
TECHnoLogY in ACTion™

Learn
Electronics
with Arduino

Don Wilcher

 Learn eLectronics concepts whiLe
buiLding practicaL devices and cooL
toys with arduino.

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

Foreword..xiii

About the Author .. xv

About the Technical Reviewer... xvii

Acknowledgments.. xix

Introduction.. xxi

Chapter 1: Electronic Singing Bird■■ ...1

Chapter 2: Mini Digital Roulette Games■■ ..27

Chapter 3: An Interactive Light Sequencer Device■■ ...51

Chapter 4: Physical Computing and DC Motor Control■■ ...69

Chapter 5: �Motion Control with an Arduino: Servo and Stepper ■■
Motor Controls..89

Chapter 6: The Music Box■■ ...119

Chapter 7: Fun with Haptics■■ ...149

Chapter 8: LCDs and the Arduino■■ ..179

Chapter 9: A Logic Checker■■ ..205

Chapter 10: Man, It’s Hot: Temperature Measurement and Control■■227

Index..251

xxi

Introduction

Have you ever wondered how electronic products are created? Do you have an idea for a new electronic gadget
but no way of testing the feasibility of the device? Have you accumulated a junk box of electronic parts and
now wonder what to build with them? Well, this book will answer all your questions about discovering cool
and innovative applications for electronic gadgets using the Arduino. The book makes use of the Arduino
plus discrete, integrated circuit components and solderless breadboards. Multisim software is used for circuit
simulation and design equations.

Who Should Read This Book?
This book is for anyone interested in building cool Arduino electronic gadgets using simple prototyping
techniques.

How This Book Is Structured
The chapters in this book are organized in such a way that the reader can choose to jump around the projects and
discovery labs. Each chapter gives an introduction to the relevant key electronics components and supporting
technologies. Also, each chapter explains the basic theory of operation of the electronic circuits with detailed
circuit schematic diagrams. Build instructions with troubleshooting tips are included to help you detect and
fix hardware/software bugs for each project. Last but not least, each chapter zooms in on a specific aspect of
electronics technology followed by several semiconductor device-specific experiments. The experiments will
help you understand the semiconductor device’s electrical behavior as well as the setup of basic electronic test
equipment and the Arduino software IDE tool via sketches.

You’ll be introduced to circuit analysis techniques and the Discovery Method, which offers suggestions for
further fun ways of learning about electronics technology. The goal of these hands-on activities is to encourage
readers (whether inventors, engineers, educators, or students) to develop skills in engineering their own cool
gadgets using simple prototyping techniques.

Downloading the Code
The code for the examples shown in this book is available on the Apress web site, www.apress.com. A link can be
found on the book’s information page under the Source Code/Downloads tab. This tab is located underneath the
Related Titles section of the page.

Contacting the Author
Should you have any questions or comments—or if you spot a mistake—please contact the author at
author@writing.com.

1

Chapter 1

Electronic Singing Bird

The Arduino is a small yet powerful computer board that uses physical computing techniques with an Atmel
microcontroller (processing development environment) and the C programming language. To illustrate the
versatility of the Arduino in turning ordinary electronic circuits into cool smart devices, I will show how to make
an interactive electronic singing bird in this chapter. The required parts are pictured in Figure 1-1.

Parts List
Arduino Duemilanove or equivalent

0.047uF capacitor

0.1uF capacitor

470uF electrolytic capacitor

1 K resistor

50 K trimmer potentiometer

Audio transformer

2N3906 PNP transistor

2N3904 NPN transistor

5VDC relay

1 N4001 silicon diode

100W resistor

8W speaker

Cadmium sulfide (CdS) photocell

1 small solderless breadboard

22 AWG solid wire

Digital multimeter

Oscilloscope (optional)

Electronic tools

CHAPTER 1 ■ Electronic Singing Bird

2

What Is Physical Computing?
The interaction between a human, an electronic circuit, and a sensor is physical computing. In this project I
will demonstrate physical computing with an electronic singing bird. Placing a hand over the sensor allows the
electronic circuit to produce a sound similar to a singing bird. Figure 1-2 shows a system block diagram of the
mixed-signal circuit connected to an Arduino.

Light Detection
Circuit

Arduino
Transistor

Relay Driver
Circuit

Electronic
Oscillator

Circuit

8Ω
Speaker

Figure 1-2. System block diagram for the electronic singing bird

Figure 1-1. Parts required for the Arduino-based electronic singing bird

Note■■   An electronic oscillator is a circuit that produces a repetitive sine wave or square wave signal.

CHAPTER 1 ■ Electronic Singing Bird

3

How It Works
The operation of the electronic singing bird starts with a cadmium sulfide (CdS) cell (photocell) detecting the
absence of light. If no light is present, a voltage drop appears across the light-dependent resistor. The voltage across
the CdS cell is approximately +2.5VDC, allowing the D2 pin of the Arduino to respond to the binary 1 logic signal.
The software that is programmed into the Atmega328 microcontroller will turn on the D13 pin, making it switch
from a binary 0 (0 V) to a binary 1 (+5VDC). With an output voltage of +5VDC, the transistor Q2 is able to turn on,
allowing it to switch or energize the K1 relay coil. The iron core that is inside of the relay coil establishes a magnetic
field attracting the electrical contact to the armature or common (COM) contact. The closing of the relay contacts
will supply +5VDC to the electronic oscillator circuit. The chirping sound can be heard through the 8W speaker.

Note■■   The ability to apply the appropriate voltage and current to the base of a transistor to turn it on is known as
biasing.

Conducting a deep dive into the system block diagram reveals the circuit schematic diagram of the
electronic singing bird shown in Figure 1-3.

Figure 1-3. Schematic diagram for the electronic singing bird circuit

CHAPTER 1 ■ Electronic Singing Bird

4

Figure 1-4. One cycle of a pulse wave captured on a Multisim virtual oscilloscope

If you change the capacitance value of C3 (470uF), the electronic singing bird’s tone duration will be
affected. The smaller the capacitance value, the faster the time between bird chips heard through the 8W
speaker. The rheostat (50 K trimmer potentiometer) affects the switching time of the chirps. This control provides
flexibility in terms of the type of chirp that can be heard through the 8W speaker. The shape of the waveform is
based on the 470uF capacitor charging from the +5VDC power supply and discharging through the 1 K resistor.
This charging-and-discharging electrical behavior biases the 2N3906 PNP transistor, thereby allowing it to
switch on and off at a repetitive rate. The series combination of resistors, consisting of a 1OK fixed resistor
and 50 K trimmer potentiometer, helps manage the switching time of the charging-and-discharging capacitor
mentioned before. Capacitors C2 (47 nF) and C1 (100 nF) help reduce the switching noise peak voltage levels of
C2. The pulse-generated signal is magnetically coupled to the 8W speaker by the audio transformer. To further
analyze the bird’s electronic oscillator, I built a circuit model using Multisim software. Running a simulation
event produced the output signal captured on a virtual oscilloscope, as shown in Figure 1-4.

Note■■   Multisim is an intuitive software package capable of capturing circuit designs and testing electrical
behaviors through simulation.

CHAPTER 1 ■ Electronic Singing Bird

5

I was able to capture an actual pulsed waveform using an oscilloscope, as shown in Figure 1-5. The setup
I used in capturing the pulsed signal is shown in Figure 1-6. The waveform has a frequency of approximately
1.2KHz, and it cycles approximately every 1 second. As mentioned earlier, the duration, or cycling, of the pulsed
signal can be changed by adjusting the 50 K potentiometer.

Figure 1-5. The pulsed waveform signal displayed on an oscilloscope

Tip■■   Modeling electronic circuits using simulation software will provide baseline information on the electri-
cal behavior of the target system. Sometimes the data obtained from a simulated model may be different from the
actual circuit. As shown in Figure 1-4, the signal shows the rising edge of the waveform captured on the oscilloscope
pictured in Figure 1-6. The rising edge of a waveform is the transition from OV to the peak voltage (Vp).

The measurement setup was made by removing the 8W speaker from the secondary winding of the audio
transformer and attaching an oscilloscope across it to capture the pulsed waveform signal. Figure 1-7 illustrates
the measurement technique I used to capture the pulse waveform signal on the virtual oscilloscope. The signal
is a derivation of a pulse width modulation, which is used in various electronic oscillators to create special-effect
sounds.

CHAPTER 1 ■ Electronic Singing Bird

6

Figure 1-7. Circuit schematic diagram showing the oscilloscope attachment to the audio transformer for capturing
a pulsed waveform signal

Figure 1-6. Test setup for displaying the pulsed waveform signal from the electronic oscillator circuit

CHAPTER 1 ■ Electronic Singing Bird

7

Pulse Width Modulation Basics
Pulse width modulation (PWM) is commonly used for managing the power of electrical or electronic loads.
You control the average value of voltage and current fed to the electrical or electronic loads by turning the output
voltage supply attached to the load on and off at a fast switching rate. The longer the output voltage supply is
applied to the load, the higher the power supplied to it. The PWM switching frequency must be high in order
for the power management of the electrical or electronic load to take effect. The ability to manage the power
of the load effectively allows the efficiency of the circuit’s operation to reach up to 80 or 90 percent. The heat
generated by the electrical or electronic load is very low, thereby providing longevity to the circuit. With this type
of efficiency, incandescent lamps and electric motors, which are notorious for generating heat during normal
operation, can function at a much lower temperature. Figure 1-8 shows a typical PWM signal for an AC electric
motor. Another key electrical parameter for PWM is duty cycle. Duty cycle describes the proportion of “on” time
to the regular interval, or period, of time. A low duty cycle corresponds to low power, because the power is off for
most of the time. Duty cycle is expressed in percent, with 100 percent being fully on.

Figure 1-8. A typical PWM signal for an AC electric motor

Tip■■  D uty cycle can be expressed mathematically as follows:
Duty Cycle = [ Ton / (Ton + Toff )] × 100
where Ton is the time-on of the pulsed waveform and Toff is the time-off of the electrical signal.

This technique of switching effectively to manage the power of an electrical or electronic load can be used
to create audio special effects as well. Used in this application, the PWM signal is equivalent to the difference
between two sawtooth waves. The ratio between the high and low levels of the pulsed waveform is typically
enhanced with a low-frequency signal. In addition, changing the duty cycle of a pulsed waveform creates unique
sound effects for music applications such as synthesizers. Some music synthesizers have a duty-cycle trimmer
for changing the shape of the device’s square-wave output. The 50 K trimmer potentiometer for the electronic
singing bird oscillator provides the similar function of changing the switching time of the circuit’s output signal.

Transistor Basics
The key electronic component of the electronic singing bird’s oscillator circuit is the transistor. The main function
of the transistor in this circuit application is to amplify the charging and discharging waveform produced by
capacitors wired across the primary winding of the audio amplifier. The PNP transistor is biased by the 50 K

CHAPTER 1 ■ ElECTRoniC Singing BiRd

8

potentiometer and the 10 K resistor series circuit. The duration of transistor biasing is accomplished using the
1 K (R2) and the 470uF (C3) electrolytic capacitor series circuit. The time in which the transistor stays turned on
is based on the product of the R2C3 timing circuit. Changing either R2 or C3 affects the turn-on time for biasing
the transistor, thereby affecting the charging of capacitors C1 (100 nF) and C2 (47 nF). When the transistor is
turned off, the discharging of these capacitors is accomplished by the primary winding of the audio transformer.
A circuit that can demonstrate the basic transistor-biasing operation is shown in Figure 1-9.

Figure 1-9. A typical switching circuit to demonstrate transistor biasing

Tip  For an nPn transistor, a transistor is biased (turned on) when the input signal (Vin) is greater than the base-
emitter voltage (Vbe) of 700 mV. The mathematical expression for the electrical relation of Vin to Vbe is Vin > Vbe. For
a PnP transistor, a transistor is biased (turned on) when the Vin is less than the Vbe of 700 mV. The expression for
the electrical relation of Vin to Vbe is Vin < Vbe.

A function generator is a piece of electronic test equipment or software used to generate different types of
electrical waveforms over a wide range of frequencies. The function generator can be set with the following signal
parameters:

Signal: Square wave

Frequency: 10 Hz

Duty cycle: 50 %

Amplitude: 5Vp

The Multisim function generator settings are illustrated in Figure 1-10. You adjust the function generator
settings by clicking the Unit text box and drop-down menu and making the appropriate changes to the values

CHAPTER 1 ■ Electronic Singing Bird

9

and units. Upon powering up the circuit, you will see the LED flash at the specified frequency of the square-wave
signal being applied to the base of the PNP transistor. On every falling edge transition of the square wave, the
transistor’s base-emitter junction will be forward biased, thereby allowing current to flow from the emitter lead
through the series-limiting 330W resistor and the LED to ground. The LED will flash briefly based on the biasing
current flowing through its anode-cathode junction when the transistor turns on.

You can increase the rate at which the LED flashes by changing the input frequency to a higher value.
Although the circuit in this example was built on a virtual test bench using Multisim, a breadboard prototype can
easily be constructed using the parts shown in Figure 1-9.

Transformer Action
The pulsed waveform signal that is generated by the electronic oscillator is magnetically coupled to the 8W speaker
by the audio transformer. The iron core of the transformer enhances the magnetic field because of its permeability
(magnetic properties), thereby allowing the maximum pulsed waveform signal to be present on the secondary
winding of the audio transformer. The primary and secondary windings of the transformer’s pulsed waveform
are inverted 180 degrees from each other. Figure 1-11 shows the transformer’s inverted signals on the virtual
oscilloscope. To see this inverted signal, you must use a dual-trace oscilloscope, which is quite expensive for an
electronics hobbyist. However, Multisim’s virtual oscilloscope can be used an alternative. To see the two waveforms
simultaneously, connect the channel A scope probe across the primary winding and the channel B scope probe to
the secondary winding of the audio transformer. Figure 1-12 shows the circuit schematic diagram for attaching the
oscilloscope probes to the audio transformer. The two pulsed waveform signals will be inverted 180 degrees.

Note■■   A transformer is a device that transfers electrical energy from one circuit to another through magnetically
coupled conductors—the transformer’s windings.

Since Multisim doesn’t have an electrical symbol for a speaker, I used a standard 8W resistor in the
circuit model during the simulation event. One key technique to remember when modeling circuits is to find

Figure 1-10. Function generator settings for demonstrating transistor biasing

CHAPTER 1 ■ Electronic Singing Bird

10

Figure 1-11. Inverted pulsed waveform signals from the audio transformer

Figure 1-12. Circuit schematic diagram showing oscilloscope probes attached to primary and secondary windings
of the audio transformer

CHAPTER 1 ■ Electronic Singing Bird

11

components that have similar electrical behaviors to the actual devices. Although the actual component is not
shown on the schematic capture diagram, its electrical behavior will be tested as if the actual part were used in
the simulation circuit model. That’s the reason for replacing the actual speaker with a standard fixed resistor in
the circuit model. If you use a single-trace oscilloscope, the actual pulsed waveform signals can be captured from
the audio transformer, as shown in Figure 1-13. In looking at the two waveforms, can you guess which signal is
from the primary winding and which is from the secondary winding of the audio transformer?

Figure 1-13. Inverted pulsed waveform signals from the audio transformer captured on a real oscilloscope

Tip■■   The turns ratio (Ns/Np) helps determine the relation between the current and voltage of the primary winding
to the secondary winding of a transformer.

One last item to note about transformers is their ability to store electrical current within their windings.
Basically, a transformer can be thought of as two inductors placed in parallel, with a piece of metal separating
them. When a voltage source is applied to one coil, the energy stored (electrical current) is transferred to the
other inductor through magnetic coupling. The metal piece separating them enhances the magnetic field based
on its permeability (magnetic properties). If an ammeter is attached to the second inductor’s coil, the electrical
current can be measured and observed on it. If you add a momentary push-button switch to the first (primary)
inductor’s coil, you can observe the second inductor’s coil-charging behavior on the ammeter. With each quick
press of the push-button switch, the ammeter will show an initial charging current. Depending on how long the
momentary push-button switch is held closed, the initial charging value will vary.

CHAPTER 1 ■ Electronic Singing Bird

12

To show the effect of discharging the inductor’s coil, I added a series discharge resistor to the second
inductor’s coil. Now, with each press of the switch, an initial high electrical current value will be displayed on the
ammeter, followed by lower electrical current values. Again, these lower values represent the second inductor
coil discharging the electrical current through the series resistor. A Multisim circuit model can easily be built for
observing charging and discharging behavior of a transformer. Figure 1-14 illustrates the initial condition of the
circuit completely discharged of current.

Figure 1-14. Initial condition of the transformer with the switch open

As shown in Figure 1-15, the transformer has charged up to a couple hundreds of microamperes (mA).
When the switch is closed continuously, the electrical current starts to diminish in value, thereby displaying a
discharging transformer. To automate this charging-and-discharging test, the Arduino, along with a transistor relay
circuit, can be programmed to cycle the charging-and-discharging test based on a predetermined switching cycle.

Tip■■   The amount of voltage transferred in the second inductor coil as result of the first (primary) inductor coil’s
electrical current is relative to the mutual inductance (Lm) between the two inductor coils. The mutual inductance is
based on the inductance of each inductor coil and the amount of coupling (k) between the two inductor coils.

The Voltage Divider
The key interactive interface component for the electronic signing bird is the photocell. To assist in determining
when light is present or not, a pull-up resistor is wired in series with the photocell. The two electrical components
wired together make up a voltage divider circuit. With no light present, the photocell has a couple of kilo-ohms of
resistance. The photocell voltage drop based on the total supply voltage is proportional to its resistance value.
A high value of resistance will mean a significant voltage drop, and low resistance value will mean a small voltage
drop. Figure 1-16 is a voltage divider circuit.

CHAPTER 1 ■ Electronic Singing Bird

13

Tip■■   The voltage divider is a series circuit whereby the voltage drop across any resistor or combination of
resistors is equal to the ratio of the target resistance to the total resistance. This ratio is multiplied by the source
voltage of the circuit.

The photocell’s resistance is set at 4KW. The voltage across this resistance value is determined by the voltage
divider equation, as follows:

V4K (V1 Photocell)/Rtotal= ×

Figure 1-15. The transformer charged with the switch closed

Figure 1-16. Circuit simulation with light detected simulation

CHAPTER 1 ■ Electronic Singing Bird

14

Substituting the appropriate values into the equation gives us the following form:

V4K (5V 4K)/(10K 4K)= × +

V4K 1.4285V=

If no light is provided to the photocell, the voltage drop across it will be as shown in Figure 1-17.

Figure 1-17. Circuit simulation in which no light is detected

We carry out the voltage drop calculation by changing the value of the photocell from 4KW to 10KW, like so:

V10K (V1 Photocell)/Rtotal= ×

V10K (5V 10K)/(10K 4K)= × +

V10K 2.5V=

The Arduino will process a 2.5 V value as a binary logic 1, turning its output pin (D13) to +5 V. This binary
logic response will bias the transistor, thereby allowing it to energize the +5VDC relay. The normally open (NO)
contacts of the relay will close, allowing the electronic oscillator (i.e., the bird) to sing. The normally closed
(NC) contacts will turn off the Arduino’s D13 pin to go to 0 V. This will cause the transistor to turn off, which
will deenergize the relay and allow the NO contacts to return to the normally closed (NC) contact position. The
electronic oscillator will turn off, thereby preventing the bird’s chirp from sounding through the 8W speaker.

Light Detection Circuits with a Photocell
As discussed in the previous section, photocells are resistive sensors that allow light to be detected. They are
packaged as small, low-cost electronic components that are used in various industrial and consumer products
because of their ease of use and longevity. They are also referred to as CdS cells, light-dependent resistors, and

CHAPTER 1 ■ Electronic Singing Bird

15

photoresistors. A photocell, as explained in the previous section, changes its resistive value (ohms) based on
the amount of light that shines on its surface. Photocells are manufactured in various sizes, and different-sized
photocells function slightly differently. Because of this variation in size and function, photocells are traditional
not used in critical light-measuring applications. The selection of a photocell is usually based on the following
electrical parameters, traditionally listed on a datasheet (see www.ladyada.net/learn/sensors/cds.html):

Size: Round, 5 mm (0.2") diameter. (Other photocells can get up to 12 mm/0.4"
diameter!)

Resistance range: 200 K (dark) to 10 K (10 lux brightness)

Sensitivity range: CdS cells respond to light between 400 nm (violet) and 600 nm
(orange) wavelengths, peaking at about 520 nm (green)

Power supply: Pretty much anything up to 100 V, uses less than 1 mA of electrical
current on average (depends on power supply voltage)

To use a photocell for light detection applications, such as the electronic singing bird project, you can wire
a pull-up or pull-down resistor in series with electronic components so the appropriate voltage drop can be
obtained for further signal processing. Depending on the size of the pull-up or pull-down resistor you use, the
photocell will provide a voltage drop proportional to is resistance. If the photocell has a large resistance value, the
voltage drop across it will be proportional to the ohmic value. Likewise, a small resistance value produced by the
photocell will provide a small voltage drop across it. Figure 1-18 illustrates wiring a pull-up or pull-down resistor
to a photocell for light detection signal interfacing.

Figure 1-18. Light detection circuits: A photocell wired with a pull-up resistor (a), and a photocell wired with a pull-
down resistor (b)

As an exercise, try building each circuit shown in Figure 1-18 using Multisim software and compare the
electrical behaviors to each other.

Testing the Light Detection Circuit with a Voltmeter and an Oscilloscope
You can validate the preceding exercise by using a voltmeter and an oscilloscope on a laboratory test bench. I’ll
discuss the test equipment arrangement I used for both instruments in the following subsections. I’ll explain the
individual test instruments and measurement points using simple Multisim circuit schematic diagrams, followed
by the actual laboratory test bench setup.

http://www.ladyada.net/learn/sensors/cds.html

CHAPTER 1 ■ Electronic Singing Bird

16

Using a Voltmeter
The wiring test setup for checking the electrical operation of the light detection circuit with a voltmeter is shown
in Figure 1-19. Basically, the voltmeter—or digital multimeter (DMM)—test leads will be connected across the
photocell. The voltmeter or DMM will be set for the appropriate measurement scale and electrical units.

Figure 1-19. Multisim circuit schematic diagram for testing the light detection circuit with a voltmeter or DMM

The actual laboratory test bench setup I used is shown in Figure 1-20. I placed the DMM’s test leads (red
and black) across the photocell. With the DMM set to voltage I measured the photocell’s voltage drop with the
electronic singing bird’s prototype board under ambient lighting. As pictured in Figure 1-20, the photocell’s
voltage drop value was low. This measurement reading coincides with the photocell’s small resistance value.
Next, I covered up the photocell with my hand to shield it from the ambient lighting, and another voltage drop
reading was displayed on the DMM’s liquid crystal display (LCD). This reading was approximately +2.5VDC,
indicating a high resistance value from the photocell. Figure 1-21 shows the high voltage drop reading of the
photocell shielded from the ambient light. The voltage drop readings varied based on the type of ambient light
shielding and the distance of the shield from the photocell.

Note■■   Ambient lighting is normal room light. As the light shield or hand approaches the photocell, thereby
diminishing the ambient lighting, the voltage drop will increase in value, signifying that the sensor’s resistance
is increasing. The voltage drop of approximately +2.5VDC was measured on the Multisim circuit model shown
in Figure 1-22.

Using an Oscilloscope
You can also use an oscilloscope to test the light detection interface circuit by following a similar wiring
convention to one discussed earlier, using a voltmeter or DMM. The oscilloscope’s test probe will be attached
across the photocell, similar to a voltmeter or DMM. Figure 1-23 shows a Multisim circuit schematic diagram for
wiring an oscilloscope to the light detection interface circuit.

4

CHAPTER 1 ■ Electronic Singing Bird

17

Figure 1-20. Testing the light detection circuit of the electronic singing bird with a DMM

Figure 1-21. Ambient light based on the DMM’s LCD voltage drop reading of the photocell

CHAPTER 1 ■ ElECTRoniC Singing BiRd

18

Figure 1-24 shows the laboratory test bench with the oscilloscope’s probe attached across the photocell I
used for circuit testing. To capture the ambient light and no-light-present conditions, I placed the oscilloscope
in a scan mode of operation with a time base set to 100mS/div. This setting allows for the switching event of the
photocell to transition from ambient light to no light present. Figure 1-25 shows the waveforms of both lighting
conditions detected by the photocell.

