor motor control.
Not only does the circuit control the basic operation of
tuming on and off the motor, it also allows very fast
switching of the motor, which in turn allows you to use
high-speed pulse wi.dth modulation (PWM) for motor-
speed control, rather than attempting to vary the volt-
age level, which can be very problematic.

There is a basic problem with the motor control
shown in Figure 11-3:The direction of the motor can-
not be reversed. Figure 11-4 shows apll H-bridge cir-
czjl in which the direction of current passing through
the motors can be changed by selecting different

Figure lf-3 Motor control

transistors. In this section you will be building a full H-
bridge circuit using discrete bipolar transistors, and
you will see a common full H-bridge chip that can be
used for controlling two DC motors simultaneously.

A modification to the full bridge is the ftaf H-
bridge circuit (seeFigure 11-5).Although requiring lit-
erally twice the power supply of the full H-bridge, the
half H-bridge requires only half the number of driver
transistors. This circuit has advantages over the full H-
bridge, as it does not require complementary PNP or
P-Channel MOSFETS to the NPN or N-Channel
MOSFET drivers.

In this section, I will experiment with a number of
different DC motors. their drivers. and PIC$ MCU
software control methodologies. I am going to assume
that you understand basic transistor theory and the
operation of PWMs. By doing so we can focus on how
the PIC MCU can be used to control DC motors and
what kind of built-in features are available to take
advantase ol

Flgure lf -f.l Full H-bridse circuit

256 l , e 3 P f C @ H C U E x p e n i m e n t s f o r t h e E v i l 6 e n i u s

rrl
&!f

t?*!

1 V
f j

*-"'

i*e

: i?

5

,€,

:
a

{ 't'

;}|;

!*

9,,
,:,
i . ' �

: a ;
4.";

ExFeriment 9E-DE Motor Driven Using the CfP PIIJM
and U5ing a Potentiometer Control

I specified the particular parts for motor drivers in
the following experiments because these parts should
(a) be easy to find, and (b) work with virtually all
motors. The parts are not optimized for specific
motors, and you will find cases where the motors will
not develop full torque, will drain your batteries
quickly, and/or will get warm.The drivers, motors, and
PIC MCUs used in the experiments shouldn't become
uncomfortably hot to the touch. The purpose of this
section is to demonstrate how the PIC MCU is used to
control motors. not how to desisn moior drivers.

Figure lf-5 Half H-bridge circuit

DMM

Soldel ing i lon

So Ide!

N e e d 1 e - n o s e p l i e r s

$f i !e c l ippers

Breadboa!d

Wil ing k i t

Programming a transistor to turn a motor on and off is
a very simple application for the PIC MCU I would
expect that at this point, you would be able to create an
application that sent a high output to an VO pin that
was connected to a current-limiting resistor and a PNP
transistor. In this application, I want to jump dght to
creating a fairly complex control application that
allows forwards and reverses, as well as speed control
of a DC motor using the full H-bridge circuit (see Fig-
ure 11-6).The direction and speed of the motor is spec-
ified by the potentiometer. When the potentiometer is

Prc16F58 4

2N3904 NPN bipola!
t r ans i s to ! s

2N3906 PNP bipolar
transi sto!s

4 1N914 (1N4148) s i l i con
diodes

100 f) ! es i s t o r s

10k breadboa!d-mount-
able potentiometer

0 .01 FF capac i t o r

B!eadboa!d-mountable
SPSf switch

DC motor (see text)

fhlee-cel l AA battely
c l i p

AA a l ka l i ne ba t t e r i es

centered, the motor is stopped.When the potentiome-
ter is turned toward one extreme, the motor will start
turning and speed up as the potentiometer reaches the
end of its travel. If the potentiometer is tumed in the
opposite direction from center, the motor will turn in
the opposite dfuection, starting off slowly and moving
much faster as the wiper approaches the other stop.
This is a fairly intuitive interface and one that will
allow you to see the operation of the H-bridge as well
as the PWM signal that controls the motor's speed.

I

4

1

1

1

1

1

Section Eleven l ' l o t o r C o n t r o l 257

R{t i)

Itc l

R C 4

R C 2

!

I

l \ l 9 c

5 . 0

Figure l1-5 DC motor circuit

Thc cilcuit (see Figurc 11-6) was designed for using
the PWM capabilities oI the PIC 16F684's ECCP, which
requires RC-5:RC2 to interface to lour motor drivers
and run tr single motor in both directions with PWM
speed control. My prototype circuit was built on a
snall breaclboard as shown in Figure 11-7, and I used a
small hobby motor rated at 4 volts, which I bought at
an electronics storc. The stranded wire used to connect
power to thc motor was soldered to clipped leads so
that they could be plugged in directly to a breadboard.

As I indicated previously, one of the purposes of
this experiment is to control the motors using the
builfin ECCP PWM and a potentiometer, which is
polled oncc cvery 100 n]s for controlling the speed and
dircction of the motor. A PWM frequency of 15 kHz
was chosen, as it allows a 6,t,step PWM control output
and stil l runs above the range of most people's hear-
ing. Generally, a PWM control output of 20 kHz is
desired, as it is above the rangc of hearing arrd will not
affcct other devices. To produce a PWM of 20 kHz, a
TMR2 reset valuc of 48 would have to be procluced,
which requircs passing one third ol the value of thc
ADC, rather than one-half as I have done in this appli
catron.

Thc ECCP PWM is quitc easy to set up but does
not always work properly when PNP bipolar transis-
tors are used. as in this expcriment. The high outpul of
the Plcl6F6ll4 is lcss rhan the vdd applied to rhe PNP
transistor, and when the PIC MCU output was high
(which turned oiT the PNP transistor), somc current
flow remained. To climinate this cun'cnt flow, as well as
any potential current flow to the NPN transistors when

Fiqure 1l-7 Single DC ntotor control circuit using
discrete trqnsistors

they are supposed to be off,I made the pin connectcd
to the base of the unused transistor an input.l 'he
application code is called asmMotor.asm:

title trasnMotor - Controlling a DC Mo!o! f,lom
a P r c 1 6 F 6 8 { n

.'l-
I

]-:_

Ehis Program Monitors a Pot at tA3 (RA3)

DC Uotor Accoralingly. Values less Ehan
0x80 rnove the
motor in reverse whi le Values qreater
than 0r<80 move
the motor forwaltls. I4hen the Pot is
at an extren€. the
ECCP PwM lnoves at f,ul1 speed.

Hardvrare Notes:
PIC15F584 running at 4 MHz Using
the Inter$al CLock

2 5 8 l , a l P I C r ' ' l l C U E x p e r i m e n t s f o n t h e E v i l G e n i u s

t IIAA - Pot Cotlmanal
r RCs/PAA - Motor Forwalals High
t RC{/PIB - ltoto! Revelae Pt, (on Lo$)
r RC3/P1C - uoto! Revelse Hish
t RC2./PlD - llotor Forwarala Pwlt (on Low)

i
r l&lk€ Prettko
r 0 5 . 0 1 . 0 9

LIST R=DEC
INCLITDE'rp16f 68{. incr l

_CPD_OFF & _CP_OFF & _MCLRE_OFF & .PIIRTE ON &
_!|D4!_OFF & _TNEOSCTO

t Vari..bl€E
CBLOCK 0x020

D].ay
ADCVaIU€

EIIDC

PAGE
, Iilainlin€

org 0

grolo $ - 1

movf, ADRESE, w ; Readl the ADC Valu€
movwf, ADcvalue
lnovlw 0x80 t Eorwarala or

t Revelae?

f4
X

b

!-t

i"*

&
;J
f&

I

U

?
l..

t-{

lJ.

<i

{e
B.,e

subwf ADCValu€, w
btf,ss SllATus, c r IreEE than 0x80 go

t ia ReverEe
goto llolorRevera€

lilotolForrrarfls :
mov f ADcvatue r Divial€ ADvaIue / 2

; for PliU Value
CONFIG FCllElN OEF & IESO OFF & aOD OFF & movhr b'01001110' t Eaable Pwu Forwarala

bEf TRISC ^ 0x80, 3 r Turn off Low Sial€
t PtrIP Driv€r l a.\

b8f TRrsc ^ 0x90, { r Tur[off High siale \l/

t NPN Driver r\i.
bcf TRISC ^ OxgO, 5 r firr! od lligh Siale b' I

t PNP Drive!
bcf TRISC ^ 0x80, 2 r Purn oN Low sitle

t NPN Dliver

novlrf ccPlcoN

bBf STATUS, RPo

t with
' P1.A/ PLC lPAB I PLD
t Activ€ High

i PIAIPAC/PLB/PTD
r Active Hish

nop

clrf PORTC
llovlw 7

trovrdf c!{coNo

t ror ICD D6bug

t colqltalaEorB

bcf SllAmS. RPo
bcf STATUS, C
rif ADCValue, w
monnf ccPRlL

goEo IJooD

r Have the llew ADC
r Linit
t wai l 100 ms to
t ResamDle

, Che€sy 7 Bit
i Negation of the

novllr ox?F

novhr b'00000100' r Eaabl€ 5uR2

rnovlw b,00001101' r Enable A.DC on RA{ llotorR€velae!
novwf ADCONo
clrf T!lR2 r u8ing T'![R2 as a PWtl

t Gen€ralor xorwf aDcvalue, f, t R€v€lse ccPRlIr
, Value

movhr b,11001110, i Enab].e Pt{!l Revelae
wfth

nov\rf ccPlcoN

baf STAIUS, RPo

novwf T2CON
clrf CCPR1L

bsf STATug, RPo
novLw 1 << 3
noverf INSEL ^ 0x80

t Foac/8
lrovlrf ADCON1 a 0r.80
novlw 6l , S€tsW) th€ IJlmlt for

, the Ptglr
novwf PR2 ^ 0x80 r 15 kHz Fraquelcy
l rovlw b '000011' t RC5:RC2 Outputs
novwf TRISC ^ 0x80
bcf SEATUS, RPo

movlrr b'01001110' r EnabLe P$u Folwalals
r wilh

rrovwf ccPlco!{

r Nothing uovj.ng
r (YeC)

r RA{ (A!{3) A.DC hput baf TRISC ^ 0r.80, 5 r rurn Off Low sitl€
t PNP Driver

novlw b,00010000, , gelect A.Dc clock aa baf TRrsc ^ 0x90, 2 t rurn of,f High siile
' NPN D!iVET

bcf TRISC ^ 0x90, 3 r rurn On Eigh sial€
t PNP Dliver

bcf TRISC ^ 0x80, 4 t Turn ON Low SidI€
t NPN Driver

i llave tshe Nelr AlC
, rJlmit
r Wait 100 mE to
t Reaarmple

IJooD 3
nrovlw IIIGH ((100000 I 5, + 256) €nal
lna,vwf DLay r DeLay 100 ng

t Betn€en ADc Pol!'a Along with writing the application in assembler,I
movlw low ((100000 I sl + 2s6l
aaLlrw _t translated it into C as cMotor.c as follows:
btfsc STATUS, z

alecfaz Dlav, f
*inclual€ <pic.h>

goto S - 3
/* slroto! - control a Dc Motor usiag a

bsE aDcoNo, co t start ADc
Potenliodreter

blfsc AIrONo, GO i Wail for it to
r f in ish

bcf sTATuS, RPo
bcf sTATuS, C
rlf ADCVaLue, w
novwf CCPR1L

goto IJooP

Sect ion Eleven J ' lo tor Contnol 259

g
(u
.Fl

i.l
rl
t{
o
lJ
ox
U
CI

I
I

lJ
l"a

o
H

.Fl

l{
(,

9{
x
til

\o
o\

lltia Proglam ltonitorE a pot at lta3 (RA3) and
moveE a DC uotor Accotdingly. values less than
0x80 nove the molor in leverse whil€ ValueE
gr€ater tlran 0x80 nov6 tb€ motor forrraral6.
when th€ Pots is a! ar extreme, the ECCP pwlt
novea al full Epeeal.

Hartbrare Notes:
PIC16F584 ruaniDg at 4 MEz Using the rntertral

Clock
RA{ - Pot Cormartl
RCs/P1I' - liotor FonralalE High
RC4/P1B - lilotor R€v€rae PWM (on IJolr)
RC3/!1C - lloto! R€verse Eigh
RC2/P1D - liloto! Forrdalals PWU (on Low)

n[ake gretlho
0 5 , 0 1 . 1 0

-CONI'IG(INEIO & WD1IDIS & PIIRTEN & IICIJRDIS &
I'I{PROIECT \

& IINPROITECT A BORDIS & IESODIS & FCMDIS) t

int Dlayt
// I.ED T:ime on D€Lay va?iable

char ADCValu€i

nain()
t

PORTC = 0t
CUCONo - 7,

// Turn off ConDaralors
A N S E I J - 1 < < 3 t

// R}'4 (AN3) is the ADC rryrur

A.DCONo = 0b00001101t
// Tuln on th€ aDC
// BLE 7 - IJefl iruEtl.fi€dl garll,l€

// BLt 5 - Use VDD
// aLE 4r2 - R?.4
/ I Bi,E L - Do not SEar!
/ / BIE O - !!urn on A.DC

A.DCONI = 0b00010000t
/ / select the c lock a3 Fosc/8

TuR2 = 0,
// I!'tR2 Provlales pwlt p€rioat

PR2 = 6{ ,
/ / L5 Wz pvtlt F!€qu€ncy

r2CON = 0b00000100t
// Enable TMR2

CCPR1IJ = 0t
// O DtiEY C-!'c1€ to start Off

w h i l € (1 = = 1)

N O p O ,
for (D1aY - 0 i DlaY < 5655, Dlay++) t

// 100 lls betveen
NOP O T

// sarE)l€s

GODOT{E = 1t
// R€adI Pob Valu€

tdhil€ (GODONE) t

ADCValue - ADRESE,
// Reaft in ADC Valu€

if (A.Dsvalue > 0x80)
// go Forwarala

{
CCPRUJ = (e.DCVaIue - 80) >> 1,
CCP1CON = 0b01001110t
TRISC = 0b011011,

// eC5/*C2 OulDuc, RC3/RC4 Input
]

€1ae
// Glo in Rev€rae

(
CCPR1IJ = (ADcfalue ^ 0x7F) >> l.t
CCPlcoN = 0b11001110,
TRISC - 0b100111t

// RC5/RC2 output, RC3/RC4 Input
| / / f i

) / / eLihw
l // Enal cMotor

You should be aware of a few things before begin-
ning this experiment. First, the circuit is meant to work
with a wide variety of different small hobby motors.
You may find that the circuit does not have a very long
battery life, the transistors get warm due to excessive
current passing through them, or the motors do not
produce a lot of torque. As indicated previously, the
motor drivers are general-purpose circuits. Therefore
by understanding your motor's parameters and speci-
fied power supply, and by using driver transistors with
appropriate current, voltage, and resistance parame-
ters, your circuits will be more likely to perform at
rnaxirnum efficiency. The four kickback suppression
diodes are not optional, even if you have a very small
motor. And, if your circuit acts strangely, you may wish
to add a 10 to 47 pF electrolyic capacitor to the PIC
MCU's power pins and a 0.L pF capacitor across the
motor to help reduce the electrical noise produced by
the motor.

Do not disassemble this circuit when you are fin-
ished;it will be required for the next experiment.

260 l , P 3 P I C o I I C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

ExFeriment 97-DE Motor Control urith
Simple TMHO PI-UM

rr:
H

t l ,

i.+

t-n

q I

,

. ! t

-.ft

a"r

(J

e
'J
,*t"

' , J

DMM

N e e d l e - n o s e p L i e l s

I [i r e c l i p p e l s

Breadboard

Wir i ,ng k i t

This experiment is a repeat of the previous one, except
instead of using the builfin ECCP PWM circuitry I
used TMR0 to overflow every 1,024 cycles, providing a
timebase for the PWM. By delaying for 32 cycles, a 30
Hz PWM is produced. Although in the previous exper-
iment, I used the built-in PWM hardware to produce a
signal above the range of human hearing, by using
TMR0 I have created a PWM signal b elow human
hearing. Several reasons exist for doing this. First, small
hobby and toy motors often work more efficiently at
very low PWM frequencies. Another reason is to allow
a basic timebase in the software so other events or ele-
ments (including multiple motors) can be synchro-
nized. This is a very important consideration when you
are designing a robot. Finally,TMR0-based timebase
allows the use of low-cost PIC MCUs that don't have
built-in PWM generators.

The application circuit for this experiment is the
same as in the preyious experiment (see the schematic
in Figure 11-6 and prototype wiring in Figure 11-7).

The application code for this experiment is called
asmMotor 2.asm. Along with the reduced PWM inter-
val, I also added a very simple state machine that alter-
natively sets the GO/DONE bit of ADCONO and
reads the value in ADRESH. In the prev ious exper i -
ment, I could poll the state of GO/DONE continu-
ously, as the PWM operates in the background without
any software intervention (other than to disable or

I P rcr.6F 58 4

2N3904 NPN b ipo la r
t r ans i s t o r s

2N3905 PNP bipola!
t r ans i s t o r s

1N914 (1N4148) s i I i con
diodes

100O res i s to l s

10k breadboald-mount-
able potentiomete!

0 .01 FF capac i . t o r

B!eadboard-mountable
SPSr switch

DC moto! (see text)

Thlee-cel l AA battery
c l i p

AA alkal ine batteries

I

1

change the PWM duty cycle). Another difference is
that the pin values of RC5:RC2 do not change, but to
change how the H-bridge operates,I changed the pin
bit input/output mode values in the TRISC register.

tsitle "asntMotor 2 - Dc uolor conlrol uaing a
TllRo TLrrebaaetr

Thia Plogram !4onitor8 a Pot aE &43 (RA3)
anal rroves a DC llotor Accoralingly. valueB
leaE lhan 0x80 nrove the rnoto! in !€velEe
whiLe values greater tha! 0x80 lrove
the rrotor foiwarals. whed the Po! is at an
extreme, the Sof,tware Pl'iU nove€ at fulL
ape€dl.

Halabrale Notea:
PrC16F5g{ ruflring al 4 MHz UBing
tshe Intelna1 Clock
RA{ - Pot Comtrand
RC5/P1A - Motor EornaltlE Hish
RC{/PIB - Molor Reverse PWU (on lrow)
RC3/PLc - uotor Revelse ltigb
RC2IP1D - Uolor Forwardls P$U (on low)

Myhe Preflko
0 s . 0 1 . 1 0

LIST R=DEC
rNcrrtDE np15f 584. incn

_coltI'rc -FcttEN-oFF & _rEso_oFr' & _BoD_oFF &
CPD OFE & CP OTF & I'ICLRE OFF & .PI{RTE-ON &
WDf OTE & INTOSCIO

setrtion Eleven l l o t o n C o n t r o l 26L

t Variables
CBLOCK 0x020

Dilection
iDcstate, ADcvalue
PV {Duty, Ptfl{Cycle

ENDC

PAGE
, Uainline

olg 0

nop

novlw b,010111,

trrovwf PoRTC
movLw 7
movwf cucoNo
novLw b'00001101,
novwf, ADCONo
clrf TllRo

clrf Direction ; llov€ Fonraitlg
goto Motolupala!€

!4otolReverae :
novlw 0x7F , Cheesy 7 Bi! Negatio!

, of the
xoriwf

bcf

r!f

rrf

ADCValue, w i Revers€ CCPR1IJ Value
PI{!4Duty
SltATItS, C t Convelt !h€ Value

; f rdr 7 Bita
Plirllurtsy, f ; to5
STATUS, C
PIgUDuty, f
1

t For ICD Debug

t Set PORTC Accoraling

t OperaEing Palameter6
; lPurn off Corq)aratora

t Enable AIrc on AA{

r uging TMRo aa a Plitlt
t Base

t waits for Timer
t Ov€rf1ow

t Reset, andl Wait fo!
t Next

, gtalt or Reaal ADC?

, Stalt ADC Readl
t Ne:{ts State

i Reaal the A.DC Value

t OriginaL Statse
i Proceaa A.DC Value

i Fofirarala ol Reverse?

i teaa than 0x80 go in

Uotorlrpdale:

novf PliEtDuty, w

i Move Backwalals

t Check Eo upalatse tbe
t Motor
t If Duty > CycLe, th€n

Directiou

s"*s

€ 6

r 1

&.;
t !

n t

:1 I

d.r

I
,

flt

"F{

l'L,
g{

fi

t*i

bsf STATUS, RPo
novlw b,11010001, , 1:{ prescaler to TMITO
no.trwf OPTION_REG ^ 0x80t
novlw 1 << 3 r A,A{ (AN3) ADC fnput
monwf ANSEL ^ 0x80
movlw b,00010000, i geLect ADC Clock as

i Eosc/8
monwf ADCON1 ^ 0x80
bcf STAT['S, RPo

bcf IN'IICON, ToIE , Wail fo! TURO to
i Ov€rflov

clrf A.DCSlale
clrf PwllDuty r Not Uoving ats First
clrf P$UCycle r Start at the

r B€gi ring
clrf Dileclion i lloving Eorwalals

aulnrf P$UCycL€, vt
movlw b,011011, r TRISC Foll'arats
blfsc Dilection. 0 t Fot-walals or Revefse?

novlw b,100111, r TRISC Reverse
btfEc STATUS, C

novlw b,111111, r Turn off lilotorB?
bsf STATUS, R.Po
movwf TRISC ^ 0xg0
bcf STATUS, RPo

incf PWUCycle, f t Increnent tshe Plgtt
i CycLe Count

bcf PWMCycle, 5 , M6ximrll of 32 Stat.eg

goto Loop i Finiahetl, IJoop Alountl
i Again

enal

I created a C version of this application called cMo-
tor Z.c.

*iaclual€ <9ic.h>
/* cuot-ot 2 - Control a DC Uotor using a
Pot€ntsidretet

Thi6 Proglam llonitols a Pot at RA3 (!rA3)
aad moves a
DC Motor Accordingly. Values leEs
than 0x80 nove the
motor in leverse whil€ valu€6 gl6at,e!
than 0x80 nov€
the rnotol fonsarals. A 1 ma looD (proaluceit
by I'MR0) is
u8eal to Droviale a 30 Uz PWU for toy nrotors

Harahrate t{otes 3
PIC16F6g{ running at { MBz Ugilrg the Int€rDal

clock
nA4 - Pot Cdmand
RC5/P1A - Motsor Forwatalg Elgh
RC{/P1B - MoCor Revera€ P}ru (on Low)
RC3/P1C - lilotor Reverae Eigb
RC2IP1D - lloto! Forwartls PWI,I (on lJolr)

rryke Drealko
0 5 . 0 1 . 1 0

IrooD:

b t fss

gfoEo

bcf

INTCON, TOIF

IN:ICON, IIOIF

F"*

btsfEc tDcstat€, 0
goto LDcR€ad

baf ADCONo, cO
baf ADCStat€, 0
golo aDcDone

ADCR€aal:
lrovf A.DRESE, w
fiovrof Alcvalue
clrf A.DCState

A,DCDone:

movlw 0x80
Eubwf ADgvalue, w
btfas STATUS, C

goto llotorRev€rse

lfotorForwarale:
novwf PWuDuty
bcf STATUS, C

rrf PwltDuly, f,
bcf, STATUS, C
rrf PtCDlDuly, f

r Conv€r! Eh€ VaLue
r from 7 BitsE

262 l , a 3 P I C @ l " l C U E x o e n i n e n t s f o n t h e E v i I 6 e n i u s

-CONFIG (INTIO & WIIIIDIS & PWRIIEN & UCI,RDIS &
I'NPROTEC! \

& I'IIPROTECI! & BORDIS & IESODIS & FC!,IDIS) '

char A.DCStale = 0t
cha! ADcvaluei
char Directiott = 0t
cbar PWuDuty = 0t
cba! Pllllcycl€ = 0t

nain ()
t

PORTC = 0b010u1t
// PORTC to Conlrol valueg

CI{CONo = 7,
// \Jt]r otf ConDalatsors

A N S E I T = 1 < < 3 t
// RA4 (AlI3) is lhe A.Dc Input

A.DcoNo = 0b00001101t
// firln on lhe nDC
// Bi-E 7 - teft .tuslifieit Sanpl€
// Bit 5 - use vDD
ll BLE 4r2 - rrA4
/ / BLE ! - Do not Slarl
// BiE O - Tuln oa ADc

aDCONI = 0b000X0000t
// selecE the clock aa Foac/g

1.uR0 = 0 i
// use T!{Ro for a 1 ma D€lay

oPTIoN = 0b11010001,
/ / 1:4 Proacal€r to T! !Ro

T o I F = 0 t
// uae rnt€rrupts EIag for 1 ms

whl.1€ (1 == 1)
t
whiLe (!TOI!) t

// Wait fo! r!|Ro to overflow
T o I F = 0 t

// Reaet f,or Nex! 1 lla D€Iay

if (0 == .aDcstate)
/ / sEart or R€adI aDc?

t
GODONE = 1t

// gtart ADc
ADcgtate = 1,

)
elae

{
ADCvalu€ = ADRESET // Read AlC
irDcstate = 0t

// ReBet stale uachine
, / / f i

tf (aDcvalue >= 0x80)
// Eorwaral Coftlanal?

t
PWUDuty = (ADCValu€ - 0x80) >> 2t
Direction - 0t

)

// Revelse
t

P$UDuty = (llDcvalu€ ^ 0x7E) >> 2t
Di lecl ion - 1t

, / / f r

i f , (0 == Di lect ion)
TRISC = 0b011011;

// Enable Forwaral Bits
€1Be

rRISC = 0b100111;
// Enable R€vers€ Bite

if (Pll!,lcyc1e >= Ir9{!'Duty}
TRISC = 0b111111t

// StsoP !4oto!s

PflUcycle = (Pwt'tcycle + al % 32,

) / / e l ihw
) // Enal cMotor 2

This code is much easier to follow than the assem-
bly code version. But if you look closely, you will dis-
cover that the C code specifying the on/off of the
motor works differently, and even if the PWM has a
duty cycle of 0 percent (fully off), the motor driver will
be on for a very short time (just a few g,s) before the
software determines it should be turned off corn-
pletely. The reason for the difference is primarily an
oversight on my part. I discovered it only when I com-
pared the operation of the two programs line by line
after seeing the very short pulses on my oscilloscope
when I looked at the operation of the two applications.

". fl
t

n
n

h.t

s
r,"d

s"*

fn
F.{

F
H

! { }

5,,i;tr

L;
...-:
r."1.

:t

Sec t i on E leven l l o t o r Con tno l 2 6 3

Experiment 98-Controll ing Multiple Motors
urith PIIJM and 852 lnterface

1

I

1

1

n
[.1

o
i=r
A

f i l

.-f
&

"-l

{J
F{

p
s

tn

F{

,-|

o
i{

c
o
U

I

@
ot

n l

'Fl

H

P.{
f\

t*i

PIC12F6?5 o r P IC15F58 4 -based
BS2 cotunand
simulato! inte!face

DMM

Need le -nose p l i e r s

Wi re c l i ppe rs

B!eadboard

Wiring kit

One of the points I made in the previous experiment
was that multiple motors and complex control soft-
ware could be added to the 30 Hz motor control PWM
software. This is due to the relatively large number of
rycles the code spends waiting for TMRO to overflow
before updating the motor PWM code. In this experi-
ment, a second motor is added to the control code that
executes while waiting for TMR0 to overflow and that
polls for the BS2 instrument interface that was created
in the previous section.

Instead of repeating the build of the four-transistor
H-bridge used in the previous two experiments,I

P1C16F68 4

L293D moto! dl iver chip

B!eadboa!d-mountable
SPST svri tch

DC motols (see text)

Fou!-celI AA battely
c l i p

AA alkal ine batteries

decided to use the L293D chip, which consists of four
two-outputlevel motor drivers as shown in Figure
11-8.The chip includes kickback diodes on the outputq
so you do not have to add them to your circuit, and is
designed for driving two motors with an extra PWM
output control (pins 1 and 9). But for most applica-
tions, I simply tie these inputs high and control the
operation of the motor by changing the level of the
control outputs. The chip runs on a 4.5- to 6.0-volt
power input (Vcc on pin 16) and can switch a higher or
lower voltage i4put on Mot Powr pin (pin 8) . This
makes the L293D useful in a lot of applications.

There are three things you should be aware of with
the chip (1) The 0.7-volt difference between Vcc and
Gnd and the selected output level is due to the bipolar
components used in the manufacture of the chip; (2)
The chip will dissipate a fair amount of heat when a

Figure ll-8 Dual BS2 motor Figure l'f -9 Dual DC motor H-bridse

264 l , e 3 P I C o l ' l C l J E x p e r i m e n t s f o n t h e E v i l G e n i u s

motor is running (caused by the 1.4-volt drop through
the high and low pins multiplied by the current passing
through the motors).The total amount of power the
chip can dissipate safely is 3 watts. It is a good idea to
provide copper PCB heat sinking to the chip via large
fill or f'lood areas on your PCB connected to the
ground pins to wick away as much heat as possible. (3)
The L293D has had spotty availability over the past
five years, with some manufacturers dropping ship-
ments of the chip while others have been ramping up.
The internal kickback diodes make the chip a lot more
useful than does the 75,1410 (also known as the L293),
which is pinout cornpatible but does not have the
diodes on the outputs.

Once you have wired the circuit shown in Figure 11-
08 on a breadboard (see Figure 11-9) and connected it
to a BS2 or simulator application, you can bum
asmBszMotor.asm into a PIC16F684 and test out the
oDeration of the two motors.

The BS2 comrnand and response operation is quite
simple with values 0x00 to 0x3F being used for Motor
1 and values 0x40 to 0x7F used for Motor 2. Like the
previous applications, the middle values (0x20 and
0x60 for Motor 1 and Motor 2, respectively) stop the
motors, values greater than the middle will cause them
to turn forward, and values less than the middle will
cause the motors to turn in the reverse direction. Like
the previous experiment's code, the PWMs built into
this application will have higher duty cycles when the
motor values are further away from the middle point.

The motor software shown here could be used as is
for a BS2-controlled differentially driven (two motor,
one on each side) robot or be the basis of a differen-
tially driven robot that is controlled using the single
PIC16F684. The motor control code and PWM cycle-
count increment take only Z cycles,leaving a thou-
sand cycles for sensor and control operations of the
robot.

14
X

U
o
, >

H.
:t
t U
H

l E

\s
taa

!
I

w
f-, "
ry

(J

H
frr
t$

m
,*&

l u

}15
m
,3

K
LJ

Ft

(,

o
r"t

$
tst

DMM

Solderiog j . !oo

solder

Need le -oose p l i e r s

Sc i s so ! s

Klazy Glue

Wi re c l i ppe rs

B!eadboard

Wi,r ing kit

Stepper motors are very popular devices for a variety
of applications because they can be turned a specified
amount, do not require extemal gearing, and are gen-
erally very simple for which to design driver circuitry.

PIC15F68 4

L293D moto! dl ive. chip

10k breadboard-mount-
able potentiometer

0 .01 F ! . eapac i t o r

B!eadboa!d-mountable

Bipola! steppe! moto!
(see t ex t)

Four-cel l AA battely
c r i p

AA a l ka l i ne ba t t e l i es

Fou r -p j , n 0 .1oo - i nch
header (see text)

Ca!dboa!d

In this experiment and the next, I will introduce you to
the two most corrmon types of stepper motors, unipo-
lar and bipolar, and then to the driver circuitry and PIC
MCU software that will first simply turn them and then

Experiment 99-Bipolar 5tepper Motor Eontrol

1

1

I

1

1

Section Eleven I ' l o t o n C o n t n o l 265

l'!
t r

i !

{:

!J

s3,i

rl t!

fft

tr-{
j-:

&*i
.r,i

a
I

i.,r i

:.-r
* *

ivj

{ii
il .

-oxi

i1 i

control them using a potentiometer, as I did with the
DC motors at the start of the section. To help you
understand how the software works, I will first present
you with C code for driving the stepper motors fol-
lowed by assembler code.

Stepper motors have a few notable characteristics:
They consist of four (or more) coils arranged perpen-
dicularly to each other (see Figure 11-10). These four
coils surround a magnetized shaft, which will be either
attracted or repelled when the coils are energized. To
turn the stepper motor, lhe coils are energized in a pat-
tern that will cause it to turn in one direction or
another. Because of the time required to energize the
coils and because of the inertia (as well as any load
resistance) of the shaft and reduction gearing placed
on the shaft output, the speed of the stepper motor is
much more limited than that of the DC motor. The
reduction gearing reduces the movement of the motor
output ftom 45 or 90 degrees for each change in posi-
tion of the shaft to just a couple of degrees or so to
maximize the torque output of the motor. Along with
the slower speed of the stepper motor, the need to
keep at least one coil energized at any one time will
draw more current than does the DC motor. On the
plus side, stepper motors can be moved a precise
amount, and they produce much more torque than
does a DC motor.

There are two types of stepper motors commonly in
use. The bipolar stepper motor will be presented here
and consists of four coils around the magnetized shaft
(see Figure 11-10).The bipolar stepper motor can most
easily be identified by four wires coming out of the
body of the notor with pairs of wires connected
together through a small resistance (which is caused by
the coils). The high-current push-pull drivers of the H-
bridge are used to alternatively turn the two sets of
coils on and off as well as turn them to different polari-
ties. In Table 11-1, I have listed the poladties for the
different coils to move the shaft by 45 degrees at a
time. This is known as half stepping and requires that

one or two coils be energized at any time. Full stepping
moves the shaft by 90 degrees at a time, and only one
set of coils is energized at any time.

Table 11-1
Half-step Eoil EnBrsization Pattern for a Bipolar
5tepFer Motor

Step Up-DouJn Eoll East-Wesl Eails

South

South

otr
North

North

North

otr
South

otr
South

South

South

off

North

North

North

InTable 11-1, the North and South specifications
are arbitrary and are used to indicate that the polarity
of the coils' magnetic fields changes over the course of
the sequence. Also note that in Table 11-1, I have
emphasized the text of changing coil (one coil changes
in each step).

To test out the information in Table 11-1, I created a
circuit (see Figure 11-11) to drive a bipolar stepper
motor and wired it on a breadboard (see Figure 11-12).
With the stepper motor that I used, the connector
attached it to a double inline connector that could be
plugged into the breadboard (similar to the ones used
in the servo experirnents elsewhere in the book).
Chances are you will not be so lucky and you will have
to solder the individual pins to a single pin inJine
header that can be plugged into the breadboard.

Before burning the PIC16F684 with the following
software, I suggest you cut a sliver of cardboard as a
pointer and Krazy Glue it to the end of the stepper

Stepper Motor

-.:
j
l

Figure ll-10 Bipolqr stepper motor control Figure ll-'fl Bipolar stepper circuit

2 6 6 l , A l P I C @ l l C U E x p e r i m e n t s f o n t h e E v i I 6 e n i u s

Figure lf-le Bipolar stepper motor test circuit

motor's output shaft (see Figure 11-12) so that you can
clearly observe the movement of the stepper motor.

When the circuit is built, you can burn a PIC16F684
with cstepper.c, which takes the information from
Thble 11-1 and uses it to create a simple table for half-
step driving the bipolar stepper motor. In between
steps, there is a quarter second delay, and if your appli-
cation is wired correctly, you will see the pointer you
glued to the stepper motor shaft tuning through 360
degrees (a degree or so at a time). If you do not see
this pattern, you will have to rearrange the wires on
the breadboard until the motor starts working cor-
rectly. (Do not desolder and resolder the leads on the
0.100-inch header.)

*incluale <pic.h>
/* cstepper.c - Tula a slel)pe! lfotot

ilhiE Plogj.aln is baseal on "asmstepper. asmn.

