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Universitat Politècnica de Catalunya –
Consejo Superior de Investigaciones Cientı́ficas
Llorens Artigas 4–6
08028 Barcelona
Spain

cetto@iri.upc.edu
sanfeliu@iri.upc.edu

ISSN print edition: 1610-7438
ISSN electronic edition: 1610-742X

ISBN-10 3-540-32795-9 Springer Berlin Heidelberg NewYork
ISBN-13 978-3-540-32795-0 Springer Berlin Heidelberg NewYork

Library of Congress Control Number: 2006921746

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable to prosecution under German
Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: Digital data supplied by authors.
Data-conversion and production: PTP-Berlin Protago-TEX-Production GmbH, Germany (www.ptp-berlin.com)
Cover-Design: design & production GmbH, Heidelberg
Printed on acid-free paper 89/3141/Yu - 5 4 3 2 1 0



Editorial Advisory Board

EUROPE
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, LAAS, France
Henrik Christensen, KTH, Sweden
Paolo Dario, Scuola Superiore Sant’Anna Pisa, Italy
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At  the  dawn  of  the  new  millennium,  robotics  is  undergoing  a  major  trans-
formation  in  scope  and  dimension.  From a  largely  dominant  industrial  focus,
robotics is rapidly expanding into the challenges of unstructured environments.
Interacting with,  assisting,  serving,  and exploring with humans,  the  emerging
robots will increasingly touch people and their lives.

The goal of the new series of Springer Tracts in Advanced Robotics (STAR)
is to bring, in a timely fashion, the latest advances and developments in
robotics on the basis of their significance and quality. It is our hope that the
wider dissemination of research developments will stimulate more exchanges
and collaborations among the research community and contribute to further
advancement of this rapidly growing field.

The monograph written by Juan Andrade-Cetto and Alberto Sanfeliu is
focused on a popular research topic in the latest few years, namely Simul-
taneous Localization and Map Bulding (SLAM). The estimation theoretical
aspects are covered with resort to the widely-adopted Extended Kalman Fil-
tering (EKF) technique. Further to the design of the estimator, the controller
design is also discussed in the work along with its implications on closing the
perception-action loop. Both simulation and experimental results for indoor
mobile robots are presented to show the effectiveness of the proposed methods.

Remarkably, the doctoral thesis at the basis of this monograph received
the prize of the Fourth Edition of the EURON Georges Giralt PhD Award
devoted to the best PhD thesis in Robotics in Europe. A fine addition to the
Series!

Naples, Italy Bruno Siciliano
October 2005 STAR Editor

Foreword



Preface

Efficient mobile robot navigation is limited mainly by the ability of a robot to
perceive and interact with its surroundings in a deliberative way. A desirable
characteristic a mobile robot must have are the skills needed to recognize the
landmarks and objects that surround it, and to be able to localize itself relative
to its workspace. This knowledge is crucial for the successful completion of
intelligent navigation tasks. But, for such interaction to take place, a model
or description of the environment needs to be specified beforehand.

If a global description or measurement of the elements present in the envi-
ronment is available, the problem consists on the interpretation and matching
of sensor readings to such previously stored object models. Moreover, if we
know that the recognized objects are fixed and persist in the scene, they
can be regarded as landmarks, and can be used as reference points for self-
localization. If on the other hand, a global description or measurement of
the elements in the environment is not available, at least the descriptors and
methods that will be used for the autonomous building of one are required.
This is, either the robot has a global map, or it is given the means to learn
one.

We are interested in this second case. That is, in providing an autonomous
robot with the necessary skills to build a map and precisely localize itself
within this map while navigating in previously unexplored settings. The re-
search reported in this monograph focuses on some estimation theoretic as-
pects of the so called Simultaneous Localization and Map Building (SLAM)
problem.

We start our discussion by reviewing in Chapter 1 the traditional full
covariance extended Kalman filter approach to simultaneous localization and
map building (EKF-SLAM). Explicit formulas for two mobile platforms are
presented. First, we show the case of a simple linear one-dimensional mobile
robot, the monobot. Then, we extend the analysis to the more realistic case
of a planar mobile robot.

At the end of Chapter 1 we introduce a pair of temporal landmark quality
functions to aid in those situations in which landmark observations might not
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be consistent in time; and show how by incorporating these functions, the
overall estimation-theoretic approach to SLAM is improved. Special attention
is paid in that the removal of landmarks from the map does not violate the
basic convergence properties of the localization and map building algorithms
already described in the literature. Namely, asymptotic convergence and full
correlation.

Chapter 2 presents an analysis of the fully correlated approach to SLAM
from a control systems theory point of view, both for linear and nonlinear ve-
hicle models. It shows how partial observability hinders full reconstructibility
of the state space, making the final map estimate dependent on the initial
observations. Nevertheless, marginal filter stability guarantees convergence of
the state error covariance to a positive semi-definite covariance matrix. By
characterizing the form of the total Fisher information we are able to deter-
mine the unobservable state space directions. Moreover, we give a closed form
expression that links the amount of reconstruction error to the number of
landmarks used. The analysis allows the formulation of measurement models
that make SLAM observable.

In the search for real-time implementations of SLAM, covariance inflation
methods produce a suboptimal filter that eventually may lead to the com-
putation of an unbounded state error covariance. Chapter 3 provides tight
constraints in the amount of decorrelation possible, to guarantee convergence
of the state error covariance, and at the same time, a linear-time implemen-
tation of SLAM.

In Chapter 4 we propose an algorithm to reduce the effects caused by
linearization in the typical EKF approach to SLAM. The technique consists
in computing the vehicle prior using an Unscented Transformation. The UT
allows a better nonlinear mean and variance estimation than the EKF. There
is no need however in using the UT for the entire vehicle-map state, given the
linearity in the map part of the model. By applying the UT only to the vehicle
states we get more accurate covariance estimates. The a posteriori estimation
is made using a fully observable EKF step, thus preserving the same compu-
tational complexity as the EKF with sequential innovation. Experiments over
a standard SLAM data set show the behavior of the algorithm.

The last chapter is about closing the low level control loop during Simul-
taneous Localization and Map Building from an estimation-control theoretic
viewpoint. We present first, the case of an optimal state regulator for the linear
SLAM case, commonly referred as Linear Quadratic Regulator, and show also
its behavior in the case of the EKF. Then we present a feedback linearization
multi-vehicle control strategy that uses the state estimates generated from the
SLAM algorithm as input to a multi-vehicle controller. Given the separability
between optimal state estimation and regulation, we show that the track-
ing error does not influence the estimation performance of a fully observable
EKF based multirobot SLAM implementation, and viceversa, that estimation
errors do not undermine controller performance. Furthermore, both the con-
troller and estimator are shown to be asymptotically stable. The feasibility



Preface XIII

of using this technique to close the perception-action loop during multirobot
SLAM is validated with simulation results.

The first two chapters of this monograph derive from the PhD work of
the first author. The last three chapters come from the continuation of his
research endeavors first, while in a postdoctoral stay at IRI, and later on, as a
Juan de la Cierva posdoctoral fellow at CVC, UAB. Many of the ideas in those
chapters are due also to Teresa Vidal-Calleja, currently a PhD student at IRI
under our supervision. This monograph is being published in the Springer
Tracts in Advanced Robotics Series upon reception of the EURON Georges
Giralt Best PhD Award in 2005.

The work reported here was supported in part by the Spanish Ministry of
Education and Science under projects DPI 2001-2223, TIC 2003-09291 and
DPI 2004-5414.

Barcelona, Spain Juan Andrade-Cetto
October 2005 Alberto Sanfeliu



Contents

1 Simultaneous Localization and Map Building . . . . . . . . . . . . . . 1
1.1 Extended Kalman Filter Approach to SLAM .  . . . . . . . . . . . . . . 4
1.2 Mobile Robot Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Temporal Landmark Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Performance of EKF SLAM with Landmark Validation . . . . . . . 28
1.5 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6 Bibliographical Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Marginal Filter Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 Steady State Behavior of EKF-SLAM . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Total Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Observable and Controllable Subspaces . . . . . . . . . . . . . . . . . . . . 56
2.5 The Monobot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 The Planar Robot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.8 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.9 Bibliographical Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 Suboptimal Filter Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1 O(n) but Unstable Partially Observable SLAM  . . . . . . . . . . . . . 87
3.2 O(n) and Stable Partially Observable SLAM . . . . . . . . . . . . . . . . 87
3.3 O(n) and Stable Fully Observable SLAM . . . . . . . . . . . . . . . . . . . 88
3.4 Experimental Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Unscented Transformation of Vehicle States . . . . . . . . . . . . . . . 97
4.1 Nonlinear Propagation of State Estimates . . . . . . . . . . . . . . . . . . 98
4.2 UT of Vehicle States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Experimental Results. EKF, UKF, and Vehicle-Only UT . . . . . 101



XVI Contents

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Simultaneous Localization, Control and Mapping . . . . . . . . . . 107
5.1 Linear Quadratic Gaussian Regulation . . . . . . . . . . . . . . . . . . . . . 108
5.2 The EKF for Multirobot SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3 Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B Concepts from Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C Sigma Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



1

Simultaneous Localization and Map Building

Perception happens locally, in the egocentric frame of reference of the robot.
In order to ensure correspondence between the local representation of the
environment built by the landmark extraction processes, and the global rep-
resentation contained in a map, the robot must estimate its own position with
respect to this map.

The use of stochastic models for map building and localization in mobile
robotics has gained much popularity in recent years [24, 38, 61]. Of particular
interest is the use of predictive filters to estimate the robot position and
uncertainty, and to update these estimates from sensor readings while at the
same time building an incremental map of the environment [7, 16, 21, 31, 63,
79, 83].

One of the most critical limitations to the application of such estimation-
theoretic approaches to map building and localization is the data association
problem. Data association refers to the issue of matching observations with
previously learned elements from the environment. Some techniques can be
used to alleviate the data association problem, such as the tracking of land-
marks from one robot position to the next, or by using efficient tests for scene-
to-model landmark match hypothesis verification. Obviously there is always a
compromise between the possibility of fully invariant landmark characteriza-
tion and the difficulty to extract such characterizing features from raw sensor
data.

As we address issues such as viewpoint invariance and feature extraction
from sensor data, it is overwhelming how undesired environment dynamics,
occlusions, and sensor noise can still make data association a daunting task.
One possibility to overcome the data association problem altogether is with
the deployment of uniquely identifiable man-made beacons to aid in localiza-
tion. Unfortunately, there exist multiple situations where this is not possible,
and a map must still be constructed without environment contamination. An
alternative approach explored in this work is the use of temporal and spatial
landmark quality measures to validate observations.

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 1–47, 2006.
© Springer-Verlag Berlin Heidelberg



2 1 Simultaneous Localization and Map Building

During the course of our research we have tested and implemented SLAM
solutions for indoor mobile robots with a laser range scanner, based mainly
on the algorithm described in this chapter, and with the extensions described
in subsequent chapters along this book, such as full observability, temporal
landmark quality, unscented vehicle transformations, etc. Figure 1.1 plots a
series of snapshots of a test run of our SLAM algorithm with our mobile robot
Marco from Figure 1.2. A 3d partial representation of the final map built is
shown in Figure 1.3. In the plots the reader can see for example, localization
variances as level curves around wall endpoints. These are the type of maps
one could expect to obtain when using an EKF approach to SLAM, such as
the one explained throgout this book.

We start our discussion by reviewing in Section 1.1 the traditional full
covariance extended Kalman filter approach to simultaneous localization and
map building (EKF-SLAM in short), based primarily on the works by Smith
and Cheeseman [79] and Dissanayake et al. [31]. In Section 1.2, explicit for-
mulas for two mobile platforms are presented. First, we show the case of a
simple linear one-dimensional mobile robot, the monobot. Then, we extend
the analysis to the more realistic case of a planar mobile robot.

Spatial landmark compatibility tests are needed to validate data associa-
tion hypothesis in terms of the estimated localization error for each landmark.
Their use is crucial for the solution of data association in SLAM [21, 70]. We
have realized however, that in situations with moderate scene dynamics, spa-
tial landmark compatibility may not suffice in the search for data association
matches. Consider for example the case when a landmark is occluded for a
short period of time. A spatial compatibility test would not have any informa-
tion on the history of observations of such landmark, and might still be trying
to wrongly associate it with a neighboring observed feature. If the algorithm
succeeds in incorrectly associating the occluded feature, the new observation
will not be consistent with the initial measurement, thus producing large error
in the estimate for the localization of that landmark, while at the same time
underestimating its covariance. Given that the map covariance is fully corre-
lated, starting with the next iteration of the algorithm, that wrong value for
the uncertainty would be propagated to the rest of the landmark locations,
and that of the robot as well; leading to divergence in the map, and ultimately
breaking down the entire estimation approach to SLAM.

To aid in those situations in which landmark observations might not be
consistent in time, we propose a new set of temporal landmark quality models,
and show how by incorporating these models, the overall estimation-theoretic
approach to SLAM is improved. With the aid of these models, a new tem-
poral landmark quality test is presented to aid in differentiating between the
imprecision in the localization of a landmark, and the uncertainty in its very
existence. Thanks to this test we are able to remove weak landmarks from the
map. Landmarks that would most likely be a product of false data associa-
tion or spurious observations, and that if considered, would otherwise induce
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Fig. 1.1. The blue dots indicate sensor raw data coming from a laser range finder,
and the blue ellipses represent 2σ confidence level curves on the wall end point
estimates. The green lines represent walls inferred from consecutive readings. The
red lines indicate the estimated robot trajectory.

undesired localization errors. Temporal landmark compatibility is addressed
in Section 1.3.

Finally, in Section 1.4, our planar mobile robot configuration is used to
evaluate the original full-covariance Extended Kalman Filter algorithm to Si-
multaneous Localization and Map Building as reported by Dissanayake et al
[31], including the spatial landmark compatibility tests [70], versus our im-
proved algorithm, the EKF-SLAM-LV, with both temporal and spatial land-
mark quality tests, both in the presence of various noise levels, and ultimately,
in cases with limited field of view and extreme data missassociation.
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Fig. 1.2. Front and back views of the robot initial position.

Fig. 1.3. Graphical representation of the map built.

1.1 Extended Kalman Filter Approach to SLAM

In this Section we review the fundamentals of the stochastic estimation ap-
proach to simultaneous localization and map building. The material covered
summarizes the work of many researchers during the past 15 years, and will
constitute a starting point for our view of the mobile robot localization and
map building problem.

Full covariance EKF SLAM

Before delving into the mathematical formulation that builds up the full co-
variance Extended Kalman Filter approach to Simultaneous Localization and
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Fig. 1.4. State estimation approach to simultaneous localization and map building.

Map Building, we proceed with a motivational explanation of how such a
predictive filter can be used to solve the localization problem.

Imagine, for the sake of simplicity, a planar mobile robot that we believe
is located at position xr,k|k as shown in Figure 1.4; and that such location is
known with some level of uncertainty indicated by the area inside the ellipse
Pr,k|k. The subscript r indicates the part of the state vector x and of the
error covariance matrix P associated to the robot pose. The ellipse indicates
a level curve of equal uncertainty, its principal axes are the eigenvectors of
the covariance matrix Pr. The term k is used to indicate the time stamp.

Driving the robot with the motion command uk, we would expect it to end
up at location xr,k+1|k. Such location estimate, the a priori state estimate,
posses a larger level of uncertainty than our previous estimate xr,k|k. The
reason, is the addition of dead reckoning error and the inaccuracies of our
motion model. This increase in uncertainty is exemplified by the larger area
inside the ellipse Pr,k+1|k.

Once the motion command is complete, the robot sensors acquire infor-
mation about the environment. More specifically, they measure the distance

from the robot to a number of fixed landmarks x
(1)
f , x

(2)
f , and x

(3)
f . It is from

these observations, that the filter corrects its estimate about the location of
the robot to xr,k+1|k+1, the a posteriori estimate; and at the same time, re-
duces the localization uncertainty Pr,k+1|k+1. The true robot location xr,k+1

is still unknown; however, the idea behind the use of a predictive filter is
to minimize the estimation error (xr,k+1 − xr,k+1|k+1). In other words, we
want an estimator that keeps the uncertainty ellipse for Pr,k+1|k+1 as small
as possible.

Fortunately, we can resort to the Kalman filter, a recursive stochastic state
estimator for partially observed non-stationary processes that gives an optimal
state estimate in the least squares sense. In the typical full-covariance EKF
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based approach to SLAM we use such a filter precisely to iteratively estimate
the robot and landmark locations, optimally reducing the error between the
true robot location and our computed estimate.

System model

Formally speaking, the motion of the robot and the measurement of the map
features are governed by the discrete-time state transition model

xk+1 = f(xk,uk,vk) (1.1)

zk = h(xk) + wk (1.2)

The state vector xk ∈ IRm+dn contains the position of the robot xr,k ∈
IRm at time step k, and a vector of n stationary d-dimensional map features
xf ∈ IRdn, i.e.,

xk =

�
xr,k

xf

�
(1.3)

The input vector uk ∈ IRm is the vehicle control command, and vk ∈ IRm

is a Gaussian random vector with zero mean and covariance matrix Qk ∈
IRm×m, representing unmodeled robot dynamics and system noise. The func-
tion f : IRm+dn → IRm+dn is a possibly nonlinear difference equation that
models the motion of the robot.

The Gaussian random vector wk ∈ IRdn represents both, the inaccuracies
of the also possibly nonlinear observation model h : IRdn+m → IRdn, and the
measurement noise with zero mean and covariance matrix Rk ∈ IRdn×dn.

Provided the set of observations Zk = {z1, . . . , zk} was available for the
computation of the current map estimate xk|k, the expression

xk+1|k = f(xk|k,uk,0) (1.4)

gives an a priori noise-free estimate of the new locations of the robot and
map features after the vehicle control command uk is input to the system.
Similarly,

zk+1|k = h(xk+1|k,0) (1.5)

constitutes a noise-free a priori estimate of sensor measurements.
The EKF approach to SLAM requires the linearization of both the motion

and observation models. Such linearizations are formulated as Taylor series
approximations with the higher order terms dropped, i.e.,

xk+1 ≈ xk+1|k + F(xk − xk|k) + Gvk (1.6)

zk+1 ≈ zk+1|k + H(xk+1 − xk+1|k) + wk+1 (1.7)

The Jacobian matrices F, G, and H contain the partial derivatives of f

with respect to x and the noise v, and of h with respect to x, respectively:
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F = 
∂f

∂x

!!!!
(xk|k,uk,0)

(1.8)

G =
∂f

∂v

!!!!
(xk|k,uk,0)

(1.9)

H =
∂h

∂x

!!!!
(xk+1|k,0)

(1.10)

Given that the landmarks are considered stationary, their a priori estimate
is simply

xf,k+1|k = xf,k|k (1.11)

Thus, the elements of the non-stationary linear state transition model of
the robot and map dynamics in Equations 1.6 and 1.7 take the forms�

xr,k+1

xf

�
≈

�
xr,k+1|k

xf,k|k

�
+

�
Fr

I

� �
x̃r,k|k

x̃f,k|k

�
+

�
Gr

0

� �
vk

0

�
(1.12)

zk+1 ≈ zk+1|k +
�
Hr Hf


 �
x̃r,k+1|k

x̃f,k+1|k

�
+ wk+1 (1.13)

with the a priori state error

x̃k+1|k =

�
x̃r,k+1|k

x̃f,k+1|k

�

=

�
xr,k+1 − xr,k+1|k

xf − xf,k+1|k

�
(1.14)

and the a posteriori state error

x̃k|k =

�
x̃r,k|k

x̃f,k|k

�

=

�
xr,k − xr,k|k

xf − xf,k|k

�
(1.15)

In the remaining of this chapter, extensive use of Kalman Filter related
notation will be used. A few terms the reader might want to keep in mind
include: the error covariance matrix P, the measurement innovation covariance
matrix S, and the Kalman gain K. If in doubt, please refer to Appendix A.

Algorithm

An a priori prediction of the location of the robot and the state of the map
is computed in Equation 1.4 purely from motion commands; consequently
increasing the uncertainty of the robot location and that of the map features.
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In general terms, the a priori estimate to the vehicle and map state error
covariance showing this increase in uncertainty is given by

Pk+1|k = E[x̃k+1|k x̃
k+1|k]

= FPk|kF

 + GQkG


 (1.16)

Writing the map state error covariance matrix in block form, and sub-
stituting the corresponding Jacobian matrices, we can rewrite Equation 1.16
as �

Pr,k+1|k Prf,k+1|k

P

rf,k+1|k Pf,k+1|k

�
=

�
FrPr,k|kF



r + GrQkGr


 FrPrf,k|k

P

rf,k|kF



r Pf,k|k

�
(1.17)

Assuming that a new set of landmark observations zk+1 coming from sen-
sor data has been correctly matched to their map counterparts, one can com-
pute the error between the measurements and the estimates with

z̃k+1|k = zk+1 − zk+1|k (1.18)

This error aids in revising the map and robot locations. The a posteriori
state estimate is

xk+1|k+1 = xk+1|k + Kk+1z̃k+1|k (1.19)

and the Kalman gain is computed with

Kk+1 = Pk+1|kH

S−1 (1.20)

where S is the measurement innovation matrix,

S = HPk+1|kH

 + Rk+1 (1.21)

Finally, the a posteriori estimate of the map state error covariance must
also be revised once a measurement has taken place. It is revised with

Pk+1|k+1 = (I − Kk+1H)Pk+1|k (1.22)

or equivalently, and to guarantee positive semi-definiteness of Pk+1|k+1, with

Pk+1|k+1 = (I− Kk+1H)Pk+1|k (I− Kk+1H)
 + Kk+1Rk+1K


k+1 (1.23)

The above expression is commonly referred as the Joseph form of the a
posteriori state error covariance matrix. Its derivation is discussed in detail
in Appendix A. The properties of positive semi-definite (psd) matrices are
enumerated in Section B for completeness of the discussion.