The waveform on the left in Figure 1-25 (a) shows a 0VDC level, signifying low resistance for the photocell.
This zero voltage level is indicative of the photocell being subjected to ambient lighting in the laboratory. The rise
in voltage reaching a steady state value of approximately +2.4VDC indicates the photocell having high resistance
based on the absence of ambient light.

Figure 1-23. Multisim circuit schematic diagram for wiring an oscilloscope to the light detection interface circuit for
testing

Figure 1-22. No ambient light present on the photocell

CHAPTER 1 ■ Electronic Singing Bird

19

Figure 1-24. Laboratory test bench setup using an oscilloscope

(a) (b)

Figure 1-25. Oscilloscope waveforms of the light detection circuit: ambient lighting (a) and no ambient lighting (b)

CHAPTER 1 ■ Electronic Singing Bird

20

Note■■   Based on the type of oscilloscope and time base settings, the no-ambient-light-present waveform may
vary in appearance slightly.

Assembly of the Electronic Singing Bird Circuit on a Breadboard
In the previous sections of the chapter, I discussed key electronic concepts and principles using Multisim circuit
models for visual explanation. Also, I demonstrated testing techniques to ensure that circuits will operate
properly when power is applied to them. To maintain a compact size for the electronic singing bird prototype,
I used a small, solderless breadboard to assemble the circuit. One approach I took to maintain proper circuit
operation is to use short wiring jumper lengths on the solderless breadboard. Also, planning breadboard layout
will ensure that wiring management is maintained throughout the circuit build process. Figure 1-26 illustrates the
wiring circuit build of the pulsed tone oscillator on the solderless breadboard.

Figure 1-26. Wiring the pulsed tone oscillator circuit using a small, solderless breadboard

As shown in Figure 1-26, all leads on my electronic components were cut to length, thereby maintaining tight
and clean wiring for the circuit. For the relay, I used a 16-pin DIP socket to maintain good electrical connectivity
on the solderless breadboard. This mounting technique helped because the pins on the relay are quite short, and
eliminated intermittent operation due to improper fit into the solderless breadboard’s spring terminal cavities.
The pinout for the relay I used in the circuit is shown in Figure 1-27.

CHAPTER 1 ■ Electronic Singing Bird

21

The two transistors (2 N3904 and 2 N3906) are complements of each other, meaning they are bipolar NPN
and PNP devices. Transistors should be placed in a location where they can drive their respective circuits. That
is, the 2 N3904 component is located close to the relay and the 2 N3906 by the audio transformer. The pinout for
these transistors is the same, and is shown in Figure 1-28.

Figure 1-27. Pinout for the relay used in the electronic singing bird prototype

Figure 1-28. The 2 N3904 (pictured) and 2 N3906 transistors have the same pinout

With all of the electronic components placed on the solderless breadboard, you can complete the final
circuit wiring. Figure 1-29 shows the final wiring build of the electronic singing bird prototype I built on my lab
bench. Ports D2 and D13 of the Arduino are wired, using inline header connectors, to the light detection circuit
and transistor relay driver circuits. The +5VDC and ground pins from the Arduino PCB power supply are wired to
the + and – rows on the solderless breadboard for distributing power to the pulsed tone oscillator circuit.

Tip■■   For a robust version of the 2 N3904 NPB transistor, try using the 2N2222A component. It can handle
currents as high as 50 mA.

CHAPTER 1 ■ Electronic Singing Bird

22

Creating the Interactive Control Software
With the hardware prototype built, the next phase of the project is to create interactive software. The software
will allow the light detection software to provide two binary events: ambient lighting and no ambient lighting
triggering for the pulsed tone oscillator. Upon ambient light being detected by the photocell, the transistor relay
driver circuit should be off, thereby keeping the bird asleep. Covering the photocell with an object or a hand will
allow the Arduino to switch on the transistor relay driver circuit to power the electronic signing bird to chirp.
The software (sketch) to allow this interaction for controlling the pulsed tone oscillator was obtained from the
Arduino public domain website, at www.arduino.cc/en/Tutorial/Button. The sketch is shown in Listing 1-1.

Listing 1-1. The Button Sketch (Code) Used for Interactive Control of the Electronic Singing Bird

/*
 Button
 Turns on and off a light emitting diode(LED) connected to digital
 pin 13, when pressing a pushbutton attached to pin 2.
 The circuit:
 * LED attached from pin 13 to ground
 * pushbutton attached to pin 2 from +5 V
 * 10 K resistor attached to pin 2 from ground
 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.
 created 2005

Figure 1-29. The final prototype of the electronic singing bird

g

http://www.arduino.cc/en/Tutorial/Button

CHAPTER 1 ■ Electronic Singing Bird

23

 by DojoDave <http://www.0j0.org>
 modified 28 Oct 2010
 by Tom Igoe
 This example code is in the public domain.
 http://www.arduino.cc/en/Tutorial/Button
 */
// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin
// variables will change:
int buttonState = 0; // variable for reading the pushbutton status
void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}
void loop(){
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);
 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

I used the code “as is” to rapidly test the interaction between an object event triggering the Arduino to switch
on the external pulsed tone oscillator circuit for a bird chirp. In reviewing the code, the technique of reading
a binary value, processing it, and switching the appropriate port pin on the Atmel Atmega328 microcontroller
is quite easy to understand. As noted in the sketch, the authors of the code took time to comment sections of
code, thereby making it easy to modify and reuse for other interactive control projects. This sketch, along with
the community website presented earlier, can help make your process of learning and exploring electronics with
the Arduino fun and easy. Once you enter the code into the Arduino processing editor (see Figure 1-30), you can
easily upload the sketch to the Atmega328 microcontroller.

What Is a Sketch?
For electronic hobbyists new to the world of Arduino, the Arduino team calls the embedded software of its
computing platform a sketch because the device was created for artists interested in making their artwork or
pieces interactive with the viewer or audience. Just as artists create their art pieces via sketching on a canvas or
a sheet of paper, they can create visual art by downloading a small computer program (sketch) to Arduino for
completing the final interactive piece.

CHAPTER 1 ■ Electronic Singing Bird

24

Note■■   The sketches in this book will be created using a rapid development method, whereby existing code is
modified or remixed to fit the requirements of the target product. Why reinvent the wheel when you can just put new
rims on it?

Final Testing of the Electronic Singing Bird
Throughout this chapter, you’ve learned a product development process by building an electronic singing bird.
. As discussed in the previous sections, each interface circuit and output driver device can be tested using basic
electronics test equipment, such as a DMM and an oscilloscope.

Figure 1-30. Example Arduino processing editor with button sketch

CHAPTER 1 ■ Electronic Singing Bird

25

Once you have each subcircuit working properly, the final stage of testing is to upload the sketch to the
Arduino and validate the appropriate output responses of the final product. In the case of the electronic singing
bird, when you place a hand over the photocell, a simulated bird chirping sound should be come from the 8W
speaker. If there is no sound being emitted from the speaker, review the “Testing the Light Detection Circuit with
a Voltmeter and an Oscilloscope” section, as well the “Transistor Basics” section, which explains how biasing
assists with the control switching of an external electrical load or circuit. Also, review the sketch entered into the
processing editor for typos that could be causing the Arduino to operate improperly.

Further Discovery Methods
To keep the excitement of learning electronics with Arduino burning, explore how an additional photocell
can be used to control two different bird-chirping durations. You might investigate adding a second transistor
relay driver circuit to switch between two electrolytic capacitors, thereby affecting the bird-chirping duration.
Keep in mind that you’ll need to use a second digital output port pin of the Arduino, thereby requiring a sketch
modification to be made. The light detection circuit discussed previously will serve as the design template for
using another digital input port pin on the Arduino. Obtain a spiral notebook for documenting these circuit
enhancements for the Arduino as well as the sketch modifications for additional I/O (input/output) control.

27

Chapter 2

Mini Digital Roulette Games

The Arduino makes creating simple electronic games easy. In this chapter, I will show that you can use basic
digital electronic circuits to build an interactive mini casino game within two hours. With as few as nine discrete
electronic components and an Arduino board, you can easily build two cool Mini Digital Roulette games.
The required parts are pictured in Figure 2-1.

Parts List
1 Arduino Duemilanove or equivalent

1 LED bar display (also called a bar graph LED display)

1 2x8 330W DIP resistor IC

1 big LED

1 push-button switch (tactile or equivalent)

1 10K trimmer potentiometer

1 10K resistor

1 7490/74LS90 Decade Counter IC

1 7447/74LS47 Seven-Segment Decoder Driver IC

1 Common Anode Seven-Segment LED Display (MAN 72)

1 small solderless breadboard

22 AWG solid wire

Digital multimeter

Oscilloscope (Optional)

Electronic tools

I will show you how the two devices in this chapter illustrate a design technique whereby a new product
evolves from a simpler design. This “remix” design technique allows product designers and developers to get to
market quicker without a major tearup to the bill of materials (BOM). Figures 2-2 and 2-3 show the systems block
diagrams for two Mini Digital Roulette games.

CHAPTER 2 ■ Mini Digital Roulette Games

28

Figure 2-1. Parts required for the mini digital roulette games

Pushbutton
Switch

Arduino
Discrete

LED
Visual Display

1 1

Figure 2-2. A simple Mini Digital Roulette game systems block diagram

Pushbutton
Switch

Arduino
Decade
Counter
Circuit

Seven Segment
Decoder Driver

Circuit

Seven Segment
LED Display

7411

Figure 2-3. A remix Mini Digital Roulette game systems block diagram

CHAPTER 2 ■ Mini DigiTAl RoulETTE gAMEs

29

Tip I in electronics design, BoM is another way of saying parts list.

A closer look at the system block diagram reveals the circuit schematic diagram of the LED roulette game,
shown in Figure 2-4. The numbers located above the arrows represent the number of pins used between the
two blocks. This information will become relevant with the seven-segment LED display version of the mini
roulette game.

Note  A lED bar display is dual inline package (DiP) type iC that has multiple lEDs packaged inside of it.

How It Works
The operation of the LED roulette game consists of an Arduino detecting a rising edge from a simple push-button
switch. Upon receiving the +5VDC control signal, the software programmed into the Atmega328 microcontroller
starts switching the three LEDs of the LED bar display in a specific sequence. The software program starts rapidly
turning on the LEDs in a predetermined switching pattern, eventually slowing down and leaving only one LED
lit. Each press of the push-button repeats the switching cycle with a different LED being lit. The 10K pulldown
resistor is placed in series with the push-button switch, ensuring that the +5VDC will be read by the Arduino’s
Atmega328 microcontroller. The circuit schematic diagram shown in Figure 2-4 shows each LED of the bar
display being wired in a particular orientation. The wiring convention used to assure the LEDs will light based on
the appropriate switched output port (D8, D11, D13) is known as forward biasing.

Note  The rising edge of a digital control signal is basically a transition from 0V to +3.3V or +5V. The term
pulldown refers to the supply voltage being applied across the associated resistor, thereby ensuring the
microcontroller’s input port pin will register it as a valid binary logic “1” data value for proper control signal processing.

Figure 2-4. The Arduino-based LED roulette game circuit schematic diagram

CHAPTER 2 ■ Mini Digital Roulette Games

30

Forward Biasing a LED
An LED (light-emitting diode) can emit light only if you wire it properly in a circuit. To properly connect an LED
to a voltage source, its positive lead (the anode) must be wired to the highest potential point or electrical node of
the circuit. The negative lead (the cathode) is wired to the lowest potential or ground of the circuit. To prevent the
LED from burning out, a series-limiting resistor is wired to it. Traditionally, the series-limiting resistor is wired to
the anode of the LED but it may alternatively be attached to the cathode; the same effect of reducing current flow
through it is achieved either way. If either the voltage source or the LED is wired incorrectly, current will not flow.
To illustrate the basic operation and wiring configuration, Figure 2-5 shows a Multisim circuit model with the
switch initially open. As displayed on the DMM, the ammeter is reading no current. In Figure 2-6, the ammeter
is displaying current flow with the LED being turned on. When the LED is connected the other way around, the
ammeter reads practically zero milliamperes. This condition where the LED is wired backwards, thus preventing
current flow in the circuit, is known as reverse bias. Figure 2-7 shows reverse biasing of the LED in the simple
DC circuit.

Figure 2-5. Multisim circuit model for a virtual LED demonstrator

Figure 2-6. Forward biasing mode illustrated by virtual LED demonstrator

h

CHAPTER 2 ■ Mini Digital Roulette Games

31

LED Circuit Analysis
The forward biasing current displayed on the virtual ammeter shown in Figure 2-6 can be manually calculated
(paper and pen) using the following equation:

FD FDI (V1 V)/R1= −

where

I•	
FD

 is the forward current of the LED.

V1 is the supply voltage.•	

V•	
FD

 is forward voltage drop of the LED (Note: 1.66 V is the value for this component
parameter).

R1 is the series limiting resistor.•	

So, making the appropriate substitutions into the equation

FDI (5V 1.66V)/ 330= − Ω

FDI 3.34V / 330= Ω

FDI 0.01012A or 10.12mA=

Figure 2-8 shows the actual answer performed on the Windows Calculator.

Figure 2-7. Reverse biasing mode illustrated by virtual LED demonstrator

CHAPTER 2 ■ Mini Digital Roulette Games

32

The LED Bar Display
As shown in Figure 2-4, the visual display for the Mini LED Roulette game is a bar display package. LED bar
displays come in a variety of discrete solid-state indicators ranging from 4 to 10 devices in one DIP package.
The DIP IC package used in this Arduino-based electronic game has 10 discrete LEDs, as shown in Figure 2-9.
The anode pins of the DIP IC package are located on the side with the part number.

Figure 2-8. The forward current value displayed on the Windows Calculator

Figure 2-9. A typical LED bar display. The anode pins are located where the part number is stamped on the
component.

CHAPTER 2 ■ Mini Digital Roulette Games

33

You can easily test a LED bar display using a DMM set to read resistance. Modern DMMs offer a diode test
function and can be used to test LEDs. By setting the DMM to test diodes, the red test lead of the measuring
instrument gets attached to anode pin and the black test lead is connected to the cathode. Figure 2-10 illustrates
how to connect the DMM to the LED bar display. The reading on the DMM’s LCD will display an open circuit but
the individual LED attached will be lit. The LED is turned ON because the ohmmeter provides a small amount
current that forward biases the LED, thus lighting it.

Tip■■   A Multisim circuit model can be built to test a virtual LED bar display using the connection setup explained.
The virtual ohmmeter will read a resistance value close to 36W as opposed to lighting an LED (see Figure 2-11).

Figure 2-10. A typical setup for testing a LED bar display using a DMM

Figure 2-11. A discrete LED bar being forward biased by the ohmmeter

CHAPTER 2 ■ Mini Digital Roulette Games

34

You can apply the testing technique discussed here to a seven-segment LED display. As well as testing the
seven-segment LED display, I will explain how the optoelectronic component works.

Note■■  O ptoelectronics is a technology that combines light with electronic circuits. Examples of optoelectronics
include LEDs, seven-segment LED displays, and LCDs.

Mini Roulette Game, Version 1
As shown in the circuit schematic diagram of Figure 2-4, the first version of the Mini Digital Roulette game is quite
simple in terms of electronic design. In a way this design is experimental; the project lets you practice self discovery
by adding LEDs and modifying the sketches to accommodate the additional solid state indicators. The prototype
game you build uses a solderless breadboard along with the Arduino. Figure 2-12 shows the completed prototype
game. In response to a momentary press of the push-button switch, the three LEDs start a lighting sequence in
which each of them turns ON quickly. The sequence repeats several times before slowing down the switching rate.
Upon coming to this output state, one of the LEDs remains lit, signifying the game has ended with the winning
number. The LED to remain ON is based on a random switching pattern selected by the embedded sketch.

Figure 2-12. The experimental Mini Digital Roulette game, version 1

CHAPTER 2 ■ Mini Digital Roulette Games

35

In the construction of the Mini Digital Roulette game, both the LED bar display and the 330 Ω DIP resistor
are mounted on the mini solderless breadboard with appropriate spacing to add jumper wires. There are eight
330 Ω resistors in one DIP package. Figure 2-13 shows a typical DIP resistor pack. The resistor pack is used to
limit the amount of current flowing thru each discrete LED of the bar display IC. Each resistor is placed between
two parallel pins. To verify component arrangement, connect the red and black test leads of an ohmmeter to the
parallel pins, as shown in Figure 2-14. The reading of one 330 Ω resistor will be displayed on the ohmmeter’s LCD
screen; this same measurement technique can be used to verify the other 330 Ω resistors.

Figure 2-13. A 330 Ω DIP resistor pack

Figure 2-14. The Multisim circuit model used to verify a 330Ω resistor of a DIP pack

Adding the Game Software
The final step for version one of the Mini Digital Roulette game is to add the sketch. Listing 2-1 shows the sketch
for the mini roulette game.

Listing 2-1.  The Mini Digital Roulette Game Sketch

/*Arduino LED Roulette
Posted by changb3 in Class Notes
Connect 3 LED's to digital output pins 8, 11, and 13 (with resistors in serial with each).

CHAPTER 2 ■ Mini Digital Roulette Games

36

Connect a push-button to pin 2 (and don't forget the pulldown resistor).
[code]
Modified by Don Wilcher 11/17/11

/*
random light
*/

const int buttonPin = 2;
int lightpins[3] = {8,11,13};//Change sequence of LEDs Here!
int state=0;
void setup()
{
pinMode (buttonPin,INPUT);
pinMode (lightpins[0],OUTPUT);
pinMode (lightpins[1],OUTPUT);
pinMode (lightpins[2],OUTPUT);
digitalWrite (lightpins[0],LOW);
digitalWrite (lightpins[1],LOW);
digitalWrite (lightpins[2],LOW);
}
void loop ()
{
int reading = digitalRead (buttonPin);
int blinktime=20;
boolean done;
if (reading == HIGH)
{
if (state==0)
{
state=1;
done=false;
blinktime=20;
blinktime+= 3;
while (!done)
{
for (int j=0;j<3;j++)
{
blinktime += random(3);
digitalWrite(lightpins[j],HIGH);
if (blinktime>200)
{
done=true;
break;
}
delay(blinktime);
digitalWrite(lightpins[j],LOW);
delay(blinktime);
}
}
}
}
else
{

CHAPTER 2 ■ Mini Digital Roulette Games

37

state=0;
}
}

The cool thing about the Arduino computing platform is the number of developers creating open source
software for a multitude of hardware gadgets and devices. I found the remix method of software development
quite easy to implement because of the great number of sketches available on the Web via forums and virtual
hobbyists communities. This sketch is example of remix because of the randomness of bit selection after the
game ends. The lines of code used to generate the random LED displays are as follows:

blinktime += random(3);
digitalWrite(lightpins[j],HIGH);
if (blinktime>200)

The original sketch continues to display the last bit on the LED bar display after the game stops. A new LED
display sequence can be programmed by the following line of code:

int lightpins[3] = {8,11,13};//Change sequence of LEDs Here!

Changing the order of digital output pins (8, 11, 13) will produce unique visual effects for the Mini Digital
Roulette game.

The Seven-Segment LED Display Basics
Although the LED bar display provides a unique way of visualizing a ball spinning round a roulette wheel, it makes
for quite a challenge to interpret the chosen number since it’s in a binary format. The next improvement you will
make to the Mini Digital Roulette game is replacing the LED bar display with a numeric digit. By making this design
change to the electronic product, the numbers will be easily visible during the game. The seven-segment LED bar
display is similar to the LED bar display except that each segment is arranged so that a number or character can be
seen on it. Figure 2-15 shows the internal arrangements of each LED segment of the optoelectronic display.

Figure 2-15. Typical arrangement of discrete LEDs for a seven-segment LED display

CHAPTER 2 ■ Mini Digital Roulette Games

38

Notice that all of the anodes are connected to one electrical node or common point. Based on this single
connective point, the display package is called a common anode seven-segment LED display. There is also a
common cathode display where all of the discrete LED cathodes are wired to one electrical point or pin of the
DIP component. Another key physical characteristic, which is quite obvious, is the number of discrete LEDs.
There are seven of them in one package, thus the name seven-segment LED display. Figure 2-16 shows a typical
seven-segment LED display component.

Figure 2-16. Typical seven-segment LED display (common anode)

Testing the Seven-Segment LED Display
You will notice that testing a seven-segment LED display is similar to checking a basic silicon diode. When you
attach the red test lead of the ohmmeter to the common anode pin and the black test lead to one of the cathode
pins of the seven-segment LED display, the meter will forward bias the optoelectronic element. Figure 2-17
illustrates the setup for testing a seven-segment LED display with a DMM placed in ohmmeter mode.

By forward biasing the discrete LED segment, it will be ON. Figure 2-18 shows the bottom left segment being
turned ON during testing. Another important thing about seven-segment LED displays is that each discrete LED
element has a letter assigned to it. There are seven letters for each segment ranging from A-F. By wiring these letters
in combinations, you can create alpha characters and numbers. In the new and improved Mini Digital Roulette
game, numbers 0-9 will be displayed on the seven-segment LED display. This way of representing the ball spinning
around the roulette wheel gives the game more visual appeal than seeing three LED bars scanning repeatedly.

Note■■   Before solid-state seven-segment LED displays, digital data was represented using Nixie Tubes, which
looked liked mini vacuum tubes with neon light segments wired inside the glass enclosure.

Multisim (or equivalent circuit simulation software) can be used to illustrate how to test a seven-segment
LED display. Instead of turning ON the target LED segment, the ohmmeter will display a very high resistance
value (giga-ohms) for a bad LED (open). A good LED segment will display a couple hundred mega-ohms on the
ohmmeter. Although the seven-segment LED display models are good in Multisim, Figure 2-19 illustrates a good
LED segment (forward biasing mode) and a bad optoelement using reverse biasing mode.

CHAPTER 2 ■ Mini DigiTAl RoulETTE gAMEs

39

Figure 2-17. Testing a seven-segment LED display (common anode) with a DMM set to ohmmeter mode

Figure 2-18. The bottom left segment (E) is turned on during testing with a DMM set to ohmmeter mode

CHAPTER 2 ■ Mini Digital Roulette Games

40

Build an Arduino-based Seven Segment LED Display Flasher-Tester
The Arduino can easily be used with a simple seven-segment LED tester to create a digital clock. The pulse of
flash rate of the digital clock can be adjusted using a potentiometer. By wiring the seven-segment LED display
for a specific alpha (letter) character or number, target segments will be tested (flashed) on the optoelectronic
component. Figure 2-20 shows the block diagram of the Arduino Flasher-Tester.

Figure 2-19. Virtually testing a good seven-segment LED display (L) using forward biasing mode and a bad display
(R) using reverse biasing mode

Potentiometer Arduino

Seven Segment
LED Display

1 1

Figure 2-20. The Arduino Flasher-Tester system block diagram

The circuit schematic for the system block diagram is shown in Figure 2-21. When you change the
potentiometer resistance, a different input voltage is used to determine the flash rate of the seven-segment LED
display. For Arduino’s microcontroller, there are equivalent analog-to-digital count values ranging from 0 to 1024
bits that the embedded sketch of the Arduino’s Atmega328 microcontroller uses to produce a unique digital clock
signal flash rate at pin D13. The LED segments selected for visual display will flash at the specified rate of the
sketch. By rotating the 10 K potentiometer clockwise or counterclockwise, the seven-segment LED display will
flash between low and high speeds.

CHAPTER 2 ■ Mini Digital Roulette Games

41

Note■■   A potentiometer is a variable resistor used to divide the applied signal across it into discrete voltage
levels using an attached rotating shaft. The shaft makes electrical contact with a carbon-based ring upon variable
resistance that occurs during rotation. The change in resistance affects the applied signal (voltage).

