1I23-c

MICROCONTROLLER
EXPERIMENTS .

EVIL
EENIUS

@. JJJJJJ.)UZ i A

J

Q0 000 VU RZE:‘
CAINCIZRE 3NC 14

VR C10
e . .

D2
D6

@@.
D1

@@@
D5

“JPZ [EIC] P

DO
D4

Let the PIC guru
guide you to create your own
TAB wicked cool PIC MCU

ELECTRONICS

projects and games

MYKE PREDKO

BEEE
PEEF
‘o] 8] 8]

) 1 |
@ W W D T 9

o] 5f

of of 9] o ®

['of
A <+,

of of

1 (of of of

of o/ o of of ®

sl ol 202020 o0 ol ol o0 o o1 of ol oA o o of ol of o B ol oA oA o T oA AT N o T o oA o[of 2 21 -
‘ol o of ofl off ofl o of o1 o o1l of o ofl o o o1 o o o of of o 51 of o off 5 o ol

123 STEPS FROM NEWBIE TO
PIC PROGRAMMING GENIUS!

“Smart” house features and “smart” appliances are just some of the multitude of inexpensive
PIC microcontroller projects created by PIC expert Myke Predko.

More than just hours of fun, these exciting experiments provide a solid grounding in PIC
microcontrollers and the skills needed to program them—from the ground up. Each experiment
builds on those before it, so you develop a hands-on, practical understanding of microcontroller

programming. You don’t need any knowledge of programming to get started. But by the end,
you’ll be able to complete your own awesome projects!

"’i EB PIC®

* Introduces you to programming and customizing
the PIC MCU step-by-step—you don’t need to be
a whiz to get started, but you will be when you
are finished

* Shows you how to set up your own PICmicro
MCU (microcontroller) and development lab
based on one inexpensive Microchip PICKit 1”
starter kit

» Vividly explains the science and electronics
underlying microcontrollers

» Gives you enjoyable step-by-step experiments that
build your skills, one small increment at a time

MICR
DR THE

OCONTROLLER

EVIL GENIUS

Teaches you to program PIC micros in both C
and assembly language

Shows you how to interface sensors, switches,
LEDs, LCDs, and other commonly used
electronic interfaces

Offers step-by-step experiments that develop
handy resource routines in assembly language

Challenges you to stretch the limits of PIC
MCU applications

Suggests exciting directions you can take your
new programming skills

Supplies parts lists and program listings

Go to: www.books.mcgraw-hill.com/authors/predkopic
» Full source code for the experiments » PC executable code
* Links to buy your own Microchip PICkit 1 starter kit * Links to other resources

IMAGINATIVE EXPERIMENTS THAT TEACH
PIC MCU PROGRAMMING—WHILE PROVIDING
HOURS OF LEARNING FUN!

FIVE STAR AUTHOR, FIVE-STAR REVIEWS

+*+x++x “The best book out there for people who want to come up with robots ... Mr. Predko, well done!"*

*xxx “A great intro to robots and electronics ... Each recipe comes with a full list of parts and tools

required... Highly recommended.”*

x*xxx% “I'm really excited about this book and learning to build my own robot.”*

* Online reviews of Myke Predko’s 123 Robotics Projects for the Evil Genius

The McGraw Hill companies

Visit TAB Electronics at:

www.books.megraw-hill.com 4SRN Tzl sl B-0

52495

Cover design & illustrations: Todd Radom

Il

451420

$24.95 U.S.A. | £14.99 U.K. | $32.95 CAN oll?80071

123 PIC®
Microcontroller
- Experiments for
the Evil Genius

Evil Genius Series
123 Robotics Experiments for the Evil Genius
Electronic Gadgets for the Evil Genius: 28 Build-it-Yourself Projects
Electronic Circuits for the Evil Genius: 57 Lessons with Projects
123 PIC® Microcontroller Experiments for the Evil Genius
Mechatronics for the Evil Genius: 25 Build-it-Yourself Projects
50 Awesome Automotive Projects for the Evil Genius

Solar Energy Projects for the Evil Genius: 16 Build-it-Yourself Thermoelectric and
Mechanical Projects

Bionics for the Evil Genius: 25 Build-it-Yourself Projects

MORE Electronic Gadgets for the Evil Genius: 28 MORE Build-it- Yourself Projects

123 PIC®
Microcontroller
Experiments for
the Evil Genius

MYKE PREDKO
McGraw-Hill
New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan New Delhi

San Juan Seoul Singapore Sydney Toronto

The McGraw:Hill Companies

Cataloging-in-Publication Data is on file with the Library of Congress

Copyright © 2005 by The McGraw-Hill Commpanies, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored
in a data base or retrieval system, without the prior written permission of the publisher.

34567890 OPD/OPD 010987
[SBN 0-07-145142-0

The sponsoring editor for this book was Jidy Bass and the production supervisor
was Pamela A, Pelton. It was set in Times Ten by MacAllister Publishing Services, LLC. The art director for
the cover was Anthony Landi,

Printed and bound by Quebecor/Dubugque.

This book is printed on recycled, acid-free paper containing a minimum of 50 percent recycled
de-inked fiber,

MeGraw-Hill books are available at special quantity discounts to use as premiums and sales promo-
tions, or for use in corporale training programs. For more information, please write to the Director
of Special Sales, McGraw-Hill Professional, Two Penn Plaza, New York, NY 10121-2298, Or contact
your local bookstore.

Information contained in this work has been obtained by The McGraw-Hill Compa-
nies, Ine. (“McGraw-Hill”) from sources believed to be reliable. However, neither
McGraw-Hill nor its authors guarantee the accuracy or completeness of any informa-
tion published herein, and neither MeGraw-Hill nor its authors shall be responsible for
any errors, omissions, or damages arising out of use of this information, This work is
published with the understanding that McGraw-Hill and its authors are supplying
information but are not attempting to render professional services. If such services are
required, the assistance of an appropriate professional should be sought.

Acknowledgments

About the Author

Introduction

Section One

EXPERIMENT 1
EXPERIMENT 2

EXPERIMENT 3

EXPERIMENT 4

Section Two

EXPERIMENT 5

EXPERIMENT 6
EXPERIMENT 7
EXPERIMENT 8
EXPERIMENT 9
EXPERIMENT 10
EXPERIMENT 11

EXPERIMENT 12

EXPERIMENT 13

Under the Covers of
the PIC16F684

I/O Pins

Configuration Word
PIC MCU Variable
Memory, Registers, and

Program Memory

Simulating cFlash.c in
MPLAB IDE

Introductory C
Programming

Variable Declaration
Statements

C Data Types
Constant Formatting
Assignment Statements
Expressions
Bitwise Operators
Logical Expressions

Conditional Execution
Using the If Statement

Nested Conditional
Statements

27

28
29

31

39

41

EXPERIMENT 14

EXPERIMENT 15

EXPERIMENT 16

Section Three

EXPERIMENT 17

EXPERIMENT 18

EXPERIMENT 19

EXPERIMENT 20
EXPERIMENT 21
EXPERIMENT 22
EXPERIMENT 23
Section Four
EXPERIMENT 24
EXPERIMENT 25
EXPERIMENT 26
EXPERIMENT 27
EXPERIMENT 28
EXPERIMENT 29
ExpPERIMENT 30

EXPERIMENT 31

The Switch Decision
Statement

Conditional Looping

The For Statement

Simple PIC® MCU
Applications

Basic Delays

Sequencing PICKit 1
Starter Kit LEDs

Binary Number Output
Using PICKit 1 Starter
Kit LEDs

Basic Button Inputs
Debouncing Button Inputs

MCLR Operation

Ending Applications

C Language Features

Functions and Subroutines
Global and Local Variables
Defines and Macros
Variable Arrays
Structures and Unions
Pointers and Lists
Character Strings

Library Functions

53

35

58

59

61

69

70

71

73

75

76

81

Section Five PIC16F684 Microcontroller

Section Seven Sample C

Built-in Functions 89 Microcontroller
Applications 187
EXPERIMENT 32 Brownout Reset 91 '
EXPERIMENT 50 Pumpkin LED Display 138
ExPERIMENT 33 ADC Operation 93 :
ExpPERIMENT 51 Reaction-Time Tester 140
EXPERIMENT 34 Comparator Operation 96
EXPERIMENT 52 Rokenbok® Monorail/
EXPERIMENT 35 Watchdog Timer 99 Traffic Lights 143
EXPERIMENT 36 Short Timer Delays EXPERIMENT 53 Seven-Segment LED
Using TMRO 101 Thermometer 146
ExPERIMENT 37 Using the TMRO Prescaler 102 EXPERIMENT 54 PIC MCU “Piano” 151
ExPERIMENT 38 Long Timer Delays EXPERIMENT 55 Model Railway Switch
Using TMR1 104 Control 153
EXPERIMENT 39 Comparing Clock EXPERIMENT 56 PC Operating Status
Oscillators 106 Display 156
EXPERIMENT 40 Pin Resistance Section Eight Introduction to PIC®
Measurements 109 MCU Assembly
EXPERIMENT 41 . Generating PWM Signals 111 Language ,
Programming 159
EXPERIMENT 42 Storing and Retrieving
Data 114 EXPERIMENT 57 The asmTemplate.asm
File and Basic Directives 160
Section Six Interfacing Projects for the o
PIC® Micr ; = EXPERIMENT 58 Specifying Program
icrocontroller 117 M i T
emory Addresses 161
EXPERIMENT 43 Driving a Seven-Segment EXPERIMENT 59 Loading the WREG and
I."ED _DISP lay.Dlrectiy e Saving Its Contents 164
from the PIC16F684 119
EXPERIMENT 44 Multiple Seven-Segment ExPERIMENT 60 Defining Variables 165
EEDiDisplays Ll EXPERIMENT 61 Bitwise Instructions 167
EXPERIMENT 45 LED Matrix Displays 124 gy pppvenr 62 Addition Instructions 168
ExPERIMENT 46 LCD Display 126 EXPERIMENT 63 AddLibs: Strange
ExPERIMENT 47 Producing Random Siiulasoh et 70
Numbers 2 EXPERIMENT 64 Subtraction Instructions 171
F TN 3 B] i . 120
EXPERIMENT 48 Two-Bit LCD Display 129 EXPERIMENT 65 Bank Addressing 173
ExXPERIMENT 49 Switch Matrix g N,
e unps 131 EXPERIMENT 66 Bit Instructions 175
vi Contents

EXPERIMENT 67 Bit Skip Instructions 11776 EXPERIMENT 86 PIC MCU Instrument
Interface 231
EXPERIMENT 68 Conditional Execution 178
EXPERIMENT 87 Sound Detection 235
EXPERIMENT 69 decfsz Looping 180
EXPERIMENT 88 Multiple Microswitch
EXPERIMENT 70 Subroutines 181 Debouncing 237
EXPERIMENT 71 Defining and EXPERIMENT 89 Light Sensors 238
Implementing Arrays 182
EXPERIMENT 90 Infrared (IR) Surface
Section Nine PIC® Microcontroller Sensor 239
Assembly Language - L
: XPERIMENT nterfacing to Sharp
Resource Routines 187 GP2D120 Ranging
EXPERIMENT 72 Logic Simulation Using QDICCUSERSOTS e
e RECCORO et EXPERIMENT 92 Do-It-Yourself IR
EXPERIMENT 73 The C “Switch” L 23
SIAEIEAL 1 ExperiMENT93 IR Object-Ranging
EXPERIMENT 74 Defines 194 SEOSOL 2
EXPERIMENT 75 Conditional Assembly 197 SIS LD
Range Sensor 249
v MENT £ < 10GC
EAEERIMENT Ve S acros e EXPERIMENT 95 Robot IR Tag 251
ExPERIMENT 77 16-Bit Values/Variables 201 . .
Section Eleven Motor Control 255
EXPERIMENT 78 Universal Delay Macro 203 . -
EXPERIMENT 96 DC Motor Driven Using
EXPERIMENT 79 High-Level Programming 205 the CCP PWM and Using
a Potentiometer Control 257
EXPERIMENT 80 Implementing Read-Only .
Arrays 208 EXPERIMENT 97 DC Motor Control with
Simple TMRO PWM 261
EXPERIMENT 81 Data Stacks 210 . ;
EXPERIMENT 98 Controlling Multiple
EXPERIMENT 82 Circular Buffers 212 Motors with PWM and
BS2 Interface 264
EXPERIMENT 83 Reading and Writing the _
EEPROM Data Memory 214 EXPERIMENT 99 Blpolar Stepper Motor
Control 265
SectionTen' Sensors 22 EXPERIMENT 100 Unipolar Stepper Motor
EXPERIMENT 84 PIC MCU BS2 User Conue) A
Intetiace 24 ExPERIMENT 101 Radio-Control Model Servo
EXPERIMENT 85 PIC MCU BS2 Keypad Centrol 2
ntertace 20 EXPERIMENT 102 Multiple Servo Control
Software Structure 274
Contents vii

ExpErIMENT 103 Two-Servo Robot Base

Section Twelve

EXPERIMENT 104

EXPERIMENT 105

EXPERIMENT 106

ExPERIMENT 107

EXPERIMENT 108

EXPERIMENT 109

EXPERIMENT 110

EXPERIMENT 111

EXPERIMENT 112

with BS2 Interface

277

Solving Programming
Problems in PIC®
Microcontroller
Assembly Language 279

Eight-Bit Multiplication
with a 16-Bit Product 280
Division of a 16-Bit Value

by an Eight-Bit Value 282

Squaring a Number Using
Finite Difference Theory 284

Find the Square Root of a
16-Bit Number 286

Converting a Byte into
Three Decimal, Two Hex,
or Eight Binary ASCII
Bytes 289
Produce the Even Parity
Values for a Byte 291

Sort a List of 10 Eight-Bit
Values Using the Bubble-
Sort Algorithm 292
Encrypt and Decrypt

an ASCIIZ String Using
a Simple Substitution

Algorithm 294

Generate a Fibonacci

Number Sequence

EXPERIMENT 113

297

Find the Largest Common
Factor of Two Eight-Bit

Numbers 298

Section Thirteen ZipZaps® Robot 301

EXPERIMENT 114

EXPERIMENT 115

EXPERIMENT 116

EXPERIMENT 117

EXPERIMENT 118

EXPERIMENT 119

EXPERIMENT 120

EXPERIMENT 121

EXPERIMENT 122

EXPERIMENT 123

Index

Characterizing the
ZipZaps 303
PIC MCU Power Supply 305

PIC MCU Electronics
PCB 307
IR TV Remote Control 310

Motor and Steering

Control 311
Basic Task-Control
Software 313
IR Remote Control 316
Light Sensors and
Following 317
IR Object-Detection
Sensors 318
IR Line-Following
Sensors 320
327

viii

Contents

Acknowledg

This book would not have been possible without the
help, suggestions, and time from the following indi-
viduals:

Carol Popovich, Greg Anderson, Joe
Drzewiecki, Andre Nemat, and Fanie Duven-
hage of Microchip who have helped me
understand which products would be best
suited for this book, and have been willing (o
spend time with me to understand my require-
ments, answer my legions of questions, and
suggest avenues to follow that hadn’t occurred
Lo me.

HT-Soft and their technical support staff for
answering my questions quickly and helping
to explain the inner workings of the PICC
Lite compiler. The PICC™ line of compilers is
a tremendous tool for the beginner and pro-
fessional alike, and one I never hesitate to rec-
ommend.

Brad North, Richard Bonafede, and the stu-
dents of Rick Hansen Secondary School in
Missassauga, Ontario, for helping me to learn
more about how students (and teachers) learn
about programming, electronics, and the PIC
MCU.

Blair Clarkson and Dave Pilote at the Ontario
Science Centre in Toronto, for pushing me to
explain basic microcontroller concepts to peo-
ple that have built the TAB Electronics Sumo-
Bot at a workshop and want to do more with
it. The BS2 interface and Robot IR Tag exper-
iments are a direct result of this work.

My editor at McGraw-Hill, Judy Bass, who
consistently responds to my questions and
suggestions, regardless of how dumb they are,
with good humor and thoughtfulness.

The PIC MCU continues to be one of the best
supported devices on line, and I would like to
thank the many individuals who have taken
the time to put information and projects on
the [nternet as well as support and help others
trying to better understand the PIC MCU or
get their applications up and running.

Celestica and its employees for ideas, answers
to strange questions, and opportunities to
expand my technical horizons.

My daughter Marya, who has grown up with a
father that is always trying out new projects
on her. She tries them out with enthusiasm
despite the fact they generally need a bit of
tuning before they work perfectly.

My wife Patience, for keeping everything
together, even when our youngest daughter
Talitha was sick, and for having dinner on the
stove, even with me asking her to do a “quick
read” of a section or two. I couldn’t do any of
it without you.

To all of you, thank you for all you unselfish help
and willingness to share your ideas, experiences, and
enthusiasm for this book.

myke
http://www,. muke.com

Acknowledgments

ix

About the Author

Myke Predko is Test Architect at Celestica, in Toronto, Canada, a supplier of printed circuit boards to the com-
puter industry. An experienced author, Myke wrote McGraw-Hill’s best-selling /23 Robotics Projects for the Evil
Genius; PICmicro Microcontroller Pocket Reference; Programming and Customizing PICMicro Microcontrollers,

Second Edition; Programming Robot Controllers; and other books, and is the principal designer of both TAB
Electronics Build Your Own Robot Kits,

About the Author

Introduction

When I wrote my first book on the Microchip PIC®
microcontroller (commonly abbreviated to “MCU”)
almost 10 years ago, the most common criticism I
received about the book was that it took too long to
get to the projects. This is quite foreign to me because I
tend to learn a new device, like a microcontroller, by
first reviewing the datasheets for the part’s electrical
information, working at understanding the architec-
ture and how it is programmed, and ending with
understanding what kind of development tools are
available for the part. Looking over this list of tasks, it
is quite obvious that they came about with my back-
ground and training. Being a teenager in the 1970s and
going to university in the early 1980s, there wasn’t the
variety of easy-to-work-with devices that are available
today, and the sophisticated personal computer-based
development tools that we take for granted were not
even being considered, let alone being developed or
sold. My method for learning about a new part is effec-
tive for me and a result of the situation I found myself
in when I first started working with electronics. Today
you can set up a development “lab” and create a basic
application from scratch for the PIC MCU in less than
20 minutes using Microchip’s MPLAB® integrated
development environment (IDE) and PICkit™ 1
starter kit with HT-Soft’s PICC Lite™ C compiler.

The purpose of this book is to introduce you to the
Microchip PIC MCU and help you understand how
to create your own applications. In this introduction,
using the PICkit 1 starter kit printed circuit board
(PCB) and free development tools from Microchip
and HT-Soft, I will show you how easy it is to create a
simple PIC MCU program that will flash one of the
light-emitting diodes (LEDs) on the PICKkit 1 starter
kit. As you work through the book, your understand-
ing of the PIC device will increase to the point where
you should be comfortable creating your own com-
plex applications in both the C programming lan-

guage as well as assembly language.

The PICKit 1 starter kit (see Figure i-1) contains
everything you will need to learn how to create and
test your own PIC MCU applications. This includes a
programmer PCB (see Figure i-2), a universal serial
bus (USB) cable to connect the PICkit 1 starter kit to
your PC,a CD-ROM containing the source code for
the applications presented in this book, two PIC
MCUs, an eight-pin PIC12F675, and a 14-pin
PIC16F684. In this book, I will be focusing on the
PIC16F684 because its 14 pins allow a greater variety
of different applications to be built from it, but you will
also gain experience with the eight-pin PIC12F675.

On the back cover of the book is a web link that you
can use to order a PICkit 1 starter kit for use with this
book. If you do not buy a PICkit 1 starter kit, the
source code can be downloaded from my web site
(www.myke.com).

In this book, I will be working exclusively with
Microsoft Windows. I recommend that you use the lat-
est version available (at this writing it is Windows/XP
SP2) when working with the PICC Lite compiler and
MPLAB IDE tools used in the book. Development
tools are available for Linux, although not for Apple
Macintosh OS/X (but you should be able to get the
Windows software to work from an emulator). You
will find that the software works well under Windows.

If you look at the CD-ROMs that come with the
PICkit 1 starter kit, you will find they have the
Microchip MPLAB IDE and HT-Soft PICC Lite com-
piler development tools that are used in the book.
Although you could load these programs onto your
PC, I recommend that you download the latest ver-
sions from the Microchip and HT-Soft web sites. These
tools are continuously updated (during the period that
this book was written, MPLAB IDE had five upgrades,
two of them major and changed how some of the oper-
ations are performed) to include new features and PIC
MCU part numbers, and to fix any outstanding prob-
lems. In this book, I used MPLAB IDE version 7.01

Figure i-1 The Microchip PICkit I starter kit
enables you to create your own PIC MCU
applications and to test them out easily and
inexpensively.

Figure i-2 The PICkit I starter kit's PCB consists of
programmer circuits along with eight LEDs, a switch,
and a potentiometer that enable you to easily learn
how to program and access the peripheral features of
the PIC MCU.

and PICC Lite compiler version 8.05. With the versions
that you use, you may see some differences in look or
operation, but the features presented in this book will
all be present. If you are confused as to how to per-
form some operation, you can consult the Tutorial
section of MPLAB IDE, which can be found under the
Help pull-down.

To start setting up the software needed to start
developing your own PIC MCU applications, go to
www.htsoft.com, as shown in Figure i-3. PICC Lite is a
free, full-featured C compiler that supports quite a few
of the different PIC MCU part numbers (including the
PICI2F675 and PIC16F684 included in the PICKkit 1
starter kit package). Next click “Downloads™ and then
select “PICC Lite (Windows)” (see Figure i-4). To
download PICC Lite compiler, you will have to regis-
ter with HT-Soft at no charge (see Figure i-5). To do
this, follow the instructions on the page shown in
Figure i-4. It should go without saying that the page
will probably not look exactly like the figures here, due
to the delay between when I have written this and
when you actually access the web site.

The retail PICC compiler is capable of building
code for literally all the PIC MCU part numbers and
does not have any of the restrictions of the PICC Lite
compiler.

After registering, the PICC Lite compiler installa-
tion software should start downloading automatically.
Depending on your security settings (especially if you
use Microsoft Windows/XP Service Pack 2 or later),
the download may be blocked (as in Figure i-6). If this
is the case, you may have to turn off the security to
allow the download to take place. Once the program
has downloaded, I recommend selecting “Run” instead
of “Save” (see Figure i-7). This will install the PICC

EmheddedSvstems
Lnnference

H-TECH SOH\MII! Bn

o1 s b TECHS B

Home.

Company Mews. Procucts Supporl Dowmiods — Pt

[Downiosds > Dumossfvosofwars Upaxrs Mamah Legin Lser Ocisis
Download Product Demos and Free Software

Registyation i 1ex oI 1 bave ol iy eiredyou M b EKEtied & page Mok Y regce
frie of chaege, or 1D B previ

Fres Software

a = : @ remrer

Step 2- PICC Lite Compiler download -

Download login
Access to download files and activation keys requires registration.

Login ners: Sand ma my User10:

frewwe pevon
BT 40891 Ti0 ULer D yoU Wiy

registensd wilh 19 TECH Suft
e Vs, it Yo

Don't have a user ID7
Exivting HI-TECH Software customars

o praviausly purchassd ana registered & pouct with H. TECH Saftware wen Hk
HOGrEEs, B3 L30T WO Fegistering, In the Remind ks b above, nd We wil 5208 Yo

cware, simply enter your el
1t e Dt
Ragister tor Sownioass

11 yOiére R yet D O U YahIE CLSKTMESS, We'd e D et 3 i
IFOTIAton YOu previde Wil be covered y aur Privacy Polky
8 Y0UVE FEQIIEE0, YOU it 3 USEF D)1 850w YOU BCE
Lestin?