The contribution to the revision of the robot pose and landmark loca-
tion estimates is proportional to our degree of trust in the motion and sensor
models respectively. If the plant error covariance Q is large, and the mea-
surement error covariance R is small, the EKF-SLAM algorithm trusts more
the observations than dead-reckoning, revising more heavily the robot pose
estimate than that of the landmarks. Conversely, when the measurement error
covariance is larger than the plant error covariance, the algorithm trusts more
on the motion of the robot and ends up revising more heavily the landmark
estimates.
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Convergence properties

One important property of the estimation-theoretic approach to SLAM is that
the map is asymptotically convergent. That is, in the original full covariance
KF-based SLAM formulation the map state error covariance submatrix as-
sociated with the landmark estimates decreases monotonically as successive
observations take place. Formally speaking,

detPf,k+1|k+1 ≤ detPf,k|k (1.24)

Another property indicates how in the limit, as the number of iterations
tends to infinity, the map becomes fully correlated; suggesting that if a land-
mark location is given, the location of the other landmarks can be deduced
with absolute certainty from the map built.

lim
k→∞

detPf,k|k = 0 (1.25)

The third property in the analysis of the covariance in EKF-SLAM, is that
in the limit, the absolute location of the vehicle and map is bounded by the
initial vehicle uncertainty. And for a vehicle with no process noise

lim
k→∞

Pr,k|k = Pr,0|0 (1.26)

These properties were first reported in Newman’s PhD work [31, 71], and
will be of use in the following Chapter where we talk about partial observ-
ability, partial controllability, and filter stability in SLAM.

Sequential innovation

EKF-SLAM requires that all landmarks in the map be always observed by
the vehicle, and be correctly associated to their map counterpart at every
iteration. However, it is also possible to revise the state estimate only with
partial observations. Independent landmark measurements contribute only to
the revision of the map states directly associated to that particular landmark;
and, if a sufficient number of independent landmark observations are made, it
is still possible to have the system reliably estimate the location of the robot
and landmarks iteratively. The technique used to update the state estimate
one observation at a time is called sequential innovation (see Appendix A).
The result of applying sequential innovation to all the landmarks in the map
is equivalent to that of using the full covariance extended Kalman filter ap-
proach, provided the observations are independent, or that at least they can
be whitened [93].

The main advantage of using sequential innovation, is that by considering

the measurement vector zk+1 as a set of single measurements z
(1)
k+1 . . . z

(n)
k+1

that can be treated sequentially, the inversion of the joint measurement inno-
vation covariance matrix S is no longer necessary. Instead, a series of smaller



10 1 Simultaneous Localization and Map Building

individual innovation covariance matrix inverses is computed, reducing con-
siderably the time complexity of the algorithm.

Starting from x
(0)
k+1,k+1 = xl+1|k, and P

(0)
k+1|k+1 = Pk+1|k, the a posteriori

state estimate is iteratively given by

x
(i)
k+1|k+1 = x

(i−1)
k+1|k+1 + K(i)(z̃

(i)
k+1|k). (1.27)

with K(i) the i-th set of columns of K.
Individual landmark measurements can be estimated taking only the cor-

responding i-th set of rows of the measurement Jacobian H

z
(i)
k+1|k = H(i)x

(i−1)
k+1|k+1 (1.28)

whit individual landmark estimation errors

z̃
(i)
k+1|k = z

(i)
k+1 − z

(i)
k+1|k (1.29)

The independent treatment of the observations is only possible if R is
block diagonal. This is, when the landmark observations taken during the
same time interval are uncorrelated. The i-th set of columns of K is simply
computed with

K(i) = P
(i−1)
k+1|k+1H

(i)
S(i)−1
(1.30)

with the individual innovation covariance matrices

S(i) = H(i)P
(i−1)
k+1|k+1H

(i)
 + R(i) (1.31)

The a posteriori state error covariance for individual observations is also
iteratively computed with

P
(i)
k+1|k+1 = P

(i−1)
k+1|k+1 − K(i)H

(i)P
(i−1)
k+1|k+1 (1.32)

The processing of observations for time step k + 1 ends with xk+1|k+1 =

x
(n)
k+1|k+1 and Pk+1|k+1 = P

(n)
k+1|k+1.

The required inverse in Equation 1.30 is of size d, and is considerably
much smaller than the dimensions of the entire measurement vector z, dn, as
required in Equation 1.20. However, if one still wishes to compute the inverse
of the whole innovation covariance matrix S for more than one landmark at
a time, one can resort to an incremental computation of S−1 as shown in
Section 1.1.

Another consequence of using sequential innovation is that the model Ja-
cobians can also be re-computed after each observation is incorporated to the
filter, thus producing even more accurate state and state covariance estimates.
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Covariance initialization

Another crucial implementation aspect of the full covariance EKF approach
to SLAM is the initialization of the error covariance matrix P as new obser-
vations are added to the map. This matrix contains the expected robot and
landmark localization error, and will only manifest the asymptotic conver-
gence properties shown in Section 1.1 if it is initialized properly.

The function that maps an observation into world coordinates is given by
our linearized measurement model, and has the form�

xr

x
(i)
f

	
= M

�
xr

z(i)

�
(1.33)

M is known as the feature initialization matrix. Solving for M from Equations
1.5 and 1.7, we get

M =

�
I 0

−H−1
f,(i)Hr,(i) H−1

f,(i)

�
(1.34)

Consequently, the initialization of the corresponding map state error covari-
ance for such landmark is given by

P = M

�
Pr 0

0 Q(i)

�
M
 (1.35)

Without loss of generality, assume a map with n − 1 landmarks at time
step k. The map state error covariance matrix has the form

Pk|k =




Pr,k|k Prf(1),k|k . . . Prf(n−1),k|k

P

rf(1),k|k

Pf(1)f(1),k|k . . . Pf(1)f(n−1),k|k

...
P


rf(n−1),k|k
P


f(1)f(n−1),k|k
. . . Pf(n−1)f(n−1),k|k


 (1.36)

Once the robot has observed a sufficiently robust new feature which cannot
be associated to any other landmark in the map, it is labeled as the n-th
landmark, and a new row and column must be appended to the map covariance
matrix with

Prf(n),k|k = −Pr,k|k(H−1
f,(n)Hr,(n))

� (1.37)

Pf(i)f(n),k|k = H
−1
f,(i)Hr,(i)Pr,k|k(H−1

f,(n)Hr,(n))
� (1.38)

Pf(n)f(n),k|k = H
−1
xf ,(n)Hr,(n)Pr,k|k(H−1

f,(n)Hr,(n))
� + H

−1
f,(n)Q

(i)(H−1
f,(n))

�(1.39)

Equations 1.37-1.39 indicate that the initialization of the new feature map
error covariance is a function of the actual vehicle position and its accumulated
uncertainty.
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Landmark spatial uncertainty

The estimated uncertainty in the localization of every landmark in the map,
as well as that of the robot, is maintained in the state error covariance P.
Consequently, the uncertainty of its location in observation space is given by
the change of basis of P plus that of the independent measurement uncer-
tainties R(i). This quantity is called the innovation covariance matrix, and is
precisely equivalent to the term already introduced in Equation 1.21.

For any particular measurement z
(i)
k+1, the squared Mahalanobis distance

d2
i = z̃

(i)
k+1|k


S(i)−1
z̃
(i)
k+1|k (1.40)

represents a measure of spatial disparity between the observation z
(i)
k+1 and the

estimated location in robot centered coordinates of the hypothetical landmark

match x
(i)
f .

Two spatial landmark compatibility tests that appear in the literature are
the individual compatibility test and the joint compatibility test. The former
considers landmark observations independently and has been widely used not
only to validate observations within the framework of the SLAM problem,
but on a wide range of applications. A related example in the computer vision
literature, is for example, the evaluation of visual correspondences in the com-
putation of the fundamental matrix of the two-view geometry [46]. The joint
compatibility test on the other hand, due to Neira and Tardós [70], considers
cross correlated landmark uncertainties when testing match hypotheses, at
the expense of higher computational cost.

Individual compatibility test

The squared Mahalanobis distance in Equation 1.40 is a weighted squared
sum of d Gaussian variables and as such, follows a χ2 distribution. Moreover,

the subset of map features compatible with measurement z
(i)
k+1 are the ones

that satisfy the χ2 compatibility test

d2
i ≤ χ2

d,α (1.41)

The number of degrees of freedom in the individual χ2 compatibility test
is given by the rank of the one landmark innovation covariance matrix S(i).
Given that S(i) is invertible, it must have full rank. Consequently, the number
of degrees of freedom of the test is d. So for example, if z(i) is an image
point, the squared Mahalanobis distance represents the sum of the squared
horizontal and vertical pixel measurement errors, weighted by the covariance
matrix S(i); and in this case, the number of degrees of freedom of the individual
compatibility test is 2. The term α indicates the desired confidence level; so for
example, a value of α = 0.95 indicates a 95% probability that the observation

z(i) matches the map feature x
(i)
f . In other words, a 5% probability that
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correct data associations will not pass the compatibility test. By increasing
the confidence level α, we are augmenting the rate of observations that pass
the compatibility test, even if they correspond to incorrect matches.

One clear drawback of the individual compatibility test is the fact that
no correlational information is used. An expansion of S(i), reveals how the
square Mahalanobis distance d2

i is indeed an individual measure of landmark
compatibility, in which no landmark correlation information is taken into ac-
count.

S(i) = H(i)
r Pr,k+1|kH

(i)
r



+ H

(i)
f P

(i)
rf,k+1|k



H(i)

r




+ H(i)
r P

(i)
rf,k+1|kH

(i)
f



+ H

(i)
f P

(i)
f,k+1|kH

(i)
f



+ R

(i)
k+1 (1.42)

To include the landmark correlation information in the test of measure-
ment and map pairings, one must recur to the joint compatibility test.

Joint compatibility test

Landmark correlation is taken into account when we test spatial match hy-
potheses for more than one landmark at a time. The joint measurement inno-
vation covariance for two or more landmarks is

S(p...r) = H(p...r)Pk+1|kH
(p...r)
 + R

(p...r)
k+1 (1.43)

or equivalently,

S(p...r) =

�
S(p...q) H(p...q)Pk+1|kH

(r)


H(r)Pk+1|kH
(p...q)
 S(r)

	
(1.44)

The indices (p . . . r) need not be consecutive, with o the total number of
landmarks in the set (p . . . r). The joint Mahalanobis distance is

d2
p...r = z̃

(p...r)
k+1|k


S(p...r)−1
z̃
(p...r)
k+1|k (1.45)

and the joint compatibility test for two or more landmarks is

d2
p...r ≤ χ2

do,α (1.46)

The joint compatibility test can be computationally expensive when the
number of landmarks involved is large. It would require the inverse of a joint
measurement covariance matrix of size do × do with complexity O((do)3).
This complexity can be reduced however, as shown next, with an incremental

computation of S(p...r)−1
.

Without loss of generality, once the inverse up to the q-th landmark

S(p...q)−1
has been computed, from the matrix inverse lemma for block ma-

trices1, we have that

1 See Appendix B.
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S(p...r)−1
=

�
S(p...q)−1

+ S(p...q)−1
MNM
S(p...q)−1

S(r)−1
MN

−NM
S(r)−1
N

	
(1.47)

with

M = H(p...q)
x Pk+1|kH

(r)
x



(1.48)

N = (S(r)−1 − M
S(r)−1
M)−1 (1.49)

At the end, the computation of the full inverse S(p...r)−1
is simplified with

an incremental computation requiring a total of o individual covariance matri-
ces as indicated in Equation 1.49. Values of χ2

do,α for α = 0.95 and α = 0.99,
are tabulated in Tables 1.1 and 1.2 respectively.

Table 1.1. The Pearson χ2 distribution needed for the computation of the square
Mahalanobis distance threshold d2 = χ2

do,α during the validation of the hypothesis

test that measurements z(p...r) correspond to features x
(p...r)
f with probability α =

0.95.

If the regions of uncertainty around each landmark in the map do not over-
lap, the individual compatibility test (ICT in the sequel) might be sufficient
to obtain a robust solution to the data association problem in SLAM. Such is
the case of sparse maps, or when precise sensors are available.

However, in situations with large amounts of clutter, or with very uncer-
tain sensor models, the joint compatibility test (JCT in the sequel) might be
more useful. One should not take for granted however, the increase in the
computational cost incurred by the JCT. Testing the joint compatibility of

Feature points on image points, points, lines,
model a line lines on a plane planes in 3d

d 1 2 3

Number of χ2
o,0.95 χ2

2o,0.95 χ2
3o,0.95

features o

1 3.84 5.99 7.91
2 5.99 9.49 12.6
3 7.81 12.6 16.9
4 9.49 15.5 21.0
5 11.1 18.3 25.0
10 18.3 31.4 43.8
15 25.0 43.8 61.6
20 31.4 55.8 79.1
30 43.8 79.1 113.1
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Feature points on image points, points, lines,
model a line lines on a plane planes in 3d

d 1 2 3

Number of χ2
o,0.99 χ2

2o,0.99 χ2
3o,0.99

features o

1 6.63 9.21 11.3
2 9.21 13.3 16.8
3 11.3 16.8 21.7
4 13.3 20.1 26.2
5 15.1 23.2 30.6
10 23.2 37.6 50.9
15 30.6 50.9 70.0
20 37.6 63.7 88.4
30 50.9 88.4 124.1

tens of landmarks might deem impossible a real time implementation of the
algorithm.

In situations where multiple data association hypotheses are to be veri-
fied, the joint compatibility criterion to landmark matching is implemented
in branch and bound algorithms that search efficiently the space of compati-
ble landmark association solutions. An exemplary application of one of such
heuristics is detailed in the aforementioned contribution by Neira and Tardós
[70].

Figure 1.5 exemplifies the use of the ICT and JCT for data association
hypothesis validation. The left column of plots in the Figure shows a robot
localization sequence with three landmarks. For such a small number of land-
mark observations, the number of match hypothesis that fail the test is similar
in both cases (6.6% for ICT and 8% for JCT). The localization error results
of using the ICT and JCT in this case are nearly equivalent.

On the other hand, the right column of plots in the same Figure shows
the results of using the ICT and JCT in a localization sequence with 10
landmarks and similar noise parameters. In this case, the number of times
that match hypothesis fail the JCT nearly doubles those of the ICT (30% for
JCT vs. 17.7% for ICT); indicating perhaps that the ICT was overconfident
when testing for data association. Landmark observations do not pass the joint
compatibility test unless data association is accurate for all observations, or
until the uncertainty Pr has grown to such value as to make the all-landmark

Table 1.2. The Pearson χ2 distribution needed for the computation of the square
Mahalanobis distance threshold d2 = χ2

do,α during the validation of the hypothesis

test that measurements z(p...r) correspond to features x
(p...r)
f with probability α =

0.99.
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Fig. 1.5. Spatial compatibility tests. Individual and joint compatibility test perfor-
mance for a map with 3 and 10 landmarks over 100 steps.
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xr,k|k xr,k+1|k xr,k+1

uk vk

x
(1)
f x

(2)
f

Fig. 1.6. Monobot, a 1-D mobile robot.

Mahalanobis distance z̃S−1z̃ sufficiently small. It might happen in the JCT
case, that for a large number of the filter iterations (30% in this test run),
vehicle location estimates end up being computed from dead reckoning only.
It is certainly better however not to revise the robot localization at all, than
doing so with incorrect data association. As indicated in the right bottom
plot, the overall performance of the algorithm shows some improvement when
the JCT is used.

The dots in the ICT map plots represent all of the observations that pass
the test, whereas the dots in the JCT map plots show all landmark observa-
tions, regardless if they passed the test or not. The estimated robot localiza-
tion error is represented by the ellipses along the trajectory, which correspond
to 2σ level curves of the robot pose error covariance estimate. The ellipses
around the landmarks on the other hand, indicate projected 2σ bounds for
the landmark covariance estimates. The solid line and the dashed line in the
two bottom plots are used to indicate ICT and JCT localization error, respec-
tively.

1.2 Mobile Robot Platforms

In this section we provide explicit expressions for two mobile robot config-
urations, a one-dimensional (1-D) robot moving along a straight line, and a
planar wheeled mobile robot on a two-dimensional (2-D) environment.

Monobot

Consider the one-dimensional robot (monobot) from Figure 1.6. The robot
location is xr,k, and the motion command is uk. The robot error dynamics is
vk, and the vehicle process model is simply
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xr,k+1 = xr,k + uk + vk (1.50)

The map consists of the set xf of static landmark points. The measurement
equation for each landmark is

z
(i)
k = x

(i)
f − xr,k − w

(i)
k (1.51)

with w
(i)
k the landmark observation error.

The study of this simple robot model might seem naive at this point.
Its relevance will become evident in the next Chapter, where we study in
detail the observability and controllability aspects of the stochastic approach
to SLAM. Suffice to say for the time being, that thanks to the linearity of the
model, the approximations in Equations 1.6 and 1.7 are exact, and that

F = G = Hf = 1 (1.52)

Hr = −1 (1.53)

Planar mobile robot

We now develop expressions for the more realistic planar robot shown in Fig-
ure 1.7, a nonlinear nonholonomic velocity controlled wheeled vehicle with
three degrees of freedom, and an environment consisting of 2-D point land-
marks located on the floor.

The vehicle is controlled by a linear velocity v and a steering velocity ω.
The process model used to predict the trajectory of the center of projection
of the laser range scanner is given by


xk+1

yk+1

θk+1


 =


xk + τ ((vk + vv,k) cos θk − (ωk + vω,k)l sin θ)

yk + τ ((vk + vv,k) sin θk + (ωk + vω,k)l cos θ)
θk + τ(ωk + vω,k)


 (1.54)

where l is the distance from the center of the wheel axle to the center of
projection of the laser range scanner, τ is the time constant, and vv, vω are
zero mean Gaussian model noises.

The observation model is

�
zi

r,k

zi
β,k

�
=




�
(xi

f − xk)2 + (yi
f − yk)2 + wr,k

tan−1
�

(yi
f−yk)

(xi
f
−xk)

�
− θk + π

2 + wβ,k


 (1.55)

with zi
r and zi

β the distance and bearing of an observed point landmark with

respect to the laser center of projection. xi
f and yi

f are the absolute coordinates
of such landmark, and i is used for the labelling of landmarks.

The Jacobian matrices F, G, and H are obtained by differentiating Equa-
tions (1.54) and (1.55) with respect to states and noises. That is,
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Fig. 1.7. Two-dimensional mobile robot.

F =




1 0 −τ((vk + vv,k) sin θk − l cos θ(ωk + vω,k)) 0 0
0 1 τ((vk + vv,k) cos θk − l sin θ(ωk + vω,k)) 0 0
0 0 1 0 0

. . .

0 0 0 1 0
0 0 0 0 1

. . .




(1.56)

G =




τ cos θk −τl sin θk

τ sin θk +τl cos θk

0 1
...
0 0
0 0
...




(1.57)
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Hi =


−x

(i)
f

−xk

d − y
(i)
f

−yk

d 0 . . .
x
(i)
f

−xk

d

y
(i)
f

−yk

d . . .
y
(i)
f

−yk

d2 −x
(i)
f

−xk

d2 −1 − y
(i)
f

−yk

d2

x
(i)
f

−xk

d2


 (1.58)

with d =
�

(x
(i)
f − xk)2 + (y

(i)
f − yk)2.

As a motivational note to the reader, this detailed formulation of the
kinematics of the monobot and the planar robot are to be used in Chapter 2
in which we show how the limitations inherent in the reconstructibility of the
map state space are equally present in both vehicle models.

1.3 Temporal Landmark Validation

Now that we have underpinned the fundamental characteristics the original
EKF-SLAM algorithm, as well as the specifics of the mobile robot platforms
used, we turn our attention to the study of appropriate temporal landmark
quality functions that help in the alleviation of the data association problem.

We reviewed in Sections 1.1-1.1 the spatial landmark quality tests already
present in the literature [70]. We introduce, in Sections 1.3-1.3 two new tem-
poral landmark quality models, and show the feasibility of using these in a test
to validate not only where, but when should we expect future observations for
any given landmark.

Landmark temporal uncertainty

As indicated in the introductory section to this Chapter, the use of spatial
compatibility tests is crucial for the solution of data association in SLAM,
but they can still be insufficient in situations with moderate scene dynamics.
Imagine that a spurious landmark observation was sufficiently robust to be
added to the map. This landmark could come from a temporary artifact in
the scene such as an open door, or an artifact in our sensor such as a shadow
or reflection that is persistent only during a small number of iterations.

With the static map model presented so far, once the spurious landmark
disappears from the scene, or at least, from the sensor return, we have no
means to revise the map and delete it. The two spatial compatibility tests
presented would not have any information on the history of observations, and
would be trying to associate new observations to that entry in the map. If
the algorithm succeeds at incorrectly associating new landmark observations
with such previously stored weak feature, i.e., the observation fell inside the
uncertainty ellipse described by S and passed the data association test; it
will most likely introduce landmark localization error in the map, while at
the same time decreasing the estimated map error covariance. Given that
the map covariance is fully correlated, starting with the next iteration of the
algorithm, that uncertainty would be propagated to the rest of the landmark
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locations, and that of the robot as well; ultimately breaking down the entire
estimation approach to SLAM.

