
MintDuino
Building an Arduino-Compatible
Breadboard Microcontroller

James Floyd Kelly
& Marc de Vinck

CREATE YOUR
OWN 2-PLAYER

LED GAME
Project Book

Project Book

n	 Wire	up	and	program	the	MintDuino	to	light	an	LED

n	 Build	a	game	that	tests	the	reflexes	of	two	players

n	 Learn	how	to	make	your	“game	light”	glow	at	random	
intervals

n	 Construct	a	pushbutton	circuit	to	control	individual	players’	
LEDs

n	 Put	all	of	the	components	together,	including	simple	code	
to	control	your	game

Get started with MintDuino, the Maker Shed kit that’s perfect for
learning or teaching the fundamentals of how microcontrollers
work. This hands-on book shows you how to build a complete
MintDuino project from start to finish. Learn how to assemble the
microcontroller on a breadboard (no soldering required), and
immediately begin programming it.

You’ll build the MintDuino Reflex Game in five separate stages or
sub-tasks. Breaking down a large project into manageable tasks
helps you track down errors quickly, and lets you see how each part
of the circuit works. Once you complete the game, you’ll have the
resources and experience to tackle more MintDuino projects. If
you’re interested in the fascinating world of microcontrollers, you’ll
enjoy this book.

MintDuino
Building an Arduino-Compatible Breadboard
Microcontroller

Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

ISBN: 978-1-449-30766-0

US $4.99 CAN $5.99

MintDuino

James Floyd Kelly and
Marc de Vinck

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

MintDuino
by James Floyd Kelly and Marc de Vinck

Copyright © 2011 Blue Rocket Writing Services, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more informa-
tion, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services
Cover Designer: Mark Paglietti
Interior Designer: David Futato
Illustrator: Robert Romano

September 2011: First Edition.

Revision History for the First Edition:
September 12, 2011 First release
December 16, 2011 Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449307660 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Maker Press series desig-
nations, MintDuino, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-1-449-30766-0
[LSI]

1325889248

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449307660

Contents

Preface . v

1/Build a Mintronics: MintDuino . 1

Build the Power Supply .1

Power the Microcontroller .4

Getting Ready to Program . 7

2/The MintDuino Reflex Game . 11

3/Subtask 1: Light an LED . 13

Start Building . 13

Upload Your First Sketch . 18

4/Subtask 2: Randomly Light an LED . 21

The Game Takes Shape . 22

5/Subtask 3: Light an LED with a Pushbutton . 25

Light the LED .30

6/Subtask 4: Add Buttons and LEDs . 33

Light LEDs for Each Player . 37

7/Subtask 5: Program the Game . 41

The Final Sketch . 42

Conclusion .45

Contents iii

Preface

The MintDuino is deceiving—this little tin of electronics is capable of provid-
ing the brains for an unlimited number of devices limited only by your imag-
ination…and, of course, your bank account.

While the MintDuino is certainly capable of being used during a moment of
inspiration, you’ll find that the real power of the device comes when you sit
down, figure out what you want to make, and then start tackling your project
a bit at a time. Anyone who has done circuit building or programming (or
both) knows that it rarely pays to just start inserting components and writing
complex sketches (programs in Arduino-speak). When trouble arises in a
circuit or a program, it can be a time-consuming process to track down the
error (or more likely, errors) when you have too much complexity. That’s
why it’s always a good idea to break a project idea down into manageable
components—let’s call them subtasks. If your big project has five major
subtasks, tackling the first subtask and building a slightly less complicated
circuit with a slightly less complicated sketch will save time and reduce
stress. Once you’ve got the first subtask figured out, you move on to the
second. By the time you’ve got all five subtasks built and their individual
sketches tested, you’re likely to have an increased chance of success when
you pull them all together and build The Big Project.

And that’s exactly what you’re going to do in this MintDuino Notebook.
You’re going to be shown The Big Project…but you’re not going to be allowed
to build it just yet. The Big project has subtasks, and first you’re going to
learn how to get the subtasks to work. Once you’ve done that, you’ll be ready
for the finale where you bring together all you’ve learned and tackle…The Big
Project. So, what is The Big Project? Keep reading.

What You Need
The complete list of materials for this project is below, but you’ll find a partial
list of components with each subtask that contains only those items used in
that particular section:

• 1 MintDuino—assembled (see http://makeprojects.com/Project/Build
-a-Mintronics-MintDuino/608/1 for assembly instructions)

• 1 9V battery

• 1 FTDI adapter, such as the FTDI Friend (see http://www.makershed
.com/ProductDetails.asp?ProductCode=MKAD22)

• 1 USB cable (A to mini-B type)

• A jumper wire kit, such as http://www.makershed.com/ProductDetails
.asp?ProductCode=MKSEEED3

• 2 LEDs (you can use any color you have handy)

Plus, you’ll need the following components, all of which are available in the
Mintronics: Survival Pack:

• 2 LEDs (one red and one green LED come with the Survival Pack, but
you can use any color you have handy)

• 1 mini breadboard

• 1 9V battery connector

• 3 resistors (100 ohm minimum)

• Jumper wires (you’ll find enough wire in the Survival Pack to get you
started, but you’ll need to dip into the jumper wire kit soon)

• 2 pushbuttons

• Enough jumper wire to get you through Subtask 3.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file exten-
sions.

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

vi Preface

http://makeprojects.com/Project/Build-a-Mintronics-MintDuino/608/1
http://makeprojects.com/Project/Build-a-Mintronics-MintDuino/608/1
http://www.makershed.com/ProductDetails.asp?ProductCode=MKAD22
http://www.makershed.com/ProductDetails.asp?ProductCode=MKAD22
http://www.makershed.com/ProductDetails.asp?ProductCode=MKSEEED3
http://www.makershed.com/ProductDetails.asp?ProductCode=MKSEEED3
http://www.makershed.com/ProductDetails.asp?ProductCode=MSTIN2

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

TIP: This icon signifies a tip, suggestion, or general
note.

CAUTION: This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require per-
mission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “MintDuino by James
Floyd Kelly (O’Reilly). Copyright 2011 Blue Rocket Writing Services, Inc.,
978-1-4493-0766-0.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference
books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access

Preface vii

mailto:permissions@oreilly.com

new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy and
paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other
time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the pub-
lisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/0636920020882

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Content Updates

December 16, 2011
• Modified the book’s style and trim size.