1130 P previoushy regrtersd. bt hise 5L YOur user 10, ou €on FEiEvE s KEGTIBUGN by SUOMHEING Yol 53 3007E83 K1 the Remind Me bok sbove.
W'l inmeditely send you your user 10 by emasl

== B i

deTils FTOm yoU befors we Ve you 3 user . Registering I3 quick and easy, and al

Figure i-5 Step 3 - Registering a an HT-Soft
customer

2 123 PIC® MCU Experiments for the Evil Genius

2 HI-TECH Software - Microsoft Internet Explorer

Fle Edt ‘iew Favorites Tools Help

- x % =

= 3 4 (=) L
Qe - © K @ & P 3¢
mﬂdr%ﬁ“&j i'nttp:.ifv;ww.r:{s;ft.canddmdoadsiémnos.php =
== To help pro

Favorites {3}

¥, Internet Explorer blacked this site from d

Home

Company News Products Support Downloads Purchase

ading files ta vour camputer. Click

D d File...
What's the Risk?

Information Bar Help

| Download: > D &free e Upd

Manuals Login

User Details |

Latest News

Download Product Demos and Free Software

free of charge, or log In if you have previously registered.
Demos

The demo programs below are intended for prospective
customers of HFTECH Software to evaluate our products
before making a purchase decision. The demos typically
have some deliberate limitations compared to the full,
purchased product, and also have an expiry, usually 21
days after installation.

These demos are provided entirely without any warranty,
and are for evaluation purposes only, and are notlicensed
for any other use.

ARClite microRISC 1

dsPICC

Hitachi HB/300 t
BBHCO5 t

BBHC11

HI-TIDE for PICC-18
MSP430

PICC

PICC-18

Philips XA T

Z80 1

T Contact sales to organize a time limited evaluation of this
__ broduct

@

Registration is required to download. If you have not already registered you will be redirected to a page allowing you to register,

8051 = Pacific C
= PICC-LITE (Windows)
ARM = PICC-LITE (Linux)

2004-12-07

HILTECH FICC-18
compilerfeatured in
Cirouit Cellar Magazine

Free Software

HI-TECH Software makes certain versions of its software
products available as free software. These products are free
for any kind of use, including educational and commercial
use, butremain the property of HI-TECH Software at all times. al..
All copyright and other rights are resemved and no warranty of F.E
any kind is provided

The free software downloads do not have a bullt-in expiry.

| think your after-sales
service is excellent, and

the disoussion forums are

[Select v

Figure i-6 Step 4 - Allowing PICC Lite Compiler file download in Windows/XP SP2

Lite compiler without leaving you with an .exe or .zip
file to delete later.

When the PICC Lite compiler installation screen
appears (see Figure i-8), click “Next” and follow the
defaults. If you are prompted to load the software/
drivers for MPLAB IDE, do so, as they will be
required to use PICC Lite compiler with the
Microchip tools and provide you with a truly inte-
grated development environment, or IDE. The
MPLAB IDE is a single program containing an editor,
assembler, linker, simulator, and PICkit 1 starter kit’s
programmer interface, and it will be the only program
you have to run to create PIC MCU applications.
PICC Lite compiler will integrate with MPLAB IDE
when the latter is installed so you will have a single
Windows program for developing C and assembly lan-
guage programs for the PIC MCU.

After PICC Lite compiler is installed, you will be
asked if you want to restart your computer. Click
“No,” then power down your computer, and power
back up. I find that soft resets (ones in which power is

| (oo > oo o sovre s s oy G |
‘Download Product Demos and Free Software
IREGULTATOT 15 TEQUITES 10 ORNIDAD. ¥ you nave [
free of charge, O o in K you have prevousty e

Demes

The dams prograns beiow are nbended fod
cuslemers of HTECH Batbware 6 evalustel
BECED MAG 8 DUTU TS D8

ot fm 5 1,13 M8 o 73 M0)
it y P
et | e v Z6R

| L
| e e

| Cordast = sles 10 beganion & b evifed evahasan of iy
Dot

o = © i

Figure I-7 Step 5 - PICC Lite downloading

not removed) may not reset all the PC’s parameters,
and the software installed on boot may not work prop-
erly. Powering down and then back up eliminates these
potential problems.

Introduction

Figure i-8 Step 6 - PICC Lite Installer

With the PC back up, go to Microchip’s web site
(www.microchip.com shown in Figure i-9) and
click “MPLAB IDE” or “Development Tools,” fol-
lowed by “Full Install” (see Figure 1-10). The MPLAB
IDE software is quite large (30 MB) and will take
some time to download if you use a dial-up connec-
tion. This time click “Save™ instead of “Run” and store
the .zip file into a temporary folder on your PC
(see Figure i-11). You should be able to unzip the
file by double-clicking on it, and the file management
software on your PC will expand the file into the direc-
tory of your choosing (ideally the same one you
started with).

After the MPLAB IDE install files are unzipped,
double-click on “Setup” and follow the instructions to
install the MPLAB IDE (see Figure i-12). If asked.,
make sure the programming interface for the PICKit 1
starter kit is included and you will not have to look at

Missants fo0i D S
Gctsmer 20, 70001 An rgostant s syn
tein o CHO

. {5 SalslzEproM
T BTN) concerusp em

fraDsiveaig - Camene Powyety s Free Sostang

Figure i-9 Sﬁep 7 - Set your browser to
www.microchip.com to download the MPLAB IDE
as well as PIC MCU Datasheets

5 BB aH U

G

Figure i-10 Step 8 - MPLAB IDE Download Page
on www.microchip.com

a8 wronmr

Figure -l Step 9- MPLAB IDE Install files stored
in a temporary folder

any readme files (unless you want to). If you are
prompted to reboot your computer, click “No” and
then power down and power back up, as you did after
installing the PICC Lite compiler software. Do not
connect the PICKkit 1 starter kit to your PC using the
USB cable until you are told.

That’s it; you've just installed a set of integrated
development tools that are just as powerful as some
software development products that cost many thou-
sands of dollars. With the tools installed, you can copy
the source code files for the application code used in
this book from the PICKkit 1 starter kit’s CD-ROM
code folder into a similar “code” or “Evil Genius”
folder under the C drive of your PC. Another source
for these files can be found on my web site at
www.myke.com.

4 123 PIC® MCU Experiments for the Evil Genius

S A T

MPLAB® Tools

» e
T
L Wb s e WEB Ik, o i B rscren
Opbrs o Date i bt It T prgs vty

Figure i-12 Step 10 - MPLAB IDE Installer
window

Now let’s try to create a simple program that flashes
an LED on the PICkit 1 starter kit. To do this, double-
click on the MPLAB IDE icon that has been placed on
your PC’s desktop. When it first boots up, the MPLAB
IDE desktop looks like Figure i-13, and is ready for
you to start entering your own application. Click
“New” and enter the following code into the window
that comes up:

#include <pic.h>

__CONFIG(FCMDIS & IESODIS & BORDIS & UNPROTECT

&
MCLRDIS & PWRTEN & WDTDIS & INTIO);

int i;

main ()

{
PORTA = 0;
CMCONO = 7;
ANSEL = 0
TRISA4 =
TRISAS5 =
while (1
{

N

N © O~
0 o=~

1)

for (i = 0; i < 25000; i++);
RA4 = RA4 * 1;

Different parts of this program will be displayed
using different colors; don’t worry if it looks a bit
strange. The program should be saved as “c:\Evil
Genius\Flash\Flash.c” (see Figure i-14). Once the pro-
gram is saved, close the window that contains it.

All programs should be run as part of an MPLAB
IDE project that saves options and features selections
specific to the application without requiring you to
reload them each time you start up MPLAB IDE. The
first step is to specify the project name and where it is
going to be stored (see Figure i-15).

Figure i-13 Step 11 - MPLAB IDE Start Up
desktop

Figure i-Il4 Step 12 - First Application entered into
MPLAB IDE Editor window and saved

o MM BT 42,00,

D@ mE TAY| S E S| Ctedam pas

[CumBwavion

Crs)

Figure i-15 Step I3 - Creating an MPLAB IDE
project

Introduction

w PN 0 7,00

— mowey - wo- Tnorgke ke

0
eAnEaI8

PR1EF0ID
PG OB

Figure i-16 Step 14 - Selecting the PICC Lite C
Compiler as the MPLAB [DE Build tool

The Flash application is written in the C program-
ming language for the PICC Lite compiler. To specify
the PICC Lite compiler, click “Project” and then
“Select Language Toolsuite.” You may have to scroll
through the Active Toolsuite to find PICC Lite com-
piler (see Figure i-16). When you have selected it,
make sure that the location of PICL.exe is correct. If it
is not, look for the C:\PICCLITE folder on your PC,
and point the Toolsuite Contents to picl.exe in the BIN
subfolder.

When you are working with assembly language pro-
grams, you may have to perform the same operation
there as well. In this case, the assembly language pro-
grams (such as mpasmwin.exe) can be found in the
Program Files\MPLAB folder or in its subfolders.

Right-click on “Source Files” in the Flash.mew win-
dow (see Figure i-17) and select “Flash.c” from the

s WA nevasee

Figure i-17 Step 15 - Specifying project source file

Figure i-18 Step 16 - Selecting the PIC MCU part
number to work with (note the large number of PIC
MCUs to choose from).

¢:\Evil Genius\Flash\Flash.c folder (where you stored
the program earlier). To load Flash.c onto the desktop,
double-click on “Flash.c” in the Flash.mcw window.
This will associate Flash.c with the project that was
just created. Each time you work with a new

program, it should have a new project associated

with it.

Next, you will have to make sure the proper PIC
MCU is selected for the application. Click “Configure”
and then “Select Device,” and find PIC16F684 in the
list (see Figure i-18). I'm sure you will be amazed at
the number of different PIC microcontroller part
numbers that come up. After working through this
book, you will discover you can program and use the
vast majority of these chips in your applications. The
difference in the part numbers is the number of pins
and interfacing features built into the PIC MCU.
Programming and interfacing are identical to what has
been presented in this book.

Now you are ready to try and “build” the applica-
tion. You can click “Project” and then “Build All,” or
press Ctrl+F10 to compile the application and store
the result in a .hex file that will be programmed into
the PIC MCU later. If any errors occur, go back over
the code you keyed in and compare it to the previous
listing. This is the most likely source of the problem.
Once the program has compiled correctly, you will get
the summary information shown in Figure i-19, listing
the amount of space required to store and run the pro-
gram in a PIC MCU.

With the program compiled. plug your PICkit 1
starter kit into a USB cable plugged into your PC.
Afterwards, the MPLAB IDE screen will look like Fig-
ure i-20 with the status window changing to list the
Firmware version of the PICkit 1 starter kit. If it does

6 123 PIC® MCU Experiments for the Evil Genius

MPLAB IDE v7.00
File Edit View Project Debugger Programmer Tools Configure Window Help

B imE A% GSHB® S@ | Checksum: Oxaced

m Flagl). miewe = '™ 3(%
[EE B C:\Evil Genius\FlashiFlash.c

| #include <pic.h>

_ CONFIG(FCHDIS < IESODIS & BORDIS & UNPROTECT &
HCLRDIS & PWRTEN « WDTDIS & INTIO):

int i:

maini)

{

PORTA = O;

CHCOND = 7;

ANSEL = 07

TRISA4 0;

TRISAS 0;

while (1 == 1)

{
for (i = 0; i
Riad4 = RAd ~ L:

< 25000; i+4);
Build | Version Control | Find in Files |

Clean: Done.

Memory Usage Map:

$0000
SO3E4

£0011
$001C
s002D

0002
$0001
0003

50001

vords
yords
words total Program ROM

Program ROM
Program ROM

Bank 0 RAM
Bank 0 RAH

$0020
$0070

bytes
bytes
bytes total Bank 0 RaM
$2007

l|Config Data words total Config Data

| |IProgran statistics:

Total ROM used
Total RAM used

45 words (4.4%)
3 bytes (3.1%)

Loaded C\Evil Genius\Flash\Flash.cof

Executing: "CAPICCUTE\BIN\PICL EXE" -C-E"Flash.cce" "Flash.c” -0"Flash.obj" -2g8 -0 -ASMLIS"
Executing: "CAPICCLITE\BIN\PICL EXE" -E"Flash Ide" "CAEvil Genius\Flash\Flash.obj" -M"Flash.m

BUILD SUCCEEDED: Mon Dec 13 11:43:13 2004

PIC16F684

Figure 19 Step 17 - Build information for “Flash.c” application

not change, then click on the programmer toolbar fol-
lowed by “Select Programmer” and then the PICkit 1
icon. A four-button programmer toolbar will also be
displayed on the desktop. Remove the PIC12F675 that
came installed in the PICKkit 1 starter kit and put in the
PIC16F684 that was in the PICkit box. Remember to
store the PIC12F675 in a safe place (using the piece of
foam the PIC16F684 was on is a good choice). Click
“Programmer,” “Program Device,” or the Program
icon (place your mouse over the programmer icons to
make a button legend appear) to download the appli-
cation into the PIC16F684. The programming opera-
tion will take a few moments (the operation is
indicated by a growing bar on the bottom-left corner
of the desktop, and a “Program Succeeded” message
will be shown on the status window, Figure i-21).

Once the build/compile operations, followed by the
device programming steps, are complete, the DO LED
of the PICkit 1 starter kit will start to flash. If it
doesn’t, you should review the source code and the
process of creating the project.

& MPLARIDE 47.00

T 3. o i Dok i T i Vo Pl ; . v
| 2| SR § e O b || 3Ry

Figure i-20 Step I8 - Information provided when
the PICkit 1 starter kit is plugged into the development
PC’s USB Port. Note: Four-button Programmer
toolbar at the top center of MPLAB IDE desktop.

Introduction 7]

Figure i-21 Step 19 - The first application has been

programmed into a PICI6F684 and inserted into the

PICkir I started kit connected to the development PC.
The DO LED should now be flashing!

That’s it; you have just set up a very sophisticated
microcontroller application code development lab and
created your first application. I realize very little of the
program or the process you went through to get to this
point makes sense, but as you work through the differ-
ent experiments in this book, their functions will
become more obvious and easier for you to use on
your own. Just as if you were to review the datasheets
for the part’s electrical information, working at under-
standing the architecture and how it is programmed
will help you understand what kind of development
tools are available for the part.

Throughout the rest of this book, I will help you
learn about and work with the PIC MCU. The experi-
ments range from the very trivial to some very com-
plex interfacing applications that are really quite a bit
of fun. There is a lot of material in this book and a lot
to learn: try to work through each experiment in a
section before taking a break—I would be surprised if
you were able to get through the entire book in less
than a year.

As part of the learning exercise, try to develop your
own circuits and code—this will cement the knowledge
you gain from the book and help you build the skills
needed to create your own applications. Don’t be
afraid to use my designs and code as a base or as a part
of yours (using cut and paste). Playing “what if” can be
a lot of fun and very instructive. I believe that before
somebody is comfortable working on a new device and
development system, he or she should have 50 or so of
his own applications under his or her belt.

Don’t be discouraged when, at first, your applica-
tions don’t work. It isn’t unusual for it to take a week
or two to get a person’s very first application working

(even if it’s flashing an LED, as I do in this introduc-
tion). The second time it will take half as long, the third
a quarter, and so on. Over a fairly short period of time,
you will be able to create applications efficiently that
are as sophisticated as those created by professionals.

Seeing your own PIC microcontroller applications
working will be an amazing experience for you, and it
will give you a sense of pride to know you can do
something that only a small percentage of the world’s
population can do. Unfortunately, the process of get-
ting there is full of frustration, confusion, and hard
work. Along with teaching you about the PIC MCU,
the purpose of this book is to help you gain the skills
necessary to develop your own applications with a
minimum of the inevitable frustration, confusion, and
hard work.

Prerequisites

This book was written to be the second in a sequence
(123 Robotics Experiments for the Evil Genius was the
first book) and, as such, many of the basic electrical,
mechanical, and programming concepts used in this
book were presented in the first. To understand fully
the experiments presented in this book as well to be
able to create your own applications, you will have to
be familiar with the concepts listed below:

e Basic electrical laws
e Parts of a circuit
e Ohm’s law
e Series resistances
e Parallel resistances
e Kirchoff’s voltage law
e Kirchoff’s current law
e Thevinin’s equivalency
e Resistor markings
e Semiconductor basics
s Diode operation
e LEDs (including 7 Segment Displays)
» Bipolar transistor operation and pinouts
e MOSFET operation
e Binary electronic logic
e The six basic gates
e Different logic technologies
e The Boolean arithmetic laws
e Types of flip flops
e Common circuits

8 123 PIC® MCU Experiments for the Evil Genius

e Adders
e Muxes/Demuxes
e (Counters

e Shift registers and linear feedback shift
registers (LFSRs)

® Oscillators
e Basic relaxation oscillator
e Reflex oscillator
e (Crystals and ceramic resonators
e 555 timer chip
e Common electronic devices
e 741 op amp
e 386 audio amplifier
e IR object sensors
e Power supplies
* Batteries
* 780x/78L0x voltage regulators
» Switch mode power supplies
* Numbering systems
* Scientific notation
e Metric prefixes
® Capacitor markings
e Binary numbers and conversions
e Hexadecimal numbers and conversions
* Programming concepts
e Data types
e Variable declaration
* Assignment statement
e Variable arrays
e If/else/fendif statement
e While statement
e Subroutines
¢ Microcontroller concepts
e Memory organization
® Input and output pins
e Special pin functions
e Power supplies

Comments for Teachers
and Students

While the target audience for this book is Grade 11
(junior) and Grade 12 (senior) high school students
preparing for post secondary education in engineering,

computer science, mathematics, or physical sciences, it
should be appropriate for university students or tech-
nical hobbyists looking for more information on pro-
gramming and interfacing PIC microcontrollers into
an application. To ensure that the material presented
here would be relevant to high school students, the
Ontario Ministry of Education curriculum guidelines
for Computer Engineering (found at www.edu.gov.on
.ca /eng/document/curricul/secondary/grade1112
/tech/tech.html#engineering) have been used as a ref-
erence when topics, experiments, and materials were
selected. This book should be useful both as a course
text and as a reference for both teachers and students.
After working through these experiments, you will not
only have a good understanding of how PIC16F684
and PIC12F675 microcontrollers (and indeed the
entire PIC family of microcontrollers) are pro-
grammed and interface to other devices, but you will
also be well on your way to being capable of creating
your own sophisticated PIC MCU applications.

Reading through the experiments in this book will
not make you proficient in creating your own PIC
MCU application. I am a firm believer in doing, and I
would expect that in any course, there would be many
assignments that consist of modifications of the experi-
ments presented in this book. These assignments
should give students the task of creating their own
applications and, as part of the process, planning,
wiring, and debugging them. For the students to
become reasonably proficient in developing applica-
tions, they should be given 10 to 20 applications as
assignments over the course of a term in order to
familiarize themselves with the MPLAB IDE software
development environment, the PICkit, and the PIC
MCU operation.

Along with providing information on Microchip
PIC microcontrollers (the PIC16F684 in particular),
electronics interfacing programming in C, and assem-
bler programming, this book attempts to develop and
engender the important thinking and problem-solving
skills that are expected from a graduate engineer.
These skills include the ability to work independently,
perform basic technical research, create a development
plan, and effectively solve problems. Along with being
useful in professional careers, these skills are critical to
your success in college and university.

The experiments in this book do not lend them-
selves well to group activities—you’ll find that it is dif-
ficult to divide small microcontroller applications into
different tasks that can be carried out by different
members of a group. For this reason, I recommend
assignments that are limited as one-student projects.
Projects given during the term should be solvable in
less than 100 lines of code (two printed pages) and
should not require a lot of research on the part of the

Introduction

student. Instead time should be spent trying to decide
the best way to solve the program and structure the
software. All of these projects, except for a summative
project, should be easily completed in a week or less.

A Note to Students:

o Teachers are very good at figuring out when an
assignment is copied or plagiarized, and getting
caught will land you and any other students
who are involved in trouble. Copying code or
circuitry from the Internet or other books will
be identified quickly as it is difficult to rework
them to fit into your design system or style of
programming. In any case, cheating will not
help you gain the necessary skills for develop-
ing your own application (and ultimately pass-
ing the course). In short, hand in only your own
work and make sure that you can explain the
how and why of your assignments. It will pay
off in the long term.

e When given an assignment, spend a few
moments a day on it, no matter what. Don’t
leave it until the night before it’s due. By doing
a little bit of work on it each day, your subcon-
scious will work on the assignment, and when it
comes time to finally create it and write it up, it
will seem a lot easier.

e Don’t be afraid to try something different. The
worst thing that can happen is that it won’t
work—the upside is you will discover a way of
approaching the problem that is very efficient
and easy to implement. In this book, there are
several examples where 1 just tried different
things and discovered a better solution to a
problem than I would have expected (and cases
where the alternative solution was worse than
the original).

A Note to Teachers:

e For teachers considering using this book as a
text for their courses, I would like to emphasize
that the material is designed for the PIC16F684,
PICkit 1, and, to a lesser extent, the PIC12F675.
I realize that investments have been made in
other PIC (and other) MCUs, in programmers,
in and other equipment, but the MPLAB
IDE/PICC Lite compiler and PIC16F684/P1Ckit
combination is an extremely flexible and cost-
effective tool for application development.

e Try to use real-world situations for your assign-
ments and try to vary them, both to interest
your students and to make it harder for them to
copy from preexisting materials. A good way to
come up with these assignments is to keep a
notebook handy and record the different things
you see in your travels. Toys ‘R Us, Radio
Shack, The Sharper Image, and other retailers
can be wonderful sources of inspiration.

e Lead by example. You should work through as
many different applications until you are com-
fortable doing so and can debug most of the
problems you experience. An important tool to
be familiar with is the MPLAB IDE simulator.
A couple of teachers have told me that they
don’t bother with the simulator when they are
teaching because students prefer to see flashing
lights or something happening. Please try to
break this habit and encourage the use of the
simulator as a tool for verifying the operation
of the code as well as for debugging execution
problems. Using the simulator will give students
the ability to see the program working or not
working, and why it is not working before mak-
ing the effort to wire the application. For virtu-
ally all applications that run the first time
power is applied, the developer should have
demonstrated the correct operation of code on
the simulator before he or she attempts to burn
it into a PIC MCU.

Icons and Conventions

At the start of each section and experiment, you will
find one or more icons indicating the parts and tools
you need to have available to complete the experi-
ment(s). I have chosen to do this rather than providing
one central list of parts required for all the experiments
in this book. The reason for doing this is to help you effi-
ciently plan for the section’s experiments without hav-
ing to buy many hundreds of dollars of parts (many of
which you will not need for months). I have tried to
keep the number of parts to a reasonable minimum by
designing as many experiments as possible to execute
within the PICkit 1 starter kit—once the PIC MCU is
programmed, the application programmed into it can
execute on the PICKit 1 starter kit without modification.

The icons used to specify parts and operations are
as follows:

At the start of each section, I will list the required
parts for the section under this icon (see Figure
i-22). As I indicated, this is a summation of the parts
used in all the experiments of the section.

10 123 PIC® MCU Experiments for the Evil Genius

Fl_gurE -i-“E'LI P]Clkir'j sfarrer kit icon |

Parts Bin

Figure i-23 PC/Simulator icon = Figure i-25 Parts Bin icon

Virtually all of the experiments will require a PC
(indicated by Figure i-23) running Windows and
loaded with the MPLAB IDE and PICC Lite com-
piler. This PC should be running one of the following
versions of Microsoft Windows:

e Windows 98 SE

e Windows ME Flgure i-26 Toolbox icon
* Windows NT 4.0 SP6a Workstations (NOT
Servers)
e Windows 2000 SP2 In terms of conventions, I will use both System Inter-

nationale (SI), better known as the metric system, and
English measurements together where possible. I rec-
ognize that there are still a number of issues with speci-
fying the correct measurement system, so by listing
both I hope there will be less confusion. Standard elec-
trical prefixes will be used, and I assume the reader is
familiar with them. They include the following:

e Windows XP

And the PC should have 32 MB memory (128 MB
recommended). 95 MB of hard disk space (1 GB rec-
ommended), CD-ROM drive, along with Internet
Explorer 5.0 or greater with an Internet connection
for installation and online Help along with one free
USB port.