For moderately dynamic environments we need some means to erase land-
marks from the map once we have realized they are not sufficiently robust,
not only during landmark initialization, but during the entire run of the al-
gorithm. To aid in those situations in which the landmark observations might
not be consistent in time, we propose a new set of landmark quality functions.
The idea is to use these functions as an aid to validate temporal landmark
quality.

The first temporal landmark quality function proposed is an exponential
decay rule used to learn the persistence of landmark matching. The second
function is a linear model used to update the probability of data association
from the sequence of landmark matches. These two functions are used to
validate landmark observations in time, and ultimately to erase from the map
those landmarks that are not sufficiently persistence in the scene. In Section
1.3 we analyze the consequences of removing landmarks from the map with
respect to the evolution of the fully correlated covariance entries in P.

Nonlinear model for temporal landmark quality: the exponential

decay rule

One possibility in the computation of the temporal landmark quality is to
have an exponential decay rule. This way, each landmark in the map will have
an associated memory cell that registers how persistent, and how old that
landmark is.

Imagine that at the k+1-th iteration, the i-th landmark measurement esti-

mate z
(i)
k+1|k falls inside the current field of view, but none of the entries in the

observation vector zk+1 has similar appearance properties, nor is sufficiently
close (in the sense of d2) to pass the spatial landmark compatibility tests.
This would be the situation if, for example, the i-th landmark was learned
from a temporary artifact in the scene that was only tracked over sensor data
for a short period of time, but is no longer present. With the aid of an expo-
nential decay rule to data association, its quality measure will decay in the
absence of observation matches, indicating the map building algorithm that
such landmark is no longer present in the scene and should not be considered
a relevant feature for robot localization.

We propose a nonlinear update rule for landmark quality of the form

x
(i)
q,k+1 =

1

1 + e
−

“
αu

(i)
q,k

+βx
(i)
q,k

” (1.59)

where u
(i)
q,k is the landmark identification stamp

u
(i)
q,k =

�
0 : failed the spatial data association test
1 : passed the spatial data association test

(1.60)
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The scalar α is an input weight used to regulate the contribution of such
landmark identification over the previous map configuration, and β is a mem-
ory weight used to regulate the contribution of the previous landmark quality
state over its new value.

The asymptotic lower and upper bounds of Equation 1.59 can be evaluated
by solving the equations

xq,LOW =
1

1 + e−(βxq,LOW )
(1.61)

xq,HIGH =
1

1 + e−(1+βxq,HIGH )
(1.62)

Using a symbolic manipulation math package, we find for example, that for
α = β = 1, xq,LOW = 0.6590, and xq,HIGH = 0.8659. Landmark initialization

is at the middle of the scale, i.e, x
(i)
q,0 = 0.7682.

Linear model for temporal landmark quality: the data association

probability

Another possibility in the computation of the temporal landmark quality is
to consider the probability of correct data association of such landmark in the
next iteration.

According to the relative frequency definition of probability, if an event
(say, the correct association of landmark i) occurs j times in k trials (observa-
tions), and provided k is sufficiently large, then the probability that the same
landmark will be properly matched in the next iteration can be expressed as

p
(i)
k =

j

k
(1.63)

Now, once a new observation is made, the data association probability
will change according to the new landmark association result. This change in
probability is represented by the recursive expression

p
(i)
k+1 =

p
(i)
k k + u

(i)
q,k

k + 1
(1.64)

with u
(i)
q,k defined as in Equation 1.60. If we make the notation change a =

k/(k + 1), and x
(i)
q,k = p

(i)
k , our second model for temporal landmark quality

becomes
x

(i)
q,k+1 = ax

(i)
q,k+1 + (1 − a)u

(i)
q,k (1.65)

For fixed values of k, the constant a accounts for a memory weight with a
role similar as those of α and β from the previously discussed model. It can be
fixed to a constant value between 0 and 1, and it indicates the memory length
to be used in the computation of the new data association probability. So
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Fig. 1.8. Landmark quality models.

for example, if a memory window of the last 5 iterations is to be considered,
the memory weight becomes a = 0.8333. In this linear model for temporal
landmark quality, xq is bounded between 0 and 1, and initialization is made
at 0.5.

Both temporal landmark quality measures, the exponential decay rule, and
the data association probability were chosen to have similar properties. For
instance, to be asymptotically bounded by above and below by

xq,LOW ≤ xq ≤ xq,HIGH (1.66)

Any other function with such monotonicity could be also used as temporal
landmark quality function. However, such function must have some way of
tuning the memory length of the algorithm. The two functions proposed do
so by means of the parameters α, β, and a. The left plot in Figure 1.8 shows
the behavior of the exponential decay rule for the parameter values α = 1,
and β = 1. Similarly, the right plot shows the data association probability
with parameter a = 0.5. The labels 0-1 and 1-0 indicate the change in the
landmark identification stamp uq from 0 to 1, and from 1 to 0, representing
the presence or loss of data association.

Temporal landmark quality test

In the same way that the spatial compatibility test is used to validate if ob-
servations are consistent with the already learned map entries; the temporal
landmark quality test must be used to validate if any map entry is sufficiently
robust to be kept in the map. The test verifies if the history of data association
has kept the value for the temporal landmark quality above a user defined cut
threshold q. All landmarks expected to appear in the current field of view, and
for which no occlusion has been predicted, must have their landmark quality
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Fig. 1.9. Landmark quality test for a test run with 10 landmarks and 100 steps.
α = 1, β = 1, and a = 0.5. The plots show landmarks labeled 2 and 9 being
reinitialized near steps 30 and 50 respectively.

measure updated. Furthermore, those landmarks whose temporal quality mea-
sure falls below the user defined threshold should be removed from the map.
The heuristics needed to handle occlusions, depend on the type of landmarks
and sensors used.

The temporal landmark quality test is

if x
(i)
q ≤ q

RemoveLandmark(x
(i)
f )

In the case of the exponential decay rule with parameters α = 1 and
β = 1, for example, the cut threshold q = 0.66 is reached once a landmark
has not been observed for 5 consecutive iterations, or more if these were not
consecutive. Similar effects are obtained when using the data association prob-
ability with the parameter value a = 0.5, and a cut threshold of q = 0.03.
Figure 1.9 shows both the exponential decay rule, and the data association
probability as landmark quality measures for a test run of 100 steps and 10
landmarks, with slightly modified simulation parameters than the ones used
to create Figure 1.5b. In this test run, we have forced 25% of the observations
to be misidentified to their closest neighbor. The individual compatibility test
catches some but not all of these mismatches, and yields an identification
stamp value uq = 0 for them. By adding the more restrictive temporal land-
mark quality tests, those landmarks with a large amount of mismatches end
up being removed from the map, and are reinitialized as new landmarks once
they become robust again.

We have opted for a simplified heuristic for the removal of a landmark from
the map, with the advantage of computational efficiency, but at the expense of
suboptimality. Our algorithm simply erases the low quality landmark entries
from the state vector and its corresponding row and column in the state error
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covariance matrix. Once the landmark is robust again, it is considered as
a new different landmark, and initialized according to the discussion from
Section 1.1. Note however that, given the fact that SLAM is fully correlated,
the contribution of a misidentified landmark estimate in revising the error
covariance matrix has already propagated to the entire map. The right thing
to do, would be to trace back the intermediate results of the algorithm up to
the point in which the landmark was originally inserted, and to recompute
forward once more the map state and map error covariance up to the current
iteration, without considering that landmark, as if it had never existed.

Saving the state vector and error covariance matrix for all iterations has
space complexity of O(kn2), with k the number of iterations, and n the number
of landmarks. Furthermore, recomputing the state vector and error covariance
matrix from the point at which the spurious landmark was initially inserted,
would most likely lead to different values on P, and consequently on S, pro-
ducing even different data association results. So, not only the state vector
and covariance matrix history must be maintained, but the full measurement
data as well, requiring for a full run of the algorithm every time a landmark
is found to be spurious. The optimal solution is rather cumbersome, and we
have opted for suboptimality, with the aforementioned simplification of just
deleting the corresponding entries in x and P, with the following insight.

Gibbens et. al. [41], show how in SLAM all entries in the covariance ma-
trix P depend on the number of landmarks used in the form of the total
Fisher information IT . This is a measure of the total information per unit
time available to the filter. For a monobot with n landmarks, all with equal
measurement variance σ2

w, the total Fisher information is IT = n/σ2
w. The

more landmarks available, the more information the filter has. That is, the
greater the number of landmarks used, the smaller the asymptotic values for
the entries in the error covariance.

The removal of a landmark from the state vector in the form discussed
is consistent with this observation. We next show, by example, how for the
monobot, all the entries in P with the removal of a landmark at some point
in the algorithm are bounded by below and above by the same entries in P,
but with and without considering the landmark for the entire run. Let us call
P·,n the entry in P for a map with n landmarks, and P·,n+1,n the entry in P
for a map that went from n + 1 to n landmarks via the removal of landmark
states. Then, for the entire run of the algorithm

Pr,k|k,n+1 ≤ Pr,k|k,n+1,n ≤ Pr,k|k,n (1.67)

P
(i)
rf,k|k,n+1 ≤ P

(i)
rf,k|k,n+1,n ≤ P

(i)
rf,k|k,n (1.68)

P
(i,j)
f,k|k,n+1 ≤ P

(i,j)
f,k|k,n+1,n ≤ P

(i,j)
f,k|k,n (1.69)
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Moreover, by removing a landmark from the map in the form discussed,
the asymptotic convergence property from Equation 1.25 is maintained. That
is, the revised map is still fully correlated. Figure 1.10 shows the evolution
of the entries in the covariance matrix for a monobot with two and three
landmarks and noise parameters Q = 1, R(i) = 1, Pr,0|0 = 1. Figure 1.11
shows the evolution of the determinant of the map error covariance for the
same monobot configuration, an indication of asymptotic full correlation.

1.4 Performance of EKF SLAM 
with Landmark Validation

Having underpinned the characteristics and model assumptions of the full
covariance EKF-SLAM and EKF-SLAM-LV algorithms (LV stands for the
landmark validation extension to the original algorithm), we present now re-
sults on the improvement in the reconstruction achieved. Namely, we will
compare the original algorithm with the modifications induced by sequential
innovation and observation range limitations. We will then concentrate on
the more realistic limitations produced by erroneous data association, which
is considered one of the most critical artifacts that might destroy the viabil-
ity of the EKF-based method to simultaneous localization and map building.
This is, when one or more observed landmarks are misidentified, their loca-
tion estimate might diverge considerably, consequently inducing large errors
in the localization of the robot as well. We will show how this problem is
alleviated by using both temporal and spatial landmark quality tests to verify
the correctness of data association.

Sequential innovation

From this point on we will consider as our standard test case, and unless
otherwise indicated, a planar robot traversing an environment with 10 land-
marks in 100 steps, with 10% standard deviation over desired polar motion
commands (rotational and translational velocities) to simulate dead reckon-
ing, and with 1% measurement accuracy, also in polar coordinates. Figure 1.12
shows the results of applying the full-covariance EKF-SLAM algorithm, and
the computationally more efficient version with sequential innovation. In the
first two plots in the figure, the continuous line indicates the actual robot dis-
placement, and the continuous line with small ellipses on top, representing the
estimated trajectory. The ellipses are projected uncertainties at a distance of
2σ. Furthermore, the sparse light dots indicate landmark measurements, and
the darker dots indicate their location estimate as computed by the localiza-
tion algorithm.

As the reader can appreciate in the error plots, both implementations are
practically equivalent, the implementation using sequential innovation being
slightly better. The actual difference in the localization of the mobile robot for
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Fig. 1.12. Full-covariance EKF SLAM for a path with 100 iterations and 10 land-
marks.

both implementations is shown in Figure 1.13, with a variation in the local-
ization estimate by 1.68mm on average, for a run of nearly 40m, a deviation
of less than 0.0042%, and for all practical purposes negligible. Given that the
two methods are theoretically equivalent, this small divergence is attributed
to floating point computations and quantization, and to the better model
estimates obtained when re-computing the model Jacobians after each mea-
surement is assimilated by the filter. In order to appreciate the contribution
in localization error from each degree of freedom of the vehicle, Figure 1.14
shows the components of robot localization error in the EKF-SLAM run with
sequential innovation, with 2σ bounds signaled as dotted lines.

Figures 1.15 and 1.16 help visualize the behavior of the entries in the error
covariance matrix for the EKF-SLAM algorithm with sequential innovation.
Figure 1.15 shows for example how the uncertainty in the location of the
landmarks reduces monotonically, with each line representing the landmark
noise covariance estimate in both the x and y axes.
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Fig. 1.14. Robot localization error estimate. EKF SLAM with sequential innovation
for a path with 100 iterations and 10 landmarks.

One direct consequence from Equation 1.25 is that the correlation coef-
ficients of the map covariance Pf are monotonically increasing. So at each
iteration, these correlation coefficients can be evaluated with

ρ
(ij)
x,k =

P
(ij)
fx,k|k�

P
(ii)
fx,k|kP

(jj)
fx,k|k

(1.70)

ρ
(ij)
y,k =

P
(ij)
fy,k|k�

P
(ii)
fy,k|kP

(jj)
fy ,k|k

(1.71)

and we show in Figure 1.16 the evolution in time of the correlation coefficients
for one such landmark with respect to the rest.
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Partial observations

Now, imagine a more realistic sensor, one with a limited field of view. Will the
fact that not all landmarks can be seen and matched at all times worsen the
reconstruction results? The answer is twofold. One the one side, and as will
be seen in the next Chapter, when using a reduced number of landmarks, the
effects of partial observability are accentuated, limiting the reconstruction of
the vehicle and landmark locations. On the other hand, given the measure-
ment noise models proposed, ones that are proportional to the distance to
the observed landmark; by neglecting measurements from objects that are
far from the robot, we also limit the value of the noise introduced by the
measurement model.

These arguments might lead to the formulation of a strategy for the com-
putation of the appropriate number of landmarks to use, optimal in the sense
of the reconstruction results (reduced partial observability effects), and at the
same time limiting the impact of sensor measurement noise (by eliminating
unreliable observations in terms of the distance of the landmarks to the robot).

Let us analyze in greater detail, and with the aid of our standard test
case from Section 1.4, how a limited field of view undermines the accuracy in
localization when using the EKF-SLAM algorithm. Figure 1.17 shows a run
of the algorithm with sequential innovation for a sensor with a limited field of
view of 2m. Notice how in between the 5th and 15th iterations approximately,
the robot pose estimate depends on observations from 2 landmarks only. The
growth in size of the covariance ellipses clearly shows the increase in the
uncertainty in localization. By the time new landmark observations enter the
field of view, the vehicle has already accumulated a large amount of dead
reckoning error. Consequently, all initial landmark position and covariance
estimates are biased with such initial localization error.

A similar situation occurs near the end of the simulation, around the 85th
iteration. In this case, the map is revised with repeated observations of just
one landmark only, and even when the localization estimate remains consistent
with such observation, just one 2d landmark does not suffice in localizing a
3dof vehicle. The accumulated deviation is corrected once a previously learned
landmark re-enters the field of view.

Consequently, the two most serious artifacts that can hinder accurate lo-
calization when the sensors have a limited field of view are, the wrong initial-
ization of landmark estimates due to accumulated error, and the decrease in
the dimensionality of the observed references during motion, up to the point
in which pose recovery becomes ill-posed.
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Fig. 1.17. Full-covariance EKF CML for a path with 100 iterations and 10 land-
marks, and a sensor with a limited radius of observation of 2m.
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Data missassociation

A more drastic situation is the case when the landmark identification module
is not error-free. That is the case when we allow the system a percentage of
landmark identification mismatches. Imagine that we observe say visual land-
marks, such as corners or lines extracted from intensity images, and that our
landmark tracking algorithm is not very accurate at matching observations in
consecutive frames because of illumination changes or other data association
artifacts. To simulate this behavior we rely once more on our standard test
case. For the sample run shown in Figure 1.18, landmark matching is per-
formed with a 25 percent probability of missassociation within a 1m radius.

The effects of landmark misidentification are much more pervasive than
the lack of observations explained in the previous section. In the sample run
shown in Figure 1.18, localization and map building proceeds smoothly until
the 30th iteration, when the first mismatch occurs. The algorithm is not able to
recover from this failure, and when the previously observed landmarks re-enter
the field of view two things happen. On the one hand, the new observations of
the already learned landmarks aid in reversing the error trend in localization.
On the other hand, the same new observations are used to revise the mere
location estimates of those landmarks. Moreover, new landmark observations
will be initialized with corrupt robot location estimates.

Given the fact that the map is fully correlated, the effects of landmark
mismatch propagate to the localization estimate of all the landmarks in the
model.

The estimation theoretic approach to SLAM, as presented by Smith and
Cheeseman, and later formalized by Leonard, Newman, and Durrant-Whyte
among others, is very sensitive to data association errors; and as formulated
lacks a theoretical foundation to deal with the problem. Efforts have been tai-
lored at correcting the effects of data mismatches, and at finding measures of
the spatial compatibility of landmark correspondence. We go one step further,
providing a new formulation of temporal landmark quality measures.
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Fig. 1.18. Full-covariance EKF CML for a path with 100 iterations and 10 land-
marks, and a sensor with a limited radius of observation of 2m. Data missassociation
occurs within a radius of 1m with a 25% probability.
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Landmark validation

To correct the limitations of the EKF-SLAM algorithm shown so far, we
present now results of the two strategies for the computation of landmark
quality herein discussed. First, we will show the results of using the com-
patibility test to validate landmark observations in terms of their weighted
distance to their expected location (in the sense of Mahalanobis d2). Fig-
ure 1.19 shows for our base test case, the improvement in the localization of
the mobile robot when the spatial compatibility test from Equation 1.41 (χ2

goodness of fit test) is performed, with a confidence level of 95%.
The dots in the map plot represent all of the observations that pass the

test. Note how landmarks 2 and 9 were misidentified early after they were
initialized, and as a consequence their observations do not pass the spatial
compatibility test for the rest of the simulation. The estimated robot localiza-
tion error is represented by the projected ellipses along the robot path, which
correspond to 2σ level curves of the robot pose error covariance estimate. The
ellipses around landmark locations on the other hand, indicate projected 2σ
bounds for the observed landmark covariance estimates.

Also, due to the absence of observations that pass the test during the
interval between the 85th and 95th iterations, the vehicle position estimate
is revised by dead reckoning only, with the immediate consequence of having
the vehicle covariance estimate enlarged at each iteration. Once a landmark
passing the test re-enters the robot field of view, the filter kicks in again, with
revised vehicle location and error covariance estimates.

Next, we include results of applying the temporal landmark quality test
to the above results. Those landmarks whose temporal landmark quality falls
below a given threshold are removed from the map. This is, they can no longer
be used for localization. Only after observations for those landmarks become
robust again, they can be reinitialized. Figure 1.20 shows the improvement
of using the exponential decay rule as a function to validate temporal land-
mark quality, together with individual spatial landmark compatibility tests in
SLAM. Furthermore, Figure 1.21 shows the results of using the data associa-
tion probability as a function to test the temporal landmark quality.

As with Figure 1.19, the dots in the plot represent only the observations
that pass the test. Note how observations for landmarks 2 and 9 pass now
the test, once they are reinitialized and become robust again. The advantage
over the previous simulation is that these landmarks will still be used to build
the map, providing more information to the filter (IT ), and consequently con-
verging to a lower localization error estimate. Figure 1.9 shows the evolution
of both the exponential decay rule, and the data association probability as
landmark quality measures for this test run.

We plot in Figure 1.22 the norm of the robot localization error in the xy
plane to show the improvement of using both the temporal landmark quality
and spatial landmark compatibility tests, versus using the spatial landmark
compatibility test only. The test run is performed on our standard case of the
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EKF SLAM algorithm with sequential innovation, a 2m limited sensor range,
and 25% data missassociation.

New simulations were run for varying conditions, first by increasing the
number of landmarks, and then by also incrementing the number of iterations.
Figures 1.23 and 1.24 show the results of comparing the use of spatial land-
mark validation only versus using temporal and spatial landmark validation.