• Added a new chapter that explains how to build the Mintduino.

viii Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/0636920020882
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1/Build a Mintronics:
MintDuino

The MintDuino is perfect for anyone interested in learning (or teaching) the
fundamentals of how micro controllers work. It will have you building your
own micro controller from scratch on a breadboard, and then easily
programming it from almost any computer via the Arduino programming
environment.

Unlike pre-built micro controllers, the MintDuino demonstrates the specific
relationship between the wires, resistors, capacitors, and integrated circuits
that enables you to program the micro controller from your computer. After
building the MintDuino, you’ll have a much better understanding of how
micro controllers work, and how electronics can interact with the physical
world. This chapter explains how to assemble the MintDuino; in Chapter 2,
you’ll learn how to create a simple game with it.

Build the Power Supply
Start building your MintDuino by adding the 7805 power regulator. This
converts the 9v power to 5v power that the ATMega can use. Insert the 7805
into column “i” on the breadboard and rows 1, 2, and 3. The metal heatsink
should be facing the right (or column “J”). Now we are going to add two 10
μF capacitors to the power regulator:

1. I like to trim the leads down so they don’t stick so far out of the bread-
board. One lead is longer than the other. The long lead is the (+) lead
and the short one is the (-) lead. If you trim it, make sure to keep the
lengths different lengths so it’s easy to identify the (+) and (-) leads.

2. Take the first capacitor and insert the (+) lead into “g1” and the negative
lead into “g2”. Easy!

3. Take the other 10 μF capacitor, and insert the (-) lead into row 1 of the
(-) power rail of the breadboard. Insert the (+) lead into row 1 of the (+)
rail of the breadboard.

Now lets get some regulated power over to the power rails of the breadboard.
Start by stripping the ends of one piece of red wire cut to approximately 1/2"

1

long. Insert the wire from the (+) rail of the breadboard to “j3” of the bread-
board. Next, strip the ends of one piece of black wire cut to approximately
1/2" long. Insert the wire from the (-) rail of the breadboard to “j2” of the
breadboard. Your breadboard should look like Figure 1-1

Figure 1-1. Breadboard with voltage regulator, capacitors, and wire

Now it’s time to add the power LED. Start by cutting down the leads, just as
you did on the capacitor. Make sure to keep the long one (+) longer than the
short one (-)! Now you can insert the red LED into the breadboard: the longer
lead (+) goes into “d2” and the negative (-) goes into “d1”. Let’s get the power
distributed around the board and to the LED:

1. Start by cutting one red wire, approximately 1/2" long and one black
wire, approximately 1/2" long. Strip both ends of each wire.

2. Insert the red wire from “f1” to “e4”, and the black wire from “f2” to “e5”.

3. Cut another piece of black wire about 1/2" long (from here on out, I’m
going to stop reminding you to strip each end, so make sure you do it)
and insert it from the (-) rail of the breadboard and “b1”.

2 MintDuino

4. While we are here, lets add a 220 Ohm resistor (red, red, brown) from
the (+) rail of the breadboard to “b2”. This will limit the amount of current
that goes into the LED, and keep it from burning out.

5. Lastly, cut (1) piece of red and black wire about 1 1/2" long and connect
the right side rails together. Remember to connect (+) to (+) and (-) to
(-). Your breadboard should look just like Figure 1-2

Figure 1-2. Breadboard ready to be powered up

Now we can power it up! Connect the battery clip’s red wire (+) to “d4” and
the black wire (-) to “d5”. Connect a 9v battery and the red LED should light
up. Your breadboard should look just like Figure 1-3.

WARNING: If the LED doesn’t light up, disconnect
the battery immediately and double check the
wiring. Take the circuit apart if necessary and start
from the beginning. If the LED doesn’t work at this
point, nothing else will.

Build a Mintronics: MintDuino 3

Figure 1-3. Your breadboard is powered and ready for the next step

Now you have a nice 5V regulated power supply from a 9V battery. Your
ATMega will thank you for it! OK, enough fun. Unplug the battery and let’s
get started with the micro controller.

Power the Microcontroller
Now it’s time to connect power to the ATMega 328 chip (also known as an
integrated circuit or IC). This is the brains of your MintDuino. It combines a
microprocessor, flash memory, RAM, and digital as well as analog inputs and
outputs into a single chip known as a microcontroller. It’s also the most frag-
ile part, so make sure you’ve disconnected the battery before you do any-
thing. The ATMega has a small “U” shaped notch on one end. This notch lets
you know where pin 1 is on the chip. If you hold the chip vertically, with the
notch on top, pin 1 is directly to the left of this notch. Insert the IC so the
notch is pointing towards the power supply you just built, and so that pin 1
goes into “e9” on the breadboard.

NOTE: You may need to bend the pins in a little bit
so they don’t flare out too much. Don’t use a lot of
force to insert the IC or you may damage the pins.

4 MintDuino

With the ATMega inserted, you should insert the 16 MHz clock crystal, which
controls the speed at which the microcontroller executes instructions:

1. Insert the crystal into the breadboard at “b17” and “b18”. It’s not polar-
ized, so orientation isn’t important: you can insert it either way.

2. The crystal needs some capacitors to work properly. The two 22pF
capacitors (marked “220”) are not polarized either, so their orientation
does not matter.

3. Insert one 22 pF capacitor so one pin goes into the the ground rail of the
breadboard and the other into “a17”.

4. Insert the other 22 pF capacitor with one pin into the the ground rail and
the other into “a18”.

5. While we are working on this part of the breadboard, let’s connect a
ground connection to the microcontroller: cut a 1/2" piece of black wire
and connect the ground rail of the breadboard to “a16”.

At this point, the center of your breadboard should look like Figure 1-4.

Figure 1-4. ATMega with capacitors, crystal, and ground wire

Build a Mintronics: MintDuino 5

Now you’re ready to connect the positive rail of the breadboard to the
microcontroller:

1. Cut 3 pieces of red wire, all of them about 1/2" in length, and one black
wire 1/2" in length.

2. Use one red wire to connect the (+) rail of the breadboard to “j16”.

3. Use another piece of red wire to connect the (+) rail of the breadboard
to “j17”.

4. Use one black wire to connect the (-) rail of the breadboard to “j15”.

5. Back to the other side of the board (by the crystal). Connect the
remaining red wire from the (+) rail to “a15”.

Let’s wire up the green status LED, which will help us know whether every-
thing is working properly. You can trim the LED’s leads if you’d like (this will
make it fit the board more snugly), but remember to keep the long lead longer
than the short lead:

1. Cut one piece or red wire about 3/4" long.

2. Insert the longer lead of the LED (+) into “i24” and the shorter lead (-)
into “i25”.

3. Next connect the (-) ground rail of the breadboard to “j25” using a 220
Ohm resistor (red,red,brown).

4. Connect “h24” to “h18” with the red wire.

When you’re done, the breadboard should look like Figure 1-5. Now we’re
ready for another test: connect the battery to the board as you did earlier,
making sure you connect red to red and black to black. The red power LED
should light up immediately, followed by the green LED. The green LED will
then start blinking. This is because a simple “blink” program has already
been uploaded to the ATMega. If the LEDs don’t light up, immediately
disconnect the power, and check all your connections again.