Figure 2-21. The Arduino Flasher-Tester circuit schematic

In order to wire the common anode seven-segment LED display as shown in the circuit schematic
diagram, the pinout is shown Figure 2-22. Some pins are missing; do not confuse this with a damaged or
bad seven-segment LED display. The complete Arduino Flasher-Tester circuit can easily be built on a mini
solderless breadboard, as shown in Figure 2-23. Just for fun, a big blue LED can be added to the circuit build,
as shown in Figure 2-24. Adjusting the potentiometer for a fast flash rate makes the blue LED have a stroboscopic
effect.

Note■■   A stroboscope is an electronic instrument used to produce a stroboscopic effect. The stroboscopic effect
is where objects at a high speed can be slowed down by emitting bright and extremely brief flashes of light at
regular intervals. The flash rate can be adjusting by turning a knob attached to a potentiometer wired to an electronic
switching circuit.

CHAPTER 2 ■ Mini Digital Roulette Games

42

Figure 2-22. The common anode seven-segment LED display pinout

Figure 2-23. The completed Arduino Flasher-Tester

CHAPTER 2 ■ Mini Digital Roulette Games

43

To bring the Arduino Flasher-Tester to life, you need to upload a sketch to the Arduino. As discussed in
Chapter 1, the Arduino community is quite large, and contributors add new sketches and tutorials daily. The
flashing control sketch shown in Listing 2-2 is from that community of volunteer software developers and
contributors.

Listing 2-2.  The Potentiometer LED Control Sketch for the Arduino Seven-Segment LED Flasher-Tester

/*
 Analog Input
 Demonstrates analog input by reading an analog sensor on analog pin 0 and
 turning on and off a light emitting diode(LED) connected to digital pin 13.
 The amount of time the LED will be on and off depends on
 the value obtained by analogRead().

 The circuit:
 * Potentiometer attached to analog input 0
 * center pin of the potentiometer to the analog pin
 * one side pin (either one) to ground

 * the other side pin to +5 V
 * LED anode (long leg) attached to digital output 13
 * LED cathode (short leg) attached to ground

 * Note: because most Arduinos have a built-in LED attached
 to pin 13 on the board, the LED is optional.
 Created by David Cuartielles
 Modified 4 Sep 2010
 By Tom Igoe

Figure 2-24. The completed Arduino Flasher-Tester with a big blue LED added

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 2 ■ Mini Digital Roulette Games

44

 This example code is in the public domain.

 http://arduino.cc/en/Tutorial/AnalogInput

 */

int sensorPin = A0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
 // declare the ledPin as an OUTPUT:
 pinMode(ledPin, OUTPUT);
}

void loop() {
 // read the value from the sensor:
 sensorValue = analogRead(sensorPin);
 // turn the ledPin on
 digitalWrite(ledPin, HIGH);
 // stop the program for < sensorValue > milliseconds:
 delay(sensorValue);
 // turn the ledPin off:
 digitalWrite(ledPin, LOW);
 // stop the program for < sensorValue > milliseconds:
 delay(sensorValue);
}

Note■■   A little bit of Arduino trivia: David Cuartielles and Tom Igoe are members of the Arduino Team.

As discussed earlier, the potentiometer provides the analog-to-digital count (ADC) values using this line
of instruction:

sensorValue = analogRead(sensorPin);

The Arduino pin used to obtain the potentiometer- control voltage levels is A0. Based on the ADC value,
the sketch produces a delay that corresponds to the flash rate using this line of instruction:

delay(sensorValue);

Pin D13 is driven LOW based on this line of instruction and the one that follows:

digitalWrite(ledPin, LOW);

The flash rate remains at the specified switching value until the potentiometer’s resistance is changed.

The 7447 BCD-to-Decoder IC Basics
The final Mini Digital Roulette game uses a special IC that can take a four-bit binary value and convert it to the
equivalent decimal number. By using a binary weighted value system of 8-4-2-1, numbers 0 to 9 can be displayed
on a seven-segment LED display. Four inputs represented by letters D, C, B, and A can be converted to numbers
0 to 9. Figure 2-25 shows how four-bit binary values can easily be converted to the equivalent decimal values
(binary coded decimal, or BCD).

CHAPTER 2 ■ Mini Digital Roulette Games

45

Note that D=8, C=4, B=2, and A=1. By adding any value that has a binary value of 1, numbers 0 to 9 can be
realized easily.

Example: Convert binary 1001 to its equivalent decimal number.
Solution:

Step 1. Looking at the weighted values of the BCD-to-decimal converter table, collect
the numbers that have 1 under them.

8 and 1 have a binary value of 1

Step 2. Add the weighted values together.

8 + 1 = 9

Therefore, binary 1001 is equal to decimal 9. It’s that easy!
The 7447 BCD-to-Decoder driver circuit can turn on the corresponding segments of the seven-segment LED

display based on the binary four-bit data value present at its input pins. The simple diagram in Figure 2-26 shows
the binary coded decimal inputs and the seven-segment outputs of the 7447 BCD-to-Decode driver IC to drive a
seven-segment LED display.

Note■■   The industrial name for the 7447 is BCD-to-Seven-Segment Decoder Driver.

Figure 2-25. BCD-to-decimal converter table

CHAPTER 2 ■ Mini Digital Roulette Games

46

Build a BCD-to-Decimal Circuit with Seven Segment
LED Display
Now, you can upgrade the Mini Digital Roulette game using a seven-segment LED display as oppose to the LED
bar display to make reading the numbers easy for the player. The 7447 IC drives the segments based on a four-bit
binary count value present at its input pins. A 7490 Decade Counter IC is used to generate the four bits needed for
the BCD-to-Decoder driver chip to drive the seven-segment LED display. The 7490 Decader Counter is capable
of generating a maximum of 10 count states using the four bit binary pattern shown in Figure 2-25. The Arduino
provides the digital clock needed to increment the count values to be display on the seven-segment LED display.
Figure 2-27 shows the circuit schematic diagram for the BCD-to-decimal circuit with seven-segment LED display.

Figure 2-26. The 7447 BCD-to-Decoder Driver IC

Figure 2-27. Schematic diagram of the BCD-to-decimal circuit with seven-segment LED display

CHAPTER 2 ■ Mini Digital Roulette Games

47

A push of the PB1 momentary tactile switch starts the count sequence starting at 0. The maximum count
shown on the seven-segment LED display is 9 and the count sequence continues to repeat continuously.

Note■■   To make the circuit count continuously, replace the switch and pulldown resistor components with the 10K
potentiometer input shown in Figure 2-12. Use the sketch from Listing 2-2. By varying the 10K potentiometer, the
circuit’s counting will decrease or increase in speed. Enjoy!

Assembly of the Final Circuit on the Breadboard
The assembly of the improved Mini Digital Roulette game is shown in Figure 2-28. As discussed in Chapter 1,
maintaining proper component and jumper wire lead lengths will provide clean wiring of the circuit. To plan for
clean wiring of the circuit, place the components on the solderless breadboard for best jumper routing. As shown
in Figure 2-28, an additional mini solderless breadboard was needed for the other IC components but the circuit
didn’t grow too extreme in size.

Figure 2-28. The completed and improved Mini Digital Roulette game

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 2 ■ Mini Digital Roulette Games

48

Note■■  O ne long solderless breadboard can be used to accommodate on the ICs for this project instead of two
mini boards.

Adding the Mini Digital Roulette Game Software
The sketch for the improved Mini Digital Roulette game is shown in Listing 2-2. The key to using this sketch is pin
13 of the Arduino computing platform; it is used to clock the counter circuit and seven-segment LED display. The
speed at which the game can be executed is controlled by the following line of instruction:

int blinktime = 20;
 delay(blinktime);

By changing the integer value of the variable blinktime, the delay instruction will provide the appropriate
switching pulsing needed to drive the 7490 and 7447 digital ICs. As a self discovery exercise, create various
switching schemes and record the effects via changing the value for the blinktime variable.

Final Testing of the Mini Digital Roulette Game
In this chapter, I outlined a product development process such that the Arduino becomes a tool of instruction for
learning electronics. As you learned in the previous sections, each interface circuit and output driver device can
be tested using basic electronics test equipment such as a DMM and oscilloscope. When each subcircuit works
properly, the final stage of testing (with the sketch uploaded to the Arduino) involves validating the appropriate
output responses of the final product.

In the case of the Mini Digital Roulette games, the speed in which the LED bar and seven-segment LED
displays change the displayed data is dependent upon specific instructions to create delay-based clock pulses.
The key feature to observe when testing is the randomness of numbers displayed when the game ends. It’s
important the same number isn’t displayed on both visual displays. Also, the speed at which the game ends
should be observed and modified accordingly. A game that ends too quickly will not keep the player interested.
On the other hand, if the device is slow in coming to a stop, the player will lose interest with the game. Timing is
everything! If the seven-segment LED display shows breaks in segments, check the wiring to assure the IC pins
are connected to the optoelectronic device properly. Also, review the sketch entered into the Processing Editor
for typos that will cause the Arduino to operate improperly.

Further Discovery Method Suggestions
To keep the excitement of learning electronics with Arduino burning, I suggest adding a potentiometer to allow
the player to adjust the speed at which the game is executed. Figure 2-29 shows the block diagram of the new
feature for the game. By pressing the button, the game should execute by incrementing count values on the
seven-segment LED display. Releasing the button should result in a number displayed on the optoelectronic
device.

CHAPTER 2 ■ Mini DigiTAl RoulETTE gAMEs

49

The pressing and releasing of the button should show a different number on the seven-segment display.
The self discovery exercise is to create a circuit schematic diagram using the system block diagram shown in
Figure 2-2. The sketch in Listing 2-1 can be used to test the new circuit design. Remember to document the
design in a spiral notebook along with any sketch modifications you make for the new Mini Digital Roulette game
you’ve created! Good luck!☺

Potentiometer Arduino
Pushbutton

Switch

Decade
Counter
Circuit

Seven Segment
Decoder Driver

Circuit

Seven Segment
LED Display

1 1 1
4 7

Figure 2-29. New Mini Digital Roulette system block diagram with button feature

51

Chapter 3

An Interactive Light Sequencer
Device

Creating special effects with the Arduino is fun and easy. By remixing four basic discrete components, you can
build two interactive light sequencer devices within an hour and a half. The electronic concepts discussed in
the previous chapters will be applied in this chapter along with new items to be discussed. Additional remix
techniques in electronics prototyping and software development will be explained in this chapter as well.
The required parts are pictured in Figure 3-1.

Parts List
Arduino Duemilanove or equivalent

LED bar display

2 × 8 330W DIP resistor IC

10K trimmer potentiometer

10K resistor

Small solderless breadboard

22AWG solid wire

Digital multimeter

Oscilloscope (optional)

Electronic tools

CHAPTER 3 ■ An Interactive Light Sequencer Device

52

Remix Revisited
As discussed in Chapter 2, the two devices in this chapter illustrate a design technique whereby a new product
evolves from a simpler design. This remix design technique allows product designers and developers to get to
market quicker without a major tear-up to the BOM. Figures 3-2 and 3-3 show system block diagrams for two
interactive light sequencer devices. Also, the software code(sketch) used in the two interactive electronic devices
will allow lighting sequence operation of the LED bar display, either by manual or automatic methods of human
control.

Tip■■   Analogous to remix in hardware design is code reuse for software development. We say modified, you say
recycled!

Figure 3-1. Parts required for building two interactive light sequencer devices

Potentiometer

Arduino

1 8

LED Bar Display

Figure 3-2. Systems block diagram for an interactive light sequencer device

http://dx.doi.org/10.1007/978-1-4302-4266-6_2

CHAPTER 3 ■ An Interactive Light Sequencer Device

53

As in Chapters 1 and 2, conducting a deep dive into the system block diagram reveals the circuit schematic
diagram of the light sequencer device shown in Figure 3-4 .The control that allows human interaction with
the device is the 10KΩ potentiometer. Figure 3-5 shows a remixed interactive light sequencer device version.
The light detection circuit used in the electronic singing bird project of Chapter 1 will allow for non-contact
interaction with the light sequencer device. The numbers located above the arrows represent the number of
pins used between the two blocks.

Light Detection
Circuit

λ Arduino

1 8

LED Bar Display

Figure 3-3. System block diagram for a remixed interactive light sequencer device

Figure 3-4. Circuit schematic diagram for a simple interactive light sequencer

http://dx.doi.org/10.1007/978-1-4302-4266-6_1
http://dx.doi.org/10.1007/978-1-4302-4266-6_2
http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 3 ■ An Interactive Light Sequencer Device

54

How It Works
The operation of the interactive light sequencer device consists of an Arduino detecting discrete voltage levels
from a simple potentiometer. Upon receiving these continuous analog control signals, the integrated ADC
(analog-to-digital converter) will switch the varying input voltage signal to an equivalent digital value consisting
of binary digits (1 s and 0s). The sketch programmed into the ATmega328 microcontroller will display the binary
data on the LED bar display. The sequence in which the binary data is shown visually on the bar display is part of
the programmed software code uploaded to the Arduino using the IDE (integrated development environment)
editor. In addition, the potentiometer allows control over the LED bar display patterns. The speed at which the
binary data is displayed is controlled by the analog values interpreted from the potentiometer’s resistance via
shaft position. The higher the potentiometer’s resistance value, the slower the switching speed for displaying
the binary data sequence. The smaller the potentiometer’s resistance value, the faster the binary data will be
displayed on the LED bar display. Adjusting the potentiometer’s resistance by one-half would provide half-speed
switching of binary data displayed by the optoelectronic component.

The Potentiometer
Before proceeding, the potentiometers’ analog input voltage to the ATmega328’s ADC will need to be measured
with DC voltmeter, I will provide a brief explanation of what a potentiometer is and how it works. Basically,
a potentiometer is a variable resistor. Its value can be changed by moving a sliding contact or wiper along its
resistive element. A simple schematic symbol of the potentiometer is shown in Figure 3-6. The schematic symbol
shows that you can obtain different values of resistance by rotating the mechanical wiper arm along the resistive
element. If you rotate the mechanical wiper arm counterclockwise, the resistance values get smaller. If you rotate
the mechanical wiper arm clockwise, the resistance values increase.

To help you further understand how the potentiometer works, the Multisim circuit model in Figure 3-7
demonstrates the passive component’s operation. If you attaching a DMM and set it to ohmmeter mode, you
can read the potentiometer’s resistance quite easily. If you connect the black and red tests leads at opposite pins
of the component, it will display the total resistance. Keeping the black test lead on the potentiometer’s current

Figure 3-5. Circuit schematic diagram for a remixed interactive light sequencer

CHAPTER 3 ■ An Interactive Light Sequencer Device

55

pin, moving the red test lead to the center pin, and adjusting the mechanical wiper arm (shaft) will cause various
resistance values to be displayed on the ohmmeter. If you provide a range of resistance values with one passive
electronic component, the Arduino’s ATmega328 microcontroller will be able to interpret discrete analog input
voltages. In order to provide discrete analog input signals for the Arduino to process, a voltage supply source
connected across the potentiometer is required.

As shown in Figure 3-8, the voltage supply source is connected to the outer pins of the potentiometer. The
output signal is read between the shaft (traditionally the center pin) and one of the outer pins. When you connect
a voltmeter between these respective measuring pins and adjust the shaft, all the discrete voltage levels between
the minimum and maximum signal values will be displayed by the voltmeter.

A final key concept behind the potentiometer is its ability to allow interaction between a human and an
electronic device. When you twist the potentiometer’s shaft, a physical computing action takes place because of a
human interacting with the variable resistor’s mechanical wiper arm.

Therefore, the potentiometer’s shaft becomes the physical extension of the electronic device, allowing
interaction with it.

Resistance Element

Mechanical Wiper Arm

Low Resistance
High Resistance

Figure 3-6. A simple schematic symbol of a potentiometer

(a) (b)

Figure 3-7. Operation of a potentiometer measuring total resistance with an ohmmeter (a) and adjusted for half
range of total resistance (b)

CHAPTER 3 ■ An Interactive Light Sequencer Device

56

Tip■■   Instead of using a series of resistors to create a voltage divider, use a potentiometer instead.

In Chapter 4, physical computing will be explained in more detail. As an experiment and validation for the
application of providing analog data to the Arduino’s ATmega328 microcontroller using a potentiometer, the
following measurement exercise can be performed on the simple interactive light sequencer device.

Measurement Setup Procedure
The following steps will outline the procedure for obtaining resistance vs. voltage data as it relates to the function
of the interactive light sequencer device.

1.	 Build the circuit schematic diagram shown previously in Figure 3-4 using the
appropriate electronic parts. See Figure 3-9 for a reference prototype.

2.	 Create a data table as shown in Figure 3-10.

3.	 With the interactive light sequencer device powered on, adjust the sequence
switching using the potentiometer for slow LED visual display.

4.	 Turn off or remove the power to the device and use an ohmmeter to measure the
resistance of the potentiometer across the mechanical wiper arm (center pin) and
ground (see Figure 3-11).

5.	 Record the measured value (resistance) in the data table.

6.	 Turn on or apply power to the device and use a voltmeter to measure the voltage
across the mechanical wiper arm (center pin) and ground (see Figure 3-12).

7.	 Record the measure value (voltage) in the data table.

8.	 Repeat steps 3 through 7 until the data table is complete.

9.	 Plot the results from the data table to get a graphical relationship between resistance
vs. voltage and the impact on the LED sequence speed (see Figure 3-13).

(a) (b)

Figure 3-8. Potentiometer used as a voltage divider circuit adjusted for 50 percent of V1 (a) and adjusted for 100
percent of V1 (b)

http://dx.doi.org/10.1007/978-1-4302-4266-6_4

CHAPTER 3 ■ An Interactive Light Sequencer Device

57

Figure 3-9. The simple interactive light sequencer device prototype

Figure 3-10. Data table: Resistance vs. voltage

CHAPTER 3 ■ An Interactive Light Sequencer Device

58

Potentiometer

Arduino

1 8

LED Bar Display

VVoltmeter

Figure 3-12. Voltage measurement setup (power on)

Figure 3-13. Data table results plotted in Excel

Figure 3-11. Resistance measurement setup (power off)

CHAPTER 3 ■ An Interactive Light Sequencer Device

59

If additional data points are plotted, the LED bar display will reach a point where all segments are visible
at the same time. The LEDs are on because of the fast switching speed (frequency) of the Arduino’s output
ports. Figure 3-14 shows a 54Hz signal generated by one of the microcontroller’s digital output pins. As shown
in the plot, low voltage relates to fast LED sequence switching and high voltage correspond to low switching
speeds.

Figure 3-14. Output frequency: Measurement setup (a) and a 54 Hz signal displayed on an oscilloscope (b)

Note■■   The LED bar segments being on simultaneously based on a switching frequency of 54Hz is an example of
a duty cycle in which the on time is longer than the off time, as shown in Figure 3-14 (b).

How to Drive Multiple LEDs with a Microcontroller
The Arduino is capable of driving LEDs using one output port pin. The ability to drive multiple devices using one
pin is known as fan-out. The Arduino’s ATmega328 microcontroller has a drive current capability of 40mA per
I/O pin. Typical LED forward current ratings range from 1 to 20mA. Thus, one output port pin on the ATmega
328 microcontroller can drive two LEDs. If additional LEDs are required, as with the interactive LED sequencer
device, the easiest method is to use more output port pins. The secret behind the 40mA drive is a high-current-
sourcing output buffer. The output buffer is strong enough to drive 2 LEDs per pin, giving it the ability to operate
16 LEDs using 8 output port pins. The typical circuit used per output port pin of the ATmega328 microcontroller
is shown in Figure 3-15. To further increase the output current drive of the ATmega328 microcontroller, a
transistor driver circuit can be wired to the respective port pin. See the “Transistor Basics” section of Chapter 1
for more information on biasing and building an LED driver circuit.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 3 ■ An InTERACTIvE LIgHT SEquEnCER DEvICE

60

Note  The output buffer is a circuit that prevents an electrical device from loading its input and output pins. Also,
the output buffer has the ability to drive an electrical load based on current sourcing. Talk about multitasking!

To wire additional LEDs to the Arduino ATmega328 microcontroller, a 1 × 8 single inline header connector
is soldered to the PCB (printed circuit board). The microcontroller port used (not only for general digital outputs
but inputs) is PD (port D). You can use 22AWG solid wire to easily wire LEDs and transistors to this port.
Figure 3-16 shows the wiring diagram of the ATmega328 microcontroller’s connection from port D to the 1× 8
single inline header connector.

The technique of building this circuit follows the same principles as explained in the first two chapters of
this book: keep the wires short and place the components close to each other. Now, that doesn’t mean that the
electronic parts should be kissing each other, which can cause short circuits. Wire routing can be achieved using
short path lengths. Two prototyping materials that can easily accomplish the wiring requirements mentioned are
a jumper wire kit and stranded core wires. Figure 3-17 shows prototyping wiring products.

Tip  Stranded core wire and precut jumper wires allow prototyping electronic circuits to be built quickly and
easily.

Figure 3-15. Typical output port pin of the ATmega328 microcontroller (courtesy of Atmel datasheet)

CHAPTER 3 ■ An Interactive Light Sequencer Device

61

The technique of rapid circuit breadboarding using these two wiring products consists of making electrical
connections between the LED bar display and the 330Ω DIP resistor pack with the jumper wire kit. Because
the leads are precut and formed, correct placement of these parts on the solderless breadboard requires a little
preplanning via a hand-sketch drawing. Figure 3-18 illustrates this preplanning.

Figure 3-16. Wiring diagram of the Arduino ‘sconnection to the J1 connectorAssembly of the Light Sequencer Circuit
on a Breadboard

(a) (b)

Figure 3-17. Wiring prototyping tools for rapid circuit breadboarding: Stranded core wires (a) and a jumper wire
kit (b)

CHAPTER 3 ■ An Interactive Light Sequencer Device

62

Figure 3-18. A hand sketch of the parts layout The stranded core wires are used to connect the 330Ω DIP resistor to
the Arduino. Figure 3-19 illustrates the two wiring techniques used to build the simple interactive LED sequencer
device. This is only one example of maintaining good wiring practices; with a little creativity, other techniques can
be found.

Figure 3-19. The simple interactive LED sequencer device built with stranded core wires and a jumper wire kit

CHAPTER 3 ■ An Interactive Light Sequencer Device

63

Building the Remixed Interactive LED Sequencer Device
The remix design of the interactive LED sequencer device has the same core electronic components as the
original device, with one exception: the potentiometer is replaced with a light detection circuit. The light
detection circuit, discussed in Chapter 1, is used to remove the manual control of the potentiometer, and in its
place is an automatic method of operating the device. So, the circuit breadboard build is the same as the original
device, but the potentiometer is substituted for a voltage divider circuit consisting of a 10K pull-up resistor in
series with a CdS photocell. The operation is the same as the simple LED sequencer device. The bar display will
move back and forth like the robotic eyes of a Cylon in the Battlestar Galactica TV series (I used to watch TV).
With ambient light present, the scan, or switching-sequence, rate is moderate. As the light increases, the rate also
increases. Placing an object in front of the CdS photocell will decrease the scan speed of the LED bar display.
This method of fast and slow scan-sequence behavior follows the same functional trend shown in the Excel plot
shown previously in Figure 3-13. Figure 3-20 shows the prototype build of the remixed interactive LED light
sequencer device. Refer to Figure 3-5 for the complete circuit schematic diagram.

Figure 3-20. The remixed interactive LED sequencer device built with a light detection circuit (shown at the bottom
of the solderless breadboard)

Note■■   The ATmega328 microcontroller has an ADC that takes the continuously variable analog voltages
generated by the light detection circuit and digitizes them (converts them into a bit stream). The sketch uploaded
to the microcontroller will turn on the right output port (PD) pins to operate the LED bar display. The ATmega328 is
a beast!