Earakcar€ l{otea 3
PIC15E58{ Rurrdinq at { ltHz wilh Irternal
oEclllator
RC5:RC2 - St.eDDer Uotor Outl,uls

rllzke pleflko
0 5 . 0 1 . 1 5

-CONFIG (INTIO & IIIDTDIS & PVIRIIEN & !{CI,R.DIS &
I'WPROTECT \

& InIPROTECT & BORDIS & IESODIS & FCMDIS) t

PORTC = 0t
CMCONo = ?t

/ / $ri'r of,.E codrparalora
ANSEI = 0t

// Turn off ADC
TRIsc = 0b000011,

/ / RCs,RC2 OutDulB

whi le(1 == 1)

t
N O P () t
f o r (j = 0 , j < 2 1 0 0 0 r j + +) i

N O P () t

PORTC = StepperTalrle lil t

i = (i + 1) % I t

, / / ef rnw
| // End. cstepper

The assembly language version of cStepper.c is asrn-
Stepper.asm as follows, Knowing that the code would
never be longer than 255 instructions, I decided to use
a basic, not the general-case, table for the stepper posi-
tions to simplify the coding.

tiEle "aarsteDDe! - Prc15F684 Bipolar steDlrer
llotor controlu

ThLs Program OuEDutsa a a€w Bigolar st€Dlrer
llotor g€qu€nc€ once every 250 ns.

Ealahdale t[otseE:
PIC16F6g4 running at 4 lGIz usiDg
tsbe raternal clock
ratelnal Rea€t ia us€al
RCs:RC2 - 1,293D gtepDer llolor Control

uyke Pr€alko
0 5 . 0 1 . 1 4

IJIST R=DEC
rNcritDE .p15f 584. Lacn

_coNFrc _EqlEN_oEF & _rEso_oFF & _BoD_og! &
_CPD_OTE & _CP_OFF & _!{CI;RE_OFF & _PWRTE_ON &
_IIIDT_OFF & _INIIOSCIO

t variabl€s
CBLOCK 0x20

DIay, i
E![DC

PAGE
r uainLia€

14
X

t
o,-r
v'
H
o

\o
\CI

I

I

Ud
Fr.

b

p,
t{

m
(}

s
l t

h{

Ko
t ,

t !

: t

d

b,t
\J

uasigE€tl inl i = 0, jt
consl chE! Stepger[able [] = {0b011100, 0b010100.

0 b 0 0 0 1 0 0 , 0 b 1 0 0 1 0 0 ,
0 b 1 0 0 0 0 0 , 0 b 1 0 1 0 0 0 ,
0 b 1 1 1 0 0 0 , 0 b 0 1 1 0 0 0) t

main()
t

uop

movlw | << 2

movwf PORTC

monwf, CUCONo
bsf, STATUS, RPo
clrf ANSEL ^ 0x080
movlw b '000011'

For ICD D€bug

start with Bit 2
Active

Turrr off Collparalors

E ecute out of, Bank 1
A11 BitE are Digrital
RC5:RC2 are Outputa

section Eleven l l o t o n C o n t n o l 2 6 7

F{

o
$.1
1Jc
o
U
t{
o
{J
o
E
${
0,
0{
g{
0,
*Ja
t{
d

F{

o
91

..1
!q

I

lJc
c,g
.Fl

t{
o
9{
X
frl

IJooD:

novwf TRISC i 0x080
bcf gEAltrUS, RPo i ReturE rt €cution to

t Bank 0

clrf t

codsl char StepperTable I I = {0b0U100, 0b010100,
0b000100 ,0b100100 ,
0b100000 ,0b101000 ,
0b111000 ,0b01 r000) t

corlst int On€ng = 83t

nain ()
{

PORTC = 0,
CMCONo = 7t

/ / \rrD, otf Compalatora
A N S E I J = 1 < < 3 ,

// RA{ (A!13) ia tshe ADC IDDlrt

A.DCONo = 0b00001101t
// Eur,r on the ,|IrC

// Bi-t. 7 - Left iluEtifieil Saq)I€
// Bit 5 - Us6 VDD
// Bi t 4.2 - nA4
/ / BLt- f - Do not Stalt
// SiE O - Turn on ADC

ADCON1 = 0b0O010000,
// se].ect th€ clock aa roac/8

novl ir srcH ((25o0oo I 5l + 2561

i Retun H6r€ for Next
i Value

5) + 2s6)
t 250 mE Delay

t i = (t + 1) % 8 t

novcrf DIay
movlw rJow ((250000 /
aaLlLw -1

btfsc STATOS, Z
decfsz Dla!., f

g o t o $ - 3

movf t, w
call StwitchReaal
lrovwf PORTC

goto LooD

gwltchR€ed:

aaLkdf PcL, f t Stayirg L! riral 255
i InalrucElonE

a t r b , 0 1 1 1 0 0 , , b , 0 1 0 1 0 0 , , b ' 0 0 0 1 0 0 , ,
b ,100100 ,

a l r b , 1 0 0 0 0 0 , , b , 1 0 1 0 0 0 " b ' 1 1 1 0 0 0 , ,
b ,011000 ,

€nat

Once I got the stepper moving consistently in one
direction, I then expanded the application so that a
potentiometer would control the operation of the
bipolar stepper motor in the same way as it would con-
trol the DC motors. cStepper 2.c was created to read
the potentiometer wired to RA4 and then to change
the dftection and the delay between steps in the range
of257 to 2ms.

#lnclutle <Dic.h>
/* cgt€9D€r 2.c - Conlrol a gtepD6! ltotor Using
a Pot

Ehis Prog:.a! ia ba6€i[oa nasirst€DD€l 2.asm't.

TRISC = 0b000011,
// RC5:RC2 Oulputg

l rh i le (1 == 1)
{

NOP0,
f o r (j = 0 t J < O n e m s ,
NOPo ,
GODONE = 1'
f o r (J = 0 t j < O n e r n a t
P€rLod = ADRESHT
If (0!ra0 != P€riod)

// loop Foreve!

J + +) t

// starts A.Dc
j++) t

// R€adl Velu€

// olly Move if gofiFthllg Ther€

Ol Halalwsr€ NoreB:

o\ 3::lii:::.-"""*s
ar { MHz witsh rnt€rnar

P€riod c (Periodl - 0x80) ^ 0x7Pt
i = (i + 1) % 8 t
)

61se
// R6verae - rPeriod' OK

i e (i - 1) % I t

POREC = SlepDerlable I il ,
// Uov€ Slepper

while (0 l= Perl.oal)
// DeLay at t{e!r PoaLlioD

{
for (J = 0t J < Onelost j++);

P € r i o a l = g e l L o a l - 1 i
) // elthrd

| / l f L
) / / e l ihr t

, / / EEd, cgleppar 2

asmstepper 2.asm is the assembly language version
of cStepper 2.c and performs exacdy the same func-
tion.

Due to the nature of stepper motors (i.e., having to
delay a set amount between each step), I have not
included a BS2 interface example. It is quite simple,
due to the ability of the code to poll the BS2 clock line
while it is delaying between steps.

{
Lf (0x80 < Pefioal)

t

RCs:RC2 - Slepl)€r Uotor OuEDuta
RA{ - Pot€ntidlet€r Coatrol

ryk€ D!€alko
0 5 . 0 1 . 1 5

-CONFIG(IIITIO & IID4IDIS & PIIRTEN & IICI,RDIS &
I'NPROTECT \

& I'NPRo�IECT & BORDIS & IESODIS & FCI.IDIS) t

unsiglneil tnt t = 0, J,
unaigmetl cha! Perlod,

268 l , e 3 P I C o M C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

DMM

Soldel inq i ron

so lder

Needle-nose pI iels

$ i ! e c l i ppe rs

Sc i sso rs

Klazy GLue

Breadboard

Wi r i ng k i t

The unipolar stepper motor is subtly different from the
bipolar motor in how its four coils are wired. Instead of
current passing through two coils at a time, the unipo-
lar stepper motor is designed with a common connec-
tion between each set of parallel coils that allows each
coil to be turned on or off individually. The normal
wiring configuration of the unipolar stepper motor is
shown in F igure l l - l3 ,wi lh the common wires con-
nected to positive power and the individual coil wires
being passed to open collector drivers, tuming the coils
on in sequence and drawing the shaft toward one coil
at a ttme.

The unipolar stepper motor is usually differentiated
by the nurnber of wires coming from it. Although in
Figure 11-13 I imply that five wires come ftom the
unipolar stepper motor, there are usually six. Each pair
of coils has its own common wire. Some stepper motors
have five wires coming out of them; these seem to be
hybrid unipolar/bipolar stepper motors, where each
pair of coils is wired differently. In these cases, you
should treat the stepper motors simply as bipolar. If
you compare Figures 11-13 and 11-10, you should real-
ize that the unipolar stepper motor can be used in
exactly the same applications as the bipolar motor
when the common wires are disconnected and the four
wires leading to an individual coil are used.

tcl
X

l'zt

{9
l-,1

tr.
fl\

,-*

r-S

LJ

I,

re

$,
$*

{n
r+
{u

{s
ht

ry
!>

r*

e.j

Experiment 100-Unipolar Stepper Motor Control

1

I

P rc16F584

2N3904 NPN b ipo la r
t!ansisto!s

1N914 (1N4148) s i L i con
diodes

100O res i s t o r s

10k breadboard-mount-
able potentiomete!

0 .01 pF capac i t o r

Breadboa!d-mountable
SPST switch

Uoipolar stepper moto!
(see t ex t)

Four-cel1 AA battery
c l i p

AA alkal ine battet ies

S i x -p in 0 .10o - i . nch
heade ! (see t ex t)

Ca!dboa!d

The differences you should be aware of between the
two types of stepper motors are few. Because the
unipolar motor has only one coil active instead of two,
as in the bipolar rnotor, it doesn't have the same torque
as the bipolar motor. On the plus side, the bipolar
motor control circuitry is a lot simpler to program, sim-
ply pulsing each coil in sequence.

Figure 11-14 shows the circuit I came up with for
testing the unipolar servo motor, and Figure 11-15
shows it wired to a breadboard. In Fizure 11-14. vou

Positive Power

CoilContfols

Figure 1'f-13 Unipolar stepper motor control

Section Eleven l ' l o t o r C o n t r o l 2 6 9

can see the six-pin header to which the six unipolar
stepper motol wires are soldered, with the common
wires (found with a DMM resistance check) being
placed in the middle of the connector. Along with sol-
deling the stepper motor wires to a headcr, you should
also Krazy Glue ir cardboard pointer to the shaft of the
stepper motol to observe its motion when you tcst it.

Testirg the unipolar stepper motor is accomplished
in exactlv the same way as testing the bipolar stepper
motor: cStepper 3.c wil l sequence through the coils,
hopefully moving the caldboard pointer continuously.
Again, if i t doesn'1, n]ove the wircs to tltc control tran-
sistors unti l i t cloes. A simpler way of testing and
decoding the wiring is to touch the base connection
(through thc l00O rcsistor) of cach transistor 1() the
Vcld rail of the breadboard.This will tell you which cir'-
cuit is wir.ed to which pin. And thcn you can begin
attaching then in sequence, starting at:

Figure lli5 Unipolor stepper motor circltit using

NI'N tt ttnsistors as motot' contrel drivers

* include <pic.h>
/* cs lepper 3.c - turn a unipolar Stepper Mo€or

This Progra$ is based on " asmsteppe! . asm" .

Earalware Noles:
PIC15F584 Running at 4 MIIZ with lrrternal
Osci l la tor
RC5:RC2 - StePPer Moto! Outputs

0 5 . 0 1 . 1 5

CONFIG(INTIO & WDTDIS & PMTEN
UNPROTECT \

& UNPROTECT & AORDIS & IESODIS

unsigned char outpueval = 1 << 2,

lnain ()
t

POR4C = 0;
CMCON0 = 7,
ANSEIJ - 0,
TRISC = 0b000011t

w h i l e (l = = 1)
{

N O P () i

f o r (i = 0 r i
N O P () i

// r\rrn off conparators
// ?urfl off ADC
// RC5:RC2 Outputs

// Irootrt Folever

Figufell- lq Uttipolorteppercircuit

< 2 1 0 0 0 r j + +) ,

Outputval" = (Outputval & 0x3C) << 1t
i f ((1 << 5) == qrsnoao' . t ,

outputval = 1, << 2i
PORTC = Outputval;

) // eliht^'
I / / E^d cslepper 3

"asmstepper 3.asm" is the t ranslaEion of

As with the previous experiment, I wrote code to
control the movement ol the unipolar stcppcr motor
using a potentiometer. The control soltware is almost
idcntical to that used in the previous experiment with
a 2 to 257 ms delay in the stepper motor movements.
The C language version is called cStepper 4.c:

#include <pic.h>
/* cstepper 4.c - Control a unipolar Steppe!
Motor using a Po!

This Progran is baseal oll "asrnstepper 2.asm".

ttardvrare Nohes:
PIC16F684 Runnins at 4 MHz with lnternal
oscil.l-ator
RCs:RC2 - Stepper Moto! Outputs
RA{ - Potentioneter Control

& MCLRDIS &

& FCMDIS) t

270 l , a 3 P I C @ f l C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

i f ((1 << 1) == Oulputval)
nyke pledko Outputval = 1 << 5t
0 5 . 0 1 . 1 5 ' / / f i

PORTC = Outpulvalr // r4ove Steppe!

_CONFIG(IN:IIO & WDTDIS & PWRTEN & MCI,RDIS & nrhile (0 != Period)
ITNPROTECT \ // Delay at Ne$r PoBition

a ITNPROTECT & BORDIS & IESODIS & FCMDIS) r t
f o r (j = 0 , j < O n e m s t j + +) t

P e l i o t l = P € r i o t l - 1 ;
char outputval = | << 2i) // elihw
unaisneal int j r) / / t i
unsiEneal char Perioalr) // elihw
consE int Onems = 83r , // E!)d cstepper 4

nain() asmstepper 4.asm is the assembly language version
t

of asmstepper 4.asm.
PoRrc = 0t - You might be wondering why an intermediate value
CIqCONo = 7r // \)tn off conparators
ANsETJ = r << 3i / / ""n to"il-rJii"-"o" is used for storing and shifting the PORTC unipolar

rnput stepper motor position value.Instead of:

ADcoNo = 0b00001101;
// t,utn on the iqDC rlf Outputval, w r Shift the Saweal value
t t P- i l - 1 - r ,af l l . r l r<r i f i -d saf f i ta anal lw b '111100' r Clear Out Shi f teal uE)

/ / Bi t 5 - use vDD t Bi ts

tl P.ix 4r2 - pa..t btfsc PORTC, 5 r Ro11 Over?

ll Bit L - fto not Stalt iollw 1 << 2

tt BiL O , t'utn on ADC movwf PORTC r Store Nevr activ€ Coil

A.DCONI - 0b00010000; t Bi !

// Se]-ect the Clock as Fosc/8 novwf OutputvaL r Save New Set Bi!

T R r S c = 0 b 0 0 0 0 1 1 ;
// Rcs:Rc2 ourputs you might think that:

whi le(1 == / / I .oop Forever
{ rlf PORTC, $, Shift Up the Active

NoP() i , Coi l Bi l
for (i = 0r i < onensr i++)r analrw b '111100'
NoP() i bt f5c PORTC, 5 i r f Bi t 5 was Set,
GODONE = 1r // Start AtC r Rolling over
f o r (i = 0 r i < o n e t n s r i + +) r i o r l w 1 < < 2 t t o B i t 2
Perioal = ADRESE' // Reaal value rnovwf PORTC t Save New gteDper

i f (0rr80 t= Pel iod) i value

// Only Move if SonelhinE rhere
{ is more efficient. as it saves an instruction and a vari-

i f (0x80 < Per iod) / / Fondards
r ab le . lhe prob lem wi th lhe second melhod rs lha l lhe

period = (period - oxso) ^ 0x7Fr voltage across the pin is at the one-halfvdd threshold
outpulval = (outputval & 0x3c) (i.e., the threshold that determines if thepin ishighor

<< 7. i
lor.r and r.r hen it is read). and therefore the value isa ! ({ r < < o , = = u u E p u t v a r ,

ourDulval = t .. zt indeterminate. By putting a larger resistor on the base
) 6f the driver transistor, there should be a noticeably
tt"t

,, *..r.rr. - rperiodr oK high voltage at the output pin. But I wanted to keep
(the circuit as general as possible and provide the maxi-

outputval = (clutputval & 0x3c) mum current switching possible so I left the 1000
>> 1'

resstor and added the variable.

Sec t i on E leven l ' l o t on Con tno l z , l L

Experiment l0l-Fladio-Control Model 5ervo Control

f ''-:

i::.:j:l

!: :,

DMM

O s c i l l o s c o p e

N e e d l e - n o s e p 1 i e ! s

Wir ing k i t

When you are fint getting staded with robots, I highly
recommend using radio control servos for drive
motors. Servos are quite inexpensive ($10 or less, and
cheaper than many DC motor driver kits or gearhead
motors), surprisingly powerful, and very easy to wire
into an application as you can see from the schematic
circuit for this experiment (see Figure 11-16), which I
built on a breadboard (Figure 11-17). Electrically, all
you need is a 4.5- to 6-volt power supply, a line from a
PIC MCU to drive it, along with a servo connector
built out of a couple of three-position,0.1OO-inch, in-
line connectors (see Figure 1l-18).

If you are looking to use servos for driving a mobile
robot, they will probably have to be modified for con-
tinuous rotation. In 123 Robotics Experiments for the
Evil Geniw,I go through the basic steps required to

Figure 1116 Servo circuit

Prc15F58 4

0 .01 , uE capac i t o r (any
tYpe)

10k breadboa!d-mount-
ab le po ten t i ome te r

470C) 1o -p in res i s t o r

10-LED balgraph di splay

Servo connector (see
tex t)

Radi.o control selvo

B!eadboard-mountable

Th ree -ce l l AA ba t t e l y
c l i p

modify a servo for continuous rotation. A quick
Google search should find the information for your
servos very quickly. Each make and model of servo
requires slightly different modificationq and with sev-
eral hundred different servos available, it would be
impossible to try and list the modifications for each
one here.

The control signal passed to the R/C servo is known
as a digitally proportionaL signal,whtch is quite a
mouthful for something that is really a modified PWM
signal.The period of the signal is 20 ms with a pulse
and a duty cycle that ranges from 1 ms to 2 ms, with
the time between beins the set position of the servo.

Figure lllT Servo control circuit built on a
breadboard

1

1

1

1

1

1

: . .

I

i' :..:
i^. I

-:
-r,

I

2 7 2 l , e 3 P I C @ l ' l C l J E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

nop

PAGE
Mainline

. :

. lcl.rf PORTA
clrf POR!rC

movlrf c!,IcoNo
m o v l w b , 0 0 0 0 1 1 0 1 ,

i For ICD Debug

t conlDaratols

r EnabLe A.DC on RlA4

, Enable t�IiIRo with
i {x PleEcale!

A.DCONOFiSUte l'f -18 Serv o-to- breadboard connector made

Irom two three-pin in-line connectors soldered
together

Some servos require a 1 to 1.5 ms pulse, but you should
be able to identify these quite easily using this circuit.
And, if you have such a servo, modifying the signal
generated by this experiment is quite easy.

In this experiment, I use a potentiometer and the
PIC16F684's ADC to specify the position of the servo.
The value returned from the potentiometer is dis-
played on eight of the 10 LEDS built into an LED dis-
play bargraph.This function was odginally put in to
debug the ADC operation, but I left it in because I
liked seeing the LEDs move with the servo.The code
for this application is asmServo.asm.

titl€ naamservo - Cotttlol1ing a Servo from a
Prc15F584n

; lfhia Progiam uonitors a Pot a! RtA3
. (RA3) and movea a
i Servo at RiA5 Accolaling!.y. LEDg Inflicate
t lhe Poal t lon of the Pot.

i Eartl are Not€a:
t PIC16F58{ runaing 6ts 4 MHz Using the
t Interaal Clock
t ItA4 - Pot CdEnanal
t RA5 - gervo Connection
#alefine servoPin PoRTA, 5
r RC43RC0 - Bi ls 7:3 of LED Oulput
, RA2 3RA0 - Bils 2:0 of, IED Output

r utrk€ Pledlko
i 0 4 . L 2 . 2 6

I,IST R=DEC
rNcr.uDE "pl6f 58{. inc'

CONEIG _FC![EN_OFE & _IESO_OFF & _BOD OFF &
CPD OEF & _CP_OEF & _MCI.RE_OFF E P!'IRFE ON &
wrt! oEF & _rMtoscro

t VariabL€s
CBLOCK 0x020

TerE), DLay
Servocounl
Servos!at'e

ENDC

bsf SEATUS, RPo
nrovfnr 0xD1

movwf OPTION REG ^ 0x80
mov1ff 1 << 3

morrwf ANSEL ^ 0x80
movl l r b,00010000,

morr'wf ADCON1 ^ 0x80
rnovlw b '011000'
monwf TRISA ^ 0r.80
clrf TRISC ^ 0x80
bcf STATUS, RPo

clrf gervostate

movLw 0x80t

novwf gervocount

rnovLw I I IGE ((20000 / 5)
nov{rf DLay
movlw IJOW ((20000 / 5)
aatallw -1

btfsc sTATus, z
alecfsz Dlay, f

g o t o S - 3

LOOD:
bsf servoPin

cLrf, !!MRo
bcf, INIICON, ToIF
bsf INTCON, TOIE
btfsc Servoslate, 0

gotso Reaala.Dc
StaltADC:

bsf ADCONo, GO
bsf S€rvoslate, 0
goto ADCDone

R€A'IADC:
novf ADRESB, vt
movwf S€rvocount
a n d l w b ' 0 0 0 0 0 1 1 1 '

iorfto 1 << 5

novwf PORTA
rlf, Servocount, w
novwf Tamp
€rsapf Temp, w
andLw 0x0F

, VJail for Ov6!f1o{t

i calculate value in
' -'

r 1 ms PulBe .,...

, RA4 (}N3) ADC
, InDuts

, Select ADC CLock
i as Eosc/8

i BA4 /aA3 As Inputs

i AII PORTC Outputs

i U€e Simple Servo
, Stat€ M/C

t Start with Servo
, in Middl"e

i Wait for ADC Input
, lo be valid

t 5 Cycle Delay Loop
i f,or 20 ma

t Output a Servo
r Sisnal

.t"

, Start ADC

t Reatl ADC Value

r Display lhe a.DC
t Value
t Make Sure gervoPifl

r Stays Bigh

r Neeal Top 5 BitE

Section Eleven l l o t o r C o n t r o l 2 7 3

Experiment 102-Mult iple 5ervo Control
Softr-uare 5tructure

1

1

r"€

f . :

.i .|

.:-

{ .

{s

a i i t

=J

:*'*-*

;

.=:

l;i

: '

#

4

btfsc
iorlw

bcf
A.DCDone 3

nrovf

bt fsc

aublct

bt faE
gto!o

movwf

movf

b! f ,aa
golo

bcf
bt faB

gloEo

STA!!US, C
0x10
PORTC
Servoslate, 0

Se!-vocounl, w

sTATgS, Z
1
0

INTCON, TOIE

TMRO
INTCON, TOIF
Servocounl, !t

INTCON, TOIF

ServoPin

TMRO
INTCON, TOIE
INTCON, TOIF

DMM

Osc i l l oscope

Need le -nose p l i e r s

Wiring kit

As I said in the previous experiment, servos are very
easy to wire into a circuit. To add a second servo to the
previous experirnent's circuit, all you have to do is add

. an additional servo connector as shown in Fisure 11.18.

There isn't a lot to this application that should sur-
prise you. I use TMR0 to create the delays or 1,024
cycles for the 1 ms delay, and then I use it twice to cre-
ate the servo position delay. Reading the ADC takes
place in the first 1 ms delay, as the operation takes
about 15 /r.s. So there is no chance of it taking longer
than the delay, and this makes the servo control opera-
tion completely s€f-contoined. (Self-contained opera-
tions will be discussed in the next experiment.) The
three TMR0 delays end up lasting a total of 2 ms,
which means I simply have to delay for an additional
18 ms to get a total PWM period of 20 ms.

Prc15F68 4

0 .01 pF capac i t o ! (any

tYpe)

10k breadboald-mount-
able potentj .ometer

470 () 10 -p in res i s to r
srP
1.0-LED bargraph dispLay

Servo connecto!s

Radio control servos

Bteadboard-mouotable
SPST switch

three-cel l AA battery
c l i p

r Atld Top Bits

t R€Peat

t Gel Reaal rdth
i Servo Value

t rf zero, t{ake 1
t Tahe i! away fron

lgait for overflow
Bepeat tso g€ts 2 m6
Delay

Finish€al wiuh the
gervo

Wait for ovelfIow

novLw]Jow ((18000 / 5)
etldl!.w -r

btfsc STAIUS, Z
decfsz Dlay. f

g o t o $ - 3

goto]JooD

+ 2 5 5)
t vlanh 20 ms LooD

r 5 cycl€ Delay],ooD
t for 20 ms
t ReDeats

IIIGE

Dlay

((1 8 0 0 0 / s) + 2 5 5)

I

1

3 AA batteries

In addition, the additional code is surprisingly simple,
especially considering that the second servo operates
completely independently of the first.

2 7 4 l , P 3 P I C @ l l C U E x p e r i m e n t s f o n t h e E v i l G e n i u s

Servo2counl, Servo2slat€, Servo2Dlay
ENDC

PAGE
r UainLine

t l

*?4

t*,

1 :

nop

clrf PORTA
clrf PORTC
movlw 7
monwf otcoNo
n o v l w b ' 0 0 0 0 1 1 0 1 ,
novwf alcoNo

bsf STATUS, RPo
movlw 0xD1

t For ICD D6bug

, llrra off CodE)alators

, Elable llDc on Riall

, Enabl€ I'MRo !d.th 4x
i Preacale!

Figure ll-19 Two-servo circuit

The code for this experiment (asmservo 2.asm) is a
modification of the single-servo application, with code
added to hold the servo at one extreme for 600 ms,
move it to the other extreme, hold it there for 600 mq
and then move it back to the original extreme. This
operation is carried out using a software state machine
that is built into the 1 ms initial pulse delay of the
servo pulsg just like the potentiometer reading for the
first servo.As both servo operations take 2 ms each,
the final delay is reduced to 16 ms, so the loop (and
each servo's PWM) period remains at 20 ms.

titLe rraamservo 2 - Controlling two a Servos
f ldr a PIC16F684rr

i ![hia Program ltorrLtors a Pot at RA3
t (RA3) anfl nov€a a gervo at BA5 Accortlingly.
r LEDa Intlicate the PoEition of the Pot. A
i aecond aerro, coanected lo RCs will nove back
r anil folth undl€r a ginp1e p!€-Drogranrleal
i routine.

t Hartbrar€ l{otea:
t PIC16F68{ ruuing at { UEz Using the
r I|tternaL cLock
r RA4 - Po! CotElanal
r RAs - S€rvo 1 Corrnection
#alefine servol.Pin PORra, 5
r Rc5 - Servo 2 CoEnection
#define Servo2PiD PORIE, 5
r RC4;RCo - Bila 7:3 of LED OutsDuts
r BA2:RAo - Bits 2r0 of, LED OuEpul

t Myke Pletlko
, 0 4 . L 2 . 2 6

I.IST R=DEC
II i |CLUDErt916f694. inctr

_coNFIG EC!|E!{_OEF & _IESO_OFF & _BOD-OFI' &
_CPD-OFF & CP OTF & _MCIJRE_OFF & _PWRTE_ON &
_wD4!_OFr & INIOSCIO

monwf OPTION_REG ^ 0x80
movlw 1 << 3 r RArt (.BN3) A.DC hput
mor cf AliIgEL ^ 0x80
movlw b.00010000, r se1€ct A.Dc c lock as

t Foac/8
mor of ADCON1 ^ 0x80
movlw b,011000, r RA4/AA3 Aa Inputs
movtdf, TRISA ^ 0x80
clrf TRISC ^ 0x80 r All PORTC Outputs
bcf STATSS, RPo

clrf S€rvolgtate t use SimpL€ g€rvo

, state M/c
lrovlv 0x80r i gtart wilh servo in

r Miildl€
rrovwf gervolcouat

cllf gervo2stsate

novl$ 0x20 r stsay in Po6ilion fo!
; DUU InS

movlrf gervo2Dlay

movlw EreB ((2oooo / 5> + 256>
movwf Dlay
movLw Low ((20000 / 5 l + 2561
adltlLw -1- t wait f,or ADC Input

t to be Va]-ial
btsfac STATUS, Z

atecfsz Dlel', f
g o t o S - 3

LooP:
bEf gervolPin

clrf TllRo
bcf INTCON, ToIa
bgl INTCON, ToIE
btf8c S€reo1statse, 0

golo ReatlADc
SlaltADC I

baf A.DCONo, GO
bEf gereolstale, 0
goto ADCDone

R€adADC r
movf ADRESH, $
nov\sf gervolcount

aaal lw b,00000111,

LorLw 1 << 5

mo"lrf PORTA
rlf gervo].counts, w
movwf Tenp
swaDf TetDp, w

; 5 C!'cle DeIaY Lo<'E)
t f,or 20 lla

t Oulput a Servo
, sigmal

, vfaits for Overflow

t sEarE Arrc

r Reaal LDC Value

r DisDlay the ADc

t KeeD Servo ConlroL

r Neeal Top 5 Bits

F - r

!
I

*

c-,,,

ir"

{U

cn
/n
11

\-,
q

.-fr
F3

t Variablea
CBIOCK 0x020

Te![I), Dlay
ServolCoun!,

Section Eleven [' l o t o r C o n t r o I 275

FI

o
f{
JJ
g
o
U

o
${
0)(n

o
F-f

P{
.Fl

{J
F{

Fl

x
I

I

{J
g
0,
E

'r l
t t
0)
9r
X
{rl

aaal].$ 0x0F
btf,ac STAIIUS, C

iorlw 0x10
movwf PORTC
bcf S€reolgtate, 0

i Value

r If zero, Make 1
, Iake lt away frofir

btfaa INTCON, TOIF
g o t o $ - 1

novwf T!m.o
bcf INTCON, I0IF r WaLt for Overflow
movf, gorvolcount, w t ReD€al to g€t 2 na

t DeLay
btfsa INACON, ToIF

g o l o $ - 1
bcf g€rvo1Pl.n

novlrf lltRo
bcf IN:!CON, T0I!
btfaa rNTcoN, T0r!

g o t o $ - 1

bBf g6rvo2Pin

clrf TllRo
bcf INTCON, TOIT
bsf INICOII, ToIE
eovf g€rvo2gtat€, 0
xorhr 0
btfac gTATttg, z

goto g€rvo2state_o

laorlvr 1 ^ 0
btfsc STATUS, Z

goto gervo2gtat€_l

xollhr 2 ^ t-
blfac STATUS, Z

goto g€rvo2gtat€_2

s€rvo2gEat€_3:

bcf STATgg, C
rlf gervo2Dlay, w
noverf Tetqp
r l f rerE, f
r l f TetE, f
r l f TetE, f
lrovf t6tqr, rtr
blfsc gTArVS, C

novhr or.FF
novwf Servo2counl
alecfsz Servo2Dlay, f

goto Servo2Doa€
cllf Selvo2slate
novlw 0x2O
lrovlrf gefiro2Dlay
goto gervo2Done

servo2gtate_1:

bcf gTATug, C
rlf gervo2Dlay, w
r[ovwf TenD
rlf T6nD, f
rlf Tern9, f
llf T€tqr, f
novf T6q), rt
btsfac S!!Al[oa, c

novlrr oxEF
aulchr 0
novwf g€rvo2count

alecfsz S€rvo2Dlay, f

r Aald Top Bil

t Repeal
ADCDone:

rnovf Servolcount, w i Get Reatl with g€rvo

btf,Bc STATUS, Z
movhr 1

aubllr 0

goto servo2Done
lncf gervo2stale, f t wait at Extrqle
novl$ ot<020
novcrf genrozDlay
goto g€rvozDone

Servo2gEate 0:

s€rvo2s!ate_2:
lrovhr OxFr

clrf s€rvo2count
alocfaz s6rvo2Dlay, f

goto gervo2Done

lrovlv 0x10 t !4ove !o Other
t ExEl.dr€

novlrf s6lvo2D].ay
incf S€rvo2gtate, f
gtoto Servo2Done

, Al Orisinal Poinl

i At Extrem€

r I4Iai! for overflow

, qlnLsh€al lgith th€
, gervo

t Wail for Overflow

t gervo2 coale Baaea[on
t g€rvo 1

t WaLt fo! Otr€rflolt

i !ou! ger,uo 2 slat€s

novwf gervo2cou,lt

dlecfsz gervo2Dlay, f
goto gervo2Doae

novlrd 0x10 i llove to Oth€r
,. Extreme

nrovwf gervo2Dlay

incf g€fvo2gtete, f
Servo2Doner

nrovf s€rvo2counts, w i Get R€aal vith S€firo
i VaLue

i Lf. z.ro, !{ake 1 lo
t Avolil Negatioa Elror
t Take it array frorn

btf6s r!q!co!{, TorF
g o t o S - 1

novwf TllRo
bcf IN!!CO!{, !!oIF t weil for Ctv€rflow
llovf, Servo2count, w i R€trreat to g€t 2 ns

i DEIEY
btfas rN:!coN, TorF

g o t o S - 1
bcf servo2Pin t Finished witsb tshe

; gervo

btfsc sTATug, z
novLw 1

sublw 0

novwf T!{Ro
bcf INIICON, !!oIF
blf,aa INIICON, ToIF

g o t o 9 - 1

adtUw -1
blfBc STA!!US, Z

alecfEz D1ay, f
g o t s o S - 3

goto IJooP

, eoing to oligirel
i E rlr€ne

r llulliDly blz 15
movlw HIGH ((16000 | 5 l + 2s5l
novwf Dlay
novlw l .o l l ((15000 I 5) + 255,

f\
o
Fl

t At Exlleme

t Oth€FdiE€ Store

t Wait At Extrdte

t cioLng to oth€r
t Extrdn€

r lrultiDly b!' 16

t want 20 na LooD

r 5 C!t'c1€ Delay l.oop
; fo! 20 mE
i Repeat

enA

This application demonstrates that you can create
surprisingly sophisticated operations in the PIC MCU
even when you have a limited amount of time to cre-
ate them. The second servo state machine requires
around 33 instruction cycles to control the servo; about
30 times fewer cycles than are available. With many
robot applications, it isn't unusual to see a variety of
different functions "tucked inside" the servo delay
loops and using the PIC MCU's built-in timers.

t Al Exlrqle

r Negate il
t Olh€rwige Stor€

2 7 6 1 , , e 3 P I C @ I ' l C U E x p e r i m e n t s f o n t h e E v i l G e n i u s

PIC12F6?5 o ! P tC16F68 4 -
based BS2 coftnaod simu-
lator interface

DMM

Osc i I l oscope

Need le -nose p l i e l s

W i r i dg k i t

In the previous two experiments, the full eighfbit
value of the ADC was used to specifl the position of a
servo, and this worked quite well. As will be shown in
this experiment, the BS2 interface, as designed, cannot
send an eight-bit position value along with a command
value, which limits how the controlling se os can
move. Along with the restriction on absolute number
of bits that can be sent, there is also a restriction on
when data can be sent to the receiver.This further
reduces how data can be sent to the servos. In this
experiment, I will demonstrate one way of solving
these issues and discuss how to decide on the best
method oI implementing this [unct jon in your own
applications.

Using the program base of the previous experiment,
I changed the application so that if a BS2 command
came in when the servos were being written to, the
command would be ignored. If the servo command was
processed while the servos were active, the pulse would
be extended, which would result in an unexpected
move command. In Figure 11-20, this is indicated by
the shaded Windows in which received commands are
accepted. The problem with this method occurs when
the BS2 command is active, the PIC MCU software has
finished sending the control pulses to the servoq and a
low BS2 clock is encountered. The protocol used to
send the data to the servo-controllins PIC device must

2

1

1

Prc15F58 4

0. 01 /rF capacito! (anY
type)

Servo connecto!s

Radio control selvos

Breadboa!d-mountable
SPST switch

Three-cel l AA battely
c l i p

AA battel ies

Breadboa!d

be able to sense that the command is not comDlete and
should be ignored.

The basic BS2 command-interface software does
handle a good portion of this function by terminating
reception if a timeout happens while waiting for addi-
tional clock pulses. In addition to this basic capabllity, a
method is required to determine whether or not the
data is valid and to feed back to the BS2 an indicator
of whether or not the command has been accepted.