Fig. 1.19. Results of using the individual compatibility test. Full-covariance EKF
SLAM for a path with 100 iterations and 10 landmarks, and a sensor with a limited
radius of observation of 2m. Data missassociation occurs within a radius of 1.0m

with a 25% probability.
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Fig. 1.20. Results of using the individual compatibility test and the exponential
decay rule to test temporal landmark quality, xq,LOW = 0.6590, q = 0.66, xq,HIGH =
0.8659. Full-covariance EKF SLAM for a path with 100 iterations and 10 landmarks,
and a sensor with a limited radius of observation of 2m. Data missassociation occurs
within a radius of 1.0m with a 25% probability.
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Fig. 1.21. Results of using the individual compatibility test and the data association
probability as temporal landmark quality test, xq,LOW = 0, q = 0.03, xq,HIGH = 1.
Full-covariance EKF SLAM for a path with 100 iterations and 10 landmarks, and
a sensor with a limited radius of observation of 2m. Data missassociation occurs
within a radius of 0.5m with a 10% probability.
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Fig. 1.22. Robot localization error estimate. Comparison between ICT: Individual
spatial compatibility test with limited vision range and data association errors (re-
alistic case of SLAM); and the improvements proposed, ICT+DAP: EKF-SLAM-LV
with both spatial and temporal landmark quality tests, using the data association
probability, and ICT+EDR: EKF-SLAM-LV with both spatial and temporal land-
mark quality tests, using the exponential decay rule. The simulation is run over a
path with 100 iterations and 10 landmarks, and a sensor with a limited radius of
observation of 2m. Data missassociation occurs within a radius of 1.0m with a 25%
probability.
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Fig. 1.23. Robot localization error estimate. Comparison between ICT: Individual
spatial compatibility test with limited vision range and data association errors (re-
alistic case of SLAM); and the improvements proposed, ICT+DAP: EKF-SLAM-LV
with both spatial and temporal landmark quality tests, using the data association
probability, and ICT+EDR: EKF-SLAM-LV with both spatial and temporal land-
mark quality tests, using the exponential decay rule. The simulation is run over a
path with 100 iterations and 50 landmarks, and a sensor with a limited radius of
observation of 2m. Data missassociation occurs within a radius of 1.0m with a 25%
probability.
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Fig. 1.24. Robot localization error estimate. Comparison between ICT: Individual
spatial compatibility test with limited vision range and data association errors (re-
alistic case of SLAM); and the improvements proposed, ICT+DAP: EKF-SLAM-LV
with both spatial and temporal landmark quality tests, using the data association
probability, and ICT+EDR: EKF-SLAM-LV with both spatial and temporal land-
mark quality tests, using the exponential decay rule. The simulation is run over a
path with 200 iterations and 50 landmarks, and a sensor with a limited radius of
observation of 2m. Data missassociation occurs within a radius of 1.0m with a 25%
probability.
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1.5 Divergence

There is unfortunately a tradeoff in using the Extended Kalman Filter in
SLAM. Even with perfect data association, for nonlinear vehicle models, the
algorithm diverges in the long run. The divergence has been attributed to the
linearization in Equations 1.6 and 1.7. An explanation of this behavior is by
Julier and Uhlmann [53], where they show a counter example to the EKF-
SLAM algorithm that did not converge to a fully correlated map in their
simulations.

Their vehicle model was similar to our planar mobile robot from Section
1.2; a vehicle with three state variables to indicate its pose, two Cartesian
coordinates for position, and an orientation angle. In their simulations they
showed how such a vehicle could not reconstruct its location from continuous
observations to one point landmark; even, when no motion commands were
conveyed to the robot, and when a noise free plant model was assumed.

They suggest that the divergence is due to the linearization of the system
needed for the implementation of the EKF, arguing that the no-motion con-
dition for an error-free model is equivalent to having a zero component in the
vehicle part of the Kalman gain. Such assumption leads to the equality

H(i)
r Fxr = −H

(i)
f x

(i)
f (1.72)

Furthermore, they show how Equation 1.72 holds only for the linear case
of SLAM, and breaks down after linearization in the EKF version of the algo-
rithm, and state that “being this a structural condition, no tuning procedure
(inflation of plant and measurement noise covariances) would circumvent the
problem”. For this reason they push for nonlinear approaches to KF. To pal-
liate the effects of nonlinearities we analyze in Chapter 4, one such technique
to propagate means and covariances without the need for computing model
Jacobians.

Moreover, in the next Chapter we analyze how the localization error varies
with respect to the number of landmarks used. Our study is from the point
of view of control systems theory. We believe that the amount of divergence
of the algorithm may also be factored by the partial observability of the state
vector, and that by keeping the state error covariance as close to the lower
bound Pr,0|0 as possible, one can reduce the divergence effects. This can only
be done if we add more landmarks to the map, or ultimately, as we propose,
by anchoring the map to a known world reference.

1.6 Bibliographical Notes

Mobile robot localization has been addressed from different perspectives, di-
vided mainly in the following groups.

Correlation methods that match sensor signals against previously stored
maps. Systems that match visual data using correlations for self-localization
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include the ones by Drocourt et al. [33], Hashima et al. [47], Mallet and Lacroix
[66], Talluri and Aggarwal [82], or Volpe et al. [90].

Estimation theoretic approaches that predict and refine the robot position
from current and previous sensor readings, past position estimates, and motion
commands, as well as uncertainty models of sensors and motion. Such methods
are typically robust for local localization, provided that the initial estimate of
the robot is sufficiently accurate, and that correct stochastic models for the
robot dynamics and the sensors are available. An example where vertical lines
are extracted from images and matched against a previously stored map of
the environment taking into account the stochastic nature of sensor data is
presented in the work by Ohya et al. [72]. In this case, robust self-localization
is attained by means of Kalman filtering. Recent contributions in the use
of Kalman filtering techniques for self-localization include those of Anousaki
and Kyriakopoulos [15], Deans and Hebert [26], Duckett and Nehmzow [34],
Kosaka and Kak [60], Lee and Recce [62], and our own contributions deriving
from this work [6, 7, 8, 9, 10, 11, 12, 13, 14, 88, 89].

Markov localization techniques are an extension to the above cited method,
in which a probabilistic framework is used to maintain a position probability
density over the whole set of robot poses. These techniques are better suited to
solve the global localization problem, at the expense of stronger assumptions
about the nature of the environment than with the Kalman filter. A recent
example that illustrates the use of Markov models for robot localization is by
Fox et al. [38]. A thorough description of Markov localization methods can be
found in the work by Thrun [84].

Finally, a mirage of other algorithms have been proposed in attempts to
solve the robot localization problem. The ones that are less related to the
work presented in this thesis vary from fuzzy-based algorithms [28, 76, 77], to
the minmax risk fixed-size confidence set estimate [67], designed as an optimal
set of decision rules in the minmax sense for dealing with the uncertainties
in sensor measurements; a topological approach that makes use of a gener-
alized Voronoi graph and graph matching techniques [22]; or a set-theoretic
approach, in which the estimate of the position of the robot and the land-
marks is expressed in terms of bounded sets, making use of set membership
estimation theory.

The main drawback of most of these approaches is however, that they have
not been designed with continuously changing environments in mind. All of
these methods treat moving or temporary objects as noisy data or measure-
ment uncertainty. It is only with Kalman filter based methods and Markov
localization techniques that by using statistical approaches we can cope with
noisy data. Fuzzy based algorithms do the same by estimating qualitative
models for sensor and robot uncertainty. We believe that by incorporating
time-varying properties to our environment model, we are able to better cope
with the dynamics inherent in typical mobile robotics environments.

The study of stochastic models for simultaneous localization and map
building in mobile robotics has been addressed by several research groups for
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over fifteen years. Within the KF approach to SLAM, seminal work by Smith
and Cheeseman [79] suggested that as successive landmark observations take
place, the correlation between the estimates of the location of such landmarks
in a map grows continuously. This observation was ratified recently by Dis-
sanayake et al. [31] with a proof showing that the estimated map converges
monotonically to a relative map with zero uncertainty. They also showed how
the absolute accuracy of the map reaches a lower bound defined only by the
initial vehicle uncertainty. With respect to covariance initialization, we would
like to express our gratitude to P. Newman for making it clear to us. Thanks
to that we were able to reproduce in our simulations the three asymptotic
convergence properties of SLAM described in Section 1.1.

In spite of these fundamental convergence properties of the KF approach
to SLAM, there exist some limitations that still hinder full development of
SLAM applications. The three most criticized of these limitations are the
time and space complexity of the algorithm, the restriction to unimodal zero
mean white Gaussian models of uncertainty, and the data association and
landmark quality problems. We go even further in our analysis of the SLAM
problem, and show in the next chapter one more fundamental limitation to
the algorithm, that full reconstruction of the map state vector is not possible,
regardless of the vehicle model chosen, and that the expected error in state
estimation is proportional to the number of landmarks used.

The explicit solution for the monobot SLAM problem presented by Gibbens
et al. [41] shed some light on the relation between the total number of land-
marks (in the form of the total Fisher information IT ), and the asymptotic
values for P. In the next chapter we treat this topic from a different perspec-
tive, with the principles of controllability and observability of linear systems
in mind.

On a side issue, special interest has recently been put on the search for
methods to reduce the time and space complexity of the SLAM algorithm,
at the expense of a sub-optimality in the solution; by pruning the map from
those landmarks that surpass a certain degree of spatial correlation [30], or by
local updating of the map exploiting the advantages of sequential innovation
in KF [43]. One requisite for sequential innovation is that observations must
be uncorrelated, and they present a suboptimal decorrelation algorithm for
that purpose.

Julier et al, also present a suboptimal solution to SLAM with sequential
innovation in KF, reducing the time and space complexity of the algorithm
from O(n2) to O(n) [49, 54]. Instead of decorrelating observations, they do
away with cross correlations between observations and state estimates, and
update the state covariance estimate with a weighting factor that penalizes
the lack of information about correlations.

In the search for robust models of uncertainty in SLAM, a variety of routes
have been explored. Durrant-Whyte et al. presented an extension to the typi-
cal KF-SLAM algorithm with the use of sums of Gaussians (SOGs), to approx-
imate more general probability distributions for the modeling of unstructured
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sub-sea terrain [36]. Tardós et al. [83] build maps of indoor environments
from sonar data, suing the Hough transform as a tool to perceptual grouping
of sonar returns, and by joining local maps into a global representation.

There is no general consensus on what constitutes a good measure for
landmark quality. Intuition suggests measures proportional to the temporal
dispersion and inversely proportional to the spatial dispersion of landmarks.
We have no knowledge of previous attempts at formulating temporal land-
mark quality models. There resides precisely one of the most relevant con-
tributions of this thesis. In an attempt to unify landmark quality and data
association uncertainty within the structure of the estimation-theoretic ap-
proach to SLAM, we proposed in this Chapter, an augmented map model
that incorporates temporal landmark temporal tests to validate the quality of
observations.

Dissanayake et al. address the issue of landmark robustness as an imple-
mentation detail only [31], suggesting a quality measure based on the proba-
bility density function of the observations associated to any given landmark,
and disregarding the temporal dispersion of such observations. A different,
more simple measure of landmark quality is proposed [30], as the trace of the
error covariance submatrix Pfi

.
To aid in data association, Castellanos et al. suggested in [21], a χ2 test

to evaluate scene-to-map landmark match hypotheses based on the squared
Mahalanobis distance between map landmarks and observations. Here, the
uncertainty in the location of a landmark in the map plays the role of qual-
ity assessment. More recently, Neira and Tardós [70] presented a constrained
search algorithm for scene to map hypothesis formation, in which the use of
the joint compatibility test is argued to supersede the classical nearest neigh-
bor compatibility test typically used for independent matching of sensors and
measurements.

Leonard et al. [64, 65] have realized that spatial dispersion is not sufficient
for landmark quality assessment, and that temporal information is needed as
well. They have opted for a delayed decision approach to data association, in
which by adding previous robot states to the state vector, they can include in
the Kalman filter covariance matrix correlations pertaining estimations from
previous vantage points. In this way, they can add non-invariant features such
as range-only measurements to aid in data association. A serious disadvantage
of this technique is that the map grows linearly in time, increasing the compu-
tational burden of the SLAM algorithm, even when no new features are added
to the map. Another serious disadvantage is the divergence of the fundamental
motivation of using a Kalman filter to maintain a parametric representation
of the history of the uncertainty of robot and landmark localization by means
of an estimated full-covariance matrix.

Davison et al. have also studied the spatial dispersion of landmark ob-
servations as a measure of landmark quality, and suggest that when one has
to choose among several observations to update, the one with the largest
hyper-ellipsoid volume of dispersion contributes more to the overall reduction
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of the map error covariance. Similarly, they argue that by diagonalizing the
landmark covariance in measurement space HiPHi


, they are able to bound
the search for scene-to-model landmark matches. These observations led them
to active vision heuristics for gaze control when building maps with SLAM
[24, 25]. Another suggestion is the use of robust methods aimed at eliminating
observation outliers, such as RANSAC [37], in order to diminish the effect of
measurement and data association errors.

General references to linear systems theory include the books by Kailath
[56], and DeCarlo [27]. For the study of the Pearson χ2 test and other topics
of statistics the reader is referred to the book by Fukunaga [39]. Linear Gaus-
sian models in general are treated extensively in the survey by Roweis and
Ghahramani [75], and in the book by Duda et al. [35].

1.7 Concluding Remarks

This chapter presents a revision of the traditional full-correlation EKF SLAM
algorithm for mobile robot localization and map building. We extend the
traditional algorithm by adding temporal landmark quality measures, and a
temporal landmark quality test to validate the history of data association.
These quality measures permit the maintenance of the map by the elimina-
tion of inconsistent observations. The removal of weak landmarks from the
state vector and state covariance matrix does not violate the convergence
properties of SLAM. Special attention has been paid in the selection of the
temporal landmark quality models, to guarantee that the uncertainty in the
map estimates still reduces monotonically. The proposed solution contributes
in simplifying the data association problem in SLAM.

One drawback that might limit the use of the newly introduced temporal
landmark quality test in computer vision based SLAM is the concept of vis-
ibility. Temporal landmark quality can only be revised for those landmarks
that are visible to the vehicle. And, depending on the sensor and landmark
models used, a visibility condition might be rather difficult to assert. Occlu-
sions of walls inferred from laser data are easy to compute; however to test if
a visual landmarks should be present or not in a scene, is rather complicated.
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Marginal Filter Stability

Two fundamental aspects in the use of the Kalman Filter for simultaneous
localization and mapping are the issues of observability and controllability.
Unfortunately, in SLAM, the state space constructed by appending the robot
pose and the landmark locations is fully correlated; a situation that hinders full
observability. Moreover, the modeling of map states as static landmarks yields
a partially controllable state vector. The identification of these problems, and
the steps taken to palliate them, constitute one of the main topics of this
monograph. The bulk of which is covered in this chapter.

In Chapter 1 we dedicated a few paragraphs to the formulation of the EKF-
SLAM equations for a simple linear 1-D robot we called, the monobot. The
importance of the formulation of a naive case study such as the monobot be-
comes evident in this Chapter, where we study the behavior of the estimation-
theoretic approach to SLAM from a systems point of view. We need this simple
linear model to show the effects of partial observability and partial controlla-
bility, with respect to the number of landmarks used, even when data associ-
ation is perfect. That is, when all landmarks are correctly identified at each
and every iteration.

In Section 2.1 we analyze the steady state behavior of the error state
covariance for the monobot SLAM, and show by example, that the steady
state of the filter will always depend on the initial noise parameters. The
effect is known as filter instability, and is in general an undesirable feature in
state estimation.

In Section 2.2 we derive an expression for the total Fisher information in
SLAM, and show how full correlation prohibits the use of the Cramer Rao
lower bound for the vehicle and map covariance. The analysis yields a closed
form solution for the monobot Fisher information matrix that shows explicitly,
the unobservable directions of the map state in SLAM.

Filter instability, and the singularity of the Fisher information matrix, are
both consequences of having partial observability and controllability. Section
2.4 is devoted to the computation of general expressions for the bases of the
controllable and observable subspaces in SLAM. These expressions are later

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 49–84, 2006.
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simplified in Sections 2.5 and 2.6 for the monobot and planar vehicle models,
respectively. In the end, we show that the angle between these two subspaces
is determined only by the total number of landmarks in the map. The result
is that as the number of landmarks is incremented, the vehicle pose states get
closer to being reconstructible.

The observability condition guarantees a steady flow of the information
about each state component, and prevents the uncertainty (error state co-
variance) from becoming unbounded [18]. In Section 2.7 we show how partial
observability in SLAM can be avoided by adding a fixed external sensor to the
state model, or equivalently, by setting a fixed landmark in the environment
to serve as global localization reference. Full observability yields the existence
of a (not necessarily unique) steady state psd solution for the error covariance
matrix P.

The controllability condition allows the process noise to enter into each
state component and prevents the covariance matrix from becoming singular
[18]. In Section 2.8 we show how having a semi-definite covariance matrix
reflects on the filter’s belief that it has perfectly accurate estimates of some
state components, for which the Kalman gain evaluates to zero, and the inno-
vations are not considered in the revision of the state estimate. To palliate the
effects of partial controllability, we propose the addition of artificial positive
definite process noise associated to the landmark states.

2.1 Steady State Behavior of EKF-SLAM

We start the discussion with a pictorial representation of the behavior of the
EKF-SLAM algorithm. Consider a monobot with initial vehicle localization
variance σ2

r,0|0 = 1, and various levels of motion and sensor noise variances,

denoted by σ2
v and σ2

w, respectively. For the sake of simplicity, imagine a
robot with constant motion uncertainty, regardless of the size of the input
command, and a sensor with constant observation uncertainty, regardless of
the distance to the landmark being observed. Later, we will take into account
more realistic models of uncertainty, and analyze the advantages of having a
measurement covariance matrix that can be computed online.

The final vehicle and landmark variances (σ2
r,k|k, σ2

f,k|k, k → ∞) depend

only on the initial parameters σ2
r,0|0, σ

2
v , σ2

w, and on the total number of land-
marks n. The evolution of the error covariance matrix is independent of the
state input, and measurements throughout the run of the algorithm. Mean-
ing that, for a monobot with perfect data association and constant motion
and sensor uncertainty, the computation of the Kalman gain could even be
performed off-line. That is, the asymptotic (steady state) behavior of the fil-
ter, and its rate of convergence are always the same, regardless of the actual
motions and measurements.

Figure 2.1 shows the steady state vehicle and landmark variances of the
EKF-SLAM algorithm applied to a monobot when observations of 1, 2, 3,
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Fig. 2.1. Final vehicle and landmark localization variances after 500 iterations of
CML for a monobot with initial localization variance σ2

r,0|0 = 1, and various levels
of plant and sensor noise.

and 50 landmarks are available. The Figure plots the influence of each of the
noise parameters σ2

v and σ2
w with respect to the final vehicle and landmark

uncertainty.
On the one hand, the final vehicle localization variance depends less on the

vehicle plant noise variance σ2
v than on the measurement noise variance σ2

w .
On the other hand, as the number of landmarks grows, we see a considerable
decrease of the steady state value for all the entries in P. The landmark-to-
vehicle and landmark-to-landmark cross correlation terms (ρrf(i)σrσf(i) and
ρf(i)f(j)σf(i)σf(j)) although not shown on the plots, they all converge to the
same values as the landmark variance σ2

f(i) . Meaning that, as k tends to in-

finity, the map becomes fully correlated, i.e., ρf(i)f(j) = 1.
The two observations: a) that rate of convergence of P is fixed, and b)

that the precision of the map (in terms of the asymptotic value of the error
covariance) is independent of the plant variance σ2

v ; were first described by
Gibbens et al. [41], in which a closed form solution for the computation of
Equation 2.1 for the continuous time domain monobot was presented.
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The steady state covariance matrix is given by the solution of the Riccati
equation

P = F(P − PH
(HPH
 + R)−1HP)F
 + Q (2.1)

and for the linear case it is only a function of Prr,0|0, Q, R, and n. Note
however that, for the nonlinear case, the computation of the Jacobians F and
H will in general also depend on the steady state value of x.

For a linear robot with perfect data association and constant vehicle and
sensor variances, the computation of K = PH
(HPH
 + R)−1 could be
performed off-line. That is, the asymptotic behavior of P and its rate of con-
vergence are always the same, regardless of the actual motions and measure-
ments.

2.2 Total Fisher Information

Under the Gaussian assumption for the vehicle and sensor noises, the Kalman
filter is the optimal minimum mean square error estimator. And, as pointed
out in [18], minimizing the least squares criteria from Equation A.17

E[x̃k|kx̃


k|k]

is equivalent to the maximization of a likelihood function Λ(x) given the set
of observations Zk; that is, the maximization of the joint probability density
function of the entire history of observations, conditioned on the state x

Λ(x) = p(Zk|x)

= p(zk, Zk−1|x)

= p(zk|x, Zk−1)p(Zk−1|x)

=
k�

i=1

p(zi|x, Zi−1) (2.2)

Given that the above pdfs are Gaussian, and that E[zi] = Hxi|i−1, the
pdf for each measurement in SLAM is

p(zi|x, Zi−1) = N(z̃i|i−1;0,Si)

= (2π)−
dn
2 |Si|− 1

2 e−
1
2 (z̃�i|i−1S

−1
i

z̃i|i−1) (2.3)

That is, the joint pdf of the sequence of measurements Zk is equal to the
product of the marginal pdfs of the corresponding innovations.

In practice however, it is more convenient to consider the log likelihood
function

ln Λ(x) =

k�
i=1

ln p(zi|x, Zi−1)

= −1

2

k�
i=1

z̃
i|i−1S
−1
i z̃i|i−1 +

k�
i=1

ln |2πSi| (2.4)
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An intuitive interpretation of the maximum of the log-likelihood in Equa-
tion 2.4 is that the best estimate for the state x, in the least squares sense,
is the one that makes the sum of the entire set of Mahalanobis distances k

i=1 z̃
i|i−1S
−1
i z̃i|i−1 as small as possible. A measure that is consistent to the

spatial compatibility test described in Section 1.1.
The maximum of ln Λ(x) is at the value of the state x that most likely

gave rise to the observed data Zk, and is obtained by setting the derivative
of Equation 2.4 with respect to x equal to zero, which gives

�x ln Λ(x) =

k�
i=1

H
S−1
i z̃i|i−1 (2.5)

The Fisher information matrix, a quantification of the maximum existing
information in the observations about the state x is defined (in [17] and [18])
as the expectation on the dyad of the gradient of Equation 2.4

J = E[(�x ln Λ(x))(�x ln Λ(x))
] (2.6)

Taking the expectation on the innovation error E[z̃i|i−1z̃


i|i−1] = Si in the

above formula gives the sum

J =

k�
i=1

H
(HPH
 + R)−1H (2.7)

In the linear case, this expression for the total Fisher information is only
a function of Prr,0|0, Q, and R. If on the other hand, the EKF has been used,
the Jacobian H in Equation 2.6 should be evaluated at the true value of the
states x0, . . .xk. Since these are not available, an approximation is obtained
at the estimates xi|i−1. The pre and post multiplying Jacobian H in Equation
2.7 is, in this context, also known as the sensitivity matrix [32].