When the PICKkit 1 starter kit icon (see Figure i-24)
appears at the start of an experiment, it means that the
PICkit is required either as a platform for the experi- m for thousandths
ment or as a PIC MCU programmer.,

k for thousands

M for millions

p for millionths

The Parts Bin icon (see Figure i-25) specifies which
parts are required for the application. Parts may be
reused between experiments.

p for trillionths

I restrain from specifying part numbers except

The last icon (see Figure i-26) lists the tools when I believe that only one manufacturer’s part
required to create the application’s circuit. You should should be used. Often, equivalents to various parts can
not require any specialized tools for the experiments be found in surplus and general electronics stores at a
presented in this book. Remember to wear safety very low cost.

equipment when doing any cutting or drilling, For the screen shots shown in the book, I have used

MPLAB IDE version 7.01. I know that after this book

Introduction 11

goes to press, later and more capable versions of
MPLAB IDE will be available for download from
Microchip’s web site, www.microchip.com

The MPLAB IDE functions presented in this book
will not change from version to version (except for
fixes to discovered problems), so despite some cos-
metic changes in appearance, their operation will not
change. I recommend that you always use the latest
version available from the Microchip web site because
if you have problems, the first recommendation that
you will be given will be to try again with the latest
version of the software.

Finding Parts

When you are first starting out in electronics, it can be
difficult to find retailers to provide you with the parts
and tools to create your own circuits. Over time, you
will develop a network of stores that have the parts
you need, but if you are starting out or are looking for
better suppliers, here are some suggestions:

e Digi-Key (www.digikey.com). I have not found
a source of parts anywhere in the world that
matches the selection, price, and service of
Digi-Key.

e Jameco (www.jameco.com). Another excellent
supplier that carries Microchip parts. Also car-
ries a good selection of robot parts (including
gears and motors).

Mouser Electronics (www.mouser.com). Along
with Microchip products, Mouser also has an
excellent selection of opto-electronic parts.

Radio Shack (www.radioshack.com). I find
Radio Shack to have a number of components
that I can’t find anywhere else (thermistors,
TRIACs) as well as good-quality wire at a rea-
sonable price. Recently, Radio Shack has
included some Microchip PIC MCU chips and
the Parallax BASIC Stamp to their catalog.

Local electronics stores. In Toronto, I recom-
mend Supremetronic (Www.supremetronic.com)
as it has all the passive and discrete parts that I
need, prototyping PCBs, and other useful parts
that are nice to handle and choose from instead
of deciphering PDFs on line.

Local surplus shops. If you are in the Toronto
area, I'm sure you will recognize Active Surplus
(www.activesurplus.com) by the large stuffed
gorilla out front. While having a good selection
of electronic parts, surplus stores often have

a variety of other parts and subassemblies

that are perfect for hacking or designing new
controls.

12 123 PIC® MCU Experiments for the Evil Genius

Section One

Under the Covers of the PICI6GF68Y

starter kit

Before astronomers begin to investigate and learn
more about a star, they make sure they fully under-
stand the tools they are going to use. The tools to be
used are chosen for their ability to investigate the spe-
cific aspects of the star that is to be studied. Although
a few discoveries have been made with poorly under-
stood equipment, the vast majority of observations
have resulted in failure. Just like astronomers, before
we investigate and learn about the Microchip PIC®
microcontroller (the PIC16F684 specifically), we want
to know as much as possible about the tools we are
going to be using.

The PICkit™ 1 starter kit is an excellent tool for
learning about the PIC microcontroller as it includes,
along with its programming capability, a basic test cir-
cuit that you can use with a PIC MCU. As shown in
Figure 1-1, the PICkit starter kit provides from 8 up to
12 individually addressable LEDs, along with a button
input and a potentiometer for variable-voltage inputs.

PIC16F684

Figure 11 Equivalent PICKit I starter kit circuit

13

1 PICl6F684

The built-in programmer interfaces to the develop-
ment PC via a USB port, which is preferable to serial
or parallel ports. Overall, the PICKkit 1 starter kit is
almost a perfect tool for learning how to program the
PIC MCU and interface to hardware.

When I described the PICKkit 1 starter kit as being
almost perfect, it probably set off some alarm bells in
your head—this type of qualification is normally used
to describe things like a used car or a blind date. In
this case, I am being as literal as possible. The PICKkit 1
starter kit is an extremely good product and an excel-
lent first tool (probably the best that I know of) with
which to learn to program and interface to the PIC
MCU. The three potentially negative issues I would
like to bring to your attention regarding the PICKit 1
starter kit are actually quite minor and, to some
extent, can be exploited to help you better understand
how the PIC MCU works.

The biggest issue that will have to be addressed in
this book is the organization of the PICKit 1 starter
kit’s LEDs. If you were to follow the wiring of the
eight LEDs and the four I/O pins they are connected
to, you would notice that only two of the pins can be
outputs (as shown in Figure 1-2). And if all the I/O
pins to which the LEDs are connected (RAS5, RA4,
RAZ2, and RA1) were made outputs, you would have
multiple LEDs lit if you make any of the I/O ports
high. The solution to this problem is to enable only
two pins as outputs at a time (one high and one low).
This allows eight individually addressed LEDs, but
not an arbitrary number of LEDS to be on at any
given time.

PIC16F684 !

Rad
Vdd 150

0.01 L

REST 1af 2

150

S RAL

i+

[s v

Figure 1-2 PICkit I starter kit LED on

Arbitrary numbers of LEDs can be turned on by
scanning through the LEDs, just as a TV’s electron
beam scans across the cathode ray tube, turning on
phosphors one at a time. This trick will be demon-
strated later in the book and will be used to display
eight bits of data at a given time. The organization of
the eight LEDs (along with the button and poten-
tiometer) was made to support eight- and 14-pin parts
in the PICKit 1 starter kit’s socket. That organization
and the choice of pins (and how they are organized on
the PIC MCUs that fit in the PICkit 1 starter kit’s
socket) is actually quite inspired, as it leaves the six
pins of the 14-pin microcontroller’s PORTC available
for other uses.

The second problem is that it takes a few mouse
clicks to turn off the power going to the programmed

part. I seldom remember to turn off the power, and I
doubt you will either. Although the different PIC
microcontrollers are very robust devices from the elec-
trical overload perspective, you should never pull them
from a socket while power could still be applied to
some of the pins. Although the zero insertion force
(ZIF) socket, which I show you how to install later in
the book, goes a long way in mitigating this problem,
you should still be cognizant that you could potentially
be damaging the PIC16F684 every time you plug it
into and unplug it from the PICKkit 1 starter kit while
the PICkit is still connected.

The final issue to be aware of is the potential liabil-
ity of the USB port used to connect the PICKkit 1
starter kit to the development PC. Although most
commercial and home PCs have built-in USB ports
and versions of the Microsoft Windows operating sys-
tem that can access the PICkit 1 starter kit very simply.
there are a number of PCs in educational and institu-
tional settings that do not have the required ports or
software. There is no easy fix to this problem other
than trying to find the fastest, biggest, and most mod-
ern memory PC to be used as a programming station.

None of these three issues are major show stoppers
—they are really just speed bumps, and they can be
overcome fairly easily.

Experiment 1—I1/0 Pins

Arguably the most important feature of the PIC MCU
is its set of input/output (1/0) pins. The 12 pins avail-
able to the application developer allow the microcon-
troller to sense the outside world and output in
different ways. The PIC16F684’s I/O pins are capable
of many different functions including analog and dif-
ferent digital signal processing. But as I first start intro-
ducing the chip, I will treat the I/O pins as simple

digital I/O, capable of sensing or outputting simple
binary signals. The more advanced features will be
addressed later in the book when you become more
comfortable with programming and working with the
PIC16F684.

The basic PIC MCU digital I/O pin design is shown
in Figure 1-3. The TRIS bit controls whether or not the
pin can output the value saved in the PORT bit. The
term TRIS is an abbreviation of Tri-State and refer-
ences the tri-state driver that can drive the PIC MCU’s
pin. When the TRIS bit is low (0), the value in PORT is
driven onto the pin, and the pin is said to be in output
mode. When the TRIS bit is high (1), the PIC MCU pin
is held in a high-impedance state, and the data level at
the pin can be read without being affected by the con-
tents of the PORT bit. This is known as input mode.
Remembering which TRIS state accounts for which
mode is quite easy to remember: A TRIS value of 1

14 123 PIC® MCU Experiments for the Evil Genius

D TRIS Q
TRIS Wiite—}> Re€gister
3
m
8 D PORT Q %
8 PORT Write—> Register
1
PORT_Read

Figure 1-3 /O pin

puts the pin in input mode, and a TRIS value of 0 puts
the pin in output mode. The TRIS bit value approxi-
mates the first letter of input or of output.

By convention, you will see I/O pins referred to
using the format

R&#

where the ampersand (&) represents the port, and the
number sign (#) represents the port’s pin. So PORTA,
pin 4 is known as RA4. This shorthand can be a bit
confusing because it refers to both the pin and the
PORT register. The TRIS bits are usually written in the
format

TRIS&#

with & and # being used in the same way as they are in
the PORT bit/pin definition. These naming conven-
tions are used for both C and assembly language pro-
gramming.

When I first presented you with the cFlash.c in the
Introduction, the manner in which the LED was
turned on and off is not easy to see. To help you see
the operation of the I/O port and how it affects the
PICkit 1 starter kit’s DO LED, I created cPins.c, which
turns on and off the LED using the PORT and TRIS
bits more explicitly.

#include <pic.h>
/* cPins.c - Examine Operation of PIC MCU Pins

This Program is a modification of “e¢Flash.c”
with more explicit writes to the TRIS and PORT
bits.

RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.09.15

*/,

_ CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \
& UNPROTECT & BORDIS & IESODIS & FCMDIS);

int i, 3;
main()

{

PORTA = 0;

CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs

TRISAS 0;

while(l == 1) // Loop Forever

{

for (i = 0; i < 255; ill) // Simple Delay Loop
for (3 = 0; j < 129; j11):

RA4 = 1; // DO LED On

(i = 0; i < 255; ill) // Simple Delay Loop
for (3 = 0; j < 129; 3j11);

RA4 = 0; // DO LED Off

= 0; i < 255; i11) // Simple Delay Loop
= 0; j < 129; ji1);

RA4 = 1; // DO LED On Again

i = 0; i < 255; ill) // Simple Delay Loop
= 0y g < 129; J11);

TRISA4 = 1; // Put RA4 into Input Mode

// LED Turned Off Due to RA4 Not Driving Current
Oout

0; i < 255; ill) // Simple Delay Loop
08 il 2008 1105

for (1
for (3

nun

RA4 = 0; // Restore Original Operating
TRISA4 = 0; // Conditions

} // elihw
} // End cPinms

Before entering the “while (1 == 1)” statement, the
code puts the RA4 and RAS pins in output mode
(writes a) to them) after clearing them (setting all bits
to zero). After the while statement, the code delays for
a half second and then loads RA4 with a 1, which
drives or sources current from RA4, through D0, and is
taken in, or sinked, by RAS. The code then waits
another half second before loading RA4 with a zero,
turning off DO. This should be fairly easy to understand;
current flows from RA4 through D0 and into RAS.

Next, the program waits another half second before
loading RA4 with a zero, turning off D0. After another
half-second delay, RA4 is loaded with a one, and DO is
turned on again. After another delay, the LED is
turned off by putting RA4 into input mode (the PORT
value of RA4 does not change). With RA4 in input
mode, no current can flow through D0. After another
delay, RA4 bit is put back into output mode with the
PORT bit being low so the LED will be off. At this
point, the program repeats.

Section One Under the

Covers of the PICLEFEA8Y 15

This program is a very simple example of how the
PORT bits work. With the basic PICkit 1 starter kit cir-
cuit, only one LED can be turned on at any one time,
which gives you an opportunity to try and decode the
schematic of the PICkit 1 starter kit and try to turn on
different LEDs or a series of LEDs in sequence. Later
in the book, I will present you with code that will do
this. But for now, you might want to try and modity

cPins.c to turn on other LEDs by putting RA4 and
RAS into input mode, and then selecting two other
pins to put into output mode and turn on another
LED. When you do this, just use the explicit writes to
the PORT and TRIS bits that I do in cPins.c and save
the more sophisticated methods for controlling the
LEDs for later.

Experiment 2—Configuration Word

One way the various PIC microcontrollers differ from
the other chips out there is in their ability to have cer-
tain operating configuration parameters set when they
power up. The configuration parameters are specified
by writing to a special word in program memory,
known appropriately enough as the Configuration
Word. When most users start working with the PIC
MCU, understanding how this word is configured is
ignored until it is time to program a chip and test it in
an application, at which point they try to figure out the
correct values for the configuration word, often getting
an incorrect value. Most incorrect values will cause the
PIC MCU not to power up or apparently reset itself
every few moments.

To avoid this problem, when I presented you with
the initial cFlash.c program, I included the proper con-
figuration word specification in the program, which is
automatically recognized by the PICKkit 1 starter kit
programmer and stored in the PIC MCU, so that it will
power up correctly without any intervention from you.
Setting the configuration fuses manually leaves too
much of an opportunity for error.

The configuration word specification is the follow-
ing statement and starts with two underscores in the
leftmost column of the source code:

_ CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \
& BORDIS & IESODIS & FCMDIS);

This statement enables the internal oscillator of the
PIC16F684, disables the Watchdog Timer, the external
reset pin, the low-voltage detect circuitry, and the
advanced clocking options. Along with this, code pro-
tection is disabled, meaning that the contents of the
chip can be read out. Note that the parameter words
(called labels) have different values for different PIC
MCUs, and different PIC MCUs may have different
parameter words all together.

Each of the parameters of the _ CONFIG state-
ment is ANDed together to form a value that is saved
in the configuration word when the PIC MCU is pro-
grammed. This value could be calculated manually by
reading the “Special Features of the CPU” section of
the PIC16F684 datasheet and creating the correct 14-
bit value, or you can take the values built into the
PICC Lite™ compiler or MPASM™ assembler include
files listed in Table 1-1 and AND them together as I
have done in the previous statement. ANDing together
the include file values forces the compiler or assembler
to calculate the configuration word value for you, sav-
ing some time and ensuring that the values are correct.

When specifying the values for the configuration
word, make sure that every bit of the configuration
word is represented. If a bit is forgotten, then chances
are the other values will make it a 1, which may or may
not be the value that you want for the configuration
word bit. To emphasize the importance of having speci-
fied a label for every configuration word bit, I want to
point out that trying to figure out why a PIC MCU
won'’t run properly when a configuration word bit is
misprogrammed is incredibly difficult.

As T will discuss later in the book, the PIC16F684
has a high-accuracy internal clock, negating much of
the need for an external clock (although one can be
added), the INTIO, in the _ CONFIG, specification
enables this clock and saves you from having to add
your own clock circuitry. The other options that I have
selected were chosen because they tend to make your
life easier and alleviate the need for you to come up
with any special external circuitry to the PIC microcon-
troller.

As you work on your own applications, you may
want to change some of these values and experiment
with configuration word options. Chances are you will
end up with a situation where the selected options put
the PIC MCU into a state where it cannot run prop-
erly. If you end up in this situation, remember to

16 123 PIC® MCU Experiments for the Evil Genius

Table 1-1
Configuration Fuse Parameter Specifications with Affected Bit(s) Listed First

Bit #
13-12
11
11
10
10
09-08
09-08
09-08
09-08
07
07
06
06
05
05
04
04
03
03
2-0

2-0

2-0

2.0

2-0
2-0
2-0
2-0

PICC Lite Label

N/A N/A

FCMEN _FCMEN_ON

PCMDIS _FCMEN_OFF

IESOEN _IESO_ON

IESODIS _IESO_OFF

BOREN _BOD_ON

BOREN_XSLP _BOD_NSLEEP

SBOREN _BOD_SBODEN

BORDIS _BOD_OFF

UNPROTECT _CPD_OFF

CPD _CPD_ON

UNPROTECT _CP_OFF

PROTECT _CP_ON

MCLREN _MCLRE_ON

MCLRDIS _MCLRE_OFF

PWRTDIS _PWRTE_OFF

PWRTEN _PWRTE_ON

WDTEN _WDT_ON

WDTDIS _WDT_OFF

RCCLK _EXTRC_OSC_CLKOUT |
_EXTRC

RCIO _EXTRC_OSC_NOCLKOUT |
_EXTRCIO

INTCLK _INTRC_OSC_CLKOUT |
_INTOSC

INTIO _INTRC_OSC_NOCLKOUT |
_INTOSCIO

EE@ _EC_OSC

HS _HS_0OSC

XT _XT_OSC

LP SEPEESE

MPHASM Assembler Label

Unimplemented; Read as 1

Fail-Safe Clock Enabled

Fail-Safe Clock Disabled

Internal/External Switchover Mode Enabled
Internal/External Switchover Mode Disabled
Brownout Detect/Reset Enabled

Brownout Detect/Reset Disabled in Sleep
Brownout Detect/Reset Control by SBOREN
Brownout Detect/Reset Disabled

EEPROM Data Memory Protect Disabled
EEPROM Data Memory Protect Enabled
Program Memory Protect Enabled

Program Memory Protect Disabled

_MCLR Pin Function Active

_MCLR Pin Function Inactive/Pin is Input RA3
70 ms Power Up Delay Timer Disabled

70 ms Power Up Delay Timer Enabled
Enable Watchdog Timer

Disable Watchdog Timer

RC Clock, RA5 Clockout

RC Clock, RA5 I/O Pin
Internal Oscillator, RAS Clockout
Internal Oscillator, RA4 I/O Pin

External Clock on RAS5, RA4 I/O Pin

High Speed (4-20 MHz) Crystal on RA4 & RAS
Nominal Speed (1-4 MHz) Crystal on RA4 & RAS
Low Speed (32 kHz—1 MHz) Crystal on RA4 & RAS5

change the configuration fuses back to the default
value that I have listed here, and use for most of the
experiments. Once returned to this value, you can

change each option individually, trying to find the one
that caused the application to stop working.

Section One

Under the Covers of the PICLLFEA&Y

17

Experiment 3—PIC MCU Variable Memory, Registers,
and Program Memory

In the introduction, I outlined some of the differences
between a microcontroller (such as the PIC microcon-
troller) and a PC, and I noted that one of the big dif-
ferences in the application code was the need for
providing code to initialize variables. Another differ-
ence is how the application code loaded into a PC or a
PIC microcontroller and how it is organized. In this
experiment, I will explain these differences (and the
need for them) and help you understand how informa-
tion is organized in the PIC MCU and some of the
issues that you must be aware of when you are pro-
gramming the PIC16F684.

When computer architectures are presented for the
first time, something like Figure 1-4 is shown, which is
the standard Princeton or von Newmann architecture.
The important feature of this architecture is that the
memory space is a single address area for the program
memory, variable memory, and stack memories; the
addresses for these application features are presented
as being arbitrary and could be placed anywhere in
this address space. An interesting side effect of this
computer architecture is that an errant program could
escape from the program memory area, start executing
through the variable memory, stack RAM, register
areas, and treat the data as program statements.

When a program is built for loading into a target
Princeton computer system, the file that is loaded into
the computer is organized to reflect the memory
organization of the memory space. As shown in Table
1-2, the program file is broken up into segments, each
at a different location, with a different size, and with
different information. This is a simple example; large
PC applications can have literally dozens of different,
code, variable, data, and stack segments whereas a

Memory

Interface
Unit Processor

microcontroller application often only requires only
four (reset, code, data, and stack). The compiler and
other application build tools are responsible for speci-
fying and allocating memory in the application.

Table 1-2
Princeton Computer Architecture Application File
Segment and Function

Segment Function

Reset Address application starts executing at. Usually a
goto at the start of the application code.

Code Application code. Starting address and size specified.

Data Variable space for application. Starting address and
size specified. Initial values for variables.

Stack Program counter and data stack.

o mm mm o mw mw e E R B S RN SO D M B S M S e S

The PIC MCU is designed to use the Harvard com-
puter architecture (see Figure 1-5) in which the pro-
gram memory and variable memory/register spaces are
kept separate from each other. Along with this, the
program counter’s stack is also kept in a separate
memory space. The advantage of this method during
program execution is the ability of the processor to
fetch new instructions to execute while accessing the
program memory/registers. Bad programs can still exe-
cute, but at least they won’t try to execute data as
instructions. The disadvantage of this method is a loss
of flexibility in application organization (i.e., changing
data or stack segment sizes to accommodate different
applications).

Control

Data Processor
and Register
Interface

Princeton architecture

Figure 1-4

Harvard architecture

Figure 1-5

18 123 PIC® MCU Experiments for the Evil Genius

The program files loaded for PIC MCU and other
Harvard computer systems are much simpler than the
files loaded into the Princeton computer systems.
These are produced by the MPLAB IDE, end in the
extension .hex, and are usually referred to as “hex
files.” A typical PIC MCU hex file consists of two or
three segments, one for application code (starting at
the reset address), one for the configuration fuses, and
an optional one for electrically erasable programmable
read-only memory (EEPROM) data. For the applica-
tions presented in this book, the hex files will consist
only of the code and configuration fuse segments.
There is no need for defining different areas in the
MEemory space.

This last point is subtle, but extremely important.
When you declare a variable in a Princeton computer
system, you are specifying the label to be used with the
variable as well as reserving a space in memory for the
variable. When you are declare a variable in a Harvard
computer system (like the PIC MCU), you are simply
specifying the label to be used with the variable; there
is no need (or any mechanism) to reserve space for the
variable. This means that the location for variables in a
Harvard computer system can be chosen with much
less rigor than in a Princeton computer system, and the
Harvard application can still be expected to run.

The separate memory areas also mean that initial
variable values cannot be loaded into the data segment;
in the Harvard computer system variables are initial-
ized from program memory. In terms of hex file space,
you save on the need for a data segment, but you do
require more for the initialization space. For microcon-
trollers, this is not an important point because in either
computer architecture, variables will have to be initial-
ized by code, because the applications are not loaded
into memory as they are with a PC.

Although I've probably given you the perception
that variables can be placed anywhere willy-nilly in the
PIC MCU, the truth is a bit more complex. As I work
through the book, I will explain the variable memory
and register space in more detail, but for now I just
want to note that they share the same space and
explain a bit about the function of the registers.

What I am casually calling the registers in this
experiment are referred to as the special function regis-
ters by Microchip (and, similarly, what I am calling
variable memory is more properly called the file regis-
ters), the special function registers (SFRs) listed in
Table 1-3 are used to monitor the status of program
execution as well as provide an interface to the hard-
ware peripheral functions of the PIC MCU. As you
read through the book, the function and addressing of
these registers will be explained to you.