The way I solved these issues was to send only a
response command to the PIC16F684, with certain
restrictions. The first restriction is that as a response
command, bit 7 of the eight bits sent, is always set. If it
is low, the command will have to be ignored. Because
there are two servos, a bit must be allocated to specily
which servo the command is being sent to (I used bit 8
of the incoming data packet). Finally, to ensure the
data is valid, the last bit must be zero (the reasons why
will be explained in a moment).This reduces the num-
ber of position bits to five and provides the servos with
onlv 32 different oosition states.

servotL

Servo z fl fl

Figure l1-?0 Servo available

ffi
!,,
ar

i v
&!!

s-?

\ I,J
!*{

:
I

ra
f

5
I

;

r-qJ
! :

"q'

! i

*E

&:
i ; ,

Experiment 103-Tr-uo-seruo Flobct Base
uJith Bsa lnterface

w

Section Eleven I ' l o t o r (o n t r o I 2 7 1

The reason for making the least significant bit zero
is to handle the case where data is partially sent when
the data-read window becomes active and some of the
bits are read. After sending eight bits, the BS2 will put
its data pin into input mode, but the PIC MCU will still
be reading the primary command data, and its data pin
will be in input mode also. Because the PIC MCU data
pin is pulled up, a 1 would be received as the least sig-
nificant bit, which is invalid. Therefore the PIC16F684
controlling the application would reject the command.

I decided to use the response command instead of
the straight eight-bit command because if the received
command was invalid, the PIC16F684 would not
respond (because the command had bit 7 reset) or
because bit 0 was set. In the case where eight valid bits
were received, the PIC16F684 would attempt to
respond with the eight times the servo-position value
sent or with 0xA5 to indicate that the command was
not received.These responses (i.e., anything other than
eight times the servo position) indicate to the sending
BS2 or BS2 simulator that that the command was not
received and the servo position information has not
changed.

This method, while seemingly complex, worked very
well on the prototype circuit (see Figue 11-21) used
with the asmBS2Servo.asm software and connected to

]To Servo 1

Figure ll-al BS2 two-servo circuit

a BS2 simulator. If the position information was
invalidly received, the LCD display on the BS2 simula-
tor would either have an invalid value or a value of
0xA5.

When deciding how to implement a communica-
tions protocol like this one, a number of issues should
be considered, and, as I will discuss in the next section,
a number of different options should be reviewed. In
Table 11-2,I have listed four options for implementing
a BS2 command and their comments. While the
method presented here isn't what I would consider the
best, it was the easiest to implement with an unmodi-
fied BS2 simulator on a workbench.

Table 11-2
Eomparlng Dlfferent MethodE of sending servo Position Baia from a BSa or simulalor

n l

d
na
+J

ta
o
e6
o
${
(,

a
I

o
F
F{
I
I

fn

16

{.}

H
.r{

t{

P-,
X

Expand the data packet

Add a "handshaking" line from
the servo controller to the BS2

Send five-bit servo position along
with servo and reset bit 0

Send two packets with eight bits
of position data for specified servo

16-bit data word from BS2

After se o commands complete, enable
"Bs2Receive" pin until5 ms before next
set of servo pulses

Send servo position, expect
position * 8 returned

1. Send high four bits of servo position
2. Send low four bits of servo position
3, Send rcsponse command to verify servo

position information received

Eommentg

will require custom software instead of shiftin and
shiftout commands The resulting waveform will not be
compatible with existing softwa.e.

Disable "Bs2Receive" 5 ms before next servo pulses to
avoid changing software timing. Eliminates reset bit 0
and gives a maximum of seven servo position bits. Adds
requirements for an additional pin to be used.

Method used here: OnIy frve position bits but could be
used for mobile robot d vingse os.

Longest packet length but properly received four bit
values could be saved to avoid resending data.This is
the most difficult method to test on the workbench with
the BS2 simulators

ODeration Seauence

278 l , e 3 P I C @ I ' l C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

S e c t i o n T w e l v e

Solving Programming ProblemE
in PIE@ Microcontrol ler
Fssemblg Language

A good test of your ability to develop assemblyJan-
guage applications is to attempt to develop programs
in assembly that perform functions that are normally
programmed in highJevel languages. The class of pro-
grams that might be most effective for this experiment
includes traditional mathematical programming prob-
lems and conversions that don't require a lot of learn-
ing to understand how they work, but may require a
bit of thinking to solve them effectively.

The problems and solutions listed in this section
were originally developed for grade 12 (senior year)
high school students to leam about assemblyJanguage
programming. The assignments themselves are quite
simple. None require more than 50 assembly source
code lines. Each student was given one of the assign-
ments listed below and the task of researching the
requirement and then coming up with the "best" solu-
tion for it. Despite the advanced level of the students
and the simplicity of the final applicationE the students
had a surprising amount of difficulty coming up with
the solutions to the assignments.

I believe the reasons for the difficulties are as fol-
lows:

. Uncertainty with PIC MCU assembly language
ANd thE MPLAB@ IDE

. Difficultytranslatingmathematicalconcepts
into programming algorithms

. Inexperience in evaluating programming algo-
dthms

There is a certain irony with the first pointithe
point of the exercise was to help the student better
understand how to program the PIC MCU in assembly
language. In the previous sectiong the PIC MCU
instructions and basic programming building blocks
were presented and should have been fairly easy to
work through successfu lly. The programming assign-
ments listed here, although using the skills developed
in the previous sections, force the developer to choose
the best instructions and code snippets to implement
the applications. This uncertainty can be daunting.

The best way to become more familiar with PIC
MCU assembly-language programming is to actually
do it.This means you should simply start writing code.
It may not work properly, but as you think through the
process of putting down instructions that carry out spe-
cific tasks and see them execute, you'll learn from your
mistakes. You'll learn how to recognize that it isn't
working, be able to identify the instructions that are
producing the wrong result, and then change them so
the application code performs the task that you
wanted.These skills do not come from reading a book
and following an exampleiyou have to force yourself
to come up with some code on your own and get it
to work.

The MPLAB IDE combines the editor, compiler/
assembler, and simulator in one package and is a very
powerful development tool that you will have to
become familiar with. So far in this book, I have intro-
duced you to its basic capabilities and given you a few
hints on how to use it for application development, but
you'll have to learn how to use and customize it so it
works most efficiently for you. None of the applica-
tions presented in this section (and, as I have argued,
none of the applications in the book can be accom-
plished without taking advantage of the MPLAB IDE
simulator).

Tianslating mathematical concepts into program-
ming algorithms requires an explicit understanding of
both the requirements and the potential solution. For
these applications, you will have to do some research

279

and be able to understand what is being presented. I
recommend keeping the mathematics and program-
ming textbooks handy and using a search engine like
Google to research different explanations of the math-
ematical concepts Do not fall into the trap of using
only one source of information. Although one source
may be good for some information, there will defi-
nitely be better sources for other information. And as
with any research, don't treat everything you find
(whether it's from books or the Internet) as being 100
percent correct, Check your sources and get more than
one source if possible.

When you understand both the application's
requirements and the theory behind the solution,look
for multiple ways of implementing the solution. Use
this as your basis for determining what is best. When I
am given a task, I try to come up with three different
ways of accomplishing it. Chances are one solution will
become immediately obvious, but if I push myself to
look for multiple solutions, I'll either come up with a
better solution, or an improvement to your original
solution.

Before going on to the assignments and their solu-
tions, I wanted to say a few words about what makes a
solution the "best" solution.Try to avoid simplistic
measurements like "the shortest program" or "the

fastest program," because they don't reflect the
dynamic nature of real-world application program-
ming. Instead, try to articulate your requirements as
clearly as possible in a defined area as a requirement
continuum,like the one shown in Figure 12-1. By
defining this area, you'll be able to more clearly and
easily define execution speed, amount of program
memory, and variables that are available to the prob-

Smallest
Progaam

'Best" Solution
Solution Area
Meeling
Requirements

Figure
'f
?-'f Best triangle

lem. The solutions that lie outside this area can be
immediately rejected, and the best solution can be
more easily identified.

Before working through each experiment of this
section, I suggest you try to come up with your own
solution to the problem (even going as far as writing
your own solution and comparing it to mine). In most
of the experiment write-ups, I have presented multiple
ways the problem can be solved as well as suggested
some additional experiments you can write. By doing
this, you will get a better understanding of how the
solution works and you'll become more familiar with
PIC MCU assembly-language programming and the
MPLAB IDE. Chances are you'll also come up with
better solutions than the ones that I came uo with.

Code
Size

Experiment 10U-Eieht-Bit Mult ipl icat ion
r-uith a l6-8it Product

L.

. r-l
{J
d
U

.Fl

,-|

9{
.l.1

dJ
r-{
5
E

..1
m

I

{J

bt
. r.l
kl

!

a

{tr
O
FI

{J
c
0,g
"l.1

t-l
(,

9.{x

multiplication as rep eated addition and add the multi-
plicand multiplier number of times as I show in the
example below:

tsitle trasnMultlDly 1 - uulEiply UEing Repeat€al
aalttition.

t Thia l)logram uses leDeateal aaLlition to
r impledleat litultiplication.

The fist assignment, multiplying two eight-bit numbers
together to form a 16-bit product, can be accomplished
a number of different ways. The most obvious way of
doing this is to go back to the definition of

rrcl Equival€nt Codle;

Proaluct = 0t ll 15-Bit Proaluct value
uultiplie! = valuelt
llultiplicantl = valu€2t

$hj.le (!ftrltip1ier != 0l // aalal Each velue

Speed

2 8 0 l , P 3 P I C @ l ' l C l J E x o e r i m e n t s f o n t h e E v i l G e n i u s

t
Proalucl = Ploaluct + ltultiplicanal,

// Jrtltl DlulEtpltcandl to Proilucts
Multil)].i€i = !4u1tiD1ie! - 1t

// Decrement MuLliplie! Couat
| // iof

lrhtle (1 -= !1, ll FiniEh€d, Loop Eor€ve!

Halfl$are No!€a:
PIC16F68{ runalig at { MEz in Sinulator

lryk€ Plealko
0 4 . 0 8 . 1 8

LIST R=DEC
INCIJT DE I'p16f 58{. incn

end

This solution could be considered best by some
measurements because it requires only 15 instructions.
But a fundamental problem exists with this method:
The number of cycles needed to multiply two values
together ranges from 10 to 1,539 depending on the
value of multiplier. For some applications, this is not a
problem. But for many applicationE especially those
involved with real-time operations (such as robots),
this variability and potentially long execution time
could be a significant problem.

When you first learned to multiply, you may have
done it like the example application has done it, but
after a while, you used a more sophisticated method in
which the multiplicand was shifted to the left accord-

ing to the multiplier digit by which it is being multi-
plied.This method is actually very easy to implement
in PIC MCU assembly if you assume that each digit is
a bit. The product of a multiplier digit (or bit) and the
multiplicand can be either the multiplicand or zero,
and shifting the multiplicand by the multiplier digit is
accomplished by simply shifting the multiplicand. For
example, to mulriply 12 (8'1100') by 5 (8'0101') in
binary, it would look like:

8'1100' <dot> 1 = 8 '1100' <- Bi t 0 of
ldu1tip1i€r (ser)

8 '11000' <t lo l> 0 = 8 '00000' <- Bi t 1 of
ltultiplier (R€set)

8 '110000' <t tot> 1 = 8 '110000' <- Bi t 2 of
tluLtiDLier (Set)
+ 8 '1100000' <dlo l> 0 = 8 '0000000' <- Bi t 3 of
!,tultiplier (Reael)

B'0111100, <- Plduct
(Deciral 50)

"asmMultiply 3.asm" shows how this is imple-
mented.

If you were to test the second application with dif-
ferent multipliers, you would discover that it generally
executes in 90 to 1 10 instruction rycles. This is a huge
improvement in speed and predictability, with only six
instructions (and no file register variables) added to
the first example.

I wanted to see if I could improve upon the execu-
tion speed of the second multiplication example by
multiplying larger digits. Four bits, or hexadecimal dig-
its, seemed like a natural progression, and a table was
built with the products for all the possible four-bit mul-
tipliers and multiplicands. With this table in place, I
then multiplied the two eight-bit numbers by breaking
up the multiplier and multiplicand so that they look
like the binomial expansion:

Proaluct = tlultipLie! x !tultip1icanal
- ((MultiDlier & 0x00F) + (Uultiplier &

0x0F0)) x ((Mul t ip l icand & 0x00F) +
(l{trllip].icand & 0x080))

and then multiplying them together usingrtrst, outside,
inside, last (FOIL). The program that I came up with is
"asmMultiply 2.asm."

This last program requires about 12 times the num-
ber of instructions as the previous examples and one
more file register byte for the Temp variable. What it
has in its favor is that it always execltes in 104 instruc-
tion cycles. The conditional assembly statements (i.e.,
the if, else, and endif directives) select between setting
the PCLATH register for the table jump or delaying a
cycle so no difference exists in how the code executes
based on where it is located.

Despite requiring many tirnes more instructions and
not being substantially faster than the shifting

ftl
X'6
o
y,!

f-.,

$

r*

ry

, F

rc
Ffi
} J '

{q

l r

I
s
r..

,7,
A

F
l r

,-, "

t?3

F
,-, "

t a

,-,.

tJ

r variaSlea
cBr,ocK 0x20

Ploaluct:2
UultLDlicanal, Multil)lier

ENDC

PAGE
, Maialiae of Multiply 1

org 0

clrf Proaluct + 1
I[ov1tr 47
novwf, I'lultiplIe!
Inov1lr 35
rnovwf Multiplicanal
llovf, l.tulti91i6r, f
btfEc STATUS, Z

goto Enflloop
LooP:

atlikdf Proalucl, f

btfac STATUS, C
incf Proaluct + 1, f

tl€cfBz uultiDli€r, f

golo I,ooD

EnfllJoop:
goto s

, !'inlEheal Resul!
i valuea for
t Pfocessingr

r h i t iaLize
t valiebL€s

, Valuel <- 47

, Value2 <- 35

, Mul t iDl i€r == 0?

i Yes, Protluct = 0

t Aildl Multiplicanal to
i 15-Bit Protluct

t Decrenent UultiDLier
i andl RepeaE
, whi le !=0

i finisheal, r,ooD

5ection Tulelve S o l v i n g P r o g n a m n i n g P r o b l e m s 28L

ExFeriment 105-Bivision of a 1E-Bit Value bg
an Eight-Bi t Value

l t r

:,
"-4

ru

$*{
a
a

\&;

'"H

!i

. *.,

a : 1

i

{ J J

rJ

:,4

multiplication algorithm, you should remember this
method because the theory behind it can be used for
processors that have a built-in eight-bit multiplication
instruction (such as the Microchip PIC18 series of
microcontrollers). By using the methodology shown in
this example, you can create a 16-bit multiplication
routine that executes in just a few instructions.

After creating these three applications, we can now
ask the question: which one is "best"? For virtually all

applications, the second example (asmMultiply 2)
would be considered best in terms of execution speed
and instruction optimization. The last example would
be considered best only for applications where the
constant speed is required or where it was known
beforehand that size of the multiplier and multiplicand
never exceeds 15 (requiring no more than four bits). In
the latter case, the eight-bit product would be found in
a constant 13 cycles.

litle "aamDivide 1 - Dividle a 15 Bil valu€ bl'
arl g Bit Valuerl

r ThiB program finalE tshe quotienl anal
r redlainaler for iliviatins a 16-bil
t value frodr a! 8-bit value by
t repeateil subtraclion.

r 'C" Equlvalent Cot[€:

Programming for division routines has many of the
same characteristics as programming for multiplica-
tion. There are several ways of doing it, and each
method has different characteristics that make them
best for certain applications. In this experiment,I will
look at a number of different ways of implementing
division operations and comment on their effective-
ness. The routines that are presented here are for posi-
tive, nonzero integers. I will discuss making these
routines work in the general case at the end of the
experiment.

If multiplication can be described as repeated addi-
tion, then, as its inverse operation, dlvision canbe
described as repeated subtraction, subtraction being
the inverse of addition.A simple division routine can
be built from a subtraction routine that repeatedly sub-
tracts the divisor into the dividend until the dividend is
less than the divisor .T\e quofunt is inuemented dur-
ing each loop, and at the end of the routine is equal to
the number of times the divisor can be taken away
from the dividend. When the dividend is less than the
divisor, it is passed back to the calling routine as the
remainder. A sample program that implements division
in this wav follows:

Rdrainale! = Divialend = 123{5t
Ouotient = 0; // Ouotleat la 15 Bita
DlvLso! = 47, // Dllflaot is 16 BitE

while (Remalntl€r >= Diviaor)
{
Remaintl€r = Reneinaler - DivLEolt

// Take avay Divlsor value
Q u o t i e n t = Q u o t i e n t + 1 ,

// Incr€neat ouotients
j // et L}rw

// Quotienl and Diviit€ntl a!€ correct

w h i l e (1 = = 1) ,
// Finished, Loop Foreve!

Ealthrare Note6:
PIC15F58{ runaing at 4 v,J,�z Ln Simulator

!&.ke Predlko
0 { . 0 4 . 1 3

IJIST R=DEC
rNcrJIrDE np15f 5811. lnc"

t valiable6
CBIJOCK 0x20

R€[lainaler:2, Quotient: 2
Divialenat : 2
DiviEo!
Temp

ENf,IC

282 l , e l P I C @ H C U E x o e r i m e n t s f o n t h e E v i l G e n i u s

PAGE
r !!al|rll.ae of Diviale

org 0

novllr high 123{5

novwf Divialead + 1
trovwf R€maiudle! + 1
rdovhr low 12345
novnf Diviatenit
nrovwf, R€[rainal€r
movhr {7
mov f Diviaor

clrf Quoli€nt + 1
clrf Quolient

Diviileloop!
movf R€lEj.ntl€r + 1, rtr

novlrf TedE)
rnovf DlvLaor, w
aublrf Re$ainater, w
bEfa5 STATug, C

alecf TdE), f
btfac TdE), 7

goto DivialeEnd

tnovwf R€eaiuale!

movf T€rlp, w
movwf Reneinaler + 1

incf Quotient, f

btfsc STAIIUS, Z
incf ouotient + 1, f

goto Divitleloop

DivialeEnil :
goto $ r FLalEheal,]JooD

€nil

When you look through the diyision by a repeated
subtraction subroutine, you'll see that I subtract the
divisor from the dividend to see if the result is negative
(and the dividend can then be referred to as the
remainder).If the result is positive, this result is saved
as the new dividend instead of calculatins a new
dividend.

Repeatedly subtracting the diyisor from a number is
potentially the slowest method of implementing divi-
sion,just as repeated addition is a fairly poor way of
implementing multiplication. Division can be imple-
mented in a similar manner to multiplication by fhst
shifting the diyisor up so it is greater than the dividend
and then shifting down and testing to see if the shifted
divisor is less than the dividend. If the shifted divisor is

less than or equal to the dividend, then the divisor is
taken away from the dividend, and the shifted amount
is added to the quotient. I find it is easier to under-
stand how the algorithm works by coding it out as I
have in "asmDivide 2.asm."

This rnethod and code for diyision is probably the
most efficient and suitable for virtually all applications.
Even though it requires twice the number of instruc-
tions as the repeated subtraction method requires, it
executes reasonably quickly and accurately.

Going back to your grade school mathematics, you
probably remember there is another way of dividing
one number into another:That is, write the number as
a fraction and multiply the inverse of the denominator
with the numerator:

A d i v i dedby B = A / B = A x l l / B)

And although you may remember it, you may not
see its applicability immediately.The PIC MCU's
processor does not have the floating-point number
capability required to calculate the reciprocal of B (or
1/B).This is true, but a positive number can be pro-
duced if, instead of dividing the divisor into 1, it is
divided into a much larger number-such as 256. This
would turn the previous equation into:

A d i v i d e d b y B = A / B = t A X { 1 / B) l
x 1 2 5 6 / 2 5 6) = l A x (1 0 0 / B) l x 2 5 6

Although this is an improvement, you may also be
wondering why I would go through the extra work of
dividing the divisor into some number and then multi-
plying the reciprocal of the divisor by the dividend. The
answer: This method makes the most sense when you
are working with a constant divisor. Calculating the
reciprocal of B can be implemented by the assembler's
built-in constant calculator, and once the reciprocal has
been calculated as a constant, it can then be multiplied
with the dividend, as I show in "asmDivide 3.asm."

This method uses about 60 percent of the instruc-
tions of the full division routine and executes in less
than a quarter of the number of cycles. Note that divi-
sion by 256 is accomplished by simply taking the upper
byte of a two-byte number. This routine is simply not
as accurate as the other methods; no remainder is pro-
duced and the quotient is typically off by 5 percent.
This method is suited for applications where the
divisor is a constant and known, and the dividend goes
through only the division processing step. Situations
where this division routine is best suited include con-
verting user and sensor input data for storage/
processing.

t In i l ia l ize
veriables

['J

X
u
s
rl
F.
'.a

t v
11

t
?

**r "

v.

Ht

pl

lJ

{p\
I,

w
}J.

*

pr
H

IR

r gubtract Diviso!
r from Rdlainil€r anal
t E e e i f > = 0

; If Carr!. Set, Lolt
r Bt t€ of R€rEintter

r If USB of (Redlaintte!

; - Div isor) l= 1
r then Subtract
t EIse, if set tshen
t Finiah€dl

t Save ResulEE of
t sulctracEion

i Increm€nl Eh€
t Quotienl

#
O
tn

5ection Luelve S o l v i n g P r o g r a m m i n g P n o b l e m s 283

Remember, the case where the divisor is zero is
generally considered invalid. In many processors with
built-in division circuitry if a divisor equal to zero is
encountered, an error is flagged.As noted at the start
of this experiment, none of the three methods of divi-
sion shown here will work for this case (and will either
never end or cause a build-time error).

To check a single-byte divisor, you can sirnply run
the value through the PIC MCU's Algorithm,flogic
Unit (ALU) status check and go to a flagging routine
if it is zero:

Dlvlgor, f

Experiment 106-5quaring a Number Using
Finite Bifference Theorg

.flt

fi
:-!

i u

L-' I

r'l

r-f
I u
4

i

{'*{

"6-r

fil

" r".;
,-!
d 1

!*{

g&l

Ru! DiviBor through
slatus check
withoul chaaging
conlentsE of IIREG

If Zero f lag a€! ,
jump to z€ro

Diviao! hanaller

novf Diviso!, w r T'wo Byteg of Divisor
, = = 0 2

ionrf DiviBor + 1. w
btfsc STATUS, Z i If Z€ro fLag a€!,

t Jull9 to Zero
golo DiviaionByzero r Divisor handler

To check a 16-bit value, you can OR the two bytes
tosether and see if the result is zero:

Figure la-a Division signs

Finally, you may have an application that has to
handle positive and negative dividends and divisors.
For these cases,I use the Division Sign Chart shown in
Figre 12-2.Before executing your division routine,
mark flags indicating if the dividend and divisor are
positive or negative, convert the negatives to positive
values, execute the division routine, and, upon exit,
change the quotient and remainder to negatives if
appropnate.

btfsc sTArus, z

goto DivisiorByz€ro

When you are data processing, you will discover cases
where you need mathematical operations other than
multiplication and division. You might be thinking of
sine functions and logaritbmic operations and shudder-
ing at the thought of trying to calculate values for them
in the simple PIC MCU's processor. But remember,

these calculations were performed literally for cen-
turies before the invention of the disital "comDuter" or
handheld calculator.

I have put the word computer in qtotations in the
previous paragraph because it was the name given to
individuals that were responsible for calculating values
computers .Tltese people spent literally months work-
ing through a sedes of calculations to come up with the
answer to a problem. As you would imagine, the major
problems encountered by doing complex mathematical
operations using humans included the time required as
well as the accuracy of the final result. The seemingly
simple operation of producing sine and cosine values
for a book of tables for navigation was fraught with
many problems, due simply to human error, that often
resulted in the loss of ships and lives.

Quotient = +
Remainder = -

2 8 4 l , e 3 P I C o l l C U E x o e r i m e n t s f o n t h e E v i I 6 e n i u s

In order to minimize the amount of time reouired
to perform calculations (and the opportunities for
errors), a number of different mathematical tools were
developed over the years. One of the most powerful
tools was given the name finite differentinl theory ,it
which simple operations were analyzed to find easily
recognizable differences between calculation values.
The most-often-used example of how finite differential
theory works is the calculation of squares. Looking at
squares may seem like a strange place to start, but it
will make more sense at the end of this experiment.

To show how finite differential theory works, con-
sider Table 12-1, in which I have listed different inte-
gers, their squares, and the differences of the squares to
the values of the adjacent squares You can see that
when I have calculated the differences in the values
between squares, they can be expressed simply by
adding two to the previous difference.

It should be obvious that by simply knowing that
the square of zero is zero and the square of one is one,
that you can calculate the square of any integer quite
quickly. The code that I came up for calculating the
square of47 is named asmDifference and is listed here:

tl.t1€ "asnDiff€!€nce - squa!€s u6ing Firile
DLfference Theory,'

Table 12-1
Intege|5, Their Squares, and the Differenceg
BetLUeen Them

lnteger Square
0lfference Dlfference
to Previous ta DlfferEnEe

FIx
t
o
n
F.
3o
p
-

ts
O
o\

I
CN
ra
t
!,
h
F '
5q

p,

zg
3c
o
Ft

0

1

2

3

4

5

6

7

8

9

10

0

1

4

9

16

25

49

64

81

100

N/A

1

3

5

7

9

1 l

13

15

17

19

N/A

N/A

2

2

2

2

2

2

2

2

2

usiag Eitrit€ Diffeleace Theory, thia
Plogram findls the gque!€ for
lhe given 8 Bit hteger (ririth a
16 Bi t Resul t) .

rcrr EquivaL€n! Cofle:

Valu€ = {? // Nuriber to Starts WIth
Square = 0t // Currents Square value
Differeace = !, / / fjt�att rdlth 1 anal Add

// Di f f€rence
while (Va1u€ l= 0)

// calculate gquale for nveLuen

{
Sgua!€ = Square + DLff€reac€i

// calculale ugflat€tl squale
Dif fe lence = Di f f€ lence * 2t

ll Add to !h€ Diffor€Dce
Value- - i

// Decr€deDt lh€ Value Counter
) / / €I ihw

VaIu6, Square:2
Dif,f,er€ac€r2

ENDC

PAGE
, uahlin€ of Difference

olg 0

lrovlw 47
rrovwf value
clrf Squale + 1
clrf Squale
clrf Diffelence + 1
niovlw 1
novwf Diff,e!€nce

LooD !

movf, Diff,er€nce, w

ailthrf squa!6, f
lrovf Dlfferenc€ + 1,
btfsc STATUS, C

incf Differeae€ + 1.
atl&d Squar€ + 1, f
trrovlw 2

i RaturD Her€ until
, lvalue! == 0
i Atldl "Dif,feronce" to
i 'rgquar6'r to get

i ita nelr valu€

i Inc:aeage Diff€r6nc6
t W 2

aiLlwf Diff€r€Dce, f
btfsc STATIIS, C

incf Difference * 1, f
decfaz value, t t Decrdr€nt th€ value

t qounter
gtoto IJooD

r hitialize varielclea

, rshi le (1 -= 1) t
// Finishedf, Loop Forever

Hardhf,ale ltotes:
PrC15F627l ruD.ling at { li'tHz in Siaulator

uyk€ Prealko
0 4 . 0 4 . 1 4

LISr R=DSC
rNcr,ltDE "plSf 627a. inctr

Regiat€rB

t Finisheal, IJoot)

eDtl

In addition to squaring numbers (finding the value
of a number to the power two), finite difference theory
can be used to calculate other powe$. You may want
to spend a bit of time reading about Babbage's Dffir-
ence Engine to tnderstand how other powers are cal-

, varlables
CBLOCK 0:120

5ection Turelve S o l v i n g P r o g r a m m i n g P r o b l e m s 2 8 5

culated and maybe to try to come up with an applica-
tion to do it on your own. Hint:As you go to larger
powers, you will discover that more than one differ-
ence value changes for each new integer.

Once you are comfortable with using finite differ-
ence theory for calculating powers of numbe$, you can
use this knowledge to calculate different values. The
series formulas listed here will helo:

I can honestly say that the only thing I did not under-
stand in high school mathematics was how to manually
calculate square roots. Looking back, I suspect that it
was due primarily to my poor understanding of how
repeating algorithms worked (I had not yet learned
any programming) and secondarilyto my reluctance to
learn the material because of the V on my calculator.
Unfortunately in most simple microprocessors and
microcontrollers, no built-in square root instruction
exists-which means that when I have to implement
these functions, I wish I had paid more attention in
high school math.

When faced with the challenge of calculating the
square root of a value, I usually fall on what I know
finite difference theory. It can be used to find the
square of a value, so by reversing the process (subtract-
ing the difference from the value) and recording the
number of iterations, the square root of a number can
be found.

title "asmsqRoot 2 - Eintl th€ square Root of
lhe 16 Bit value"

r ThiB proglam takes aalvantag€ of the
t property of sguare roots that

are the nunber of oaldl nuibera, vrho,a
sum is less t'han or equal to
the nulllber the square rooE is being
calculauea for .

This is the reverse of lhe Finite
Difference Squariflg Program.

r . n F 6 ! i ! r - 1 a n + ^ ^ . 1 a .

value = 12345r // val|ue Eo Square Root

c o s (x) = 1

x 6 / 6 ! + . . .

x i / 3 ! + . . .

(x 1 J ' / 3

- x ' / 2 1 + x a / 4 ! -

+ x) / 2 1 + x j / 3 ! +

- I) r / l - l x - 1) 2 / 2 +

s i n t x / - x - y ' / J t . - x / 5 ' -

x 7 / ' l | + . . .

Experiment107-Find the Square Floot of a 16-Bi t Number

Digitcount = 1t
odd = 1,

// squafe Root value
// Difference value

q'hi1e (Oald <= value)
// Take Away Difference

{ // until >Renainder
v a l u € = v a l u e - o d a l t
O d d = o d a l + 2 t

// Increase the Diffelence
Digitcount - Digitcount + 1t

// Incren€nt Square Root Val.ue
t) / / e l ih l t

i w h i l e (1 = = 1) t / /

r Earflware Noles:
i PIC16F684 nrnning al

, Myke Prealko
, 0 { . 0 4 , 1 3

IJIST R=DEC
INCIJI DE "pl6f584. inc"

r valiabLes
CBLOCK 0x20

value:2

odi t :2

ENDC

Finisheat, Loop Forever

4 vr.lz in Sinulator

i value the Square Root
, is to be founal
i ProceBsing variables
i Sguare Root of the
r value

286 l , a 3 P I C @ l l C l J E x p e r i m e n t s f o r t h e E v i l G e n i u s

PAGE
r llainline of sqRooE

olg 0

lrovlw high 123{5

novwf value + 1
rlovlw Lorn 123{5
movwf value

ctrf oald + 1

novlw 1
novwf oild
clrf Digitcount

Loolt:
novf @at + 1, w
subwf valu€ + 1, f

entl

If you compare the equivalent C code to this assem-
bly code, you'll notice that there is quite a big differ-
ence; the assembly code calculates the value minus the
difference (Odd) and stores the result in "Value"

before checking to see if "Value" is negative (the most
significant bit is set). The correct C equivalent code is:

tion operation is eliminated, making the application
both smaller and faster.

The method shown here works reasonably well, but
an arguably better method would be using Newton's
method of zero finding. This method is based on the
function:

f (x) = G ' � - A

Where A is the original value and G is its square root.
When flx) is equal to zero, it should be obvious that G
is equal to the square root of A.To calculate G, the
approximation formula:

c , = t (A / G) + G 1 / 2

is used. G' (G-prime) is the next value of G and is cal-
culated by dividing A by its square root and then aver-
aging the difference with G The formula is executed
repeatedly until G and G' are essentially the same.
Table 12-2 shows how this formula is used to calculate
the integer square root of 12,345 (the same value as
the example code). For the initial value of G, I usually
use 1/: of the value to find the square root ol The
closer you make the initial value of G to the actual
square root of the number, the fewer iterations are
required to find the actual square root, but any value
other than zero can be used.

In Table 12-2, you can see that eight iterations were
needed to calculate the square root of 12,345, but two
issues should be noted. Fhst, although this method is
quite simple, it does require a division capability in the
processor, which will add to the size of the square root
routine. This is not a major problem, at least not com-
pared to the other issue. And second, when I calculated
the values for G' in Table 12-2,I used a calculator and
rounded up fractional values. If you were to create this

Table 12-2
NEurton s Method for Ealculating Integer square
Floots

Iteration

1

2

3

4

5

6

7

i Initialize variable
t to have lhe Square
r Root Fountl f,or it

t rn i t ia l ize the
t Differ€nt valuea

H
x
ru
o
!-t
r".
5
CI
tst

,
a
I

r '

P

;.)
n

U2

p
H

T !

Cio to

Nunber

novf Odat, ra'
subwf, value, f,
btfEa STATUS, C

ilecf value + 1, f,

blfac value + 1, ? t If MsB
golo SqRootDone i Value

movhr 2 i

adtlrf dd, f
bEfac gTATuS, C

Lacf odd + 1, f

incf Digitcount, f t

i R€Peat Uer€ until
, calculate value - oaLl
i !ilot6, R€auLt Storeal
i Back in nvaLuen

of nvalu€n sets,
iE Negative

the Next oaltl

\t

Incremenl value of
Ehe Square RooE

goto Loop

sqRootDon€ 3 r comlrl€teal
, Einish€al, IJoop

while ((value

(
odd = oitd

DisitCount

] / / e l ihw

6

4115

2059

1032

522

r59

118

111

G': ftF/6t + 6l/2

2059
'1032

522

n3

159

118

111

1 1 1

= valu€ - odd) > 0)
// Take Away Dif,ference Itnlil
// Retlaindter is Lees than zero
+ 2 t
// Incr€a€€ th€ Difference

= Disitcount +1,
// Incren€nl square Root vaLue

I did not note this difference in the original code,
because, as I have said, if you are new to C program-
ming, the ability to embed assignment statements in
conditional statements and check their values is not
intuitively obvious By calculating the value for
"Value" instead of doing the compare, a full subtrac-

Section Luelve S o l v i n g P r o g n a m m i n 9 P r o b l e m s 287

fi

f l t

l"{
s
f{

tr

q,

,-rl

-**

tEd

!
:

i l

' r {
{ r

I i , l

'r,*,a

f*"

i:**

application in assembly language (or even in C), you
would have to somehow perform this rounding
operatron.

Unless, of course, you used the floating-point capa-
bilities of the PICC LiterM compiler, as I have done in
csqRoot.c and csqRootN.c, which I created quickly to
test the PIC MCU's ability to perform a square root
with a floating-point result. In csqRoot.c, I used the
built-in C sqrt function:

*includle <pic.h>
*incluale <math.h>
/t csqRool. c - Te6t PICC Irit€ square Root
zunctiOa

This Drogram wiLl sinply e:<€eut€ a single square
root futlctlotr to s€e holr btg it is atral how long
il takes to execute.

tnyke Drealko
0 5 . 0 1 . 1 9

aloubLe !funber, Squar6Rooti

nain ()
(

Surber - 123{5.0, // Est.lrlish the Nunber
SqualeRoot = Eqlt (Nunb€r) i

/ / GeE j.Ea gquar€ Root

! 'hi le (1 == 1),

) // Enal csqRoot

and in cSqRootNc, I came up with a simple implemen-
tation of Newton's method:

#iacludle <pic.h>
llincludle <ratsh,b>
/* csqRootN. c - use Nelrtson. s Metboat to Einat
gquale Root

Thig Drogram wiLl sinply Execu!€ N€!rton,6 Squate
Rool Functi.on until the new valu€ is tb€ same as
the olal.

llyk€ prealko
0 5 . 0 1 . 1 9

tlouble Nu!ibe!, SquareRoot, NsqualeRooti

main ()
{

Nruiber = L2345.0, // EstabLiah tsh€ Nunber
Nsqua!€Root = Nunber / 3;

// cet seetl value
alo
{

SquareRoot = Nsquar€Root;
NsquareRoot = (SqualeRoot +

(Nunber / Squa!€RooE)) /2t
) while (Squa!€Root != Nsquar€Root) t

w h i l e (1 = = 1) ,

I // E'rd csqRoolN

cSqRoot.c required 585 instructions and 37 bytes of
variable memory although cSqRootN.c required only
292 instructions and 21 bytes of variable memory. This
is an improvement in size of about halt The question
you should be asking is why isn't Newton's method
used in the C sqrt function? The reason seems to be
that Newton's method is quite a bit slower. When I
plugged in different values to find their square roots, I
discovered that Newton's method could take as much
as 300 percent of the time that the sqrt function took.