A necessary condition for the estimator (the Kalman filter) to be consis-
tent in the least squares sense is that there must be an increasing amount of
information, about the state x in the measurements. That is, as k → ∞, the
Fisher information has to tend to infinity.

Figure 2.2 shows this for the monobot with constant parameters σ2
r,0|0 =

σ2
v = σ2

w = 1, and various sizes for the observation vector. Notice how, as
the total number of landmarks grows, the total Fisher information also grows,
directly relating the number of landmarks to the amount of information avail-
able for state estimation in SLAM.

Solving for the k-th sum term in J for the monobot yields the expression

Jk =

�  
ςij −ς

−ς
 S−1
k

�
(2.8)

with ςij the ij-th entry in S−1
k , and ς = [

 
ς1i, . . . ,

 
ςni].
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Fig. 2.2. First entry in the total Fisher information matrix for a monobot with
variance parameters σ2

r,0|0 = σ2
v = σ2

w = 1, and various sizes for the measurement
vector.

Citing Bar-Shalom et al. [18]: “A lower bound on the minimum achievable
covariance in state estimation is given by the posterior Cramer Rao lower
bound”1

E[x̃k|kx̃


k|k] ≥ J−1 (2.9)

Unfortunately, it can be easily shown, at least for the monobot case, that
the first row (or column) of J is equivalent to the sum of the rest of the rows
(or columns), producing a singular total Fisher information matrix. In SLAM
the Cramer Rao lower bound cannot be evaluated. SLAM is unobservable.

Citing once more Bar-Shalom et al.: “if the Fisher information matrix is
not invertible, then the lower bound from Equation 2.9 will not exist, actu-
ally it will have one or more infinite eigenvalues (one in the case of SLAM),
which means total uncertainty in a subspace of the state space, that is, the
information is insufficient for the estimation problem at hand.”

This is a consequence of the form of the Jacobian H, i.e, of the full cor-
relation in SLAM. Zero eigenvalues of H
S−1H are an indicator of partial
observability, and the corresponding vectors give the unobservable directions
in state space.

So for example, for a one-landmark monobot, the innovation covariance is
the scalar s = σ2

r − 2ρrfσrσf + σ2
f + σ2

w, and since H = [−1, 1], the Fisher
information matrix in Equation 2.8 evaluates to

1 See Appendix B for our interpretation of matrix inequalities.
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J =

�
1 −1
−1 1

� k�
i=1

1

si
(2.10)

The unobservable direction of the state space is the eigenvector associated
to the null eigenvalue of J, we denote it for now EKerO (the name will be clear
soon), and evaluates to

EKerR =

�
1
1

�
(2.11)

2.3 Convergence

Substituting the linearized version of (1.4) in (1.19), we may rewrite the KF
in the one-step ahead prediction form

xk+1|k = (F − KH)xk|k−1 + Kzk (2.12)

and with the appropriate substitutions, using (1.16) and (2.12), the corre-
sponding prediction error dynamics becomes

x̃k+1|k = (F − KH)x̃k|k−1 + Gvk − Kwk (2.13)

In general, only for a stable matrix F − KH, the estimation error will
converge to a zero mean steady state value. However, in SLAM, F − KH is
marginally stable, thus the steady state error estimate is bounded to a con-
stant value, subject to the filter initial conditions. To show F−KH marginally
stable, consider a one landmark monobot, i.e., F = I, G = [1 0 ]
, and
H = [−1 1 ]. For any value of

P =

�
σ2

r ρσrσf

ρσrσf σ2
f

�
(2.14)

the Kalman gain, computed with (1.20), is

K =
1

s

�−σ2
v

σ2
w

�
(2.15)

where
s = σ2

r + σ2
f − 2ρσrσf + σ2

w (2.16)

is the innovation variance. Consequently,

F − KH =
1

s

�−σ2
v + s σ2

v

σ2
w −σ2

w + s

�
(2.17)

with eigenvalues �
1,

1
s

�
s − σ2

v − σ2
w

��
and s �= 0

One of the eigenvalues being on the unitary circle yields marginal stability,
i.e., constant bounded non-zero mean error state estimate convergence.
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2.4 Observable and Controllable Subspaces

The solution to the Riccati Equation 2.1 converges to a finite steady state
covariance if the pair {F, H} is completely observable. If in addition, the pair
{F, G} is completely controllable, then the steady state covariance is a unique
positive-definite matrix, independent of the initial covariance P0|0.

Partial observability in SLAM means that the information entering the
system in the form of innovations is fully correlated, and that there is no
guarantee that the state error covariance is bounded. In other words, given
the singularity of the Fisher information matrix J, the information extracted
from the innovations z̃ is insufficient for the entire reconstruction of the state
estimate x.

To see what part of the state space is compromised by full correlation,
we now develop closed form expressions for the bases of the observability and
controllability subspaces in SLAM and relate them to the total number of
landmarks used.

The linearized EKF state model can be rewritten in terms of the error
states with

x̃k+1|k = Fx̃k|k + Gvk (2.18)

z̃k+1|k = Hx̃k+1|k + wk+1 (2.19)

Combining the plant and measurement noises into one large input vector,
the above error driven system is equivalent to the augmented model

x̃k+1|k = Fx̃k|k +
�
G 0


 �
vk

wk+1

�
(2.20)

z̃k+1|k = HFx̃k|k +
�
HG I


 �
vk

wk+1

�
(2.21)

and the controllability matrix for such a plant is

C = [G 0 FG 0 . . . Fm+dn−1G 0 ] (2.22)

The dimensionality of the controllable subspace, spanned by the column
space2 of C, (ImC), is

rank C = m (2.23)

regardless of the number of landmarks in the map. Obviously, the only con-
trollable states are the ones associated with the vehicle motion.

On the other hand, the observability matrix of our error driven system is

O =




HF

HF2

...
HFm+dn


 (2.24)

2 See Appendix B for a formal definition of the four fundamental subspaces of linear
algebra.
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zk+1

+
v wk , k+1 controllable and observable

correlated vehicle pose and landmarks

controllable but not observable
vehicle pose

observable but not controllable
landmark locations

neither controllable nor observable
none

Fig. 2.3. Controllability and observability of the state space in CML.

The rank of O indicates the dimensionality of the observable subspace,
which in turn, is spanned by the row space of O, (ImO
).

rank O = m + d(n − 1) (2.25)

The decomposition of the state space is portrayed in Figure 2.3. The arrows
indicate their roles in the realization of the system.

2.5 The Monobot

We return our attention now to the simple linear 1-D robot from Section
1.2. Consider the even more restrictive case in which only one landmark is
available. By substituting the resulting expressions for the model Jacobians in
Equations 1.52 and 1.53, the controllability and observability matrices reduce
to

C = 

�
1 0 0 1 0 0
0 0 0 0 0 0

�
(2.26)

O = 

�−1 1
−1 1

�
(2.27)

The controllable subspace has a basis of the form (q, 0)
, clearly indicating
that the only dimension in the state space that can be controlled is the one
associated with the motion of the robot.



58 2 Marginal Filter Stability

ImQ

ImR�

α

x̃r

x̃f

Fig. 2.4. Controllability and observability of a linear one dimensional mobile robot
with one landmark.

The observable subspace on the other hand, with basis (r,−r)
, shows how
the observed robot and landmark locations are fully correlated. This situation
is portrayed graphically in Figure 2.4.

The unobservable subspace is the orthogonal complement of ImO
, and
has a basis [r, r]
. An expression for it was already derived from the analysis of
the total Fisher information matrix and is given in Equation 2.11. The name
EKerO indicates that it is a basis for the null space of O.

The controllable and observable subspaces for the one-landmark 1-D
SLAM problem span along a pair of non-orthogonal lines in R

2; with the
consequence that the innovations only provide information for a fully corre-
lated reconstruction of the state space.

We suggest to use the angle between these two subspaces, as a measure
of the error incurred while trying to reconstruct the state x̃r from correlated
observations. It is evident from Figure 2.4 and Equations 2.26-2.27, that for
the one landmark monobot, the angle is

α = ∠ ImC ImO


= π/4rad. (2.28)

To see the physical interpretation of the angle α in Equation 2.28, we ask
the reader to analyze Figure 2.4 in detail once more. The error between an
observed landmark and its prediction must lay along O
. Such vector quantity,
multiplied by its corresponding Kalman gain, is used to revise our estimates of
both the robot and landmark locations. However, there is one direction of the
state space which is not observed, the one orthogonal to ImO
 (along KerO).
The information for the revision of x̃r and x̃f along the direction orthogonal
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to ImO
 is missing. The angle α indicates how close noise driven observations
are from fully revising the robot part of the state space.

The immediate questions that come to our mind are: what happens if we
add more landmarks to the environment? Will the vehicle and landmark loca-
tion estimates improve or degrade? Will we be able to achieve an uncoupled
reconstruction of the entire state space?

Surprisingly enough (and we believe, the entire research community which
supports the EKF-based approaches to SLAM will find these observations
crucial), the answer to the above questions is “improve” but “no”.

We will analyze now the two-landmark monobot case, and after that, we
will introduce and prove a new closed form expression that links the degree
of reconstruction in the EKF-SLAM algorithm to the number of landmarks
used in the case of the monobot.

The observation Jacobian matrix for the two-landmark monobot case be-
comes

H = 

�−1 1 0
−1 0 1

�
(2.29)

and the observability matrix of our noise driven linear state system is now

O =




−1 1 0
−1 0 1
−1 1 0
−1 0 1
−1 1 0
−1 0 1




(2.30)

A possible set of bases for the controllable and observable subspaces are

EImC =


1

0
0


 (2.31)

EImO� =


 1 1

−1 0
0 −1


 (2.32)

and the angle between these two subspaces can be computed as the smallest
non null singular value of the product of their orthonormal bases [74, 87].

EImC = UCΣCV


C (2.33)

UC =


 1

0
0


 (2.34)
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Fig. 2.5. ∠Im(C)Im(O�). Angle between the observable and controllable subspaces.

EImO� = UOΣOV

O (2.35)

UO =


−0.7071 0.4082

0 −0.8165
0.7071 0.4082


 (2.36)

α = ∠ ImC ImO


= arccosσmin(U

CUO)

= 163π/832rad

≈ 0.6155rad. (2.37)

The decrease in the angle between the controllable and observable sub-
spaces obtained by adding one more landmark to the map, suggests that our
measurement noise driven corrections to the map state estimate would recon-
struct the vehicle localization estimate closer to the actual value of the vehicle
pose.

Following this procedure we computed the value of α for a three-landmark
monobot model, further reducing to α = π/6. And, as we add more landmarks
to the map, the angle between the observable and controllable subspaces re-
duces monotonically. Figure 2.5 shows experimentally the decrease in α as
landmarks are added to the map state model. We are ready to introduce the
following theorem:
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Theorem 2.1. The angle between the controllable and observable subspaces
in the case of a linear one-dimensional robot in the EKF-SLAM algorithm
depends only on the total number of landmarks used (n), and is given by

α = arccos

�
n

n + 1

Proof. Carefully following the pattern just described for the computation of
α; in a generalization for the n-landmark monobot case, a set of possible bases
for the controllable and observable subspaces are given by

EImC = (q)

=

�
1

0n×1

�
(2.38)

and

EImO� =
�
r1 . . . rn

�
=

�
11×n

−I

�
(2.39)

respectively.
Moreover, let p be the projection of EImC onto EImO� . p is easily computed

as the sum of the individual projections of q onto each element ri of the basis
of the observable space, i.e.,

p =

n�
i=1

q
ri

r
i ri
ri (2.40)

Substituting the basis of the controllable space in Equation 2.40 gives the
reduced expression

p =
1

2

n�
i=1

ri

=
1

2

�
n

−1n×1

�
(2.41)

Finally, the angle between p and q, and consequently between the two
subspaces, is

α = arccos
p
q

�p��q�
= arccos

�
n

n + 1
(2.42)
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As the number of landmarks grows, the observable subspace gets closer to
the controllable part of the state space (the vehicle localization states).

lim
n→∞

α = lim
n→∞

arccos

�
n

n + 1

= 0 (2.43)

It is unrealistic however, to have an infinite number of landmarks, and
a compromise has to be made between the possibility of including as many
landmarks as possible, and the amount of information that new observations
give. Also one has to bear in mind that as we add more and more landmarks
to the map, we will also introduce their associated measurement noise.

Consequently, it has been argued that the performance of the SLAM al-
gorithm would be enhanced by concentrating on fewer, better landmark ob-
servations [41]. And that is certainly true, little gain (little reduction of α) is
made from going from 25 to 125 landmarks compared to the move from 1 to
5 or 5 to 25.

In Figures 2.6-2.7 we have plotted the results of using the original fully
correlated approach to SLAM for a monobot that starts at location xr,0|0 =
−1m, and moves along a straight line with a temporal sinusoid trajectory
returning to the same point after 100 iterations. Landmarks are located at
xf(i) = 1m. A plant noise model with σv proportional to the motion command
by 10%, and a measurement noise model with σw proportional to the distance
from the sensor to the landmark by 1% were used.

In the first column in Figure 2.6, the solid lines indicate the true and
estimated state trajectories, as well as the actual landmark measurements.
The blue dotted line shows 2σ bounds on the state estimate.

The effect of partial observability manifests itself in the dependence on the
initial conditions. Note how both the vehicle and landmark mean localization
errors do not converge to zero. Their steady state value is subject to the error
incurred at the first observation. That is, the filter is unstable.

A Montecarlo simulation over 100 SLAM runs showed however filter un-
biasedness, a property of optimal stochastic state estimation (Kalman filter).
That is, the average landmark localization error over the entire set of sim-
ulations was still zero, thanks to the independence of the initial landmark
measurement errors at each test run.

Partial controllability on the other hand, produces a zero Kalman gain
for the revision of the landmark estimates. That is, after a few iterations the
Kalman filter believes it has a perfectly accurate estimate of the landmark
locations, contradictory to the localization error just described. The rate at
which the landmark localization Kalman gain approaches zero is dictated by
the rate of convergence of the system, i.e., the system’s time constant (see the
bibliographical notes).

Moreover, the steady state error for the robot and landmark localization
is less sensitive to the initial conditions when a large number of landmarks
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Fig. 2.6. Full-covariance EKF SLAM for monobot in a sinusoidal path starting at
xr,0|0 = −1m, and 100 iterations
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Fig. 2.7. Full-covariance EKF SLAM for monobot in a sinusoidal path starting at
xr,0|0 = −1m, and 100 iterations.
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Fig. 2.8. Reduction of the average monobot localization error xr,k − xr,k|k with
respect to the number of landmarks used. The results correspond to a Montecarlo
simulation over 100 SLAM runs. The dotted lines show the extent of the data for
the entire set of runs, and the boxes contain marks at the lower, median and upper
quartile.

are used. The reason is the same as for the Montecarlo simulation, the obser-
vations are independent, and their contribution averages at each iteration in
the computation of the localization estimate. The results of the Montecarlo
simulation are shown in Figure 2.8 depicting the effect of the increase in the
number of landmarks on the average vehicle localization error.

Theorem 2.1 about the amount of reconstruction possible in EKF-SLAM
with respect to the number of landmarks applies only to the simple monobot
case. We will concentrate our attention now on a more realistic case, a planar
mobile vehicle.

2.6 The Planar Robot

We will show now how the reconstructibility issues presented for the linear and
one-dimensional robot of the previous section, nicely extend when studying
more complicated platforms. We investigate now the case of the planar robot
presented in Section 1.2, a non-holonomic nonlinear wheeled vehicle with 3
DOF, and an environment consisting of 2-D point landmarks located on the
floor.

The dimensionality of the controllable subspace is m = 3, and for the spe-
cific case in which only one landmark is available, a basis for the controllable
subspace is simply
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EImC =

�
I

02×3

�
The dimensionality of the observable space is, for this particular config-

uration, rank O = 3. This last result is easily verified with simple symbolic
manipulation of the specific expression for the state model from Section 1.2.
Furthermore, one possible basis for ImO
 is

EImO� =


����

1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0


����

Our 3 DOF robot along with a 2-D landmark form a map state space in
R

5, and the null space of O (the unobservable subspace) is spanned by

EKerO =


����

1 0
0 1
0 0
1 0
0 1


����

Recall from the basic properties of the four fundamental subspaces of linear
algebra that ImO
 + KerO = R

5, ImO
 ∩KerO = ∅. The only independently
observable state is the one associated to the robot orientation θ. The other
four states, the Cartesian coordinates of the robot and landmark locations
depend linearly on each other.

Moreover, even when ImC and ImO
 both span R
3, we see that the in-

equality ImC �= ImO
 still holds, as in the case of the monobot. That is,
the observable and controllable subspaces for the one-landmark 3 DOF robot
SLAM problem correspond to different 3-D subspaces in R

5; and, their in-
tersection represents the only fully controllable and observable state, i.e., the
robot orientation. A pictorial representation of this situation is depicted in
Figure 2.9, and once more, a measure of the reconstruction error incurred
when estimating the vehicle pose from correlated observations is given by the
angle between these two subspaces.

Resorting again to the singular value decomposition for the computation
of a pair of orthonormal bases for ImC and ImO
, we have that for the one-
landmark planar robot case

EImC = UCΣCV


C (2.44)

UC =

�
I

02×3

�
(2.45)
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Fig. 2.9. Controllability and observability subspaces.

EImO� = UOΣOV

O (2.46)

UO =


����

−0.7071 0 0
0 −0.7071 0
0 0 −1

0.7071 0 0
0 0.7071 0


���� (2.47)

and, as before,

α = ∠ ImC ImO
 (2.48)

= arccosσmin(U

CUO) (2.49)

= π/4rad (2.50)

Note the equivalence of α in Equations 2.28 and 2.50. The immediate
inference behind this result is that neither the nonlinearities of the planar
mobile robot platform, nor the change in the dimensionality of the model, are
related to the amount of reconstruction possible when using a fully correlated
SLAM model.

We now elaborate more on this, because if we can show this result to hold
for a map with more landmarks, we would have a powerful argument to defend
the hypothesis that the number of landmarks used in SLAM is directly related
to the average localization error in the form of Figures 2.5 and 2.8.

Extending now our study to the two-landmark case; possible orthonormal
bases for the controllable and observable subspaces as computed with the
aforementioned svd are given by

UC =

�
I

04×3

�



68 2 Marginal Filter Stability

UO =


��������

−0.4082 0 0 0 0.7071
0 0.4082 0 0.7071 0
0 0 −1 0 0

−0.4082 0 0 0 −0.7071
0 0.4082 0 −0.7071 0

0.8165 0 0 0 0
0 −0.8165 0 0 0


��������

and once more, the angle between them is

α = arccosσmin(U

CUO) (2.51)

α = 163π/832. (2.52)

Similarly, for a three-landmark model, α = π/6, and as we add more and
more landmarks to the environment, the angle between the controllable and
observable subspaces reduces monotonically, in exactly the same manner as in
the case of the monobot. We are now ready to formulate the second theorem
in this Chapter

Theorem 2.2. The angle between the controllable and observable subspaces
in the case of a nonlinear planar robot with 3 degrees of freedom in the EKF-
SLAM algorithm, depends only on the total number of landmarks used (n),
and is given by

α = arccos

�
n

n + 1

Proof. The key to the proof is in Figure 2.9. Notice that thanks to the orthog-
onality of the four fundamental subspaces, the angle between the observable
and controllable subspaces is exactly the same as the angle between their
complementary subspaces. This is,

α = ∠ KerC
 KerO (2.53)

The controllable subspace has a fixed rank of size m = 3, regardless of the
number of landmarks; and the size of the basis for the observable subspace
would depend on n. Now, the roles are reversed. The dimension of EKerC�

grows with respect to the number of landmarks, but maintains a very simple
form

EKerC� =

�
03×2n

I

�
(2.54)

The null complement of the observable subspace on the other hand has a
fixed number of columns (just two), and it can be easily shown by inspection
that

EKerO =




I

01×2

I
...
I




(3+2n)×2

(2.55)
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These are precisely the directions along which our state space is unobservable.
Clearly showing that in the EKF-SLAM model, the Cartesian coordinates of
the robot and landmark locations are all fully correlated.

The angle between these two subspaces is again, given by the smallest
singular value of an orthonormalized version of the product EKerC�


EKerO,
in which EKerC� = UCΣCV



C , and EKerO = UOΣOV


O are the singular value
decompositions of EKerC� and EKerO, respectively. This is,

U

CUO =

1√
n + 1




I
...
I




2×2n

(2.56)

α = arccosσmin(U


CUO) (2.57)

α = arccos

�
n

n + 1
(2.58)

Asymptotic stability of the KF means that its solution will gradually be-
come insensitive to its initial conditions. One can see that observability plays a
role because, if there are sufficient landmark measurements, the true localiza-
tion and landmark estimates will be well approximated. Also, controllability
will play a role because if the system is not controllable in some modes (as it
is), then any number of observations cannot help damp the analysis errors.

2.7 Observability

In Section 2.2 we characterized the unobservable subspace in SLAM as the
subspace spanned by the null eigenvectors of the total Fisher information
matrix. Furthermore, we showed in Sections 2.4-2.6 how the unobservable
part of the state space is precisely a linear combination of the landmark and
robot pose estimates.