Table 1-3
PICIBF68U Microcontroller Special Function
Registers

Name Address Function

INDE 0x00 & 0x80 Index Data Register

TMRO 0x01 TMRO Value

PCL 0x02 & 0x82 Low 8 Bits of the Program Counter

STATUS 0x03 & 0x83 PIC MCU Processor Status
Register

FSR 0x04 & 0x84 PIC MCU Index Register

PORTA 0x05
PORTC 0x07

PORTA I/O Pin Value
PORTC I/O Pin Value

PCLATH 0x0A & 0x8A Upper 5 Bits of the Program
Counter

INTCON 0x0OB & 0x8B Interrupt Control Register

PIR1 0x0C Peripheral Interrupt Request

Register

Low Byte of TMR1 Value
High Byte of TMR1 Value
TMR1 Control Register

TMRI1L 0x0E
TMRI1H 0xOF
T1CON 0x10

TMR2 0x11 TMR2 Value
TMR2CON 0x12 TMR?2 Control Register
CCPRIL 0x13 Low Byte of CCP Register

CCPR1H 0x14
PWMICON 0x15
ECCPAS 0x16

High Byte of CCP Register
CCP PWM Control Register
CCP Auto-Shutdown Control
Register

WDTCON 0x17
CMCONO 0x18
CMCON1 0x19
ADRESH O0x1E
ADCONO 0x1F
OPTION 0x81

Watchdog Timer Control Register
Comparator Control Register
Comparator Control Register
High Bits of ADC Result

ADC Control Register

PIC Operation Control Register

TRISA 0x85 PORTA Data Direction Pins

TRISC 0x87 PORTC Data Direction Pins

PIE1 0x8C Peripheral Interrupt Enable
Register

PCON 0x8E Power Control Register

OSSCON 0x8F
OSCTUNE 0x90
ANSEL 0x91

Oscillator Control Register
Oscillator Tuning Register
ADC Pin Enable Register

PR2 0x92 TMR2 Period Register
WPUA 0x95 Weak Pull-Up Enable Register
I0CA 0x96 Interrupt on Port Change Select

Register
VRCON 0x99
EEDAT 0x9A
EEADR 0x9B
EECON1 0x9C
EECON2 0x9D

Comparator Vref Control Register
EEPROM Data Register
EEPROM Address Register
EEPROM Control Register
EEPROM Write Enable Register
ADRESL 0x9E Low Bits of ADC Result
ADCON1 0x9F ADC Control Register

O SN U M G S SR W WS BN GED BN RSN BN BN SR B G e e mm mm

Section One

Under the Covers of the PICLLFLAaY 19

Experiment U—Simulating cFlash.c in MPLAB IDE

The simulator built into the MPLAB IDE is probably
the least used and understood tool available to you,
which is unfortunate because it is the most effective
tool that you have to find and debug problems. The
reasons why applications are not simulated is due to
the perceived notions that it is too much work and that
the program is either very simple or based on simple
changes to a working program. Old hands will cringe
at these excuses and remember how they learned the
hard way. Personally, I never attempt to burn a pro-
gram into a PIC MCU without first simulating it and
making sure that it works propetly. I always do this
before seeing if it will work in the application circuit;
by simulating it first you have confidence that the pro-
gram should run.

In this experiment, I will work through the basics of
setting up the simulator for an MPLAB IDE project. I
have a few comments regarding how it should be used
but, for the most part, I recommend that you use it for
all the experiments in this book. Some of the initial
programming (C and assembler) experiments are
designed to work only in the simulator, but once again,
you should simulate the experiments that access hard-
ware before burning them so you can understand how
they work and what they are expected to do. As you
gain experience with the simulator, you should also
develop personal standards for displaying data and
understanding what the simulator is telling you in
order to find problems and gain confidence in your
program.

After you have created a project and have built the
source code to ensure there aren’t any syntax errors
(language formatting errors), you should enable the
debugger by clicking on “Debugger,” then “Select
Tool,” and “MPLAB Sim” as shown in Figure 1-6.
After enabling the simulator, the simulator toolbar
(see Figure 1-7) will appear. The toolbar will allow you
to do the following:

¢ Run the simulated program at full speed. On a

2.4 GHz Pentium running Windows XP, I find
that 1 simulated second executes in about 3
seconds.

» Stop execution at any time. A breakpoint, which
forces the application to stop at a specific loca-
tion, can also be put in the application code as [
will show presently.

e Clicking “Animate” causes the program to run
relatively slowly, so vou can watch the flow of
the program. I find that this feature is best used
to illustrate the operation of basic operating
concepts.

¢ The program (subroutine or function) can be
executed one step at a time by clicking the Step
In icon.

o If the operation of a subroutine or function is
well understood and felt to be correct or if it
takes a long time to execute, clicking the Step
Over icon will cause the simulator to execute
the code in the subroutine or function at full
speed and stop at the statement following the
call to the subroutine or function.

o [f you find yourself in a subroutine or function
that is going to execute for a while, you can
Step Out of it. After clicking this icon, execution
will run at full speed, stopping at the instruction
after the subroutine or function call statement.

o To restart the simulation from power up, click
on the Reset icon. This icon will cause the simu-
lated PIC MCU to return to power up condi-
tions and reset the Stopwatch and Stimulus
tunctions as well.

To set a breakpoint (which causes execution to stop
when it is encountered) in your program, double-click
on the statement at which you wish the breakpoint to
be placed. Execution will stop when the simulator is
running or animating an application, when a break-
point is encountered. The breakpoint’s statement is not
executed but will execute if the Run, Animate, or one
of the Step icons is clicked. Figure 1-8 shows cFlash.c
with three breakpoints set and the execution run arrow
pointing to the first statement in the program.

At this time, you may want to start up your cFlash
project, enable the simulator, and put breakpoints at
the three locations I have in Figure 1-8. Once you have
done this, click on the Reset icon and you’ll see that
there is no run arrow. If you click on one of the
Step icons repeatedly, the arrow won’t appear and you
may think that you have not enabled the simulator
properly.

If you click on the Run icon, the program will stop
and the run arrow will appear at the first breakpoint
(at “PORTA = 07). Before the C program starts, there

20 123 PIC® MCU Experiments for the Evil Genius

MPLAB IDE v6.60
5 Cnrﬂ}iwhdaw Help

@ @ | Checksum: Oxcob |

B C:\Writing\WRIC Evil Genius\CadulcFlashict lash.c

|| #include <pic. k-
* cFlash.c - Simple C Program to Flash an LED on a PICIEFES4

This Program is & direct translation of “ledflash.asm® with
"for* loop values found empirically.

BA4 - LED Positive Counection
BAS - LED Negative Connasction

uyks pradko
04.06.13

*/

—COMPIG (INTIO § Budd | Voysion Conirol | Find in Files |
& UNPROTECT ¢
Clean: Deleting intermediary and output files.
Clean: Done.
int 1, §: Executing: *CAPICCLITE\BIN\PICL EXE® -C -E"cFlash.cce” "cFlash.c*-0"cFlash.obj" ~299-0-Q-MPLAB -16F684
Executing: "CAPICCUTE\BIN\PICL EXE* -E"cFlash.lda" "C:A\Writing\PIC Evil Genius\Code'cFlash\cFlash, obj* -0"cFlash.cof® -0"cFlash.hex" -0 -MPLAB -16F684

main]
{ Memory Usags Map

poRzA « o; Jj|ETrogran RO $0000 - $0010 0011 17) words

: §|Program ROM $03B4 - $O03FF $004C 76) vords
CHEONO S $005D 93) words total Program ROM
ANSEL = 0;
TRISA4 = 0§ |Bank 0 RAK
thIsas « ofl|Bank 0 RAM

$0020 - 50023 50004 4) bytes
$0070 - 0070 $0001 1) bytes
80005 5) bytes total Bank 0 RAM

while(l ==

. Config Data $2007 - $2007 60001

for (4
forll iIProgram statistics

7ad = #iTotal ROM used
Total RAM used

Loaded CAWriting\PIC Evil Genius\Code\cFlash\cFlash.cof
BUILD SUCCEEDED: Sat Nov 13 23:22:11 2004

93 words (9.1%)
5 bytes (5.2%)

_ PicioRees | Wi

1) vords total Config Data

Figure 16 Enabling MPLAB simulator

is some code that sets up the execution environment
and calls the C program. Placing a breakpoint at the
first statement in the program and then clicking on the
Run icon after resetting the simulator, will provide you
with an application that is ready to go from the first
statement.

Now would be a good time to start single-stepping
through the program.

When you get to the for statements, you’ll see that
the arrow doesn’t move for each click of the Step icons
or even seemingly for the Animate icons. These state-
ments provide a half-second delay for the program—
you can execute through them quickly and stop at the
statements after them by clicking the Run icon.

To understand better how long an application is
taking to execute, click “Debugger” and then “Stop-
watch” to display the Stopwatch window shown in Fig-
ure 1-9. This window will show you how many
instruction cycles have executed and how long it would

have taken if you were working with a PIC microcon-
troller running at 4 MHz (which is the default execu-
tion speed of the PIC16F684). The simulated execution
speed can be changed by clicking on “Debugger” and
then on “Settings;” this pop-up also allows you to
change other operating parameters of the simulator.

You can also monitor the values of registers and
variables in your program by adding a Watch window
(see Figure 1-10). To add a register, select it in the pull-
down to the right of “Add SFR” and click on “Add
SFR;” to add a variable, select the one you want from
the pull-down to the right of “Add Symbol” and click
on “Add Symbol.” For your initial programs, I recom-
mend that you always put in the I/O (TRIS and
PORT) registers as well as all the variables in your
program. When you are putting registers and variables
into the Watch window, you may feel that the method
in which they are displayed is suboptimal. You can
change how they are displayed by right-clicking on the

Section One

Under the Covers of the PIClLLFLAY 24

o MPLAB IDE w660

Fle EOL Vew Prowdt Dobugoer Pogammer - Corfige Wndow el o
| omE 28 %| DER G S Chedeum b rERRBAR| N

$include ~piche

4% cliash.¢ - Siaple ¢ Progran to Fiash e Li0Cen & PICIEYGR4

= Output
BUs | Varyon Cormot | Frd ks |

[Ciean: Deleting intermediary and cutput fles. &
Clean; Dane

Exmcuting *CAPICCLITE\BINIPICLEXE® -C -E"cPlash cos” "cFlash ¢ -0 cFlash ohi® -298 -0 -0 -MPLAB -16F504
Executing: "CAPICCLITE\BIMPICL EXE"-E'cRiash lda® "CAWTting\PIC Evil Ganius' [ode\cFashicFlash oby -0"cFlash cof -0cFlash hax? -0 -MPLAB 167884

__CONPIGIINTIO
& UNPROTECY

Kencry Usage Map

Progran EOM £0000 - 30010 $0D11 ¢ 17) words
o Proaran FOM 503BA - $03FF SDO4C (7€) vorde
::;:V #005D (93) vords total Prosrem
anisae - offBank O RAM S0020 - 80023 90004 1) bytes
tnrsas - o f[Bask 0 RAM 30070 - 8070 30001 ¥
#0005 §

)

) bytes

) bytes total Bank 0 RA
)

e |Is
Config Data 32007 = 82007 s0001 wvords total Coniig Data) uA ' "
X nimate

for 13
ol [Progran statistico

ttRun!)
‘l’._f

Total ROM used 9] words (9.1%)
Total RAN used § bytes (5 2X)

Loadsd CWHENGYFIC Ewl Genius\Code\c lash\cFiash ool
BLILD SUCCEEDED: Sat o 13 232211 2004 \

b iod ® O

e 1-7 Simulator active

Figure -8 Setting breakpoints

“Pause/Stop’ Step In’

Conligre Window Help

Execution
at Breakpoint
(Arrow Over
l(BlJ)

J£ Turnietf
JJ Turn s1 3D
/7 Halte PAA/PAS Outpuss
TEIEAE = 0

while (1

Loep Foravar

Sinple 500mx Selay

EE O

h obj" -200 -0 -0 -MPLAB -16F584

for 11 = 0 1 / Stmple 500ms Delay nius\Code\cFlash\cFlash obj* -0"cFlash cof® -0"cFlash hex* -0 -MPLAB -1EFBB4
for (3 = 0. 3k
= elibw
Breakpoints Ee
Set ok 0 RAM
brfig Data

o800 CAWINGVIC EVi Genusyoadever Iasmer1aeh ol
lBUILD SUCCEEDED Ss Nov 13232211 2004

HPLAB SN ¥ s kT Borko inzs colt W5 W

123 PIC® MCU Experiments for the Evil Genius

11 Comparators
ABSTL - 0; /¢ Turm off ADC
: £ Take PAS/PAS Qurpuos

whin (L we L ¢ Susop Fereser

77 Single 500z Delay

TAd = L f¢ LI 0n

#F Siuple 600ms Diley

LED Ot¢

b 2/ XndieFiash

| v oo R

h oby® -2g9 -0 -Q MFLAB -16F584
iniusCode\cFlashicFlash obj® -0 cFlash cof” -O*cFlash hex” -0 -MPLAB -16FE84

kogrea RO

rnk 0 RAM

pnfig Data

Stopwatch
Window

Active @
(46 Cycles)

ded GIWInGIFIC Evi Genmus\CadecHashicr lash cot
st Nov 1323:22:11:2004
W Siopwatch

TBUS!!IHW

-Imm-nﬁmbnh

Tine (uBect] !_—i—
Prosesen e HFEl Acwuwi
™ Gl Sivdation Tine O Beses

MBS _ PiCIESY poliobe M —ZEk——1—

T

Figure 1-8 Adding Sropwarch

/ Tutn off Comparators
£ Tuzn 8fl ABC
/ Make BA/PAS Ducpuss

\'Register/variable
“Watch” Window

¢/ Bimple SOOuE Daley
346

PV S TT

pogran ROM

pok 0 RAM

bofig Dats

i

Ewvil Ganius\Code\cFlash\cFlash cot
el Now 13 232211 2004

Tﬂtismlﬂ.d

|-"'°"""“'°""'
e [t [y

~ bako

b obj* -253-0-0-MPLAB 167504
{nius\Code\cFlashicFlash obj* -O"cFlash.col* -0 cFlash hex" -0 -MPLAB -16F684

Figure 1-10 Adding a Watch Window

Section One Under the

Covers of the PICLLFEA&Y

23

Xy

o

UsuWtTISs

1

17

nwrS

T

5
e

buty

o

-
B
L,

o a P e

(D@L B AT oeEB

Select
Register/Variable—-
Display Type
Size and
Other

Paramefers = |l

Checksum: OxcBb2

§00as Pelsy Intus\Cade\cFlashicFlash obj® -0 cFlash cof* -O"cFlash hex® -0 -MPLAB -1 6F684

(v unh CrR

h.obj" -2g89 -0 -0 -MPLAB -16F584

kogran ROK

prk 0 RAM

prifig Data

Lnuded CAWring\F1C
MR RIC SOy .11 [SLICC EEL)

e e

i Stopwatch Total Semidated
| [Sioeh] insnton cyeie @ @
|z | Toe (oen) [g0 [e

= = -

I Clear Simudation Time On fleset

oA Wil Zdec,

masssM PIC16F651

Ewl Genws\Code\cFlashizFlash cot
Dasat Nov 13 23:22:11 2004

Figure Il Changing Watch data types

variable, selecting “Properties,” and then changing the
data format as shown in Figure 1-11.

With the information I have presented here, you
can simulate most of the functions of the code written
for the experiments in this book. Right now, you can
just monitor the operation of the code, but in a later
experiment, I will show you how to set specific input
and register stimulus, which will help you see how your
application runs under different conditions.

For now. you can change register values by double-
clicking on their value in the Watch window and put-
ting in new values manually. Adding stimulus to a
simulated program takes a bit more work than the
execution, breakpoint, stopwatch, and variable display
steps I've shown here, but it provides you with a way to
test your application under constant conditions, rather
than depending on remembering to set certain values
manually.

One of the nice features of the MPLAB IDE simu-
lator interface is that it is the same as the ICD 2
debugger and ICE 2000 emulator interfaces. This
means that when you start working with these tools,
there should be only a minimal learning curve going
from the simulator. The simulator features I've pre-
sented here are also present in the debugger and emu-

lator. Debuggers and emulators provide hardware
interfaces to the application circuit (actually replacing
the PIC MCU in the circuit) that you can monitor, set
breakpoints for, and repeat over different sections of
code, just as you would in the simulator.

At the start of this experiment, I suggested that
you use the MPLAB IDE simulator to test all the
application code in this book (and any that you
encounter) before burning it into a PIC MCU. By
doing so you will gain experience with the simulator
and learn to come up with strategies that work best for
you. Additionally, you can experiment with placing
your editing, watch, and stopwatch windows on the
MPLAB IDE desktop in positions that make the most
sense to you and that allow you to debug your applica-
tions efficiently.

For Consideration

When people start investigating Microchip PIC micro-
controllers for the first time, they are generally over-
whelmed by the number of different part numbers
(microcontrollers with different features) that are

24 123 PIC® MCU Experiments for the Evil Genius

available. As I write this, there are over 250 active PIC
MCU part numbers to choose from, not including
packaging options. Most PIC MCUs s are available with
at least three different packages; each part number is
available with two operating temperature ranges, and
the older parts are available in different voltage
ranges. This means, when all is told, there are about
2,000 different PIC MCUs and options to choose from.
Over the next two pages, I would like to make your
choice a bit simpler.

There are six major PIC MCU families to choose
from as I have outlined in Table 1-4. The PIC16F684
that is featured in this book may seem like one of the
lower-end PIC MCUs, but it is actually a quite flexible
member of the mid-range.

The low-end PIC MCU processor architecture is
available on many of the entry-level parts. The proces-
sor is very similar to the mid-range architecture (which
is used in the PIC16F684) but does not have some
immediate instructions, does not support interrupt
requests, cannot support large amounts of variable
memory, and does not have any advanced peripherals.
The mid-range PIC MCU architecture is the most pop-
ular architecture (and used in the PIC16F684), as it
supports moderate amounts of variable memory,
advanced peripherals, and interrupts. The PIC17 high-

end architecture is somewhat unique to this family of
microcontrollers although it does have some similari-
ties to the low-end and mid-range. The PIC18 architec-
ture is really a superset of the mid-range architecture
and it offers a number of features that allow it to
access more program memaory, variable memory, and
peripheral registers as well as instructions that will
simplify and speed up traditional applications. Once
you are comfortable with programming the mid-range
chips and have worked through the experiments in this
book, you shouldn’t have any problems learning how
to program and working with the other PIC MCU
architectures.

Most new users and hobbyists limit themselves to
the parts listed in Table 1-5. These devices are all easily
programmed either by the PICkit 1 starter kit, PIC-
START® Plus, ICD 2, or a homegrown programmer
(of which there are many different designs available
for download from the Internet). The Microchip ICD 2
is a debugger interface that gives you many of the
capabilities of an in-circuit emulator (ICE) without the
extreme cost of an ICE.

I want to make a few comments on each of the
devices listed in Table 1-5. The PICSTART Plus is a
development programmer produced by Microchip,
which can be used for all PIC microcontroller part

Table 1-4
Microchip PIC Microcontroller Families
PIC MCU Processor Programiming Program Program File
Family Architecture Algarithms and ICO Memory Type Memory Size Register Size WO Pins Features
PIC10 Low-End (12 Bit) ICSP and ICD Flash 256 to 512 16 to 24 bytes 4 Comparator
instructions
PIC12 Low-End (12 Bit) ICSP EPROM (OTP) 512 to 1,024 25 to 41 bytes 6
instructions
PIC12 Mid-Range (14 Bit) ICSP and ICD EPROM (OTP) 512 to 2,048 25 to 128 bytes 6 Comparator
and Flash instructions and ADC,
Advanced
Timers
PIC14 Mid-Range (14 Bit) ICSP EPROM (OTP) 4096 instructions 192 bytes 20 Comparator
and ADC,
Advanced
Timers
PIC16 Low-End (12 Bit) Parallel, ICSP EPROM (OTP) 512 to 2,048 25 to 73 bytes 12 to 20
on Flash Parts and Flash instructions
PIC16 Mid-Range (14 Bit) ICSP and some ICD EPROM (OTP) 512 to 8,192 72 to 368 bytes 12 to 33/36 ADC, Serial
and Flash instructions to 52 for I/O, Advanced
LCD Timers,
LCD, USB
PIC17 “High-End” (16 Bit) Parallel EPROM (OTP) 2k to 16k 272 to 902 bytes 33 to 66 External
instructions Bus, Serial
1/0, Advanced
Timers
PIC18 “PICI18" (16 bit) ICSP and ICD EPROM (OTP) 8k to 64k 640 to 4,096 bytes 16 to 72 ADC, Serial
and Flash instructions 1/0, Advanced
Timers
Section One Under the Covers of the PICLLFLA&Y 25

numbers—in some cases adapters are required to pro-
gram the parts. In some cases, another PIC MCU part
number has to be used to implement the ICD 2 func-
tion for a specific PIC MCU. Although the PICC Lite
compiler is either restricted or not available on some
of the PIC MCUss listed in Table 1-5, the full product
supports each of these PIC MCUs and does not limit
the program size or number of variables required for
the application. Each of the listed PIC MCUs has flash
program memory, which means that they can be erased
by the programmer before burning a new application
into them. All of the PIC MCU s except the PIC16F54
have the mid-range processor architecture. I included
the PIC16F54 because many early introductory books
and web sites reference the PIC16C54, and the
PIC16F54 can be used in its place for these applica-
tions. Another traditional beginner’s part is the
PIC16F84A, but I would recommend that you consider
more advanced and feature-rich chips such as the

PIC16F627A instead. These more advanced chips have
additional peripheral features as well as built-in oscil-
lators, eliminating the need for you to add oscillator
circuitry to your application.

I chose the PIC16F684 for this book because it is a
mid-range architecture part (14 bit), can be pro-
grammed by the PICKit 1 starter kit, and has ICD 2
and PICC Lite compiler support. This chip also has a
built-in precision oscillator and is tolerant of a wide
range of operating voltages. It also has a wide range of
peripherals that make it appropriate for use with appli-
cations like robotics. To summarize, I feel the
PIC16F684 gives the best cost-to-performance ratio
(when the PICkit 1 starter kit and PICC Lite compiler
is included in the decision) for a mid-range part that
could be used in a wide variety of different applica-
tions and would be easy for somebody learning to
work with the PIC microcontroller.

Table 1-5
Recommended First PIC MCUs
Part Number Pragram Variable Prograrmmer
Number of Pins Memory Memary Peripherals and Debugger PICC Lite Suppaort
PICI16F675 6 1,024 instructions 64 bytes ADC, Timers PICkit 1 starter kit, Yes
PICSTART Plus, ICD 2
PIC16F630 12 1,024 instructions 64 bytes Comparator PICKkit 1 starter kit, No
PICSTART Plus, ICD 2
PIC16F684 12 2,048 instructions 128 bytes ADC, Comparator, PICKit 1 starter kit, PICSTART Yes (Limited Size)
Timers Plus, ICD 2 Using PIC16F688
PIC16F54 13 512 instructions 25 bytes None PICSTART Plus No
PIC16F84A 13 1,024 instructions 68 bytes None PICSTART Plus Yes
PICL6F627A 16 1,024 instructions 224 bytes Comparator, Timers, PICSTART Plus, ICD 2 Yes (Limited)
Serial I/O
PICI6F87x 22to33 4,096to 192 to ADC, Timers, PICSTART Plus, ICD 2 Just PIC16FS77A
8,192 instructions 368 bytes Serial I/O and Limited
26 123 PIC® MCU Experiments for the Evil Genius

Section

Two

Introductory C Programming

I often see the C programming language described as
the Universal Assembly Language by people trying to
put it down. This isn’t a very fair characterization
because Cis an extremely flexible programming lan-
guage that was the development tool of choice for vir-
tually every operating system in use today, as well as
for a long list of successful business applications and
games. Along with common computer science applica-
tions, C is used to program more artificial intelligence,
computer-aided design systems, aerospace control sys-
tems, and supercomputer applications than any other
programming language. Despite acknowledging C’s
widespread use and popularity, detractors tend to
focus on a few points.

C is an incredibly rich language that makes it suit-
able for a wide variety of different applications. This
richness can be a two-edged sword; instead of forcing
every developer into following a common program
layout, C allows a wide of programming styles. As I
will discuss at the end of this section, multiple C state-
ments can be combined, which can make code unread-
able to even the most expert programmer. An
acknowledgment of C’s capability to be written into
incomprehensible code is the single point of the
yearly “International Obfuscated C Code Contest”
(www.us.iocce.org/) in which the most confusing code
possible is created for prizes.

The richness of the code is often given as a reason
for why Cis hard to learn. I regularly contest this with
proponents of BASIC, JAVA, and other programming
languages. All these programming languages have a
similar number of statement types, and I do not believe
that any one has advantages over another to make

27

1 PICl6F684

programming with it more efficient. In terms of read-
ability, poor code can be written in any language. Good
programs are not the result of the language designer;
they are the result of the programmer thinking about
how to approach a problem and clearly expressing in
their code what the programs are doing.