This is another example of how different code, per-
forming the same function will have different operat-
ing characteristics. The standard C sqrt function takes
up considerably more space than Newton's method,
but is quite a bit faster. Although I should note that
even though it's faster, the average calculation time
is on the order of 7 to 9 milliseconds. In either case,
the square root function will take up a substantial
amount of program memory, so its use must be chosen
judiciously.

288 l , e 3 P I C o l l C l J E x p e n i m e n t s f o r t h e E v i l G e n i u s

Experiment lOB-fonverting a Bgte into
Three Decimal, Tr-uo Hex, or Eight Binarg R5Cll Bgtes

(i = 0 r t < 8 r i + +)

// I,ooD lhrough all 8 Bits

i f ((Ted[) & 0x080) != 0)
D i g i t I i l = r 1 , ,

ll BiE seE
eLEe

When I first introduced you to programming the PIC
MCU I used the high-level capabilities of the C pro-
gramming language to facilitate converting numedc
data to ASCII.These operations are quite easy to do in
a highJevel language, but you might find it daunting to
write them in assembly language. It may be surprising
to you to discover that creating these functions is
assembly language is not very difficult and is usually
quite a bit more efficient than writing them in C.

The trick is recognizing that ASCII values are num-
bers and can be manipulated in just the same way as
regular values are manipulated in assembly language.
For example, if you had a numeric value of seven and
wanted to convert it into the ASCII character code for
7, you could add seven to the ASCII character code for
0. If you had the value of seven in the WREG, you
could convert it to the ASCII character code for 7 with
the sinsle instruction:

Like in C, a character's ASCII code is substituted
when the character, enclosed in single quotes, is
encountered.

The first program, asmByte2Bin, converts a blte
value to eight ASCII bit values (1 or 0) by looping
through each bit and testing them to see whether or
not they are set or reset. In this program (like in the
others), I sta the conversion with the high-order bits
so they can be seen easily in the MPLAB IDE simula-
tor's File Register display.

tit'].e "asnlBlt€2Bin - Nuliber to ASCIII

Digit t t l =

TeaII) = T€4P <<

l / / io f

n h i l e (1 = = 1) t

Harflware Not€6:

PIC16F584 ruDnins

4'

r?*

dfr

,t\

,.,",

v - "

n
I

"

|*1l

ef-3

IJIJ

*'1\

for

(

l$rke Preflko
0 { . 0 g , 2 9

IJIST R=DEC

rNcrrtDE np15f 584. lnc"

r 0 , t

/ / Bl t ReaeE

// shifr in Nev Bits

// Done,].ooD Folever

at 4 MHz in gimulator

Converting a byte's value to hexadecimal is also
quite simple due to the swapf instruction built into the
PIC MCU's processor. This instruction swaps the two

i variabLea
cBrJocK 0x20

Diqi t : 8
TdE), i

E![!rc

org 0

movlw 123

monwf Tedll)

movlw Digit

novwf FSR

novLw 8
novwf i

IJoo9:
l lov lw '0 '

btfsc TsE),
aaldLw 1

novwf INDF
llf Tern9,

iacf FSR, f
t lecfaz i , f

goto Loop

r Nl[iber variablea

r Finiaheal, Loop For€ver

t Use n123n to Test tsbe
i Ploglrem

t FSR to Poinl to nDigi tn

t variable

i lvants to Do 8 Bi.ta

trlanl to gav€ Either '0'

ra Bit 7 of "Tedl!)n sets?
Yea, Conv€rt WREG lo '1'

f l o d r ' 0 '
gave the AscII Digits
ghift up teateil Tenp bit
Point to the Next Digit
R€peet 8x

This agDlicatioD conv€rls a Eingle
8-Bit (Byte) va1u6 into €ight
ASCII Binary characterE.

"C" EguivaleDt Codle:

T€rE) = Ntrmbe!, // Save the Nurlber

goto

enal

5ection Tulelve S o l v i n g P r o g r a m m i n g P r o b l e m s 289

nybbles (high four bits and low four bits) to facilitate
converting these four bits to a hexadecimal value using
a subroutine. The most obvious method to convert a
byte to two hexadecimal ASCII characters is to use a
table as I do in "asmByte2Hex 1:"

tsill€ "aatnBtt€2Hex 1 - Nurlbet to aex ASCIII

incf PCIATE, f
novwf PCL

_He:rTabl€:
dt "0123{56789A!CDEF'

enfl

A potentially more efficient method of performing
this convenion is to calculate the ASCII hex character
algorithmically, replacing HexTable in the progrlam
above with the following subroutine:

fhia aDDlicalion converEE a Eingle
g-BIt (Btrt€) Value ilrto Ttdo AgCIr
Il6x cberactera uaing a table.

trCtr Equival€nt Codle: Getlle:.:

analllr 0x00E
atLllw 5
btfac STATUS, DC

aatallw 7

i Return H6r. ASCII Char
r for I,srwbb1e
t in WREG
i ifuEt want lower { Bitss
i ia th€ Ee:< Dlgit > 9?

i Yea, Move value frdl
t DigiEa to chalE

H e x T a b l e [] E { r 0 , , t 1 , ,

\ 4 , , \ 9 "
U

bl
sl
(g

tn
.l.{

t{
{u
P
l-{
t l

U
t
,

P
L.

CI
H

'l-{

k
(U

X
r-1

Digitlol = E€xTabl€ [(Nuriber >> 4) & o:<OOEL
Digitlll = E€t*lab1e ll[ufiber & 0x00!'] t

whi f€(1 == 1)r / / Doae, Loop Forov€r

Ilaralware Notea:
PrC16F58{ running at 4 lOIz in SimulaEor

uyke Prealko
0 4 . 0 8 . 2 9

LIST R=DEC
INCLITDE np16f 584. inctr

:f i l
' ' ' - '

This code tests the value in WREG to see if it is
greater than or equal to 0x00A, and if it is, adds the dif-
ference between the ASCII character codes for 9 and
A. Once this is done, the ASCII character code for 0 is
added to convert the numeric value to an ASCII char-
acter. To test out the operation of this subroutine, cre-
ate a new program called asmByte2Hex 2 and replace
HexTable with GetIIex, and then test it out. In terms
of efficiency,I would generally use GetFIex over
HexTable because it can be located anlrvhere in the
PIC MCU's mernory without concern and is short
enough that you could consider placing it in line rather
than making it a subroutine. For examplg a general-
case byte to hex conversion could be written as and
takes about the same number of instructions as calling
the HexTable to convert a Nybble once.

r Variablea
CBI.oCK 0x20

D i g i l : 2
Ternp

E![tc

ors 0

movlw 123

movlrf Terq)

awa{rf Terq). w
call HexTabl€
novDrf Digil + 0

lrovf Tetq), w
call He:.Table
novwf Digit + 1

qoto s

H€xTable:

clrf PCLATH
if ((_Ee:(!able &

baf PCI.ATH, O
enalif
if ((_EexTable &

bsf, PcLArH. 1
entlif
if, ((_E€xTabIe &

baf PCLATII, 2

t Nu'trbe! variabl€s

o0
1:}
|{

t Uae "123" !o Tesl the
i Program

t Get lhe trigb lRibble

r Get lhe l,olr lwbble

r Finiahedl, LooD Eo!€ve!

r Return H€x ASCII Char
r for I,slwbble
r ltr WREG

0 x 1 0 0) ! = 0)

0 x 2 0 0) l = 0)

0 x { 0 0) ! = 0)

Btrte2E€x:

nonwf T€nE)
alrapf Tedp, w
anallw 0x00F
aa|-llw 6
btfac STATUS, IrC

aaLlLw 7

aaltlld .0,

movDrf INDr
incf INDF, f

novf TerD, w
atralLw 0x00F
aattllw 5
btfsc STAmS, DC

novwf INDF
incf INDI', f

i Convelt Value in WREG
i to lwo Hex
i clFlact€ra at location
i pointeil to bV ESR
t Do High Nybbl€ Eirats
r Nybble > 9?

i Yea - r,uE ln trAn to nFr

t range
i Convert Eo ASCII
i Characler
; Save ASCII Cha:.acter
t Point lo t'he N€xts
t DeBtinalion Byte
i Converts the lgNt'bbL€
t Do High Nybble Firsl
r Nybbl€ > 9?

r Yes - Put in nAn to nFn

t ralge
r Convelt to ASCII
i chafacte!
, gave ASCII Character
, Poiat to lhe Next
, D€stination Byte
i Retun to Caller

eDalif,
andftp 0x0F r ilust want 1ow€r { bits
aaltlLw Iow _HexTebL€ i Calculate the cor!€c!

r of fa€t
blfac gTATgS, C

290 1 , 2 3 P I C @ l ' l C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

The GetHex subroutine is a good example of work-
ing with a single nybble (four bits) and using the digit
carry (DC) flag instead of the standard carry flag.

The last program that I am going to present for this
experiment is the conversion of a byte to a decimal
value (asmBin2Decl.asm). To find the hundreds and
tens digits, I repeatedly take away values (division by
repeated subtraction) and add the quotient to the
ASCII character code for 0 to produce the correct
characten. After taking away hundreds and tens, the
remainder is the number of decimal ones in the num-
ber, which is simply added to the ASCII character
code for 0.

This isn't a terdble method of converting a byte to
decimal, but it could be improved by noting that the
least significant digit is the sum of the least significant
nibble and 16 times the most significant nibble.The
asmBin2Dec 3.asrn routine takes advantage of this
property and goes one better: instead of adding 16
times the high nibble, it adds six times the high nibble
to the low nibble, and it adds the 10{imes value to the
high nibble. The code itself is almost twice the length
of asmBin2Dec 1, but it executes in a constant 38
instructions.

ExFeriment 1 09- Produce
the Even Paritg Values for a Bgte

One of the dying technologies of computer intedacing
is RS-232. This serial interface was one of the first
methods of connecting computers and peripherals and
required a number of different skills to implement suc-
cessfully.In 123 Robotks Experiments for the Evil
Genlas, I discussed some of the issues regarding creat-
ing the voltages needed for the data transfer and how
systems are connected together. In this experiment, I
want to look at how the error correction code was cre-
ated and see how efficiently it can be done.

The traditional format for an RS-232 data packet is
shown in Figure 12-3. It contains two bits after the
data:the stop bit is an indicator that the data packet
has been sent, and gives the sender and receiver time

Figure la-3 RS-232 data packet

to process the current byte and prepare lbr the trans-
mission of the next one.

The second bit, the parity bit, is used to detect
whether any one of the tlansmitted bits was received in
error. This bit, when summed with the total of all the
previous bits will result in either an even or odd value.
There are five diflerent types of parity:mark, space,
even, odd, and zero, in which a 1, 0, even sum, odd sum,
and no bits (respectively) are sent. In most modern
communications, the no parity bit is most often used
due to the reliability of modern communications. If a
parity bit is required for error detection, then it is most
often even because it is calculated as the sum of all the
bits that have been received in a packet and should be
an even value (i.e., bit 0 of the sum should be zero).
The following program demonstrates the most obvious
way of calculating the even parity bit-the value of
each bit of a byte is summed together.

titLe "asmParity 1 - Calculate Ev€n Pality
vaLue fo! a Byte"

This aDplication calculat€s the
even pariuy for a bt'te by surmiflg
each bi t .

"c' Equivalent Coale:

Tetnp = 123' // Set lhe Byle

Par i ty = 0t

t
i f ((TetnP & 1) == 1)

P a r i t y = P a r i t y + 1 ,
Temp = Temp >> r, | / sm}rift- 1 Bil Down

, / / io f

< 8 r i + +)
// Reaal through each bir

Data

5ection Tuelve S o l v i n g P r o g r a m m i n g P r o b l e m s 291

P a r i t y = P a r i t y & 1 .

w h i l e (1 = = 1) t

// ParlIy ia a gingl€ Bit

// Done, Loop Eolever A
B

Experiment ll0-5ort a List of l0 Eight-Bit Values
Using the Bubble-Sort Fllgorithm

.[J

u
q,

r{

*a.a
)

ffi
n l

b
. r'€

{l}

?

,

#

+-'

{,

tr
H

!d!".
a-6
laq

Ilarakf,a!€ NoteE:
PIC16F584 rurlltrq at { MHz in glmulalor

Myke Plealho
0 { . 0 4 . 0 7

LIS! R=DEC
INCLITDE "D15f 58{. inc"

i Variablea
CBLOCK 0:.20

TemD, i
ENDC

PAGE
olg 0

novlw 123
novwf T€[ut
movlw 8
movwf i
clrw

IJooD:
btfsc TerE,, 0

atlfll\o 1
rrf T€sl!), f
fl€cf,az i, f

goto Loop

andlw 1

goto S

enfl

This method works acceptably well, but is another
case where a bit of knowledge or binary numbers and

Figure f a-q Haff adder

a bit of experimentation comes in handy. Remember
that a binary adder consists of an XOR gate and an
AND gate (see Figure 12-4) in which the sum (S) bit is
the XOR result of the inputs. So if we want to add two
values together and get the single-bit sum, we simply
require an XOR gate.

In asmParity 2.asm, this function of the half adder is
exploited (along with shifting bits) to produce a parity
bit in the same number of instructions, executing in
one-seventh the number of instructions and using one
less file register variable than the original.

Despite improving how the parity calculation soft-
ware works, as a tool, it's pretty limited.The parity bit
will detect only one bit in error in the packet. With two
bits, the parity bit will indicate the data is correct.
Additionally, when an error is detected, the incorrect
bit is not indicated, nor is there any correction infor-
mation included. These functions are critical features
of modern error detection/coffect codes (ECC) used
in high-speed communications and peripheral
interfacins.

, hilialize VallabL€s

i Use WREG a6 Palj.ty
i Coutrter

i Lootr> Ilele for Each Bit
t LSB of, Value S€t?

t R€p6aE for eacb bit

r Only IJSB iE Parity Bil

i Finigbeal, Iroop Forever

After the time and effort spent in Section 4 describing
different ways to implement a bubble sort in C, you
may be hoping that I won't have a lot to say about cre-
ating a sort in assembly language. You'll be happy to
hear this is true:The assembly-language bubble sort
(shown as follows) is a quite simple and faithful trans-
lation of the C language algorithm

292 l , e 3 P I C @ l l C U E x p e n i m e n t s f o r t h e E v i I 6 e n i u s

lit].e ,'aanbsort 1 - solt 10 8-Blt valu€5"

t ThiB program ua€s !h€ Bubble sort Algorlthm to
Sort 10 values

t "Cn Equivalent Coale 3

r f o r (i = 0 r i < 1 0 r i + +)
r SoltliBt [i] = Reaflvaluei

, sor t lJ t8t [j + 1 l
i Seco al = g€confl -

t (secoaal - EiIEE)

i ELrats = Eirat + (Seconal

r - F i lat)

t Finisheal, Increlrents 'jn

t ats th€ Enal of bh€ rJiats?

i lDtlex at tbe End of the
t L iat?

ffi
ld

t l ,

H

'-t
t 9
{

I
t
t

(*;

tf,

a
\ r

s
t v

w

L'

F
fn

\34

H

fr

0

i

gotso Outsial€loop_skip

// R€ad in lhe Een Byte VaLueg

subwf INDF, f,

tlecf FSR. f
addwf INDF, f

incf FsR, f,
outsaitlel,oop_skiD I

novf i, rtr
aaLllw goltl,iat

aubwf ESR, rt
btfss STATUS, Z

, f o r (l = 0 r i < 9 i i + +)
, // Outaial€ Sort LooP

i f o r (j = 0 , J < (9 - i) t j + +)

t l/ IttBiale Sorl LooP
t i f (SorEr, iBt [i] > SortL ia l t i + 1 l)
r { // l|ave to SrtraD valuea
r T€mD = Sor l l , is l l i + 11,
r gort l i8 t [i + 1 l = Sort l , is t [i]
t SoltlJist lil = l[edl!),

PAGE
, Mainline of Bubbl€ Sort - I"bfk€

orlt

clrf

golo OutELtl€IJoop
tlecfEz i, f t Don€ 9x?

goto InsialelJoop

goto $; fo!€ve! LooD - Done

r Return the VaLue for "i"

Gelvalue3

i f ((_Gelvalue & 0x0100) != 0)
baf PCIJAIIH, 0

edttif
i f ((_cetsvaIue & 0x0200) l= 0)

baf, PCIATII, 1
enflif
i f ((_cetvalue & 0x0{00) != 0)

baf, PCIATII, 2
entlif

aalallw 10$ _GetvaLu€ r GeE Offsets in 255

i AaLlr€aa Block
btfac STATUS, C

incf Pcr,alrfl, 0
mon$f, PCI. r Pelform the ilumD inlo

r the Ta51e
Getvalue:
i l r 1 0 , 1 0 0 , { , 1 5 , 7 5 , 1 5 0 , 4 7 , 2 , 2 5 O ,

475

enal

I'd like to note a couple of discussion points. If you
work through the assemblyJanguage code,you'll see
that it is essentially a straight translation from the C
language prototype with one difference. When I coded
the application, I discovered that when subtracting the
current array value from the next, I could use the value
in the WREG (Sortlist[i + 1] - Sortlist[i]) to simplify
swapping the data between the two array elements.

SorEr, iat l i + 1 l ' = SoruJistst i + 11 - $REG
= sort lJ iat [i + 1 l - (Sor l l is t t i

+ 1 l - Sol t t i8t l i l]
- gort l iaEl i + 1 l - Sol l l , is tst i

+ 1 l + Sol t IJ iEt l i l
= sorr lLBr I i l

Similarly, with Sortlist[i], the value in Sortlist[i +
1] could be substituted into it by simple addition:

sorrl , tatsf1l, = Sort l iBt[i l + WREC
= sort l ist l i l + (sortr,Lst l i + 1l -

Sort ' I . is l t i I)
= Sort l ist l i + 1l

i Starl by loaaling
, SortsLial
, Setup FSR f,or IDdir€ct
t Aaltlreaaingl

r Retsurn H€re UntiL aLl
r Valuea Loaaledl

r cets the valu€ for "i'

t gave ia LLat
i Point to Nexts EIemenC
i rncrenent counte!

t !Io, Do n€xE one

t Wants to looD Thlough 9x

i Poiat tso tsh€ start of
t th€ Liat
i Use FSR as Inal€x

t Point to the Next lJiat
i El€[l€nt
r sort lJ is tst j + 1 l -

r sor t lJ is ts I j l
i If cerry Re6€1,
r sort l . is t I i I >

, l l f r

9-.r
€

; Heldwa!€ Notea:

t PIC15F584 rururiag at 4 uHz ia ginulaEo!

i
r !8ike Prealko

r 0 { . 0 { . 0 5

IIST R=DEC
rNctnDE np15f 58r l . incn

, valiabl€s
CBLOCK 0x20

Sortl.iBt | 10

ENDC

; IJist of valu€s !o be
Sort€dI

novlw gortT,ist

novwf ESR
loaalloop:

novf i, w
ca].l qelvalu€

movwf INDF
incf, FSR, f
incf i , f
movf i, rt
sublw 10
btfsa STATUS. Z

goto Loaalloop

movlw 9
novwf i

IDsiflel.ooD !
tlovlro Sortlisl

movwf FSR
out a ial€LooD :

novf rNDF, w
incf FSR, f

aubwf INDF, w

blf,Bc STATI'S, C

5ection Tuelve S o l v i n g P r o g n a m m i n g P r o b l e m s 293

Experiment 111-Encrgpt and Decrgpt an FSCIIZ String
Using a Simple Substitution Flgorithm

s
" *.4
1.4

rft

.3J

3.,;
a i

=f:
,':

{Ji

.t;
t*{

:"el
;-!
i l

? , r !

!

i i i

.r*

&
, t t

!34
tui
f!
r .'r

This optimization allows for swapping the contents
of the two array elements in four instructions. When I
originally wrote the code, I used 10 instructions to
swap the values in the elements using translated C
code.

Years ago on the PICList, the question came up
regarding the best way to sort a short array. My imme-
diate response was to come up with a looping bubble-
sort routine like the one above. Somebodv came un
with a simple macro that embodied lh..orpu,. und
swap code together and created a simple bubble-sort
program, which ran through every possible compare
and swap, as I have done in "asmbSort 2.asm,,, which
uses the "CompareAndSwitch" macro:

conpare.Bnalswilch rnaclo Firstvalue, Secondvalue
locat CASship
novf, Firstvalue, w i Is g€condvalue > Eilst

Value?
sub\of geconalvalu€, w
btfsc STATUS. C ; If Carry Set. then

Secontl >= Firsts

gotso CASSkip r WREG = Seconalvatue - Eitstvalu€
aaldkrf Firstvalue, f t FirstvaLue = ELrEtsva1ue

+ (WREC)
sulndf Secontlvalue, f i Seconalvalue =

Seconalvalue - (WREG)
cASSkip:

€ndm

The second program runs somewhat faster than the
original and is good as a demonstration tool for the
squared order of operations of the algorithm. For an
array of two elements, one compare/swap is required;
for three elementq three compares/swaps are required;
for four elements, six compares/swaps are required;
and for five elements, 10 compare/swaps are required.
Unfortunately, the number of instructions required by
this method soon becomes the limiting factor in its
adoption in using it. For sorting a maximum of three or
four elements, this could be a very efficient bubble-sort
method, but its usefulness diminishes as larAer arravs
must be sorted.

Data encryption is a fascinating topic and a number of
programs are available for the PIC microcontroller
that implement data encryption standard (DES) and
other modern encryption algorithms. Simple substitu-
tion algorithms can be implemented surprisingly easily
in PIC MCU assembly language, as I will show in this
experiment.

The basic operation of a substitution encryption
algodthm is that one character is substituted for
another from a table in which the character substitu-
trons are symmetricql When the substituted character
is placed back in the table, then the original character
is returned.This operation is demonstrated in the fol-
lowing application:

titLe traamEdcrypt 1 - Ulrke - Encr!'p! alal
Decrtzpt anal ASCII Stringn

Thia aDDlicalion coaverta a String of
Characters sloleal ia th€ Eile
Reglsters anal then al€cr]Dtss lh€sr using
a glannetrical convelEioa table (Ror13).

rrcr' Equivalent Codt€:

DataSt,ring

for (i = 0, i < at !1ea(Datast l lng) t i++)
/ I E^ctyT,E th€ String

Datastr ing[i] = Encrt pt (Darastr ing t i l) ,

for (i = 0r i < srr len (Datagrr ins) r i++)
// DecrlT,t th€ Slring

Datastlinslil = Eacrypt (Datastlins Ii1) t

! .h i l€ (1 == 1) t
// Done, IJoop Eoreve!

Harahtra!€ Notes:
PIC15E68{ ruDning at 4 ltlz in Simulatsor

r.lyk€ Pledko
0 4 . 0 { . 0 5

LIST R=DEC

2 9 4 l , E 3 P I C @ l l C l J E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

INCUTDE "D15f68{. inc"

i Variables
CBI,OCK 0x20

DataStr ing:12
ENDC

PAGE
r ltainline of EncryDtioa

org 0

novhc Datastling - 1

movDrf FsR
Inj'tIJoo9:

incf FSR, f

novhr Dalaslringl
aubwf FSR, it
cal l h i ts t r ing
NOVWf INDF
io!1w 0
btfss STATug, Z

goto IaitsIJoop

novl,w Dat.agtring

rnovwf FsR
lldcfl.!)t Iroop :

novf INDE, w

call Eucrtz9t
Or'Wf INDF

incf FSR, f

movf INDF, w

btfBa STllrUs, z
goto Eacrtz9tlJooD

novllr Dataslring

novwf FsR
Decrl.9tlJoop :

movf MDF, \t

call Encril'l

novwf IND!

incf, FSR, f

movf INDS' w

btfaa SfaTUS, z
goto D€crylrtlooD

goto I

t Subroutides

clrf PCLATH

if ((_Ercr!,Dt & 0x0100)
b6f PCIATH, O

eualif
if ((_EacryDr & 0x0200)

bEf PCLATH, 1
enall.f
if ((_Encr!'Dl & 0x0{00)

bgf PCIJATII, 2

enalif
aaltllw _Inilstring
btfBc STAfrus. C

incf PCLATB, f
monwf, PCL

.It TIITKEPREDKOtr, O

r getup FSR lo Poj.nt !o
; tlre Datastring

, PoLnt lo lh€ Nenl

i €€ts rnalex Inlo string

i sto!€ the charac!€r
t At Enal of gEling?

t Now, EncttE l the
i string

i Get chalacts€r to
t Encryl)l
t llo th€ Encryptsi.otr
t Itt back lhe
t Encryplefl Charecter
r Point to th€ Nex!
t Charac!€r
r Regeal to End of
r Slring?

, Now, D6cri'pl the
, StrLlg

i Gel charact€! to
i Encrypt
t llo the sylln€tlical
t Decrygt
t Put back lh€
r EncrlTrtedl Character
r Poinl to the N€xt

r ReD€at to Enal of
, gtring?

r Finiaheal, Loop

r setup PcIJAlrIl for
i TabLe Reaal
l = 0)

l = 0)

I = 0)

clrf PCLAIIH

if ((_Encrl,I)t' &
bsf PCLAAA,

eadif
i f ((Encr, lT)ts & 0x0200) != 0)

bEf PCI,AIIH, 1

enalif
i f ((_Encrl.pt & 0x0400) != 0)
bsf PCIATH, 2

' EE�TIE}I UPPERCASE
i ascrr charectser
, getsuP PCLIITE for
r Ta51e R€aal

0 x 0 1 0 0) ! = 0)
0

14
X

l'rt

t v
Lt

f.r.

q v
,-t

r
9--!
w
g
I

rrl
5.{

1 6

K
Ld4

ffi

q

t&

{ d
|d

a.4
e?'{

r.&

*3

&*
r-&'
t-d

Fr.
!n

lr.{

endlif
adt l lw (0 - \A ')

adaLw _Efct:zpt i Zelo Baa€ the
i charactera

btfsc sTATuS. C
incf PCITATE, f

movwf PC!
_thcfy9t:

alt trNoPQRsruwqxYzABcDEEGlrriIK!!,l" tRct'!13

eaal

This application first loads an array built with 11 file
registers with the string of uppercase characters to
encrypt and decrypt.The code, which is represented as
the Datastring initialization in the header "C" Equiva-
lent Code, is the standard method for initializing an
ASCIIZ-string variable array. Using the ASCIIZ for-
mat, the length of the string can be ignored;it is simply
read until a byte with the value zero is encountered.
This feature minimizes the number of file registers
required to initialize, read, and write aray elements.

Next, each character is passed to a subroutine that
finds the character offset to the character relative to A,
and the character in the Encrypt table at this offset is
returned. The character retumed from the Encrypt
table is in the ROT 13 format in which A is changed to
\ B is changed to O, and so on. This is a very basic and
popular substitution algorithm used mostly for demon-
stration purposes.

This assignment was given to a high school student
who came up with the following algorithmic version of
the Encrypt subroutine:

i f (character >= 'N')

// cha:.ectser ld-Z, change to A-u
Character = Charaqler

else // Chalacler A-U, Change to N-Z
Character = charact€r + (\ ! I ' - rA ') '

This code either subtracts or adds the difference
between the ASCII character code for N and the
ASCII character code for A. You are probably aware
that the difference between the two is 13 (assuming

Section Ture lve S o l v i n g P n o g r a m m i n g P r o b l e m s 295

that there are 26letters in the alphabet and the break
is halfway through the alphabet). But by keying in the
difference as an arithmetic statement that the com-
piler/assembler has to process makes it easier to see
what's happening and minimizes the chance for keying
the wrong value or changing it inadvertently.

It isn't difficult to convert to PIC MCU assembler,
but the code is somewhat cumbersome. not to mention
quite hard to follow. In the following code, I have indi-
cated the value within WREG to make the oDeration
of the function easier to follow:

I replaced the original Encrypt subroutine in the
asmEncrypt l.c routine, with the new version above
and called the application asmEncrypt 2.c. This code,
although obviously very efficient, is hard to follow and
understand.The best way to examine what is happen-
ing is to consider each case in which WREG contains
a value from A to'M' or a value from'N' to'2.'
For a value between A and'M,' the code executes as
follows:

subfw 'N,

a d d t w - 2 * (r N ' - \ A ')

sublw 'A,

r WREG = r!I, - WREG
r W R E G = - 2 , N . + 2 , A ,
r + (. N , - W R E q)
t W R E G = - ' N ' + 2 ' A ' -

t $IREG
t $IREG = rA' - (- 'N ' +
, 2 'A ' - WREG)
' WREG = \A' + lN' -

, 2 'A ' + WREG
t !\IREG = WREG + ('N'

t - ' 4 ' �)

, WREG = r!r' - WREG
t I IREG = \At - ('N ' -

r ViIREG)
i IIREG = WREG + 'A' -

t WREG = !"REG - {'N' -

t ' A ' �)

Erlcrypt:
sublw \ ltl'
btfsc STATUS, C

goto ROTl3TJess

s u b h t ' M ' - (' N ' -

goto ROTl3Done
ROTl3LeEa:

s u b l w ' M ' + (' N ' -

ROT13Done:

, WREG = rM, - WREG
r Skip if Carry Re6et
, (WBEG > rM')

r Carry Se!, WREG is

' a ') r $ I R E G - \ M ' - (' N ' -
. rA,) _ (. r { , - I , IREG)
r WREG = WREG - ('N,

, - ' A ')

t WREG <= \r!1', Aalal

\ A ') t W R E G = ' M ' + (' N ' -
. r A ,) _ (. M , - W R E G)
t WREG = WREG + (rN'

i - ' A ' '

r WREG = ROT13 (VIREG) t

For the case in which WREG contains'N' to'2,' the
code is as follows:

sublw \N,

sublw \A'

So by using the sublw instruction a second time, the
value fi'om which the WREG was originally subtracted
can be removed. and the value in WREG can be
changed from a negalive to a posilive.

Instead ofjust leaving the code as is, I decided to
spend a few minutes and see if I could simplify the
conversion process by eliminating the two paths and
looking for a value to add to the subtraction result in
WREG The subroutine I came up with follows:

Interesting, if the sublw is executed twice, you end
up with the original value: If you compare the two methods of computing the

ROT13 value, you'll see that the results are the same. I
don't think I would get a lot of argument that the sec-
ond version is more efficient at computing the ROT13
value, although it is not obvious how I derived it. I
would like to say that I have a simple process for com-
ing up with this type of optimization, but I must con-
fess that each case is different. To come up with the
optimization for the ROT13 Encrypt function, I
stafied with the desired end points (the final value of
WREG when the contents of WREG are less than or
equal to 'M' and when they are greater than 'M').

Next,I went to my test state (the sublw 'N' instruction)
and worked at finding an addlw instruction that would
negate the'N' through A operation.

Please do not assume that optimizations are beyond
your grasp or that they come to me because I have
more experience programming and working with the
PIC MCU than you do. In explaining the operation of
the instructions of optimized code, I have pedantically
listed the register contents, listing their value as I alge-
braically simplily them. If you follow this methodology,
you will find that you too will come up with very effi-
cient code that meets vour requirements.

Bublw Nuniber

Bublw Nuniber

r WREG = Number -

r WREG
t WREG = Iilunber -

r (I{Enb€r - WREG)
t $IREG = WREG

r Elrcrl.l't the
r UPPERCASE ASCII

r Carry Reset if $IREG
t > \ M '

Encrlrpt:

sublw 'N'

bt fac STATUS. C
addlw -2 * (.N, - .a ') , carry Se! , l rove ro

, Doi\'n rN' - .A' Values
sublw 'a '

r Retsurn the Eneoaledl

2 9 6 l , a 3 P I C o l l C U E x p e n i m e n t s f o r t h e E v i I G e n i u s

tql
X

rd
o
rt
f-r.
3o
$

ts
H
l\)

I
F
;fl
|-...r
x
0,
o
o
} l .

zs
5
tt
(D
ry

V2
o

to
.a
o
o
o

Experiment 112-Eenerate a Fibonacci Number Sequence

Eight hundred years ago, the Italian konardo Pisano
Fibonacci looked at the problem of how rabbits repro-
duced and how the growth of their population could
be plotted. Postulating that rabbits could produce a lit-
ter once a month, after they were two months old,
Fibonacci came up with a sequence of numbers that is
the bane of computer science students more than
three-quarters of a millennium later.

Starting with one pair of new born rabbits, the pop-
ulation of rabbits in the first year can be listed as:

L , t - , 2 , 3 , 5 , 8 , 1 3 , 2 1 - , 3 4 , 5 5 , 4 9 , L 4 4

This sequence is normally described as the result of
a recursive fitnction As I mentioned previously, recur-
sive functions perform part of a specified operation
and then call themselves to complete the operation. I
discourage the use of recursive functions in PIC MCU
programming (of all types, not just assembly or C)
because of the lack of an arbitrary-length program
counter stack.

Without the possibility of recursion, the problem
becomes quite simple, with each value in the sequence
being defined by the statement:

F i b t i l = E i b t i - 1 l + F i b t i - 2 I

that can be checked by applying it to the sequence of
the previous numbers,

The requirement for this application is to produce
the Fibonacci rabbit population growth values for two
years. Looking at the example sequence above, you
can see that the value of the thirteenth month will be
approaching 255, which means that in order to store
the population values, you will have to use 16-bit vari-
ables. The general form of the addition is:

. Add high bytes

. Add low bytes

. If low-byte sum is greater than 255 (carry bit
set), increment the high-byte sum

In my solution,I have set up a 24-element, 16-bit
array, in which each month's element value is stored
and used to produce the value for later elements. The
solution to the problem uses the FSR index pointer
register to keep track of which element (and which
byte of the element) is currently being accessed. To
change the FSR,I use incf and decf (increment and
decrement instructions, respectively), and I add explicit
values to the FSR.

titte "asmribonacci - cleat€ the Elbanacci
Sequence for 24 TermE"

i D€noastrate wolhLng with 15 bil

i Nunb€r Arraya to calculate lhe

; Fibonacci E€riea for 2{ E€rms.

t "C" EquivaLenl Coale:

t in l F ibt241; / / 49 Byle-Fibonacci Sequenc€

, F i b l o l = F i b t l l -] . t
, // Eirat Two Valuea are 1

, f o r (L = 2 i i < 2 4 t i + +)
r F i b l i l = F i b l i - 1 l + E i s t t - 2 1 t

, / / cet Each value

r whl.l€ (1 == alt // Finisbeal' IJoop For€ver

i llaralware Not€a:
; PIC15E584 rutraing at { uEz in SimulaEor

i
, !,l].ke P!€ilko
, 0 4 . 0 8 . 3 1

LIST R=DEC
INCL(rDE'915f 584. inc '

, variableE
cBrJocK 0x20

Erbr2*24

i , TerD:2
ENDC

PAGE

org 0

c l r f E l b + (0 r 2) + 1

c l r f F i b + (1 * 2) + 1

mov].w 1
movwf Fib + (0 * 2)
mo'\tttf, Fib + (1 * 2)

t Array Sloring
i Fibonacci values

t In l t la l ize 1El

t Two A.rray El€dlenta

5ection Turelve S o l v i n g P r o g n a n m i n g P r o b l e m s 2 9 7

ql
f.t(u
.a
ts
r..l

x

F
f-1

r{-{

!s{

r*{

"}J

I,J

.r{

fr"{

&
I

novlw 2A - 2

movlrf i

novlw Fib + (2 * 2)

novrdf FSR
IrooD !

alecf ASR.
mov! MDE,
movwf T€a\D
tl6cf ESR,
movf INDF,
movwf E€[rI,
alecf FSR,
movf INDF,

lilumber of
Eldlents to AiLI

t Point to the
t Start of tbe Arlay

i Store TerE) in
r F i b t i l

goto I i Finiaheal, trooD

€ndl

When you run this application, one of the biggest
problems you will encounter is trying to determine
whether or not the answers are correct. Lookins at the
File Register window in MPLAB-IDE (see Figure l2-
5), you may have a difficult time picking out the
higher values and translating them into their decimal
eouivalent.