NOTE: Technically, you now have an LED connec-
ted to Analog “pin 13” of the Arduino, which is the
same pin used by a standard Arduino’s onboard
LED. However, this is not actually pin 13 of the
ATMega. The Arduino development environment
uses a separate pin numbering scheme (it has a set
of digital pins numbered 0 through 13 and a set of
analog pins numbered 0 through 5). We’ll go over
the pins in the last step of the build.

6 MintDuino

Figure 1-5. ATMega with power connections and an LED

Getting Ready to Program
Now you’re ready to add some components that you’ll need before you can
program the MintDuino. Let’s start with the reset button:

1. Cut one piece of black wire about 1" in length.

2. Connect the ground rail (-) of the breadboard to “d6”.

3. Cut another piece of black wire about 1/2" in length and connect it from
“d8” to pin 1 of the ATMega at “c9”

4. Now press the button into the breadboard. It only fits one way, so make
sure the pins all line up properly (if it feels like you’ll have to force it, turn
it 90 degrees and try again). The four leads of the button will fit in “e6”,
“e8”, “f6”, and “f8”.

5. Connect “b9” to the (+) rail of the breadboard with a 10k Ohm resistor
(brown,black,orange).

You’re almost there; check out Figure 1-6 to see how your breadboard should
look now.

Build a Mintronics: MintDuino 7

Figure 1-6. ATMega with pushbutton

Next, you need to wire up the six-pin programming header (only four pins
are used). This doesn’t connect to the microcontroller’s traditional
programming pins, but to Ground (-), the microcontroller’s reset pin, as well
as its two UART (serial port) pins, TX and RX. Unlike other microcontroller
environments, Arduino is programmed over a serial connection, which is why
you can use a USB to TTL serial converter such as the FTDI adapter recom-
mended in “What You Need” on page vi.

1. Start by using a pair of pliers to adjust the pins (gently) to be centered
in the plastic rail, as shown in Figure 1-7. By centering the pins it makes
it much easier to plug in the FTDI adapter later.

8 MintDuino

Figure 1-7. Centering the pins

2. Once they are centered, insert the six-pin header in column “b” from
“b25” to “b30”. Now you’re ready to wire up the programming pins.

3. Cut three lengths of green wire (color may vary) approximately 2" each.

4. Connect one wire from “d10” to “e27”.

5. Connect the second wire from “c11” to “d26”.

6. Connect the third wire from “d9” to “c23”.

7. Next, add the 100 nF capacitor (marked 104 on one side and K1K on the
other) from “c25” to “b23”. It isn’t polarized, so you can insert it either
way.

8. The final step is to add a 1/2" piece of black wire from “a30” to the
ground rail (-) of the breadboard. Figure 1-8 shows the completed con-
nections.

Build a Mintronics: MintDuino 9

Figure 1-8. The programming header connected to the ATMega

You’re all done! Your finished MintDuino should look like Figure 1-9. (Looks
a bit like a scorpion, eh?) Now you’ll be ready to program the ATMega chip
when the time comes in Chapter 3.

Figure 1-9. The finished MintDuino

10 MintDuino

2/The MintDuino
Reflex Game

The MintDuino Reflex Game will test the reflexes of two players. The game
takes place on the mini breadboard, with each player waiting to push a button
when an LED (the Game Light) in the center of the breadboard lights up. The
Game Light will light up after a random amount of time has passed (some-
thing between, say, 5 and 10 seconds). Whichever player pushes their button
first after the Game Light LED lights up wins, and a green LED will light up on
the side of the winning player.

That’s The Big Project—but let’s break it down into four subtasks that will
help us understand the proper wiring of the MintDuino, as well as the elec-
tronics components and programming elements required:

1. Wire up and program the MintDuino to light an LED—this will help us to
not only light the Game Light but also the winning player’s green LED.

2. Wire up and light an LED after a Random Wait Time—we will learn how
to light an LED after waiting a random amount of time.

3. Wire up and program an LED to light when the pushbutton is pressed—
this will help us to understand the proper wiring of a pushbutton as well
as how to use it as a trigger for another event (in this case, lighting an
LED).

4. Wire and program two pushbuttons to light up a matching LED when
pressed—here, we’ll figure out how to trigger the correct LED when its
paired pushbutton is pressed.

Once we understand what’s required in order to light LEDs, wait a random
amount of time, and test for pushbuttons to be pressed, we can pull it all
together and build the MintDuino Reflex Game. The fact that we’ll have mul-
tiple LEDS shouldn’t be a problem—if we know how to light one, well, we can
light two…or three. And if we know how to determine if a pushbutton has
been pressed, we can probably figure out how to detect which of two push-
buttons has been pressed. Then we add some code to start the game, check
for a premature button push, and reset the game…and we’re in business.

11

NOTE: This MintDuino Notebook will provide you
with the sample code required to test various cir-
cuits and electronics components, but it will not be
able to provide a comprehensive tutorial on pro-
gramming the MintDuino (or an Arduino). If you
need a better understanding of the programming
language used to create MintDuino sketches, you’ll
want to turn to a variety of online and printed sour-
ces designed to teach beginning Arduino program-
ming. Make: Arduino, at http://makezine.com/ar
duino/, is a great starting point. You’ll find videos,
projects, books, and more there.

12 MintDuino

http://makezine.com/arduino/
http://makezine.com/arduino/

3/Subtask 1: Light an
LED

We’ll start with Subtask 1 and assemble a small circuit to light a single LED.
The components you will need include:

• 1 MintDuino—assembled (see Chapter 1 for assembly instructions)

• 1 9V battery

• 1 FTDI adapter, such as the FTDI Friend (see http://www.makershed
.com/ProductDetails.asp?ProductCode=MKAD22)

• 1 USB cable (A to mini-B type)

Plus, you’ll need the following components, all of which are available in the
Mintronics: Survival Pack:

• 1 LED (one red and one green LED come with the Survival Pack, but you
can use any color you have handy)

• 1 mini breadboard

• 1 9V battery connector

• 1 resistor, 100 ohm (minimum)

• 2 jumper wires

Figure 3-1 shows the components required to assemble Subtask 1. Later,
you’ll use the FTDI adapter to upload the sketch to the MintDuino.