In order to gain full observability we propose to extend the measurement
model doing away with the constraint imposed by full correlation. We present
two techniques to achieve this. One is to let one landmark serve as a fixed
global reference, with its localization uncertainty independent to the vehicle
pose.

The second proposed technique is the addition of a fixed external sensor,
such as a camera or a GPS, that can measure the vehicle location at all times,
independent of the landmark estimates.

Both techniques are based essentially on the same principle. Full observ-
ability requires an uncorrelated measurement Jacobian, or equivalently, a full
rank Fisher information matrix.

We next present, without loss of generality, the extensions to the monobot
SLAM model in order to obtain full observability.
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A fixed global reference

The plant model is left untouched, i.e., (from Equations 1.1 and 1.50)

xk+1 = xk + uk + vk (2.59)

The measurement model takes now the form�
z
(0)
k

zk

�
=

� −1 01×n

−1n×1 I

�
x +

�
w

(0)
k

wk

�
(2.60)

One of the observed landmarks is to be taken as a global reference at
the world origin. No map state is needed for it. The zero-th superscript in
the measurement vector is used for the consistent indexing of landmarks and
observations with respect to the original model. It can be easily shown that
the observability matrix for this new model is full rank.

The innovation covariance matrix for the augmented system is of size n +
1×n+1, and unlike Equation 2.8, its corresponding Fisher information matrix
is of full rank.

Figures 2.10 and 2.11 show the results of applying a full observability to
the same monobot model as the one portrayed in Figures 2.6-2.7. Note how
the steady state (robot pose and landmark locations) is now unbiased with
respect to the initial landmark estimates. Furthermore, state covariances are
also smaller than those in Figures 2.6-2.7.

An external sensor

Instead of using one of the landmarks as a global reference, one could also use a
fixed sensor to measure the position of the robot. For example, by positioning
a camera that observes the vehicle at all times. For such cases, the monobot
measurement model may take the form�

z
(0)
k

zk

�
=

�
1 01×n

−1n×1 I

�
x +

�
w

(0)
k

wk

�
(2.61)

The characteristics on the observability matrix, and the Fisher informa-
tion matrix, are exactly the same as for the previous case. This new model is
once more, fully observable. Figures 2.12 and 2.13 show the results of using
an external sensor to measure the vehicle pose. The results are theoretically
equivalent to the previous case. The choice of one technique over the other
one would depend on the availability of such external sensor, and on its mea-
surement noise covariance characteristics.

The key point here is that we have proved that full observability, i.e., zero
mean steady state error, is indeed possible in SLAM without the need of an
oracle (an external sensor) whose reading needs to be available at all times
in order to preserve observability, but by simply anchoring the first observed
landmark to the global reference frame.
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Fig. 2.10. Full-covariance fully observable EKF SLAM for monobot in a sinusoidal
path starting at xr,0|0 = −1m, and 100 iterations. The global reference is observed
at the origin.
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Fig. 2.11. Full-covariance fully observable EKF SLAM for monobot in a sinusoidal
path starting at xr,0|0 = −1m, and 100 iterations. The global reference is observed
at the origin.
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Fig. 2.12. Full-covariance fully observable EKF SLAM for monobot in a sinusoidal
path starting at xr,0|0 = −1m, and 100 iterations. The global reference is observed
at the origin. A fixed external sensor is used for the measurement of the vehicle
pose.
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Fig. 2.13. Full-covariance fully observable EKF SLAM for monobot in a sinusoidal
path starting at xr,0|0 = −1m, and 100 iterations. The global reference is observed
at the origin. A fixed external sensor is used for the measurement of the vehicle
pose.
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As with any sequential innovation KF for a fully observable system, partial
observability occurs until the entire set of observations spanning the state
space is completed. So, if the anchor landmark is not observed for a certain
period of time, the filter will be reconstructing a partially observable state
estimate. But, when the anchor landmark is re-observed, the system becomes
fully observable again.

Full observability however, cannot be guaranteed if the vehicle looses per-
manent sight of the initial anchor. Nevertheless, the effect of partial observ-
ability is precisely the steady state error (and larger covariance) due to coupled
error at the first iteration of the filter. So, in practice, full observability need
only be guaranteed at the beginning of the filter.

Finally, a good strategy for any local submap approach to SLAM is to
build many local maps, one attached to each anchor needed to cover the entire
mapped area. In this way, full observability will guarantee optimal vehicle and
landmark localization, with the smallest possible variances for each submap.

Planar vehicle

The results from the previous section are easily extensible to more complicated
vehicle models. For example, the measurement model of a global reference
fixed at the origin, for the nonlinear vehicle from Figure 1.7 is

h(0) =

� �
x2

k + y2
k + wr,k

tan−1
�

yk

xk

�
− θk + π

2 + wβ,k

	
(2.62)

and its corresponding Jacobian is

H0 =

� xk√
x2

k
+y2

k

yk√
x2

k
+y2

k

0 0 0 . . .

− yk

x2
k
+y2

k

xk

x2
k
+y2

k

−1 0 0

	
(2.63)

The symbolic manipulation of

H =

�
H0

Hi

�
(2.64)

with a commercial algebra package, produces a full rank observability matrix.
That is, for the linearized nonholonomic velocity controlled planar mobile
robot platform used, the simultaneous measurement of one anchor as global
reference, and any other landmark, is sufficient to attain full observability in
SLAM.

We show now results on a couple of experiments with a nonlinear vehicle
with an also nonlinear measurement model, using in this case, the ACFR -
University of Sydney database [69]. The test run used corresponds to a car-
like vehicle at the University Car Park. The landmarks used are tree trunks,
as measured with a laser range finder. The reconstructed maps are compared
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to GPS ground truth for accuracy. The first experiment corresponds to a
typical partially observable SLAM run. Figure 2.14 plots results on this run,
column a) shows the actual vehicle path and landmark location estimates
recovered by the algorithm, compared to GPS ground truth for the beacons.
Columns b) and d) show the covariances both for the vehicle and landmark
state estimates. Note that even when the ”relative” map is consistent [31], it
is slightly rotated and shifted from the actual beacon locations. The amount
of this shift depends on the initial vehicle uncertainty, i.e., the initial filter
conditions, and can be seen in Figure 2.14, column c).

The second experiment shown corresponds to a fully observable SLAM
run (using the first observed beacon as an anchor [11]). In this case, the
vehicle and landmark covariance estimates do not depend on the initial filter
conditions, and thus are significantly reduced. This is shown in columns b) and
d) in Figure 2.15. The absolute landmark estimate error is also significantly
reduced, as shown in column c). Figure 2.16 shows the actual vehicle path
and landmark estimates as recovered by the filter. The beacon shown in the
center of the plot is used as an anchor to the map, and no state estimate is
computed for it.
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Fig. 2.14. Partially observable SLAM for a car-like vehicle at the University of
Sydney Car Park.
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Fig. 2.15. Fully observable SLAM for a car-like vehicle at the University of Sydney
Car Park.
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Fig. 2.16. Vehicle path and landmark location estimates, compared to GPS ground
truth for an a) partially observable suboptimal SLAM run, and a b) fully observable
suboptimal SLAM run.



80 2 Marginal Filter Stability

2.8 Controllability

We have seen in Section 2.4 that in the standard SLAM case, the only con-
trollable states are the ones associated to the vehicle location estimate.

Equation 1.12 assumes the landmarks are fixed elements, for which no
process noise is considered. Therefore, their associated noise covariance (its
determinant) will asymptotically tend to zero (see Section 1.1, Equation 1.25).
The filter gain for the landmark states will also tend to zero.

Having a positive semidefinite covariance reflects the belief that there is a
perfectly accurate estimate of some states (or linear combinations of them, the
ones associated to the null eigenvalues of P). This is, again, because there is no
process noise entering these states, and the controllability condition described
at the beginning of Section 2.4 pertaining the solution of the Riccati Equation
2.1 is not satisfied.

Since the fully correlated Kalman filter will not in general, yield consis-
tent estimates for the map states (partial observability and divergence due to
nonlinearities produce biased estimates); the situation where the map state
covariance (its determinant) tends to zero is undesirable. It will lead in prac-
tice to smaller filter-computed variances than the estimated errors.

The situation can be remedied to some extent, by assuming the existence
of artificial pseudo-noise associated to the landmark state estimates. This is,
we can replace Equation 1.12 with�

xr,k+1

xf

�
≈

�
xr,k+1|k

xf,k|k

�
+

�
Fr

I

� �
x̃r,k|k

x̃f,k|k

�
+

�
Gr

I

� �
vr,k

vf,k

�
(2.65)

The landmark pseudo-noise vf,k is assumed zero mean and white. Any pos-
itive definite covariance of this process noise will prevent the filter calculated
covariance for the landmark states from converging to zero. The new process
noise covariance is computed as the sum of the vehicle model covariance plus
that of the pseudo noise.

QC,k =

�
Qr,k

0

�
+

�
0

Qf

�
(2.66)

The positive definite process noise covariance QC,k is substituted for Qk

in Equation 1.16. Figures 2.17 and 2.18 show the results of adding an artificial
landmark state covariance to the fully observable model from Figures 2.10 and
2.13

Having a fully observable SLAM model with artificial process noise makes
feasible the computation of the Cramer Rao lower bound. The monotonic
dotted lines show the vehicle and landmark associated components of J−1.
Moreover, Figure 2.19 shows the numerical evaluation of the eigenvalues for
the matrix difference Pk|k − J−1. When both eigenvalues are positive, the
matrix difference is positive definite. That is, we can only trust our second
order statistic Pk|k after a certain number of iterations have elapsed; only after
enough information has been input to the filter in the form of innovations.



2.8 Controllability 81

1 landmark

0 20 40 60 80 100
−3

−2

−1

0

1

2

Iteration

x r,
k−

x r,
k|

k (
m

)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

x k (
m

)
2 landmarks

0 20 40 60 80 100
−3

−2

−1

0

1

2

Iteration

x r,
k−

x r,
k|

k (
m

)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

x k (
m

)

20 landmarks

0 20 40 60 80 100
−3

−2

−1

0

1

2

Iteration

x k (
m

m
)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Iteration

x k (
m

)

Robot and landmark localization Vehicle error

Fig. 2.17. Full-covariance fully observable SLAM with artificial process noise for a
monobot in a sinusoidal path starting at xr,0|0 = −1m, and with 100 iterations. A
fixed external sensor is used for the measurement of the vehicle pose, and a pseudo-
noise covariance (Vf = 0.052I) is used to prevent the landmark Kalman gains from
converging to zero.
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Fig. 2.18. Full-covariance fully observable SLAM with artificial process noise for a
monobot in a sinusoidal path starting at xr,0|0 = −1m, and with 100 iterations. A
fixed external sensor is used for the measurement of the vehicle pose, and a pseudo-
noise covariance (Vf = 0.052I) is used to prevent the landmark Kalman gains from
converging to zero.
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Fig. 2.19. The Cramer Rao lower bound holds only when the eigenvalues of (Pk|k−
J−1) are positive.
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2.9 Bibliographical Notes

Gibbens et al. [41] give a solution to the 1-D Brownian motion SLAM case.
In their solution, the state error covariance is linked to the total number of
landmarks in the form of the total Fisher information IT .

IT =

n�
1

1

σ2
w

(2.67)

The expression indicates the “informational equivalence of the measure-
ments and the innovations” [18], and was derived from a simpler likelihood
function than the one in Equation 2.2; one that does not contain the fully
correlated characteristics of the measurement model.

The issues of controllability and observability in Kalman filter design are
covered in the book by Bar-Shalom et al. [18]. Southall et al. address the issue
in the context of tracking for an autonomous agricultural application [80].

A wonderful text on estimation theory is the aforementioned book by Bar-
Shalom. The Cramer Rao lower bound and the information matrix are also
discussed in an article by Dowski [32].

2.10 Conclusions

The fundamental contributions of this chapter is that we show how the full-
correlation of the map model in EKF-SLAM hinders full observability of the
state estimate, and how having a partially controllable state model makes
the filter to stop working after a few iterations. Partial observability makes
the final map dependant on the initial observations, and does not guarantee
convergence to a positive definite covariance matrix. Partial controllability
on the other hand, makes the filter believe it has accurate estimates of the
landmark states, with their corresponding Kalman gains converging rapidly
to zero. That is, after a few steps, innovations are useless for the refinement
of landmark locations, and contribute only to the revision of the vehicle pose.

Partial observability can easily be solved by anchoring the map to the first
landmark observed, or by having an external sensor that sees the vehicle at
all times. Partial controllability on the other hand, can be only palliated to
some extent by adding artificial process noise to the landmark estimates.

Additionally, the divergence caused by nonlinearities in SLAM can be re-
duced either by assuming larger uncertainty of the vehicle model (augmenting
the process noise covariance), and with the online computation of measure-
ment noise covariance matrices.
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Suboptimal Filter Stability

When a stochastic system is partially controllable, such as in the case of
SLAM, the Gaussian noise sources vk do not affect all of the elements of the
state space. The diagonal elements of P corresponding to these incorruptible
states will be driven to zero by the Kalman filter, and once this happens, these
estimates will remain fixed and no further observations will alter their values.
The dynamics of the model assume the landmarks are fixed elements, for which
no process noise is considered. Therefore, their associated noise covariance
(its determinant) will asymptotically tend to zero [31]. The filter gain for the
landmark states will also tend to zero. Figure 3.1 shows two new simulations
for a linear SLAM case, a monobot under Brownian motion with one and two
landmarks. The simulations show the evolution of the localization errors for
both the monobot and the landmarks, and the reduction of the landmark part
of the Kalman gain, due to the uncontrollability of the system. The only way
to remedy this situation is to add a positive definite pseudo-noise covariance
to those incorruptible states [18].

In Figure 3.1, the vehicle location is indicated by the darkest curve at the
−1m level in the first row of plots. In the same set of plots, and close to
it, is a lighter curve indicating the vehicle location estimate as computed by
the filter, along with 2σ bounds on such estimate shown as dotted lines. The
dark straight lines at the 1m level indicate the landmark location estimates;
and the lighter curves are noise corrupted signals of sensor measurements.
Also shown, are a pair of dotted lines for 2σ bounds on the landmark loca-
tion estimates. The second row of plots shows the vehicle location error only,
and its corresponding variance, also on the form of 2σ dotted bounds. See
how the localization error has non-zero mean due to partial observability, an
undesirable feature in Kalman filtering. The third row shows non-zero mean
landmark state estimate errors. And, the last row shows the Kalman filter
gains both for the vehicle and landmark revision terms. The Kalman gains for
the revision of the landmark estimates rapidly tend to zero, the reason being
that these states are uncontrollable.

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 85–96, 2006.
© Springer-Verlag Berlin Heidelberg
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Fig. 3.1. Partially observable SLAM for a monobot during Brownian motion with
100 iterations (see text).



3.2 O(n) and Stable Partially Observable SLAM 87

3.1 O(n) but Unstable Partially Observable SLAM

One way to add pseudo-noise to the model is by diagonalizing the state error
covariance matrix [44, 45, 51]. This technique is often used to reduce the time
complexity of the algorithm from O(n2) to O(n). The result is a suboptimal
filter that will compute inflated estimates for the vehicle and landmark co-
variances, that has the computational advantage of being uncorrelated. The
addition of a covariance term ΔP to the a priori state covariance estimate

Pk+1|k = FPk|kF

 + GQG
 + ΔP (3.1)

is equivalent to providing a new form to the plant noise Jacobian G� = 
�
G I



Pk+1|k = FPk|kF


 + G�

�
Q

ΔP

�
G�
 (3.2)

ΔP may be chosen, for example, such as to minimize the trace of a resulting
block diagonal P in (3.1) [51].

Choosing a full rank ΔP is equivalent to having noise input to more states
than those that can be observed with the filter. In this case, because of par-
tial observability, both vehicle and landmark variance estimates become un-
bounded. Figure 3.2 shows this for the same monobot experiment as in the
previous simulation. This phenomena was first observed in [51] using relative
maps.

Not only both the vehicle and landmark state estimation variances become
unbounded. Also, thanks to the full controllability of the system, the Kalman
gain for the revision of the landmark states is greater than zero; but still,
does not converge to a steady state value. We believe that the addition of
pseudo-noise should be performed only at most, in the amount of states equal
to the dimension of the observable subspace.

3.2 O(n) and Stable Partially Observable SLAM

One solution to the problem of instability during covariance inflation, is to
decorrelate only the landmark state estimates, and to preserve all vehicle to
landmark correlations [88].

ΔP = 

�
0

Qf 

�
(3.3)

such that Pf + Qf , the map part of the state error covariance, is block diag-
onal.

Figure 3.3 shows a partially observable monobot under Brownian motion
for which only the landmark part of the state error covariance matrix has
been decorrelated. The algorithm does converge to a steady state solution
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under this circumstances, and still can be implemented in real time. The one
landmark case is identical than the original case, since a linear one landmark
map is already diagonal (scalar actually).

For the two-landmark case, the landmark variance estimate is greater than
the optimal solution shown in the third column in Figure 3.1 since the co-
variance has been inflated during decorrelation. Furthermore, now that the
system is controllable, the Kalman gains for the landmark state estimates do
not become zero, and they converge to a steady state value.

Moreover, we can see experimentally, that the covariance inflation subop-
timal partially observable SLAM converges only when

rank ΔP ≤ rank O (3.4)

3.3 O(n) and Stable Fully Observable SLAM

Consider now the fully observable case from the previous Section. If we add
pseudo-noise to the vehicle as well as to the landmark states, the covariance
will reach a steady-state value, and the Kalman gain will not be zero, at least,
in the linear case. Figure 3.4 shows this results diagonalizing the whole state
error covariance (not only the landmark part of P).

In this latter experiment, the state error variances reach lower values than
those in the partially observable case. The solution of the Riccati equation is
now independent of the initial covariance estimate P0|0.

We have observed experimentally however, that with a nonlinear vehicle
model, it is best to also decorrelate only the map part of the state error
covariance, even in the fully observable case.
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Fig. 3.2. Partially observable SLAM for a Brownian motion monobot with 100
iterations. The entire state error covariance is decorrelated with the minimal trace
solution [51]. By decorrelating the entire state error covariance matrix, the covari-
ance estimates become unbounded.
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Fig. 3.3. Partially observable SLAM for a Brownian motion monobot with 100
iterations. The state error covariance is decorrelated only for the landmark part of
the state vector, with the minimal trace solution. By decorrelating only the map
part of the state error covariance matrix, we preserve filter stability.
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Fig. 3.4. Fully observable SLAM for a Brownian motion monobot with 100 it-
erations. The entire state error covariance is decorrelated with the minimal trace
solution. In the linear case, it is possible to decorrelate the entire state error covari-
ance matrix, and still preserve filter stability.
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3.4 Experimental Results

We show now results on a series of experiments for a nonlinear vehicle with
an also nonlinear measurement model, using the ACFR - University of Syd-
ney database [69]. The test run used corresponds to a car-like vehicle at the
University Car Park. The landmarks used are tree trunks, as measured with a
laser range finder. The reconstructed maps are compared to GPS ground truth
for accuracy. The first experiment corresponds to a typical partially observable
SLAM run, in which the entire state error covariance is being decorrelated as
discussed in Section 3.1. Figure 3.5 plots results on this run, showing in rows
b) and d) unbounded covariances both for the vehicle and landmark state
estimates, due to the näıve covariance inflation method used.

The second experiment corresponds to the same partially observable
SLAM conditions, but decorrelating only the map part of the state error co-
variance. Adding pseudo-noise to the landmark states during the inflation pro-
cedure amounts to making the system controllable; and doing so for as many
states as those observable, produces both vehicle and landmark bounded state
covariance estimates. This is shown in Figure 3.6, frames b) and d). Figure
3.8 frame a) shows the actual vehicle path and landmark location estimates
recovered by the algorithm, compared to GPS ground truth for the beacons.
Note that even when the “relative” map is consistent [31], it is slightly ro-
tated and shifted from the actual beacon locations. The amount of this shift
depends on the initial vehicle uncertainty, i.e., the initial filter conditions, and
can be seen in Figure 3.6, frame c).

The last experiment shown corresponds to a fully observable SLAM run
(using the first observed beacon as an anchor), and also decorrelating only the
map part of the state error covariance. In this case, the vehicle and landmark
covariance estimates do not depend on the initial filter conditions, and thus
are significantly reduced. This is shown in frames b) and d) in Figure 3.7.
The absolute landmark estimate error is also significantly reduced, as shown
in Figure 3.7, frame c). Figure 3.8 frame b) shows the actual vehicle path and
landmark estimates as recovered by the filter. The beacon shown in the center
of the plot is used as an anchor to the map, and no state estimate is computed
for it. This last map was obtained with a suboptimal linear-time SLAM algo-
rithm that has both bounded covariance estimates, and independence on the
filter initial conditions; thus producing a fast and accurate absolute map.
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Fig. 3.5. Partially observable SLAM for a car-like vehicle at the University of
Sydney Car Park. The entire state error covariance matrix is decorrelated with the
minimal trace solution [51].
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Fig. 3.6. Partially observable SLAM for a car-like vehicle at the University of Syd-
ney Car Park. Only the map part of the state error covariance matrix is decorrelated
with the minimal trace solution. By adding controllability to as many states as those
that are observable, the filter remains stable, and the estimated covariances remain
bounded.
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Fig. 3.7. Fully observable SLAM for a car-like vehicle at the University of Sydney
Car Park. Only the map part of the state error covariance is decorrelated with
the minimal trace solution. Full observability guarantees independence of the filter
initial conditions, and an accurate absolute map is obtained, with smaller covariance
estimates than its relative counterpart.
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Fig. 3.8. Vehicle path and landmark location estimates, compared to GPS ground
truth for an a) partially observable suboptimal SLAM run, and a b) fully observable
suboptimal SLAM run; both with decorrelation of only the map part of the state
error covariance matrix.
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Unscented Transformation of Vehicle States

We have already seen that the Extended Kalman Filter (EKF) is the most
widely accepted tool for solving SLAM [31, 85]. One drawback however with
the use of the EKF, is in the linear propagation of means and covariances.
Vehicle and sensor models are usually of a very high nonlinear nature, and
the effects of linearization required in the EKF can lead to filter divergence
[53].