= 0x03DB
(ln Reverse-
Byte Order)

Figure la-5 Fibonacci value

In Figure 12-5, I have circled the sixteenth element
of the Fib array. The element's first address in the zero-
based Fib array is found using the formula:

Address = Array SEa-rL Address r 12 x
(E lenen t - 1) l

So, to find the first byte of the sixteenth element, the
first address is 0x03E (assuming Fib starts at file regis-
ter address 0x020). This value is saved in Little Endian
format (low byte at low address, high byte at high
address), and the value is 0x03DB-even though it
looks like 0x0DB03. Converting to decimal, this value
is 987 (which was found by evaluating the expression [3
x 256] + [13 x 16] + 11), exactly what is expected.

I'm going through this calculation because, like C
pointer values, MPLAB IDE does not show the con-
tents of an array (especially with elernents that are 16
bits and greater), and to see what they are, you will
have to employ a bit of ingenuity. For the most part, I
recommend you avoid data structures with operating
values that require this amount of work to understand,
but in some cases calculating an address and convert-
ins the value manuallv cannot be avoided.

f , Point ro Fibti - 1l
w i anal Save in Tettp

+ L
f

f
w r Aatdl Fibli - 2l to

t Telqt
atldlrf T€aI) + 1, f
tlecf FsR, f
novf INDF, rt
aalabrf Tetnp, f
btsfEc sTtTUs, c

incf Tetry + 1, f

aatalwf FSR, f
movf Tetnp, w
movwf MDF
Lncf FSR, f
&ovf TqE + 1, w
novwf IIIDF
incf FSR, f

a lecf ,sz i , f , Repeat (24 - 2)x
goto lJoop

rr]
r"{
F-l Experiment 113-Find the Largest Eommon Factor

of Tr.uo Eieht-Bit Numbers

c)g
".1
t"{
q,
g{
X
td

To round out the section,I want to leave you with an
application that can be expressed reasonably crisply in
the C language. However, translating the function to
assembly can have a number of unique challenges that
will need to be addressed. Finding the largest common
factor of two eight-bit numbers is very difficult when
translating between the two programming languages
directly. Substituting direct translations of the C assem-
bly language statements would have potentially made

6n

298 l , e 3 P I C @ f l C l J E x p e r i m e n t s f o n t h e E v i I G e n i u s

the application more difficult to write and execute effi-
ciently.

The task of finding the largest common factor of
two numbers is not particularly difficult, although it
requires a number of steps. The ftst is to find all the
factors of each of the numbers. This is done by repeat-
edly dividing each value with incrementing divisors
until a divisor that produces a remainder of zero is
found. When the remainder of zero is found, the quo-
tient of the value and the divisor (which is a factor of
the value) must be saved as the new value and the
process repeated to find other factors. In highJevel
language programming, this is quite easy to do, but in
assembly-language programming, coding the division
routine requires extra work. However, this extra work
can make it is possible to perform the routine only
once, simplify the program, make it shorter, and make
it execute faster.

Because of the need for division routines and stor-
age of the different factors of each value, I used two
unique variable arrays that are indexed using counters.
Using a high-level language, this is easy to accomplish,
but in the mid-range PIC MCU, it is more difficult
because only one index register is available and
because the address for each value needs to be recalcu-
lated.To simplilf working with the index register with
multiple arrayq some planning is required-planning
to make sure that the index you are both readhg from
and writing to is the last index accessed so multiple
recalculations are not required.

The assernbly language result for this experiment is
"asmlcFactor.asm" and its operation is best illustrated
using "clCFactor.c". Obviously, many subtleties exist
in the assemblyJanguage code that cannot be repre-
sented in the C language version of the application.

#lncluale <9ic.h>
/* cr,cBactor - Get the largeat cdnron

Factor of 2 8 Bit ![t,I!be!s',

Filst s€l the factors for two 8-bil
nuribers adtl uae th€[l to findl the lalge5t
cdrron factor. Thia is a atirect usage of lbe
rncn Equivalent' Coale' of the aEs€[lbly
lansnras€ v€rsioD

llaralware Noles:
PIC15F58{ running et { MEz in simulatsor
Resel is tied tlirectly !o vcc via
PulLup/ Progra.lring Haralware

Iil!'ke Pr€flko
0 { . 0 9 . 0 1

int N\rnib6r1, lirufiber2 t
int Eactor l l ia t [15] t
lnt Eactor2r,l.at I16l t
int large6!!actort

cetFactora (irlt va1ue, int Faclor',ist[])
| / I FLatl AlrJ lhe Factora of a lillrniber

aactor l iat [0] = 1t
f o r (i = 1 r i < 1 6 r i + +)

I / I'litlalLze tshe Faclorl,iat
FactorlJiats lil = 0t

i = 2 r i - L i
whi le ((1 != value) && (valu€ != i))

// Final the Factors
t

i f (0 == (vaLue % i))
// rf Renainate! o! value/i == 0

| // tE is a Eactor
v a l u e = v a 1 u € / i ;

// Eake Awey Factor
Factor l is l I j++l = i t

// Add Factor to the IJists

// Restalt Faclo! Proce€s
l // fi'
i++, // !,ook at Nexl vaLue of trin

] / / e l ihw
i f (1 l= value)

// RemaiDing Prille to Save?
Factorr,ial [jl = value;

// Re$ainate! ia Final Faclor

, // enal GetFactota

nain()
(
i n t i , J t

Nunber1 = 195t
Nurbe!2 = 22{t

cetl'actols (llulrbell, FacEorlliat) t
// Get FactorB

GetFactors(lilurber2, raclor2Lists) i

IJargeslFactor = 1t
// CaLculat€ lJargeEt Factor

for (i - 1, (i < 15) && (0 != Faclor l l , is t t i l) ;
i + +)

f o r (j = 1 r (j < 1 5) & & (0 ! =
Factsor l l is t t i I) ; j ++)

i f (Factsor l l " is t t i l == Facto!2]J i8t t j l)
| // Ha''e a colEron Factsor

LalgeatFactor = LargestFactor *

Factor l l is t I i I t
racto!1 l iEt [i l = Faclo!2 l . is l I j I =0t

, / / f i

l t h i l e (1 = = 1) ,
// Finished, IrooD Eorev€!

, // E^d cr,cFactor

The efficiencies of the assembly-language version
over the C version became very apparent when some
measurements were taken of the two applications. The
assemblyJanguage version executed in one quarter of
the number of cycles of the C version (4,800 to 1.5,275
according to the MPLAB IDE Stopwatch) and also
took up one quarter of the amount of space taken by
the C language version (92 instructions to 367 instruc-
tions). The improvement in the number of file registers

FI
X

t
o
r-t
Fr,
5
o
r+

}J

s
t J

I

3::l
F"r.
H

rt
v
f t l

r
T J
t'rJ

Hr

H
{c
xs
3
ff

o
Ft
(f)

5ection Ture lve S o l v i n g P r o g n a m m i n g P n o b l e m s 299

tbt

iJ
. t ' i

*..i
,l:
li
{.ii
':*

. r*

lt-:

, f 1

tt
f)

:"r,,

used was not as dramatic (the assemblyJanguage ver-
sion requires 72 file registers versus the 88 required for
the C language version). From these parameters, you
might argue that the assembly-language version is four
times better than the C language version and is clearly
the "best" of the two.

The assembly-language version would be the best if
speed and size were the critical requirements for the
application. If development cost was an important
requirement, the C language version would win, hands
down. Remember that the design of the algorithm,
which I coded in the C language before attempting to
write it out in assembler, has to be done in either case,
and if a highJevel language is used, the code can sub-
stitute for documentation. In this case, you are not
developing code that implements the same function
twice. And, in the case of making changes to the code,
if the source code itself is used as documentation, the
documentation for the application is changed automat-
ically. Finally, the C language version can be trans-
ferred to other processors with a minimum of
conversion effort. If the application was coded in
assembly language, it would have to be rewritten in the
appropriate assembler. This last point is known as the
portabiw of the code. By definition assembly lan-
guage has very poor portability across different plat-
forms.

For Eonsideration
Teacherq more than anybody else, understand the
importance of creating different assignment and exam
problems. If a set of problems (such as the 10 in this
section) were used for more than one year in program-
ming course, chances are good that solutions would
become available over the Internet in time for start of
the next course.This is unfortunate because the pur-
pose of these questions is to help the student under-
stand problem requirements, develop an algorithm for
the solution, and finally present the result as part of
the project.The marks are really secondary.

The problem: It's difficult to come up with new
questions. I find it useful to keep a running log of ques-
tions that I think of during the year. I write down all
sorts of things that I come up in my day-to-day work.
Some of the problems in my current list that could
have been considered for this section include the fol-
lowing:

. For a set of X,Y points, find the equation for
the trend line.

. Multiply two numbers together using Boothe's
alsorithm.

. Find the eight-bit mean and median of a list of
10 numbers.

. Produce an eight-bit random number using an
LFSR and an eight-bit seed.

. Use structures to add two real numbers
together.

. Sort a list of numbers using a bit-map.

. Reverse the characters in a string.

. Find the Y:0 crossing point for an equation in
the format Y = Mx3 + B.

. Find the day of the week for a given date.

. Compress an ASCII string (i.e., replace repeat-
ing values with a single character).

. Implement a simple transposition cipher.

Along with keeping a list of possible questions, a
quick Google search for "Programming Problems" is a
useful way to find additional questions to work
tbrough. In July of 2004, this search yielded over six
million hits. The following selection came from the top
of the list and offers many useful and appropriate
questlons:

ACM International Collegiate Programming
Contest/European Division

www.acm.inf.ethz.ch/ProblemSetArchive.html

o Various sample problems

American Computer Science League

www.acsl.org/samples.htm

High school level programming problems

Department of Mathematics and Computer
Sciences, Western Carolina University

www.cs.wcu.edu/cscontest/2@/zou problems.pdf

Programming Problems, 15th Annual Com-
puter Science Progamming Contest

Problem Set Archive

http://acm.uva.es/problemset/

Several hundred problems, advertised as being
typical to exan/project problems

Universily of California. 1999 Programming
Contest
www.cs.berkeley.edu/-'hi lfin gr/programmi ng-
contest/f99-contest.pdf

Some basic programming problems

3 0 0 l , e 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

S e c t i o n T h i r t e e n

TipZaps@ Flobot

DUM

Breadboa!d

Solde! ing i lon

solde r

RoLarY hand. tool
(Dremel tool) with
carbide disk cut-

s l a ^ + , r ^ r , r I I

9/64-inch high-speed
d l i l l b i t

Needle-nose pl iers

20- to 24-gauge rr i le

Black wire

Red wire

Wile-wlap rr i le

Permaneot malkel

I l i !e cl ippels

Breadboard

Wil ing kit

Sc i sso ! s

Xrazy Glue

Five-minute epoxy

Over the yearg I have gotten at least two dozen emails
from people who want to come up 'ri/ith their own
copies of established products because what's already
out there is so expensive and they feel they could pro-
duce products at a fraction of the established product's

price. My only experiences with retail products are
with the Tab Electronics Build Your Own Robot Kit
and the Tab Electronics Sumo-Bot Kit, and they have
been eye-opening experiences. In coming up with
these productq we agonized over features and parts to

1

1
.I

I

1

2

5

Radio Shack
Zipzaps remote
control ca!

ZipZaps Pe!fo!-
mance Booster
Uplrade Kit

P l c r6F68 4

MAx?55

38 KHz IR TV
lenote control
!ece j .ve!s

Tvro-J. ine, 16-
column LCD

1N5817 Schottky
diode

LEDs

IR LEDS

Light-dependent
resi.stors

10k resi,stors

1k j .esistols

4 . 7 k l e s i s t o r s

470f,) lesistols

100O les i s to l s

10k breadboa!d-
mountable poten-
t iometer

100 pF e lec -
t r o l y t i c capac i -

t o l s (r a ted a t
I eas t 10V)

47 /.rF electrolyt ic
caPacr.to!s

0 .1 pF capac i t o r
(aoy type)

0 .01 pF capac i t o r

14 -p in , mach ined
pin DtP socket

Tvro-piD, t ight-
angrle stlaight-
thlough connecto!

Four-pin, r ight-
angle straight-
th!ougtr coanecto!

Tero-pin, straight-
thlough socket

Four-pj.n,
straight-throu9h
socket

Prototyping PCB

Breadboard-
mountable SPDT
switch (E-Slr i tch
EGl903 Recormeoded)

Breadboard-
nountable mcrnentaly
On push button

sfin heat-sh!ink
tubing

Thlee-cel l AA
battety pack

AA al,kal ine
batte! ies

6-32, 2-inch long
nylon bolts

5-32 oylon nuts

301

try and meet the requiled price point. I very quickly
learned that the product cost should ideally be one-
sixth, and no more than one-fifth of the retail price.
The cost differential is due to shipping, warehousing,
packaging, advertising, warranty, nonrecurrin g
expenses costs, and profits for both the manulacturer
and retailer. Using this rule of thumb,I am amazed
that Radio Shack c an sell the ZipZapsor remote-con-
trol cars for $20.00.

The ZipZaps remote-control cars are a lot of fun to
play with. If you haven't had the chance to at least try
one out in the store, you should do so immediately. Fig-
ure 13-l shows the complete package, a car and
remote-control unit that doubles as a charger. The car
has a 1l.2 V NiMH battery that can be charged in about
a minute and allows the car to run for three or four
minutes at full speed. The car is capable of running for-
ward and backward and can change direction; some
earlier remote-control cars could only move lbrward
and backwards, and turn in only one direction while in
reverse. Radio Shack offers a wide range of different
bodies for the kits, along with various accessories,
including performance upgrades As you play with the
ZipZaps, you should be impressed with its robustness.
It handles crashing into objects very well and even sur-
vives the most extreme activities (performing jumps,
running otT tables, and so on) without complaint. It's a
pretty amazing package when you consider that they
cost $3 to $4 to manufacture.

Fiqure l3-l The Radio Shack ZipZaps@ car with
remote control and charger

I am actually surprised to discover that nobody has
explored the idea of wing the ZipZaps as the basis for
a mobile robot chassis, when using other larger
remote-control car chassis as the basis for robots,
which is very common. Looking at the ZipZaps,I can
come up with a few concems, namely:

. 1.2-volt operation

. Limited operating time

. Small size

. Minimal payload capability

. Surprisingly sophisticated motor and steering
driver circuitry (and complex circuitry overall)

. Ternary steering (three states: left, right, or
straight)

Taking olf the body, the Zipzaps is very compactly
designed.You can pop off the circuit board's plastic
cover and get a better idea of the electronics that act as
the radio receiver and the motor/steering drivers. You
may have never seen, and have probably never worked
with, the surface-mount components used in the
ZipZaps' electronic board (see Figure 13-2), which
may minimize your confidence in modifying the cir-
cuitry. All these concerns are legitimate, and using the
ZipZaps as the basis for a PIC MCU controlled mobile
robot may seem unlikely, but as I will show in the
experiments that follow, the ZipZaps is designed using
traditional methodologies. You can hack one into a
robot over the course of a weekend for suryrisingly
low cost.

An important aspect of hacking the ZipZaps into a
robot has been the work that has been performed in
the previous chapters and the skills and knowledge
that work has developed. As I work through this sec-

Figure 'f3-?
The ZipZaps electronics seem small

and difficult to work with, but can be used as a basis

for a surprisingly sophisticated robot.

302 l , a 3 P I C o l ' l C U E x o e r i m e n t s f o r t h e E v i I G e n i u s

tion, I will be adding robot features to the ZipZaps
chassis that have been presented and prototyped ear-
lier in the book; in fact much of the incremental code
that is added with new features was cut and pasted
directly from these previous experiments. With a sim-
ple base structure for the software, using the estab-
lished code base I was able to create a very
sophisticated set of robot functions for the ZrpZaps rn
just a few days.

I really had a lot of fun working through the experi-
ments in this chapter and I think you will too. But
before you start cuttingrp a Zrpzaps for your own
robot, I suggest that you spend some time reading

through this section and rereading (and redoing) the
various experiments that discussed and presented the
control, software, and interface features required for
the robot.You may not be able to find all the parts I
used (although they are pretty generic) or, due to
assembly differences, you may find that they work dif-
ferently or have to be tuned in a different way. By
reading through the section first and making sure you
understand how everything is supposed to work, you
will minimize the amount of work needed to complete
the robot and maximize the chances for success iirst
time at every step. Having a different perspeclive on
the robot, you will likely come up with something even
better than what's presented here!

Exp e ri m e nt 1 I t-.1 - C h a r acterizing the ZipZaps

Tool Box
Radio Shack ZipZaps
lemote-control ca!

ZipZaps Pe!formance
Booster Upgrade Kit

Before we can start designing robot hardware for a
Zrpzaps remote-control car, it's important to under-
stand the characteristics of the motor drivers and the
steering actuators.The information that we want to
collect includes which circuits are used to ddve the
motors and the steering, what voltage is applied to
them, and how much current they consume during
operation.To do this, you will have to probe the
ZipZapsvery carefully, as you will be desoldering and
resoldering some wires. This is somewhat fine work,
and you may want to take my results on faith.
Although you will be doing similar work in the next
couple of experiments, now is a good time to get
started and get some practice.

Just as a note of reassurance, I want you to know
that during this step (and the following steps), I broke
a number of wires from the car chassis to the PCB. I
was able to reattach them, and the ZipZaps ran fine
afterward.

The first order of business was to solder on 2- to 3-
inch lengths of wire onto the red wire and black wire
connections of the PCB. It is difficult to show in a pho-
tograph what was done because I attached the wire to
the backside of the PCB (assuming that the side that
has the wires, shown in Figure 13-3, is called the front).

DMM

Need le -nose p l i e r s

So lde r i ng i r on

So lde r

20 - t o 24 -gauge w i re

These wires will be required for the next experiment.
While holding the driving wheels of the ZrpZaps off
the table (no load condition) and with the wheels
stalled against a table top (worst case with the motor
essentially short circuited),I measured the voltage
(which is the battery output) across the two wires as
given in Thble 13-1. The minimal voltage drop seen
from nothing running to running and stalled is an indi-
cation that the motor drivers are well designed for the
motor and that the battery has some excess capacity.

Next. I wanted to look at the motor drivers them-
selves. With a bit of searching with a DMM, I was able
to infer that the motor driver circuit looks something
like Figure 13-4.This is an innovative motor driver
design with two control lines and is advantageous to us,
as I will show in the next couple of experiments.To test
the motor driver, I first measured the voltage across
the motor (at the yellow and blue wires) for the con-
ditions listed in Table 13-2. I then measured the current
passing through the motor for the same conditions by
desoldering one of the motor wires fuom the PCB.
When I was finished. I soldered the Inolor u ire
back on.

The motor ddver should be fairly easy to interface
to a PIC MCU. The only problem you should be aware

5ection Thirteen Z i p Z a p s o R o b o t 3 0 3

Table 13-2
Motor Parameters

Condition

No Load. Motor Running

Motor Stal lcd

Cuffent

Table 13-3
steering Drivef 5olenoid Parameters

Condition

No turn

Turning/Solenoid Active

Voltage Current
Rcross Through
solenoid Solenoid

0 V o m A

1.20 V 60 mA
Figure l3-3 Close-up view of ZipZaps PCB's "front

side"

of is the need to maintain a constant current from the
PIC MCU to the transistor's base.This will require the
changing the driver transistor-base currentlimit
resistor to a value that will provide the same amount
of base current as was available to the transistors
originally.

Again, the motol driver seems to be well designed
with dre ability to handle the current produced by a
stalled motor condition. After seeing these results,I
decided I wanted to use the motor driver circuit built
onto the Zipzaps PCB.

Next.I wanted to characterize the stcering actuator
electronics. After a few minutes ol probing the PCB, I
came up with thc circuit sltown in Figure 13--5. Each oI
the two solenoid coils of the steedng mechanism are
driven by the single bipolar NPN transistors with the

Table 13-1
Batterg Voltage at Different

trondition

Motors. Sleering Off

Molors Running. No Load

Stal lcd Motors

Driving Motor states

Voltage

I .36 V

1.30 v

1 .26 V

st\48T3906 SMBT39O6
(s2A) (S2A) Control

from

parameters listed in Thble 13-3. Like the motor driver,
the steering gear should easily drive a PIC MCU I/O
pin.The currentJimiting resistance should be changed
again to make sure the same amount of current passes
through the base of the steering driver transiston.

While doing this characterization, I ran into two
problems. First, the PCB is small and uses surface-
mount technology (SMT) components, which are
harder to rework than the pin-through-hole compo-
nents that you are used to. Patience, planning, and a
small-tip soldering iron are all that is required. Second,
it was difficult working with the steering gear solenoid
wires, as they are extremely thin magnetic wires and
will pull themselves from the PCB when you are sol-
dering adjacent components.They can be resoldered
easily, but you will have to notice when they are miss-
ing, and you will find that they can be difficult to
manipulate.

Solonoid
Coi l

Control
from

Radio

SMBT39O4
(s1A)Radio

st\,4 8T3904
(s1A)

Figufe l3-q Mobr driver

Sl\ilBT3904
(s1A)

Control
from

Radio

Figure l3-5 Steering driver

Valtage
FEross Mator Throush Motor

1.20 V 25 nA

0.65 V l{10+ mA

3 0 4 l , P 3 P I C @ l l C U E x p e r i m e n t s f o r t h e E v i l G e n i u s

DMM

Need le -oose p l i e r s

Breadboa!d

Wiring kit

The f st thing I had to do in the process of getting the
ZipZapsrcbottogether was come up with a scheme to
power the PIC16F684 that would control the robot.
This actually tumed out to be a fairly painless process,
although a couple of operational issues regarding the
selected chip and its use with the PIC16F684 had to be
investigated.To summarize the experiment's results,
the addition of a PIC6F684 power supply went very
smoothly, and I learned a bit more about the PIC
MCU and had some things to think about in later
robot projects like this one.

If I were to look at the Zipzaps Robot from a per-
spective that other people could easily understand, I
would note that it is powered by a single 1.2-volt
rechargeable battery. If you look at the PIC16F684 (or,
indeed, any PIC MCU) datasheet, you will discover
that the minimum voltage on which they run is 2.0
volts. For the Zipzaps robot PIC MCU to run at that
speed, either I needed to add an additional battery or a
step-up power supply. The suggestion of adding a step-
up power supply may seem like overkill, but adding
another battery had nothing going for it; not only did it
require space that was unavailable in the chassis, but
the battery used in the Zipzaps is heary (which will
decrease the performance of the robot), and I would
have to come up with a special charging c cuit for the
two additional batteries.

To go with the step-up power supply, I had a num-
ber of requirements that it had to meet before I was
comfortable using it. The requirements were:

. Noise immunity-I didn't want motor/steering
electrical noise to affect the operation of the
PICMCU.

Radio Shack Zipzaps
!emote-cont!oI car

P IC16A68 4

MAx756

1N581? Schottky diode

I,EDS

10o f ,) r es i s to r

100 pF e lec t ro l y t i c
capac i t o ! s (l a ted a t
I eas t l 0v)

0 .1 pF capac j . t o r (anY
tYpe)

0 .0L pF capac i t o r

. Small size-The control chip could be no larger
than an eight-pin DIP, and the number of sup-
port components had to be very minimal.

. Reasonable run time-The robot would run for
a reasonable amount of time before requiring
recharging.

. Able to survive PICkit programming backdriv-
ing. Backdriving is the term used to describe
the forcing of an overvoltage condition on a
chip's output. Backdriving typically becomes
very wasteful in terms of power and can dam-
age some circuits.

Using a switch mode step-up power supply elimi-
nates many of these concerns. The capacitor filters and
inductor energy storage very effectively filters out elec-
trical noise between the motor and the circuitry pow-
ered by the step-up power supply. There are a plethora
of different step-up power supplies to choose from,
which made the task of choosing a small, efficient
device easier, although it still took quite a bit of time
for me to settle on the Maxim MAX756. This chip is
designed for powering electronics using a single 1.5 V
or 1.2 V battery which is exactly the situation we have
here.

To validate the operation of the MAX756 and make
sure it would be appropriate for the Zipzaps robot, I
built the circuit shovm in Figure 13-6.This is a fairly
standard application of the MAX756, using values and
components recommended by the manufacturer. The
first test was to see iI the ZipZaps baltery could run
this chip and have it power a reasonable size load.The
circuit in Figure 13-6 provides a simple LED (requiring

ryl
h,

,TT

**,
a-{-*)
fTr

t!
i r

*.-"&

I
,

ffi

LI

{ I

w

' L ;

g

Elj
ht

*?"€

Experiment ll5-Plf MCU Por-uer 5upplg

5ection Thirteen Z i p Z a p s o R o b o t 3 0 5

:x

ldi-t

F X

i i

r---!

a
q

L l l

e*€

t'*

f I I

" } {

about 10 mA) and the cFlash.c application, which
flashes an LED between RA4 and RA5.

The application ran the first time, but did not run
after that. Using my DMM,I discovered that the volt-
age output of the MAX756, with all its heavy capaci-
tance, took a very long time to go below 500 mV-just
enough to put the PIC microcontroller into an invalid
state. To fix this problem, I enabled the brownout reset
circuitry in the cFlash.c program's configuration fuses
and renamed the application ZipFlash.c.As a side
note, all the programs in this section start with "Zip"

for easy finding, rather than the traditional c or asm. If
I didn't want to enable the brownout reset circuitry, I
could have put a b leed resistor of 4-7k or more across
the PIC16F684's Vdd andVss pins, which would drain
the capacitors when power was removed.

* incluale <pic.h>
/* zl.pFLash.c - 9irp1€ c program to FIaBh

an IJED on ZipZaDa,
Prc15E584

llhia Program ia a motllfi€dl vergiofl of ',cFlash
2. crr . wi tb

Brolrn Ou! Delect Active

RlA4 - IJED Poaitive Cofilection
RA5 - IJED lil€gative connection

Figure 13-6 ZipZaps power supply test circuit

charged from a remote control while plugged into the
power supply circuit. And when the battery was
charged, it not only charged the ZipZaps' battery but
also powered the MAX756 and the PIC16F684 to
which it was connected.

With the MAX756 power supply and PIC16F684
circuit added to the ZipZaps chassis, I found that the
PIC16F684's LED would flash for 10 to 11 minutes
(about half the time the unmodified ZipZaps would sit
on the table before loosing enough charge to the radio
receiver to stop being able to move).With the radio
receiver and wiring still present, I found that the motor
would run, without any drag on the wheelq for about 4
minutes, about the same as the unmodified ZipZaps.
The conclusion I reached here is that any task the
robot is performing should be completed in 2 minutes
or so, to make sure that it does not run out of power. If
you were in some kind of contest, you would have to
make sure that you won in 2 minutes or less. Otherwise
you would loose from lack of battery power.

Essentially, all the requirements outlined here are
met with the MAX756 step-up power supply. Looking
at the voltage output from the MAX756 using an oscil-
loscope, no indication was given that motor noise was
being passed to the PIC16F684.The MAX756 is an
eight-pin part with five support components, which
made it appropriate for use in this application.The
running time of the robot did not seem to be nega-
tively affected by the addition of the MAX756,
PIC16F684, and LEDs to the load powered by the
ZrpZaps rechargeable battery The only issue not
addressed in this experiment is whether or not the
MAX756 can tolerate the 5 volts applied to program
the PIC16F684 in circuit. This is an important require-
ment for the application, as I will discuss below, and it
is not mentioned in the MAX756 datasheet. To be on
the safe side, a silicon diode will be used to isolate the
PIC16F684's power supply from the MAX756's out-
put. The following experiments will determine if this
will affect the operation of the other components on
the Robot's PCB.

royke Dr€alko
0 4 . 1 1 . 2 5

coNFIG (MTIO & lvE||�tDIS & PWRTEN &
IJNPROTECT \

& I'IIPRCXIECT & BOREN & IESODIS &

nain()
(

PORTA = 0,
Cl'lCONo = 7,
ANSEIJ - 0;
TRISM = 0t
TRISAs = 0i

UCI,RI'IS &

FCMDIS) t

// Turn off ComparatorB
// Tulr off Alc
// Make RA4/8A5 outsputs

!rh i1€(1 == 7l l l Loop Eorever
{

f o r (i = 0 r i < 2 5 5 r i + +)
// Si,ryrle 500ms Delay

f o r (j = 0 r i < L 2 9 ?) + + l t

RAo = RAo ^ Lt /l T�oggle rJED state
) / / e l ihw

I // E'l.d. zipFLash

The application was built on a breadboard (see Fig-
ure 13-7), and after enabling brownout rest, it ran fine
and did not seem to affect the operation of the
ZipZaps chassis and PCB (which, other than the addi-
tion of wires from the battery's positive and negative
connectionE was unmodified). The battery could be

Zipzaps

3 0 6 l , e 3 P I C o l ' l C U E x p e n i m e n t s f o r t h e E v i l G e n i u s

Experiment 115-Plf MCU Electronics PfB 14
Xi-s
o
tt
F..
3
o
5
*

DMM

Needle-nose pl iers

Rotary hand tool (Dremel
tool) with carbide disk
cutter

E lec t l i c d l i I 1
e/er- inch high-speed dl i l l

bir

W i re c l i ppe rs

c ^ l r a ' i 6 ^ i ' ^ 6

Solder

Black wire

Red wile

Y[ire-wrap wi!e

PermaneDt malke!

KrazY GIue

Five-minute epoxy

With the power supply tested, you are now ready to
start hacking into your ZipZaps car and turning it into
a robot. In this experiment, you will be putting in nylon
bolt attachment points for the PIC MCU PCB as well
as creating the basic PCB cfucuit with the power supply
and PIC MCU socket.This task is not going to be easy,
and you will have to plan for the future experiments to
make sure that enough space (and holes) is available
for mounting additional hardware. As I work through
this experiment, I will try to indicate the issues that you
should be most aware ol

The prototyping PCB used for this experiment can
really be of any type, but I used one with predefined
power and ground traces and horizontally connected
holes. This simplified my wiring somewhat although it
restdcted me in other areas for which I had to comDen-
sate when I added additional hardware. You do noi

1 Radio Shack ZipZaps
remote-COntrOl Ca!

1 P r C 1 6 F 6 8 4

1 MAX756

1 1N5817 Schottky di,ode

1 LED

i.00 pF elect lolyt ic
capacitors (rated at
least 10v)

0 .1 p ,F capac i t o ! (anY
tYpe)

0 . 01 pF capac i t o r

14 -p in , mach ined p in
D fP socke t (see t ex t)

Tno-pin, right-ang,Ie
st!aight-through conltec-

Four-pin, ! igbt-ang' le
straight-throug'h con-
nectol

fwo-pin, straight-
througrh socket

Four-pin, straig'ht-
through socket

Prototyping PCB (see
text)

6-32, 2-inch-long nylon
bo l t s

6-32 nylon nuts

have to use a prototyping system like I used, but you
should read the rest of this section to understand what
prototyping PCB you want to use and how it is going
to be mounted to your ZipZaps chassis.

Position the prototyping PCB over the Zipzaps
chassis in such a way that the PCB will hang over the
chassis evenly. Do not position the PCB so it is above
the empty space in the chassis between the battery and
the steedng gear.The mounting bolts for the PCB will
be glued into this area and as close to the steering gear
as possible. When the bolts are glued in, it is important
that the charging contacts and hold-down holes are not
affected in any way. If they are hindered, you will not
be able to charge the Zipzaps battery using the
remote-control unit.

With the marks in place, find the center of the PCB
at this Doint and drill two e/er -inch holes 0.250-inch

H
P
Ol

I

hd
H
L J

K
f)

L'J

*-,

 ,,
rr
*

Ff
n
,-t

P,
{ a
l i

ry
R
lrr{
t ,

5ection Thirteen Z i p Z a p s@ R o b o t 307

m
U
A

w
U

,Fl
g
o
t{
{J
U
(}

FI

rd
p
Ux
U
H
A

I
\o
rl
r{

$
c
0,
E

.Fl

t{
o
9{
X
frl

away from the c€nter. ff the prototyping PCB is fully
drilled (as mine was), drill out two holeq four holes
apart. Remember to keep the PCB centered over the
ZipZaps chassis when you are doing this.

Once the holes are drilled, run the nylon bolts
through and screw them down with some of the nuts.
At the end of the boltg loosely screw on a nut and put
Krazy Glue on the open face of the nuts at the end of
the bolts. Carefully (making sure you do not trap any
of the small steering wires) push the open face of the
nuts against the bottom of the chassis The bolts should
be solid to the touch in 30 seconds or so .The Krazy
Glue acts as a mild solvent to the plastic used in the
ZipZapqso leave the assembly in place for an hour or
so for the Krazy Glue and chassis plastic to harden.

When the Krazy Glue has hardened, remove the
bolts and cut the bolts down to 1.25 inch (3 cm). (You
will probably have to loosen the nuts holding the bolts
to the PCB first.) Insert the bolts into nuts, cover the
nuts ald the base of the bolts with 5-minute epory, and
wait for another hour for the epoxy to harden.

When the epory has hardened, run two nuts down
the shaft 1A inch (1/z cm) and Krazy Glue them in
place. Once the Krazy Glue has hardened, you can
place the prototype PCB on the bolts and tighten it
down when you want to test the robot.

With the bolts in place, you will now have to cut
down the original ZipZaps PCB. This is being done for
two reasons. Fhst, you want to avoid any kind of con-
tention between the ZipZaps driver and the PIC
MCU. And second, you want to make space for the
two bolts you just installed. Before cutting the PCB
with a Dremel tool and carbide wheel,I located the
four resistors used for current limiting on the PCB and
drew an indicator line on the PCB above them (see
Figure 13-7) using an indelible marker. Cut the PCB
along this line carefully, making sure you do not dam-
age any of the marked resistors.

Once the ZipZaps PCB has been cut, solder wires
to the positive (red) and negative (black) wires leading
from the battery to the PCB. These wires will go to a
right-angle connector to be soldered to the bottom of
the prototyping PCB and will need the straight-
through connector soldered to the other end. Next, sol-
der wire-wrap wires to the ends of the four-motor
driver and steering driver resistors (see Figure 13-8).
These four wires will be soldered to another straight-
tbrough connector, which will go through another right
angle connector and the bottom of the prototyping
PCB.The ZipZaps chassis is now ready to be con-
trolled by a PIC MCU!

When I attached the PCB to the robot, I did it with
the solder traces up. This make soldering components
quite a bit more difficult, but it ensures the PIC MCU
power and motor/steering driver connectors are easy

Figure l3-7 Mark cutting line above curuent-
limiting resistors and below black blob

to solder and their whes do not snag or rub against
sharp wires on the bottom of the PCB. The machined
pin socket that was specified for the PIC MCU was
identified because it can be soldered to the PCB from
the topside (instead of only from the bottom side, as in
a regular DIP socket).

The circuit that you will be wiring to the PCB is the
basic power supply with PIC16F684 (without the two
LEDs) in Figure 13-9 with the bottom right-angle con-
nector used to supply the 1.3 volts from the Zipzaps
battery. Again, it's important to plan ahead; due to my
wiring placement,I put the MAX756 and its related
discrete components at the front of the robot, which
left the rear of the PCB for the PIC16F684.