Start Building
You’ll start the assembly of Subtask 1 by inserting the LED and resistor (refer
to this resistor as RES1 for all subtasks) into the mini breadboard, as shown
in Figure 3-1.

13

http://www.makershed.com/ProductDetails.asp?ProductCode=MKAD22
http://www.makershed.com/ProductDetails.asp?ProductCode=MKAD22
http://www.makershed.com/ProductDetails.asp?ProductCode=MSTIN2

Figure 3-1. Components required to assemble circuit for Subtask 1

Before you continue, there are a few things you need to know when using
the mini breadboard:

• The mini breadboard does not have letters or numerals to label the var-
ious rows and columns (which the MintDuino’s breadboard does have).

• When wiring, rotate the mini breadboard so that it is taller than it is wider
(as seen in Figure 3-2); with this orientation, each row is broken into two
segments of five holes.

• The five holes in each segment share a common connection point; when
inserting components, make certain that leads are inserted in different
segments and not in the same grouping of five holes or the component
will be shorted.

14 MintDuino

Figure 3-2. Resistor (RES1) and LED inserted into the motherboard

Take note that the LED has one leg that is shorter than the other. The longer
leg is referred to as the anode or + lead (positive); and the shorter leg is
referred to as the cathode or – lead (negative). When connecting an LED to
a circuit, you must remember to connect the + lead to the voltage/supply
side of a circuit and the – lead to the GND (ground) side of a circuit.

Because you haven’t yet wired up power to the MintDuino, just remember
(or jot down a note here) where the longer + lead of the LED is located. If
you’re following along with the included images, you’ll want to insert the
longer + lead closer to the left side of the mini breadboard; this side will be
closest to the MintDuino once it is finally connected to the mini breadboard.

NOTE: One useful way to remember how an LED is
inserted into the mini breadboard is to insert the
longer (+) lead closer to the MintDuino. If you con-
sistently use this method, you’ll always be able to
look at an inserted LED and determine which lead
is the anode and which is the cathode.

Subtask 1: Light an LED 15

I’ve also inserted RES1 so that one of its leads shares a row with the cathode
(–) lead of the LED. Notice in Figure 3-2 that RES1’s other lead is inserted
into an empty row on the mini breadboard just below the LED’s anode lead.

Next, you’ll use two jumper wires to connect the mini breadboard to the
MintDuino. Insert one jumper wire into the same row as the LED’s anode
lead. Insert the other wire into the same row as RES1’s non-shared lead (the
lead not shared by the LED’s cathode lead). This is shown in Figure 3-3. Black
wire is often chosen when making connections to GND and red wire is typi-
cally selected for making connections to voltage/power; feel free to use
these colors for the jumper wires if you have them (or if you have the Survival
Pack), but it is not required.

Figure 3-3. Two jumper wires will connect the mini breadboard to the
MintDuino

Now you’ll connect the two jumper wires to the MintDuino. If you’ve built
your MintDuino based on the building instructions in Chapter 1, you’ll want
to connect the jumper wire connected to the LED’s anode (+) lead to Pin 13
on the ATmega 328 chip. This corresponds to Row 21 on the MintDuino
(again, if you’ve taken care to wire it up exactly as the instructions specify).
You can plug that jumper wire into any free hole between a and e on Row 21.

16 MintDuino

NOTE: Pin 13 corresponds to Digital Pin 7—this in-
formation will be required shortly when we write the
program to test the LED.

Plug the other jumper wire from the LED’s cathode (–) into any hole on the
GND column of the MintDuino. Double-check this and make absolutely cer-
tain that you’ve connected it to a GND column and not the PWR (5v or 3.3v)
column.

Figure 3-4 shows the two jumper wires now connecting the mini breadboard
to the MintDuino.

Figure 3-4. MintDuino and mini breadboard circuit completed with jumper
wires

Subtask 1: Light an LED 17

Upload Your First Sketch
Now it’s time to upload the Subtask 1 program (sketch). You can download
this sketch from http://examples.oreilly.com/0636920020882, or simply
open your Arduino IDE and enter the following sketch/code:

// MintDuino NoteBook 1 – Subtask 1
int ledPin = 7; // Digital Pin 7 for LED anode connection
int ledWaitMin = 2000; // Set minimum wait time to 2000 milliseconds

void setup() {

 // use noise on pin 1 to generate a random number
 randomSeed(analogRead(1));

 pinMode(ledPin, OUTPUT);
}
void loop() {

 // add random time of 0-5 seconds
 int ledWait = ledWaitMin + random(5000);

 // three fast blinks
 for (int count = 0; count < 3; count++) {
 digitalWrite(ledPin, HIGH);
 delay(250);
 digitalWrite(ledPin, LOW);
 delay(250);
 }

 delay(ledWait); // random amount of time passes
 digitalWrite(ledPin, HIGH);

 delay(2000); // wait 2 seconds after random lighting
 digitalWrite(ledPin, LOW);

 delay(5000); // wait 5 seconds before resetting
}

Connect the FTDI Friend (or other FTDI adapter) to your MintDuino as seen
in Figure 3-5. This connects your computer to the MintDuino so that you can
upload the sketch. Remember that you’ll need to provide power to the Min-
tDuino using the 9V battery!

18 MintDuino

http://examples.oreilly.com/0636920020882

Figure 3-5. Add the FTDI Friend (Adapter) to the MintDuino and upload the
sketch

After uploading the sketch to the MintDuino, leave the USB cable plugged
into the FTDI/MintDuino and you should see a quickly flashing LED on the
mini breadboard, as shown in Figure 3-6.

Figure 3-6. A flashing LED lets you know that the sketch is working

Subtask 1: Light an LED 19

Leave the circuit wired up, as you’ll use it again with Subtask 2, but unplug
the USB cable that connects the FTDI/MintDuino to your computer.

Troubleshooting
If the LED is not flashing, make certain that you set the Digital Pin
to 7 in the sketch and that the jumper wire from the LED anode row
is connected to Pin 13 on the ATmega328 chip on the MintDuino.
Also make sure that the jumper wire sharing a row with RES1 on
the mini breadboard is connected to GND (ground) on the
MintDuino’s breadboard.