Additionally, C is heavily dependent on pointers, a
programming concept that many people find difficult
to work with, debug, and understand, especially when
reading other people’s code. I admit that I like working
with pointers, but this is due to spending many years
understanding what pointers can do when pro-
grammed in C and how they can be used most effi-
ciently for most applications. In this book, I will
introduce you to the basics of C pointers and try to
emphasize only the things you have to know to work
with the language. For most C applications, pointers
are minimally required and are often quite transparent
to the operation of the program.

My major complaint about the C programming
language is one that few people comment on; in its
ANSI standard form, C cannot access data smaller
than bytes. The version of C used in this book can read
from and write to bits, but you will still require some
very convoluted code to carry out some hardware
interfacing.

Despite these concerns, C has a number of charac-
teristics that make it well suited for use in this book
and for individuals learning about programming.
Firstly, because the language is over thirty years old, a
plethora of books has been written about learning and
coding it. Secondly, it is actually quite easy to write
efficient and readable code in C, and a good portion of

the text in this book is devoted to teaching you to do
just that. Lastly, I believe HT-Soft’s PICC Lite™ com-
piler is the best high-level development tool available
for the PIC16F684 microcontroller, and I’'m pleased
that it can be used in this book to teach you about the
PIC® microcontroller.

PICC Lite compiler has three things going for it
that I feel are critical to its use in the book and for use
by new users. First, it integrates extremely well with
MPLAB® IDE. As shown previously, PICC Lite com-
piler works not only with MPLAB IDE’s basic opera-
tions, but it produces the necessary information
needed by the MPLAB IDE simulator, MPLAB IDE
debuggers, and in-cCircuit emulators (ICEs) to allow
source-code-level debugging. I feel this is critical for
producing, testing and analyzing applications.

Second, PICC Lite compiler produces very efficient
code. In Section 12, I demonstrate how I would solve a
number of math problems using assembly language
programming. At the start of each program, I have
written out the operation of the program in C; you may

want to cut and paste this example code into separate
C source-code files and see how efficient my assembler
is to the code produced by PCC Lite. I would be sur-
prised if my code had more than 10 percent fewer
instructions than any application, and I wouldn’t be
surprised if there are cases where PICC Lite version
created code with fewer instructions than I did.

Finally, the price of PICC Lite compiler cannot be
beat. PICC Lite compiler is not a crippled version of
the full product; it includes all the capabilities, includ-
ing code optimization and simulator/debugger/emula-
tor support, of the full product. This is an important
point because with PICC Lite compiler integrated into
MPLAB IDE, you have a development environment
with capabilities that would normally cost well over
$1,000 dollars. Taken together, the C programming lan-
guage, with applications written with an eye toward
readability and efficiency and implemented in the
PICC Lite compiler, is the best method of learning
about the PIC microcontroller, microcontroller pro-
gramming, and application debugging.

Experiment 5—Variable Declaration Statements

Declaring variables in PICC Lite compiler is generally
as simple as:

int VariableName;

before the main statement of the application. This will
create a 16-bift variable with the label VariableName
(or whatever variable name you want) that can be used
anywhere in your program. In this experiment, I would
like to discuss a few issues regarding variable and hard-
ware register declarations to help you make sure that
you can successfully create applications even though
you have worked through only a few experiments in
the book.

VariableName is a label and can start with any
upper- or lowercase letter or the underscore character.
After the starting character, the rest of the label can be
any letter, number, or underscore character. Blank
characters cannot be used in a label; if blanks are
encountered, the compiler will try to divide the charac-
ter strings to determine which of them are program-
ming statements, directives, or defines. These character
restrictions are also used for subroutine and function
names.

For standard variables, two options exist that you
should be aware of. The first is the ability to initialize
the variable when it is declared. By adding an equals
sign and a constant value, you can set your variable to

a specific value for the program without having to add
another line later in the code. To initialize the variable
x to 47, you would simply key in:

int x = 47;

Another option that is available to the declaration
statement is the const keyword, which converts the
declared value from a variable to a constant:

const int xConstant = 47;

In the declaration of xConstant, anytime the label
xConstant is encountered, the compiler replaces it with
the value 47. By declaring xConstant as a constant, you
can no longer write to it. For example the statement:

xConstant = 48;

will return an error.

If you were to look at the pic16f684.h file that was
put on your hard file when PICC Lite compiler was
installed in the \PICCLITE\include folder, you will see
a number of statements that look like:
TMR1L

static volatile unsigned char @ O0x0E;

These are hardware register declarations and
involve additional options that you do not need to be

28 123 PIC® MCU Experiments for the Evil Genius

concerned with, because HT-Soft has taken care of
declaring all the hardware registers in the PIC16F684
microcontroller for you.

I want to say a few words about variable names.
Please try to make an effort to make them representa-
tive of what they are being used for. I see many stu-
dents create programs with variable names like Reg3
when the name Remainder or PWM Value is much
more representative of what the variable is used for in
the application. Although I recognize that the variable
memory is limited in the PIC MCU, please do not feel
you have to use one variable for multiple functions; try
to use each variable for one purpose. Using the same
variable for multiple purposes can make writing your
program more difficult and cause problems when dif-
ferent functions change a variable in ways that screw
up the operation of other areas.

Experiment 6—

Depending on your programming experience, the need
to specify variable data types might seem new and
somewhat ominous to you. The restricted variable
memory available to you in the PIC microcontroller
under the PICC Lite compiler can make the decision
on what values to specify seemingly more ominous.
There really is no need for this apprehension; most
variables can be declared using the inf data type with-
out problem.

The data types available to you are listed in Table
2-1. For the most part, the data types follow American
National Standards Institute (ANSI) standards, or what
I call Standard C values, and are available in C compil-
ers for other processors. This allows you to import pro-
grams or parts of programs (usually referred to as
snippets) that have been created for other applications,
but you would like to use on the PIC microcontroller.
Similarly, if you were to come up with some good pro-
grams or algorithms, this could be exported to other
systems quite easily.

Three deviations exist in the PICC Lite compiler
data types to ANSI C that I have marked in Table 2-1.

One area that always gets new programmers con-
fused is in the area of counters. I recommend that you
use the conventional variable names of i, j, k, and n.
These values came into use with Fortran, the first high-
level programming language, and by using them for
this function consistently, they are immediately under-
stood when reading the code. By naming variables
appropriately, you will find the tasks of tracking how
data is being processed by the application and of
debugging the code much easier.

As I explain more about the C programming lan-
guage to you, I will expand the variable definition to
include arrays, pointers, and local and global variables.
For the time being, if you keep with the simple format
of the variable declaration that I have given you here,
you will not have any problems.

C Data Types

The bit value is not supported by the C language stan-
dard, and I would recommend that you do not use it
for variables. I realize that a single bit is useful for flag
variables in a program, but because the bit is not avail-
able in other C implementations, you will not be able

Table 2-1

PICC Lite Compiler Data Tupes

Type Bit 5ize Comments

bit 1 Boolean value—Note: Not a Standard

C data type

char 8 ASCII character/signed integer (-128 to

127)

Unsigned integer (0 to 255)
Signed integer (—32,768 to 32,767)
Unsigned integer (0 to 65,536)

Signed integer (—32.768 to 32,767);
same as short

unsigned char §

short 16
unsigned short 16
int 16

unsigned int 16 Unsigned integer (0 to 65,535); same as

unsigned short

Signed integer (—2,147.483,648 to
2,147,483,647)

Unsigned integer (0 to 4.294,967,295)

long 32

unsigned long 32

float 24 Real (0 to 1/=6.81(10°%); Assume 3 dig-
its of accuracy/default floating point
mode; Note: Not a Standard C data type

double 32 Real (0 to 1/—6.81(10°); Assume 6 dig-

its of accuracy/specified using PICL -
D32 compilation option—Note: In
Standard C, this is float, not double

Section Two

Introductory € Programming 29

to import the code directly to other implementations
of the C programming language, and you may end up
getting in a bad habit of working with bit variables.
Note that I do not make the same comment for indi-
vidual bits in a special purpose register. The register
bits are unique to the PIC MCU and, as such, would
not be involved in a code export to another device.

The float and double (floating point) variable types
are substantially smaller in their PICC Lite compiler
forms than in their high-end processor forms. For the
most practical applications, you will not see a differ-
ence between how they execute, but you may have
issues with very large numbers or numbers having
many digits of precision.

As I have indicated, the C data types are strongly
typed, and when you are equating values between
types, you may get a warning or an error from the
compiler indicating that a type conversion is required.
If the data is stored in a format compatible with the
destination, the simplest way of resolving this is to use
the type cast, which consists of placing the desired data
type in parenthesis before the source variable. For
example, if the variables i and j were different types
but data could be passed between them, a simple type
cast, as shown here, could be used:

i = (iType)3j:

The experiment for this application is quite simple;
just a few lines of code demonstrate what happens
with type conversion:

#include <pic.h>
/* cType.c - Investigate Data Type Operation in
PICC Lite compiler

This Program shows the need for Type Casting of
variables
when data is transferred.

This program is designed to run under the MPLAB
IDE Simulator
Oonly.

myke predko
04.09.15

X/

char i;
float j;

main()

i 47;

3 i; // Can you Place char into float?

i

j; // Can you Place float into char?

while (1 == 1); // Loop Forever
} // End cType

When you compile this application, you are going to
get the message:

Warning[000] C:\ Evil Genius\cType\cType.c 27 :
implicit conversion of float to integer

This message is telling you that the statement “i = j;”
involves a data conversion. When this message comes
up, you have to decide whether or not to resolve it by
using a type cast or by leaving the warning as is.
Remember that the two data types store data in differ-
ent ways (which can be inferred from Table 2-1); cast-
ing the float type to a char is a bad idea because with
the type cast, the first byte of the float type could be
passed to the char without being modified. In this case,
you would leave it as is.

For virtually all the applications in this book and for
virtually all the PIC MCU applications that you will do
on your own, you will only require the int data type.
This 16-bit bit-variable data type will handle a reason-
ably large range of values as well as work with ASCII
characters. This data type is handled well natively in
the PICC Lite compiler, but for long and floating-point
data types, additional libraries will have to be added to
the final application. These libraries take up quite a bit
of space and can slow down the execution of the appli-
cation significantly. To avoid this space issue and
reduced execution performance, I recommend that
these data types not be used unless absolutely neces-
sary and the impact of their operation is well under-
stood. Later in the book, I will give you a couple of
thoughts on how to simulate the operation of these
data types using 8- and 16-bit variables.

30 123 PIC® MCU Experiments for the Evil Genius

Experiment 7—Constant Formatting

PC/
L TR

PICkit™ 1

. 1
el

starter kit

When I introduced declaring variables, I suggested
strongly that variable names should be representative
of what the data is used for, and if the variables are
used for common functions (such as counters), they
should be given conventional names. This plea is
common to many programming books, but what isn’t
all that common is a pointer to specifying constants
in the most appropriate data type for the situation.
The readability of a program can be enhanced or dam-
aged by program formatting, by variable names, or by
comments.

Table 2-2
Constant Formatting Options and Suggested Best
Uses

Constant Definition Format Best Use

Decimal ## Default Value
Hexadecimal Oxit Register Counter Values
Binary Ob##HHHH#H## Noncounter Register Values

ASCII 4 Human Interface Values

- S B Em G T DT D NS N TR GOW BN S e e S mm b e

There are four ways to specify comments, as is listed
in Table 2-2 along with the situations where they are
best used. In cConfuse.c, I have created a simple appli-
cation that uses data in different formats; before burn-
ing it into a PIC16F684 and running it in a PICkit™ 1
starter kit, try to figure out what it does.

#include <pic.h>
/* cConfuse.c - Write to PICkit Interface
Hardware in a Confusing Way

This program performs a simple task, but its
function is obfuscated by poorly chosen data
types.

myke predko
04.11.15

i

_ _CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

main()
{

PORTA = 0;
CMCONO = 7; // Turn off Comparators

ANSEL = 0; // Turn off ADC
TRISA = 0x49; // Enable PORTA LED Outputs
while(l == 1) // Loop Forever
{
if (0 == (PORTA & (1 << 3)))
PORTA = ‘37; // Turn on Four LEDs
else

PORTA = 4; // Turn on Remaining Four LEDs

} // elihw
} // End cConfuse

Chances are, you could not understand what
cConfuse does by just looking at it. You will probably
have to look at a schematic for the PICKit 1 starter kit
LEDs and application input hardware. By making four
changes to this program (and turning it into cClear.c), I
think you’ll agree that the function and what is hap-
pening is a lot easier to understand.

#include <pic.h>
/* cClear.c - “cConfuse.c” after passing through
a Deobfuscator

This is the same program as “cConfuse.c”, but with
more appropriately chosen constant data values.

myke predko
04.11.15

L
__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &

UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

main()
{

PORTA = 0;
CMCONO = 7; // Turn off Comparators

ANSEL = 0; // Turn off ADC
TRISA = 0b001001; // Enable PORTA LED Outputs
while(1l == 1) // Loop Forever

{
if (0 == RA3)
PORTA = 0b010010; // Button Pressed, DO, D2,

D4, D7 On

else

PORTA = 0b000100; // Button Released, D1, D3,
D5, D6 On

} // elihw

} // End cClear

Section Two

Introductory C Programming 31

Three of the changes were to convert the TRISA
and PORTA register assignment values to binary, from
decimal, hex, and ASCIL. I think you will agree that
they were effective and helped you see what was hap-
pening in the application and the output values. The
fourth change was to eliminate the complex test of the
RA3 (button input pin) and simply do a bit compare.
With the bit compare, you could easily look at the
PICKkit 1 starter kit schematic and see that RA3 is con-
nected to a pulled-up push button.

When deciding which constant format to use in
your program, you might want to follow these rules:

¢ Use decimal by default. For basic variable and
variable functions, decimal is probably most
appropriate and easy to read.

» Use binary when you are working with a regis-
ter that does not contain counter data. An

example of this is loading the OPTION register
with the value 0b10011111.

e Use hexadecimal for register counting or result
data. Comparing a counter’s current value with
a hexadecimal constant would be most appro-
priate.

* Use ASCII data when human interfaces are
involved. This includes text messaging as well as
user input.

e Data sizes should be appropriate. Use six bits
for the two sets of six-bit PORT and TRIS reg-
isters. For other registers, use eight bits.

I think what I am trying to say in this experiment is
best summed up by the maxim: “There are 10 types of
people in this world: those that understand binary and
those that don’t.”

Experiment 8—Assignment Statements

;ICki-t“ 1

If you are familiar with other high-level programming
languages, you are aware of the statement type called
the assignment statement, which is used to store data of
a variable of a specified type. In the previous experi-
ments, I have detailed different data types as well as
how variables are declared. In this experiment I will
present how assignment statements are written in C.

The basic form for a C assignment statement is:

VariableName = Expression;

The label VariableName is a variable, declared as
shown in the previous experiment. The single equals
sign indicates that the variable is going to have a new
variable value stored in it. I point out the single equals
sign because the appearance of two equals signs is a
logic operator, as I will explain in a later experiment.

The expression is a data type value that is the same
as VariableName. An expression can be a constant, the
contents of a variable or a series of mathematical oper-

ations. Although C is somewhat tolerant of assigning
different data types, you should always try to make
sure that the expression’s type is the same as the vari-
able’s, and if it isn’t, make sure you understand any
potential issues.

An example of a potential issue between dissimilar
types is saving a 16-bit value in an eight-bit variable. In
this case, the upper-eight bits will be discarded, which
could be a good thing (you are provided with a simple
way of stripping out the most significant bits) or it
could be bad (with data lost). To avoid this problem, I
tend to declare all variables as int (16 bit).

Finally, the assignment statement (and virtually all
other statements) is ended with a semicolon character
(;)- The semicolon is used by the compiler to indicate
the end of the statement. The only statements where
the semicolon is not required are the ones that end in a
right brace (}) character. When in doubt, put a semi-
colon at the end statement; even if it is unnecessary, the
compiler will treat it as a null statement and
ignore it.

To demonstrate the different forms of the assign-
ment statement, I have created cAssign.c:

#include <pic.h>
/* cAssign.c - A brief Look at Assignment
Statements

This Program Demonstrates how Assignment
Statements work in C.

32 123 PIC® MCU Experiments for the Evil Genius

myke predko

04.09.28
i~/
int i; // Unitialized Variable Declaration

int j = 23; // Variable Declared with Initial
// value assignment (Initialization)

i = 47; // The variable “i” assigned (or loaded
// with) the constant value 47

i = 3j; // The variable “i” assigned contents
// of “jn_

i=43 =1; // “i” and “j” assigned the same value.

while(l == 1);

} // End cAssign

The first assignment statement is the initialization
of the variable j. There is no difference between initial-
izing a variable at its declaration and assigning a value
to it in the first line of a program. You may find that
initializing a variable at declaration is easier to read,
making its function easier to understand in the pro-
gram. The next two statements are basic assignments
of a constant value and a variable value, respectively.
These statements are common to other programming
languages and their operation should be obvious.

The last assignment statement is probably some-
thing that you have never seen before in BASIC or
other beginner programming languages; the value of i
is given the value of j, which itself is being loaded with
a new value. This is one of the many capabilities built
into C that can be used to both simplify application
programming and obfuscate the function of the appli-
cation code. This multiple assignment statement, which
has multiple destinations for the expression, is reason-
ably clear, but as I will show in the next experiment,
multiple assignment statements can become quite

complex, with their function being confused with the
built-in assignment statements.

Access (read and write) of PIC16F684’s registers
and I/O Pins is accomplished using standard assign-
ment statements such as the ones demonstrated in
cAssign.c. The registers, bits, and pins are all declared
in picl16f684.inc, which is loaded in by pic.h. cLight.c is
a simple application that simply turns on D0 on the
PICkit 1 starter kit and illustrates how registers can be
written to 8 bits at a time, just as 8-bit variables (of
type char). Individual bits are read from and written to
in exactly the same way.

#include <pic.h>
/* cLight.c - Simple C Program to Turn on an LED
on a PIC16F684 in the PICkit 1

RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.11.10

*/
__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &

UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

main()

{

CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS = 0;

RA4d = 1; // Turn on LED

RAS = 0;

while(1l == 1); // Loop Forever

} // End cLight

Experiment 9—Expressions

In the previous experiment, I really skipped over what
an expression is. This is unfortunate because a lot of

potential exists in the capabilities of the C expression
statement that can make your programming easier and
more efficient. Unfortunately, this potential comes at a
cost: it’s easy to create expressions that do not execute
as you would expect, and are very hard to debug. In
this experiment, along with looking at different types
of expressions that can be used in your applications, I
will present some of the potential pitfalls you may have
to navigate around.

To demonstrate the operation of C expressions,
came up with cExpression.c, which examines different

Section Two

Introductory C Programming 33

formats for expressions and data. As you read through
the description of this program, I suggest that you load
and single step through cExpression.c so you can bet-
ter see the points that I am making.

#include <pic.h>
/* cExpression.c - Look at Expressions

This Program demonstrates a Variety of
Different Expressions that can be created in C.

myke predko
04.09.23

Hardware Notes:
This Program has been written to run in
the MPLAB IDE Simulator ONLY.

Ly

35 // “3" is the Expression
i; // “i” is the Expression

L=}
non
=
~

a [R s // Simple Arithmetic Expression

H
n

i =3 * 0x0B; // Multiply by a Hex Value

i =3 * 0b00001011; // Multiply by a Binary
Value

// Load i with ASCII “8#

// Change “Watch” Window display
// Format to ASCII to verify

// to verify.

// Basic Division

i = 0" + 8;

J = 48 / 4;

(j - 5) % 7; // Complex Arithmetic Expression
// Involving Two Operations and
// Forced Order of Operations

B
]

£f0d = (F = 5) % T
// = (12 - 5) % 7
/=T % 7

// =0

i =g = 5 %7; // Same As previous but no

// Forced Order of Operations

f/i=3-5%7

/[l =12 - 5 % 7

[/ =12 - 5 (5 % 7 = 5)
f/7 =17

i=(j=41/ 6) * 2; // Embedded assignment:
/3 =1/ 6

L= T e

/7 =1

003 =1 e) * 2

(/=R EARD

f/ =2

while (1 == 1); // Loop Forever

} // End cExpression

The first two statements should be pretty straight-
forward. In the first statement, the expression is a con-
stant value (3) that is stored in the variable i. Next, the

contents of i are the expression and they are saved in j.
These are assignment statements, just like the ones in
the previous experiment.

The next three statements have the same expres-
sions (j * 11). The difference between them is the num-
bering system (radix) used to express the constant 4.
This is a review of the C Data Types experiment in
which I discussed how using bases other than 10 makes
it harder to immediately see what is happening with
the code.

In the assignment statements following the three
j * 11 statements, I am applying the basic arithmetic
operations (addition [+], subtraction [—], multiplica-
tion [*], and division [/], along with the modulus oper-
ator [%]. The modulus of two numbers is the
remainder of the division operation. In the next exper-
iments, I will look at some of the other operators avail-
able in expressions. The next statement has an
expression that you have probably never seen before; I
am adding the contents of the variable j to the ASCII
character zero (which is specified in single quotes as
‘07). The value of this expression (and the value stored
in i) is 51 decimal, or if you change the Watch window
display format for i to ASCII, you will discover that it
is °3’. This may be a surprising result, but if you were to
review a table of the ASCII codes, you will see that the
numeric and alphabetic characters are defined
together; so if you have one character’s value, you can
jump to another character simply by adding or sub-
tracting the difference between them. This property of
ASCII codes is used in a number of places in the book
to algorithmically change values instead of relying on
decision structures to change them.

The “i = (j — 5) % 7.” statement has what is known
as a complex expression: that is, multiple operations are
performed within the statement. Looking at the first
statement, it should seem obvious that five is added to
the value of j and the sum is found using modulus 7.
Right after this statement, I have repeated it with
parenthesis around the “j — 5 expression removed.
When the full expression is evaluated, you will see the
result (stored in i) is different than in the previous
expression.

The reason for this difference is due to the order of
operations of the operators used in these statements.
The multiplication and division operators have a
higher order of operations, or what you could refer to
as execution priority, than addition and subtraction
instructions have. Even though the addition operator is
encountered before the modulus operator, the modu-
lus operator executes first because it has a higher
order of operations. To avoid these problems, you
should enclose higher priority operations in parenthe-
sis (indicating that their contents must be evaluated
before they are used for other operations) to ensure

34 123 PIC® MCU Experiments for the Evil Genius

they execute before other operators execute. As you
look through the code in this book, you will see that I
am in the habit of always using parenthesis to ensure
expressions are evaluated in the order / want them to.

The final statement before the “while (1 == 1);”
statement may look like a syntax error or some kind of
comparison, but it is an example of what I called a
multiple assignment statement in the previous experi-
ment. Neither is true; the expression saves the interme-
diate calculation of i/6 in the variable j before
completing the evaluation and storing the result in the
variable i. This ability to embed assignments within
expressions can help you simplify your programs
and/or make them completely unreadable. When you
first start creating your own C programs, | recommend

that you do not try to combine statements as I have
done here. But when you gain some confidence then
you might want to look for opportunities to take
advantage of this capability. Especially look in situa-
tions where the intermediate value of a calculation is
needed elsewhere in your application.

With the five basic arithmetic operators and the
ability to create calculations with multiple operators,
you have the ability to develop expressions for the
vast majority of applications that you are going to be
working with. Before going on, try to write your own
application like cExpression. Test out different expres-
sions with the five operators listed above and with con-
stant data in decimal, binary, hexadecimal, and ASCII
formats.

Experiment 10—Bitwise Operators

As well as being able to perform mathematical
operations on the contents of variables, the C program-
ming language has a number of operators that allow
you to perform Boolean arithmetic on the bit contents
of variables. These operators allow you to easily
process bit information, but they must not be con-
fused with the logical operators described in the next
experiment.