When you have completed the assembly work, your
robot chassis with PCB should look something like
Figure 13-10. You should still be able to put the
ZipZaps chassis on the Zipzaps charger, and it should
work normally (i.e., the charger's LED should start at
red and change to green when the charging operation
has completed).If everything is correct, after taking

Fisure 13-8 PCB connector

3 0 8 l , e 3 P I C @ l t C L J E x p e r i m e n t s f o r t h e E v i l G e n i u s

Zipzaps

Fieure 13-9 ZipZaps power

the ZipZaps chassis and PCB off the charger, an LED
placed against RA4 and RA5 (cathode) should start
flashing. There is no on and off switch, the MAX756
will stop providing 3.3-volt power when the input volt-
age has dropped below its threshold. This should give
your robot a minute or two of basic operation, which
should be good for testing most applications.

I found that although the connectors were quite
reliable, the solder joints and wires from the battery
and motor to the ZipZaps PCB would easily break.
Ideally, the prototyping PCB would be permanently
attached to the ZipZaps chassis (as is the original
product PCB), but this is very difficult to do and still
be able to work through adding (and debugging) the
different peripherals. Make sure you plan how to con-

I' i .
:-11

Figure f 3l0 ZipZnps chassi.: wirh pnrrinlty
assembled PCB attached

nect and disconnect the prototype PCB to the ZipZaps
chassis so that the wire solder joints receive a mini-
mum of stress. If you don't, you will find that the wires
will break periodically. You'll be left scrambling to fig-
ure out the cause of the problem and then fix it, with
the wires becoming shorter over time.

This is probably the most diflicult assembly experi-
ment in the whole book. Remember to think about
where everything is going next, and try to keep every-
thing as well centered as you can.A few moments fore-
thought will save you a lot of grief later.

5ection Thirteen Z i p Z a p s " R o b o t 3 0 9

Experiment ll7-lH TV Flemote Control

"1" Bitl "0" Bit

r{

$'1
4r

t ' l

a l

+J

G.}
F.

f-r

ffi
H

0)

.r-l
t i

&r".
{d
I

F{

Need le -nose p l i e r s

B!eadboard

Wiring kit

I like controlling robots using an infrared TV remote
control; they are cheap and the code required to read
the data is surprisingly simple. Other options include
RF or sound control, but these tend to be expensive
and "fiddly" compared to IR control, especially consid-
ering that IR control is generally handled by the
robot's controlling PIC MCU. In this experirnent,I will
demonstrate the code and circuitry required to read an
incoming IR signal and display it on an LCD.

The IR signal produced byTV remote control
comes out of the receiver module looking (see Figure
13-11).The IR signal from the remote-control code is

1

1

I

P rc16F68 4

38 KHz tR TV lemote-
coltrol receivers

fno-1ine, 16-column LCD

10k l es i s to r

100C) l es i s to !

10k b!eadboard-mount-
able potentiom€ter

4? pF elect lolyt ic
capac r to !

0 .01 pF capac i t o ! (anY

type)

B!eadboard-mountable
SPDT switch (E-Switch
8G1903 leconmended)

Breadboard-mountable
momentaty on pushbutton

Thlee-cel l , AA battery
pack

AA alkal ine battel ies

modulated with a 38 kHz signal that is only active
when a low is desired in the receiver's output. For
hobby robots, I like to use the Sony TV codes, which
consist of a Packet Srat followed by 12 bits in the for-
mat shown in Figure 13-11.The timing of the different
features of the waveform is based on a 550 rr,s T clock
and consists of different multiDles of this time base.

Start (4T) Synch "i '
(1r) (1r)

"0'
(2r)

-:-
-T;.5

I

Figufe
'13-'f'f

IR remote-control codes Figure l3-la IR Rx test circuit

3 1 0 l , A 3 P I C o l ' l C U E x o e n i m e n t s f o r t h e E v i l 6 e n i u s

Table 13-1
5ong TV lFl Flemote-Control Codes LJEed bg the
ZigZaDs Robol

To read and display the IR incoming signals, I came
up with the circuit shown in Figure 13-12. This is a
modification of the original LCD display experiment's
circuit, which now includes an IRTV receiver module
with the required filter capacitor and resistor. The C
programming language code for driving the LCD was
translated into assembler as asmlCD.asm, which can
be found on the PICkit's CD-ROM.The actual code
that reads the incoming IRTV remote-control signal is
called asmLCDIR.asm. Note that to simplify the time
delayq I created the Dlay macro, which will delay the
operation for some set number of microseconds.

When I ran asmLCDIR.asm on the circuit shown in
Figure 13-12, I came up with the codes in Thble 13-1
for the different buttons on a universal remote pro-
grammed to output SonyTV codes.These different
codes will be used for controlling the ZipZaps robot in
the following experiments.

B.ut!*
"1 "

"2"

"3"

'5"

"6"

"8"

"9"

'0"

"Power"

"Ch+"

'Ch-"

0x010

0x810

0x410

0xC10

0x210

OxA10

0x610

oxE10

0x110

0x910

0x490

0x490

0xC90

0x090

0x890

oxDB0

0xD10

0x5D0

0x290

0xDD0

0x2F0

0xAFO

Ox2D0

OXCD0

0x070

0x764

0xA70

m
t?t

h+

J

g #
*"€

r'*

!

ht

qr.'

ry
fli
,"{

{ !.s

ru
* "3 .

5 C I

q ,

e*

. }

Experiment llB-Motor and Steering Eontrol

.PIP"

"Enter"

"Display"

"Mute"

"Recall"

'Alrow Up"

'Arrow Left"
'Arrow Right"
"Menu"

"Guide"

'oK"

i..*
#
i - E t

DMM

Needle-nose pl iels

I l i r e c l i ppe rs

Soldel ing i lon

solder

Wire-r irap wj,re

With connections from the original Zipzaps PCB to
the prototype PCB in place, the next step is to make
the motor and steering connections so that the PIC
MCU can control the motion of the ZipZaps chassis.

Radio Shack ZipZaps
remote-control ca!
chass i s

P tc16F58 4

PrototYpe PCB f lon the

Previous exPeriment

4 . ?k l es i s t o r s

470O les i s to r s

The connections require current-limiting resistors to
ensure the motors and solenoids are driven with
approximately the same amount of curent, that they
perform as designed, and that an excessive amount of
current isn't flowing.This is an important point because
the PIC MCU will be driving high signals at 3.3 volts
instead of the 1 .3 V measured on the oiginal ZipZaps.

To calculate the new currentJirniting resistorg I
assumed that the base-to-collector voltage drop was
0.7 V, and using the known base current-limiting resis-
tors. I could calculate the exDected base currents.

5ection Thirteen Z i p Z a p s @ R o b o t 3 1 1

t':r\

t,:,

i.{

t'1

f i

iJ ,
f'j

.; -{

a !

, i :

+-,)
i f]

- { ?

t-;
ltl

F.!

,.:r

l

i'i':

. ! . t

i] .

il

' : . : l

rl,,.i

For the steering drivers, the base cunent is:

v = l a t e e r i n g * 3 . 3 k
i s t e e l i n g = (1 . 3 - 0 . 7) / 3 . 3 k A

= 0 . 1 8 n A

To maintain this base current with a 3.3-volt output:

v = isteering x Rsteeling
B s t € € r i n g = (3 . 3 - 0 . 7) / 0 . 1 8 r n A

= 1 4 . { k

With 3.3k already in serieg an additional 11.1k of
resistance is required for the steedng solenoid drivers.

Similarly for the motor drivers, the base current is:

v = r l . f t t x z z u

i . " . . , = { 1 . 3 - 0 . ' 7) / 2 2 0 A

= 2 . ' 73 n l+

To maintain this base cuffent with a 3.3-volt output:

R. . " " , r " n = (3 .3 - 0 .7) / 2 . ' 73 rnA

= 9 5 0 O

With 2200 already in serieg an additional resistance
of 7300 is required for the motor drivers to be con-
trolled by the PIC MCU

With these values in mind,I tested an additional
10k for the steering drivers and 680O resistors for the
motor drivers as well as no additional resistance at all
points.To test the action of these circuits,I connected
the transistor bases (with series resistors) directly to
3.3 volts. When the calculated additional resistors were
in place, the motors and steering solenoids seerned to
work exactly the same as they did with an unmodified
ZipZaps. With no resistances in place, both the motors
and the steering solenoids had a lot more power. In an
effort to find some balance between more power and

Figure l3-13 Zipzaps motor

Figure l3-fq ZipZaps robot prototyping PCB with
motor and steering transistor base cuffentJimiting
resistors connected from the PIC MCU socket to the
backside ZipZaps PCB connector

burning out the motors, driver transistors, or depleting
the battery too quickly, I found that 4.7k and 470f)
were the optimal additional series-base current-limit-
ing resistors for the steering and motor drivers, respec-
Iively.T\e ZipZaps robot prototyping PCB (see Figure
13-13) was updated appropriately and wired according
to Figure 13-14, and it ran using the software presented
in the next expedment.

Zipzaps

3L2 l , e 3 P I C @ I I C U E x o e r i m e n t s f o r t h e E v i I 6 e n i u s

Pc/

Experiment 119-Basic TaEk-Eontrol Softurare

Prckit"" 1

starier kit

Earlier in the book, I demonstrated how to run a
motor with a fairly low frequency PWM. I'm going to
take advantage of that work with the ZipZaps robot
because I would like to use the PlC16F6lJ4's builfin
PWM lor modulating I/R output.The result is
ZipBase.asm, which has a 30 Hz PWM lrequency, and
provides 32 PWM duty cycles, as well as up to 1 ms
between PWM steps for implementing sensor and con-
trol functions.

To test out the connections to the ZipZaps chassis
as well as to get an idea of how long the battery would
last with a PIC MCU running a stepped-up battery
voltage, I added a number of actions that take place
over a 25-second repeating /l/e to demonstrate running
forward, forward while turning right and left, stopping,
and going backward.

title "zipBase - zi.pzags Robot Ease coale"

t This Program Iroops orce every ns anil
r upalates the
i zipzarls Motor PI'iM (30,I{2 P!'Dt).
, The application also keeps lrack
r of the current time for the application.
. F L i a . n n 1 , i d a + i ^ n i a

t heavi ly ba6eal on "asmMotor 2.asm".

t Haralware No!€s:
, PIC15F584 rurrnirrg at 4 MIIZ Using the
t Intelnal Cl,ock
r RiA0 - Lef,t Light Senso!
r RA1 - Rigbt Light Sensor
t RA3 - Rear IR sensor
t RA4 - Reverse Motor Control
#alefine ReversePin PORTA, 4
t AA5 - Forwardls Motor Corrlrol

#def,ine ['orwardsPin PoRTA, 5
r Rc2 - Rigrht steeringr solenoid
#define TurnRisht PoRTc, 2
t RC3 - Left Steering Solenoid
*define liurnl,eft PoRTc, 3
r RC4 - Line FoLl.owing IR PWM
r RC5 - Object Detect ion IR PI4U

i
r li{yke Predko
r 0 s . 0 1 . 2 5

LIST R=DEC
rNcr,uDE "p16f 58{. inc r r

CONFIG FCITEN OFF & IESO OFF & -BOD.OFF &
CPD OFF & CP OFF & MC',RE OFF & PWRTE.ON &
IIIDE OFF & ITiITOSCIO

; var iables
cBr,ocK 0x020

R T C : 2
Directionr PWMDuty, PWMCycle

Flag
ENDC

r Flag Bi t Def in i t ions
#alefine AppRun F1ag, 0 i

#alefine A)pReset alag, 1 i

Tinecheck Macro TvaLue, Notvector
novl.w fiIGE Tval"ue
xornf RTC + 1. rt
bt fss STATUS, Z

goto lilotv€cto!
tnovlw LOW Tvalue
xorwf RTC, w
btfss sTATus, z

goto Notvector
enalln

FAGE
r Mainl ine

org 0

nop

clrf, PORTA

r For ICD D€bug

t Assune Everything
is Low

r 55 Second RTC
t PWM Movemen!
r var iables

Set if Application

Set i f appl icat ion
Reset Coale to Run

Rad io Shack Z ipzaps
remote-control ca!
chas s i s

P IC16F58 4

Prototype PCB

Tool Box

5ection Thirteen T i p Z a p s o R o b o t 5 r 5

ft! !

'>

*{

e{

,

\l

H

c,-J

!r*

F,t-l

3

I

novwf, cMcoNo
Ilovl lr b,00000001,

ovwf, a.DcoNo
clrf TuRo

baf STATI'S, RPo
novhr b,11010001,

incf RIC, f,

blfsc STATUS, z
incf RTC + 1, f

incf P$Dlcycle, f

bcf Plglqcycle, 5

i co4Daratora

, EnabLe llDc on llao

r ugitrg 1'!lR0 aa a P!l!l
t Base

i 1:4 Preacal€! to
t ll,lRo

looD t Finiahetl, IrooD
A.rounal Again

, #**# - Put oDeratinq IJogic Here (1 Per 32
r cyclea) /Ne€ds sel FIag
r ##** - Check "llDDRea€l' lo ge€ if
r ApDLicatioa is to be Restart€al
, ##** - Relrot€ conlroL Dir€ct (uov€ or
r SloD) ReEets trAlrpRuan FIeg
r ##** - Reatole Contfol .Recall' Sets
r ,,ApDRunn t.lagl

bcf MTCON, ToIF

cllf Flag
cltf Pl[{Duty
clrf PWUCycLe

cLrf Dilection

Loop:
btfss INTCON, r0lr

g o t o $ - 1
bcf MTCON, ToIF

Uolorlrpdale:

novf PVlMDuty, rtr

sublrf PWUCycle, w
movf PORTA, w
iorftd 1 << 5
btfac Directl.oa, 0

r wait for TuRo tso
t Overfloqt

r NoE Uoving at Eirs!
r gtalt at tshe
r B€gLaning
i lloving Forwaltls

r Wail for tfufler
t OverfLow

t Reaet anal Wait for
t Next

r Check to Upflate !h€
t llotor
r If Duty > Cycle,
r then Off,

t Going Fornarda
i Forwarala or

movwf OPTION_REG ^ 0x80t
l rovlw b,00000011, r RAo/RA1 (AI{0/}N1)

t ADC InputB
movwf ANSEL ^ 0x80
movlw b,00010000, r Selecl ADC Clock as

t Foac/8
movwf A.DCONI ^ 0x80
novlv b,001111, r Enable l{otor BitE
lrofisf TRISA ^ 0x80
novLw b,110011' , Enabl€ gtse€ring

i Bi ta
novwf ERISC ^ 0x80
bcf STATUS, RPo

€nil

Test Application Software:

titsLe "Zil)ulrchk - Test Motor/Sbeering
cE)erationtr

t Thi6 Program ia a baEic teal of lhe ZipZaDs
i Robot llotors anal St6€rlng, Th€ cofiuranats ar€:
r 1. Dlove f,orwatta for 5 S€conala at 10 Secoadg
t 2. llurn Right at 11 gecoatlB for 1 gecondl

r 3. firrn l.ef,l at 13 g€conflB f,or 1 g€conal

r 4. Stop at 15 Seconala f,o! 5 Secoatlg
t 5. co in Reverae al 20 gecontla for 5 geconalg

r 6. Rese! RrC andl Regeat at 25 Seconala

i Haralware NoleE:
t PIC15F584 runnl.ag at { UItz Using lbe
t rnl€lna1 clock
r nAo - Left lj.ght Sensor
t nA1 - Right IJLght sensor
, RA3 - R6ar IR genaor

t ItA{ - Revera€ llotor Coatlol
*tlefine R€versePln PORTA, rl
t RiAs - Eorwarala l{otor Contsrol
*tlefin€ EorwardtsPin PORIA, 5
r RC2 - Rlght Steeling sol€Doial
*fl6flne TurnRight PORTC, 2
r RC3 - Left gteeling Sol€noid
#alefin€ Turnl€ft PORTC, 3
r RC4 - Lia€ Following IR PWM
r RC5 - Obj€cl Deleclion IR ItwM

r MYk€ P!€dko
r 0 5 . 0 1 . 2 5

LIST R=DEC
INCLI'DE n916f 68{. lncn

*coNFIC FC!IEN_Orr & _IESO_OEF & _BOD_OFF &
-CPD OFF & CP-OT! & _IICIJRE_OFE & _PWRTE_ON &
_t{Dt[_oFt' &,INTOSCIO

i Valia.blea
CBLOCK 0x020

RTC:2 r 55 Seconal RTC
Dir€cEion, PlcuDuty, Pwucycl€ i PvtM ltov€ment

; variablea
Elag

ENDC

xor lw (1 << 5) + (1 << 4) t TRISC Revelse
btfac STATUS, C

andLw b,001111, , Notbing Uoving
movwf PORTA i Save ltotof Value

I
f t r

td-l
SJ

i Incredreat ReaMme
, CLock

i Notse. RoLls over a!
, 5 5 a

i Inclenent lhe FVIM
r eIc1e counl
, Ma:limrm of, 32
i qfclea

**#*
*###

##** - Pul other sensors Here
###* - Put in Rdnole Contlol Poll E€le
l++#+ - Puts in seEsor State lttachine
- rJigh! sensola (1 Pull per 32 cycles

- 1 Sdrlp1€l8 crrcl€s]
- Object Sensing (1 P€r 32 Cycl€a)
- IJ ine S€nsing (1 Per 32 Cycles)

, FLas Bi! Def,initiona
*d6fine AppRun F1ag, 0 r se! if,

t ApDlicalion c.rn
i Run

3 1 4 l , E 3 P I C @ l l C U E x p e n i m e n t s f o r t h e E v i l G e n i u s

+ilef,ine AppRes€t Flag. 1 r Set if subwf PwMcycle, l'
, Applicatiofl Reset movf PoRTA, w
r coale to be Run iorlv 1 << 5 , Going Eorwarals

t Macros
Tinecheck Macro rvalu€, Notvecto!

novL$r HIGB walue
xonrf, RTC + 1, w
btfss STATUS. Z

golo Nolvector
movlw LOW lvalue
xornrf RTC, st
btfss STATUS, z

goto Notvector

btfsc Direction, 0 , Forwards or
t Rev€rs€?

xor lw {1 << 5) + (1 << 4) r TRISC Reverse
blfsc STATUS, C

a n d l w b ' 0 0 1 1 1 1 '
MOVWf PORTA

btf,sc STATUS, Z
incf RTc + 1, f

r Nothing Movingf
i Save Moto! Valu€

i Increment Real,

t No!e, Ro11s Over
t a c 5 5 s

PAGE incf PWUCycl€. f i Increment the
r Mainline r PWM cycle count

bcf, Pmlcycl€. 5 , Maxinum of 32
org 0 ; cyc1".

nop i For ICD Debug r ##f* - Put Other Sensors s€re
; *#** - Put in Remote Control Po11 sere

cLrf PoRTA r Assume , #### - Put in Sensor stat€ Machine
; Everjrtshing is r,ow , ##*# - Ligh! sensols (1 Ful] per

clrf PoRTc , 32 cycl.es - 1 sanpl€/8 cycles)
novlw 7 r rurn of f r #**# - objecl sensi lg (1 Per 32 Cycles)

r Conparators r #*** - l ine sensing (1 Per 32 Cycles)
movwf CMCONo
movLw b'00000001' r Elrable A.DC on t #*## - Put operat ing logic aere (1 Per

r RAo i 32 Cycles) /N€eds Set Flag
novwf ADcoN0 r #**# - Check nAppReset. to se€
cLrf, Tl,tRo r using TMRo as a ; if application is to b€ R€starleal

r Pwll Base r #### - Ramote Control Direct (Move

i or S!op) Resets nAppRunn FIag
bsf STATUS. RPo r #*+# - Remote Cont'rol oRecallr Sels
novlw b,1L010001, r 1:4 Plescale! to r "appRun" Flag

r T!tR0
movwf oPTIoN REG ^ 0x80r r Molor Check Test Program:
movlu' b,00000011, r AjA0/RA1 (ANo/AN1) r 1. Move forvrarala for 5 Seconfls at 10 Seconals

t ADC Inputs TryForwarals:
monwf rrNSEl ^ 0x80 Timecheck 10000. Atlssec
movhr b '00010000' , s€Lect ADc cLock novlw 0x1F r Go Forwatals at

i as Fosc/8 r Fu11 Speeat f ,or 5 s
movwf ADCOIiII ^ 0x80 novwf PWMDuty
movlw b '001111' r Enable Motor bcf , Direct ion, 0

r Bics goto l"oop
lnowf TRISA ^ 0xg0
rnovlw b '110011' t Enable Steer ing At lssec: r at 15 Secondls?

r Bi ts Timecheck 15000. TryRight
movwf TRISC ^ 0x80 clrf PI{MDuty r Yes, Slop Motor
bcf sTATus. RPo goto Loop

bcf INtcoN, ToIF r wait for TMRo to r 2. rufn Right at 11 seconds f,or 1 s€conal
; owerflow TryRight:

c l r f F l .ag Timecheck 11000, Al l2sec
clrf RTc r Res€t Real Tine bsf TurnRiEht

t Flag| goto rJool)
c l r f REC + 1
clrf PWMDuty i Not lloving at Atl2sec:

clrr pi^,Mcycle j Silii "" "n.
';::"n"ni3lll;nlo"""

clrr Direcrion ; ;::iilT:,-",",
goto Loop

; 3. Turn lr€ft at 13 Seconale for 1 secontl
IJoop: TryL€ft:

btfss I!fllCON, TorF r wait for Tiner Tirnecheck L3000, Atl4sec
r Overfloxr bsf turnleft

g o t o S - 1 g o t o L o o p
bcf IN!!CON, ToIF r Reeet anal wait

r for Next AtL4sec:
Timecheck 14000, TryRever6e

r check !o upalate bcf Turnlef,t
t the MoEor gotso IJooP

movf PWIilDuty, w r If Duly > Cycle,
r then Off

Sec t i on Th i r t een Z i oZaos@ Robo t 3 1 5

t {. Stop at 15 Secontts
t 5. Go ln Revelse at 20

Timecheck 20000. At2ssec
nrovfnr 0x1F

movwf, PwMf,)uly
bsf, Direction, 0
golo IJooD

r 5. Res€t RTC anal Repeat
At25s€c:

Timecheck 25000, Loop
clrf PWMDuty
eLlf RTc + 1
cllf RTc

f,or 5 Seconals
Seconala for 5 Secontls

i Go Fofi^rarals at
r F1rll Speeal for 5

25 secontls
At 25 seconals ?
Not thele, R€peat
Yes. Stop Motor
CLea! the R|rC

Einish€dl, loop
Alounil Again

Before you ran the Zipzaps robot in the previous
experiment, you may have doubted how fast the
Zipzaps robot could go. After you ran the experiment,
you probably realized how difficult it would be to con-
trol the robot using just software without any type of
feedback. In this experiment, you will modily the
prototype PCB circuit (see Figure 13-15) so that the
entire robot can be controlled by a TV remote control
set to Sony TV standards (reviewed previously in this
secnonr.

The remote-control receiver was added to the rear
of the robot (see Figure 13-16) as this was the easiest

As part of the development of this application,
you'll see that I came up with the TimeCheck macro,
which will execute the code following it when the ,'eal-
time clock (KlC\ variable matches the numeric value.
The RTC variable is incremented once every millisec-
ond, so fairly precise timings are possible. When you
look at the operation of the ZipZaps robot in this
experiment, you'll see that the motor is running for 5
seconds. And I want to wam you: The robot can go a
long way over 5 seconds.

Fortunately, when the robot hits a wall or other
obstacle and stalls, it does not burn out.This is why it
was critical that I spent time understanding the motor
and steering driver base currents and adding addi
tional base current-limiting resistors to ensure that the
drivers would not have too much cunent passinq
throush them.

1

1

1

Radio Shack Zipzaps
lemote-control car
chassi s

P rc16F58 4

Prototype PCB

38 kHz IR TV lemote-
con t ro l l ece i ve r

4? pF e lec t l o l y t i c
caPac r !o r

10k res i . s t o r

100C) res i s t o !

place I could find for the circuit, and it will be used in a
later experiment. The output of the receiver drives
RA3, which can be used only as an input. This was an
important consideration because I wanted to make
sure I left the driver values open for the remaining
experiments.

The application code polls the IR receiver, waiting
for a signal to come in. The code that processes the sig-
nal was taken directly from the previous IR TV
remote-control experiment in this section (which
also allowed me to use the codes that were recorded
during this experiment).The button commands on the
remote control are used to drive the ZipZaps robot
forward (while optionally turning left or right) or back-
ward (while optionally turning left or right).The PWM

Experiment laO-lR Flemote Control

DMM

So lde r i ng i r on

So Ide r

Slire-r,y53" "r1t.

3 1 6 l , E l P I C @ I ' l C [J E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

value of the motor driver can also be changed by using
the volume controls. In the code, ZipBaselR.asm,
which is an enhancement of the previous base code,
you can see that hooks have been put in for the remote
conhol to be used as the tool that startq stops, or sus-
pends the execution of a test program that has been
added to the application code.

As you control the Zipzaps robot,you'll probably
notice a couple of things. First, runnin g the Zipzaps
robot by remote control is a lot of fun-arguably as
much fun as the original ZipZaps, but different
because it is just about impossible to spin it out or slide

it on the floor. This change in operation seems to be
due to the additional weight of the prototype PCB and
its electronics. So, what was the advantage of making
these modifications? After several hours of work. have
you simply recreat ed the Zipzaps?

This is not quite true, the little robot you have is
capable of a lot more as I will show in the remaining
three exDeriments.

Zipzaps

Figure 13-15 ZipZaps IR

t:t:t:

{$

,i1'!

r-!'

t,-l
l'-*

t { q

I

{,
* r r

; f :

fa,

q,? d

|-1

{il

ir:i

i1; I
:.{

".,. i

.i.*;

:gJ

!'r...4 "

:-i
l.t?

ExFeriment 121-Light Sensors and Light Follor-uing

Fiqure 13-15 Rear-looking IR receiver mounted
under the surface ofthe ZipZaps robot prototype PCB

A basic feature of any robot is the ability to sense light
and dark and, ideally, to do it from multiple points of
view so that comparisons ofits environment can be
made. In this experiment, you are going to give your

I

1

Radio Shack zipzaps
remote-cont!oI car
chass i s

P rc15F58 4

Prototype PCB

Lj.qht-dependent resis-
t o r s

10k res i s to r s

Zipz^ps robot rhe gift of sight-that is, two light-
dependent resistors that can be used to seek out or
avoid light in the robot's environment. Adding the two
LDRs as part of a voltage divider is quite simple (see
Figure 13-17) and takes advantage of the ADC module
built into the PIC16F684.

As you can see in Figure 13-18,I put the LDRs
about a third of the way back from the front of the
robot, with each one pointing outward at 45 degrees.
This gives each LDR a unique point of view. This

DMM

Soldering iron

SoLde !

Wire-wrap wile

5ection Thirteen Z i p Z a p s @ R o b o t 3L7

Experiment laa-lH Bbiect-Detection Sensors

i.a

i :

{_i
*?

t'l i

1..l

.:-1

e 1

11i

a i

&."{
ia

fi1

$l&*

ts{

i

t

g V

H

l 1 !

{.,4
*at

i 6 t

placement of the LDRs allows the robot to determine
which side is brighter and whether or not to turn
toward it or away from it.

The application code ZipBaselDR.asm is an
enhancement of ZipBaselR.asm, as it provides an
ADC operation (on RAO and RA1, where the LDRs
are connected) every 4 ms. Each LDR is sampled and
the results are stored for retrieval by an application.
Included in the code is a simple llglrr s eeker lhat e\e-
cutes when the remote conkol's Menu button is
pressed.

The light-seeking application turns the wheels only
when the darker LDR returns a value that is twice (or
more) the value of the lighter LDR. This value repre-
sents quite a drastic change in light and was chosen
because of the all-or-nothing operation of the ZrpZaps
chassis ternary steering. In a more typical robot with

proportional steering, guidance to a light source can be
gentler and not so startlingly jerky (when the robot
turns toward the light).The LDRADC values are
ADCValueL and ADCValueR in the application code.

I found the robot's ability to hit a flashlight on the
floor (the light beam for it to follow) was largely
dependent on how quickly the robot's motors turned.
The faster the robot moves, the later the steering
change takes place (the decision is made every 100
ms), and the more likely the robot will be to miss the
flashlisht.

1

1

Radio Shack Zipzaps
remote-cont!oI car
chass i s

P rc16F58 4

Plototype PCB

38 kHz IR TV remote-
colrtrol receive!s

Re d I.ED

IR LEDS

10k ! es i s to r s

1k res i s t o r s

100k res i s t o l s

47 /rF el.ectrolyt ic

Length of 5nm heat-
sh!ink tubing

DMM

Soldering

So 1de!

VIire-vrrap

Zipzaps

3 1 8 l , e 3 P I C o l l C U E x p e r i m e n t s f o r t h e E v i I 6 e n i u s

ZipZaps
Battery

no
o-

Plc16F6B4

1 0 0
uF

0 . 0 1
u F L

. 4 1 0

z 1

8 4 . 1 k

1 4 . 7 k

Reverse

FoMards

Right Solenoid

Left Solenoid
vdd

100

-l- !
I

:
1 k T

__-l_-:_
vdd

47
uF

100

47
uF

Top
Side
t/R
LEDs

t/R

100

47
uF -'1-

I

5 8

MAX756'

Figure 1319 Zipzaps complete

In the last two experiments of this book, I will demon-
strate how the IR sensors can be used to detect obiects
and data around them. This will be done by using the
IR reflection demonstrated in other experiments. To
detect objectE four LEDs are placed around the
perimeter of the robot that will drive out IR pulses,
which, if reflected, will be picked up by three TV IR
receivers around the perimeter of the robot. By doing
this, you are giving the robot a "sense of touch" with

Figure l3-e0 Zipzaps robc,t with IR LEDs and W
r emote -contro I receiv e rs

the two front-looking IR receivers and the rear IR
receiver giving the robot some idea of where the object
is around it.

To modify the robot for this task, I would like you to
add the six LEDs (five IR and one visible) to the pro-
totyping PCB, as wired in Figure 3-19. Each LED
should be pointing in a different direction, as shown in
Figure 13-20. After you have done this, please add two
IR receivers to the front of the robot.To avoid prob-
lems with conflicting IR signals, the receivers should be
on the underside ofthe robot (see Figute 13-2L).

To test the robot's sense of touch, press the Guide
button on your Universal remote after building Zip-
BaseObj.asm and loading it into your robot.This code
continuously checks the perimeter of the robot, every
four PWMCycles.

I found that I had to put small pieces (0.5 to 0.75
inch long, or 1 cm to 1.5 cm long) over the IR LEDs to
get reliable operation of the sensor. But, it is amazingly
reliable for each of the three IR receivers. (To test the
operation of each receiver, wrap the other two in black
electdcal tape to prevent IR signals from reaching it.)

The state of the IR receivers and whether or not an
object is around the robot can be polled by checking
the PFrontRIR, PFrontLIR, and PRearIR flags.

t r l

fr

f t t

*J"

;J

l i

E\.'
r\J

t
t:

6*"*
'"5 '

:t i

1
**€

r*

: * i .

r }
i,-'f,

ri3
:,.f1

ts*
F&

5ection Thirteen Z i p Z a p s @ R o b o t 3 1 9

u.;

. J !

rxt
f.{

, ' *

:i-**

{J
P*
b&6

!

M

9,s{
r"d

3
I

; \ t

ua
;?

n€
a i] :

::{
'i -"a

Experiment 1a3-lH Line-FollouJing SensorE

1 Radio Shack Zipzaps
remote-cont!oI cal
chass i s

1 P r c l 6 F 6 8 4

1 Plototype PCB

This last experiment is really a follow-up to the previ-
ous one. However, rather than sensing objects, the
downward-pointing IR LED at the front of the robot
(see Figure 13-21) is directed toward the surface on
which the robot is running and if the surface is white, it
is reflected back to the IR receivers. (Use a oiece of
heat-shrink tubing to direct the LED roward the run-
ning surface.) The application code ZipBaseline.asm
is a modification of ZipBaseObj.asm and uses a second
PWM output.

title ,'ZipBaseline - Zipzal,s Robot Base Codler

t "zipBaaeobj.aslln urith lJine SensorE AaLleal.
t
; Earalware Not€s:
t PIC15F58{ run.Ding a! 4 Mttz Using tshe
t rntelnaL clock
r AA0 - I,efts Light. S€nsor
t aA1 - Risht Lights Sensor
, aiA3 - Rear IR Sensor
*tl€fine R€alrR PORTA, 3

t *C2 - Riglrt Sleering Solenoial
#tlefine TulnRight PORTC, 2
; RC3 - IJeft St€eling Soleaoitl
*alefire TurnLef,t PORTC, 3
r RC4 - IJine Following IR P!{}I
r RC5 - Object Detectsion rR PVUI

t IR Coale Table:
Buttono EQU 0x910
Bulton1 EQU 0x010
Bulton2 EQU 0x810
Button3 EQU 0x{10
Butstotr{ EQU 0xC10
Buttons EQU 0x210
Button6 EQU 0xA10
ButtsonT EQU 0x610
ButtonS EQU 0x810
Buttong EQU 0x110
A.?lowltD EQU 0x2F0
ArlonDn EQU 0:.lAF0
AlrowlJt EQU 0x2D0
ArrowRt EQU 0xCD0
volurleu EQU 0x490
volumeD EQU 0r.C90
Chaa€IU EQU 0x090
chauelD EQU 0x890
OKButtn EQU 0nA70
PwrButn EQU 0x490
![enuBtn EQU 0x070
EnterBt EQU 0:1D10
R€caIlB EQU 0xDD0
PIPBUIn gQU 0xDB0
DiEpBtn EQU 0x5D0
r'tut€Btn EQU 0x290
euitleBr Een 0x764

r Myke Prealko

t
LIST R=DEC

INCLUDE "plSf68{. incn

-CONFIG _I'CMEN_OFF & _IESO.OFF & _BOD_OFF &
_CPD OEE & _CP_OFF & MCI,RE OFF & PWRTE OII &

rirDtt_oFE & _IN:losclo

t Varj.abLes
CBIJOCK 0x020

t RAlt - Reverae Motor Conlrol
#al€fine ReveraePltr PoRTA, 4
r RA5 - Fonrarala ![otor Control
#tl€fine For$aralBPin PORTA, 5

i , DLay
R T C : 2
Difection, PllllDrty, Pll!,lcyc1e

r 55 seconal RTC
r PWU Uovetn€nt
t varj.abL€s

Figure l3-?l The business end of the ZipZaps robot
downward-pointing IR LED used for line following

A.DCCycle, ADCValueL, i|Dc\IalueR r .e.DC Valiables
llovecount€r, NewPvn4Duty, volcounter
rRcoale:2
obj ectPliu r Set Objec! PWII

320 l , E 3 P f C @ H C U E x p e r i m e n t s f o r t h e E v i I G e n i u s

objlroEtR, objFroatl, objRear
LLnePl|!l
IJi!€rrontsR, t in€FroDtl
Flag:2

ENDC

r flag Bl.l D€f,iaitiong
*defj.n€ ApDRun

*d6fire AIrIrR6B6t

Flag, 0 t set if
t Aglrlicalion
i can Run

rlag, 1 r set if,
t ADItIicatioD
r Reaat Cotl€ to
t be Run

t For ICD D€bug

t aggurne Evertthiag

novwf cltcoNo
movl td b,00000001'
lovwf ADCONo
clrf I1{R0

novhr b,00001100'

novwf ccPlcol{
novlw b '01111000'

novwf T2COII

bsf STATttg, RPo
nov] .w b '11010001'

novnf OPTION_REG ^ 0:<90 t
novhr b '00000011'

nonrpf INSEL ^ 0x80
l lovlw b '00010000'

novwf, aDCONI ^ 0x80
Dovhr b '001011'

lrovlrf TRISA ^ 0x80
movlro b '110011'

movwf TRISC ^ 0x80
bcf, STAmS, RPo

bcf MTCON, ToIF

clrf Flag
cLrf PllldDuty

clrf PllIlCycI€
Begirnlng

clrf DLrecllon
nrovlw 0x1F

rlovtrf NelrPlllllDutY
clrf A.DCCycle
clr! llrcvaluelJ
clrf, aDcvalueR

IJooIr:
btfEa IN!!CON, ToIF

grolo $ - 1
bcf INTCON, TOIF

MotoruDdete:

rovf PWMDuty, w

subwf PwMC!rcl€, rd
novlw 0
iorlw 1 << 5
btfsc Dlrectlon, 0

nor. Iw (1 << 5) + (1 << 4)
btfsc SllAlrug, C

novltr 0
btfaa Objocls€nae

golo gav€!€RTA

btfac PFrontRIR

iollrd 1 << 2
btfac PFroDtt rR

iorlw 1 << 2
blfac PRearIR

i co![)alatora

, Etralcle ADC oa RAo

r UEIng mrRo as a
i Pl{Dl Baa€
; Enable BaEic Pinl

t lloal€

t Enable tttR2 lritsb
i a 15x Ple

i 1:{ PreEcaL€r !o
t rltRo

r RAo/RA1 (Ar[0 /Alr1)
t lllrc IiDutE

t Select ADc clock
i aB Fosc/8

, Enab1e Motsor &
' IJED BitE

i Ena.ble Sle€ring
i Bi ts

, vfait for llllRo tso

i Ovelflolt

i Not llovlng al
i ! l rat
i sEarE ats the

i Moving Fo:.warila
t gtart at ttl1
t SPeed

r Wail f,o! llir|er
, Ov€rflow

t Reset aatl l{ait
i for Next

t check !o qDtlat€

i the llolor
t If Duly > Cycle'
t th€n Off

i Force tlotorE
i Gioiiag EollcaltlE
i Forieerala o!
i Reverge?

t Nothing Movinq
r Object Ch€ck lo
' PUt IJED ON

, If Sonaor ait
, get, LED Or

*dl€fin€ Lighls€ek Flag, 2 r get \,rheB Lighl
i geeking ltoale
i ia Enableal

#dlefine objeelgeaae Elag, 3 i get when Doirg
, an Objecl S€nBe

*dlcfine PFrontRrR r1ag, { , s€t nb€lr obj€ct
, to lro|tt Right

*dl€finc PFtontLrR !1ag|, 5 , get wh@ object
r to Froat Left

#dl€f,ine PRoarIR Flag, 5 t Set when
r object to B€ar

*alefi[e Linese aor !1a9, 7 r get whea Doing
t a lJl.rt€ g€nEe

llil€fiu€ r,ProatRrR Flaq + 1, 0 r get vlh€lr Lin€
r to !!ont Righl

*dl€fine LFrortLIR FIag + 1, 1 r g€t wh€n L1n6
, to lro'lt IJ€fE

t lilacroa
Tlmech€ck lllacro Tvalua, Nolv€ctor

novftr EICN Avalu€
xoliff RTC + 1, rt
btfaa STAfgS, Z

goto Nolvector
nov1lr I,ow l\talue
*orcf RTt, td
blfrrs STATjttg, z

goto Notsvgctor
€ndn

EaDIay llacro C:icles
Dovlw HIoH ((c5zcIes / 5l + 256)
Dor'rrf DIay
Dovlw LOlv ((C'ycles / 5l + 256t
atldllw -1

blf,ac STATUS, Z
tlecfaz DIay, f,

q o r o $ - 3
6rdn

Bultoacoq)are lilacro EutEoa, liloweclo!
novlw HICH Buttorl
xorilrf IRCoale + 1, !t
btfsa ETATI'S, z

golo Notvectora
mov\r IloW Buttoo
xorcf IRCod6, rd
btsfds STATItS, z

gOtO Notv€Ctor
eddm

ts
N
(,

t{lx
rd
o
rt
F.
3o
5
ct

I

I

H
w
r{
Fr,
5
o
Iqt
o
P
ts
o
{
F'
5q

v,
o
5
u
o
r't
(t

PEGE
, llaLnlln€

olg 0

noD

clrf PORTA

clrf PORTC

Section Thirteen Z i p Z a p s @ R o b o t 32t

u

iJl

3**

w
(J !