If the jumper wires are properly connected to the MintDuino, next
check that you’ve properly inserted the LED (longer leg connected
to Pin 13 via jumper wire). You might also exchange the LED for
another to ensure you don’t have a faulty LED.

Finally, go back and verify that the code uploaded properly to the
MintDuino—if you don’t see a compilation error or any error mes-
sage telling you the upload failed, you can be reasonably certain
that the sketch is loaded—the problem is likely a connection issue
between components or a miswired circuit.

20 MintDuino

4/Subtask 2: Randomly
Light an LED

Subtask 2 will use the same circuit you assembled for Subtask 1; we will
simply make a change to the programming that will light up the LED after a
random number of seconds has elapsed. The parts required for Subtask 2
are identical to those listed in Chapter 3.

You can download the program for Subtask 2 online at http://examples
.oreilly.com/0636920020882, or simply enter the code below into the
Arduino IDE:

// MintDuino NoteBook 1 – Subtask 2
int ledPin = 7; // Digital Pin 7 for LED anode connection
int ledWaitMin = 2000; // Set minimum wait time to 2000 milliseconds

void setup() {

 // use noise on pin 1 to generate a random number
 randomSeed(analogRead(1));

 pinMode(ledPin, OUTPUT);
}
void loop() {

 // add random time of 0-5 seconds
 int ledWait = ledWaitMin + random(5000);

 // three fast blinks
 for (int count = 0; count < 3; count++) {
 digitalWrite(ledPin, HIGH);
 delay(250);
 digitalWrite(ledPin, LOW);
 delay(250);
 }

 delay(ledWait); // random amount of time passes
 digitalWrite(ledPin, HIGH);

 delay(2000); // wait 2 seconds after random lighting
 digitalWrite(ledPin, LOW);

21

http://examples.oreilly.com/0636920020882
http://examples.oreilly.com/0636920020882

 delay(5000); // wait 5 seconds before resetting
}

After you upload this sketch and each time you reboot or power up the
MintDuino, the following will occur once:

1. The minimum wait time for turning on the LED will be initialized with a
value of 2000 milliseconds (2 seconds).

2. A random seed will be generated using ambient noise (fluorescent
lights, cosmic rays, radio waves, etc.) that analog pin 1 picks up.

Next, as long as the MintDuino is running (until you turn it off or its battery
dies), the following actions occur over and over:

1. The main loop of the sketch starts and a random value between 0 and
5000 milliseconds will be added to the minimum wait time to generate
a value between 2000 (2 seconds) and 7000 (7 seconds).

2. A for loop (that sets the variable count to 0, 1, and 2, in order) comes
next. I only use the variable count to make sure that the code inside the
loop runs exactly three times. This causes three fast flashes of the LED,
alerting game players to begin watching for the game LED to light.

3. Next, there is a random pause (based on a value between 2000 and
7000 milliseconds).

4. The LED will light and hold for two seconds.

5. The LED will turn off and remain off for a five second delay.

6. The loop begins again (back to step 1).

The Game Takes Shape
As you can see, the beginnings of the MintDuino Reflex Game are starting to
appear. We have a random amount of time that will pass before the LED lights
up—this is what the two players will be waiting to see before they push their
buttons.

And buttons is what we need to learn how to use now. We’ll tackle Subtask
3 next, and learn how to light that LED by pressing a pushbutton. Unplug the
USB cable from the FTDI/MintDuino and make no changes to the wiring of
the LED and RES1.

22 MintDuino

NOTE: If you managed to get the LED to light in
Subtask 1, then any problems you’ll likely have with
Subtask 2 will exist in the program itself.

If you’re not seeing the initial three quick flashes of
the LED, check your code to make certain you’re
not using the ledWait variable to control the
on-and-off lighting in the for loop (there should be
two delays of 250 milliseconds in the for loop). If
you’re not getting a random wait after the three in-
itial flashes (for example, if the delay is always the
same number of seconds), make certain that
you’re using ledWait to calculate the delay before
taking the pin HIGH right after the for loop.

Subtask 2: Randomly Light an LED 23

5/Subtask 3: Light an
LED with a Pushbutton

Subtask 3 will add to the same circuit you assembled for Subtasks 1 and 2
by introducing the single pushbutton component to the mini breadboard, as
seen in Figure 5-1. Subtask 3 will require the following additional components
beyond what you’ve already assembled. All of these are available in the
Mintronics: Survival Pack:

• 1 resistor, 100 ohm (minimum)

• 1 red jumper wire (3 inches in length)

• 3 blue jumper wires (make two of them 2 inches in length, and one of
them 4 inches; they can be any color except red or black)

• 1 pushbutton

NOTE: By the end of this Subtask, you will probably
have exhausted the supply of jumper wire that
came with the Survival Pack, and will need to dip
into your jumper wire kit if you haven’t already.

Add the pushbutton to the mini breadboard by inserting it so that the dis-
tance between the two top legs is a single hole (on a single row) and the
distance between a top and a bottom leg has two holes between it (spanning
four rows altogether). A close-up of this can be seen in Figure 5-2.

25

http://www.makershed.com/ProductDetails.asp?ProductCode=MSTIN2

Figure 5-1. A single pushbutton that will light the LED when pressed

Figure 5-2. The pushbutton is inserted into the mini breadboard in a specific
way

26 MintDuino

Figure 5-3 shows the pushbutton inserted into the mini breadboard. Make
certain to leave the leftmost hole open on the top and bottom row where the
pushbutton is inserted. (These will be used to add jumper wires.)

Figure 5-3. Leave an empty hole to the left of the top row and bottom row of
the pushbutton

Connect two jumper wires to the pushbutton, as shown in Figure 5-4. One
jumper wire is inserted in the first hole at the top row of the pushbutton and
the second jumper wire is inserted in the empty bottom row of the mini
breadboard.

Next, add a single 100 ohm resistor (this resistor will be referred to as RES2)
to the mini breadboard, as shown in Figure 5-5. This resistor (RES2) will have
one of its leads inserted into the row where the first resistor (RES1) is
inserted, and the jumper wire goes to GND. The other lead for RES2 can be
inserted in a row just above the pushbutton.