The four basic bitwise operators are as follows:

e & —bitwise AND. When two values are
ANDed together, each bit in the result is loaded
with the AND value of the corresponding bits
in the two values (set if both the bits are set).

e | —bitwise (inclusive) OR. When two values are
ORed together, each bit in the result is loaded
with the OR value of the corresponding bits in
the two values (set if either bit is set).

e " —bitwise XOR. When two values are exclu-
sively ORed together, each bit in the result is
loaded with the XOR value of the correspon-
ding bits in the two values (set if only one of the
two parameter bits is set).

e ~ —bitwise negation. This operator will return
the negated or complementary value for each
bit of the single input parameter (invert each
bit). This operator must never be confused with
the ! logical operator, which will be shown to
invert the logical value, not the bitwise value.

Using these four operators, standard bitwise
Boolean arithmetic operations can be performed on
different values, as I show in cBitwise.c. After compil-
ing cBitwise.c, | suggest that you work through the
code (including modifying values) in the MPLAB IDE
simulator as much as possible until you fully under-
stand the operations work. When you are doing this,
you should display the variables (i, j, and k) as binary
values in the Watch window.

#include <pic.h>
/* cBitwise.c - Bitwise C operators

This Program Demonstrates how bitwise Boolean
arithmetic operations work in C.

Note: Display the variable values as “Binary”.

myke predko
04.10.02

L2
char i, j, k; // Use 8 Bit Variables

main()

{

Section Two

Introductory C Programming 35

i = 47; // Initialize Values

g0 =137

k=1& j; // AND Values together
k= i g // OR Values together

k=1 A 3; // XOR Values together

k= ~j; // Invert the Bits in “j~”

k= (i*2) -3+ (1 << 7); // Mix Binary
Operators with

// Arithmetic

while(l == 1);

} // End cBitwise

The operation of bitwise operators is very straight-
forward. Going through the example cBitwise experi-
ment in the MPLAB IDE simulator, you should see
the Boolean arithmetic operations clearly when you
display the variables as binary in the order i,], k. The
Watch window will display the two parameter values
directly over the result, allowing you to compare the
inputs and outputs to the logic gates directly. As shown
in the last statement, bitwise operators can be com-
bined with arithmetic operators without any special
considerations.

Although the bitwise operators are straightforward,
you can run into some difficult-to-debug situations
when you write to registers in a PIC MCU (or any
other hardware device). To illustrate what I mean, con-
sider the last statement of cBitwise and have it load a
port directly. For this example, assume that the hard-
ware device attached to this port saves the least signifi-
cant four bits of the PORTA, and bit 7 of PORTA is
connected to a device clock. When the clock is pulsed
high (or strobed), the hardware device saves the four
data bits. The statement could be:

PORTA = (i * 2) - j + (1 << 7); // Write Data
to Hardware
Device

and knowing that it ends up as 0x055 from the simula-
tion of the program, you are comfortable knowing that
bit 7 of PORTA is never loaded with a high value (i.e.,

from j, which has bit 7 set). This is a dangerous assump-
tion as you do not know how the expression is evalu-
ated by the compiler and whether or not the
destination is used for storing temporary values.
Because the operators outside the parenthesis execute
on the same order of operations, you can assume they
execute from left to right. In this case, PORTA is
loaded with the product of 1 * 2, and then has the con-
tents of j subtracted from it with the value of 0x0D5
being temporarily stored in PORTA. Finally, 128

(1 << 7) is added to the value in PORTA to clear bit
7.In this case, you will have inadvertently strobed the
four bits of data into the device connected to PORTA
(because when j was subtracted from i * 2, bit 7 was set
and the final add cleared it). You have probably
strobed in an unwanted value as well. This type of
problem is extremely hard to find and debug; simulat-
ing the application will not reveal the problem, and
you may need an oscilloscope to see bit 7 changing
during the instruction’s operation.

The fix to this potential problem is to use an inter-
mediate value for all complex expressions that are
going to be loaded into a hardware port. This changes
the single statement into the two that you can see
below:

k= (i * 2) -3 + (1L << 7); // Write Data to
Hardware Device
PORTA = k;

As a general rule, never write the result of a com-
plex expression directly to a hardware register without
first storing it in a file-register-based variable. If you
follow this rule, you will guarantee that the value being
stored in the register is exactly what you want with no
potentially problematic intermediate values.

It will probably be surprising to you, but the opera-
tors normally reserved for conditional logic are part of
the numeric expressions, just as the arithmetic and bit-
wise operators discussed in the previous two experi-
ments are. This gives you some unique opportunities
for clever programming as well as an opportunity for
errors that are very difficult to find and debug.

36 123 PIC® MCU Experiments for the Evil Genius

Experiment 11—Logical Expressions

The logic operators available to you in C are listed in
Table 2-3 and return numeric true or false values. It is
important to remember that logic operators are differ-
ent from bitwise operators as they return essentially
binary values (True or False), where the bitwise opera-
tor returns the logic operation for each bit.

Table 2-3
Logic Operators

Logic
Operatar Operation

A== Return True if the two values are equal.

A!=B Return True if the two values are different.

A >B Return True if the first value is greater than the second.

A >=B Return True if the first value is equal to or greater than
the second.

A <B Return True if the first value is less than the second.

A <= B Return True if the first value is equal to or less than the

second.
A && B Return True if both values are true (not equal to zero).
AllB

LA Return the inverted logic level of the value.

Return True if either value is true.

The experiment’s program (cLogic.c) tests these
arithmetic operators for two different values. This
program should be run in single steps through the
MPLAB IDE simulator with the Watch window set up
and ExpValue displayed. As you step through each C
statement, you will see the result of the logic expres-
sion saved in ExpValue.

#include <pic.h>

/* cLogic.c - Quantify Logic Expression Values
This Program looks at the different logic
expression values and the values that are

produced by them.

This program is to be used with just the
simulator.

myke predko

04.09.27
*

Inte it =5y
int j = 10;

int ExpValue; // Expression Value

main()

{

Expvalue = i == j; // What is the value for

False?

ExpValue = i != j; // Value for True?

ExpValue = i > j; // Value for False?

ExpValue = i < j; // Value for True?

ExpValue = (i = j) && (i > j); // Value for
True AND
False?

ExpValue = (i != j) || (& > j); // Value for
True OR
False?

ExpValue = i && j; // True if Both Values != 0?

ExpValue = i && 0; // True if One Value == 07?

ExpvValue = i || 0; // What about ORing?

ExpValue = !i; // Invert “i” Logic Value

ExpValue = ! (!i); // Double Invert “i” Logic

Value
while(l == 1); // Loop Forever

} // End cLogic

By stepping through each statement of this pro-
gram, you will make a few conclusions: the first being
that True is given a value of 1, and False a value of 0.
You will also see that the first six assignments work
exactly as you might expect based on your experience
with other programming languages. (Although the
idea that the result of a comparison can be used as a
numeric may be somewhat novel.)

The last five statements probably are surprising, but
they do emphasize the point that logic operators are
similar to standard operators: Nonzero values are
treated as True, and the zero values are treated as
False. From these five statements, you should see that
the same rules that are applied to logical values (zero
and one) are also applied to standard numeric values.
This should be kept in the back of your mind, because
it allows for some clever programming tricks such as:

i = 0x1234 * (j > 4): // if (j > 4) is True,
then 1 returned

Section Two

Introductory C Programming 37

which is equivalent to:

LENS >4
i = 0x1234;
else
i= 0;

The advantage of this type of programming trick is
its apparent elegance. Although the single line looks
like it is much simpler than the full if/else solution, you
might find that it uses a greater number of program-
ming statements and file registers and that it takes
longer to execute due to the need to include the multi-
ply routine. Additionally, the lack of gotos or diver-
sions to different statements could result in a
statement that has a constant execution time, which
can be a significant advantage in some applications.
And although it may not necessarily be more efficient,
you should note that its operation is not intuitively
obvious, and you and others will probably not under-
stand what is happening in the statement by simply
looking at it. Statements like this are interesting
curiosities that should be avoided unless there is a tan-
gible reason requiring their use.

The pitfall that you can run into with C logic opera-
tors is with the equals to (==) statement. The double
equals sign is a good solution to the problem of differ-
entiating between the assignment equals and the com-
parison equals, but it does not take into account the
conditioning of people who work with other languages
like BASIC, in which a single equals sign in an if or a
while statement indicates a comparison. It is very easy
to forget yourself and put in a single equals sign when
two are required for a comparison.

If a single equals sign is used in an expression like
i = 47
instead of the required double equals sign:

i == 47

the program will behave the same as if i was always
equal to 47. To make matters worse, if you put a break-
point to check the value of i after the comparison, it
will seem like the value is always 47. What makes the
error so hard to debug is that it looks right. To avoid
this problem, generally two approaches can be used.
The first is to make sure constant values are placed to
the left of the comparison. If a constant is to the left of
a single equals sign, the compiler will return an error
stating that it cannot write to a constant value.

The second solution will seem more drastic, but it is
effective 100 percent of the time. Simply do not per-
form an equals comparison. Instead, the result of a not
equals comparison should be NOTted as shown below
in the expression that is equivalent to i == 47:

1(i 1= 47)

I am not being facetious by suggesting that you
never use the equals logical operator. If you are com-
fortable programming in BASIC or other program-
ming languages that have a single equals sign as a
comparison operator, you will have a great deal of dif-
ficulty with the double equals sign in your logical
EXPIessions.

Throughout the book, I discuss how you can make
your programs more efficient by looking at different
ways of solving the application requirements. It is a bit
of a fine line to walk because some features of the C
programming language allow you to use fewer key-
strokes to solve a problem, but often at the cost of pro-
gram readability. (The example at the end of this
section illustrates this very well.) What you should be
looking for are optimizations that do improve the
readability of the code, improve its efficiency, and
reduce the total application size.

A great example of how this is done can be illus-
trated by looking at the first C program you were
given (cFlash.c) and looking at what its basic require-
ment is (i.e., to toggle the LED at RA4/RAS on and
off). In the original code I gave you, I explicitly turned
on and off the LED, but by thinking of the problem
from another perspective, for example, that you want
the LED to be toggled, you might think in terms of
basic Boolean algebra and consider changing cFlash.c
to something like the following:

#include <pic.h>
/* cFlash 2.¢ - Simple C Program to Flash an LED
on a PICl6F684

This Program is an optimized version of “cFlash
2 e i

RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.11.12

if
___CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &

UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

FnErRT !

main()

{

PORTA = 0;

CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS = 0;

38 123 PIC® MCU Experiments for the Evil Genius

while(l == 1) // Loop Forever
{

for (i
for (3

0; i < 255; i++) // Simple 500ms Delay
0; j < 129; j++);

RA4 = RA4d » 1; // Toggle LED State
} // elihw
} // End cFlash 2

The change in the code was to change the two RA4
assignment statements to one in which RA4 is toggled
(XORing a digital value with 1 will always invert, or

toggle, its state). This allowed me to eliminate one of
the 500 ms delay loops, thus eliminating an opportu-
nity for error (i.e., keying in the second delay loop
properly), which resulted in a better than 36 percent
decrease in final application size. Along with these tan-
gible improvements, the readability of the program has
been improved because the comment after the XOR-
ing of RA4 states clearly what the statement is doing
and it can be directly related to the basic operation of
the program.

Experiment 12—Conditional Execution
Using the If Statement

The basic form of the if statement in C is:

if (Expression) // Test to see if “Expression”
is Not Zero
Statement // Statement executed if “Expression”
15 0
else // Optional “else” Statement which
Statement // Executes if Expression is Zero

and is similar to the operation of the if statement in
other structured languages, although a few points
should be noted. The first is that the test expression
does not have to be only a simple comparison; it can
consist of complex terms, which may or may not have
comparison operators in it. The two expressions in the
if statements below are equivalent.

if (0 != (j / 3)) // Execute following statement
// if “j / 37 is not zero

TE (N3 // Execute following statement

F ERRH /RS S s not Sz aro.

In both cases, the next statement is executed if the
result of j divided by three is not zero. The second case
1s not that much more difficult to follow, and it avoids
any issues with comparisons with constants.

As the if statement is written above, you might think
that only one statement can be executed conditionally.
This is not true because of the use of braces ({and}) to
collect multiple statements into one. To demonstrate

the operation of the braces, I modified cAssign.c to
create cStatement.c as follows:

#include <pic.h>
/* cStatement.c - A quick Experiment regarding
Statements in C

This Program further examines how Statements
work in C.

myke predko

04.10.05
=7
int i; // Unitialized Variable Declaration

int § = 23; // Variable Declared with Initial
// value assignment (Initialization)

main ()
{
i = 47; // The variable “i” assigned (or
// loaded with) the constant value 47
{ // Can Braces Be Put in before a Statement?
S B i // The variable “i” assigned contents
Al =re S
i =3 =1; // “i” and “j” assigned the same
// wvalue.

} // End of Statement
while(l == 1);

} // End cStatement

Using braces changes the basic form factor of the if
statement to:

// Test if “Expression” is
// Not Zero
{ // Opening Brace to Collect Statements

if (Expression)

Statement; // Multiple Statements that
// Execute if Expression
Statement; // is Not Zero

Statement;

} // Closing Brace to End true “statement”

Section Two

Introductory C Programming 39

else // Execute if Expression is Zero
{ // Opening Brace to Collect Statements
Statement; // Multiple Statements that Execute if
Statement; // Expression is Zero
Statement;

N EL

This is the recommended format for people just
starting out programming in C. The braces can be elim-
inated if there is only one statement following the if,
for example:

if (a == b) C=a* 3;

But to avoid problems remembering whether or not
braces can be used, you should always put them in and
then stop using them when you are more comfortable
programming in C.

In the basic form of the if statement, you might
have noticed that I indented the statements that exe-
cute conditionally (i.e., on the value of the expression).
This is a common programming technique to visually
indicate which statement’s execution is dependant on
the higher-level decision structure. I indent by four
spaces for each level simply because this is what the
Microsoft Visual Studio editor uses, and I am simply
following its example.

When you look at other people’s code, you may see
that the opening braces are not at the start of the next
line, they could be placed at the end of the previous
line as shown in the following:

if (Expression) { // Test if “Expression” is
// Not Zero

Statement; // Multiple Statements that Execute

Statement; // if Expression is Not Zero

Statement;

} // Closing Brace to End true “statement”
else { // Execute if Expression is Zero
Statement; // Multiple Statements that Execute
Statement; // if Expression is Zero

Statement;

N L

The compiler really doesn’t care about the position
of the braces. They can appear anywhere after the if
statement. (The is also true of the closing braces.) I
recommend the placement shown here because it is
very obvious visually whether or not the braces are
present or missing.

You have probably noticed the “fi” comment placed
after the last closing brace of each if statement. The
reason for this comment is to remind me of the pur-
pose of the closing brace; when you have a very com-
plex and long program, the reason for the closing brace
can be forgotten or confused. I mark all program state-
ments that produce a brace with their letters reversed

to help keep track of what the program is doing. For
simple programs, it is hard to see the importance of
this trick, but as you work with more complex applica-
tions, the need will become obvious. You’ll find it nec-
essary when the compiler comes back with the
message that there is either a missing or an extra clos-
ing brace. This is a good habit to get into and will later
save you time and grief debugging syntax errors in
your program.

To demonstrate the operation of the if statements, I
created the cIf.c application as follows:

#include <pic.h>
/* cIf.c - Demonstrate Operation of “if”

This program demonstrates the operation of the
if statement.

myke predko

04.10.18
=
int i = 44;
int §j = 0;
int k = 32;
int n = 21;
main ()
{
if (44 == i) // “i” equals a constant
{
n=mn+ 1; // Increment “n” if “i” == 44
}
else

n=mn- 1; // Decrement if Not Equals
YOS £1

if ((3 = (1L / 3)) == 7)
{
j=13+1;
W
S EN RN =022)
n=n+ 1; // Increment “n” if “k” equals 22
else
n=n- 1; // Note that there is a single

// statement, so no braces required.
while(1l == 1);

} // End cIf

When you simulate this application, you should
notice that I didn’t put in the braces for the last if
statement. As I indicated previously, they aren’t
absolutely necessary, but they are a good idea when
you are starting out.

There is a mistake in this program that should have
become evident when you simulated it. The final if
statement, if (k = 22), always executes as if k is equal
to 22. This seems strange until you can see exactly what
is going on. Remember, the single equals sign (=)
always behaves as an assignment, and a double equals
sign is required for a comparison. If you change this

40 1L2INETE2SMEUTExperinents Mor ttheEviiliicanius

single equals sign to a double one, you will find that
the program now works properly.

The problem of incorrectly keying in one equals
sign instead of two is very common with new C pro-
grammers. To avoid the problem you can reorder your
program so that you never require an equals compari-
son. For example, the last four lines of the application
could be changed to the following:

if (k I= 22)
n=n-1;
else

n=mn+ 1; // Increment “n” if “k” equals 22

I don’t highly recommend this method because it
involves negative logic. That is, you must first figure

out how your code is supposed to work and then do
the reverse.

Another strategy is to always put constants first as in:

if (22 == k)
n=n+ 1;

else
n=mn-~- 1;

// Increment “n” if “k” equals 22

// Decrement if Not Equals

This is marginally better but doesn’t protect you in
cases like “if (a = b),” where the comparisons are both
variables. In such a case, forgetting to put in the second
equals sign causes the value of one variable to be
assigned the value of another.

Experiment 13—Nested Conditional Statements

Some people are born troublemakers. When I was 16, I
had to go to a two-hour defensive driving course
because I had too many points for speeding. Everyone
in this course was given a Driver’s Education Manual
with the basic rules of the road. Several minutes into
the course, somebody put up his hand and noted that if
a police officer was directing traffic in a manner con-
trary to a set of traffic lights, then you must follow the
policeman’s directions, and if a farmer herding animals
was directing traffic in a manner contrary to traffic
lights, then you should follow the farmer’s directions.
He then asked the question: “So, what do you do if
there is both a police officer and a farmer that are giv-
ing contrary directions to the streetlight?” I'm bringing
up this little story because in the previous experiment,
I presented the idea that the next statement after the if
statement (or the following else statement) would be
executed. And when I presented this concept to a set of
high-school students, I was quickly asked the question,
what happens if you have an if statement following
another if or else statement?

A logical suggestion would be to place the second if
statement (along with the statements that execute con-
ditionally with it) within a set of braces after the first if.
This would look like:

1E8 (>0)
{
if (k < n)
{
// Statement(s) Executed if “i > j” and “k < n”
}
else
{
// Statement(s) Executed if “i > j” and “k >= n”
HE/ AR £]!
y // £i

Another solution is to notice that there are only two
areas in the code above that execute conditional state-
ments, and they could be accommodated by two if
statements:

if ((i > j) && (k < n))
{

// Statement(s) Executed if “i > j” and “k < n”
}

else if (i > j)

{

// Statement(s) Executed if “i > j” and “k >= n”
Y // £i

This method isn’t bad, but could become very long if
statements are written for both the if and the else. And,
depending on how the compiler generated the code,
this method could be very inefficient in terms of code
size and execution time.

Section Two

Introductory C Programming 41

e

The generally accepted method of combining condi-
tional execution statements like this is to recognize
that the if statement and the conditionally executing
statement(s) following it are all one statement and can
be nested underneath the original if statement as in
the following:

if (1 > 9)
if (k < n)
{

// Statement(s) Executed if “i > j” and “k < n”
}
else
{
// Statement(s) Executed if “i > j” and “k >= n”
Yy /7 £i

I should point out that this method of nesting does
not apply only to the if statement. It applies also to all
the conditional execution statements in the C pro-
gramming language. As you work through the book,
you will see many examples of nested programming
statements of different types. Actually you’ve seen one
already, the 500 ms delay code that was used in the
cFlash.c program consists of a for statement nested as
part of another for statement.

To demonstrate how nesting can simplify a pro-
gram, I created cNoNest.c. This program flashes differ-
ent LEDs on the PICKkit 1 starter kit in a somewhat
random order, but it is hard to follow and see immedi-
ately what is happening in the application:

#include <pic.h>
/* cNoNest.c - Jump Between LEDs with ifs

This Program will Jump between different LEDs
due to different conditions.

The LED values are:

LED Anode Cathode
D0 RA4 RAS
D1 RA5 RA4
D2 RA4 RA2
D3 RA2 RA4
D4 RAS5 RA2
D5 RA2 RAS
D6 RA2 RAl
D7 RA1l RA2

myke predko
04.11.15

X

__ _CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

dntra gk ony

main ()

{

PORTA = 0;
CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

k =0; // k & n are Special Test Values
n=1;
while(l == 1) // Loop Forever

{
for (i = 0; i < 255; i++) // Simple Delay Loop
for (3 = 0; j < 129; j++);

if (0 == k)
{

if (0 == n)
{

PORTA = 0b000010000; // Path 1
TRISA = 0b011101011;

n = -2;

}

else

{

PORTA 0b000100000; // Path 2

TRISA = 0b011001111;

if ((4 == k) & (0 == n))

PORTA = 0b000000100; // Path 3
TRISA = 0b011101011;

n = 2;

k = -2;

else if (4 == k)

PORTA = 0b000000100; // Path 4
TRISA = 0b011111001;

n=1;

k = -2;

}
else

if (0 == n)

PORTA = 0b000000100; // Path 5
TRISA = 0b011011011;

0b000010000; // Path 6
05011001111 ;

k + 2; // Next Time, Go to “else”

} // elihw
} // End cNoNest

Once I had the program working, I removed the
redundant braces and looked for places where the
multiple if statements could be combined into some-
thing simpler. I came up with the following cNest.c:

#include <pic.h>
/* cNest.c - Jump Between LEDs with ifs

This Program will Nest the various “if”
statements of “cNoNest.c” to try and get a
program that is easier to follow.

42 123 PIC® MCU Experiments for the Evil Genius

The LED values are: else if ((4 == k) & (0 == n)) // Combine the
// Test Conditions

LED Anode Cathode {
DO RA4 RAS PORTA = 0b000000100; // Path 3
D1 RA5 RA4 TRISA = 0b011101011;
D2 RA4 RA2 n'=2;
D3 RA2 RA4 k = -2;
D4 RA5 RA2 }
D5 RA2 RAS5 else if (4 == k)
D6 RA2 RAl {
D7 RA1l RA2 PORTA = 0b000000100; // Path 4
TRISA = 0b011111001;
myke predko n=1;
04.11.15 k = -2;
} /7 £i
it else if (0 == n)
{
___CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & PORTA = 0b000000100; // Path 5
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS & TRISA = 0b011011011;
FCMDIS) ; }
else
{
b Al ol T oW PORTA = 0b000010000; // Path 6
TRISA = 0b011001111;
main () n=1;
{ } /7 £i

PORTA = 0; k=%k 1 2; // Next Time, Go to “else”

CMCONO = 7; // Turn off Comparators n=n-1;

ANSEL = 0; // Turn off ADC

} // elihw

k =0; // k & n are Special Test Values } // End cNest

n=1;

e o B I admit that cNest.c isn’t a huge improvement to

whlle == oop Forever . aye .

{ cNoNest.c in terms of readability, but by reducing the
for (i = 0; i < 255; i11) // Simple Delay Loop number of unneeded braces, I did manage to reduce
for (3 = 0; 3 < 129; 3j11); the amount of space the main loop of the application
££ (0 ==) takes and made it easier to look through the entire
if (0 == mn) application. This is an example of what you will see if
¢ your task is to support an application that has been in

PORTA = 0b000010000; // Path 1 i . dtint dified il

TRISA = 0b011101011: use for a long time and has been modified to reflect

n = -2; new requirements and fixes to various problems that
}1 have been encountered. In these types of applications,
else S . .
¢ it is often impossible to understand exactly how the

PORTA = 0b000100000; // Path 2 code is working, and you end up making small changes
}Tfffs;. Rl O0T s that perpetuate its increasing complexity.