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 3 ■ An Interactive Light Sequencer Device

64

Creating the Sequential-Switching Software
Now that you have built the hardware, it’s time to bring your electronic creation to life with some embedded
software. As discussed in the “How It Works” section of this chapter, the sketch will read the analog voltage
value of either the potentiometer or the CdS photocell, and will convert or digitize it into an equivalent binary
bit pattern. Also, the sketch will use this data to create the appropriate delay for switching each discrete LED
segment of the bar display. Therefore, the sketch is a dual-purpose piece of embedded software with the ability to
read analog devices such as potentiometers and CdS cells and control digital outputs of the Arduino’s ATmega328
microcontroller. Listing 3-1 is the interactive LED light sequencer sketch for both prototype circuits.

Listing 3-1.  The Interactive LED Light Sequencer Sketch (Code)

// Create array for LED pins
byte ledPin[] = {2, 3, 4, 5, 6, 7, 8, 9};
int ledDelay; // delay between changes
int direction = 1;
int currentLED = 0;
unsigned long changeTime;
int potPin = 2; // select the input pin for the potentiometer

void setup() {
// set all pins to output
for (int x = 0; x < 10; x++) {
pinMode(ledPin[x], OUTPUT); }
changeTime = millis();
}

void loop() {
// read the value from the pot
ledDelay = analogRead(potPin);
// if it has been ledDelay ms since last change

if ((millis() - changeTime) >
ledDelay) {
changeLED();
changeTime = millis();
}
}
void changeLED() {
// turn off all LEDs
for (int x = 0; x < 10; x++) {
digitalWrite(ledPin[x], LOW);
}
// turn on the current LED
digitalWrite(ledPin[currentLED], HIGH);

// increment by the direction value
currentLED + = direction;
// change direction if we reach the end

if (currentLED == 9) {direction =
-1;}
if (currentLED == 0) {direction = 1;}
}

CHAPTER 3 ■ An Interactive Light Sequencer Device

65

Key sketch snippets to experiment with are explained following.
The following section of code defines all the variables related to the GPIO (general-purpose inputs/outputs)

of the Arduino’s ATmega328 microcontroller:

// Create array for LED pins
byte ledPin[] = {2, 3, 4, 5, 6, 7, 8, 9};
int ledDelay; // delay between changes
int direction = 1;
int currentLED = 0;
unsigned long changeTime;
int potPin = 2; // select the input pin for the potentiometer

The first line of code defines what digital pins of the microcontroller are used for controlling the LED bar
display.

byte ledPin[] = {2, 3, 4, 5, 6, 7, 8, 9};

The sequence or order is based on how the pins are read into the array ledPin[]. By changing the order of
the pins, you can create various lighting-sequence patterns with the Arduino.

Note■■   An array is a software collection of variable data that can be obtained through an index. The index is the
number inside of the brackets that stores the target data.

You can get the analog data from the potentiometer or CdS photocell by following this line of code:

int potPin = 2; // select the input pin for the potentiometer

If a different analog pin is needed, simply change it within the int potPin code. The delay between each
discrete instance of the LED of the bar display switching on and off is controlled by the following code:

ledDelay = analogRead(potPin);

The ATmega328 microcontroller has eight ADC channels, but only six of them are accessible on the Arduino
computing platform PCB inline header connector. The ADC is a 10-bit circuit capable of reading a range of
voltages from 0 to 5V. Therefore, a 10-bit ADC has an integer range of 0 to 1023. The low value of 0 represents 0V,
and the integer 1023 represents 5V. The resolution, or number of digitized steps, represented in volts per unit,
can easily be calculated by taking the maximum input voltage that the ADC can read and dividing it by its integer
value equivalent. Thus, the ATmega328 microcontroller has a resolution of 4.9 mV per unit. The calculation is
shown here:

Resolution = volts / units

Known:

volts = 5 V

units = 1023

Therefore:

Resolution = 5 / 1023

Resolution = 0.0049 V or 4.9 mV/units

The circuit schematic block diagram for the ADC is shown in Figure 3-21.

CHAPTER 3 ■ An Interactive Light Sequencer Device

66

Note■■   The maximum integer value for the ATmega328 microcontroller ADC is calculated by 2n, where n equals
10. Therefore, 210 equals 1028. Imagine that!

Figure 3-21. Circuit schematic block diagram for the ATmega328 microcontroller ADC (courtesy of Atmel
datasheet)

CHAPTER 3 ■ An Interactive Light Sequencer Device

67

The scan-sequence direction of the LED bar display can be changed by reversing the original lines of code
instruction:

if (currentLED == 9) {direction = -1;}
if (currentLED == 0) {direction = 1;}

to the following:

if (currentLED == 0) {direction = 1;}
if (currentLED == 9) {direction = -1;}

In the chapters to follow, I will present a style guide that explains in detail how all the Arduino sketches on
the Web are written. So for now, experiment with the code snippets you’ve examined and document the effects
on the Arduino in a lab notebook.

Final Testing of the Interactive Light Sequencer Device
This chapter outlined a series of mini activities to illustrate the ease of building an interactive light sequencer
device. You can use a DMM to obtain voltage data for plotting the potentiometer’s resistance to the scan rate of
the LED Bargraph display. An oscilloscope wired to the circuit will show you the scan rate signal. Make sure the
wiring is correct prior to applying voltage to the Arduino and supporting circuits.

Use proper wiring methods.•	

Verify that the circuit breadboard is working correctly (the “How it Works” section of this •	
chapter is a great reference).

Review the sketch entered into the Arduino IDE editor for typos that could cause the •	
hardware device to operate improperly.

Further Discovery Methods
There are quite a few activities that you can investigate for the two projects in this chapter. The first is changing
the functional behavior of the remixed interactive LED sequencer device so that its scan speed increases in
darkness, instead of when light is present. Second, as shown in Figure 3-5, you can change the wiring positions
of the 10K resistor and the CdS photocell to have the LED sequence speed slow down in ambient (normal) light.
The scan sequence speed should increase when the ambient light is removed. Third, you can create new lighting
patterns by changing the order of how the array reads the digital data from the Arduino pins, as discussed earlier
in the chapter. Finally, you can change the direction of the new lighting pattern. Remember to document the
design in a lab notebook along with the sketch modifications you made for the new sequence lighting patterns
you created.

69

Chapter 4

Physical Computing and
DC Motor Control

Controlling a DC motor is quite easy using an Arduino. There are various ways to interact with a motor besides
using an electric switch. Also, you can easily replace the conventional electromechanical relay with a suitably
chosen transistor, allowing the speed to be controlled by software. This chapter will explore various ways of
controlling a DC motor using conventional electromechanical switching by a relay, as well as solid state control
using a transistor. Also, the conventional method of varying speed using a potentiometer will be investigated,
along with a force sensitive resistor. Both the potentiometer and the photocell can be categorized as physical
computing input devices. Therefore, I’ll present a discussion in this chapter as well. I’ll apply the electronic
concepts discussed in the previous chapters in this unit along with the new items to be discussed. I’ll also explain
additional remix techniques in electronics prototyping and software development in this chapter. The required
parts are listed following and pictured in Figure 4-1.

Parts Lists
Arduino Duemilanove or equivalent

TIP31C NPN Power Transistor or TIP120 NPN Darlington Transistor

2N2222 NPN Transistor

10K trimmer potentiometer

2 10K resistors

1K resistor

CdS photocell

Tactile push-button switch

1N4001 diode

3VDC or 6VDC motor

16-pin IC socket

+5VDC electromechanical relay

CHAPTER 4 ■ Physical Computing and DC Motor Control

70

Small solderless breadboard

22 AWG solid wires

Digital multimeter

Oscilloscope (optional)

Electronic tools

Figure 4-1. Parts required for phyiscal-computing and DC motor control projects

Remixing Revisited
As discussed in Chapter 2, the two devices in this chapter illustrate a design technique where one new product
evolves from a simpler design. This remix design technique allows product designers and developers to get to
market quicker without a major tear-up to the BOM. Figures 4-2 and 4-3 show systems block diagrams for two
physical-computing DC motor controllers. Also, the sketch used in the two interactive electronic devices will
allow speed control operation of the DC motor by either manual or automatic methods for human control.

http://dx.doi.org/10.1007/978-1-4302-4266-6_2

CHAPTER 4 ■ PHysiCAl ComPuTing And dC moToR ConTRol

71

How It Works
Before transistors were used as direct electronic circuit drivers, electromechanical relays provided the means to
control heavy current-drawn electrical loads. I will begin the discussion of physical-computing DC motor control
with a hands-on exploration of a transistor relay driver circuit. Figure 4-4 shows a system block diagram of a basic
transistor relay driver circuit.

Potentiometer

1 1

1

Arduino

Transistor Driver
DC
Motor

Figure 4-2. A physical-computing DC motor control systems block diagram

Light Detection Circuit

1 1

1

Arduino

Transistor Driver
DC
Motor

λ

Figure 4-3. A remixed physical-computing DC motor control systems block diagram

Transistor Driver
Electromechanical

Relay

1
DC
Voltage

DC
Motor

Control Signal

Figure 4-4. A typical transistor relay driver block diagram

CHAPTER 4 ■ Physical Computing and DC Motor Control

72

Tip■■   An electromechanical relay is an electrically operated switch. Awesome!!!

A Base Biasing Transistor Driver Circuit
When you press switch PB1, current flows through resistor R1, allowing the transistor to be biased. This type of
transistor current management is known as base biasing. This biasing scheme is quite simple because of a single
resistor connected in series with a +5VDC power supply and the base circuit of the transistor. The current flowing
through the resistor is sufficient to turn the NPN transistor on or put it into a saturation mode of operation. To
calculate the biasing or base current for the transistor driver circuit, the following analysis equation may be used:

B CC BE BI (V V)/R= −

where

I•	
B
 is the base current.

V•	
CC

 is the collector supply voltage.

V•	
BE

 is the base-emitter junction voltage.

R•	
B
 is the base resistor (R

1
 is equal to R

B
 in this design).

Figure 4-5. Circuit schematic diagram for a typical transistor relay driver

A circuit schematic diagram for a typical transistor relay driver block diagram is shown in Figure 4-5.

CHAPTER 4 ■ Physical Computing and DC Motor Control

73

Using Figure 4-5 and the preceding equation, you can determine I
B
. The following exercise demonstrates the

steps you need to take to do this:

	1.	 First, write down the original analysis equation:

B CC BE BI (V V)/R= −

	2.	 Next, substitute circuit parameter values into the analysis equation:

BI (5VDC 0.7V)/1K= −

	3.	 Finally, solve for I
B
:

BI 4.3VDC/1K=

BI 0.0043A or 4 .3mA=

Using Multisim circuit simulation software, you can easily build a virtual transistor circuit. With the
electrical switch opened, the base current is very small (in the magnitude of picoAmperes [pA]), keeping
the electromechanical relay deenergized, as shown in Figure 4-6 (a).The 69.8Ω resistor represents the
electromechanical relay coil’s resistance if measured with an ohmmeter. Closing the electrical switch allows the
transistor to be biased and the electromechanical relay to be energized. Figure 4-6 (b) illustrates base biasing of
the transistor.

(a) (b)

Figure 4-6. Multisim circuit transistor driver models: Unbiased transistor (a) and base-biased operation (b)

CHAPTER 4 ■ Physical Computing and DC Motor Control

74

Tip■■   Based on the electromechanical relay manufacturer, the coil’s resistance value will vary.

With the transistor in saturation mode, current from the+5VDC power supply will flow through the
electromechanical relay’s coil and the collector-emitter leads of the NPN transistor (2N2222) to ground. The
current flowing through the electromechanical relay’s coil will put it in a conductive mode known as energization.
The current flowing through the electromechanical relay coil windings establishes a magnetic field, thereby
allowing it to attract the armature (moveable contact) of the component. The relay coil’s magnetic field is
enhanced with a solid iron core, allowing it to provide strong contact attraction with the armature. Because the
armature is attracted by the coil’s magnetic field, it makes contact with the NO contact of the electromechanical
relay. The Vmotor power supply (+5VDC) is now switched into the external control circuit, allowing current to
flow through the DC motor, turning it on.

Releasing switch PB1 will provide an open circuit to the base, allowing removal of current biasing to the
NPN transistor. As the electric current is removed from the coil, the electromechanical relay’s contacts will be
switched off, or deenergized. The magnetic field produced through the energizing is now removed, thus allowing
the armature to return to its NC position contact. The external control circuit is switched off, stopping the DC
motor from rotating. A last note about the electromechanical relay is that contacts have an ampacity rating,
which allows them to switch high-current devices such as incandescent bulbs and low-horsepower motors. The
electromechanical relay contacts have ampacity ratings as low as 1A and can go as high as 10A. Therefore, the
Arduino can be used in implementing industrial control applications on the bench quite easily.

D1: Flyback Diode
The electromechanical relay coil is basically an inductor capable of storing electric current through its
windings. Upon energizing and deenergizing the coil, the inductor charges and discharges accordingly. When
the electromechanical relay coil is deenergized, the energy (electric current) that’s stored must be released or
discharged through a grounding circuit. The grounding circuit in the case of a relay driver circuit is the transistor.
The magnitude of electric current stored in the relay coil is maximum in value (I

P
 [peak current]) and can cause

severe damage to sensitive electronic components when discharging or releasing the energy to a grounding
surface.

The transistor is providing a ground path for the electromechanical relay and therefore can be damaged by
this maximum I

P
 value. The diode placed across the coil helps to redirect this electrical energy back through the

relay windings using a flyback method for electric current suppression. The flyback method allows the diode
to absorb the peak current created by the inductor during the charging cycle, as well as that of the coil during
deenergization of the electromechanical relay. At the moment the transistor turns off, during the deenergization
mode of the electromechanical relay, the diode becomes forward biased, redirecting the peak current away from
the transistor and allowing it to flow through the coil of the electromechanical switch.

Other names for a flyback diode are snubber, freewheeling, suppressor, and catch diode. Figure 4-7
shows the Multisim circuit model of an electromechanical relay coil with a flyback diode wired in parallel
with it. Figure 4-7 (a) shows the relay being energized (inductor charging) while Figure 4-7 (b) shows it in the
deenergized condition (the inductor discharging). The peak current is significant in magnitude and electrical
units (in mA) compared to energization of the coil (in nA).

Note■■   Flyback is the return to the starting or original point, and ampacity is the maximum amount of current
flowing in a conductor (wire) before it causes damage.

CHAPTER 4 ■ Physical Computing and DC Motor Control

75

Experimenting with a Transistor Relay Driver DC Motor Control Circuit
A transistor relay driver DC motor control circuit is quite easy to build using the Arduino. The Arduino will
provide the intelligent processing interface between receiving a control signal from a tactile push-button switch
and commanding the transistor relay driver to operate a DC motor. Figure 4-8 shows the circuit schematic
diagram of the simple DC motor control device. The circuit is a remix of the transistor relay driver circuit used in
the electronic singing bird from Chapter 1, with the exception of the input interface. As stated, the tactile push-
button switch is used to provide the control signal to the Arduino instead of the light detection circuit used in the
bird project. The button sketch used in the bird project is uploaded to the Arduino, allowing the DC motor to be
switched on by the transistor relay driver circuit.

(a) (b)

Figure 4-7. Multisim circuit transistor driver models: inductor charging (relay coil energized), inductor discharging
(relay coil de-energized).Unbiased transistor (a) and based-biased operation (b).

Figure 4-8. The Arduino computing platform provides the electrical control signal to bias the transistor-based relay
driver to turn on the DC motor.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 4 ■ Physical Computing and DC Motor Control

76

It’s time to further elaborate on the physical-computing attributes of the DC motor control circuit. The
resistor, along with tactile push-button switch, is considered an input transducer, or sensor, because of the
conversion between mechanical action (pressing the internal contacts of the switch with a mini-plunger-spring
assembly) and generating a digital-level electrical control signal (+5VDC or binary 1 logic level). Upon release of
the button on the tactile switch, the mini-plunger-spring assembly allows it to return to its normal position, and
the binary 1 logic level control signal transitions to a 0 logic level signal.

The arrangement of the tactile push-button switch preceding the 10K resistor is known as an active-high
digital input circuit. If the inverse or opposite transducer function is needed, switching the push-button switch
and the 10K resistor will achieve this requirement. The name for this inverted electrical control signal function is
known as an active-low digital input circuit.

Figure 4-9 shows the Multisim circuit model analysis via output voltage results displayed on a digital voltmeter.
Figure 4-10 shows an Arduino-based physical-computing DC motor control with an active-low digital input circuit.
An active-high digital input circuit for the Arduino-based physical-computing DC Control is shown in Figure 4-11.

Note■■   The electromechanical relay is classified as a potential digital output transducer because it converts
electrical energy into a mechanical switch.

(a) (b)

Figure 4-9. An active-high digital input circuit voltage with the switch open and an active-low digital input circuit
voltage with the switch open (b). The measured voltages are inverted between an active-high and an active-low
digital input circuit.

(c) (d)

CHAPTER 4 ■ Physical Computing and DC Motor Control

77

Figure 4-10. Circuit schematic diagram for an active-low physical-computing DC motor control

Figure 4-11. Circuit schematic diagram for an active-high physical-computing DC motor control

CHAPTER 4 ■ Physical Computing and DC Motor Control

78

Electromechanical Relay Preparation
A method that will aid in wiring the electromechanical relay is to write the pinout on both sides of the component
with a black marker, as shown in Figure 4-12. The pinout of the electromechanical relay is shown in Chapter 1.
While prototyping the basic physical-computing DC motor control circuits on the solderless breadboard, you
can improve the +5VDC electromechanical relay pins’ contact insertion with the embedded spring terminals. By
inserting the electromechanical relay into an IC socket, you enhance the electrical pins’ contact force and remove
the possibility of circuit intermittence from the project build. Figure 4-13 illustrates this technique.

Figure 4-12. Pinout written on both sides of the electromechanical relay

Figure 4-13. An IC socket used to improve the insertion of the electromechanical relay onto the solderless breadboard

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 4 ■ Physical Computing and DC Motor Control

79

Since few components are required for the project build, you can place them close together, as shown
Figure 4-14. The technique of using stranded core wire and preformed jumper wires helps to manage the wiring
of the circuit on the breadboard and to the Arduino. The Arduino board provides the +5VDC supply to power
both the control circuit and the DC motor.

Figure 4-14. The final project build of the control circuit

The project shown in Figure 4-14 is wired as an active-high digital input circuit. Press and hold the tactile
push-button switch, allowing the Arduino to provide an output control signal (approximately +5VDC); this will
bias the 2N2222 NPN transistor to drive the electromechanical relay. The contacts of the electromechanical relay
will switch from the NC position to NO, allowing the +5VDC power supply to switch on the DC motor. Releasing
the button will remove the biasing current from the transistor relay driver circuit, and the +5VDC power supply
source will be interrupted from the DC motor, stopping it from rotating. As mentioned earlier, the button sketch
from the electronic singing bird project from Chapter 1 is uploaded to the Arduino for input monitoring and
output switching (biasing) control for this physical-computing device.

Note■■   Before wiring the circuits schematic diagrams shown, go to the section “The 2N2222 Transistor Pinout” in
this chapter for the 2N2222 NPN transistor pinout information.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 4 ■ Physical Computing and DC Motor Control

80

The Basics of Physical Computing with Electric Motors
In the first several pages of this chapter, the concept of controlling a DC motor with a transducer (or sensor),
microcontroller, and transistor relay driver was illustrated with simulated circuits and a physical control
project. Using an electromechanical relay is a traditional approach to driving electric motors because they
relay’s switching contacts are capable of handling several amperes of current. Electric motors are really
electromechanical devices because they take an electrical signal (voltage and/or current) and convert it to
mechanical motion. To overcome the mechanics of rotation, a high inrush current is required from the power
supply driving the electromechanical part.

In the example of the simple physical-computing DC motor control project discussed, the
electromechanical relay had the burden of providing the power supply current using a pair of high-ampacity-
rated contacts. But there is another alternative for controlling an electric motor: using a power transistor instead
of an electromechanical relay. Torque and speed are two important parameters associated with electric motors,
and the device that drives them must be capable of controlling these elements efficiently. A microcontroller,
along with a power transistor, provides an efficient and clean approach to maintaining constant torque and speed
control for electric motors.

The embedded software inside the Arduino has a specialized computing/mathematical approach, using
a tested procedure (algorithm) for maintaining torque and speed control for electric motors. An algorithm is
simply a step-by-step procedure for calculations The output of the electric motor is constantly monitored by the
microcontroller using a feedback transducer/sensor, which provides voltage or current signal data as it relates to
the electromechanical device’s torque and/or speed. The embedded software of the microcontroller constantly
checks to see if the signal data has deviated, and if so, makes adjustments to the output signal that’s controlling
the circuit driving it. So, to some extent, the transducer or sensor that’s monitoring the output parameters of the
motor is providing indirect physical-computing activity to the electric motor. Figure 4-15 shows a typical system
block diagram for a physical computing–based DC motor controller.

Predefined Process
(Embedded Software)

Input
Microcontroller

Power Electronics

Motor
Driver
Circuit

Feedback (Input)

DC
Motor

Transducer/
Sensor

Figure 4-15. System block diagram for the DC motor control

CHAPTER 4 ■ PHysiCAl ComPuTing And dC moToR ConTRol

81

Note  Physical computing deals with building devices that can sense and respond to their environment using
software and hardware.

Figure 4-16. Circuit schematic diagram for a physical-computing DC motor speed controller

Achieving Motor Speed Control with Physical Computing
The discussions in this chapter have been on simple control of DC motors—basically turning them on and off. The
remainder of this chapter will explore controlling the speed of the motor using physical-computing techniques.
You will be using potentiometer and photocell as input sensor circuits for interacting with the DC motor.

Potentiometer Input Control
The first technique requires using a potentiometer (discussed in Chapter 3) to provide an input signal that directs
the microcontroller to adjust its output control signal to bias the transistor through modulation. The modulation
is accomplished by changing the pulse width of the output control signal generated by the Arduino’s ATmega328
microcontroller. The technique of pulse width modulation (PWM; discussed in Chapter 1) allows for controlling
the speed of a DC motor through a transistor. Switching the base at a predetermined frequency allows for the
transistor to provide an average sourcing current to the DC motor’s stator for efficient speed control of the
electromechanical component. Figure 4-16 shows a typical DC motor speed control technique using the Arduino
as the PWM signal generator.

http://dx.doi.org/10.1007/978-1-4302-4266-6_3
http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 4 ■ Physical Computing and DC Motor Control

82

The construction of the circuit on the solderless breadboard has minimum component and wiring content.
Also, there are only two jumper wires from the potentiometer and the base of the 2N2222 to the Arduino single
inline header connectors. Figure 4-17 shows the final motor speed controller prototype.

Figure 4-17. A physical-computing DC motor speed controller built on a solderless breadboard

The motor speed control, as discussed earlier, takes place through the 10KΩ potentiometer. Adjusting it will
allow the Arduino’s ATmega328 microcontroller to provide a smooth string of pulses that will bias the 2N2222
transistor to efficiently drive the small DC motor. To see the PWM signal, you must connect an oscilloscope at the
base of the transistor driver and attach the other test lead to ground. Figure 4-18 illustrates how an oscilloscope
is connected to the 2N2222 NPN transistor’s base lead. The actual measurement setup is shown in Figure 4-19.
The duty cycle (discussed in Chapter 1) for the adjusted motor speed was measured at 38.81 percent. When the
potentiometer’s shaft is rotated, the duty cycle value changes proportional to the amount of resistance. As the
potentiometer’s resistance increases, the duty cycle value becomes larger. At full resistance (10KΩ), the duty
cycle value is at 100 percent with the small DC motor running at full-rated speed.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 4 ■ Physical Computing and DC Motor Control

83

Figure 4-18. Circuit schematic diagram of the Arduino controlled DC motor with an oscilloscopes to observe the
PWM signals

Figure 4-19. Circuit schematic diagram showing how to attach an oscilloscope to observe the PWM signals generated
by the Arduino

CHAPTER 4 ■ Physical Computing and DC Motor Control

84

Figure 4-20 shows a close-up of the Arduino-produced PWM control signal in which you can see a series of
clean, square-wave pulses.