F"r

&*{

t t'g

:

i.orlw 1 << 2
SavePORTA:

movwf PoRTA

blfac STATI'S, z

rrovlw L2

i Save lilotor value movwf

t Incr€lrent R€al IRItIJoop:
r Time Clock

t Want to Get 12
, Bi ts

t IJooD llere for
r Each Bit

t Carry Sel,
r Erfor/Igrlore
t Cclt[laEfl

r Stop Everylhing

, StoD Applicalion
t Running

call CountHigh r l4ust be Applox
incf RTC + 1, f ; Note, Ro1ls ovet

t a l 5 5 a

i.ncf P$lMcycle, f i Incr€m€nt the pWM

t C-yc1€ counl
bcf PWMCycIe, 5 i Maxifi4 of 32

t c:'cLes

t llove?
btfsc sTA:rgs, z

goto Nouovechang€
alecfsz llovecourter, f ; Decrement Move

t Counte!
golo Noltov€Clrange

btfac Lighls€ek r h IJight Seeking
r uoale?

goto DolJlghtseek
clrf Pl{tlDutsy

bcf lltrnlJ€ft
bcf TulnRtght
goto Noltovechaage

Doligh!Seeh:

btfsc STATUS, C
goto Loop

call CountlJow
novlw 80

movf lfovecounter, f t Direct Control subwf Dlay, w

llf IRCoaIe, f t Ca!ry Sel, 1
llf IRCoale + 1, f

dlecf,sz i, f
goto IIlRIJoop

i R€peaE?

i Forwarala anat lr6ft
Bultoncompare Buttonl, CheckButtoa2

nrovhr 2OO
, If Zelo. C1€ar novrrf lttovecounler
, !4oving Duty

i Recei.veal?

i Again

novf, NercPI {Duty, w

CheckButlor3:

i Run for 200 ns

, Tuln Off Plogram

r Run for 200 lla

t Turn Off Program

i ForwaralE arrd Right

t Run for 200 ns

, Anal Stop Turning novrrf, PlmDuty
bcf, Direction, 0 t Moving Eofirardts
bsf Turnlreft
bcf rurnRight

r IJook for Tutn bcf .ltpDRun
movf, ADCVaLueIJ, ttt t Is Righ! > IJeft? bcf IJightseek r Turn Off lJight
sublrf A.DCValueR, w
blfaa STATUS, C

movwf PORTC
;i movl$ 100
;
t movwf trlov€Counter

goto NoMovechange

i - J DolJightseelrRight :

bcf STATgg, C

F*{ rrf ADcvaluer,, w

r Tuln Towartls? Butloncorq)ar€ Button2, CheckButston3

golo lroop
, g€eking

t forwarals

movltr 2OO
movlrf Movecounler
novf NewPt0tDuty, w
lrovrf Pl,{llDuty

bcf Tulnl"eft
bcf TulnRight
bef AppRun
bcf Lightseek r Turn Off Light

r Seeking

groto DolightseekRight
Dolightseeklrefl: r IJeft < Rights, CheckButton2:

bcf STATUS, C
lrf, ADCValueR, !t
subrdf A.DCvaLu€L. !r r Is l.ef,t <

, eisht./2?
movltr 0
btfaa sTATus, C

novl{r 1 << 3

bcf Di!€ction, 0 r Moving Forlralats

t !!urn rowarals
, Light

i Continue for
t aDoth€r 100 ms gotso LooE)

Buttonconr9are qrtton3, Ch€ckBubtons
r Rigbt < Left, movlw 200
t tura Towarala? movfif ltovecounter

subnf ADCValueR, sr i Is Right <
, IrefE/2?

novf, N€wP$uDuty, w
movlrf PWMDUEy
bcf Dir€ction, 0 , ltovLng Eoryrarals
bcf Tuln]Jeft
bsf liuraRigbt
bcf, AppRun

" i4
a-t!

3*{
a,yx

LI4

movlw 0
blfss STATUS, C

novlw 1 << 2
abverf PORTC
nrovlw 100

nov$f llovecounter

Nolilovechange:
btfEc RearIR

goto Sensolcheck

rRR€afl:
btfa6 RearrR

g o t o F - 1

i Turn Off Progren
r furd To!,,a!ala Ligh! bcf Ligbtgeek , Turn Off lJtght

i seeking
r Codtinu€ for
r anothe! 100 ma

goEo IJooP

Ch€ckButton5:

goto Loop

r StsoD
ButtoncodE)are Bultons, CheckButtsoaT

cllf pw,tDuty

t IR Value Being bcf TurnLeft
bcf Turnlight
clrf llovecounler
bcf AppRun

t l,ine to go High bcf lightseek r Tuln Off, Light
t S€eking

3 2 2 l , P 3 P I C @ l ' l C U E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

Ch€ckButlon7: t Revels€ anat IJefE Buttonconpare EnterBts, uenucheck

Buttoncompare Buttson7, CheckBulton8 bsf ap9Ru.u
*

&6

.--

,i*j

?

:-.5

i:,-J

.:9

: t !

'i|

1 :

;-.

, 3

movlw 200
novwf Movecouater
novf NewPWUDuty, !t
novDtf PWUDUtY

b8f TurDleft
bcf rulnRight
bcf AppRuI
bcf r,ighlse€k r TurD off rJight

t Seeking

t Run for 200 ms bsf AtpResel
goto IJooP

Menucheck: r light FoIIo''?

bsf Direction, 0 t Moving Backwartls ButtoacdE)are u€nuBtn, Guitlecheck

gtolo IJooP

CheckButtsonS:

goto IJooD

CbeckBulton9:

goEo LooI)

checkvolqp !

rnovlw 200
novwf lilov€counler
novf NelrPwltDuty, w
movwf PlillDutsy

bcf Turnrr€ft
bcf, rulnRlghts
bcf A)DRua

bcf ittpRun

movlw 100

bcf apDRuu

bcf firrnRigrbt
golo l.oop

t SloP A.t[r Previoua
, Applicetsion

r Run for 100 mB

s1*

, Object Sense?

i Button a
i gtop Arry Plevious i
, IDpl icat ion

t Line g€n6or?

t Stop Atry Plevious
r ApDlication

r lPurn Off Plogram bsf TJightseek , Enable lJight
, Seeking Moal€

bcf, Objeclsense , DiaabLe object
r seeking uoal€

bcf Linegengor t Diaable Line

Buttoncompare ButtonS, checkButlong
r Run f,or 200 ns monwf Mov€Counler

movf, NewPlCUDrty, w
movwf, PlllllDuty
bcf Dir€ctLon, 0 t ltoving Fo:.warala

bEf, Dir€cELon, 0 , Moving Eackwartls bcf TurnlJeft

t Turn Off Program
bcf, lJightgeek r Tuln Off Lighl Guiatecheck:

Bultoncdttr)er€ Buttong ' CheckvoLUp

i se€kingt

r R€verao & Right

t Seekiug

t Increase PWll

Butstoncompare !4enuBtn, Loop i Retuln if unknown

movln 2OO
mo'\^of llovecounte!
novf NewPwMDutsY, !t
novwf PwuDuty
bsf Dilection, 0 t Movidg Back$tartla
bcf llurEleft
baf lUrnRight
bcf ApDRun
bcf Lightseek t Eurn Off lJight goto IJoop

bcf Lighlseek , Disable Light

t s€ehiag liloale
bcf r,ines€nsor t Disable rJine

t g€trso!

btsfEc Objecls€nse t ToggLe
t Obj€ctsenge

g o t o S + 3
bsf objectseuse t Enable object

; seekiag llofle

; Rua for 200 ms

t Tura off Plogram

bcf Objectsense i Disab Object
t s€eking uoale

goto IJooD

LineCheck:Buttoncompare voLnneu, ChecllvolDn
novf N€wPWMDuty, w r At Limit?
xorLw 0x1F
blfsc gTAmS, z

goto LoqP
iacf volcounter, f r Delay lx qycle to

, Get 3s
btfs6 volcounter, 0 , nr1l Range

i coflErol
incf, N€rrPwllDuty, f

goto looD

Bultoncdrpare MerruBtn. I,inecheck
bcf llDPRun

incf, volcounter, f r D€lay lx Cycle to IJightsenae:

i Get 36
btf8a volcounts€r, 0 ; Fu!.l Rang€

i ControL

ButstoDcolrDare volun€D, Recallcheck
movf, N€wPWUDutsy, f ; At lrinits?
btfac STAIUS, Z

gofo LoqD

atecf NewPwMDuty, f
gotso LooP

RecalLcheck:

b€f lJigbtseek t Enable LighE
t Seeking Moale

bcf objectsense t Disab].e objecE
t S€eking uoal€

bsf r.inesenEor i Ena5le Line genaor

gtoto LooI)

senaorch€ckl
rnovf Pm.lcycL€, w ? upalatse ADc?

t Every 4lh Cyc].€

, Run lhrough ADC

t Cycl€a
incf ,fDCCycL€. t i A.DcCYcIe =

t (e.Dcqrc16 + 1) % 7
bcf ADCCycle, 3

movf, A.DCCycle, w i Execut€ ADC glate

, Uachine
btf,aE STATgg, z

gotso A.DCCyclel
movlw b '00000001' t Enable LDC on RAO
mo\rwf, A.DCON0
baf, a.DCON0 ' GO t Starl ADC

t ODeration
goto lootr)

CheckvolDd; t DecreaE€ Pll}l
endllw 0x03
btfaa STATus, z

goto ObjSense

Bultoncorq)are RecalIB, Enterch€ck
bsf AppRurr
goto LoqP

i Reau[e
r AOplication?

; Reslarl
, ADplication?

Enterch€ck:

Sec t i on Th i r t een Z i pZaps@ Robo t 323

!!li

t i

hn

.q .

'*.-€

F * -

a
t I I

&rq

lLDccl,cIe]. !
xollw 1
btfs8 STAfUS, Z

golo Al)CCyc1e2
rnovf .eDRESll, nr

goto Loop

ADCCycle2:
xorln 2 ^ L
blf,aB STATUS. Z

gotso ADccycLe3
bEf A.DCONo, GO

ADCCycle3:
*lro!1!r 3 ^ 2
btsfaa STATUS, Z

goto ADCCycLe4
novf e.DREgH, w

nonwf A.DCValu€I.

AItCCycle4:
xorlw 4 ^ 3
btfaa STATus, z

goto .B.DCcycIes
movlw b,00000101,
moirwf A.DCONo
baf ADCONo, cO

goto I.ooI)

.e.DCCycLe5.
xorlw 5 ^ {
btfss STATUS, Z

golo aDcct'c1e6
tnovf ADRESII, w

goto Loop

ADCCycIe6:
xorlw 6 ^ 5
blfaa gTATUg, Z

goto ADCCycLe?
bsf ADCONo, GO

ADCCycLeT:
novf ADRESH, !t

novwf AIrcValueR
goto lJoop

ObjSeEae:
movf P$illcycl€, w

anillw 0x03
xorlw 1
btfsa STATSS, Z

goco linesens€

cLrf ObjFronlR

cllf ObjFrontl
cllf ObjRear
movf Obj ectPl{ll, '!,r

bsf S!!AmS. RPo
movwf PR2 ^ 0x80
bcf STATUS, RPo
bcf STATUS, C
!!f Obj€ctPtcr4, w
movwf CCPR1L
cllf TIIRz
bcf, PrRl, 1'!|R2IF

r B.pect Baat .e.DC
i Reafl, Igrlole value

baf T2CON, TMR2ON

b8f STATug, RPo
bcf TRISC ^ 0x80, 5
bcf, STASUS, RPo

Obj Loop:

btfsc PoRTC. 0
incf objFronlR, f

btfsc PoRTC, 1
lncf ObjFrontL, f

btsfgc PoR!!a, 3
iacf ObjRear, f

btsfss PrR1, !n4R2rF
goto objloop

b6f STATUS, RPo
baf TRISC ^ 0x80, 5

bcf STATUS, RPo
bcf T2CON, TI|R2ON

bcf PFIonERIR
bcf PFrontr,rR
bcf PRearIR
movLw 30

subwf, ObjFrontR, !,r
blfsc STATUS, C

bsf, PFrontRIR
movln 30
aubwf ObjElontl, w
btfac gtATus, c

b3f PFTonIIJIR
movlw 30
aubwf ObjRea!, w
btfac STATUS, c

b6f PR€ATIR

goto lool)

IJineSensa:
r,ovf PW!4CycIe, w

andlw 0x03
xorlw 2
btfsE STATgg, Z

golo oDeratinglogic

clrf lJineFlontR

cllf LineFronlL
trovf lin€PltlM, w
bgf STATUS, RPO
movwf PR2 ^ 0x80
bef STATUS, RPo
bcf STA!!US, C
fif Lin€P$tl, w
rnovwf ccPRlL
clrf TMR2
bcf PrR1, Tl'lR2IE
bsf T2CON, I'trlR2ON

bsf STATUS, RPo
bcf TRISC ^ 0x80, 4
bcf sTATus, RPo

LineLoop:

btsfEc PoRTc, 0
incf IrineFrontR, f

btfsc PoRTC, 1
incf Lia€Flonll, f

btf6s PIR1, ltrltR2lF

t lPurn on a'ItIR2 for
t objectE

t Enal]le Ptctil Outputs

t Loog Eere Polllng
t objectsa

, DiaabLe PwM
, OutDu!

, Tula off IUR2

t CLear Objec! BiEa

r Thirty Tim€s f,o!
t S€t,

r Eitrisheal, IJooD
r Aroundl Again

r upalate Line
i Sedaora?
t Evertr 4!h Cycle

; Start coodl Reafl

, Gooal A.Dc Reaal,
i gave Ir€f! Valu€

3
t:

i .r$

t E.pect Badt alc
i Reaal, Ignole Value

, Enabl€ A.DC on RA1

, Start ADC
, Op€ration

r glart eootl Reaal

; Gooal ADC Reaal,
t Save Right Va1ue

, uDdla!€ object
t se gor?

r Every 4th Cycl.e

, Cl€ar the Objects
t Counters

; setup tIiIR2

, clear the object
i Countsels

, getuD I'uR2

:,{

Ff

,. *.*

'J,,

!d-r
a"A

! - t

r Turn on TMR2 f,or
I.ine

t Enalcle Pttu Output

t Loop He!€ Polling
t Line

324 l , e 3 P I C @ l ' l C l - J E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

i Finiaheal, Loop
i Aroundl Again

ODeratsinglogic:
r **## - Put Opelating IJogic Her6 (8 Per 32

gotso IJinelJoop

bgf STATUS. RPO
bsf TRIsc ^ 0x80, {
bcf STATUS, RPo
bcf !2CON, T!|R2ON

bcf IJFToUtRIR
bef IJFToatLIR
movlw 30

subwf IJiDeFroutR, w
btf,sc STATUS, C

baf LFrontsRIR
novlw 30
Eublrf lineFront!, w
btfsc STAfIUS, C

baf, LFronlLIR

gtoto Loop

i

, **#*

r ****

, **lt*

, #*##

9roso

t Subloutineg
CoutrtLow:

clrf Dlay
CountsIJowlrooD:

incf Dlay, f
blfsc STATUS, Z

goto CountlowDone
s o t o $ + 1
g l o t o $ + 1
btfss RearIR

goto Countlovrloop
CounlLolrDo[e !

cllf Dlay

coutttsEighl,ooD :
incf Dlay, f
blfBc STATUS, Z

goto CountHighDone
g o t o s + 1
g o t o s + 1
btfac RearrR

goto countEighloop
countEighDone:

novf Dlay, w
subLw 35
btsfac sTATrts, c

movllr 80
aublrf D1ay, ro

eaal

I had a lot of trouble in this experiment (which fig-
ures, because it's the last one) with the IR signal being
too powerful. I was able to be successful by carefully
heating the heat-shrink tubing around the bottom-
pointing LED to the point where very little light was
let out and white and black were detected. Please
check the CD-ROM and on my web page
(www.myke.com) for updated code that changes the
PWM period of the IR signal to decrease the sensitiv-
ity of the line sensors so they work better. Otherwise,
you may wish to add a large potentiometer (say 10k)
in series to see if significantly reducing the current
flowing through the IR LED helps to better sense the
difference between white and black surfaces.

For Consideration
Whew! Although being a lot of fun to work through,
the ZipZaps hack was a pretty intensive introduction
to robotics. And a pretty good introduction at that. It is
possible however, that you might be questioning this
from a number of perspectives, including the following:

. The fragility of the robot

. The difficulty in adding the new components
precisely

. The ability of the robot to run only on flat,
smooth surfaces

. The apparent complexity of the software

. What to do next

I like robots that are built like North American cars
built in the 1960s-able to drive away from a serious
accident with nothing more than chipped paint. I am
not trying to be facetious; chances are your robot will
drive itself off the table you are working on, and you'll
wish for the same thing. (This is a factor because there
is no on/off switch due to my relying on the Zipzaps
battery for power.) So remember to chock the wheels,
and you'll prevent the robot from going off on its own
(it does not have the power to successfully climb over
any obstacles).Yet, at some point in time, you'll proba-
bly forget to do this and accidentally lean on the
remote control. Despite this danger and a few broken
wires when I was taking the PCB on and off the chas-
sis, the robot held together dudng the development
and during about 10 hours of use without any prob-
lems. As a prototype, this robot is acceptably robust,
but it is certainly not sftong and resistant enough to
withstand the accidents a commercial Droduct would
need to withstand.

This hack would be much easier to perform if a cus-
tom PCB were desisned for it. If surface-mount

DisalcLe P9lM OutDut

Turn off T!lR2

clear objecu Bi ts

Thilly Tines for
Set

i,1

l"t

;.{

t'ti

i.-

1 '
I'.i

*aj

frl

'J

cycleg) /Neeala set Plag
- Check "A99Reaet" Eo See if

Application ia to be R€atartetl
- Rdlote Control Direcl (!'tove or Stop)

ReaelE 'AppRunn Flag
- Rdrole Control

aT.I "ADDReaetsT
- Rdrot€ conurol "Reca11n gela

r Einisheat.]JooD
t Alounal Again

i counts, i! 10 uE
i Increments
, Time signal Low

t Clone Arounal?

t Y€s, Return Zero
t Want 10 Cycl€ Lop

t Fini8heil, Return

r Count, in 10 us
InclementE
r Tirne Signal Eigh
anat check

i Gone Arountl?

t YeE, ReEurn Zero
, Want 10 Oycle IJooD

i IJ€ss than 40?

t Greate! than 79?

t Carry seh if trYesn

5ection Thirteen Z i p Z a p s @ R o b o t 325

technology was used, then chances are the custom
PCB could be as small as the PCB that came with the
original ZipZaps (although some kind of provision
would have to be made for the IR TV remote-control
receivers). The ease of building the circuitry could also
be improved by relocating the motor and steering
driver transistors from the cut-down ZipZaps PCB to
the robot PCB. I did not try this because I wanted to
leave the stock driver circuits intact, assuming that
they have been optimized for the motors and steering
solenoids used. A custom PCB could also reduce the
fragility of the final robot.

The car chassis and the all-or-nothing steedng limit
the surlaces on which it will run and how the robot
works. I prefer working with differentially driven
robots that can literally turn on a dime. The very small
turning radius of the ZipZaps chassis is about as good
as you can expect, but still not as good as what many
robots are capable of. Despite these limitations, the
chassis and robot are very useful for prototyping and
should help you work through the sensor and software
issues of a larger, car-chassis-based robot.

The software used in this robot is not as complex as
it looks. Hopefully you can see its progression as you
work through the expedments and see how relatively
simple changes result in substantial improvements in
capability. If I had presented the final software without
any of the intermediate steps, then I would agree it is
very complex for somebody to understand all at once.
However, by going through the individual iterations of
the code, you should have some appreciation of how
complex software is built from a series of small pieces.

If you can't see any way to use this robot, then I
suggest that you spend some time in your local library
or bookstore, or on the Internet. There are literally
thousands of different applications (and methods for
implementing them in hardware and software) that
can be used as ideas for your robot. The Zipzaps robot
will never bring you a cold drink from your refrigera-
tor, but it can simulate the actions so you can create a
larger, more capable robot.There are also many

opportunities for expanding the capabilities of the
robot, including adding more or different sensors or
even some kind of object-capture hardware.

On the positive side, the robot is fast and tracks as if
it were on rails. I would say its speed and ability to
move precisely is as good as or better than the odginal
product. Although the car regularly spins out, this is
not a desirable trait in a robot. The extra weight of the
prototyping PCB and the components on it probably
contdbute greatly to how the robot handles. I also was
pleasantly pleased by the battery life of the final prod-
uct;it seems to be better than what the original prod-
uct had. This doesn't seem quite possible when you
consider the various electrical devices added to the
chassis as well as its extra weight, which requires more
power to move. It could be that the radio receiver uses
a lot more power than the PIC MCU solution.

Most important, this is a robot that you can do a lot
with.The software is designed to make coming up with
your own application code as easy as possible; the sen-
sors are continually polled by the base code and allow
you lo simply read variables to find out the latest val-
ues. Similarly, to move the robot, it is simply a matter
of writing to the appropriate motor and steering vari-
ables to affect any kind of movement. Finally, the
remote-control interface allows you to initiate the
operation of your code and to stop it if it is not work-
ing properly. You can then move the robot to a new
location to try something different or in a new envi-
ronment. It's actually a nice basic robot to experi-
ment with.

Like this book, the ZipZaps robothack should have
given you new insights into the PIC MCU, how it is
interfaced, and how it is programmed. It is now up to
you to take this knowledge and go forward with your
own experiments. I'm looking forward to seeing what
you come up with. And if at some time the book's
moniker applies to you, and you use the skills and
knowledge gained ftom this book to take over the
world, please remember where those skills and knowl-
edse came from.

326 l , a 3 P I C @ l ' l C U E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

$,163
* (see multiplication)
+ (see addition)
- (see subtraction)
/ (sea division)
; (see semicolon character)
& (AND),35
" (bitwise XOR),35
= (equals sign),38,4G41
== (equals to s la tement) .38.4G41
<< (left shift operalor),L74
% (modulus operator),34
-' (negation),35
I (oR),3s
+ + (unary increment) operator,48
I (bitwise [inclusive] OR),35
& (bitwise AND), 35
- (bitwise negation), 35
^ (bitwise XOR),35
! logical operator, 35
[] (braces), 39-40

AC (alternating current),
accumulator,l64
Active Surplus, 12
ADC function (see analog-to-digital function)
addition (+):

in assembly langua ge,1.6U1"69
assignment stations, 34
repeated, multiplication as, 280

addresses:
C programming language. 83. 84
for computed gotos, 208
for memories, 18
PICC Lite compiler, 83, 84
for program memory (assembly), 161-163

addressing:
anay,73
assembly language, 173-175
bank (assembly language), 173-175

alphanumeric LED displays, 124
alternating current (AC), 154
American National Standards Institute (ANSI) bu.bble sort,292-294

A
L54

tntrex

analog-to-digiral (ADC) function:
for multiple devices, 238-239
Ptc1.6F684,93-96

AND (&),35
AND gate, 189-190
Animate icon,20
ANSI standards, 29
application code, 137-138,187 (See also specific

applications)
application mainline/entry function (C), 82
application mainline/entry point (PICC Lite

compiler),82
applications:

linking multiple files into, 187
readability of, 67-68
tangible reasons for, 89

architectures:
computer,l8-19
PICl|'{{.CU,25-26

arithmetic operations:
basic, 3,t-35
Boolean, 35,36
order of, 3,t-35
16-bit values/variables with, 201-203
(See also specific operations)

array addressing, T3
array dimensions:

C programming language, 83
PICC Lite compiler,83

array variables, decl arrng,182
arrays:

defining/implementing (assembly), 182-183
read-only (assembly), 20&-210

ASCII bytes, converting byte into,289-291
ASCII characters, T9
ASCII data format, 32
ASCIIZ srring, 79, 80,29+296
assembly language prograrnming, 6, 159-185

addition instructions, 168-169
asmTemplate.asm file and basic directiveq 160-161
bank addressing, 173-175
basic parts/sequence ol 184
bit instructions, 175-176
bit skip instruction s" 177 -178
bitwise instructions, 167-168

standards,29

I n d e x

conditional execution, 178-180

327

t
tt
/tt

s
H

assembly language programrntng (Continuecl) bit set (bsf), 175
converting byteq 289-291 bir skip instuctions (assembly), 177-178
decfsz looping, 180 bitwise instructions (assembly), 167-168
defining variables, 165-167 bitwise operators (C),35-36
defining/implementing arrays,182-183 BOD circuit (see brownout detect circuit)
division of 16-bit value by eight-bit vahte,28?-284 Boolean adthmetig 35,36
eighrbit multiplication with 16-bit prodtct,230-282 Boolean operationq bitwise, 167-168
encrypting/decrlptingASClIZstring,294-296 BOR(seebrownoutreset)
even parity values for bytes,29l-292 bottle-sort algorithm,292-294
generating Fibonacci number sequence,297298 braces ({ }),39*40
largest common factor of two eight-bit numbers, breadboard wiring:

298-300 BS2 simulator,225
loading/saving contents of WREG,16+165 for dual seven-segment LED display circuit,lzz
program memory addresses, 161-163 for AND gate, 189
sorting list of 10 eight-bitvafues,292-294 keypad-based BS2 simulator,231
square root of 16-bit number,28G288 LCD1,777
squaring number using finite difference theory for object detectionh^nging,Z4s

28+286 for PIC MCU, 64-66
strange simulator results, 170 for potentiometer read circuit, 110
subroutines, 181 sewo contol.2:72.273
subtraction instructionrlTl-t72 for testing clocking optiong 107

assembly language resource routines, 187-220 for ZipZaps power supply,306,308
circular buffen,212-213 break statement,44
conditional assembly,197-199 breakpoints, 20, 22
data stacks,210-212 bro$nout detect (BOD) circuit, 91-93
defines,194-196 brownout reset (BOR),62,91-93
high-level programmng,Z\S-2j1 BS2 interface:
implementing C "switch" statement, 191-194 commands supported by PIC16F684IR tag
implementing read-only arrays,208-210 MCU,253
logic simulation using PIC16F684, 188-191 controlling multiple motors with PWM atd,264-265
macroq 199-201 keypad,23V23l
reading/r:r,ritingEEPROMdatarnemory,2l4-276 and,servocontrol,ZT7-278
16-bit values/variables with arithmetic operations, two-sewo robot base with,277 -278

201-203 user,224-29
universal delay macro,203-205 bubble sort,73-74,292-294

assignment statement buffers, circular,2l2-213
n C,32-33 built-in serial interfaces (UARTs),222
macro for,206-207 button inputs:

basic,58-59
debounci.ng,59-61

B
byte(s):

converting into three decimal, two hex, or eight
backdriving,3o5 binaryASCII bytes,289-291.
bank addressing (assembly), 173-175 producing even parity valuesfor,2gl-292
basic arithmetic operations, 3,[-35
batteries,65
binary format.32 d
binary number output (with PICkitl start kit LEDs), \,

5G58 C (see carry)
binary operators: C programming lang1Jage,6,2:749

C programming language,84,85 addresses, 83,84
PICC Lite compi1er,84,85 application mainline/entry function, 82

binary search algorithm,98 applications of,27
binary values,35-36 alnay dimensionq 83
bipolar stepper motor control,765-268 assignment statements,32-33
bit instructions (assembly), 175-176 binary operators,84,85
bit reset (bcf), 175 bitwise operators,35-36

3 2 8 l , e 3 P f C @ i l C U E x p e n i m e n t s f o n t h e E v i l 6 e n i u s

button read and LED output in,59 carry (C), 168, 169, 171 l,-l
character strings, T9-81 case statement, 44 t4
complex statements, 48-49 cblock directive, 161,,766,1"67,201,
conditional execution using if statement,3g-41 CCP: ,.- ,
conditional looping,45-46 generating PWM signals using TMR2 and, 111-114 {'t
and configuration fuse bits,82, 83 I/O pin resistance measurements using, 109-111 :.i.j
constant formatting, 31 32 CCP PWM, DC motor driven using potentiometer
constant values,71 control and, 257-260
constants,S4 CCP1RL register, 112,113
data access with,27 CD-ROMs (in starter kit), 1
data declarations, 83 CDS (Cadmium Sulfile) cells,238
data types,29 30 cFlash.c:
decision structures,84, 85 simulating, in MPLAB IDE.20-24
defines, Tl-72 wiring circuit, 65-66
defining functions,S2 char data type,33
directives,86 char unsigned variables, 188
expressions, 33-35, 84 character strings:
functions,69-70 C programming language, T9 81
global variables,71, 83 encrypting/decrypting, with substitution algorithm,
goto Label statement,S5 29+296
implementing C switch statement in assembly circular buffers,212 213

language, 191-194 clear the Watchdog Timer (clrwdt) instruction, 188
library functions, Sl 82 clipped signal,235,236
lists.76-78 clocks:
local variables,70 71,83 comparing oscillators, 106-109
logical expressions, 37-39 and functions in instruction cycle,203
looping,S5 PIC16F684,16
macros,TlJ2 resistor-capacitor, 95
mathematical operators,s4 (See a/so timers)
microcontrollerapplicationsin,137158 clrwdtinstruction,188
model railway switch control,153-155 code, formatting, 68
nested conditional statements,4l+3 coi1,255,256
null statement,4S-49 comments,31,68, 160
PC operating status display,15G158 common cathode/anode configuration, 120
PIC MCU "piano," 151-153 common factor of two eight-bit numbers,298-300
pointers,27,7G78, 83 common registers, 173
Pumpkin LED display,138 140 comparators:
reaction-time tester,140-142 for IR surface sensor,240,241-
and readability of programs, 68 PIC16F684, 96-99
return statement, 36 comparing clock oscillators, 106-109
Rokenbok@monorail/trafficlights,143-146 completeresetsolution(PIC16F684),62
seven-segment LED thermometer, 146-150 complex expressions, 34, 36
single dimensional arrays,83 computed goto,208
for statement,46-49 computers:
strings,S3 architectures, 18-19
structures, 75-76 as random number generators, 127
subroutines,6g conditional assembly:
switch decision statement,43-44 assembly language resource routines, 197-199
switch statement, 85 macro using,20G-201
unions,76 conditional execution statement:
values,83 assembly language, 178-180
variable arrays,73 74 nested (C), 41-43
variable declaration statements,28-29 using if statement (C), 39-41
variable types, 84 conditional jumps, 16-bit values/variables with,202

Cadmium Sulfile (CDS) cells,238 conditional logic, operators for,36
call instruction,l62 conditional looping(q,a5a6
canned oscillators, 10G108 _CONFIG directive,l-61-,205

I n d e x 329

M
t2i

{)

d

H

configuration fuse bits:
and C programming language, 82, 83
parameter specifications, 17
PICC Lite compiler, 82, 83
and unwanted functions, 100

configuration word (PIC16F684), 1G17
constant formattin g (C) 3\a2
constant values (C programming language),71
constants:

C programming language, 84
PICC Lite compiler, 84

context registerq 134
conventions,1.1
counterg 29,57

for longer delays, 203-204
program,162
sweep generator, 94

crysral (PIC16F684), 108
Cygwin, 157, 158

D
data, storing (see storing data)
data access (C),27
data declarations:

C programming language, 83
PICC Lite cornpiler, 83

data encr)?tion standard (DES), 294
data segments, 19
data sizeq 32
data stacks,210-212
data types, 29-30 (See also spectfic types)
DC (see digit carry)
DC motor control, 255 -256

with simple TMR0 PW\11,261-263
using CCP PWM and potentiometer control,

257-260
dead time execution cycles, 137-138
debouncing:

button inputs, 59-61
multiple microswit ch, 237 -238

Debtgger,2I,24
debugging:

in assembly language, 159
difficulties with, 36
pointers in,77

decfsz looping, 180
decirnal, converting byte value into, 289, 291
decimal format,32
decision statements, switch (C), 43-44
decision structures:

C programming language.84. 85
PICC Lite compiler,84, 85

declaration statement:
for functions, 69
macrog 199

declaring variables:
anay,187
in assembly langua 9e,765,166
and computer architecture, 19
in PICC Lite compiler, 28

define label, 71 , 72
defines:

assembly language, 194-196
C programming language, 7 1-:7 2
conditional assembly, 197

defining arays (assembly), 182-183
defining functions:

C programming language, 82
PICC Lite compiler,82

defining variables (assembly), 165-167
delays:

long timer delays using TMR1, 10+105
PIC MCU,53-54
short timer delays using TMRO, 101-102
universal delay ma qo,203-205

DES (data encryption standard),294
development PC, interface to, 13
Digi-Key, 12
digit carry (DC), 1 6UL69, 17 L
digital logic, 117-119
digital multimeter (DMM), 134
digital thermometer, 14G1-50
digitally proportional signal, 27 2
DIP sockets, 51
direct load (movf) instruction, 164
directives:

assembly language, 16L-1-63
C programming language, 86
PICC Lite compiler,86
(See also specific directives)

disassembly listing, 190, 191
distance-range sensors:

IR object-ranging s ensor,247 249
ultrasonic, 249-250

division (/):
of 16-bit value by eighrbit value,282-284
assignment stations, 34
as repeated subtraction, 282, 283

DMM (digital multimeter), 134
do-it-yourself IR object sensors, Z3-246
dot-matrix LED displays (LED matrix), 124
double float (floating point) variables typeE 30
do/until statement,46
dual in-line chip package (DIP) socketq 51
duty cycle,111

E
ECC (error detection /correct codes),292
ECCP module (see Enhanced

Capture/Compare/PWM module)

3 3 0 l , e 3 P I C @ l t C U E x p e r i m e n t s f o n t h e E v i l 6 e n i u s

EEPROM memory (see electrically erasable folders,6T
programmable read-only memory) for statement:

EEPROM read, 21 4 C prograrnming language,46-49
EEPROM write,21+216 in cFlash.c simulation,2l
eighlbit numbers: formatting code, rules for, 68

eight-bit multiplication with 16-bit product,28G-282 full H-bridge circuit,256:258 .. .
largest common factor of two, 298-300 full stepping,266

eightbit values/variables: full-bridge output forward mode (PWM generator),
bubble-sorting list of,292-294 113,714
division of 16-bit value by,282 284 functions
saving 16-bit values as,32 C programming language,69-70

electret microphone, 235 declaration statement for,69
electrically erasable programmable read-only defining, PICC Lite compiler, 82

(EEPROM) memory, 19 defining (C),82
reading/writing(assemblylanguage),214-216 recursive,70,297
storinghetrieving data with,114-115 unwanted,100

emulators.24.25 written as macros,200
encrypting/decrypting ASCIIZ string,29,l 296 (See also speciJic lunctions)
ENDC directive, 161
ending applications (PIC MCU), 63-64
Enhanced Capturei Compare/PWM (ECCP)

Gmodule, 104
Capture mode ol110-111 global interrupt enable (GIE) bit,135
PWM generator function in, 111-114 global variables (C),71, 83

equals (:) sign, 38,40-41 goto instruction, 162, 208
equals to (= =) statement,38,40 41 goto Label statement:
equate (equ) directive,166 C programming language,S5
error detection/correct codes (ECC),292 PICC Lite compiler,85
even parity values, for bytes,291292 graphic LCDs,126
execution:

assembly language, 178-180
conditional,lTS-l8o

Hexpression statement, 32
Cprogramminglanguage,33-35,37-39,84 halfadder,291,292
logical, 37-39 half H-bridge circuir,256,257

expressions (PICC Lite compiler), 84 half stepping,266
Harvard architecture, 18 19, 208
H-bridge circuits, 256, 257

E' for dual DC motor,264
tl.256-258

fanout, 118 ha1f,256,257
Fibonaccinumbersequence,generating,29T-298 headerblock,6T-68
file narnes,67 hex files, 19
file registers,19,164 hexadecimal, converting byte value into,289291
fill areas (PCB),265 hexadecimal format, 32
finite difference theory, squaring number using, HIGH directive, 201-202

284 286 highJevel programming:
first, outside, inside, last (FOIL), 281 in assembler,205-207,279
flag variableq 29,30 assembly language vs., 159-160
Flash.c: HT:Soft PICC Lite compiler, 1 4,6,7

Build Information for,7 addresses, 83, 84
loading,6 advantages of,28

flight time (ultrasonic signals),249, 250 application mainline/entry point,82
float (floating point) variables types,30 array dimensions,83
floating-point operations, 149-150 assembly language code for,187-188
flood areas (PCB),265 binary operators,S4,85
FOIL (first, outside, inside, last),281 capabilities of,28

I n d e x 3 3 1

III-Soft PICC Lite compiler (Continued)
code produced by,28
configuration fuse bits, 82, 83
constants, 84
data declarations, 83
data types,29-30
decision structures, 84, 85
declaring variables, 28
defining functiong 82
diectives, 86
downloading/installing, 2-4
expressions, 84
floating-point capabilities ol 288
goto Inbel statement, 85
interrupts, 135-136
library functiong 8G88
looping,85
macroq 87-38
mathematical operators, 84
MPLAB IDE integration with, 28
pointers, 83
pragma options, 86
return statement,86
single dimensional arrays, 83
specifying, 6
stringq 83
switch statement,85
variable types, 84
variables inside functions, 83
while loop,46

HT-Soft web site, 2

I
ICE (in-circuit emulator), 25
icons,10-11
IE (interrupt enable), 135
IF (inlerrupt request flag) bits. 135
if directive, 197
if statement for conditional execution (C),3941
immediate load (movlw) instruction, 164
immediate values/numbers, 162
implementing arrays (assembly), 182-183
incfsz instruction, 180
in-circuit emulator (ICE), 25
include directive, 161
index register, 182
indexed addressing, 73, 182
lnouctor (collJ. z)), z)o
infrared (IR) remote control:

for object detection, 243-246
f or ZipZaps@ r ob ot, 37U317, 31G377

infrared (IR) sensors:
do-it-yourself obje ct sensorq 243 -246
line-f ollowing (ZipZaps@ r ob ot), 32(1325

objecfdetection (ZipZaps@ robot), 318-319
object-ranging sensor, 247 249
robot IR tag,251-253
surface sensors, 239-241

input mode (I/O pn),14,33
input/output (I/O) pins:

allocation of, 230
functions ol 14
and LEDs, 13
Prc16F684, 14-16
resistance measurements using CCP, 109-111
sharing,230

instruction cycleg 21
instructions, 160, 216-218
instrument interf a ce (PlC MCU), 23L-234
int data R?e,29,30
interfaces, 119-136

debugger,25
driving seven-segment LED display directly from

Prc1.6F684,1L9-rZ1
instrument, PIC MCU,237-234
keypad, PIC MCU BS}Z3VZ37
LCD display,12L128
LED matrix displays, 724-176
multiple seven-segment LED displays, 121-123
of PICkitrM 1 starter kit to PC, 13
producing random numbers, 128-129
sensor,222
Sharp GP2D120 ranging object sensorE242-243
switch matrix keypad mapping, 131-134
two-bit LCD displ ay,729-730
user, PIC MCU 852,22+229

interrupt enable (IE), 135
inteffupt request flag (IF) bits, 135
interruprs, 101, 134-136,239-241-
I/O pins (see input/output pins)
IR opto-interrupters, 239 -24t
IR remote control (see infrared remote control)
IR sensors (see infrared sensors)
IR switch Opro-NPN,240

Jameco,I2
jumpE conditional,202

K
k (thousands), 11
keypad:

BSZ interface,23F231.
switch matrix keypad mapping, 131-134

Kirchoffs Law, 154

J

X
(,

€

c
H

3 3 2 l , e 3 P I C @ l ' l C l - J E x o e r i m e n t s f o r t h e E v i l 6 e n i u s

L
labels, 16,162

address values tbr, 162-163
for conliguration word bit, 16
declared with variable directive, 198
numeric value associated with,71

last in lirst out (LIFO) memory,2l
LCDs (see liquid crystal displays)
LDRs (see light dependent resistors)
LED matrix displays,I24 126
LEDs (see light-emitting diodes)
left shift operator (<<),174
LFSRs (see linear feedback shift registers)
libraries:

C run{ime, 81
and data types, 30

library functions:
C programming language.8 l 8 i
PICC Lite compiler,8G88

LIFO (las l in f i rs t out) memor l . 2 I -
light dependent resistors (LDRs), 143,1421

for light sensors, 238-239
ZipZaps robot,317-318

light following (ZipZaps@ robot), 318
light sensorq 238-239, 317-318
light-emitting diodes (LEDS), 1,2

alphanumeric LED displays, 124
binary number output using,56'58
driving seven-segment display directly from

PIC16F684, 119-121
LED matix displays, 12+126
multiple seven-segment displays, 121-123
organization ol, 13-14
PC operating status display, 156 158
Pumpkin LED display, 138-140
sequencing, 55-57
seven-segment LED thennometer, 146-150
simple program to flash,5 8

limit checking,2ll
linear teedback shift rcgisters (LFSRs), 138-40
line-following sensors, IR (ZipZapslt robot), 320-325
Linux, 1
liquid crystal displays (LCDs), 120,12G130
list directive, 1 60-161, 220
lists (c), 76-78
literal values/numberq 162
little endian,201
local variables (C),70 71,83
logarithm function, 150
logic:

conditional,36
digital, 117 119
simulation, using PIC16F684, 188 191

logical expressions (C),37 j9

logical operator (!), 35
long timer delays using TMR1, 104-105
loop increment statements, 46
loop test expression, 46
looping:

C programming language, 85
conditional (C),45 46
decfsz (assembly language), 180
PICC Lite compiler,85
relative address for,203
TMR1 vs. for loop, 105

LOW directive, 201-202
L293D chrp.264 265

M
M (millions), l1
F (millionths), 11
m (thousandths), 11
machined receptacle socket, 51
maclos:

assembly language, 199-201
tbr assignment stat ements,20620l
C programming lang\age, 7LJz
OPERATE,2O5 207
PICC Lite compiler, 87-88
TimeCheck, 316
universal delay,203 205
uses of, 199-200

mapping, switch matrix keypad, 131-134
mathematical operators:

C programming language, 84
floating-point operations, 149 150
PICC Lite compiler,84

matrix LED display s, 12+126
MAX 756 step-up power supply,305 306
_MCLR operation (PIC MCU), 61-63
MCU (see microcontroller)
measurements, 11
memory:

EEPROM, 1t 4-1 15
LIFO, 210
PIC MCUs,25
PIC16F684,18 19
program, addresses for, 161-163

memory space, 18
metric system, 11
Microchip PIC@ microcontrollers (PIC MCUs), 1-12

basic button inputs,58 59
basic delays application, 53-54
binary number output using Plckit 1 starter kit

LEDs,5G58
BS2 keypad interf ace,230231
BS2 user interlace, 22+229
configuration parameters of, 16

I n d e x 3 3 3

Microchip PIC@ microcontrollers (Conrlnaed) Mouser Electronics, l2
configuring,6 MPASM@, 159, 161-163
debouncing button inputs,59-61 conditional assembly directives in, 197
electronics PCB (ZipZapsor robot), 307-309 directives, 216,218-220
ending applications,63-64 macros, 199
families of, 25 MPLAB@ integrated development environment
instrument interface,237-234 (IDE),1--:7,9-I2
_MCLR operation,6l 63 as development too1,279
parameter words, 16 downloading/installing,4,5
pafi numbers for,2+25 screen shots of, 11-12
parts required for wiring on breadboard, 64-66 simple program to flash LED,5-8
PCs vs., 18 simulating cFlash.c,20-24
"piano," 151-153 simulator tool, 10,70-71
PIC12F675,1, 10 source code compiling by,187
PICI6F684 (see PIC16F684) tutorial for, 2
power supply (ZipZaps@ robot),305-306 upgrades ol 1
recommendations for,26 verslons of,12
sequencing PICkit 1 starter kit LEDS,55-56 multidimensional arrays,74
turning off power, 14 multiple assignment statement,33, 35
wiring cFlash.c circuit,65-66 multiple microswitch debouncing,23T-238

Microchip PICkitrM 1 starter kit,1+,10,11 multiple servo control software structve,214 276
binary number output using LEDs,56-58 multiplication (x):
contents ol 1-2 assignment stations,34
icon for, 11 eight-bit, with 16-bit product, 280-282
machined receptacle socket modification, 51 as repeated addition,280
ordering, 1
organization of LEDs, 13-14
PC interface, 13
potentially negative issues with,13-14 N

sequencing LEDs,55-56 names, variable,29
simple LED flash application, 5 8 natural logarithm, 150
test circuit, 13 negation (-),35
turning off power,4 nested conditional statement (C), 41 43
USB port liability, 4 nested subroutines, Tl
ZIF socket addition,5l-53 Newton's method of zero finding, 287

Microchip web site,4 non-return-to-zero (NRZ) protocol22\223
microcontroller (MCU), 1l,137-158 nonvolatile memory,114
Microsolt Windows, 1, 11 NOP0; statement, 53-54, 60, 188
microswitchdebouncing,multiple,23T-238 nopstring,161
millions (M), 11 NRZ protocol (see non-return-to-zero protocol)
millionths (pt), 11 null statement,32,48-49
model railway switch control, 153-155 numbers:
modulus (%) operator,34 ASCII values as, 289
monorail, Rokenbokcr, 143-146 eight-bit, finding largest common factor of,298-300
motor control, 255 278 eight-bit multiplication with 16-bit product,280-282

bipolarsteppermotorcontrol,265-268 generatingFibonaccinumbersequence,29T29S
controlling multiple motors with PWM and BS2 immediate/literal, 162

rnterface,264-765 16-bit, finding square root of,28G288
DC motor control with simple TMR0 PWM, squaring, using finite difference theory,284286

267263
DC motor driven using CCP PWM and

potentiometer con1rol,257-260 n
multiple servo control software structure,Z74 276 \-'

radio-controlmodelservoco\tro1,272274 objectsensors:
two-seNorobotbasewithBS2interface,zTT-z18 do-it-yourself,243-246
unipolar stepper motor control,269 271 interfacing to Sharp GP2D120,242243
ZipZaps@ robot,3lL131.2 IR object-ranging sensor,247-249

3 3 4 l , a l P I C @ l l C U E x o e r i m e n t s f o r t h e E v i l G e n i u s

ultrasonicdistance-rangesensor,249-250 configurationword,16-17
ZipZapso robot,318-319 damage from plugging/unplugging, 14

Ohm's Law, 154 driving seven-segment LED display directly from,
one-time programmable (OTP) parts,197 119-12I
Ontario Ministry of Educalion Curriculum generating PWM signals using CCP and TMR2,

Guidelines for Computer Engineering,9 111 114
op-amp circuit,235 I/O pins,14-16
open-collector output, 119 logic simulation using,188-191
open-drain output,11g long timer delays usingTMR1,10,+ 105
OPERATE macro,205-207 short timer delays using TMRO, 101-102
operating status display (PCs), 15G158 simulating cFlash.c in MPLAB IDE, 20-24
Operation Result, 168 stodng/retrieving data using EEPROM memory
operational-amplifier (op-amp) circuit,235 11+115
OPT (onetime programmable) parts,197 timed I/O pin resistance measurements using CCP,
OPTION rcgister, 101 109-111
opto-interrupters, 239-241 TMR0 prescaler, 102-103
OR (l) operator,35 variable memory/registers/program memory,1s 19
order of operations,34-35 watchdog timer,99 100
org directive,161 PICC Lite compiler (s?? HT-Soft PICC Lite
oscillators, clock, 10G109 compiler)
output controller,ll2 PICkitrM l starter kit (see Microchip PICkitrM 1
output mode (I/O pin), 14 starter kit)
output sink currents, 118 pin through hole (PTH) chips,65

polnters:
and ASCII strings, T9

p C programrning language, T6 7{i,83
ICC Lite compiler,83

p (trillionths), 11 Polaroid 6500 ultrasonic ranger,249-250
page size (program memory), 163 polling intervals,222
Parallax BASIC Stamp, 100 PORT bit, 1,+ 16
parameter strings, Tl positive active read, negative active write (R/W), 127
parameter words,16 pot read,110
parasitic power, 66 potentiometer,25T-260
parity values (for bytes),29l292 power:
part numbers,24-25, 197 AC, 154
Parts Bin icon,11 with batteries,65
parts suppliers, 12,240 parasitic, 66
PCB (see printed circuit board) turning off,14
PCL register, 208, 209 for ZrpZaps robot 305-306
PCLATH register, 208,209 pragma options (PICC Lire compiler), 86
PCs: preprocessor, Tl

operating status display, 156-158 prescaler,TMRo, 102 103
PIC MCUs vs., 18 PrimeCheck function, T0

PC/Simulator icon,11 Princeton architecture, 18, 19
phototransistors (PTs),240,247 printed circuit board (PCB), 1,2
"piano," PIC MCU, 151-153 fill/flood areas on,265
PICMCUs(seeMicrochipPIC@microcontrollers) ZipZaps@,304,307-309,372
PIC12F675, 1, 10 problems, resources for, 300
PIC16F684,1,10, i3-26 program counter, 162

ADC function,93 96 program files,lg
architecture 0126 program memory, 18
brownout reset,62,91-93 page size ol 163
builtin functions,89 90 specifying addresses for (assembly), 161 163
built-in hardware featureE 90 programmer PCB, 1,2
comparator operation,9G99 programming langLrages,zT (See also specifrc
compadng clock oscillators, 10G109 languages)
complete reset solution for,62 programming problems, resources for,300

I n d e x 33s

PTH (pin through hole) chips,65 IR, ZipZaps@ robot,310-311,31G317
PTs (see phototransistors) TV receiver for object detectron,243 244
pulse width modulation (PWM): Required Parts icon,10-11

DC motor control with CCP PWM and requirement continuum,280
potentiometer,25T-260 reset:

DC motor control with simple TMRO PWM, address (assembly language), 161
267-263 bits indicating reasons for,63

generating signals using CCP and TMR2,7|7-774 -MCLR operation, 61-63
for motor-speed control,256 PIC76F684,62.9L-93
multiple motors control with BS2 interface and, WDT, 100

264-265 Reset icon.20
Pumpkin LED display,138-140 resistance:
PWM (see pulse width modulation) in DC motors,255

I/O pin, measurements using CCR 109-111
thermistor. 148-.149

O
resistor-capacitor (RC) clock,95

E resistor/capacitor (RC) oscillator, 107,108
quotient,282,284 resistors:

light-dependant, 143, 144
single-inline package, 139

E resonator (PIC16F684),108
r\ retrieving data (EEPROM memory),114-115

Radio Shack, 12,302 retum statement (PICC Lite compiler), 86
radio-control modelservo conftol,272-274 robots:
random numbers, producing, 128 129 IR tag,251-253
ranging object sensors, interfacing to,242-243 radio-control model seryo conftol,272-274
RC clock,95 two-servo robot base with BS2 interface,277278
RC oscillator, 107, 108 (See also ZipZaps@-based robots)
rctime function, 109, 110 Rokenbok@ monoraiVrraffic lights, 143-146
reaction-time tester,I40-1-42 RTC (real-time clock) variable.316
readability of programs, 31, 67-68, 159 run arroq 20
reading EEPROM data memory,21+216 Run icon,20 21
read-only arrays (assembly language) .208-270 RJW (positive active read, negative active write),127
real-time clock (RTC) variable, 316
recursive functions, 70, 297
recursive subroutine, 181
reglsten: s

accessing,33 segments,l8
banks of 173-175 select statement (BASIC).44
CCP1RL,112,113 self-contained operutron,Zl4
common, 173 semicolon (;) character, 32, 68, 160
context,l34 sensing operations (polling),222
index,182 sensors,221-253
involved with ADC,94-95 do-ityourself IR object sensors,243-246
LFSRs, 138-40 environmental parameters with,222
monitoring values of ,21,2324 interfacing to Sharp GP2D120 ranging object
OPTION, 101 sensors,242243
PCL,208,209 IR objectranging sensor,247249
PCLATH,208,209 IR surface sensors.239-241
PIC16F684,18,19 light,238-239
shadowed, 173 line-following (ZipZaps@ robot),320-325
STATUS, 164, 168-L69,173-175,177 multiple microswitch debouncing,23T 238
T1CON, 104 object-detection (ZipZaps@ robot),318-319
WREG (assembly language), 164-165 PIC MCU BS2 keypad interface, 230-231

remainder (division).282,284 PIC MCU BS2 user interface,224229
remote control: PIC MCU instrument intedace.23l-234

3 3 6 l , P 3 P I C @ 1 1 (l J E x p e r i m e n t s f o r t h e E v i l 6 e n i u s

polling intervals for, 222
robot IR tag,251-253
sound detection, 235-237
ultrasonic distance-range sensor, 249-250

sequencing PICkit 1 starter kit LEDS, 55-57
servo control:

multiple servo control software structve,2iT 4-27 6
radio-control mod el,2l72-27 4
two-servo robot base with BS2 interface,2iT7-278

seven-segment LED displays:
driving directly from PIC16F684, 119-121
multiple, 121-123
thermometer, 146-150

SFRs (see special function registers)
shadowed registers, 173
Sharp GP2D120 ranging object sensorS242-243
short timer delays using TMRO (PIC16F684),L07-102
SI (System Internationale), 11
simulation:

BS2 interface,22+229
of cFlash.c in MPL AB LDF,,2U24
logic simulation using PIC16F684, 188-191
prior to burning prograrns, 20

simulators:
MPLAB IDE, 10, 7V71., 17 0
sending servo position data from,278
strange results with, 170

single dimensional arrays:
C programming language, 83
PICC Lite compiler,83

single equals (:) sign,38,4G41
single-dimensional arr ayq73J 4
single-inline package (SIP) resistor, 139
single-output mode (PWM generator), 114
singly linked lists, 7H8
SIP (single-inline package) resistor, 139
16-bit number, finding square root ol28G288
16-bit values/variables:

with arithmetic operations, 201-203
division of by eight-bit value,282-204
int data type, 30
programming flexibility with, 201
saving in eight-bit variables, 32

sleep statement,100
slotted IR opto-interruptery 240
SMT (surface-mount technology), 304
sobriety tester, 140-142
sound input recognltlon, 23 5 237
source code, 1
special function registers (SFRs), 19, 164
spooling function, 210
square root of 16-bit number, finding,28G288
squaring number using finite difference theory,284-286
stack memories, 18
stacks, data,Z1U212
Standard C values,29

state machine, 95
STATUS register, 164

and addition instructions, 168-169
and bank addressin 9,173-17 5
and bit skip instructions, 177

steering control (ZipZaps@ robot), 311-312
Step In icon,20
Step Out icon,20
Step Over icon,20
stepper motor control:

bipolar,265-268
unipolar ,269271

stepper motors,266
step-up power supply, 305
stimulus function, 20, 61
Stimulus window, 61
Stopwatch fu nction, 20, 23, 5 4
storing data:

ctctular bfifer,27311-4
dat^ stacks,27}-ZIz
using EEPROM memory (assembly), 214-216
using EEPROM mernory (C), 11,t-115

strings:
C programming language, 83
character (C),79-81
labels, 162
PICC Lite compiler, 83

struct language statement, 75
structures (C),75-76
subroutines:

assembly language, 161, 181
C programming language, 69
nested,71
wdtten as macros, 200

substitution algorithm, encrypting/decrypting
ASCIIZ string with, 29+296

subtraction (-):

in assembly langua ge, 77 7-77 2
assignment stations, 34
repeated, division as, 282,283

Suprernetronic, 12
surface-mount technology (SMT), 304
sweep generator, 94
switch control (model railway), 153-155
switch matrix keypad, mapping, 131-134
switch statement:

C programming lan guage, 4344, 85
C switch statement in assembly language,IgT-7g4
PICC Lite cornpiler, 85

System Internationale (SI), 11

T
Tab Electronics Build Your Own Robot Kit, 301-302
Thb Electronics Sumo-B ot, 25I-253, 307-i02

,{
!-{

p-
tu
X

I n d e x 337

task-control software (Zipzaps@ robot), 313-316
Template file,160-161
test circuit (PICkitrM 1 starter kit), 13
thermistors, 148-149
thermometer,seven-segment LED, 14G150
thousands (k), 11
thousandths (m), 11
TimeCheck macro, 316
timed I/O pin resistance measurements using CCP,

109 111
timers (TMR):

DC motor control with simple TMR0 PWM,
26L-263

generating PWM signals using CCP and TMR2,
1.L7-11.4

long timer delays using TMR1, 104 105
prescaler, TMRO, 102-1 03
short timer delays using TMRO, 101-102
Watchdog, 16,99-100

title directive, 160
TMRs (see timers)
Toolbox icon, 11
totem pole output, 118, 119
traffic lights, Rokenbok@, 143-146
translstors:

in DC motor control, 258,260
phototransistors, 240, 241

translation voltage, 189
trillionths (p), 11
TRIS (Tii-State) bit, 1,1 16
tri-state ddver output, 119
TV remote controls:

for object detection, 243244
for ZipZaps@ robot, 310-311, 316-317

two-seryo robot base with BS2 interface,277278

U
UARTs,222
ultrasonic distance-range sensor, 249-250
unary increment (+ +) operator,46
union statement, T6
unions (C),76
unipolar stepper motor coni.lol,269-21 1
Universal Assembly Language, 27
universal delay ma cro,203-205
universalser ia l bus (USB) cable. I
universal serial bus (USB) port, 13, 14
UpperCase macro, 72
USB cable, 1
USB port, 13, 14
user interface (PICMCU BSZ),224 229

v
Value variable,5T 58
values:

array, 208
ASCII,289
binary,35 36
C programming language, 83
for complex expressions, 36
for configuration word, 16
constant, Tl
converting,289-291
immediate/literal, 162
in program counter, 162
of r e gisters,2l-, 23-24
in unions,76
of v ar tables. 21-, 23-24

variable arrays (C),73-74
variable declaration statement, 165

C programming language, 28-29
and computer architecture, 19

variable memory,18, 19
variable types (PICC Lite compiler),84
variables:

binary, 35-36
C programming language, T0-71, 83, 84
char unsigned, 188
declaring (assembly language), 165, 166
declaring (C), 19,28
defining (assembly language), 165-167
global,71,83
local, TG-71,83
location of,19
monitoring values of.21-,23-24
naming,29
pointers,7G78

variables inside functions (PICC Lite compiler), 83
#v(expr) directive, 198-199
von Neumann architecture, 18,208
Vrei 97-98

v{
Watch window,23,24
watchdog Timer (WDT):

disabling, 16
PIC16F684,99-100

WDT (see watchdog Tirner)
while directive, 198
while loop,45-46
Windows,1,11

338 l , a 3 P I C o l ' l C l - J E x o e r i m e n t s f o r t h e E v i I G e n i u s

working register (WREG):
in addition instructions, 168-169
in bitwise operations, 167-168
loading 164-165
read-only array element, 208
saving contents of, 165
and subtract instructions, 77 I, 772

writing EEPROM data memory,2L4-216

tt
J}

xoR ("),3s

zero check module, 164
zero insertion force (ZIF) socket, 14,51-53
ZipZaps@-based robots, 301-326

basic task-control software, 31!316
characterizing, 303-304
IR line-following sensory 320-325
IR object-detection sensors, 318-319
IR remote control,376-377
IR TV remote control,310-311
light sensors and light foUowing,317-318
motor and steering control, 311-312
PIC MCU electronics PCB,307-309
PIC MCU power supply,305-306

-
s

H
p
p
o
x

l n d e x 339

Discount Goupon

2Oo/o CftJ Retail Price
On PlCkitrM 1. Flash Start Kit (DV164101)

On Signal Analysis PlOtailrM Daughter Board (AC164120)

Microchip Technology is offering a 20% discount off the retail price for the PlCkitTM
1 Flash Starter Kit (DV164101) and the Signal Analysis PlctailrM Daughter Board
(AC164120) lowrost development kit and daughter board. The discount may be
redeemed through your local Microchip distributor, or on the Microchip e-Commerce
website http//:buy.microchip.com. This offer cannot be used after Match 31,
2006.

Terms and Gonditions:

This offer applies only to the PlckitrM 1 Flash Starter Kit andlor the Signal
Analysis PlctailrM Daughter Board. This voucher must be surrendered to authorized
distributor at the time of placement of order and must include Microchip reference
number shown below to allow for discount. lf using Microchip's e{ommerce site,
select the tool and proceed to the checkout cart. Type the reference number shown
below into_ the box labeled: "Coupon" and press the green button "apply coupon."
The discount will be automatically applied to your purchase. This voucher may not
be used in conjunction with any other offer, and has no cash value. Only one voucher
may be used per transaction. This offer may be withdrawn without prior notice.
Voucher must be used in conjunction with any other terms and conditions specified
by Microchip Technology Inc.

Note Io Disilributor:

The reference (QTN) below must be shown on your older to gain discount.

Use this number to purchase from your local Microchip Distributor or direct from
Microchip via http//:buy,microchip.com

PREDO5
Referenee Number

	Book Title
	Contents
	Preface
	Introduction
	1 Under the Covers of the PIC16F684
	Experimen 1- l/0 Pins
	Experiment 2 - Configuration Word
	Experiment 3 - PIC MCU Variable Memory, Registers, and Program Memory
	Experiment 4 - Simulating cFlash.c in MPLAB IDE

	2 Introductory C Programming
	Experiment 5 - Variable Declaration Statements
	Experiment 6 - C Data Types
	Experiment 7 - Constant Formating
	Experiment 8 - Assingment Statements
	Experiment 9 - Expressions
	Experiment 10 - Bitwise Operators
	Experiment 11 - Logical Expressions
	Experiment 12 - Conditional Execution Using the If Statement
	Experiment 13 - Nested Conditional Statements
	Experiment 14 - The Switch Decision Statement
	Experiment 15 - Conditional Looping
	Experiment 16 - The For Statement

	3 Simple PIC MCU Applications
	Experiment 17 - Basic Delays
	Experiment 18 - Sequencing PICkit 1 Starter Kit LEDS
	Experiment 19 - Binary Number Output Using PICkit 1 Starter Kit LEDs
	Experiment 20 - Basic Button Inputs
	Experiment 21 - Debouncing Button Inputs
	Experiment 22 - _MCLR Operation
	Experiment 23 - Ending Applications

	4 C Language Features
	Experiment 24 - Functions and Subroutines
	Experiment 25 - Global and Local Variables
	Experiment 26 - Defines and Macros
	Experiment 27 - Variable Arrays
	Experiment 28 - Structures and Unions
	Experiment 29 - Pointers and Lists
	Experiment 30 - Character Strings
	Experiment 31 - Library Functions

	5 PIC16F684 Microcontroller Built-in Functions
	Experiment 32 - Brownout Reset
	Experiment 33 - ADC Operation
	Experiment 34 - Comperator Operation
	Experiment 35 - Watchdog Timer
	Experiment 36 - Short Timer Delays Using TMR0
	Experiment 37 - Using TMR0 Prescaler
	Experiment 38 - Long Timer Delays Using TMR1
	Experiment 39 - Comparing Clock Oscillators
	Experiment 40 - Timed I/O Pin Resistance Measurements Using the CCP
	Experiment 41 - Generating PWM Signals Using the CCP and TMR2
	Experiment 42 - Storing and Retrieving Data Using EEPROM Memory

	6 Interfacing Projects for the PIC Microcontroller
	Experiment 43 - Driving a Seven-Segment LED Display Directly from the PIC16F684
	Experiment 44 - Multiple Seven-Segment LED Displays
	Experiment 45 - LED Matrix Displays
	Experiment 46 - LCD Display
	Experiment 47 - Producing Random Numbers
	Experiment 48 - Two-Bit LCD Display
	Experiment 49 - Switch Matrix Keypad Mapping

	7 Sample C Microcontroller Applications
	Experiment 50 - Pumpkin LED Display
	Experiment 51 - Reaction-Time Tester
	Experiment 52 - Rokenbok Monorail/Traffic Lights
	Experiment 53 - Seven-Segment LED Thermometer
	Experiment 54 - PIC MCU "Piano"
	Experiment 55 - Model Railway Switch Control
	Experiment 56 - PC Operating Status Display

	8 Introduction to PIC MCU Assembly Language Programming
	Experiment 57 - The asmTemplate.asm File and Basic Directives
	Experiment 58 - Specifying Program Memory Addresses
	Experiment 59 - Loading the WREG and Saving Its Contents
	Experiment 60 - Defining Variables
	Experiment 61 - Bitwise Instructions
	Experiment 62 - Addition Instructions
	Experiment 63 - AddLibs: Strange Simulator Results
	Experiment 64 - Substraction Instructions
	Experiment 65 - Bank Addressing
	Experiment 66 - Bit Instructions
	Experiment 67 - Bit Skip Instructions
	Experiment 68 - Conditional Execution
	Experiment 69 - decfsz Looping
	Experiment 70 - Subroutines
	Experiment 71 - Defining and Implementing Arrays

	9 PIC Microcontroller Assembly Language Resource Routines
	Experiment 72 - Logic Simulation Using PIC16F684
	Experiment 73 - Implementing the C "Switch" Statement in Assembly Language
	Experiment 74 - Defines
	Experiment 75 - Conditional Assembly
	Experiment 76 - Macros
	Experiment 77 - 16-Bit Values/Variables with Additon, Subtraction and Comparison
	Experiment 78 - Universal Delay Macro
	Experiment 79 - High-Level Programming in Assembler
	Experiment 80 - Implementing Read-Only Arrays
	Experiment 81 - Data Stacks
	Experiment 82 - Circular Buffers
	Experiment 83 - Reading and Writing the EEPROM Data Memory

	10 Sensors
	Experiment 84 - PIC MCU BS2 User Interface
	Experiment 85 - PIC MCU BS2 Keypad Interface
	Experiment 86 - PIC MCU Instrument Interface
	Experiment 87 - Sound Detection
	Experiment 88 - Multiple Microswitch Debouncing
	Experiment 89 - Light Sensors
	Experiment 90 - Infrared (IR) Surface Sensor
	Experiment 91 - Interfacing to Sharp GP20120 Ranging Object Sensors
	Experiment 92 - Do-It-Yourself IR Object Sensor
	Experiment 93 - IR Object-Ranging Sensor
	Experiment 94 - Ultrasonic Distance-Range Sensor
	Experiment 95 - Robot IR Tag

	11 Motor Control
	Experiment 96 - DC Motor Driven Using the CCP PWM and Using a Potentiometer Control
	Experiment 97 - DC Motor Control with Simple TMR0 PWM
	Experiment 98 - Controlling Multiple Motors with PWM and BS2 Interface
	Experiment 99 - Bipolar Stepper Motor Control
	Experiment 100 - Unipolar Stepper Motor Control
	Experiment 101 - Radio-Control Model Servo Control
	Experiment 102 - Multiple Servo Control Software Structure
	Experiment 103 - Two-Servo Robot Base with BS2 Interface

	12 Solving Programming Problems in PIC Microcontroller Assembly Language
	Experiment 104 - Eight-Bit Multiplication with a 16-Bit Product
	Experiment 105 - Division of a 16-Bit Value by an Eight-Bit Value
	Experiment 106 - Squaring a Number Using Finite Difference Theory
	Experiment 107 - Find the Square Root of a 16-Bit Number
	Experiment 108 - Converting a Byte into Three Decimal, Two Hex or Eight Binary ASCII Bytes
	Experiment 109 - Produce the Even Parity Values for a Byte
	Experiment 110 - Sort a List of 10 Eight-Bit Values Using the Bubble-Sort Algorithm
	Experiment 111 - Encrypt and Decrypt an ASCIIZ String Using a Simple Substitution Algorithm
	Experiment 112 - Generate a Fibonacci Number Sequence
	Experiment 113 - Find the Largest Common Factor of Two Eight-Bit Numbers

	13 ZipZaps Robot
	Experiment 114 - Characterizing the ZipZaps
	Experiment 115 - PIC MCU Power Supply
	Experiment 116 - PIC MCU Electronics PCB
	Experiment 117 - IR TV Remote Control
	Experiment 118 - Motor and Steering Control
	Experiment 119 - Basic Task-Control Software
	Experiment 120 - IR Remote Control
	Experiment 121 - Light Sensors and Light Following
	Experiment 122 - IR Object-Detection Sensors
	Experiment 123 - IR Line-Following Sensors

	Index