Subtask 3: Light an LED with a Pushbutton 27

Figure 5-4. Jumper wires will be needed to connect the pushbutton to the
MintDuino

Figure 5-5. Add a second resistor (RES2) to serve as a pulldown resistor for
the pushbutton

28 MintDuino

As shown in Figure 5-6, insert the top jumper wire of the pushbutton into the
row containing only a RES2 lead (not the row that shares GND with RES1)
and insert the bottom jumper wire of the pushbutton into the bottom
(empty) row of the mini breadboard (which will serve as a +5V supply for the
mini breadboard).

Figure 5-6. Wire up the pushbutton to GND and to +5V

Finally, add two more jumper wires. Insert the red one into the bottom row
of the mini breadboard and connect it to +5V on the MintDuino—we’ll call
this the JUMPV. Insert the other jumper wire where the pushbutton’s top
jumper wire and RES2 are inserted. Then connect this new jumper wire to
Digital Pin 4 (or Pin 6 on the ATmega chip)—we’ll call this JUMP4. This
corresponds to Row 14 on the MintDuino (only if you’ve taken care to wire it
up exactly as the online instructions specify). You can plug that jumper wire
into any free hole between a and e on Row 14. Both of these new jumper wires
can be seen in Figure 5-7.

Subtask 3: Light an LED with a Pushbutton 29

Figure 5-7. Connect the circuit to the MintDuino

Light the LED
Now you will program the the LED to light up after the pushbutton is pressed.
You can download the program for Subtask 3 online at http://examples
.oreilly.com/0636920020882 or simply enter the code below into the
Arduino IDE:

// MintDuino NoteBook 1 – Subtask 3

int ledPin = 7; // Digital Pin 7 for LED anode connection
int button = 4; // Use pin 4 for the button

void setup() {
 pinMode(ledPin, OUTPUT);
 digitalWrite(ledPin, LOW);
}

void loop() {
 int state = digitalRead(button);
 if (state == HIGH) { // determine if button is pressed or not
 lightLED(); // if it is, light the LED
 }

30 MintDuino

http://examples.oreilly.com/0636920020882
http://examples.oreilly.com/0636920020882

}

void lightLED(){ // only called when the button state is HIGH (pressed)
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
}

Upload the sketch to the MintDuino and the following will occur:

1. The LED will not light (at first) as it waits for the button to be pressed.

2. The program will loop forever, waiting for the button to be pressed.

3. When you press the button, the state variable is set to HIGH.

4. If state is HIGH, the lightLED function is called.

5. When the lightLED function is called, the LED stays lit for 1 second and
then turns off.

6. The program waits for the button to be pressed again.

Now we’re getting close. We know how to light an LED, create random time
before the LED lights up, and we know how to wire up a button to light up the
LED. But to make this a real game, there must be at least two opponents,
and that means adding a second button to the mix…which is exactly what
we’ll do in Subtask 4.

NOTE: If the LED is not lighting up when you press
the pushbutton, check your wiring. The pushbutton
must be connected to +5 volts—check that a
jumper wire (JUMPV) is connecting the pushbutton
to the bottom row of the mini breadboard that is
supplying the voltage.

Also verify that the other jumper wire leaving the
pushbutton shares a row with RES2 and JUMP4 on
one end, and is inserted into pin 6 on the ATmega
chip on the other end.

Subtask 3: Light an LED with a Pushbutton 31

6/Subtask 4: Add
Buttons and LEDs

Subtask 4 will require the following components beyond what you’ve already
used in the earlier subtasks:

• 1 resistor (100 ohm minimum), included in the Survival Pack

• 5 jumper wires (by now, you have probably used up the jumper wire in
the Survival Pack, so you’ll need to dip into the jumper wire kit recom-
mended in Chapter 2)

• 1 pushbutton, included in the Survival Pack

• 2 LEDs (preferably green; the Survival Pack includes 1 green LED)

Subtask 4 will add to the circuit you assembled for Subtask 3 by introducing
a second pushbutton component and two new LEDs to the mini breadboard.
You can see these components in Figure 6-1.

Figure 6-1. An additional pushbutton and two LEDs will be added

33

Let’s build it. Insert the second pushbutton (we’ll call it PUSH2; we’ll call the
one that’s already in there PUSH1) on the opposite side of the mini bread-
board, as shown in Figure 6-2.

Figure 6-2. Insert the second pushbutton on the opposite side of the mini
breadboard

Now we’ll insert one LED for each player. Each LED will be placed above a
pushbutton as shown in Figure 6-3. Insert each LED so that the long lead
(anode) is on the row just above the pushbutton and the short lead (cathode)
is on the row above that.

Now use two jumper wires to connect the cathode (short) leads from the
two new LEDs to GND via pulldown resistors. The jumper wire for the Player
1 LED’s cathode (on the left, closest to the MintDuino) should go to RES2,
the pulldown resistor for Button 1. The jumper wire for the Player 2 LED will
go to a new 100 ohm pulldown resistor (referred to as RES3) for Button 2.
Insert one RES3 lead into an empty row on the mini breadboard; the other
lead will go to GND where both RES1 and RES2 are connected. This can all
be seen in Figure 6-4.

Next you’ll connect the anode (long) lead from each LED to the ATmega chip.
Connect the Player 1 LED (on the left side of the mini breadboard) to the
ATmega chip with a jumper wire going to Digital Pin 5 (pin 11 on the ATmega
chip). This corresponds to Row 19 on the MintDuino (only if you’ve taken
care to wire it up exactly as the online instructions specify). You can plug
that jumper wire into any free hole between a and e on Row 19.

34 MintDuino

Figure 6-3. Each player will have an LED that corresponds to a pushbutton

Figure 6-4. Connect new LEDs to GND with a pulldown resistor

Subtask 4: Add Buttons and LEDs 35

Now, connect the Player 2 LED to the ATmega chip with a jumper wire going
to Digital Pin 6 (pin 12 on the ATmega chip). Figure 6-5 shows the two new
jumper wires connecting the LEDs to the MintDuino. This corresponds to
Row 20 on the MintDuino (again, only if it’s wired up exactly written as in the
online instructions). Plug that jumper wire into any free hole between a and
e on Row 20.

Figure 6-5. Connect LEDs to the MintDuino with jumper wires

NOTE: The jumper wires are starting to crowd the
mini breadboard at this point, so feel free to move
resistors, jumper wires, and LEDs to other locations
if you need to do so. If necessary, you can also
replace the flexible jumper wires with shorter con-
nector wires to declutter.