Figure 4-20. The Arduino-produced PWM control signal for motor speed control

2
BASE

TO-92
CASE 29
STYLE 17

1 2
3

1
2

3

COLLECTOR
1

3
EMITTER

Figure 4-21. Pinout diagram for the 2N2222 NPN transistor (courtesy of ON Semiconductor datasheet)

The 2N2222 Transistor Pinout
An important item to note is that all NPN transistors are not created equal. The 2N3904 NPN transistor’s pinout
(from the “Assembly of the Electronic Singing Bird Circuit on a Breadboard” section of Chapter 1) consists of the
emitter being located to the left of the three-pin device. The base is the center lead, and the collector is located
to the immediate right. For the 2N2222 transistor, the emitter is on the right side and collector is on the left side.
Figure 4-21 shows the pinout for the 2N2222 transistor that will ensure proper operating function of this speed
control circuit, as well as the simple motor control project.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 4 ■ Physical Computing and DC Motor Control

85

The Motor Speed Control Software
With the electronics hardware in place, the sketch is needed to complete the project build. The sketch allows
the Arduino to read the potentiometer’s analog position and generates a PWM signal that is proportional to the
angular location of the wiper arm. The sketch is well commented, so changes to the analog or digital port pins
can easily be made. Listing 4-1 shows the motor speed control sketch.

Listing 4-1.  The Motor Speed Control Sketch

int motorPin = 9; // motor connected to digital pin 9
int analogPin = 0; // potentiometer connected to analog pin 0
int val = 0; // variable to store the read value
void setup()
{
  pinMode(motorPin, OUTPUT); // sets the pin as output
}
void loop()
{
  val = analogRead(analogPin); // read the input pin
  analogWrite(motorPin, val / 4); // analogRead values go from 0 to 1023, analogWrite ➥

  values from 0 to 255
}

Here’s a final note regarding the operation of the physical computing–based controller: after uploading
the motor speed control sketch to the Arduino, depending on the position of the 10KΩ potentiometer, the
electromechanical device may start at low, medium, or high speed.

Light Detection Input Control
In the final project build in exploring human interaction and control with the physical world, we’ll adjust the DC
motor’s speed using a light. The light detection input control is similar to the potentiometer shown in Figure 4-3,
with one exception: no contact with a sensing device is required in order to change the speed of the DC motor.
A proportional voltage based on the CdS photocell resistance provides the appropriate duty cycle of the PWM
output control signal from the Arduino computing platform. With ambient light present, placing an object (such
as hand) over the CdS photocell will increase the DC motor’s speed. If the light sensor detects no object, the
DC motor will spin at a medium rate. If a light source shines on the sensor, the DC motor will stop completely.
Figure 4-22 shows the circuit schematic diagram of the light-activated DC motor speed controller.

The motor speed control sketch remains the same, with the exception that the 10KΩ potentiometer is
replaced by the light detection circuit shown in the circuit schematic diagram of Figure 4-22. The final project
build is shown in Figure 4-23. The placement and orientation of the CdS photocell is optimum because of the
quick response the Arduino computing platform provides in adjusting the DC motor speed based on varying light
levels detected. The speed ramp-up and ramp-down based on the change in ambient lighting is quite smooth,
with little to no hesitation in motor acceleration adjustment.

Note■■   As shown in the circuit schematic diagrams, the only difference between the TIP31C NPN transistor and
the TIP120 Darlington NPN transistor is that in the latter, the semiconductor device collector can manage current as
high as 8A peak, while the former component can only handle up to 5A peak. The TIP120 is a tiger!

CHAPTER 4 ■ Physical Computing and DC Motor Control

86

Figure 4-22. Circuit schematic diagram for a light-activated DC motor speed controller

Figure 4-23. Final project build of the light-activated DC motor speed controller

CHAPTER 4 ■ Physical Computing and DC Motor Control

87

Final Testing of the Devices
This chapter outlined a series of testing activities for capturing bugs in building the hardware circuits. Using a
DMM and an oscilloscope, the testing techniques described can be validated on the bench. Depending on the
type of vendor of the testing instruments, the results may vary by +/–10 percent. While testing, make sure the
wiring is correct prior to applying voltage to the Arduino and supporting circuits. Use proper wiring methods, as
discussed in Chapter 3. The “How it Works” section of this chapter is a great reference to help you verify that the
circuit breadboard is working correctly. Also, review the sketch entered into the Arduino IDE editor for typos that
could cause the hardware device to operate improperly as well.

Further Discovery Methods
There are quite a few activities that you might investigate for the two projects in this chapter. The first is to
change the functional behavior of the simple DC motor control using a transistor relay driver circuit. Instead of
controlling the device with an active-high switch, use an active-low digital input configuration. Figure 4-10 earlier
in the chapter shows the wiring roadmap for the investigation.

In the second activity, change the wiring positions of the 10K resistor and the CdS photocell to have the
motor speed increase in ambient (normal) light as shown in Figure 4-21. Also change the 2N2222 transistor to
either a TIP31C or TIP120 transistor, and use a higher operating current and voltage-rated DC motor, and note
the speed control behavior. Remember to document the design in a lab notebook along with sketch modifications
you made for the new DC motor speed controller you’ve created.

http://dx.doi.org/10.1007/978-1-4302-4266-6_3

89

Chapter 5

Motion Control with an Arduino:
Servo and Stepper Motor Controls

As explained in Chapter 4, there are several control schemes for operating a DC motor using an Arduino. This
chapter extends the discussion of electric motor control to servo and stepper electromechanical devices. The
Arduino’s ATmega328 microcontroller has dedicated port pins for providing digital signals to control the speed
and direction of servo and stepper motors. In this chapter, I explain the conventional method of varying speed
using a potentiometer or joystick, along with an introduction to the FlexiForce sensor. The potentiometer,
joystick, and the FlexiForce sensor are important tools in many Physical Computing projects and are used here
to introduce the concept of motion control. You will use remix techniques in prototyping and writing software for
the electronic projects in this chapter. The required parts you will need to build the experiments and projects are
pictured in Figure 5-1.

Parts List
1 Arduino Duemilanove or equivalent

1 10K potentiometer

1 470K resistor

1 FlexiForce sensor

3 servo motors (1small, 1 medium, 1 continuous [not shown])

1 ULN2803A Darlington Array IC

1 unipolar stepper motor (six-wire type)

1 joystick

1 small solderless breadboard

22 AWG solid wire

Digital multimeter

Oscilloscope (optional)

Electronic tools

http://dx.doi.org/10.1007/978-1-4302-4266-6_4

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

90

Remixing Motion Controls
I am continuing with the technique of remix, and I am using four motion control devices with two input controls
to illustrate how to create motion controls with the Arduino. The potentiometer and FlexiForce sensor are used
to vary the speed and/or direction of both the stepper and servo motor components. The Arduino provides the
intelligence to the motion control platforms by reading the input voltage level from either the potentiometer or
FlexiForce sensor and providing the appropriate output control signal to drive either the stepper or servo motor
device. Figures 5-2 through 5-5 show the system block diagrams for the four stepper and servo motor controllers.
Note that the sketch for the interactive electronic devices allows speed control operation of the stepper and
servo motor by manual method; in other words, you can control the speed manually via the potentiometer or the
FlexiForce sensor.

Figure 5-1. Parts required for motion control servo and stepper motor projects and experiments

Potentiometer

1 1

Arduino

Servo Motor

Figure 5-2. An Arduino-based servo motor control system block diagram

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

91

Note■■   A FlexiForce sensor is a piezoresistive sensing device. The sensor’s resistance changes based on the
amount of force applied to it. This sensing device is also referred to as a tactile force sensor. A tactile force sensor is
capable of the detection and measurement of a contact force at a defined point. May the force be with you!

Stepper Motor1 4

Arduino

4

Darlington
Array

IC

Flexiforce Sensor

Figure 5-5. A remixed FlexiForce sensor-activated servo motor control system block diagram

Flexiforce Sensor

1 1

Arduino

Servo Motor

Figure 5-3. A remixed FlexiForce sensor-activated servo motor control system block diagram

Stepper Motor

Potentiometer

1 4

Arduino

4

Darlington
Array

IC

Figure 5-4. An Arduino-based stepper motor control system block diagram

s

92

How It Works
As discussed in Chapter 4, transistors and electromechanical relays are used as direct electronic circuit
drivers to control medium-to-heavy current-drawn electrical loads. With the aid of the Arduino’s ATmega328
microcontroller, digitally operated motors like a servo and stepper can be controlled quite easily. Referencing
the block diagram in Figure 5-6, to operate a servo motor digitally, an output port pin from the ATmega328
microcontroller drives the command control signal lead of the electromechanical component. The command
control signal lead receives digital data in the form of pulses that correlate to the angle in which the servo motor
will rotate. The pulse has a specific ON time duration that represents an angle. For example, the starting or
neutral position to command the servo motor is 1.5ms. An angle of 0° is accomplish using a 1.25ms pulse. To
rotate the servo motor to 180° a 1.75ms pulse from the Arduino is needed. Figure 5-7 shows the primary pulses
and the angular position of the servo motor.

PCM

+5V

Arduino

Servo Motor

Figure 5-6. An Arduino-based computing platform used to control a servo motor

Neutral

Time(ms)1.50
0

1

Time(ms)

0˚

1.250
0

1

Time(ms)

180˚

1.750
0

1

Figure 5-7. Typical pulse widths with angular positions for controlling a servo motor

Note  PCM, or pulse code modulation, is the control signal applied to the servo motor by the Arduino. The
angular position is the code or data within the pulse width of the PCM signal. digital control theory is truly awesome!

http://dx.doi.org/10.1007/978-1-4302-4266-6_4

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

93

Experimenting with a Servo Motor
The Arduino computational platform provides the command control signal (PCM) to drive a typical servo motor.
A servo motor is an electromechanical device that uses error-sensing negative feedback to correct the operation
of a mechanism. Negative feedback is a small amount of energy taken from a voltage- or current-detecting
component and looping it back for proper adjustment to the error-correcting device. In Figure 5-6, the circuit
schematic diagram consists of the Arduino and the servo motor illustrated in Figure 5-8. When you upload the
sketch in Listing 5-1, the servo motor starts a sweep from neutral position to 180° and back to its original starting
point. This motion is continuous, which allows the Arduino to be an automated tester for other suspect servo
motors.

The servo motor wiring to the Arduino is quite simple. The wiring consists of the command control signal
wire of the servo motor going to D9 of the Arduino PCB. The brown wire goes to ground with the red wire
terminating at the +5VDC on the board. A wiring alternative is to use a solderless breadboard for the servo-to-
Arduino connections, as shown in Figure 5-9 on the Fritzing circuit build.

Figure 5-8. Controlling a servo motor with an Arduino

Note■■   Fritzing software allows electronic circuits to be laid out for actual prototyping and testing on solderless
breadboard, experimenter boards, and printed circuit boards (PCBs) by hobbyists, professionals, and artists. You can
find the software, along with help and background information, at http://fritzing.org.

http://fritzing.org

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

94

Fritzing Software
The Fritzing circuit build serves as prototype guide for the actual construction of the Arduino-based servo motor
controller. Although the prototyping tools used by the author are slightly different, the wiring shown in Figure
5-9 is quite similar to the actual build. Figure 5-10 shows the prototype of the servo motor controller. The process
of designing a product virtually using graphics or modeling software and then building with real components is
practiced daily in electronics manufacturing. Fritzing software is free and provides a wealth of resources online
for taking a solderless prototype and turning it into a functional PCB-based product. So if you are a hobbyist,
a student, an artist, or even a professional engineer, Fritzing software lets you adopt an electronics design
automation (EDA) approach to your Arduino projects. The library of parts is quite substantial and provides
technical resource for learning electronics with the Arduino.

Note■■   Electronics design automation is a category of software tools for designing circuits, systems, integrated
circuits (ICs), and PCBs. Fritzing software falls into the EDA category because of its ability to create circuit schematic
diagrams and printed circuit boards based on the prototype board layout. Multisim is another EDA software
package with the ability to create printed circuit boards from a circuit schematic diagram captured by the tool’s IDE
(integrated development environment).

+5V D9 Orange

Red

Brown
GND

Figure 5-9. Fritzing circuit build of an Arduino-based servo motor controller

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

95

To make the servo motor stationary on the solderless breadboard, a small jumper wire is secured across its
wiring pigtail, as seen in Figure 5-10 on the right.

Tip■■  I f an electrical/electronic or small electromechanical component needs to be secure on a solderless
breadboard during prototyping build, a small jumper wire can do the trick. MacGyver strikes again!

Listing 5-1. The Servo Sweep Sketch

// Sweep
// by BARRAGAN <http://barraganstudio.com>
// This example code is in the public domain.

#include<Servo.h>

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop()
{
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15 ms for the servo to reach the position
}
 for(pos = 180; pos >= 1; pos- = 1) // goes from 180 degrees to 0 degrees

Figure 5-10. The actual Arduino-based servo motor controller prototype

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

96

 {
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15 ms for the servo to reach the position
 }
}

The Sweep sketch shown in Listing 5-1 is located in the ArduinoIDE at File ➤ Examples ➤ Servo ➤ Sweep.
Figure 5-11 shows the Sweep sketch within the Examples directory. When you upload the code to the Arduino
computational platform, the servo motor begins to sweep between the established rotational angles of 0° to 180°.
As mentioned, this sweep motion is continuous.

Figure 5-11. Obtaining the Sweep sketch within the Arduino-Processing IDE

q

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

97

Tip■■   The new Arduino 1.0 Processing software is now available for download. It includes the latest computational
platforms, such as the Arduino Uno, and the Android Accessory ADK board. The Getting Started page of the Arduino
web site has the latest software version (1.0) available for download; go to http://arduino.cc/en/Guide/
HomePage.

Try It!
The Sweep sketch is commented quite well, which allows for experimentation with the code. With commented
code, it’s easier to learn the programming style and the technique of operating motors, lights, and LEDs because
the various functions are explained. Here are the two lines of code that affect the sweep speed; feel free to change
the values to see what happens. That’s the philosophy behind experimentation!

for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
for(pos = 180; pos >= 1; pos -= 1) // goes from 180 degrees to 0 degrees

By changing the +1 and -1 values in each of these lines of code, the servo motor sweep speed will increase,
thereby creating new motion patterns for the electromechanical actuator. Change the values of both lines of code
to 5 and observe the sweep speed being five times faster than the original setting! If one line of code is changed
to 5 and the other to -1, the servo motor will sweep quickly in the clockwise direction but will move slowly in the
reverse direction. Also, note that the motion of the servo motor is still smooth and precise, which makes it great
for robotics applications. Try some changes and record your observations!

Physical Computing: A Servo Motor with a Potentiometer
If you add a potentiometer to the servo setup you have now, you can accommodate easy human interaction
with the electromechanical components. By adding a potentiometer, manual control of the servo motor is
possible. The potentiometer allows the servo motor’s angular position to be dialed in precisely. By rotating
the potentiometer’s shaft (wiper arm), the servo motor’s degree of motion can be changed. Discrete angles
such as 35°, 45°, 60°, and 110° can easily be dialed in using the potentiometer. The wiring to the Arduino’s PCB
inline header connectors is accomplished as shown in Figure 5-12. The circuit schematic diagram is illustrated
in Figure 5-13 with the actual prototype shown in Figure 5-14. The sketch for controlling the servo motor with
a potentiometer is obtained from the Arduino-Processing IDE by clicking File ➤ Examples ➤ Servo ➤ Knob.
Figure 5-15 shows the Knob sketch within the Examples directory. The Knob sketch is shown in Listing 5-2.

Tip■■   The other sketches for performing Physical Computing experiments with the Arduino can be obtained within
the Examples directory inside of the Arduino Processing IDE toolbar.

Note■■  I n keeping with the Arduino concept of software code being called a sketch, a Fritzing Circuit Build is also
know as a sketch. Long live consistency!

http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

98

+5V

GND

A0

D9 Orange
Red

Brown

Figure 5-12. Fritzing circuit build of an Arduino-based servo motor controller with angle-positioning potentiometer

Figure 5-13. Circuit schematic diagram for the Arduino-based servo motor controller with angle-positioning
potentiometer

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

99

Figure 5-14. Prototype of the Arduino-based servo motor controller with angle-positioning potentiometer

Figure 5-15. Obtaining the Knob sketch within the Arduino-Processing IDE

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

100

With the code uploaded to the Arduino, turning the shaft of the 10K potentiometer allows the servo motor
to move in precise angular increments (or steps) with the variable resistor. The faster the potentiometer’s shaft is
turned, the quicker the servo motor responds. Besides the angular positions hard-coded in Listing 5-1, discrete
movements of the servo motor can be commanded by the potentiometer quite easily. Once again, a well-
commented sketch allows you to experiment with the servo motor’s operation easily.

Listing 5-2. The Knob Sketch

// Controlling a servo position using a potentiometer (variable resistor)
// by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>
#include<Servo.h>
Servo myservo; // create servo object to control a servo
int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin
void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}
 void loop()
{
 val = analogRead(potpin); // reads the value of the potentiometer (value 
 between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the servo (value 
 between 0 and 180)
 myservo.write(val); // sets the servo position according to the 
 scaled value
 delay(15); // waits for the servo to get there
}

Physical Computing: A Servo Motor with a Joystick
A joystick can also be used to operate a servo motor’s angular motion. A joystick consists of two potentiometers
packaged into a single unit. Wiring either the x or y potentiometer into the Arduino computing platform allows
control of the angular position of the servo motor by movement of a handle instead of knob. Both the x and y
potentiometers are attached to the handle using a mechanical linkage assembly that allows for either individual
or simultaneous control of both variable resistors. Figure 5-16 shows a typical joystick and the mechanical linkage
assembly. The circuit schematic diagram for wiring a joystick to the Arduino computing platform is illustrated in
Figure 5-17.

Additional wires are soldered to the joystick (as shown in Figure 5-16) to make it easier to replace the 10 K
potentiometer from the previous experimental lab build using the solderless breadboard. Figure 5-18 shows the
attached wires to the terminals on the x potentiometer of the two-axis joystick.

The completed project build on the solderless breadboard shows both the joystick and servo motor wired to
the Arduino via jumper wires. The Knob sketch allows the joystick to change angular position of the servo motor.
Moving the handle on the joystick from right to left (x direction of control) to operate the servo motor provides
accuracy in motion control for the small electromechanical component. Figure 5-19 shows the final build of the
joystick-operated servo motor controller.

q

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

101

Figure 5-16. On the left, a typical joystick consisting of x and y potentiometers. On the right, the mechanical linkage
assembly of a joystick.

Figure 5-17. A joystick controlling a servo motor

Note■■  I n addition to Physical Computing devices, the joystick has become common in many industrial and
manufacturing applications, such as cranes, assembly lines, and heavy equipment trucks used in mining and
excavation jobs.

s

102

Physical Computing: A Servo Motor with a FlexiForce Sensor
Another technique used to control a servo motor is applying a force to a targeted area’s sensing surface, allowing
it to provide a proportional signal to the Arduino. Based on the magnitude of the force applied to the targeted
area, the sensing device’s internal resistance will change. In essence, the sensing device will act as a variable
resistor. There is such a component that can change its resistance based on a tactile force being applied to its
sensing surface area: a FlexiForce sensor. The FlexiForce sensor is capable of detecting forces up to 1000 lbs,
which allows applications in object detection and control to be implemented quite easily. With its internal
resistance to change, the sensor can be used in a voltage divider circuit where the output voltage is monitored
and used to provide an input signal to the Arduino. The ATmega328’s ADC (analog-to-digital converter) provides
an equivalent digital value representing the force being applied to the FlexiForce sensor.

Figure 5-19. Prototype of a joystick-operated servo motor controller

Figure 5-18. Soldered pigtail wire harness for joystick

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

103

Note■■   A tactile force sensor is capable of detection and measurement of a contact force at a defined point.

To interface a FlexiForce Sensor to an Arduino is quite simple and requires only a pull-down resistor. The
two components wired in series form a voltage divider circuit, as discussed in Chapter 1. In Figure 5-3, the
system block diagram for controlling a servo motor with a FlexiForce sensor was introduced. As shown in the
first block, a voltage divider circuit illustrates how the input detection signal is created with the two series-wired
components. Figure 5-20 is a look into the first block, illustrating the FlexiForce sensor input interface circuit.

Figure 5-20. The FlexiForce sensor input interface circuit

In Figure 5-20, Vout can range from +0 to +5VDC based on the the amount of force applied to the sensor’s
target surface area. Wiring this circuit to the Arduino provides a method of controlling the servo motor’s
angular rotation by the amount of force applied to the FFS. The more force applied to the FFS sensing surface,
the greater the angular rotation by the servo motor. Figure 5-21 shows the circuit schematic diagram of the FFS
input interface circuit wired to the Arduino. The Fritzing circuit build showing solderless breadboard layout of
components is illustrated in Figure 5-22.

Note■■   The FFS input interface circuit allows for a simple method of building a low-cost electronic scale, based on
its ability to detect and measure weight of objects. How cool is that?!

Note■■   The amount of force applied to the sensor allows the servo motor to move in discrete rotational angles.
Applying full amount of force to it allows the servo motor to rotate 180°.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

104

A0

GND

+5V D9 Orange
Red

Brown

470K

Figure 5-22. Fritzing circuit build of an Arduino-based servo motor controller with angle-positioning FlexiForce
sensor

Figure 5-21. The FlexiForce-operated servo motor controller

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

105

The actual prototype build of the FlexiForce sensor is shown in Figure 5-23. To make the prototype build,
compact jumper wires are used to secure both the sensor and the servo motor onto the solderless breadboard.
The Knob sketch is used to read the applied force level, process the discrete input signal into an angular position,
and provide a command drive signal to operate the servo motor.

Figure 5-23. Prototype a FlexiForce sensor-operated servo motor controller

Note■■  O ne of the advantages of using a FlexiForce sensor is its ability to bend in various shapes for packaging
into unique enclosures. The sensing elements of the sensor are printed on a flexible plastic material, allowing it to
bend in many shapes without affecting its internal resistance. Mr. Fantastic, move over!

Motion Control Basics
Basically, motion control requires the movement of an object from one location to another. In manufacturing,
a motion control system provides precision in automation equipment with emphasis on positioning, velocity,
and torque control. Examples of motion control applications include, but are not limited to, robotics, conveyor
systems, automobiles, and toys. Although servo motors are the main electromechanical actuators used in motion
control applications, stepper motors are capable of maintaining precision in moving an object a given distance
by the use of electrical pulses. The microcontroller is capable of generating electrical pulses for commanding a
stepper motor’s positioning, as you just saw.

The Darlington Transistor
As illustrated in Figures 5-4 and 5-5, the microcontroller provides step-positioning electrical pulses to four
windings of the stepper motor. A binary code associated with the position of the stepper motor is received by a
Darlington transistor array IC. The Darlington transistor IC provides the appropriate sink drive current to switch
ON the windings of the stepper motor. The Darlington transistor is capable of handling up to 8A of Ipk (peak
current) or 5A of steady state current. The key electrical parameter of the Darlington transistor is its high current

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

106

gain (h
FE

). A nominal value for h
FE

 is 1000. The reason behind this high current gain is because of the wiring of
two NPN transistors. With one transistor having an amplification factor (current gain) wired to another one, the
overall gains of each semiconductor component are multiplied, thus creating a transistor with a significant h

FE

value. Figure 5-24 shows the circuit configuration of a typical Darlington transistor.

E

B

C

Figure 5-24. Darlington transistor circuit

The Darlington array IC (ULN2803) has eight transistors conveniently packaged into an 18-pin dual inline
package (DIP). Four transistors are used to drive the windings of the stepper motor. The base of each transistor is
commanded by the Arduino’s ATmega328 microcontroller to turn ON based on a binary code. The binary code
provides the phase sequence for positioning the stepper motor. Either a full or half-step phase sequence can be
used to command the angular position of the stepper motor. Figure 5-25 shows the phase sequence for full and
half-step positioning of a unipolar stepper motor.

Tip■■   A Darlington transistor is also known as a Darlington pair.