This situation has prompted the use of particle filters for a non paramet-
ric approximation of vehicle and map probability density functions in SLAM.
Particle filters approximate the state space by random sampling the posterior
distribution, and may require many samples to accurately model the non-
linear effects in both vehicle and measurement models. A middle ground is
to use a deterministic approach for the nonlinear propagation of means and
covariances. One such solution is the use of the Unscented Kalman Filter
(UKF) [50, 55]. An unscented transformation is similar to a particle filter in
that it samples the pdf, but instead of doing it randomly, a careful selection
of deterministic sigma points is made so as to preserve the moments of the
distribution.

Deterministically choosing the particles is a computationally efficient solu-
tion for the nonlinear propagation of means and covariances, but doing so for
the full state vector in SLAM may not be appropriate. There is no need to use
particles in the computation of the map prior, given its linear nature. Thus,
by using the Unscented Transformation (UT) only for the vehicle states we
are able to reduce the computational complexity (compared to a full UKF),
and to produce, at the same time, tighter covariance estimates.

The remaining of this chapter is structured as follows. In Section 4.1,
the UKF is explained, detailing the consequences of nonlinearly propagating
the entire vehicle and map state vector, as opposed to only propagating the
vehicle states. Section 4.3 is devoted to a numerical comparison of the three
approaches: EKF, UKF, and vehicle only UT. Finally, Section 4.4 contains
some concluding remarks.

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 97–106, 2006.
© Springer-Verlag Berlin Heidelberg
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4.1 Nonlinear Propagation of State Estimates

Julier and Uhlmann [48, 52, 55] introduced a filter called the Unscented
Kalman Filter (UKF) founded on the intuition that it is easier to approximate
a Gaussian distribution than to approximate nonlinear functions. The UKF
not only leads to more accurate results than the EKF, but also, it generates
better estimates of the state covariances. The reason, the UKF approximates
the posterior mean and covariance accurately to the 2nd order for any nonlin-
earity, in contrast with the EKF which only takes into account the first order
term of a Taylor series during linearization.

The Unscented Transform (UT) forms the core of the UKF algorithm, it
consists in choosing a set S of points (sigma points X i and weights W i) so
that their mean and covariance are x and P. The nonlinear model in (1.4) is
applied to each point, and the weighted statistics of the transformed points
form an estimate of the nonlinearly transformed mean and covariance.

The UKF algorithm is similar in structure to the EKF algorithm. Once
the sigma points are obtained (see Appendix C), the a priori estimates are
evaluated with

X i
k+1|k = f(X i

k|k, uk, V i
k) (4.1)

xk+1|k =

p�
i=0

W iX i
k+1|k (4.2)

Pk+1|k =

p�
i=0

W i(X i
k+1|k − xk+1|k)(X i

k+1|k − xk+1|k)
 (4.3)

In the UKF the innovations are

Zi
k+1|k = h(X i

k+1|k) + W i
k (4.4)

zk+1|k =

p�
i=0

W iZi
k+1|k (4.5)

Pzz
k+1|k =

p�
i=0

W i(Zi
k+1|k − zk+1|k)(Zi

k+1|k − zk+1|k)
 (4.6)

And the a posteriori estimates are

Pxz
k+1|k =

p�
i=0

W i(X i
k+1|k − xk+1|k)(Zi

k+1|k − zk+1|k)
 (4.7)

K = Pxz
k+1|k(Pzz)−1 (4.8)

xk+1|k+1 = xk+1|k + Kz̃k+1|k (4.9)

Pk+1|k+1 = Pk+1|k − KPzzK
 (4.10)
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Fig. 4.1. Unscented transformation of the augmented state vector produces more
σ points that project to the mean. To preserve the statistics, the remaining σ points
are pushed away from the mean, thus producing more conservative estimates of the
covariance in the nonlinear case. In red (x): actual mean and covariance; in green (+):
linear transformation of mean and covariance; in blue (*): nonlinear transformation
of mean and covariance for robot only; in blue dashed (�): nonlinear transformation
for robot and one landmark; in blue dash dot (�): nonlinear transformation for robot
and 2 landmarks.

The terms V i and W i are sigma points for the noise terms. To compute
them, an augmented point set is built from x,P,Q and R. See [55] for details.

The update estimation in the UKF algorithm requires an augmented sigma
point set for the entire state vector in (4.7). The computation of these points
requires a Cholesky factorization of P, with computational complexity O(n3).

4.2 UT of Vehicle States

In SLAM, the dimension of the state vector is proportional to the number of
landmarks in the map, and every time a new feature is added to the map, the
state vector is also augmented. Moreover, when the UKF is used, the required
number of sigma points is also proportional to the number of landmarks in
the map. These sigma points are symmetrically distributed along the hyperel-
lipsoid representing the covariance of the entire state space. Now, every time
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a new landmark is added, the corresponding sigma points will map the new
state space directions, and project to the mean on the vehicle space hyper-
plane, with the rest of the points being scaled accordingly, in order to preserve
the first and second order statistics of the entire distribution, i.e., E[x̃] and
E[x̃x̃
].

Looking at the projected hyperellipsoid representing the vehicle covariance
we see that as the number of landmarks increases, the UT maintains the true
mean of the vehicle prior, but it underestimates the vehicle covariance. Fig-
ure 1 shows this situation. In the plot, a typical nonlinear motion model of
one meter with translational variance of 2cm and rotational variance of 15◦

is sampled 1000 times (dots). The true mean and 2σ hyperellipsoid for the
true covariance are also plotted (cross mark and continuous line). The linear
transformation of the original pdf (the prior step of the EKF) is the smallest
of the hyperellipsoids shown. In the plot, the mean computed by the EKF
is slightly above the true mean, and the linear transformation of the vehicle
covariance is largely overestimated. Now, the UT for this no-landmark model
is at the true mean, with also an overestimated covariance, but not as much
as the linear transformation (the mean and corresponding 5 sigma points are
plotted as stars, and the 2σ covariance hyperellipsoid is plotted as a continu-
ous line. Adding one two-dimensional landmark to the map at (0,0) and with
variance 1cm, the required number of sigma points increases from 5 to 9, and
their projection onto the Cartesian vehicle coordinates is shown with small
boxes. Notice how the new sigma point locations emulate the previous set, but
are pushed away from the mean (scaled), with more points located precisely
at the mean. The corresponding covariance hyperellipsoid projection (dashed)
is slightly underestimated with respect to the previous UT and the original
covariance. Finally, adding one more landmark to the map, the required num-
ber of sigma points is 13, and their projection onto the vehicle state space
is shown as diamonds, with the corresponding 2σ covariance hyperellipsoid
shown in dash dot. Even when the computed mean is equal to the one com-
puted in the previous two cases, the sigma points are further pushed away
from the mean, and the corresponding covariance is also underestimated. The
conclusion is that when the number of landmarks increases significantly, the
UT is still good at computing the nonlinear mean estimate for the vehicle
position, but it largely underestimates its covariance.

The variance estimates of the dynamic states (a priori vehicle location
estimation) should not depend on the number of static states on the model
(landmarks), but only on the characteristics of the motion model. The map
entries being static have a linear model (identity in fact), and no UT is nec-
essary for this transformation. The underestimation of the covariance is the
result of projecting a higher dimensional hyperellipsoid of such transforma-
tion onto the vehicle states hyperplane. For this reason we propose to apply
the UT only to the vehicle states, and not to the full state vector during the
prediction step.
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The plant Jacobian matrices in (1.16) can be decomposed into two block
diagonal matrices, explicitly differentiating vehicle derivatives Fr and Gr.
Equation (1.16) can be rewritten as

Pk+1|k = 

�
FrPr,k|kF



r + GrQG


r FrPrf,k|k

(FrPrf,k|k)
 Pf,k|k 

�
(4.11)

Our algorithm substitutes the a priori computation of the vehicle covari-
ance in the EKF, with the one computed using the UT; while preserving the
rest of the covariance matrix. That is, the upper left submatrix is substituted
with

P∗
r,k+1|k = Pr,k+1|k + Δ

=

p�
i=0

W i(X i
r,k+1|k − xr,k+1|k)(X i

r,k+1|k − xr,k+1|k)
 (4.12)

We have seen empirically that by substituting the submatrix Pr,k+1|k with
P∗

r,k+1|k in (4.11), the psd properties of P∗
k+1|k still hold. That is, by underes-

timating P∗
r with the UT, and still computing the rest of Jacobians in P∗

k+1|k

with the linear EKF, the condition

P∗
k+1|k =

�
Pr,k+1|k + Δ Prf,k+1|k

P

rf,k+1|k Pf,k+1|k

�
≥ 0 (4.13)

still holds.

4.3 Experimental Results. EKF, UKF,
and Vehicle-Only UT

We use the University of Sydney Car Park dataset [69] to show estimation
results when the prediction is made with the nonlinear approach proposed in
this article, and compare them with both an EKF, and an UKF. With the pro-
posed technique, we have been able to reduce the bias caused by linearization
of the nonlinear plant model in the EKF.

The nonlinear vehicle and measurement models used in our experiments
are shown in Section 1.2, and resemble to some extent those in [44]. The only
substantial difference is in the use of an anchor feature not under estimation
in the measurement model, in order to guarantees full observability [10, 89].

Figures 4.2-4.4 contain plots comparing the three algorithms, for the ve-
hicle location error, the vehicle location variance, and the final map, respec-
tively. The first column of plots in Figure 4.2 corresponds to a fully observable
Extended Kalman Filter, in which the first observed landmark (located at co-
ordinates (2.8953, −4.0353)) is used as a global anchor. The second column of
plots corresponds to a full implementation of the Unscented Kalman Filter.
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The last column of plots corresponds to our hybrid implementation: using the
Unscented Transformation for a nonlinear approximation of vehicle priors, and
filling the rest of the a priori covariance estimate with the required vehicle to
landmark Jacobians, plus the typical a posteriori computations in the EKF.
This technique is not only computationally more efficient (it requires on the
one hand a small and fixed number of sigma points in the computation of the
UT, 7 in our case, and also, it can make efficient use of sequential innovation
as in the traditional EKF approach to SLAM), but reduces significantly the
errors made during linearization in the computation of the vehicle priors.

In congruence with our conclusions from Section 4.1, the Unscented
Kalman Filter, which utilizes the entire state vector in the computation of
the sigma point set, ends up underestimating the vehicle localization covari-
ance at the beginning of the experiment. This can be appreciated in Figure
4.2e. However, once observations are made, the algorithm makes a good job
at reducing the overall vehicle covariances. The vehicle location error estimate
is also slightly smaller for the entire UKF approach, compared to the other
two algorithms. See frame b in Figure 4.2.

Unfortunately, the UKF is not only computationally more expensive (it
requires 2n + 1 sigma points at each iteration, although there are other ap-
proaches that require only n + 2 sigma points [50]), but it might end up
overestimating the final vehicle and map covariances, producing data associ-
ation errors in the long run. This can be appreciated in the error peaks near
t = 90 secs. in Figures 4.2a-b, and in the lower part in Figure 4.3b. Nearest
Neighbor χ2 compatibility tests are used for data association. We believe that
the overestimation of covariances is what makes this test to fail when using
the full UKF.

By computing the vehicle priors using the Unscented Transformation, the
estimated vehicle localization error is smaller during the entire run than the
error computed using the EKF; and the computed covariances are quite similar
for both algorithms. However, there is a significant advantage at using the
UT vs. the EKF: when there are no measurements present, the nonlinear
transformation of the vehicle estimates makes a good job at keeping the vehicle
location closer to the desired vehicle path. This can be seen around coordinates
(15, 5) in the three plots pertaining the final vehicle path in Figures 4.3 and
4.3.

4.4 Conclusion

The Unscented Transformation allows a better nonlinear mean and variance
estimation than the Extended Kalman Filter. There is no need however in
using the Unscented Transformation for the entire vehicle-map state, given
the linearity in the map part of the model.

Large underestimation errors in the calculation of the covariance priors can
be made when the full state vector is used in the computation of the sigma
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point set for the Unscented Transformation in SLAM. This is because the
more landmarks are added to the map, the larger the number of sigma points
in the set that get projected to the vehicle mean in the vehicle localization
hyperplane; and the remaining sigma points need to be scaled up to preserve
both the mean and covariance.

By applying the Unscented Transformation only to the vehicle states we
get more accurate covariance estimates, and a more computationally efficient
nonlinear transformation of the means and variances in SLAM. In the pre-
sented approach, the a posteriori state estimation is made using a fully ob-
servable EKF step, thus preserving the same computational complexity as the
EKF with sequential innovation.
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Fig. 4.2. Comparison of the Extended Kalman Filter, the Unscented Kalman Filter,
and Unscented Transformation of Vehicle States only on the Car Park dataset from
the University of Sydney. The Unscented Transformation of Vehicle states is not
only computationally more efficient than the full UKF, but avoids data association
errors due to covariance overestimation in the full UKF.
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Fig. 4.3. Comparison of the Extended Kalman Filter and the Unscented Kalman
Filter on the Car Park dataset from the University of Sydney. Final vehicle path.
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Fig. 4.4. Unscented Transformation of Vehicle States only on the Car Park dataset
from the University of Sydney. Final vehicle path.



5

Simultaneous Localization,
Control and Mapping

The issue of combining control and estimation together during SLAM has in
general been addressed with the idea of online high level trajectory generation.
For example, by studying which vehicle maneuvers would most effectively re-
duce localization uncertainty [25, 78], or what maneuvers would provide the
greatest reward in terms of exploration gain [31]; by incorporating visual ser-
voing techniques [20], or by implementing a PD controller over an A* searched
trajectory [86].

However, these strategies cannot guarantees in general that the planned
trajectories will be followed accurately, in a systems theoretical sense, spite
the duality between regulation and linear estimation. That is precisely the
focus of this chapter: to provide a unified approach to Multirobot Simultane-
ous Localization, Control and Mapping, from an estimation-control theoretic
perspective, that would generate the necessary low-level control commands to
accurately follow a high level planned trajectory, and that would guarantee
that both the controller and the estimator are asymptotically stable. Given
that observability is a requisite for stable SLAM [11, 10, 59], it is of uttermost
importance to guarantee stability of the closed loop system as well. That is,
not only during estimation, but also during vehicle control.

More specifically, by using a nonlinear control technique called Feedback
Linearization over the EKF state estimates, we are capable of accurately fol-
lowing any multirobot trajectory parameterized in time, while at the same
time building an optimally estimated map. Such trajectory could be generated
on line, for example, to reduce estimation error, or to maximize exploration
gain. Furthermore, extending the Separability principle for the LQG regulator
and the Kalman estimator to the feedback linearization scheme, we are able
to decouple control error from estimation error, thus guaranteeing stability
both for the controller as well as the estimator.

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 107–118, 2006.
© Springer-Verlag Berlin Heidelberg
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5.1 Linear Quadratic Gaussian Regulation

In this Section we show how to use the optimal vehicle state estimate provided
by the Kalman filter to drive the robot to a desired location. In control theory,
the problem is known as regulation, and the preferred tool to optimally solve
it is the Linear Quadratic Gaussian regulator, for the linear (linearized) case
[40].

The idea behind the LQG regulator is to optimally compute an input uk to
drive the vehicle to a desired location by minimizing a quadratic performance
index of the form

J = E 

�
k−1�
i=0

x
i Q1xi + u
i Q2ui

	
(5.1)

where Q1 and Q2 are chosen psd. The minimization of the performance index
(5.1) would drive the state x to zero, but the extension to a general desired
nonzero state is straightforward.

The performance index in (5.1) can be decomposed in two terms, one for
minimizing the state estimate and the input, and the second for minimizing
the estimation error. Given that the estimation error does not depend on the
control input u, it is chosen to minimize the first part of J only. The control
law for such regulator is

u = −Lxk|k (5.2)

L = (Q2 + G
SG)−1G
SF (5.3)

S = Q1 + L
Q2L + (F − GL)
S(F − GL) (5.4)

The separation of the LQG in two parts, the optimal state estimation,
and the optimal controller gives a Kalman filter independent of the matrices
Q1 and Q2, which specify the optimal controller. In the same way that the
optimal control gain L does not depend on the statistics P, Q, and R of the
random noises.

Furthermore, the separation principle allows writing the closed loop system
dynamics as�

xk+1

x̃k+1

�
=

�
F − GL GL

0 F − KHF

� �
xk

x̃k

�
+

�
G 0

G− KHG −K

� �
vk

wk

�
(5.5)

The eigenvalues of the closed-loop system are given by those of the state-
feedback regulator dynamic F−GL together with those of the state-estimator
dynamics F − KHF. In case these both matrices are stable, then so is the
closed-loop. For a fully observable monobot, it is straightforward to verify
F − KHF always stable, and the vehicle part of F − GL stable for any posi-
tive L.

In order to show the feasibility of using LQG regulation during SLAM, we
simulate first the case of the monobot. Figures 5.2 - 5.4 show the results of
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Fig. 5.1. Structure of the optimal state estimator and regulator in SLAM.

applying optimal control to the fully observable SLAM model with artificial
process noise from Figures 2.17 and 2.18.

Now, we simulate an environment with 16 landmarks over a 600m2 area
for the all terrain planar vehicle from Figure 1.7. Section 1.2 includes closed
form expressions for the actual vehicle and measurement models used. Note
that the pose of the robot, and hence, the control point is located apart from
the vehicle axis of rotation in order to avoid singularities in the computation
of the Jacobians. The vehicle state and control point is chosen at the origin of
a laser range scanner placed on the front of the vehicle, thus simplifying the
measurement model.
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Fig. 5.2. Optimal state estimation and regulation for a monobot in a sinusoidal
path starting from xr,0|0 = −1m, and with 100 iterations.

In the plots shown in Figure 5.5 the vehicle is driven with the LQG reg-
ulator from an initial location at (-7,0) meters to the point (10,10) meters,
while at the same time building a map of the environment, and using the
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Fig. 5.3. Optimal state estimation and regulation for a monobot in a sinusoidal
path starting from xr,0|0 = −1m, and with 100 iterations.

revised Kalman estimates to recompute the optimal control gain. Figure 5.6
shows plots of the vehicle state estimate, the estimation error, and the input
command. Moreover, Figure 5.8 shows a runtime plot of the eigenvalues of
F − GL evaluated with the plant Jacobians F and G. The plot shows the
control strategy to be not only optimal by duality from the EKF, but also
stable, even when linearizations are used.
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Fig. 5.4. Optimal state estimation and regulation for a monobot in a sinusoidal
path starting from xr,0|0 = −1m, and with 100 iterations.

5.2 The EKF for Multirobot SLAM

To make our control problem more exciting, in the coming discussion, we will
set up the SLAM and control equations not just for one, but for a troupe of
robots. Following the notation at the beginning of this book, the motion of
the entire troupe of robots and the map measurements are governed by the
discrete time stochastic state transition model
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xk+1 = f(xk, uk, vk) (5.6)

zk = h(xk) + wk (5.7)

The state xk = [x
r1,k, . . . ,x
rt,k, x

f(1) , . . . , x



f(n) ]


 contains the pose of

the robots xr1 , . . . ,xrt 
at time step k, and a vector of stationary map fea-

tures xf(1) , . . . , xf(n) . The input vector uk = [u
r1,k, . . . , u
rt,k
]
 is a multi-

vehicle control command, vk = [v
r1,k, . . . ,v
rt,k]
 is the plant noise, wk =

[w

f(1),k

, . . . ,w

f(n),k

]
 is the sensor noise, and both are Gaussian random vec-

tors with zero mean and block diagonal covariance matrices Q and R, respec-
tively. In the same manner as with the one robot case, an optimal estimate of
(5.6), in a least squares sense, is given by the expression

xk+1|k+1 = f(xk|k, uk, 0) + K(zk+1 − h(f(xk|k, uk, 0))) (5.8)

with covariance

Pk+1|k+1 = FPk|kF

+GQG
−K[H[FPk|kF


+GQG
]H
+R]K
 (5.9)

The Jacobians F and G represent first order linearizations of the multi-
vehicle model with respect to the state and the plant noise. Similarly, the
Jacobian H contains first order linearizations of the measurement model with
respect to the entire state.

5.3 Feedback Linearization

We will now design a controller using feedback linearization for multirobot
trajectory tracking. The feedback linearization approach is commonly used to
control nonlinear systems by algebraically transforming the system dynamics
into a linear one, so that linear control techniques can be applied. It differs
from conventional (Jacobian) linearization in that linearization is achieved
by exact state transformations and feedback, rather than by linear approx-
imations of the dynamics. The controller presented here however, presents
some limitations with respect to nonholonomic kinematic constraints. For a
more recent treatment to the control of wheeled vehicles in the presence of
estimation uncertainties, see [23].