1

single variable must be tested. Multiple if and else
statements can be combined to meet the requirements
quite simply. The code below demonstrates this:

if (4 == i) // Go South if Index at 4

{

Direction = 180;

}

else if (5 == i) // Go North if Index at 5
{

Direction = 0;

; : . }

Cases exist where multiple statements are required else if (7 == i) // Go East if Index at 7

because of multiple constant values against which a {

Section Two Introductory C Programming 43

Direction = 90;

}

else // Go West for everything else
{

Direction = 270;

O e

If you were writing your application in BASIC, you
would probably use the select/case statements like the
switch/case statements used in cSwitch.c listed below:

#include <pic.h>
/* cSwitch.c - Demonstrate Operation of “Switch”

This program demonstrates the operation of the
switch statement.

myke predko
04.10.18

>

int i = 4;
int Direction = =-1;

main()

{

switch (i)

{

case 4: // Go South if Index == 4
Direction = 180;

break; // Leave Switch Statement
case 5: // Go North if Index at 5
Direction = 0;

break;

case 7: // Go East if Index at 7
Direction = 90;

break;
default: // Go West for Everything Else
Direction = 270;

} // hetiws

while(l == 1);

} // End cIf

This application provides the same function of
responding to multiple possible conditions that are
listed in the multiple if statements at the start of this
experiment. By using the switch statement, the code is
actually a lot simpler. The case statement’s parameter
combined with the switch statement’s parameter forms
the if statement:

if (SwitchParameter == CaseParameter)

{
// Statements after the “Case” Statement to the
// “break” or next “case Statement

YL EL

The use of the case statement is obviously a lot eas-
ier to key and a lot less likely to have a syntax error
like you had with the if statement.

The “default:” condition works exactly the same as
the else statement in the if statement; the statements
after it execute only if all parameters don’t match any
of the case statements.

This is all there is to the switch/case statements
except for one point: the break statement. This state-
ment causes execution to jump out of the current
switch statement and execute the statement following
it. You can do some interesting things if the break
statement inside a switch block is not included. For
example, if the switch block was being used to record
the direction of motion (keeping in the tradition of the
wheel direction), it could increment the counter for
each 90 degrees rather than placing a hard value in the
counter variable. The example code for this implemen-
tation is:

i = 0; // Clear Direction Counter

switch (Direction)

{

case 180 // Going South Index
i=3+1;

case 0 : // Going North Index
J=ng bl

case 90: // Going East Index
af i) ar i

break;

default: // Going West Index = 1
a) Ol ol

} // hctiws

n
'S

n
w

L}
[8]

Obviously, you have to plan for situations where
you can eliminate the break statement in your switch
code, but when you do, you really have a feeling of
accomplishment—and there’s a good chance you’ve
simplified the amount of application code required for
the program. When you are starting out, you will prob-
ably use the switch/case statements for situations like
this one, where multiple if statements exist, and all of
them are comparing to a constant value and executing
a break statement at the end of the case.

44 123 PIC® MCU Experiments for the Evil Genius

Experiment 15—Conditional Looping

starter kit

There are a couple of methods of implementing condi-
tional loops. In this experiment I will look at the most
common method: the basic while loop. The while loop
allows you to repeatedly execute a set of instructions
while a test expression is true. That is, the while loop
can be used for conditionally repeating code. But it can
also be used to implement infinite loops in your appli-
cations. Some programming philosophies do not use
the basic while loop, but they also do not provide you
with the simple readability of the basic while loop.

The while loop is a programming construct that
tests an expression before allowing execution to take
place within the loop. If the expression is not zero, then
execution will take place within the while loop, and at
the end of the loop, execution will return to the expres-
sion test and the process will repeat. If the expression
evaluates to zero, then execution will skip past the loop
and continue at the statement after it.

To show how this works, the following statements
can be used:

i = 0
while (i < 4)
{
i =41 + 1; // while Loop Code
} // elihw

In these statements, the variable i is initialized to
zero. Next, it is compared to 4, and if it is less than 4
(i.e., the expression is true or returns a nonzero value),
the code inside the while loop (incrementing the vari-
able i) is executed. When i is no longer less than 4, the
while expression becomes false (and returns a zero
value), the code inside the while loop is skipped over,
and execution continues at the statement after the
closing brace of the while loop.

To demonstrate the operation of the while state-
ment in an application, I have modified cFlash.c into
cFlashWhile.c in which the two for statement delays
have been replaced with a single while loop that incre-
ments the two variables i and j until they are both
greater than 255 and 78, respectively:

#include <pic.h>
/* cFlash While.c - Simple C Program to Flash an
LED on a PICl6F684

This Program is a modified version of “cFlash.c”
to use “while” loops

instead of “for” loops

RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.06.19

),
__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &

UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

inteiy s

main()
{
PORTA = 0;
CMCONO = 7;: // Turn off Comparators
ANSEL = 0; // Turn off ADC
TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS = 0;

while(1l == 1)
{

// Loop Forever

i= 0;
j=0;
while ((i < 255) || (i < 78))
{
ih sk A Sko // Increment Small Counter
if (i > 255)
{ // Roll Over to Large Counter
i = 0;
j=3 + 1;
Y /7 EL
} // elihw

RA4 = RA4 * 1;
} // elihw
} // End cFlash While

// Toggle LED

Although cFlash While.c is a direct copy of cFlash.c,
I found if I used the same test values for i and j (255
and 129. respectively), the delay would increase to 833
msecs rather than the standard value of 500 ms. By
running cFlash While.c in the MPLAB IDE simulator,
I was able to empirically determine the value for j that
would result in an approximately 500 ms delay.

As you work through the code, you will discover
that I use the while statement

while (1 == 1)

a lot. This is my loop-forever code, and I use it either as
the overall loop in an application (like this one) to

Section Two

Introductory € Programming 45

encompass the I/O and processing code, or I place it at
the end of the application to stop it from returning to
the caller (and end up executing again repeatedly). The
statement could be simplified to:

while (1)

The PICC Lite compiler can detect statements like
this where the test expression is always true (or 1) and
replace the statement with something like:

Loop :
: // Code Executed inside while loop
goto Loop;

There is another form of the while loop. It is the
do/while, which takes the following format:

do

{
// Code Executed inside the do/while loop
}

while (expression);

This is a subtle modification of the original, where dur-
ing the first time through the loop, the expression is
not tested to be true; you are guaranteed to execute
the code inside the loop at least once. The advantage of
using this form of the while loop is that variables or
hardware register values that are tested in the while
expression do not have to be initialized to force execu-
tion to work through the code at least once. Some C
implementations have the do/until statement, which I
do not like because it forces negative logic into your
program (i.e., looping until a condition is true is the
logical negative of looping while a condition is true).

Two keywords are also used in while loops: break
and continue. “Break” will force an exit of the while
loop, and “continue” will force execution to return to
the while statement where the expression is evaluated.
Personally, I do not use these statements because they
act as gotos in the program, changing execution with-
out regard to the structured programming statements.
And I do not recommend that you use them in your
programs, as they can be difficult to debug and can
lead an application to behave unpredictably (especially
if you are new to programming).

Experiment 16—The For Statement

starter kit

I try to teach programming as I was taught, and that is
to emphasize the capabilities of the different functions
built into the language and how to use them appropri-
ately in applications. Some people, however, seem to
think they can use the for statement in virtually any sit-
uation where conditionally looping code is required. I
guess the theory behind using the for statement in dif-
ferent situations is to reduce the number of statement
types that are in your programming inventory. In this
experiment and at the end to this section, I will show
that the for statement is a wonderfully flexible state-
ment, but that it can make code a lot more complex to
understand and debug.

The design of the for statement is actually quite ele-
gant and results from the question, “what are the
requirements of repeating loops?” The statement for-
mat is:

for (Initialization; Loop Test Expression; Loop
Increment)
Statement

and its operation is similar to the BASIC code for a
loop. Initialization is the process of initializing vari-
ables that are (ideally) required for the looping opera-
tion, but the process can also include other assignment
statements. The loop test expression is an expression,
similar to that used in the while statement to test
whether or not the loop should repeat. Finally, the loop
increment statement is normally used to increment the
loop counter after each iteration of the loop.

The for statement is typically used when you need a
loop that repeats a set number of times. It might look
like the following:

for (i = 0; i < MaxNumber; i++)
Statement; // Statement Executed Repeatedly by
“for” Loop

46 123 PIC® MCU Experiments for the Evil Genius

and could be modeled as:

i = 07
while (i < MaxNumber)
{

Statement; // Statement Executed Repeatedly by
“for” Loop

i =41+ 1; // Equivalent to “i++”

} // elihw

In this for statement, a counter is initialized to zero
and 1s incremented (using the “i++ " statement, which
is equivalent toi =1 + 1) until it is equal to MaxNum-
ber. This should be quite easy to understand and use in
your own applications.

The use of the for statement becomes more com-
plex when you consider that multiple initialization and
loop increment assignment statements can be used
(with each separate statement separated by a comma).
If commas are not used to separate the assignment
statements, the compiler will become confused as to
how to parse (convert) the statements correctly. The
following for statement is completely valid:

for (i = 0, j = 47; i < MaxNumber; i++, j = j - 2)
Statement; // Statement Executed Repeatedly by
“for” Loop

In this for statement, both 1 and j are initialized, and
both variables are changed in the loop increment por-
tion of the for statement.

To demonstrate how versatile the for statement is, I
have created an application that cycles each of the
PICKkit 1 starter kit’s eight LEDs. (It will be explained
in more detail later in the book.) Rather than explain-
ing how the for statements work in the application, you
should work through them on your own (it’s really not
very hard—especially with the provided comments).

#include <pic.h>
/* cPKLED 2.c - Roll Through PICkit 8 LEDs using
only “for”

This Program will roll through each of the 8
LEDs built into the PICkit PCB.

The LED values are:

LED Anode Cathode
DO RA4 RAS
D1 RA5 RA4
D2 RA4 RA2
D3 RA2 RA4
D4 RA5 RA2
D5 RA2 RAS
D6 RA2 RAl
D7 RA1l RA2

Using only “for” statements.

The original name was going to be “cFor”, but
that seemed too potentially explosive.

myke predko
04.11.09
b

__ CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &

UNPROTECT \

& UNPROTECT & BORDIS & IESODIS & FCMDIS);

Intdl gk,

main ()

{

PORTA = 0;

CMCONO = 7; // Turn off Comparators

ANSEL = 0; // Turn off ADC

k = 0; // Start at LED 0

foxr(;:) // Loop Forever

{

for (i = 0; i < 255; i++) // Simple Delay Loop

H
For (G = 0: 3 < 129;

for (n = 0; (0 == k)
{ // Simulate “if (0
PORTA = 0b010000
TRISA = 0b001111
} // rof

for (n = 0; (1 == k)
{ // Simulate “if (1
PORTA = 0b100000;
TRISA = 0b001111;

} // rof

for (n = 0; (2 == k)
{ // Simulate “if (2
PORTA = 0b010000;
TRISA = 0b101011;

} // zof

for (n = 0; (3 == k)
{ // Simulate “if (3
PORTA = 0b000100;
TRISA = 0b101011;

} // rof

for (n = 0; (4 == k)
{ // Simulate “if (4
PORTA = 0b100000;
TRISA = 0b011011;

} /I Tof

for m(nE =m0 (5N==1Ic)
{ // Simulate “if (5
PORTA = 0b000100;
TRISA = 0b011011;

Y /ot

for (n = 0; (6 == k)
{ // Simulate “if (6
PORTA = 0b000100;
TRISA = 0b111001;
Yol rok

for N (nE=N0= (7R ==
{ // Simulate “if (7
PORTA = 0b000010;
TRISA = 0b111001;
A A=k

J++);

(0 ==
k)ll

(0 ==
k)”’

(0 ==
k)"

(0 ==
k)"’

(0 ==
k)”

(0 ==
k)”

k= (k + 1) % 8; // Increment
[/ of 0-7

} // rof
} // End cPKLED 2

n);

n);

n);

n);

n);

n);

n);

n++)

n++)

n++)

n++)

n++)

n++)

n++)

n++)

k within range

Section Two Introductory C Programming

)

For Consideration

At the start of this section, I noted that C is notorious
for its ability to allow programmers to create very effi-
cient but very difficult-to-understand program state-
ments. In the last experiment, [showed how the for
statement is very versatile and how it can be used to
replace all the traditionally used conditional execution
statements. The motivation for writing complex state-
ments is usually to minimize the amount of keying
required for an application, although sometimes it can
seem like the author of the code is simply trying to
demonstrate his or her mental superiority.

For example, in looking at an example application,
you might run across a statement like the following:

for (i = (j = Start) * 7, Match = 0; (Match =
(PORTC != (PORTA *= Sequencel[j++]))) && (i++ <
25););

// Sequence Match Confirmation?

At first glance, it is probably impossible to under-
stand what this statement is intended to accomplish,
and, to make matters worse, the comment is no help at
all as it does not seem to relate to anything in the
statement. You may feel like giving up and looking for
another example, but you can do this; you can decode
statements like this surprisingly easily.

When I presented the for statement, I noted that it
was in the following format:

for (Initialization; Loop Test Expression; Loop
Increment)
Statement

and each part (which consists of a C assignment state-
ment or expression) of the for statement can be bro-
ken out into pieces and rewritten into pieces that make
more sense. For example, the initialization assignment
statement of the for statement is:

1= (g =" Start) x 7

and takes advantage of the ability of C to save an
intermediate value in a complex expression. Because |
is equal to Start and it is a factor in the initialization of
i, the author has compressed the two following lines
into one:

Start * 7;
Start;

Similarly, the comparison expression of the for
statement can be broken out and understood by rec-
ognizing that comparison values are arithmetic values
(zero for false, and not zero for true). To take

advantage of this point, the Match variable (the first
part of the comparison) is loaded with the result of the
comparison of PORTA (which has been XORed with
a value from the Sequence array) to PORTC. When an
arithmetic or binary operator is placed before the
equals sign in an assignment statement, the line is
translated as the destination value operated on by the
other parameter. I might write out the comparison part
of the for statement as follows:

PORTA = PORTA * Sequencel[jl; // Same as “PORTA

H=

Sequence[jl;
i =4 + 1; // Increment “j”, See below
Match = 0;
if (PORTC == PORTA)
Match = 1;

Both parts of the comparison use the unary incre-
ment (+-) operator to increment the variables i and j
after the expression has finished executing. When the
unary increment or decrement operator is put to the
left of the variable, as in the following example

++3;

the variable is incremented before the statement exe-
cutes. Similarly, if the unary operator is on the right
side of the variable, the variable is incremented after
the statement has executed. I recommend the use of
the increment and decrement unary operators in your
coding, as they are a lot easier to key than the com-
plete statement

a) =] catg

and they are generally accepted as the shorthand ver-
sion of these statements.

A null statement is used for the increment part of
this statement. This is a bit unusual, but the unary
increment operators in the comparison expression pro-
vide this function.

Just as the null statement is used as the for state-
ment’s increment statement, a null statement is used as
the looping statement or statements that follow the for
statement. If you look at how I have broken out the
comparison expression, you will see that there is an
assignment statement to PORTA, which could be
moved to the looping statement area of the for state-
ment.

If I were to write equivalent code to the for state-
ment given at the start of this discussion, it would look
something like this:

i = Start * 7;

j = Starkt;

Match = 0;

while ((0 == Match) && (i < 25))

48 123 PIC® MCU Experiments for the Evil Genius

{
PORTA = PORTA * Sequence[j];

if (PORTC == PORTA)

Match = 1; // Segquence Match Confirmation?
gm0

I =N]y

} // elihw

i=414+ 1;

Jio= a1

You should be able to relate this code to the origi-
nal, and I’'m sure the comment makes more sense now.
‘What might not make sense is the incrementing of i
and j after the while loop; these statements were put in
to make sure the values at the end of the equivalent

match the values at the end of the original for state-
ment.

In terms of readability and decodability, I am sure
the series of statements I have come up with are vastly

superior to the single for statement. In terms of effi-
ciency, the number of instructions created for either
solution is not substantially different; nor is the execu-
tion speed of the two solutions dramatically different.
The major difference between the two statements is
the amount of keying required for them; the sequence
of statements requires many times the number of the
keystrokes of the short for statement.

It should be no surprise that I recommend that
when you program, you avoid heavily compressing
statements unless a strong reason exists to do so.
Although you may save a substantially greater number
of keystrokes, you should ask yourself how much time
you might later lose debugging or decoding one com-
pressed complex statement.

Section Two

Introductory € Programming 49

Section Three

Simple PIC® MCU Applications

Before going on, I would like to walk through a modi-
fication to your PICkit™ 1 starter kit. This minimizes
the chance for damaging either the PIC microcon-
troller you are programming to put into another cir-
cuit or the PICKkit 1 starter kit you are using to
program the PIC MCU. Although the PICkit 1 starter
kit is an excellent tool, the machined receptacle socket
that is built into the PCB is not designed for many
repeated plug/unplug cycles. Looking at manufac-
turer’s datasheets, military-grade dual in-line chip
package (DIP) sockets are qualified for 48 cycles. The
specified number of plug/unplug cycles for industrial-
grade sockets is 50 times (although they are not tested
to see if they meet this specification). As you work
through this book and your own experiments, you will
easily exceed the maximum number of plug/unplug
cycles for a military-grade socket, and chances are at
least one or more pin receptacles in the socket will
wear out and stop making reliable contact. You will
find also that plugging and unplugging parts in the
machined receptacle is difficult and that it’s easy to
bend the pins, have them fall off, or get stuck in the
PICKkit 1 starter kit’s sockets. You can avoid these
problems by adding a zero insertion force (ZIF)
socket to the PICKkit 1 starter kit.

Follow the steps outlined here. To add the ZIF
socket you will need the following:

1 PICkit 1 starter kit with snap-off PCB still
attached

1 14-pin ZIF socket (3M/Textool 214-3339-00-
0602] recommended)

51

1 PICl6F684

1 1l4-pin ZIF socket
(3M/Textool 214-3339-
00-0602J recommended)

1 0.01 pF capacitor

1 3-foot length of 28- or
30-gauge solid core
wire

I 0.01 pF capacitor

1 3-foot length 28- or 30-gauge solid core wire
Weldbond glue

Solder

The tools you require are as follows:

Soldering iron

DMM with audible continuity tester
Needle-nose pliers

Clippers

Wire strippers

A ZIF socket is similar to the machined receptacle
socket already on the PICkit 1 starter kit. The differ-
ence is that the pin receptacles can be opened or
closed by moving the lever on the socket. The open
position is shown in Figure 3-1, and the pin recepta-
cles are closed when the lever is pushed down. This
socket will be added to the open 14-pin DIP socket
area on the prototyping snap-off PCB on the right
side of the PICKit 1 starter kit (see Figure 3-2), and
each pin will be wired to the corresponding pin of the
machined receptacle socket already on the PICkit 1
starter kit. Expect that this task will take an hour.

Figure 311 I4-pin 3M/Textool ZIF socket

Il:ig'ufe 32 I 4-p£n ZIF socket added to the
prototyping area of the PICkit 1 starter kit

1

The steps for adding the ZIF socket are as follows:

Solder in the ZIF socket with its lever up (i.e.,
pin receptacles open). This will ensure proper
operation. If you solder the ZIF socket in with
the lever down, you will find that the recepta-
cles will not open properly. You may find that
you have to prop up the PCB with ZIF socket
to make sure the lever stays up during solder-
ing. If, after soldering, you find that some pins
stick or don’t open easily, move the ZIF
socket’s lever up and remelt the pin’s solder to
see if that relieves the stress.

Using point-to-point wiring, add the 14 connec-
tions between the machined receptacle socket
and the ZIF socket (see Figure 3-3). Pin 1 of
the PCB socket should go to Pin 1 of the ZIF

02-01700.01.,
BL‘Rnunul:?.;

Figﬂu.ré 33 Po‘iﬁlt‘-ro-point i&ziring used to connect
ZIF pins to PICkit 1 starter kit programming socket

pins

socket, pin 2 of the PCB socket should go to pin
2 of the ZIF socket, and so on. When I have
done this, I try to keep my stripped pin lengths
to /32 inch (1 mm). There are two rows of holes
beside the 14-pin socket holes in the prototyp-
ing snap-off PCB; to these holes you can attach
one side of the wires rather than soldering
them to the pins of the ZIF socket. When you
are adding the wires, it is a good idea to leave
the ZIF lever up to make sure that, if the ZIF
socket pins remelt, there won'’t be problems
later with any of the receptacles.

Test your wiring using the multimeter continu-
ity tester function. Each pin of the machined
receptacle socket should be tested against the
corresponding pin on the ZIF socket, as well as
against its adjacent pins to make sure no short-
ing exists.

When you are comfortable that your wiring is
correct, solder the 0.01 wF in the two holes
above the 14 holes used by the ZIF socket. I
soldered the 0.01 wF capacitor on the backside
of the PCB because the ZIF socket covered the
holes on the topside. When soldering in the
capacitor, make sure the leads are as short as
possible, that it lies against the PCB, and that it
does not extend beyond the rubber feet on the
bottom of the PICkit 1 starter kit.

The final step is to glue down the wiring using
the Weldbond glue. If you put on a reasonably
thin bead, the glue should set to a hard, clear
consistency in 6 to 12 hours. To make sure the
wires don’t extend beyond the rubber feet on
the bottom of the PICKkit 1 starter kit, you may

52

123 PIC® MCU Experiments for the Evil Genius

want to hold down the wires with a weight or
tie them down while the glue hardens. I use
Weldbond because it can be pulled off later
without damaging the PCB.

Once you've completed the six steps and the glue
has hardened, you have a ZIF-socket-equipped PICkit

1 starter kit that will stand an indefinite number of
plug/unplug cycles. And, it is still connected to the
other functions of the PICKkit 1 starter kit, which allows
you to experiment with the LEDs, buttons, and poten-
tiometer interfaces built into the PICKkit 1 starter kit.

Experiment 17—Basic Delays

starter kit

The cFlash.c program presented in the introduction to
this book included a simple two “for” statement delay.
For the application, I wanted a delay of a half-second
(500 ms) so the LED would flash on and off with a
period of one second. Finding the end values of the for
statements was done empirically; I used the simulator,
as I will show in this program to time the delay and
then adjusted the values until the delay was approxi-
mately 500 ms. In this experiment, I wanted to go back
to the cFlash.c application and see if there was some
way in which I could quantify the delay so I could use
it in other applications.

To test the application, I modified cFlash.c slightly
as you can see in the source code below:

#include <pic.h>
/* cDlay.c - Try to Quantify Delay Values

This Program is a modification of “cFlash.c¢” and
used to quantify the value of the end of the
delay variables and the time delay on the
Flashing DO LED.

This program is to be used with both the
simulator and the PICkit 1 PCB with PIC16F684
installed.

RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.06.19

i
__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &

UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS);

1nte 3o

int iEnd = 235; // Outside Loop Value
int jEnd = 235; // Inside Loop Value
main ()

{

PORTA = 0;

CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS5 = 0;

while(l == 1) // Loop Forever

{

NOP() ; // Breakpoint Here

for (i 0; i < iEnd; i++) // Delay Loop

for (j = 0; j < jEnd; j++);

NOP() ; // Breakpoint Here

RA4 = RA4 ~ 1; // Toggle LED
} // elihw
} // End cDlay

The first change to cFlash.c for this experiment was
to add two variables, iEnd and jEnd, that I could
change easily to test the operation of the application.
The second change was to place two statements you
have never seen before (NOP();) before and after
the delay code. The reason for the first change should
be apparent: The variables allow the loop values to
be changed easily without affecting the program
statements. The second modification adds two instruc-
tions that don’t do anything, and I could use them for
breakpoints without affecting the operation of the
application or breaking an instruction that is used mul-
tiple times in the application.

The points made regarding the NOP(); statements
are probably confusing and might not make a lot of
sense at this time. First, the NOP(); statements are
replaced with “nop™ or no-operation assembly lan-
guage instructions, which I will discuss in more detail
later in the book. And stated previously, the PICC
Lite™ compiler NOP(); statement can be used as a

Section Three

Simple PIC® MCU Applications 53

breakpoint without affecting the operation of the C
program. Second, you will find that the PICC Lite
compiler has a very efficient built-in optimizer, which
looks for opportunities to create executable code that
is as small and efficient as possible. This optimizer will
try to reuse code that performs the same function in
different parts of the program. What the optimizer
considers to be the same function is not necessarily the
same thing you or I would consider the same function.
Therefore, you will find situations where execution
will jump around to different locations in the applica-
tions without apparent reason. By adding the NOP();
statements, you are putting an instruction explicitly
before the start and after the end of the two delay for
statements.