Note■■   Servos and steppers are types of electromechanical actuators used to move or control a mechanism or
system.

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

107

The Unipolar Stepper Motor
The unipolar stepper motor is a special type of DC motor that can rotate in both directions and move in precise
angular steps. It can also sustain a holding torque at zero speed and can be controlled using digital circuits. The
other electrical characteristic of the unipolar stepper motor is it requires only one power supply source.

Tip■■   A bipolar stepper motor requires two DC power supplies or a split power supply (+-Vsupply).

The unipolar stepper motor doesn’t require a feedback control but the use of an encoder or other type of
position sensor will ensure accuracy when exact positioning control is required. As mentioned, operating the
unipolar stepper motor requires a binary code that provides the switching sequence or phase control for turning
ON or OFF the windings of the electromechanical actuator. The unipolar stepper motor has four windings that
require an equivalent number of switching devices, such as transistors, to sink the driving current for proper
operation and control. Figure 5-26 illustrates the typical schematic diagram of a sink driver circuit using four
discrete transistors.

Figure 5-25. Unipolar stepper motor phase sequences (a) full step (b) half step

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

108

A Multisim Digital Controller Model for a Unipolar
Stepper Motor
As mentioned, a unipolar stepper motor can easily be operated by using a digital circuit. The digital circuit is
responsible for providing the binary phase sequence to switch the transistors in proper order to control the
unipolar stepper motor. The basic discrete digital ICs needed for implementing the unipolar stepper motor
controller are 74191 up/down synchronous binary counter, 7408 exclusive OR (EXOR) logic gate, and 7414
Schmitt trigger. The digital controller circuit schematic diagram is shown in Figure 5-27.

As shown in the Multisim circuit model, a logic analyzer is wired to the circuit for the purpose of capturing
the phase sequence binary bit patterns produced by the digital controller. The function generator is set with the
signal generation parameters shown in Figure 5-28. Upon executing a simulation event in Multisim, the timing
diagrams displaying both clockwise (CW) and counterclockwise (CCW) directions are captured on the logic
analyzer. Further analysis of these diagrams will positively correlate to Figure 5-25. Figure 5-29 shows the
CW/CCW timing diagrams of the digital controller. The 7414 Schmitt trigger generates sharp one-shot square
wave pulses for commanding CW/CCW motor direction. The 74191 up/down synchronous 4-bit counter along
with the 7486 EXOR logic gate provide the proper phase sequence for switching the correct transistor to energize
the appropriate winding, in sequence, of the unipolar stepper motor. Each square wave pulse received from the
function generator causes the unipolar stepper motor to rotate a full step in the direction established by the
CW/CCW switch. The motor will come to a complete stop upon closing the reset switch.

Note■■   A logic analyzer is a special type of an oscilloscope capable of using multi I/O (input/output) pins and
signals from a microcontroller or digital circuit.

Figure 5-26. Unipolar stepper motor sink driver circuit

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

109

Figure 5-27. A digital controller for operating a unipolar stepper motor (Multisim circuit model)

Figure 5-28. The setup of a virtual Function Generator instrument for operating the digital controller

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

110

Note■■   To see an example of the stepper motor digital controller, go to http://video_demos.colostate.edu/
mechatronics/index.html#PIC_PROJECTS. Under the actuator section, click the stepper motor PIC-based position
and speed controller link to see an awesome demonstration. I like hot butter on my popcorn, please!

Clockwise Counterclockwise

Figure 5-29. CW/CCW timing diagrams produced by the Multisim-based stepper motor digital controller circuit
model

Build an Arduino Unipolar Stepper Motor Controller
The best way to start exploring stepper motor control is to build a basic driver circuit for operating a unipolar
electromechanical device. Figure 5-30 shows the basic building blocks for such a driver circuit.

Arduino

4

Darlington
Array

IC

4
Stepper Motor

Figure 5-30. An Arduino-based stepper motor controller with Darlington transistor driver

http://video_demos.colostate.edu/mechatronics/index.html#PIC_PROJECTS
http://video_demos.colostate.edu/mechatronics/index.html#PIC_PROJECTS

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

111

The system block diagram of Figure 5-30 reveals the actual circuit schematic diagram shown in Figure 5-31.

Figure 5-31. Circuit schematic diagram of an Arduino-based stepper motor controller with Darlington transistor
driver

Figure 5-32. Actual build of the Arduino-based stepper motor controller with Darlington transistor driver

Although the ATmega328 microcontroller is capable of sourcing and sinking 40mA of continuous drive
current, the ULN2803A Darlington array IC can provide 500mA of current, which is sufficient to operate a
unipolar stepper motor. The diodes shown in the Darlington array IC provide transient protection when the
winding (inductor coil) of the stepper motor is de-energized, thus preventing the internal transistor of the IC
package from being damaged. For a refresher on how this transient process works, review Chapter 4. Figure 5-32
shows the actual build of the Arduino-based stepper motor controller.

http://dx.doi.org/10.1007/978-1-4302-4266-6_4

s

112

Once the circuit is built, a test program can be used to validate the stepper motor operation. The sketch for
controlling the stepper motor can be obtained from the Arduino-Processing IDE by going to File ➤ Examples
➤ Stepper ➤ stepper_oneRevolution. Figure 5-33 shows the stepper_oneRevolution sketch within the Examples
directory. The stepper_oneRevolution sketch (code) is shown in Listing 5-3.

Listing 5-3. The stepper_oneRevolution Sketch

/*
 Stepper Motor Control - one revolution

 This program drives a unipolar or bipolar stepper motor.
 The motor is attached to digital pins 8 - 11 of the Arduino.

 The motor should revolve one revolution in one direction, then
 one revolution in the other direction.

 Created 11 Mar. 2007
 Modified 30 Nov. 2009
 by Tom Igoe

 */

#include<Stepper.h>

const int stepsPerRevolution = 200; // change this to fit the number of steps per revolution
 // for your motor

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8,9,10,11);

void setup() {
 // set the speed at 60 rpm:
 myStepper.setSpeed(60);
 // initialize the serial port:
 Serial.begin(9600);
}

void loop() {
 // step one revolution in one direction:
 Serial.println("clockwise");
 myStepper.step(stepsPerRevolution);
 delay(500);

 // step one revolution in the other direction:
 Serial.println("counterclockwise");
 myStepper.step(-stepsPerRevolution);
 delay(500);
}

After you upload the sketch to the Arduino board, the stepper motor makes one revolution and reverses
direction continuously. An Easter egg in the sketch is the message it displays on a serial monitor with each
directional revolution the stepper motor makes. Figure 5-34 shows the messages displayed on the serial monitor
with each directional revolution pass made by the stepper motor.

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

113

Note■■  O nce you have a functional unipolar stepper motor controller, other motors can be tested—an awesome
electronics application of built-in testability system (BITs).

The lines of code within the sketch responsible for generating these messages are as follows:

Serial.println("clockwise");
:
Serial.println("counterclockwise");

Figure 5-33. Obtaining the Knob sketch within the Arduino-Processing IDE

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

114

The println instruction is used quite often in the C programming language to display text messages or
reveal the content of variables for numerical analysis or debugging code. Therefore, in this example test code,
whatever text message the embedded system wants to display in the Serial Monitor can be easily accomplished
using this basic programming instruction.

Adding a Speed Control Function
With a modification to the sketch and the addition of a potentiometer to the Arduino’s analog port pin A0, a
speed control function can be added to the unipolar stepper motor. Referencing the system block diagram of
Figure 5-4, looking at the individual blocks will reveal the circuit schematic diagram shown in Figure 5-35.

Figure 5-34. Gaining access to the Serial Monitor for viewing messages within the Arduino Processing IDE

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

115

By increasing the resistance of the 10KΩ potentiometer, the stepper motor’s speed increases proportionally.
The stepper motor controller circuit is truly an example of a remix design. The sketch for controlling the stepper
motor with a potentiometer is found in the Arduino-Processing IDE by going to File ➤ Examples ➤ Stepper
➤ stepper_speedControl. The stepper_speedControl sketch is shown in Listing 5-4.

Listing 5-4. The stepper_speedControl Sketch

/*
 Stepper Motor Control - speed control

 This program drives a unipolar or bipolar stepper motor.
 The motor is attached to digital pins 8 - 11 of the Arduino.
 A potentiometer is connected to analog input 0.

 The motor will rotate in a clockwise direction. The higher the potentiometer value,
 the faster the motor speed. Because setSpeed() sets the delay between steps,
 you may notice the motor is less responsive to changes in the sensor value at
 low speeds.

 Created 30 Nov. 2009
 Modified 28 Oct 2010
 by Tom Igoe

 */

#include<Stepper.h>

const int stepsPerRevolution = 200; // change this to fit the number of steps per revolution
// for your motor

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8,9,10,11);

int stepCount = 0; // number of steps the motor has taken

Figure 5-35. Speed control added to the unipolar stepper motor controller

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

116

void setup() {
 // initialize the serial port:
 Serial.begin(9600);
}
void loop() {
 // read the sensor value:
 int sensorReading = analogRead(A0);
 // map it to a range from 0 to 100:
 int motorSpeed = map(sensorReading, 0, 1023, 0, 100);
 // set the motor speed:
 if (motorSpeed > 0) {
 myStepper.setSpeed(motorSpeed);
 // step 1/100 of a revolution:
 myStepper.step(stepsPerRevolution/100);
 }
}

When you have uploaded the sketch to the Arduino board, the stepper motor may be turning at some
predetermined speed set by the potentiometer. Rotate the potentiometer in a CW/CCW direction and the
unipolar motor will increase or decrease its speed accordingly.

Tip■■   The Arduino Processing IDE makes it quite easy to start developing embedded system devices because of
several examples provided with the tool. Anyone for a journey to the center of the Earth?

Final Testing of the Servo and Stepper Motor Controllers
In this chapter, a series of subsection testing activities have been outlined to capture bugs in building the
hardware circuits. Using a DMM and an oscilloscope, the testing techniques described can be validated on
the bench. Depending on the type of vendor of the testing instruments, the results may vary by +/−10 %. Key
elements to keep in mind while testing are

Make sure the wiring is correct prior to applying voltage to the Arduino and supporting •	
circuits.

Use the proper wiring methods discussed in •	 Chapter 3.

The “How It Works” section of this chapter is a great reference to verify that the circuit •	
breadboard is working correctly.

Review the sketch entered into the Arduino IDE Editor for typos that will cause the •	
hardware device to operate improperly.

http://dx.doi.org/10.1007/978-1-4302-4266-6_3

CHAPTER 5 ■ Motion Control with an Arduino: Servo and Stepper Motor Controls

117

Further Discovery Method Suggestions
For the unipolar stepper motor controller, try changing the speed with a FlexiForce sensor or joystick. Also,
experiment with print text messages for diagnostics/testing of both servo and stepper motor controllers using the
Serial Monitor. Try a continuous-mode servo motor, and record and compare its behavior to a non-continuous
device. In addition to the Power ON LED located on the Arduino PCB, add an external indicator to the
controllers. Remember to document your designs in a lab notebook (spiral or three ring binder type) along with
any sketch modifications you made for the new servo and stepper motor controllers you’ve created!

119

Chapter 6

The Music Box

The Arduino has the ability to generate a multitude of sounds and tones, and a combination of them can produce
snippets of musical melodies. Creating sounds or tones is relatively easy using the tone() instruction along with
its code library. This chapter will show how you can use the tone instruction and its library to generate sounds
and melodies. This chapter will use the physical-computing techniques discussed in previous chapters in the
creation of a human-interactive electronic music box. Figure 6-1 shows the parts required for the hands-on
projects and experiments.

Parts List
Arduino Duemilanove or equivalent

10K potentiometer

470K resistor

4 10K resistors

FlexiForce sensor

CdS photocell

4-bit DIP switch

2 N3904 NPN transistor

IFR630A N-channel MOSFET

Keypad

8Ω speaker

Piezo-buzzer

Small solderless breadboard

22AWG solid wire

Digital multimeter

Oscilloscope (optional)

Electronic tools

CHAPTER 6 ■ The Music Box

120

Remixing Physical-Computing and Driver Interface Circuits
Continuing with the technique of remixing, we’ll use the following components for creating human interaction
with the electronic music box: a FlexiForce sensora 4-bit DIP switch, a CdS photocell, a speaker, and a keypad.
The BJT (bipolar junction transistor) and PMOSFET (power metal oxide semiconductor field effect transistor)
electronic components will be used to drive a piezo-buzzer, and a speaker will be used to enhance the audible
output of the Arduino by providing sufficient sourcing current to the audio output components. The Arduino
will provide the audible sound based on the tone instruction and its associated software library components.
Figures 6-2, 6-3, 6-4, and 6-5 show variations of system block diagrams for four physical-computing music box
controllers. Also, the sketch used in the interactive electronic devices will allow audible tone control operation for
the piezo-buzzer and speaker audio output components.

Note■■   The original music boxes of the 19th and 20th centuries were musical instruments that produced sound
by a set of pins placed on a revolving cylinder that plucked the tuned teeth of a steel comb. Today’s music boxes
produces sound with the help a microcontroller and embedded software. All hail to the mighty electron!

Figure 6-1. Parts required for the music box projects and experiments

CHAPTER 6 ■ The Music Box

121

Light Detection Circuit

l Arduino

Transistor Driver

Speaker

Piezo-Buzzer

1 1

Figure 6-2. System block diagram for an Arduino-based physical-computing music box controller

FlexiForce Sensor

Arduino

Transistor Driver

Speaker

Piezo-Buzzer

1 1

Figure 6-3. Systems block diagram for a remixed FlexiForce sensor–activated music box controller

Keypad

Arduino

Transistor
Driver

Speaker

Piezo-Buzzer

3 1

Figure 6-4. Systems block diagram for a keypad-activated music box controller

CHAPTER 6 ■ The Music Box

122

How It Works
The piezoelectric element of the buzzer is made from either a crystal or ceramic material packaged inside a small
cylinder. It produces a small electric voltage when subjected to mechanical stress. When a piezoelectric element
is stressed, its structure is distorted and it produces a clicking sound. By pulsing the piezoelectric element several
times per second, you can make it emit an audible tone or sound. Pulsing the element at distinct frequencies
makes the element produce different tones or sounds. Using the Arduino’s ATmega328 microcontroller’s PWM
output port and a small amount of code, you can create a piezo-buzzer to generate snippets of sound to create
music. Figure 6-6 shows a typical piezo-buzzer, along with an equivalent Fritzing model.

Potentiometer

Arduino

Transistor
Driver

Speaker

Piezo-Buzzer

1 1

Figure 6-5. Systemblock diagram for a potentiometer-activated music box controller

Figure 6-6. A typical piezo-buzzer and a Fritzing model: (L) Front of piezo-buzzer, (R) Back of piezo-buzzer (B)
Fritzing piezo-buzzer

CHAPTER 6 ■ THE MusiC Box

123

Note  The piezo-buzzer works via a piezoelectric effect, which involves linear electromechanical interaction
between the mechanical and the electrical state in crystalline materials. isn’t material science wonderful?

Experimenting with PWM
The Arduino computational platform can provide the tone signal to drive a typical piezo-buzzer directly. PWM
(pulse width modulation, discussed in Chapter 1) is the technique behind signal generation. In this chapter
PWM will be used in the application of waveform generation, allowing the Arduino to produce different tones for
the music box controller device. The Arduino has three PWM output ports. PWM port 9 will be used for the tone
signal in this miniature lab experiment. Figure 6-7 shows the pinout of the ATmega328 microcontroller and the
electrical interface to the 1×8 inline header connector for the PWM signal.

(OSC1)PB1

ATmega328
microcontroller

15 2
9 PWM

1x8 Inline
Header Connector

Figure 6-7. The ATmega328 Microcontroller PWM output port connecting to output 9 of the Arduino computational
platform’s 1 × 8 inline header connector

Internally, the ATmega328 microcontroller has a waveform generator capable of creating switching signals for
motor control, lighting, and frequency synthesis applications. The waveform generator output synthesis is based
on setting the operating mode WGM2:0 and the COMnx1:0 using either the C or Assembly Language. There is also
an internal counter inside the PWM circuit that alternates between top (high byte) and bottom (low byte) counting
to assist in the signal creation by the waveform generator. A prescale number (n) is used with the waveform
generator to determine the output frequency of the signal. The equation is shown following. It too is programmed
in either C or Assembly Language. The waveform generator block diagram is illustrated in Figure 6-8.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 6 ■ The Music Box

124

Focn fclkIO/n 256= × 	

Again, n is the prescale factor, with values of 1, 8, 256, or 1024 and Focn is the oscillator frequency counter.

WGM02:0

Waveform Generator
(OSC1)PB1

COM0x1:0

Top

Bottom
Focn

15
2

9 PWM

1 x 8 Inline
Header Connector

ATmega328
Microcontroller

Counter

Figure 6-8. The ATmega328 microcontroller’s waveform generator for producing PWM signals

Note■■   The tones and sounds that can be created from the Arduino’s PWM output port are based on the
ATmega328 microcontroller’s waveform generator, which can arbitrarily create or define any tone or sound through
software.

You can easily build a Multisim circuit model to experiment with PWM and waveform generation. As shown
in Figure 6-9, all that’s required is a controlled one-shot, two DC power supplies, a SPDT electric switch, a
function generator, and a 1K potentiometer.

To configure the one-shot component, the following setup is required. Double-click the component and
select the Value tab. The “Clock trigger value” fields are used to set the clock pin threshold value. When the
voltage at this pin reaches the defined value, it will trigger the component. The input voltage at the control pin is
used to determine the output pulse width. In the circuit model shown in Figure 6-9, the values shown in Table 6-1
were entered.

Figure 6-10 shows the configuration dialog box for entering the control array and pulse width array values
for the one-shot component.

CHAPTER 6 ■ The Music Box

125

Figure 6-9. A Multisim PWM virtual circuit

Table 6-1. Values Entered

Control Array Pulse Width Array (Seconds)

1 0.0001

3 0.0003

Note■■   The 74LS123 TTL IC has dual one-shot outputs capable of creating a PWM circuit.

When the voltage to the control pin is 1 V, the output pulse is 1 ms. When the input is at 3 V, the output pulse
will be 3 ms. Since Table 6-1 has a piecewise property, when the input to the control pin is 2 V, the output pulse
will be 2 ms, and when it is 4 V, the pulse will be 4 ms. When simulating the Figure 6-9 circuit, please note the
following:

Press the space bar on your keyboard. When the input is set to high, the output should be zero. When set to
low, the circuit will be in operation mode.

The function generator outputs a triangle wave. The setup of the function generator is shown in Figure 6-11.
When it passes 0.5 V, it will trigger the one-shot.

Pressing A on the keyboard changes the potentiometer wiper position, which controls the voltage at the
control pin, controlling your pulse width.

The results of the setup are shown on the virtual oscilloscope in Figure 6-12. Experimenting with a 10 K
potentiometer will allow various PWM duty cycles to be displayed on the oscilloscope. See the “Pulse Width
Modulation Basics” section of Chapter 1 for calculating duty cycle values.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 6 ■ The Music Box

126

Figure 6-11. The Multisim function generator setup for a triangle wave

Figure 6-10. Configuring the one-shot component for PWM mode of operation

CHAPTER 6 ■ The Music Box

127

Building and Testing a Basic Music Box Controller
Building a basic music box controller is quite simple and only requires an Arduino and a piezo-buzzer, as shown
in the system block diagram of Figure 6-13. Figure 6-14 shows the Fritzing sketch. The Fritzing software makes
it convenient to plan a solderless breadboard layout of components for optimum spacing quite easily. Although
hand-sketching is the original technique for parts placement on a breadboard (see the “Assembly of the Light
Sequencer Circuit on a Breadboard” section of Chapter 3), Fritzing software provides a clean way of placing
components on a breadboard. Also, it allows you to change the design quite easily and save it digitally, preventing
you from having to redraw the prototype from scratch. You will upload Twinkle, Twinkle, Little Star sketch to the
Arduino as the musical melody.

Figure 6-12. A triangle wave and a PWM signal displayed on a Multisim virtual oscilloscope

Arduino

1 Piezo-Buzzer

Figure 6-13. System block diagram for a basic music box controller

http://dx.doi.org/10.1007/978-1-4302-4266-6_3

CHAPTER 6 ■ The Music Box

128

The circuit schematic diagram for the basic music box controller is shown in Figure 6-15.

GND +5V
D9

Figure 6-14. A Fritzing music box controller sketch

A0

GND

Arduino

+5V

D9

+5V

Piezo-Buzzer

Figure 6-15. Circuit schematic diagram for the Arduino-based music box controller

CHAPTER 6 ■ The Music Box

129

The prototype controller circuit is built on a solderless breadboard using the circuit schematic diagram of
Figure 6-16. The prototype build is shown in Figure 6-16.

Figure 6-16. The physical prototype of the music box controller

The code (Arduino sketch) used to test the prototype is shown in Listing 6-1.

Listing 6-1.  The Code for Playing “Twinkle, Twinkle, Little Star”

/* Melody
 * (cleft) 2005 D. Cuartielles for K3
 *
 * This example uses a piezo speaker to play melodies. It sends
 * a square wave of the appropriate frequency to the piezo, generating
 * the corresponding tone.
 *
 * The calculation of the tones is made following the mathematical
 * operation:
 *
 * timeHigh = period / 2 = 1 / (2 * toneFrequency)
 *
 * where the different tones are described as in the table:
 *
 * note frequency period timeHigh
 * c 261 Hz 3830 1915
 * d 294 Hz 3400 1700
 * e 329 Hz 3038 1519
 * f 349 Hz 2864 1432
 * g 392 Hz 2550 1275
 * a 440 Hz 2272 1136
 * b 493 Hz 2028 1014
 * C 523 Hz 1912 956
 *
 * http://www.arduino.cc/en/Tutorial/Melody
 */
 int speakerPin = 9;
int length = 15; // the number of notes

CHAPTER 6 ■ The Music Box

130

char notes[] = "ccggaagffeeddc "; // a space represents a rest
int beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };
int tempo = 300;

void playTone(int tone, int duration) {
 for (long i = 0; i < duration * 1000 L; i + = tone * 2) {
 digitalWrite(speakerPin, HIGH);
 delayMicroseconds(tone);
 digitalWrite(speakerPin, LOW);
 delayMicroseconds(tone);
 }
}

void playNote(char note, int duration) {
 char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };
 int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956 };

 // play the tone corresponding to the note name
 for (int i = 0; i < 8; i++) {
 if (names[i] == note) {
 playTone(tones[i], duration);
 }
 }
}

void setup() {
 pinMode(speakerPin, OUTPUT);
}

void loop() {
 for (int i = 0; i < length; i++) {
 if (notes[i] == ' ') {
 delay(beats[i] * tempo); // rest
 } else {
 playNote(notes[i], beats[i] * tempo);
 }

 // pause between notes
 delay(tempo / 2);
 }
}

Once the sketch is uploaded to the Arduino, it will play the “Twinkle, Twinkle, Little Star” melody. The
melody keeps playing until power is removed from the Arduino.

Try It!
To see the tones electrically, attach an oscilloscope (if one is available) across the piezo-buzzer, as shown in
Figure 6-17. A close-up of the waveform data displayed on the oscilloscope is shown in Figure 6-18. As the
melody plays, various PWM signals flash on the screen. The frequencies for each note are visible as well. This
method of seeing the music play, in terms of notes, on the oscilloscope, is a quick way to validate the sketch.

CHAPTER 6 ■ The Music Box

131

If you’d like to play a different melody is desired, you can change the sketch by modifying the int length
variable, char notes[], and the int beats[] arrays. Try changing these three lines of code to the following:

int length = 13; // the number of notes
 char notes[] = "ccdcfeccdcgf "; // a space represents a rest
 int beats[] = { 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 4 };

After making the modifications to the “Twinkle, Twinkle, Little Star” sketch with these three lines of code,
upload the new program to the Arduino. The music box controller will now play a new song instead of the original
one. The note pattern will change, and you can observe this on the oscilloscope. Figure 6-19 shows the new PWM
waveform based on the three lines of modified code.