We now need to finish wiring up the Player 2 button (the Player 1 button keeps
the same wiring from Subtask 3). Use a jumper wire to connect the bottom
lead of PUSH2 to the +5V row on the bottom of the mini breadboard. Next,
connect a jumper wire from the top lead of PUSH 2 to the RES3 you added
for the Player 2 LED. Finally, add a jumper wire (we’ll call it JUMP5) that
connects RES3 (for the Player 2 LED) to Digital Pin 3 (pin 5 on the ATmega

36 MintDuino

chip), which corresponds to row 13 on the MintDuino breadboard. Fig-
ure 6-6 shows the circuit for Subtask 4 wired up and ready for its program.

Figure 6-6. Connect the Player 2 pushbutton to the MintDuino

Light LEDs for Each Player
Now it’s time to program the MintDuino so that a player’s LED will light up
when that player’s pushbutton is pressed. You can download the program
for Subtask 4 at http://examples.oreilly.com/0636920020882 or simply
enter the code below into the Arduino IDE:

// MintDuino NoteBook 1 – Subtask 4

int ledPin = 7; // Digital Pin 7 for LED anode connection
int ledPlayer1 = 5;
int ledPlayer2 = 6;
int button1 = 4;
int button2 = 3;

void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(ledPlayer1, OUTPUT);
 pinMode(ledPlayer2, OUTPUT);
}
void loop() {

Subtask 4: Add Buttons and LEDs 37

http://examples.oreilly.com/0636920020882

 int state1 = digitalRead(button1);
 if (state1 == HIGH) { // determine when button is pressed
 lightLED1(); // if button is pressed, call the lightLED function
 }

 int state2 = digitalRead(button2);
 if (state2 == HIGH) {
 lightLED2();
 }
}

void lightLED1(){ // only called when the button state is HIGH (pressed)
 digitalWrite(ledPlayer1, HIGH);
 delay(1000);
 digitalWrite(ledPlayer1, LOW);

}

void lightLED2(){ // only called when the button state is HIGH (pressed)
 digitalWrite(ledPlayer2, HIGH);
 delay(1000);
 digitalWrite(ledPlayer2, LOW);
}

Upload the sketch to the MintDuino and the following will occur:

1. Neither LED will light (at first) as each waits for its respective button to
be pressed.

2. The program will loop forever, waiting for a button to be pressed.

3. When the Player 1 button is pressed, the state1 variable is set to HIGH.

4. When the Player 2 button is pressed, the state2 variable is set to HIGH.

5. If state1 is HIGH, the lightLED1 function is called.

6. If state2 is HIGH, the lightLED2 function is called.

7. When the lightLED1 function is called, the Player 1 LED stays lit for 1
second and then turns off.

8. When the lightLED2 function is called, the Player 2 LED stays lit for 1
second and then turns off.

9. The program waits for a button to be pressed again.

You’ve probably figured out that the circuit for the MintDuino Reflex Game
is done. If Subtask 4 is working properly for you, then you’ve got all the but-
tons, LEDs, and resistors wired up correctly. All that’s left is to write the new
sketch for the game.

38 MintDuino

NOTE: If one of the player LEDs is not lighting up
when you press its corresponding pushbutton,
check to see that the pushbutton is connected to
+5 volts and that a jumper wire is connecting that
pushbutton to the bottom row of the mini bread-
board that is supplying the voltage. Check each
pushbutton to verify that it is connected to the
proper Digital Pin on the ATmega chip by a jumper
wire that shares a pulldown resistor going to GND.
Finally, check the orientation of the player LEDs to
make certain the anode and cathode leads are
inserted properly—the anode leads will go to pins
on the MintDuino and the cathode leads will go to
pulldown resistors connected to GND.

Subtask 4: Add Buttons and LEDs 39

7/Subtask 5: Program
the Game

Now that you’ve got the mini breadboard circuit wired up properly and
connected to the MintDuino, all that’s left is to upload the sketch that will
allow two players to see who is the fastest button pusher on the planet.

The game will run as follows:

1. Turn on the MintDuino—use either a 9V battery or USB power via the
FTDI Adapter.

2. Both player LEDs will light up and stay lit.

3. Press the Player 2 button to start the game; both player LEDs will turn
off.

4. The Game Light (center LED on the mini breadboard) will blink three
times.

5. After the Game Light blinks three times, a random amount of time will
pass before it lights again.

6. When the Game Light blinks again, each player will try to push his or her
button before the other player.

7. The fastest player’s LED will light up to indicate the winner.

8. Pressing a button before the delay is over will not light an LED.

9. Press the Player 2 button to start a new game.

Figure 7-1 shows the diagram of the final circuit (all resistors are 100 ohm).
The diagram was created using Fritzing, an open source tool for designing
interactive electronics. See http://fritzing.org.

41

http://fritzing.org

Figure 7-1. Circuit diagram for the MintDuino Reflex Game

The Final Sketch
You can download the program for the MintDuino Reflex Game at http://
examples.oreilly.com/0636920020882 or simply enter the code below into
the Arduino IDE:

// MintDuino NoteBook 1 – Reflex Game version 7.0
int ledGameLight = 7; //Digital Pin 7 for LED anode connection
int ledPlayer1 = 5; //Digital Pin 1 for Player 1 LED
int ledPlayer2 = 6; //Digital Pin 2 for Player 2 LED
int button1 = 4; //Digital Pin 4 for Player 1 button
int button2 = 3; //Digital Pin 5 for Player 2 button
int state2 = 0;
int state1 = 0;
int ledWait = 5000; //Wait time will be a minimum of 5 seconds

void setup() {
 pinMode(ledGameLight, OUTPUT);
 pinMode(ledPlayer1, OUTPUT);
 pinMode(ledPlayer2, OUTPUT);

42 MintDuino

http://examples.oreilly.com/0636920020882
http://examples.oreilly.com/0636920020882

 pinMode(button1, INPUT); // is this needed?
 pinMode(button2, INPUT); // is this needed?
 randomSeed(analogRead(1)); //use Analog Pin 1 to generate a random number
}

void loop(){
 state2 = digitalRead(button2); // Read the state of the pushbutton value

 if (state2 == HIGH) { // Check if the pushbutton is pressed
 digitalWrite(ledPlayer1, LOW); // Turn LED off:
 digitalWrite(ledPlayer2, LOW); // Turn LED off:
 delay (2000);
 beginGame();

 }
 else {
 // turn LED off:
 digitalWrite(ledPlayer1, HIGH); // Turn LED on
 digitalWrite(ledPlayer2, HIGH); // Turn LED on
 }
}
void beginGame(){ // Only called when the button state is HIGH (pressed)