To measure the time of the delay, I enabled the
MPLAB® IDE simulator and then added the Stop-
watch function (see Figure 3-4) to the project. The
Stopwatch function will count the number of instruc-
tions that execute after the start of the application or
after being reset.

To measure the delay for different values of iEnd
and jEnd, I put a breakpoint at each of the two NOP();
statements. [did this by moving the cursor to the line
where the NOP(): statement was found, right-clicking,
and selecting “Set Breakpoint.” I then reset and ran
the program, and when it stopped at the first NOP();
statement, I clicked on the stopwatch’s zero button to
reset the stopwatch, then clicked on the run button
again, and waited for the next breakpoint to stop exe-
cution.

I was expecting that the iEnd and jEnd values could
be reversed. This is to say that the delay of iEnd equal
to 50 and jEnd equal to 100 would be the same as iEnd
equal to 100 and jEnd equal to 50. This turned out not
to be the case; the delay varied by several percent
when the iEnd and jEnd values were reversed. To try

Total Simulated

Stopwatch

Synch | Instruction Eycies[1002057] 1002209 _
Time [Secs) i 1.00205?[1.002209 |

Processor Frequency [MHz)

v Clear Simulation Time On Reset

Figure 3-4 MPLAB IDE Stopwa'tch functioﬁ i

and come up with a simple, repeatable formula that
could be used for the application, I tried making both
values the same and came up with the following rough
formula:

Delay(Seconds) = 1.8(107°) x iEnd?

This formula is reasonably accurate for the range of 50
ms to 2 seconds.

Thinking about the optimizer and thinking about
the code, I realized that the optimizer didn’t do an
obvious optimization and that is why I replaced the
two for statements with the following statements:

iEnd;
jEnd;

nn

Without anything happening in the inside for loop,
the two loops are not doing anything other than exit-
ing with i and j being changed. In this case, the for loop
code is still included in the application, but you will
find cases where the ultimate optimization that I listed
previously will be produced by the compiler and its
optimizer.

Delays are critical operations in microcontroller (or
any real-time) programming, and I will be showing you
a number of methods to implement delays in your
applications. Although you might want to get your
delays exact (in terms of time or instruction cycles),
remember that this is often close to impossible and
usually not required. As I discuss different applica-
tions, I will point out whether or not the delay’s
absolute accuracy is critical or if an approximation
(usually within 10 percent) is acceptable for the
application.

54 123 PIC® MCU Experiments for the Evil Genius

Experiment 18 —Sequencing PICkit 1 Starter Kit LEDs

starter kit

As you have gained insight into PICC Lite compiler
PIC microcontroller programming and the PICkit 1
starter kit, you have probably started asking yourself
how did I know to turn on the LED marked “D0” to
make the PIC16F684’s RA4 and RAS pins outputs,
and then output a 1 (or high voltage) and a 0, respec-
tively. The process that I went through is quite simple
and only required looking at the schematics for the
PICkit 1 starter kit. It did not require any probing or
trial and error.

When you look at the LED circuitry in the PICKkit 1
starter kit’s schematic (found in the PICkit I Flash
Starter Kit User’s Guide), you see that each of the eight
LEDs is wired as part of a pair, like I show in Figure 3-
5.To turn on one LED, current must flow in one direc-
tion, and to turn on the other, current must flow in the
opposite direction. When I started this experiment, I
had hoped that I could make active more than just the
two I/O pins connected to the LED output. But when I
followed the various connections, I discovered that if
more than two I/O pins were active at any time, there
was a good chance that a second LED would be inad-
vertently lit.

With this knowledge, I came up with Table 3-1,

which lists the TRISA and PORTA register values
needed to turn on each LED on the PICKkit 1 starter

PIC MCU
I/O Pin

PIC MCU
1/0O Pin

lfit;:jure S5 N LED wiring

Table 3-1
PICkit 1 Starter Kit LED Display TRISA and PORTA
Values

LED TRISA PORTA

DO B/11001111° B 00010000’
D1 B/11001111° B’00100000*
D2 Br11101011° B’00010000
D3 B’/11101011’ B’00000100
D4 B-11011011° B/00100000
D5 B/11011011’ B’00000100”
D6 B-11111001’ B’00000100
D7 Br11111001° B’00000010*

kit. To test this knowledge, I came up with the follow-
ing program, which turns on each LED in sequence.
The program uses the same delay that we used for the
original cFlash (flashing DO LED) program to show
clearly if each LED lit and if they lit in the correct
order. Note that in the program, the information from
Table 3-1 is part of the documentation.

#include <pic.h>
/* cPKLED.c - Roll Through PICkit 8 LEDs

This Program will roll through each of the 8
LEDs built into the PICkit PCB.

The LED values are:

LED Anode Cathode
DO RA4 RAS
D1 RA5 RA4
D2 RA4 RA2
D3 RA2 RA4
D4 RAS5 RAZ2
D5 RA2 RAS
D6 RA2 RA1l
D7 RA1l RA2

myke predko
04.09.10

“2

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

intedo sk

main()

{

PORTA = 0;
CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

k = 0; // Start at LED 0

Section Three

Simple BEC® MEU “Applications 55

while(1l == 1) // Loop Forever

{

for (1 = 0; i < 255; i++) // Simple Delay Loop
for (3 =10; 3 < 129; J++):

switch (k) { // Select Which LED to Display
case 0:

PORTA = 0b010000;
TRISA = 0b001111;
break;
case 1:
PORTA = 0b100000;
TRISA = 0b001111;
break;
case 2:
PORTA = 0b010000;
TRISA = 0b101011;
break;
case 3:
PORTA = 0b000100;
TRISA = 0b101011;
break;
case 4:
PORTA = 0b100000;
TRISA = 0b011011;
break;
case 5:
PORTA = 0b000100;
TRISA = 0b011011;
break;
case 6:
PORTA = 0b000100;
TRISA = 0b111001;
break;
case 7:
PORTA = 0b000010;
TRISA = 0b111001;
break;

} // hctiws

k= (k+ 1) % 8; // Increment k within range of
0-7

} // elihw
} // End cPEKLED

Looking at the program, its function should be
fairly easy to understand. The large switch block of
code passes execution to the series of TRISA and
PORTA register writes that are specific to the LED to
be written. I could have written to individual bits
rather than the entire port, but I felt that the entire
port write was easier to follow and understand.

I would consider this application to be quite large,
clumsy, and not particularly well written. The use of
four register writes per LED took a long time to key in
(even with cutting and pasting), and there was a very
good chance of making a data entry mistake, or typo.
As you work through the experiments in this book,
(particularly the ones in Section 4), think about how
you could improve the way a program is written. For
example, in this previous example I believe I could
reduce the total number of lines to less than a quarter
and eliminate the repeated data values used to turn on
and then turn off each LED.

This program could be considered an initial version
of a Cylon Eye from Battlestar Galactica, which is also
called a “Knight Rider Eye” from the TV show. After
trying out the program presented in this experiment,
you might want to see if you can make the LEDs
reverse direction after reaching one extreme. To do
this you will require an additional variable, this one
storing the direction of the LEDs and changing its
value each time the on LED is either DO or D7. Along
with the direction variable, you will have to make sure
that the TRISA and PORTA bits are returned to their
original state (i.e.,loaded with zeros for output and in
input mode) before turning on the next LED in the
sequence.

Experiment 19—Binary Number Output Using PICkit 1
Starter Kit LEDs

In the previous experiment, I demonstrated how each
LED on the PICkit 1 starter kit could be turned on in
sequence. I noted that only one LED could be turned

on at any time, meaning that the PICkit 1 starter kit
cannot simultaneously display more than one bit of
data at a time. In this experiment, I will show how you
can display an incrementing eight-bit counter on the
eight bits of the PICKkit 1 starter kit.

The method used to display data on all eight bits
simultaneously is the same method that I will demon-
strate for multidigit LEDs and dot array LEDs. To give
the appearance that all the LEDs are active at the
same time, we will rotate through each LED in
sequence and, if the bit the LED is representing is set,
then the LED is turned on for a set period of time. If
the bit is not set, then the LED is left off for the same

56 123 PIC® MCU Experiments for the Evil Genius

amount of time. This ensures that the brightness of
each LED will be constant regardless of the number
turned on, and that constant timing for the application
is provided. This method is also the basis for control-
ling multiple motors and servos (as in a robot) and
should not be considered applicable only to the
devices shown in this book.

The rule of thumb that I use when sequencing
LEDs is that each one should be turned on 50 times

per second. For this application, I wanted each LED to

be on 100 times a second, which means that each LED
1s turned on over a 0.01 second (10 ms) period. For
each LED to be active in the 10 ms time period, it
should be turned on for 1.25 ms (10 ms divided by

eight). To create this delay, I used a single for loop with

the delay value found empirically.

The program I came up with increments a counter
once every half a second, and the current counter
value is displayed on the eight LEDs of the PICkit 1
starter kit:

#include <pic.h>
/* cLEDDisp.c - Use D0-D7 as an incrementing
Counter

Using “cPKLED.c” as a base, cycle through each
LED at 100x per second (1250 us between LEDS).

myke predko
04.09.12

i

_ _CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

intadn i
int value = 0;
int Dlay = 67; // LED Time on Delay Variable

main()

{

PORTA = 0;

CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

j = 0; // Reset the Display Counter

while(l1 == 1) // Loop Forever
{
NOP () ;
for (i = 0; i < Dlay; i++); // Simple Delay
Loop
if ((value & (1 << 0)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b010000;
TRISA = 0b001111;

NOP () ;
for (i = 0; i < Dlay; i++);
if ((value & (1 << 1)) == 0)

PORTA = 0;
else // Display the Value
PORTA = 0b100000;

TRISA = 0b001111;

for (i = 0; i < Dlay; i++);
if ((Value & (1 << 2)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b010000;

TRISA = 0b101011;

for (i = 0; i < Dlay; i++);
if ((Value & (1 << 3)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b000100;

TRISA = 0b101011;

for (1 = 0; i < Dlay; i++);
if ((value & (1 << 4)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b100000;

TRISA = 0b011011;

for (i = 0; i < Dlay; i++);
if ((Value & (1 << 5)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b000100;

TRISA = 0b011011;

for (i = 0; i < Dlay; i++);
if ((value & (1 << 6)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b000100;

TRISA = 0b111001;

for (i = 0; i < Dlay; i++);
if ((Value & (1 << 7)) == 0)
PORTA = 0;

else // Display the Value
PORTA = 0b000010;

TRISA = 0b111001;

j =3 + 1; // Increment the Counter every 1/z s
if (3 >= 50)
{
Value = Value + 1; // Increment Display Counter
j = 0; // Reset the Counter
15
} // elihw
} // End cPKLED

I chose the 10 ms display time because it allows sim-
ple calculations for counting a set number of loops for
larger delays. I take advantage of this for incrementing
the Value variable, which is displayed on the LEDs.

Two points should be noted regarding the code I
used to determine whether or not a specific LED is
turned on in this experiment. The first is the use of
shifting the bit ANDed with “Value” to see if the bit in
“Value” is set. Rather than putting in the decimal,
binary, or hexadecimal equivalent of the bit, I chose to
shift one up by the bit number. By doing this, we can
see exactly what bit is being ANDed with “Value”
rather than having to do a mental calculation. You may

Section Three Simple PIC® MCU Applications 57

feel more comfortable using an equivalent value. Sec-
ondly, I chose to OR the value in PORTA with zero if
the bit is not set to make sure that either path takes up
the same amount of time. This can be extremely impor-
tant in timed applications, and although it makes the
code a bit more complex, it ensures that your timing is
as consistent as possible, regardless of the path taken.

This program will be the basis for displaying binary
data in future experiments. I must point out that it is
actually programmed in a very inefficient manner. In
Section 4, I will provide you with features of the C pro-
gramming language and programming techniques that
will make this application more efficient both in terms
of space used and execution time.

Experiment 20—Basic Button Inputs

PICkit™ 1

| 1
| i,

starter kit

The simplest form of user input you can put into a PIC
MCU application is a button. This is usually accom-
plished by a pulled-up pin with a momentary on button
that pulls the pin to ground (see Figure 3-6). The
PICkit 1 starter kit has a very similar switch circuit on
RA3:it can be used for either controlling the reset of
the PIC MCU (which will be presented later), or it can
be used as an input with which you can experiment. In
this experiment as well as the next one I will demon-
strate how this switch can be used as an input device.
The software for this experiment consists of simply
reading the switch and then determining whether or
not the DO LED on the PICKkit 1 starter kit should be
turned on. When the button is pressed, the logic level

Ve PIC MCU

{E

Input Pin

Figure 3-6 Pulled-'up switch

on RA3 is low, and then RAS (D0’s cathode) is pulled
low. When the logic level input on RA3 is high, RAS is
driven high. The program, cButton.c, is quite simple:

#include <pic.h>
/* cButton.c - Simple C Program to Turn on an
LED when Button is Pressed

This Program is a modification of “cFlash”

RA3 - Button Connection
RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.06.24

i

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

dne iy

main()

{

PORTA = O0x3F; // All Bits are High
CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS = 0;
while(l == 1) // Loop Forever
{

if (0 == RA3) // Set values using “if”
statement
{
RA5 = 0;
}
else
{
RAS = 1;
LA
} // elihw
} // End cButton

cButton.c is written as if the author was familiar
with C, but had only recently started working with the
PICC Lite compiler. In traditional C programming,

58 e SR REESH G

Experiments for the Evil Genius

where no bit inputs are used, the button read and LED
output would probably look like this:

if (0 == (PORTA & (1 << 3)) // Is RA3 High or
Low?

{

PORTA = PORTA & (OxOFF *» (1 << 5)); // Low, Make

RA5 Low
}
else
{
PORTA = PORTA | (1 << 5) // High, Make RA5 High
IS

but the author, seeing the defined pins in the include
files, probably realized that the pins could be read and
written directly rather than having individual bits
ANDed and ORed as I do above. What the author
probably did not realize is that an input pin value can
be passed directly to an output pin as I do in the fol-
lowing cButton 2.c: :

#include <pic.h>
/* cButton 2.c - Simplified C Program to Turn on
an LED when Button is Pressed

This Program is a modification of “cButton”
RA3 - Button Connection

RA4 - LED Positive Connection
RA5 - LED Negative Connection

myke predko
04.11.07

'/

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

int i, J;

main ()
{i

PORTA = Ox3F; // All Bits are High
CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS = 0;

while(l == 1) // Loop Forever
{
RA5 = RA3; // Simpler: Pass Value through to RAS
} // elihw
} // End cButton 2

This is a fairly simple optimization of cButton, but it
illustrates how the pin variable type of the PICC Lite
compiler can be used to greatly simplify the source
code of an application.

Experiment 21—Debouncing Button Inputs

PICkit™ 1
g

W sica 2
B i

If you have some experience with digital electronic cir-
cuits, you’ll know that handling button input is a sur-
prisingly challenging task with a bit of science behind
it, which you will have to understand before you can
successfully process button inputs from the application.
The most critical aspect of understanding button oper-
ation is to debounce the incoming signals. Knowing the
current button state and how you want the application
to work is integral. In this experiment, I will demon-
strate a simple program to change the state of the DO
LED each time the RA3 button on the PICkit 1 starter

kit is pressed. I will demonstrate also how the MPLAB
IDE simulator can be used to verify the operation of
an application before a PIC MCU is burned with an
application.

Each time a switch (or button) state changes, the
contacts literally bounce against each other as shown in
the oscilloscope pictured in Figure 3-7. This happens
both when the contacts are made and when they are
broken. To interpret, or debounce, the change in switch
state, the line is typically polled until it stays in the
same state for 20 ms. The basic code for polling a
switch input line and exiting when the line has changed
state for 20 ms is as follows:

i = 0; // Wait 20 ms for Button Up
while (i < Twentyms)
{

Section Three

Simple PIC® MCU Applications 59

e
RS

Vce

Button
Input

e

‘D Chi:. S Volt 100 s

Figure 3-7 Debounce

if (0 == RA3) // Button Down/Start over
{

g =
}
else // Button Up/Increment Count
{

o

.
r

i = 1 4 1;
R
} // elihw

Using this code snippet, the following cDebounce.c
application was developed:

#include <pic.h>
/* cDebounce.c - Debounce Button Input on RA3

This Program polls the button at RA3 and changes
the state of RAS5 after the press has been
debounced. Use a 20 ms debounce period.

RA3 - Button Connection
RA4 - LED Positive Connection
RAS5 - LED Negative Connection

myke predko
04.11.07

7

__ CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS &
UNPROTECT \ & UNPROTECT & BORDIS & IESODIS &
FCMDIS) ;

int i;

const int Twentyms = 1150; // Declare a Constant
for 20 ms Delay

main ()

{

PORTA = O0x3F; // All Bits are High
CMCONO = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

TRISA4 = 0; // Make RA4/RA5 Outputs
TRISAS = 0;
while(l == 1) // Loop Forever

{
i =0; // wait 20 ms for Button Up
while (i < Twentyms)
{

if (0 == RA3) // Button Down/Start over
i= 0;

else // Button Up/Increment Count
{
1S =i+ e

A et

} // elihw

NOP () ;
i = 0; // Wait 20 ms for Button Down
while (i < Twentyms)

if (1 == RA3) // Button Up/Start over
4 =107

else // Button Down/Increment Count
i= 4 + 1

RAS5 = RA5 » 1; // Toggle RA5 to Turn ON/OFF LED

} // elihw
} // End cDebounce

In the cDebounce.c application, I first wait for the
RA3 line to be high for 20 ms and then I wait for RA4
to be low for 20 ms before toggling the DO LED out-
put state. In the application code, for the first
debounce loop (debouncing button going high), I
added all the braces for conditional code. But for the
second debounce loop (debouncing button going low),
I eliminated the extra braces because only one state-
ment appears after each conditional execution state-
ment, and these statements take up a relatively large
amount of space. For the rest of the book, I will be
using braces only when more than one statement exe-
cutes conditionally.

The NOP(); statement may seem out of place in this
application. When I wrote this application, I found that
I could not place a breakpoint at the i = 0; statement
following the first debounce loop, so I put in the nop
instruction, which gave me a place to set the simulator
breakpoint. This is a good trick to remember when you
are developing your own application.

You might think that the first debounce loop
(debouncing the button input going high) is redundant
or not needed because we just want to execute when
the button is pressed, but you must remember that the
PIC MCU i1s operating at MHz speeds. The debounce
and LED toggle operation executes very quickly, and,
without the button up debounce loop, you’ll discover
that the LED toggles at roughly 50 times per second
rather than once, each time the button on the PICKkit 1
starter kit is pressed.

Before I burned this code into a PIC MCU on the
PICkit 1 starter kit MCU, I simulated it using the
MPLAB IDE simulator. If you were to enable the sim-
ulator and start executing the code, you would discover
that it would get stuck in the first debounce loop
because the default value of RA3 is 0 (or a low logic
level). To change the state of RA3 in the simulator
(and add a digital signal input), you can use the

60 123 PIC® MCU Experiments for the Evil Genius

P Stinukes [Fle Stenuds |

Irput Files

C:\Wricing\PIC Evil Genius\Code\cDel r_.“__|

Edt contioks Fie Stk

| Save Cagedt |

(3 3

Teiggec OnfTrip Vaive|Pinsfegiste[Vatel Corpenco I
Cyclea 1 Pin:RAY 1 Initial - Reser High

Cycles 30000 Pin:RAY 0 Firat Press

Cycles 35000 Pin:RA 1 Gliteh

Cyclea 40000 Pin:RA o Line Low for Good
Cycles 70000 Pin:RA3 i Button Pressed for 30 me

|
|
_Addfon | DostsRon | addCoken || Syvesens | ii
|
\
I
I

FEglJré 3.8 Stimuius wm'dov‘v

MPLAB IDE Stimulus window shown in Figure 3-8.
The important part of the stimulus window is the area
at the bottom, which looks like a spreadsheet; the
changing input pin values are specified along with the
time (number of cycles) the change takes place.

To set up the stimulus window, you will go through
the following steps:

1. Click on the Debugger pull-down, and click on
“Stimulus Controller.”

2. In the MPLAB IDE Stimulus window, click on
the File Stimulus tab.

3. Next, to start a stimulus file, click on “Add” in
the Input File Box, and select a file name.

4. Make sure the stimulus file name is highlighted
and click on “Edit” in the Input File box to
bring up the spreadsheet-like input area.

5. Click on “Add Row” and then select the
desired options (discussed in the following
paragraphs) to build an input waveform to the
application code. In Figure 3-8, the stimulus list
puts the input line high, glitches it down, and
then holds the line low.

6. Save the stimulus file and then define and save

the project’s stimulus file (click “Save Setup” in
the File Stimulus box of the Stimulus window).

A number of different options exist for defining
stimulus. In this experiment I simply worked with pre-
defined pin stimulus, but you can also specify asyn-
chronous pin states using the Pin Stimulus tab. To
change or set specific pin states, click on a button on
the window. When you specify the predefined pin stim-
ulus for each row, you will have to specify the follow-
ing:

e Trigger On—either after executing for so many
instruction cycles or when execution hits a spe-
cific address. For most pin stimulus applica-
tions, you will want to trigger on a set number
of instruction cycles. The specific address func-
tion is useful for applying a test value to an
internal register.

e Trigger Value—the number of cycles or
addresses.

e Pin/Register—the I/O pin or hardware register
to be written to. More than one pin or register
can be referenced in a single stimulus file.

s Value—the 1 or 0 for a pin or a hex value for a
register.

e Comments—gives you a chance to note what is
happening.

In previous versions of MPLAB IDE, stimulus files
were produced by a text file that was loaded into the
simulator. The current Windows version makes it eas-
ier to implement simple stimulus inputs like this one,
but I feel that for more complex operations, the Win-
dows version is a lot more work and more difficult to
implement correctly. If you have a complex stimulus
for the MPLAB IDE simulator, I suggest that you
write it out first and then enter the data carefully
rather than on the fly, as I did for this application.

Experiment 22— MCLR Operation

Looking back at the first book I wrote about the PIC
microcontroller, I was amazed at the amount of space I
devoted to the topic of reset and the MCLR pin, which
is used to control whether or not the PIC MCU is to
execute. The PIC MCU I wrote about in that book, the
PIC16F84, required a separate reset circuit that, ideally,
held the PIC MCU reset until the power supply ramped
up to the operation voltage, held off clock start until

Section Three

Simple PIC® MCU Applications 61

any initial fluctuations had passed, monitored the
power supply, and reset the microcontroller if it fell
below a specific value, as well as allowed the user to
control the operation of the PIC MCU. Although some
shorteuts existed, they could be implemented only if
you understood the application and PIC16F84 opera-
tion well and if you understood what the tradeoffs of
the selected method were. One of the big changes
since then is the sophistication of the reset circuitry
built into PIC microcontrollers; most of these issues
are no longer a concern when designing PIC MCU
applications.

A complete reset solution for the PIC16F84 is shown
in Figure 3-9 and takes advantage of a chip like the
Panasonic MN18311 reset supervisor chip. This chip
will not allow the microcontroller to execute until the
input voltage has had a chance to stabilize, and if the
power supply voltage drops below a specific point
(known as brownout), the PIC16F84 will reset. Not
only does a modern PIC MCU have the voltage-moni-
toring hardware built into its reset circuitry, but it is
also able to work over a much larger voltage range
(from 2.0 volts to 5.5 volts compared to 4.0 volts to 5.5
volts for the PIC15F84), so brownouts are much less of
a coneern.

The PIC16F684 has the built-in reset features
including the brownout detection and built-in start-up
delay that were required to be added to PIC16F84
applications. Along with these features, the new chip
includes a number of bits in the STATUS and PCON
registers (listed in Tabl