Figure 6-17. Attaching an oscilloscope to see the PWM signal as the sketch is executing on the Arduino

Figure 6-18. Saved image from a digital storage oscilloscope of the music box controller PWM output playing
“Twinkle, Twinkle, Little Star”

CHAPTER 6 ■ The Music Box

132

You can find other musical tone sketches by clicking File ➤ Examples ➤ Digital in the Arduino-Processing
editor. If the melody playing is becoming a nuisance while validating the sketch, leave the oscilloscope attached
to the Arduino’ s PWM port pin and remove the piezo-buzzer from the circuit. After you remove the piezo-buzzer,
note that the oscilloscope will no longer display a ripple the on time, as shown in on the right in Figure 6-20.

You can add another hardware component to adjust the volume of the piezo-buzzer if leaving the
oscilloscope attached is not an option. A potentiometer can be wired to the Arduino’s PWM port pin 9 using the
circuit schematic diagram shown on the left in Figure 6-20.

Figure 6-19. Saved image from a digital storage oscilloscope of the music box controller PWM output playing “Happy
Birthday.” Notice the smooth on time vs. that of the PWM waveform for “Twinkle, Twinkle, Little Star.”

Figure 6-20. Circuit schematic diagram for attaching an oscilloscope to see the PWM signal (left) and the oscilloscope
showing the sketch executing on the Arduino (right). Volume control is provided by a 10Kpotentiometer.

CHAPTER 6 ■ THE MusiC Box

133

A close-up of the PWM signal generated from the “Happy Birthday” melody is shown in Figure 6-21.

Figure 6-21. Saved image of PWM output adjusted to one-half volume using a 10 K potentiometer. Notice the
oscillations on both the peak voltage and off time of the PWM output signal.

The oscillations on both the peak voltage and off time of the PWM output signal are caused by the piezo-
buzzer’s internal crystallization behavior being stimulated by the switching of the ATmega328’s OSC1 port. You
can consider the oscillations to be small amounts of electrical noise being induced by the piezo-buzzer onto
the PWM output signal generated by the ATmega328. Removal of the piezo-buzzer will allow clean pulses to be
produced by the ATmega328 microcontroller.

Driving a Speaker
Besides allowing melodies to be played through a piezo-buzzer, the Arduino is capable of driving an 8Ω speaker.
In this case, the output does not sound as digitized as it does with the piezo-buzzer. In observing the waveforms
on an oscilloscope, notice that the top peaks have fewer ripples on the PWM output signal from the speaker
as compared to the piezo-buzzer output. Figure 6-22 illustrates the PWM output signal from the Arduino’s
ATmega328 microcontroller with the ripple removed from the waveform. The speaker has an intrinsic inductance
of the coil that surrounds the cone, which provides a little filtering to the PWM output signal. The piezo-buzzer is
somewhat noisy in operation because of the crystalline structure and voltage signal it generates when disturbed
by a switching source (in this case, the PWM signal) applied to it. To limit the amount of current flowing thru the
coil of a speaker, a 100 Ω resistor is added to one of the leads. Figure 6-23 shows the Fritzing sketch of a speaker
replacing the piezo-buzzer in the original music box controller. The circuit schematic diagram and physical
prototype is illustrated in Figure 6-24.

CHAPTER 6 ■ The Music Box

134

Note■■   The Fritzing software has the ability to create circuit schematic diagrams and printed circuit boards (PCBs).

Figure 6-22. The PWM output signal from an 8Ω speaker. Notice that there is no ripple on either the peak voltage or
the off time of the PWM output signal.

GND +5V

D9

Figure 6-23. The Fritzing sketch for driving a speaker with the Arduino

CHAPTER 6 ■ The Music Box

135

The volume of the speaker can be controlled using the 10K potentiometer. As discussed, the ripple on the
PWM output signal has been minimized tremendously as compared to that of the piezo-buzzer. The adjusted
speaker volume waveform is shown in Figure 6-25.

Figure 6-24. Circuit schematic diagram with prototype build of a music box controller with speaker

Figure 6-25. An adjusted PWM output signal driven by the Arduino

Physical Computing and the Music Box Controller
The music box controller can easily be made interactive by interfacing sensors to the Arduino computational
platform, thus creating a physical-computing layer to the musical device. As discussed in Chapter 3 (the
ATmega328 microcontroller ADC circuit schematic diagram), the ATmega328 microcontroller has eight ADC

http://dx.doi.org/10.1007/978-1-4302-4266-6_3

CHAPTER 6 ■ The Music Box

136

channels, of which six are used for the Arduino, thereby making sensory-interfacing expansion easy and
seamless. The physical-computing device’s system block diagrams shown in Figures 6-2 through 6-5 will be
investigated in this section. Also, the operation of the PMOSFET will be explained as it pertains to providing a
power driver circuit for both a piezo-buzzer and a speaker.

What Is a PMOSFET?
A PMOSET is designed to handle high-current electrical loads. It has high input impedance (AC resistance) with
an electrically insulated gate, making it a voltage-controlled device. Because of this, it doesn’t have the problem
of current leakage like a bipolar junction transistor making it unstable for frequency response–based applications
such as amplifiers. Also, the drain-to-source resistance (Rds) is low—in the milliohm (mΩ) range. Because of this
range, its power dissipation is quite low compared to the BJT, making it an excellent electronic switch for directly
driving electromechanical loads that demand high-current, such as light bulbs, small DC motors, and solenoids.
It’s a majority-carrier (electron) device that stores no electrical charge, making it switch faster than a BJT.
A majority carrier is the electrons that move freely in electronic circuit. The PMOSFET can be used in amplifier
and switching applications, just like the BJT, allowing it to be a direct high power-substitute component.
Figure 6-26 shows a typical PMOSFET component with a pinout, along with its electrical symbol.

Gate

Drain

Source

Figure 6-26. Pinout for an N-channel PMOSFET (IRF630A) with its electrical symbol

Note■■   Just like the BJT, the PMOSFET has two types of devices: an N-channel and a P-channel component.

The N-channel PMOSFET is labeled as shown in Figure 6-26 because the arrow tip, which is negative,
touches one of the dashed lines making up part of the channel. The channel allows migration of electrons
received from the gate, thereby turning on the PMOSFET. Current flows between the drain and source, allowing
the PMOSFET to switch on any electrical load connected to it. The drain, gate, and source are the pins of a
PMOSFET. As mentioned, the Rds is very low, allowing the current to flow easily between the two pins. With such
a low Rds, more current can flow, making it ideal for switching high-current electrical loads, as compared to the
BJT. The metal tab attached to the PMOSFET can serve as a thermal transfer mechanism when driving high-
current electrical loads. An external heat sink attached to this tab, along with thermal conductive paste, will allow
the PMOSFET to stay cool when switching high-current devices. There is also a P-channel MOSFET component
that can be used in amplifier or circuit-switching applications. The arrow for the P-channel PMOSFET points
away from the channel, thereby allowing the positive material to make contact with the channel. Figure 6-27
shows the electrical symbol for a P-channel MOSFET component.

CHAPTER 6 ■ The Music Box

137

A PMOSFET Multisim Circuit Model
Figure 6-28 shows a Multisim circuit model to illustrate the operation of a PMOSFET as an electronic driver. The
operation of the circuit is such that turning on the electronic driver with the SPST (single-pole, single-throw)
switch and changing the 1MΩ potentiometer resistance value will change the brightness of the LED from off to on.

Gate

Drain

Source

Figure 6-27. The electrical symbol for a P-channel PMOSFET

Figure 6-28. A Multisim PMOSFET LED driver demonstration circuit (Forrest Mims Basic Electronics Lab Manual)

The LED turns on based on the gate-threshold voltage (Vgs-th), which typically is 3VDC. The minimum
Vgs-th voltage value is 2VDC. In Figure 6-29 the LED is off because the Vgs-th value is 1.5VDC. By adjusting
the 1MΩ potentiometer to 2VDC, the LED will turn on. Figure 6-30 illustrates controlling the PMOSFET based
on Vgs-th.

Note■■   The Vgs-th value is similar to biasing a BJT. The challenge of switching the PMOSFET is overcoming the
internal gate capacitance (Cg). Although in the Multisim circuit model, an increase of Vgs-th was able to overcome
the internal Cg, for sensitive or crucial high-speed switching circuits, an electronic circuit known as an f is used
to provide a high gate voltage (Vg) to surpass Cg voltage, thereby allowing the PMOSFET to switch on/off at the
appropriate switching time. Now that’s how to flex muscles in electronics!

CHAPTER 6 ■ The Music Box

138

Using the systems block diagram as a design guide, the Fritzing circuit build/model is shown in Figure 6-31.
The circuit schematic diagram and the actual prototype build of the interactive music box controller are shown
in Figure 6-32. The sketch uploaded to the Arduino will allow you to interact with the music box controller by
waving a hand over the CdS photocell.

With the PMOSFET capable of driving electrical loads as high as 200VDC at 9A, an 8 Ω speaker driver circuit
can be realized quite easily. Figure 6-30 shows a remixed system block diagram of Figure 6-2 with a PMOSFET
speaker driver circuit with a volume control.

Note■■   Due to the driving power that the PMOSFET provides in outputting sound to the speaker, the volume
control allows you to adjust the PWM signal down to a reasonable level.

Figure 6-29. A Multisim PMOSFET LED driver demonstration circuit (left), and the proper Vgs-th signal for switching
on the LED (right)

Light Detection Circuit

Potentiometer

PMOSFET
Driver

l

1 1

Arduino

1

Speaker

Piezo-Buzzer

Figure 6-30. System block diagram for the remixed interactive music box controller

CHAPTER 6 ■ The Music Box

139

GND +5V

D9

Figure 6-31. The Fritzing circuit build of the interactive music box controller with a PMOSFET speaker driver
circuit

Figure 6-32. Prototype build of the interactive music box controller with a circuit schematic diagram

CHAPTER 6 ■ The Music Box

140

Initially, the music box controller will have a 2.77KHz buzzing sound without human interaction. Placing
your hand over the light detection circuit sensor will allow it to blare out a 625 Hz PWM signal. Continued
waving of the hand over the photocell will cause the music box controller to generate different sounds with
unique frequencies. Figure 6-33 shows the waveform pattern with the music box controller’s photocell under
ambient light.

Figure 6-33. PWM output signal from interactive music box under ambient lighting

Figure 6-34. PWM output signal from the interactive music box with a hand passing over the photocell

By waving a hand over the CdS cell, the tone/pitch is changed, as well as the frequency, as shown in
Figure 6-34. Notice the sharp spike in Figure 6-34—the transient (electrical noise) on the positive, or rising, edge
of the PWM signal is caused by the PMOSFET switching on quite fast and hard. The PMOSFET on-switching time
is quite fast and can produce noisy positive edges. These noisy signal peak edges can be reduced either through
software or by adding a few nanofarads (nF) of capacitance at the gate of the switching component.

CHAPTER 6 ■ The Music Box

141

To obtain a different set of tones, you can replace the 8Ω speaker with the piezo-buzzer. Figure 6-35 shows
the music box controller PWM output under two lighting conditions: ambient light and passing a hand or object
over the photocell. Although this device is more of a sound-effects generator than a music box, with a little
practice, basic musical tunes can be made by the wave a hand!

a) b)

Figure 6-35. Piezo buzzer PWM output signal from interactive music box in ambient light (a) and with a hand
passing over the photocell (b). The 10K potentiometer was adjusted to approximately half volume. Waveforms may
vary slightly based on the type of ambient lighting (e.g., incandescent vs. CFL).

Note■■   This music box controller is patterned after the famous theremin musical instrument. It was patented
in 1928 by physics professor Lev Sergeivich Termen (aka Leon Theremin). The basic operating principle behind
his invention is the heterodyning (i.e., combining) of two radio frequency signals to produce audio tones using
oscillators. One oscillator is fixed while the other controls the pitch of the tone by using an antenna. The body of
the performer is grounded by standing on a metal plate. The performer’s hand, which is an extension of the metal
plate, acts as a grounded plate of a variable capacitor in an LC (inductor-capacitor) oscillator circuit of the theremin.
This LC oscillator circuit establishes one frequency. The other hand changes the frequency of the first oscillator by
movement near the antenna. The difference between the two frequencies creates a new audio tone.

Sketch for the Interactive Music Box Controller
The sketch to be uploaded to the interactive music box controller is within the Examples folder of the Arduino
IDE software. To obtain the sketch for the interactive music box within the Arduino IDE, go to File ➤ Examples
➤ Digital ➤ tonePitchFollower. Figure 6-36 shows the tonePitchFollower sketch within the Examples directory.

Note■■   A quick method of developing software is to remix it to suit the new application.

CHAPTER 6 ■ The Music Box

142

The tonePitchFollower sketch is shown in Listing 6-2.

Listing 6-2.  The tonePitchFollower Sketch

/*
 Pitch follower

 Plays a pitch that changes based on a changing analog input

Figure 6-36. Obtaining the tonePitchFollower sketch in the Arduino IDE

CHAPTER 6 ■ THE MusiC Box

143

 circuit:
 * 8-ohm speaker on digital pin 9
 * photoresistor on analog 0 to 5 V
 * 4.7 K resistor on analog 0 to ground

 created 21 Jan 2010
 modified 30 Aug 2011
 by Tom Igoe

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/Tone2
 */
void setup() {
 // initialize serial communications (for debugging only):
 Serial.begin(9600);
}
void loop() {
 // read the sensor:
 int sensorReading = analogRead(A0);
 // print the sensor reading so you know its range
 Serial.println(sensorReading);
 // map the pitch to the range of the analog input.
 // change the minimum and maximum input numbers below
 // depending on the range your sensor's giving:
 int thisPitch = map(sensorReading, 400, 1000, 100, 1000);

 // play the pitch:
 tone(9, thisPitch, 10);
}

An embedded feature of the sketch is the ability to see the analog data generated by the sensor wired to A0 of
the Arduino’s inline header connector. The serial monitor of the Arduino-Processing IDE is called based on this
single line of code:

Serial.println(sensorReading);

This line of code is a built-in debug feature that allows the sensor-interfacing circuit to be validated prior to
adding either the piezo-buzzer or speaker for audio feedback. The serial monitor can be obtained as shown in
Figure 6-37.

CHAPTER 6 ■ The Music Box

144

Figure 6-37. Obtaining the serial monitor within the Arduino IDE

CHAPTER 6 ■ The Music Box

145

Notice COM16 at the top left of the serial monitor. This is the communication port that the Arduino
is plugged into or attached to. This value will vary based on the communication port you use during
microcontroller-electronics development.

Building and Testing a Basic Music Box Controller
with a Keypad
The final project in this chapter is to build a music box controller capable of generating tones using a keypad.
Three distinct tones will be heard through the 8Ω speaker using three keys on a keypad. The systemblock diagram
for this device was shown previously, in Figure 6-4. The circuit schematic diagram for the three-tone music box
controller is shown in Figure 6-39.

Tip■■   Tones were generated on old telephone keypads using a 567 Tone Decoder IC. The Arduino makes
generating tones easy.

The output of the serial monitor based on the CdS photocell interfacing circuit is shown in Figure 6-38.

Figure 6-38. CdS photocell data being displayed on the serial monitor within the Arduino IDE

CHAPTER 6 ■ The Music Box

146

Pressing keys 1, 2, and 3 generates distinct frequencies heard as tones through the 8Ω speaker. The keypad
shown in the circuit schematic diagram can easily be replaced with three tactile switches or a 4-bit DIP switch.
The actual prototype build for the circuit schematic diagram shown in Figure 6-39 is shown in Figure 6-40.

Figure 6-39. Circuit schematic diagram for the three-key music box controller

Figure 6-40. The prototype build of the three-key music box controller

CHAPTER 6 ■ The Music Box

147

You can find the toneKeyboard sketch by going to Examples ➤ Digital ➤ toneKeyboard in the Arduino IDE.
The sketch listing for uploading to the Arduino is shown in Listing 6-3.

Listing 6-3.  The toneKeyboard Sketch

/*
 keyboard

 Plays a pitch that changes based on a changing analog input

 circuit:
 * 3 force-sensing resistors from +5V to analog in 0 through 2
 * 3 10 K resistors from analog in 0 through 2 to ground
 * 8-ohm speaker on digital pin 9

 created 21 Jan 2010
 modified 30 Aug 2011
 by Tom Igoe
 modified 23 Jan 2012
 by Don Wilcher

This example code is in the public domain.

 http://arduino.cc/en/Tutorial/Tone3

 */

#include "pitches.h"

const int threshold = 10; // minimum reading of the sensors that generates a note

// notes to play, corresponding to the 3 sensors:
int notes[] = {
 NOTE_A4, NOTE_B4,NOTE_C3 };

void setup() {
}
void loop() {
 for (int thisSensor = 0; thisSensor < 3; thisSensor++) {
 // get a sensor reading:
 int sensorReading = analogRead(thisSensor);

 // if the sensor is pressed hard enough:
 if (sensorReading > threshold) {
 // play the note corresponding to this sensor:
 tone(9, notes[thisSensor], 20);
 }
 }
 Serial.println();
}

Upon uploading the sketch to the Arduino, pressing keys 1, 2, 3, or any combination of them on the keypad
will produce unique tones.

CHAPTER 6 ■ The Music Box

148

Final Testing of the Music Box Controllers
This chapter outlined a series of activities for visually looking at the operation of the Arduino circuits. Using an
oscilloscope, the circuit waveforms maybe used to validate proper operation of the Arduino music box devices.
Depending on the vendor and type of testing instruments, the results may vary by +/-10 percent. Here are some
things to keep in mind while testing:

Make sure the wiring is correct prior to applying voltage to the Arduino and supporting •	
circuits.

Use proper wiring methods as discussed in •	 Chapter 3.

Refer to the “How It Works” section of this chapter for details on verifying that the circuit •	
breadboard is working correctly.

Review the sketch entered into the Arduino IDE editor for typos that could cause the •	
hardware device to operate improperly.

Further Discovery Methods
For the music box controller, try experimenting with a FlexiForce sensor or joystick. The system block diagram
for the FlexiForce sensor was shown in Figure 6-3. The tonePitchFollower sketch will work with both the
FlexiForce sensor and the joystick. Also, experiment with print text messages for diagnostics/testing of the
tonePitchFollower and toneKeyboard sketches using the serial monitor, as discussed earlier in this chapter. Try
adding additional key buttons to the circuit schematic diagram shown in Figure 6-39 Last, replace the IRF630A
PMOSFET with a 2N3904 NPN transistor and note the difference in audio output gain. Remember to document
your designs in a lab notebook along any modifications you made to the sketch.

http://dx.doi.org/10.1007/978-1-4302-4266-6_3

149

Chapter 7

Fun with Haptics

Haptics is the sensing and manipulation of objects using touch. The Arduino has the ability to monitor and
control devices using sensors and electromechanical actuators. Sensory devices that can be interfaced or wired
to the Arduino include CdS photocells, tactile switches, thermistors, and temperature ICs. Electromechanical
actuators (such as solenoids) and motors (such as servos, steppers, and DC motors) can be used to manipulate or
change the orientation of objects either in a linear or angular direction.

There are several areas of haptics research (human, machine, and computer) being conducted in university
and corporate research labs. In this chapter, the fundamentals of machine haptics will be explored through
basic lab experiments and projects using off-the-shelf or junk box electronic components. A 1 DOF (1 degree
of freedom) robot is used to illustrate a simple feedback technique. To help in the discussion of haptics,
mechatronics will be introduced in this chapter along with additional physical computing prototyping methods.
Figure 7-1 shows the parts required for the hands-on projects and experiments.

Parts List
1 Arduino Duemilanove or equivalent

1 joystick

1 470K resistor

4 10K resistor

1 FlexiForce sensor

1 CdS photocell

1 4-bit DIP switch

1 2 N3904 NPN transistor

1 IFR630A N-channel MOSFET

1 keypad

1 vibration motor

1 small solderless breadboard

22 AWG solid wire

CHAPTER 7 ■ Fun with Haptics

150

Digital multimeter

Oscilloscope (optional)

Electronic tools

Robotics kits

Figure 7-1. Parts required for the haptics projects and experiments

Remixing Physical Computing and Driver Interface Circuits
Continuing with the technique of remix, you will make several physical computing and driver interface circuits
using FlexiForce sensors, 4-bit DIP switch, CdS (cadmium sulphide) photocell, speakers, and a keypad to allow
human interaction with the haptics controller. The BJT and PMOSFET electronic components drive a vibration
motor. The Arduino provides the control signal to switch the BJT and PMOSFET drivers ON and OFF. Figure 7-2
shows the system block diagram for the physical computing/haptics controller. A pictorial diagram of a simple
robotic haptics system is illustrated in Figure 7-3.

Tip■■   The transistor driver sub-circuit block can either be a BJT or a PMOSFET. Flexibility is king!

Note■■   1 DOF is the abbreviation for degree of freedom. It’s just an average ordinary robot!

CHAPTER 7 ■ Fun with Haptics

151

FlexiForce Sensor

Keypad

Joystick

1

3

1

1
1

Arduino

Transistor
Driver

Vibration
Motor

Figure 7-2. An Arduino-based physical computing/haptics controller system block diagram

Control
Box

1 DOF
Robot

Arduino

Force
Sensor

Transistor
Driver

Vibration
Motor

Figure 7-3. A simple experimental robotics-based haptics system

CHAPTER 7 ■ Fun with Haptics

152

In Figure 7-2, there are several input devices connected to the Arduino. All of these devices are not
connected at the same time but the diagram illustrates the versatility of the experimental setup for exploring
haptics on the lab bench or workshop. The interfacing concepts and techniques discussed in previous chapters
will be revisited but with a remix slant.

How It Works
The system block diagram in Figure 7-2 shows a low-cost setup for exploring this technology using the Arduino
computational platform along with off-the-shelf components. By attaching either a digital sensor (tactile switch
or keypad) or an analog part (CdS photocell or FlexiForce sensor) to the input of the Arduino, the Atmega328
microcontroller will provide sensory/detection information to the chip’s physical layer for processing a decision-
making event. Upon the appropriate value being present at the input port, the Atmega328 microcontroller will
make the decision to switch its output port ON or OFF based on the device’s binary logic or analog signal level.
For driving a haptics component, the output signal must be short in duration, providing a one-shot pulse to
the target electromechanical part. (A one-shot pulse is a quick ON-OFF voltage signal used to trigger electronic
circuits). With each triggering of the input sensor/detection component, the Atmega328 will provide a one-shot
pulse to the wired output electromechanical part. To start the investigation of haptics, let’s try a simple test and
experiment on driving a vibration motor.

Experimenting with a Vibration Motor
A vibration motor is simply a DC motor with a small weight placed off-center on its shaft. With the weight
being off-center or asymmetric, the motor vibrates. Vibration motors are found in old style pagers, hand video
controllers, and today’s cellphones. The vibration motor comes in various sizes and shapes, and can easily be
placed in small consumer electronics. Figure 7-4 shows a few examples of vibration motors.

Figure 7-4. Vibration motor examples

CHAPTER 7 ■ Fun wiTH HAPTiCs

153

Note  Examples of simple haptic interfaces include computer keyboards, mice, trackballs, and instrumented
gloves. Back in the old days of computer technology, these components were known as input devices. Times have
truly changed!

The top vibration motor in Figure 7-4 is a recycled component from a non-working cellphone. The wires
attached to the vibration motor are quite small in diameter, making them useless in solderless breadboard
prototyping. Figure 7-5 shows a close-up of the recycled vibration motor and its tiny electrical leads.

Figure 7-5. A vibration motor recycled from a non-working cellphone. The leads are quite small, making it difficult
to wire to the Arduino and the solderless breadboard.

To make it easy to attach the vibration motor to the breadboard, additional 22AWG wires are soldered to the
tiny leads, as shown in Figure 7-6. Now the vibration motor can easily be wired to the Arduino for experimenting
and testing, as shown in Figure 7-7. Circuit analysis for determining the amount of current sourcing thru
the motor’s Ra (armature resistance) is quite easy to do. The paper analysis steps are shown in the following
equation. Figure 7-8 shows Ra being measured using an ohmmeter.