 // three fast blinks
 for (int count = 0; count < 3; count++) {
 digitalWrite(ledGameLight, HIGH);
 delay(500);
 digitalWrite(ledGameLight, LOW);
 delay(500);
 }

 // Now generate a wait time before Game Light turns on
 ledWait = 5000; //reset value to minimum of 5 seconds
 ledWait = ledWait + random(5000); // add random value 0-5000 milliseconds

 //Turn on Game Light after Wait Time expires
 delay(ledWait);
 digitalWrite(ledGameLight, HIGH);
 delay(100);
 digitalWrite(ledGameLight, LOW);

 int gameOver = 0;

 while (!gameOver) {
 //determine which player button was pressed first
 int button1State = digitalRead(button1);
 int button2State = digitalRead(button2);

 if (button1State != button2State) {

Subtask 5: Program the Game 43

 delay(5); // pause, then take another reading
 if (button1State == HIGH && digitalRead(button1) == HIGH) {
 Player1Win();
 gameOver = 1;
 }

 if (button2State == HIGH && digitalRead(button2) == HIGH) {
 Player2Win();
 gameOver = 1;
 }
 }
 else {
 if (button1State == HIGH && button2State == HIGH) {
 // tie
 itsATie();
 gameOver = 1;
 }
 }

 }

 // Start game over

}

// Tie
void itsATie() {

 for (int i = 0; i < 3; i++) {
 digitalWrite(ledPlayer1, HIGH);
 digitalWrite(ledPlayer2, HIGH);
 delay(250);
 digitalWrite(ledPlayer1, LOW);
 digitalWrite(ledPlayer2, LOW);
 delay(250);
 }
}

// Player 1 won, light his/her LED
//
void Player1Win() {
 digitalWrite(ledPlayer1, HIGH);
 digitalWrite(ledPlayer2, LOW);
 delay(4000);
 digitalWrite(ledPlayer1, LOW);
}

// Player 2 won, light his/her LED
//
void Player2Win() {

44 MintDuino

 digitalWrite(ledPlayer2, HIGH);
 digitalWrite(ledPlayer1, LOW);
 delay(4000);
 digitalWrite(ledPlayer2, LOW);
}

After uploading the sketch to the MintDuino, run the program. When the
game first starts, the two Player LEDs will light up and stay lit until Player 2
presses his button. The Player LEDs will turn off and the Game Light will blink
three times. After the third blink, both players will wait until the Game Light
blinks a fourth time and then try to be the first player to press their button.
The player that wins will have her LED light up for four seconds before turning
off. Press the Player 2 button to play another game.

NOTE: If you were able to successfully run Subtask
4, then any errors you encounter are most likely in
the sketch for the game. Make certain you’ve up-
loaded the correct sketch, and check that all of your
jumper wires are inserted properly in the mini
breadboard and the MintDuino. Check that both
pushbuttons are pushed securely into the mini
breadboard and make certain that all LEDs are
wired up correctly with respect to their anode and
cathode leads.

Conclusion
There’s no arguing that the MintDuino Reflex Game is relatively simple in
terms of gameplay. But think about what you’ve done for a moment—with
two pushbuttons, three LEDs, three resistors, and a handful of jumper wires,
you transformed the MintDuino and mini breadboard into a functional game.
It’s not complex and it’s certainly not pretty to look at, but it works!

Hopefully you’re starting to see the power that resides in that small Min-
tDuino tin and maybe pondering some of your own special projects. If you’re
not yet ready to leave the MintDuino Reflex Game and want to dive a little
deeper, here are some suggestions on ways to improve the game:

Turn it into a 3- or 4-player game
It might require a slightly larger breadboard, but since you already know
how a 2-player game works, it’s not a big jump to program it for
additional pushbuttons and LEDs.

Subtask 5: Program the Game 45

Keep score
Consider adding to the sketch the required code to cause the
MintDuino’s status light to blink the Player 1 score, pause three seconds,
and then blink the Player 2 score. Or you could add another LED for each
player that flashes their score before a new game begins.

Penalize early button pushing
Modify the sketch to check to see if a player pushes his or her button
before the Game Light turns on. If the button is pressed before the Game
Light blinks, that player automatically loses and the other player’s LED
turns on.

Move the game to a project box
With a perf-board and a project box, you could easily give the game a
permanent home. With a project box, you could even add an LCD screen
to display the score or maybe a speaker that plays a series of beeps
instead of lighting the Game LED.

Congratulations on completing the MintDuino Reflex Game! If you’re looking
for more projects for your MintDuino, be sure to check out the Make: Projects
website at www.makeprojects.com and look over all the Arduino projects for
something that catches your eye. Your MintDuino might not look like the
Arduinos you see online, but it’s got the same functionality and can easily be
substituted. You can also find many more projects on the various Arduino-
related websites, including the official Arduino site at www.arduino.org, the
community-run www.arduino.cc, and instructables.com.

Special thanks to Brian Jepson and Will Price for their assistance with the
MintDuino Reflex Game sketch.

46 MintDuino

http://www.makeprojects.com
http://www.arduino.org
http://www.arduino.cc
http://instructables.com

About the Authors
Jim Kelly was accepted into the LEGO MINDSTORMS Developer Program
(MDP) in early 2006 and helped to beta test the LEGO MINDSTORMS NXT
kit and software. He is a member of the MINDSTORMS Community Partners,
a group that continues to assist LEGO with testing and growing the NXT
product.

Marc de Vinck is the Director of Product Development at MAKE and a mem-
ber of the MAKE Technical Advisory board. He’s worked in several different
fields including a period of time as a traditional metalsmith, Illustrator, and
3D model maker.

	Contents
	Preface
	What You Need
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Content Updates
	December 16, 2011

	Chapter 1. Build a Mintronics: MintDuino
	Build the Power Supply
	Power the Microcontroller
	Getting Ready to Program

	Chapter 2. The MintDuino Reflex Game
	Chapter 3. Subtask 1: Light an LED
	Start Building
	Upload Your First Sketch

	Chapter 4. Subtask 2: Randomly Light an LED
	The Game Takes Shape

	Chapter 5. Subtask 3: Light an LED with a Pushbutton
	Light the LED

	Chapter 6. Subtask 4: Add Buttons and LEDs
	Light LEDs for Each Player

	Chapter 7. Subtask 5: Program the Game
	The Final Sketch
	Conclusion