To apply feedback linearization to the multirobot position part of the state,
the system dynamics (5.6) must be described in controllability canonical form.
That is, linear with respect to the input u(k).

yk+1 = yk + B(uk + vk) (5.10)

with yk = [xr1.k, yr1,k, . . . , xrt,k, yrt,k]
 only the multi-vehicle location part of
the state vector.

The nonlinear matrix B is a function of the multirobot part of the state
model (1.54). For our particular case, the first two terms indicate the position
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of the vehicle, expressed in controllable canonical form, whereas the third
term, is the vehicle orientation and is given as an incremental function of the
input angular velocity. The nonlinear matrix B takes the form

B(θk) =

�
cos θk −l sin θk

sin θk l cos θk

�
(5.11)

Feedback linearization of the entire multirobot subset of the state vector,
that is, including the orientation states, is not possible because in that case,
B would be not invertible, and the resulting pseudo-inverse turns out to be
rank-deficient (see [19]).

By choosing a control input of the form

uk = B−1(u�
k − yk) (5.12)

we can cancel the nonlinearities in that subset of the state, yk, obtaining a
single input-state linear relation

yk+1 = u�
k + Bvk (5.13)

The term u�
k in (5.13) is a new input to be determined, that can be chosen

using traditional linear control techniques. In this case, we have opted for a
control law to track a higher level planned multi-robot trajectory parameter-
ized in time y∗

k, guaranteeing at the same time exponential vehicle location
dynamics. That is, by defining the trajectory tracking error as

ek = yk − y∗
k (5.14)

the desired error control dynamics is designed such that

ek+1 + Q1ek = 0 (5.15)

where Q1 is constant and positive definite, and as will be seen later, with λ’s
in det(λI + Q1) = 0 within the unitary circle.

Solving for yk+1 in (5.15), substituting in (5.13), and assuming that the
expectations for the estimation error E[ỹk] = 0, and the plant noise E[vk] = 0

hold, we get the control law

uk = B−1(y∗
k+1 − Q1y

∗
k − (Q1 + I)ŷk) (5.16)

The control law uk is written as a function of available data. That is, it is
a function of the time parameterized multi-vehicle trajectories y∗

k, and of the
current multi-vehicle state estimates ŷk.

Notice that in order to have zero mean estimation error of the vehicle
states, SLAM must be fully observable [11]. Filter stability turns out to be a
prerequisite for this or any other low level control strategy to be asymptotically
stable as well. The intuition is straightforward, to accurately control a troupe
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of vehicles through a predefined trajectory, one must have means to accurately
measure their location at all times.

So the control law (5.16), will stabilize the system about the time param-
eterized trajectory y∗

k.
In order to validate our feedback control scheme, we write the closed loop

equations for the multi-vehicle state and multi-vehicle state estimate error,
using the fact that yk = ŷk + ỹk.

yk+1 = −Q1yk + (I + Q1)ỹk + Bvk + y∗
k+1 + Q1y

∗
k (5.17)

x̃k+1 = (F − KHF)x̃k + (G − KHG)vk − Kwk (5.18)

The separation of the problem in two parts, the optimal state estimation,
and the controller, gives a Kalman filter independent of the matrix Q1, which
specifies the control strategy. In the same way that the controller does not
depend on the statistics P, Q, and R of the random noises.

The eigenvalues of the closed-loop system are given by those of the
linearized-feedback dynamics −Q1, together with those of the state estimator
dynamics F − KHF. Only when both matrices are stable, so is the closed-
loop. We have designed Q1 for a stable controller, and for a fully observable
estimation problem, it is straightforward to verify F − KHF always stable
[18, 89].

As mentioned before, given the kinematics constraint of the vehicle model
used, the entire vehicle pose including orientation cannot be stabilized, and we
have decided to let yk = [xk, yk]
 be the Cartesian coordinates of the vehicle
location only, at the expense of optimally controlling the vehicle orientation.
Our experiments show however, that by controlling the vehicle position only,
and letting the vehicle orientation be a free variable, after an initial transient
interval, the predefined time parameterized trajectories can still be accurately
followed with a troupe of vehicles.

In order to show the feasibility of using Feedback Linearization during
multi-robot SLAM, we simulated an environment with 16 landmarks over a
600m2 area. The vehicle model used in the simulations corresponds to the
all-terrain planar vehicle from Figure 1.7, and is given in Section 1.2. Note
that the pose of the robot, and hence, the control point is located apart from
the vehicle axis of rotation in order to avoid singularities in the computation
of the Jacobians. The vehicle state and control point is chosen at the origin of
a laser range scanner placed on the front of the vehicle, thus simplifying the
measurement model.

Figure 5.5 presents an simulation for a pair of robots simultaneously track-
ing two time parameterized circular paths, while performing SLAM. The ob-
jective is to track the desired path as accurately as possible. The desired
trajectory should come from a higher-level planning strategy. But since that
is not the scope of this paper, but to guarantee concurrent tracking and esti-
mation stabilities, simple circular paths are chosen instead.
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Fig. 5.5. Simultaneous Multirobot Localization, Control, and Mapping

Figure 5.6 shows plots for the vehicle state estimates, the state estima-
tion error, and the history of control commands. Note in the last plot, that
when the motion is initiated, the control law chooses a saturated translational
velocity to reach the circular path, stabilizing then around 0.6 m/sec. Disre-
garding the uncontrollability of the angular orientation produces a drastic
fluctuation of the angular velocity signal during this initial transient interval,
then stabilizing to the desired angular velocity, set at 5 deg/sec.

Finally, Figure 5.8 shows the asymptotic landmark state estimate trace
covariances. The plot will look familiar to any experienced SLAM researcher,
and specifically shows the decrease in all landmark localization uncertainties
as the algorithm proceeds, showing asymptotic convergence of the estimation
part of the problem.

5.4 Conclusions

Given the separability between optimal state estimation and regulation, we
have been able to present a multi-vehicle low-level control strategy that does
not affect the estimation performance of a fully observable EKF based mul-
tirobot SLAM: a feedback linearization control strategy that is guaranteed
asymptotically stable for close tracking of any time-parameterized high-level
computed trajectory. The feasibility of using the approach was validated with
simulation results. In order to avoid the initial transient performance of the
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Fig. 5.6. State Estimation and Control using Feedback Linearization.

forward linearization control strategy, the effects of the kinematics constraints
on the chosen vehicle model will be further investigated.

The beauty of this chapter is precisely in that it points out the dependence
on fully observable SLAM in order to be able to use the SLAM estimates
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Fig. 5.7. Landmark trace covariances.
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Fig. 5.8. Landmark trace covariances.

as input to any type of controller. Then, both estimation and control can
be decoupled and standard techniques such as the ones used here, Kalman
filtering for estimation, and feedback linearization for control, are plausible
for closing the perception-action-loop in multirobot SLAM.



A

The Kalman Filter

The Kalman Filter developed in the early sixties by R.E. Kalman [57, 58]
is a recursive state estimator for partially observed non-stationary stochastic
processes. It gives an optimal estimate in the least squares sense of the actual
value of a state vector from noisy observations.

Recursive State Estimation

Consider a discrete-time stochastic process

xk+1 = f(xk,uk,vk) (A.1)

with system input u and unmodeled process dynamics plus noise v. The task
at hand is to find an estimate of the state vector x. However, x is only acces-
sible from noise distorted sensor measurements

zk = h(xk,wk) (A.2)

in which as with the process model, w represents observation model inaccu-
racies and sensor noise.

Recursive state estimation consists on iteratively reconstructing the state
vector from our knowledge of the process dynamics, the measurement model,
and the sensed data.

Let xi|j , i ≥ j, be the estimate of the state xi using the observation
information up to and including time j, Zj = {z0, . . . , zj}. Given an estimate
xk|k, and the input to the system uk, the predicted state xk+1|k is ideally
given by the expectation

xk+1|k = E[f(xk,uk,vk)|Zk]. (A.3)

We call xk+1|k the a priori estimate of xk+1, and compute it from a noise-
free version of Eq. A.1, the estimate xk|k, and the input that hypothetically
would drive the process from xk to xk+1

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 119–125, 2006.
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xk+1|k = f(xk|k,uk,0). (A.4)

Combining this result with the discrete-time measurement model from
Eq. A.2, we can also predict a noise-free a priori estimate of the sensor mea-
surements

zk+1|k = h(xk+1|k,0). (A.5)

By comparing the actual measurement vector zk+1 with the predicted data
zk+1|k, we obtain an observation prediction error which in turn is added in a
correction term to the a priori state estimate to produce an a posteriori state
estimate.

xk+1|k+1 = xk+1|k + Kk+1(zk+1 − zk+1|k). (A.6)

The choice of the gain matrix K usually meets some optimality criteria.
In the case of the Kalman Filter, the stochastic nature of the process and
measurement dynamics is taken into account in the derivation of K, producing
an optimal linear estimator that minimizes the squared error on the expected
value of the state estimate xk+1|k+1.

Linear Kalman Filter

Consider the case in which the process and measurement models correspond
to a possibly non-stationary1 discrete-time linear system, and that both the
process and sensor noises are zero-mean white2 and Gaussian with covariance
matrices Qk and Rk respectively, then Eqs. A.1 and A.2 become

xk+1 = Fkxk + uk + vk (A.7)

zk = Hkxk + wk (A.8)

where

E[vk] = 0, E[vkvk

] = Qk, and E[vivj


] = 0, ∀i �= j (A.9)

E[wk] = 0, E[wkwk

] = Rk, and E[wiwj


] = 0, ∀i �= j (A.10)

The a priori and a posteriori state estimation errors can be written as

ek+1|k = xk+1 − xk+1|k (A.11)

ek+1|k+1 = xk+1 − xk+1|k+1 (A.12)

and from the linear model in Eq. A.7, the noise-free a priori state estimate in
Eq. A.4 takes the form

xk+1|k = Fkxk|k + uk. (A.13)

1 Hence Kalman filter’s beauty, compared to its predecessor the Weiner filter that
only works for stationary linear systems.

2 Temporally uncorrelated and with equal power at all frequencies.
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It follows that the a priori state estimate error is given by

ek+1|k = Fkek|k + vk. (A.14)

Substituting Eq A.6 and the observation models

zk+1|k = Hk+1xk+1|k

and
zk+1 = Hk+1xk+1 + wk+1

in Eq. A.12, we obtain a recursive expression for the a posteriori state esti-
mation error

ek+1|k+1 = ek+1|k − Kk+1(Hk+1ek+1|k + wk+1). (A.15)

The state error covariances are given by the expectations of the square of
the state errors.

Pk+1|k = E[ek+1|kek+1|k

] (A.16)

Pk+1|k+1 = E[ek+1|k+1ek+1|k+1

]. (A.17)

Substituting Eq. A.14 in Eq. A.16 and taking the expectations on v, we
get the following expression for the a priori state error covariance

Pk+1|k = FkPk|kFk

 + Qk. (A.18)

For simplicity of notation, in the sequel we rewrite the dependencies (k +
1|k) and (k + 1|k + 1) as � and ⊕ respectively, and when no step reference is
provided, (k + 1) is assumed. Substituting Eq. A.12 in Eq. A.17 and taking
the expectations on w and e�, the a posteriori error covariance takes the form

P⊕ = P� − P�H
K
 − KHP� + K(HP�H
 + R)K
. (A.19)

The gain matrix K is chosen to minimize the a posteriori error covariance.
Making the derivative of the trace of P⊕ with respect to K equal to 0, and
solving for K we get the optimal gain for the computation of Eq. A.6, i.e., the
Kalman gain

K = P�H
(HP�H
 + R)−1. (A.20)

Substituting Eq. A.20 back in Eq. A.19 reduces P⊕ to the well known
form

P⊕ = P� − KHP�. (A.21)

By inspecting the Kalman filter equations the behavior of the filter agrees
with our intuition. The Kalman gain is proportional to the uncertainty in
the state estimate and inversely proportional to that in the measurements. If
sensor readings are very uncertain, and the state estimate is relatively precise,
then the Kalman gain has little impact on the update of the state estimate
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in Eq. A.6, and the system relies heavily on the system model. If, on the
other hand, the uncertainty in the measurement is small and that in the
state estimate is large, then K is also large, thus trusting more in sensor
measurements for the correction of the state estimate.

However, when sensor measurements are uncertain the second term in
Eq. A.21 is small and the state estimate error covariance sees little reduction.
Conversely, accurate sensor measurements contribute considerably in reducing
the state estimation error.

Given the initial conditions x0|0 and P0|0, the complete recursion in the
Kalman filter is computed iteratively with the following steps:

• Predict the a priori state, error covariance, and observation estimates

x� = Fkxk|k + uk

P� = FkPk|kFk

 + Qk

z� = Hx�

• Compute the Kalman gain and correct the state and state error covariance
estimates

K = P�H
(HP�H
 + R)−1

x⊕ = x� + K(z − z�)

P⊕ = P� − KHP�

Extended Kalman Filter

Consider now the case when the process and observation models in Eqs. A.1
and A.2 are non-linear. The Extended Kalman Filter (EKF) provides a so-
lution by linearizing the process about the current state, and linearizing the
measurement model about the predicted observation.

The linearization of f about the current estimate xk|k can be formulated
as a Taylor series with the higher order terms dropped, that is:

x ≈ x� + �fx(xk − xk|k) + �fvvk.

Similarly, the linearization of the observation model takes the form

z ≈ z� + �hx(x − x�) + �hww.

The noise-free estimates x� and z� are given in Eqs. A.4 and A.5, and
the various Jacobian matrices contain the partial derivatives of f and h with
respect to x and the noises v and w
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�fx =
∂f

∂x

!!!!
(xk|k,uk,0)

�fv =
∂f

∂v

!!!!
(xk|k,uk,0)

�hx =
∂h

∂x

!!!!
(x�,0)

�hw =
∂h

∂w

!!!!
(x�,0)

Following the same discussion as in the previous section but with this new
linear model, it is easy to show how the complete recursion for the Extended
Kalman Filter involves the following steps:

• Predict the a priori state and observation estimates as well as the a priori
state error covariance estimate

x� = f(xk|k,uk,0)

P� = �fxPk|k�fx

 + �fvQk�fv




z� = h(x�,0)

• Compute the Kalman gain and correct the state and state error covariance
estimates

K = P��hx

(�hxP

��hx

 + �hwR�hw


)−1

x⊕ = x� + K(z − z�)

P⊕ = P� − K�hxP
�

It is important to note however, that the linearization of the nonlinear pro-
cess and measurement models in the EKF does not preserve the distributions
of the state and measurement random variables as normal. This may lead
to difficulties in the implementation and tuning of the EKF, making it only
reliable for systems that are almost linear on the time scale interval (k, k+1).

Conditioning

It turns out that the recursion in Eq. A.21 is ill-conditioned. As the filter
converges, the cancelling of significant digits on P⊕ may lead to asymmetries
or to a non positive semi definite (psd) matrix, which cannot be true from the
definition in Eq. A.17 of the a posteriori error covariance matrix.

An algebraic manipulation that guarantees P⊕ psd is obtained by multi-
plying Eq. A.20 by (HP�H
 + R)K
, rearranging terms

KHP�H
K
 − P�H
K
 + KRK
 = 0 (A.22)
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and adding Eq. A.22 into Eq. A.21

P⊕ = (I − KH)P�(I − KH)
 + KRK
 (A.23)

The recursivity in Eq. A.23 is known as the Joseph form of the a posteriori
error covariance matrix, and given its quadratic nature it is obviously psd.

Sequential Innovation

When combining information from multiple sensors or from multiple data
sources, the observation vector z can be seen as a collection of n independent
measurements z(i) coming from the same number of independent sources at
any particular time instance (k + 1).

It is possible to process each of these observations independently provided
R is block diagonal. This is, when the set of measurements taken at the same
time interval are uncorrelated. Even when the measurements are correlated,
they may always be transformed into uncorrelated data which then may be
treated sequentially. The process is called whitening (see [39]).

Starting from x⊕,0 = x�, and P⊕,0 = P�, the a posteriori state estimate
is iteratively given by

x⊕,i = x⊕,i−1 + K(i)

�
z(i) − H(i)x⊕,i−1

�
.

The key advantage of the sequential innovation method is that the com-
plexity in the computation of the Kalman gain is reduced considerably. From
Eq. A.20

K(i) = P⊕,i−1H(i)

�
H(i)P⊕,i−1H(i)
 + R(i)

�−1

. (A.24)

The required inverse in Eq. A.24 has the dimension of each of the ob-
served variables, and is considerably much smaller than the dimension of the
entire measurement vector z as required in Eq. A.20. When a sensor returns
scalar values for each independent measurement, then the inverse in Eq. A.24
becomes just a scalar division.

Given the initial conditions x0|0 and P0|0, the complete sequential inno-
vation Kalman filter recursion is computed with the following steps:

• Predict the a priori state and state error covariance

x� = Fkxk|k + uk

P� = FkPk|kFk

 + Qk

• For each measurement, iteratively compute the corresponding innovation
and Kalman gain column and correct the state and state error covariance
estimates
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initialize x⊕,0 = x�

P⊕,0 = P�

∀i K(i) = P⊕,i−1H(i)

�
H(i)P⊕,i−1H(i)
 + R(i)

�−1

x⊕,i = x⊕,i−1 + K(i)

�
z(i) − H(i)x⊕,i−1

�
P⊕,i = P⊕,i−1 − K(i)H

(i)P⊕,i−1

restore x⊕ = x⊕,n

P⊕ = P⊕,n

Bibliographical Notes

The reader can find thorough discussions on the Kalman Filter in [18, 29,
57, 58, 68, 71, 73, 92], and on its predecessor the Weiner Filter in [42]. One
approach to reduce the effect of nonlinearities is to apply iteratively the filter
(IEKF) as in [94]. Another solution is to use the Unscented Kalman Filter
(UKF), an extension to the EKF that takes into account the nonlinear trans-
formation of means and covariances [48, 55]. Numerical instability may occur
even with the Joseph form of the error covariance matrix. An alternative is the
use of the square-root Kalman filter (SKF), in which recursive computations

for P⊕ are substituted by equations for a recursion in P⊕1/2
[29]. Sequential

innovation in Kalman filtering is discussed in detail in [18, 29, 91, 93].
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Concepts from Linear Algebra

Properties of positive semi-definite matrices

Each of the following are necessary and sufficient conditions for a real valued
symmetric matrix A to be positive semi-definite psd.

• x
Ax ≥ 0.
• all the eigenvalues of A satisfy λi ≥ 0.

Moreover, if A is psd

• det(A) ≥ 0.
• any principal submatrix of a psd matrix is also psd.
• BAB
 is also psd, for any real valued B.
• and if B is also psd, then (A + B) is also psd.
• and if B is also psd, then detA ≤ det (A + B).

Linear subspaces

The four fundamental subspaces spanned by the columns and rows of a real
valued matrix A are

• The column space of A. ImA = {y ∈ R
m : ∃x ∈ R

n,Ax = y}.
• The row space of A. ImA
 = {y ∈ R

n : ∃x ∈ R
m,A
x = y}.

• The null space of A. KerA = {x ∈ R
n : Ax = 0}.

• The left null space of A. KerA
 = {x ∈ R
m : A
x = 0}.

J. Andrade-Cetto and A. Sanfeliu: Envir. Learn. f. Ind. Mob. Rob., STAR 23, pp. 127–128, 2006.
© Springer-Verlag Berlin Heidelberg



128 B Concepts from Linear Algebra

Inverse of a block matrix

The inverse of the nonsingular block matrix

1−�
A A11 12 

�
B B

= 

�
11 12 

�
A A B B21 22 21 22

has the partitions
1 1− −B = (A A A A− )11 11 12 22 21

1−B B A A= −12 11 12 22

1−B A A B= −21 22 21 11

1 1− −B = (A A A A− )22 22 21 11 12

The matrix inversion lemma

1 
 1 1 
 
 1− − − −(A + B C B) A AB BAB= − ( + C) BA


 1 1 1 
 1 1 1 
 1− − − − − − −(A + BCB ) A A B A= (B B + C ) B A−

Matrix inequalities

The matrix inequality
A ≥ B

is to be interpreted as follows:

C A B 0= − ≥

that is, the difference C of the two matrices is positive semi-definite.

Bibliographical notes

For a comprehensive text on linear algebra the reader is referred to the book
by Strang [81].
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Sigma Points

A set of p + 1 sigma points S = {X i, W i} are deterministically chosen to
satisfy a condition set of the form

g(S, p(x)) = 0 (C.1)

where p(x) is the pdf of x, not necessarily Gaussian, and g(·, ·) determines the
information that should be captured about x. For example, in our Gaussian
case, to match the mean

g1 =

p�
i=0

W iX i − xk|k, (C.2)

the covariance

g2 =

p�
i=0

W i(X i − xk|k)(X i − xk|k)
 − Pk|k, (C.3)

and skew

g3 =

p�
i=n

W i(X i − xk|k)3. (C.4)

One set of points that satisfies such conditions consists in the following
symmetrically-distributed set of points [55]:

X 0
k|k = xk|k (C.5)

W 0 =
κ

n + κ
(C.6)

X i
k|k = xk|k +

��
(n + κ)Pk|k

�
i

(C.7)

X i+n
k|k = xk|k −

��
(n + κ)Pk|k

�
i

(C.8)

W i = W i+n

=
1

2(n + κ)
(C.9)
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where
��

(n + κ)Pk|k

�
i
is the ith row of the Cholesky decomposition A, nP =

A
A, and W i is the weight associated with the ith point. The term κ is used
to scale the third and higher order terms of this set, and n is the augmented
state space dimension (states plus noises).
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