Tip■ Although mathematically simple, Ohm’s Law is a very powerful analytical tool for circuit analysis. Georg
simon Ohm (1787-1854) rocks!

The measured armature resistance is used to build a circuit model using Multisim software to compare
the simulation total current (Itotal) with the paper analysis. The paper analysis is based on using Ohm’s Law to
determine Itotal value of the simple series DC circuit.

The equation for Itotal is Itotal = Vsupply/Ra

where

Vsupply = 5VDC and Ra (measured)= 29.2Ω

Itotal = Vsupply / Ra

CHAPTER 7 ■ Fun with Haptics

154

Figure 7-6. Adding extension leads of 22AWG stranded wire to vibration motor

Figure 7-7. The vibration motor wired to the Arduino computational platform

Itotal = 5VDC / 29.2Ω

Itotal =171.2 mA

CHAPTER 7 ■ Fun with Haptics

155

The results from the Multisim simulation are in Figure 7-9. The equivalent circuit schematic diagram for the
vibration motor prototype build along with measuring total current (Itotal) is shown in Figure 7-10.

Figure 7-8. Measuring the vibration motor’s Ra using a DMM (digital multimeter) ohmmeter

Figure 7-9. Measuring the vibration motor’s Ra current (Itotal) using a virtual DMMs ammeter

CHAPTER 7 ■ Fun with Haptics

156

With a baseline value of voltage and current captured, the next investigative step is to measure the output
voltage of the Arduino driving the vibration motor. The motor current can measured using an ammeter.
Figures 7-11 and 7-12 show the measurement setup with results of the output sourcing voltage and current from
the Arduino. The circuit schematic diagrams for measuring the Arduino port D5 output voltage and the current
flowing thru the vibration motor are shown in Figures 7-13 and 7-14. The sketch for running the vibration motor
is shown in Listing 7-1.

Listing 7-1.  Vibration Motor Test Sketch

int motorPin = 5;

void setup()
{

 pinMode(motorPin, OUTPUT);
 digitalWrite(motorPin, HIGH);
}

void loop()
{

 delay(100);

}

Compile and execute the sketch in the usual way. For instructions on how to upload the test sketch to the
Arduino computational platform, see Chapter 1.

Figure 7-10. Measuring Itotal of a vibration motor circuit schematic diagram

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 7 ■ Fun with Haptics

157

Figure 7-11. Measuring the output voltage of Arduino port D5 with a DMM voltmeter

Figure 7-12. Measuring the output voltage of Arduino port D5 with a DMM voltmeter

Figure 7-13. The circuit schematic diagram for measuring the output voltage (Vout) at Arduino port D5 with a DMM
voltmeter

CHAPTER 7 ■ Fun with Haptics

158

With the measured values obtained from the DMM’s ammeter and voltmeter for output voltage and the
motor current, the Ra can be calculated using Ohm’s Law.

Tip■■   Based on the vibration motor used in your lab experiment, the measurement values will vary slightly.

The equation for Ra is

Ra = Vout/Imotor

where

Vout (measured)= 2.98VDC and Imotor (measured)=102.6 mA

Ra = Vout/ Imotor

Ra = 2.98VDC /102.6 mA

Ra = 29.04Ω

Figure 7-14. The circuit schematic diagram for measuring the motor current (Ia[armature current] = Itotal) with a
DMM ammeter

CHAPTER 7 ■ Fun with Haptics

159

The electrical parameters of Ra measured and Ra calculated are pretty close to each other in value. To
determine the %difference between the measured Ra and the calculated value, the following equation is used:

%difference = [|Ra(calculated)-Ra(measured)| / Ra(measured)] 100×

Making the appropriate substitutions, the resultant answer is

%difference [| 29.04 29.2 | /29.2] 100= Ω − Ω Ω ×

%difference [| 0.16 | /29.2] 100= − Ω Ω ×

%difference | 0.00547 | 100= − ×

%difference 0.547%=

To manage the experimental and analysis data for this lab experiment, create an Excel spreadsheet. The
creation of this data management tool is left as a self discovery task for the reader!

Physical Computing: A Vibration Motor
The system block diagram shown in Figure 7-2 illustrates three physical computing devices to control a vibration
motor: a FlexiForce sensor, a keypad, and a joystick. First, let’s look at using the joystick to control the vibration
motor. The joystick will be used to control the speed of the vibration motor. The new system block diagram is
shown in Figure 7-16.

Figure 7-15. Measuring the vibration motor’s Itotal based on the Arduino’s port D5 output voltage (Vout) using a
virtual DMM ammeter

A Multisim circuit model for this analysis is shown in Figure 7-15.

CHAPTER 7 ■ Fun with Haptics

160

The circuit schematic diagram for the system block diagram is shown in Figure 7-17. By moving the joystick
back and forth, the speed of the vibration motor changes. The frequency change is proportional to the speed. Low
frequencies provide a slow rotational speed of the vibration motor. Higher frequencies trigger faster rotational
speeds of the vibration motor. Placing a finger on top of the vibration motor causes a buzzing sound quite similar
to a pager or cellphone call notification.

Joystick

1

Arduino

1
1

Transistor
Driver

Vibration
Motor

Figure 7-16. A joystick-controlled vibration motor system block diagram

Figure 7-17. A joystick-controlled vibration motor circuit schematic diagram

CHAPTER 7 ■ Fun with Haptics

161

The prototype build of the joystick controlled vibration motor is shown in Figure 7-18. The joystick is
held in place on the solderless breadboard by bridging a small jumper wire across the attached wires of the
potentiometer. The PWM signal generated by the Arduino D9 digital port pin can be monitored using an
oscilloscope, which is shown in Figure 7-19. The PWM signal has little in the way of oscillatory peaks or ripple,
which doesn’t impede in the stability in controlling the vibration motor. Figure 7-20 is a screenshot image of the
PWM signal generated by the Arduino computational platform.

Figure 7-18. A joystick-controlled vibration motor prototype

Figure 7-19. Lab setup for monitoring the output PWM signal of the Arduino computational platform

CHAPTER 7 ■ Fun with Haptics

162

The output PWM signal parameters measured with a digital oscilloscope are as follows:

Vmax = 4.27 V•	

Vavg = 2.07 V•	

DC(Duty Cycle) = 49.7 %•	

Frequency = 62.5 Hz•	

The sketch used to generate the output PWM for speed control is shown in Listing 7-2.

Listing 7-2.  Stepper Motor Control Sketch

/*
 Stepper Motor Control - speed control

 This program drives a unipolar or bipolar stepper motor.
 The motor is attached to digital pins 8 - 11 of the Arduino.
 A potentiometer is connected to analog input 0.

 The motor will rotate in a clockwise direction. The higher the potentiometer value,
 the faster the motor speed. Because setSpeed() sets the delay between steps,
 you may notice the motor is less responsive to changes in the sensor value at
 low speeds.

 Created 30 Nov. 2009
 Modified 28 Oct 2010
 by Tom Igoe

 */

#include <Stepper.h>

const int stepsPerRevolution = 200; // change this to fit the number of steps per revolution
// for your motor

Figure 7-20. Screen shot of the Arduino-generated output PWM signal

CHAPTER 7 ■ Fun wiTH HAPTiCs

163

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8,9,10,11);

int stepCount = 0; // number of steps the motor has taken

void setup() {
 // initialize the serial port:
 Serial.begin(9600);
}

void loop() {
 // read the sensor value:
 int sensorReading = analogRead(A0);
 // map it to a range from 0 to 100:
 int motorSpeed = map(sensorReading, 0, 1023, 0, 100);
 // set the motor speed:
 if (motorSpeed > 0) {
 myStepper.setSpeed(motorSpeed);
 // step 1/100 of a revolution:
 myStepper.step(stepsPerRevolution/100);
 }
}

Tip  Although this sketch is written for stepper motor speed control, it works well with a vibration motor. A motor
is a motor, of course of course…

Try It Out
There is a direct relationship between the vibration motor’s speed and the output frequency of the PWM signal
that controls it. To explore this speed vs. frequency relationship, consider this line of code (it manages the speed
of the vibration motor as well as the frequency):

const int stepsPerRevolution = 200;

By increasing the value of the stepsPerRevolution constant, the output PWM signal’s frequency increases
as well. With the aid of an oscilloscope, here are two measured examples:

•	 stepsPerRevolution = 1000, PWM frequency = 280 Hz

•	 stepsPerRevolution = 3000, PWM frequency = 345 Hz

The example waveform of a 285 Hz using a 1200 stepsPerRevolution value is shown in Figure 7-21.

Note  PwM frequency results may vary based on size and manufacturer of vibration motor. no fine print here!

CHAPTER 7 ■ Fun with Haptics

164

Observed with the decrease in input voltage, the output PWM signal’s frequency produces a buzzer sound
traditionally associated with cellphones on vibrate mode. Using the test-measurement setup shown in
Figure 7-22, the following input voltage/output frequency data was obtained from the prototype:

Joystick input voltage = 110 mV, output PWM frequency = 1.67 Hz•	

Joystick input voltage = 74.6 mV, output PWM frequency = 0.83 Hz•	

Figure 7-22. Test and measurement setup for capturing the PWM output frequency with a given joystick input
voltage

Figure 7-21. A 285 Hz PWM signal based on a 1200 stepsPerRevolution value

CHAPTER 7 ■ Fun with Haptics

165

The buzzing sound based on the position of the joystick allows you to create an application that sounds a
warning when certain objects are detected. The solderless breadboard prototype can be adapted to a robotic
system used for simple object detection. Contact with a small part (such as a ball) causes the vibration motor to
vibrate, communicating the status of operation.

As a self discovery exercise, create a spreadsheet with column headings of “Joystick input voltage settings,”
“Measured output PWM frequencies,” and “Comments.” Populate these columns with the measured data.
Based on the buzzing sound emitting from the vibration motor, try characterizing the type of tone in the
Comments column.

Next, create a plot or characteristic curve showing the data. On the plot, place notes referencing the
characterized tone on it. When a particular warning notification sound is needed for an electronics gadget, the
input voltage setting can be used to dial in the target tone with ease. Try it out!

Keypad Haptics
The Real Calculator app on my Android Droid X smartphone (shown in Figure 7-23) provides feedback after each
key-touch on the screen. With each touch of the screen’s keypad, a small vibration is felt. The following project is
based on keypad haptics of the Real Calculator app.

Figure 7-23. Real Calculator app vibrates the Android Droid X smartphone with each touch of the keys.

CHAPTER 7 ■ Fun with Haptics

166

A typical keypad is made with a plastic blister that makes contact with a matrix of conductors when pressed.
The row/column construction allows for each key to be identified upon closing an electrical node and reading
the status of the short circuit; no two switches will ever provide the same short circuit electrical node. Software
techniques are used to read or scan the short circuits of the keys and provide a quick and efficient method of
determining whether a key was pressed or not.

A three-button keypad can easily be built in Multisim to test the basic operation of the part (Figure 7-24).
Basically, pressing either one of the target buttons on the keypad will provide a +5VDC output signal displayed on
a virtual DMM’s digital voltmeter. The basic keypad circuit will be wired to port D2 of the Arduino, allowing it to
read a button press. Upon detecting a +5 VDC input signal, the Arduino will provide a short pulse to the transistor
driver circuit wired to port D13, allowing it to turn on the vibration motor. Each target button on the keypad will
provide the same pulse, allowing the vibration motor response to be equal in a short turn ON duration. This basic
simulator behaves like the Real Calculator app installed on the Android phone. Figures 7-25 and 7-26 show the
circuit schematic diagram for the keypad haptics demonstrator.

Note■■   The idea behind keypad haptics on a touch screen is to provide sensory-audible feedback of button
presses. The wonders of electronics technology never stop amazing me!

Figure 7-24. A virtual three-button keypad circuit model built using Multisim. If no key is pressed, the output voltage
equals 0VDC.

CHAPTER 7 ■ Fun with Haptics

167

Figure 7-25. With a key pressed, the output voltage equals 5VDC.

Figure 7-26. Keypad haptics circuit schematic diagram

CHAPTER 7 ■ Fun with Haptics

168

When you use the keypad in the project, you identify the target button-switch combination required for
activating the vibration motor. As shown in the circuit schematic diagram of Figure 7-25, button-switches 1, 2,
and 3 are chosen for actuating the vibration motor. The wiring of the keypad to the Arduino is accomplished by
wiring the three pins of components in parallel that connect all button–switch contacts together. As shown in the
circuit schematic diagram, pins D, E, and F are wired together. The common pin that connects the other contacts
of the button-switches internally is identified with the letter K. To see how to wire the keypad to the Arduino, look
at the datasheet. Figure 7-27 shows the wiring matrix or truth table as it relates to the individual button-switches,
their terminals or pins, and the common contacts for the keypad. A truth table is a tool showing combinations
of input signals and their output values. The actual keypad along with the designated pins is illustrated in
Figure 7-28.

Tip■■  W hen using new electronic or electromechanical parts, always consult the datasheet for pinout and
technical information regarding operation, theory, and special handling consideration. How’s that for immediate tech
support?!

Figure 7-27. A typical keypad switch matrix datasheet courtesy of Grayhill. The keypad is constructed in a row-
column structure.

CHAPTER 7 ■ Fun with Haptics

169

As shown in the keypad switch matrix diagram of Figure 7-27, the * and # are not listed. To use these button-
switches, numbers 11 and 12 respectively will be substituted for the two character symbols. If a 16 button-switch
keypad (shown in Figure 7-29) is desired for a haptics application, the matrix diagram on the right is consulted
for proper wiring.

Figure 7-28. A typical keypad with pin identification

Figure 7-29. A typical Grayhill 16 keypad. The keypad wiring is based on the right hand matrix shown in Figure 7-27.

CHAPTER 7 ■ Fun with Haptics

170

Figure 7-30. The keypad haptics prototype

The final stage of the project is the prototype build. Figure 7-30 shows the keypad haptics prototype. A test to
assure the keypad interface circuit is working properly consists of measuring the button–switch actuations using
a DMM digital voltmeter. Pressing button-switches 1, 2, or 3 will allow a +5VDC signal to be displayed on a digital
voltmeter’s LCD (see Figure 7-31). This signal behavior was illustrated in Figure 7-25 in the Multisim circuit
model. The software code to test the keypad haptics electronics hardware is the Button sketch. To gain access to
this sketch, go to the Arduino-Processing IDE ➤ Example ➤ Digital ➤ Button. Once displayed in the IDE’s text
editor, the sketch can then be uploaded to the Arduino.

Tip■■  I n designing I/O (input/output) interfaces for the Arduino, you should build and simulate Multisim circuit
models to obtain baseline data on target electrical parameters such as voltage and current. In addition, the electrical
behavior can be observed virtually. After building the actual prototype circuit, test measurements and electrical
behavior should be similar to the Multisim model. Also, Multisim can be used to troubleshoot errors in a circuit
design prior to the prototype build as well. How’s that for rapid development of a circuit concept idea? The power of
Multisim is truly awesome!

CHAPTER 7 ■ Fun with Haptics

171

The Button sketch is shown in Listing 7-3.

Listing 7-3.  The Button Sketch

/*
 Button

 Turns on and off a light emitting diode(LED) connected to digital
 pin 13, when pressing a pushbutton attached to pin 2.

 The circuit:
 * LED attached from pin 13 to ground
 * pushbutton attached to pin 2 from +5V
 * 10 K resistor attached to pin 2 from ground

 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.

 created 2005
 by DojoDave <http://www.0j0.org>
 modified 30 Aug 2011
 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Button
 */

Figure 7-31. Testing the keypad interface circuit using a DMM.

CHAPTER 7 ■ Fun with Haptics

172

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

Pressing keys 1, 2, and 3 will turn on the vibration motor. Releasing them will stop the vibration motor. The
final requirement of the sketch is to allow only a short ON duration of the vibration motor with the target keys.
The remixed code to meet this new requirement is shown in Listing 7-4.

Listing 7-4.  The Keypad_VibrationMotor_control Sketch for the New Keypad Haptics Requirement

/*
 Keypad

 Turns on and off a vibration motor connected to digital
 pin 13, when pressing a 3 specified buttons (1,2,3) on a keypad attached to pin 2.

 The circuit:
 * transistor driver base resistor attached from pin 13 and emitter to ground
 * keypad pushbutton common "K" attached to pin 2 from +5 V
 * keypad pins D, E, F attached to 3 - 10 resistors wired to 2
 * 3-10 K resistors attached to pin 2 from ground

 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.

 created 2005
 by DojoDave <http://www.0j0.org>

CHAPTER 7 ■ Fun wiTH HAPTiCs

173

 modified 30 Aug 2011
 by Tom Igoe
 modified 09 Feb 2012
 by Don Wilcher

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Button
 */

// constants won't change. They're used here to
// set pin numbers:
const int keypadPin = 2; // the number of the pushbutton pin
const int vibrationMotorPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status

void setup() {
 // initialize the vibrationMotorPin pin as an output:
 pinMode(vibrationmotorPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(keypadPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 buttonState = digitalRead(keypadPin);

 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn vibration motor on:
 digitalWrite(vibrationmotorPin, HIGH);
 delay(1); //Pulse vibration motor for a 1millisec
 }
 else {
 // turn vibration motor off:
 digitalWrite(vibrationmotorPin, LOW);
 }
}

The original Button sketch was modified by changing the constants referencing the LED and button with
vibration motor and keypad, thereby making the code more reflective of the target I/O associated with the
electronics hardware of the prototype. Also, an additional instruction (shown next) is added to the sketch to allow
the vibration motor to be pulsed when the target button-switches on the keypad are pressed.

delay(1); //Pulse vibration motor for a 1msec

With a quick press/release of the target button-switches, the vibration motor will turn ON for 1 second, then
turn OFF. This operation is similar to the Real Calculator app when keys are actuated by the touch screen of the
Android phone. If a longer ON delay is required, changing the number parameter within the delay instruction will
accomplish this task. If additional button-switches are needed, consult the wiring matrix diagram of Figure 7-27
and make the change to the circuit schematic diagram (Figure 7-26) accordingly.

CHAPTER 7 ■ Fun with Haptics

174

Note■■   The creation of software is rarely started from ground zero. To meet customer demand and to be
competitive in today’s marketplace, software development is based on modifying original code with new feature/
function requirements. Can you say remix?!

Tip■■   The delay() is based on 1/1000 (ms). To create a 1 second delay, use 1000 in the parentheses.

Mechatronics and Haptics
Mechatronics is an interdisciplinary field of engineering that integrates design techniques in precision
mechanical engineering, control theory, computer science, and electronics into the overall design process,
helping to create more functional and adaptable products. The word mechatronics has been around for some
30 years; it was coined in Japan, spread throughout Europe, and now is commonly used in the United States.
Mechatronic devices are sometimes known as intelligent machines. The terms intelligent machine or smart
machine are used to describe complex devices that use logic, feedback, and computation to simulate human
actions or thinking. As mentioned, haptics is a sub-category of mechatronics because of the integration of
mechanical, electrical-electronics, and computer science applied to the sensing and manipulation of objects
using touch. The system block diagram in Figure 7-3 provides the foundation for discussion in this section of the
chapter.

FlexiForce Sensor Haptics
The FlexiForce sensor was introduced in Chapter 5 for controlling the angular rotation of a servo motor. By
pressing the sensing surface of the FlexiForce, the Arduino is able to provide a series of command pulses to
drive the servo motor to its correct angular position. Taking the same sketch and uploading it to new electronics
hardware (the vibration motor circuit), a new operating device is created. The system block diagram used to
manage this haptics controller is shown in Figure 7-32.

FlexiForce Sensor

1 1
1

Arduino

PMOSFET
Driver

Vibration
Motor

Figure 7-32. FlexiForce-based haptics controller

http://dx.doi.org/10.1007/978-1-4302-4266-6_5

CHAPTER 7 ■ Fun with Haptics

175

Note■■   The word mechatronics was invented by Hitachi Mechanical Engineer Takashi Yamaguchi working in a lab
designing products that exhibit fast, precise performance. Just dropping some engineering technology history on ya!

The amount of force (touch) to the FlexiForce sensing surface allows the Arduino to command the PMOSFET
to switch ON or drive the vibration motor. The more force applied to the FlexiForce sensor, the faster the vibration
of the motor. The circuit schematic diagram for the FlexiForce sensor haptics controller is shown in Figure 7-33.

Figure 7-33. FlexiForce sensor haptics controller circuit schematic diagram

The prototype build of the FlexiForce sensor haptics controller is shown in Figure 7-34. If a DMM digital
voltmeter is available, before uploading the sketch to the Arduino, test the FlexiForce sensor interface circuit.
Touch the surface of the sensor and the voltage will swing from 0V to some DC value depending on the force
applied. If the FlexiForce sensor is working properly, the stepper_speedControl sketch can be uploaded to the
Arduino. The stepper_speedControl sketch is shown in Listing 7-5. The sketch can be obtained from the Arduino-
Processing IDE ➤ Examples ➤ stepper ➤ stepper_speedControl.

CHAPTER 7 ■ Fun with Haptics

176

Listing 7-5.  The stepper_speedControl Sketch

/*
 Stepper Motor Control - speed control

 This program drives a unipolar or bipolar stepper motor.
 The motor is attached to digital pins 8 - 11 of the Arduino.
 A potentiometer is connected to analog input 0.

 The motor will rotate in a clockwise direction. The higher the potentiometer value,
 the faster the motor speed. Because setSpeed() sets the delay between steps,
 you may notice the motor is less responsive to changes in the sensor value at
 low speeds.

 Created 30 Nov. 2009
 Modified 28 Oct 2010
 by Tom Igoe

 */

#include <Stepper.h>

const int stepsPerRevolution = 200; // change this to fit the number of steps per revolution
// for your motor

// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8,9,10,11);

int stepCount = 0; // number of steps the motor has taken

void loop() {
 // read the sensor value:
 int sensorReading = analogRead(A0);
 // map it to a range from 0 to 100:
 int motorSpeed = map(sensorReading, 0, 1023, 0, 100);
 // set the motor speed:
 if (motorSpeed > 0) {
 myStepper.setSpeed(motorSpeed);

Figure 7-34. FlexiForce sensor haptics prototype

CHAPTER 7 ■ Fun with Haptics

177

 // step 1/100 of a revolution:
 myStepper.step(stepsPerRevolution/100);
 }
}

A Robot End Effector Test Stand
To illustrate the versatility of the FlexiForce sensor haptics controller, it can be applied in an industrial application
for testing a robot’s gripping strength. In this final project, a Robotix motorized construction set is used to build a 1
DOF robot. Its end effector can be tested for proper gripping strength using the FlexiForce sensor haptics controller.

The DOF of a robot is based on the number of moving mechanical assemblies. In this robot, the gripper
is the only mechanical assembly that moves. The robot’s end effector applies pressure to the sensor’s sensing
surface, which provides feedback through the vibration motor. If the robot’s end effector is able to cause the
vibration motor to turn ON, the mechanical gripper will be properly adjusted. If the robot’s end effector lacks
the necessary gripping force, the vibration motor will stay OFF. Varying the amount of gripper force strength will
allow the vibration motor to turn at various speeds. Figure 7-35 shows the robot end effector test stand.

Note■■   Although they are no longer being manufactured, the Robotix motorized construction sets can be
purchased online at www.e-clec-tech.com/robotix.html. Isn’t the Web a wonderful thing!

Figure 7-35. FlexiForce sensor haptics prototype used in the Robot End Effector Test Stand application

http://www.e-clec-tech.com/robotix.html

CHAPTER 7 ■ Fun with Haptics

178

Although the Robotix motorized set is used in this haptics application, other construction kits like the
LEGO Mindstorms or a homebrew mechatronics device can be used as well. To obtain profiles of varying gripper
strengths detected by the FlexiForce sensor, a digital oscilloscope can be attached to the gate resistor of the
PMOSFET. The change in command pulses applied to the solid-state vibration motor driver circuit is correlated
to the FlexiForce sensor’s varying resistance based on applied force changes. The waveforms can be captured as a
.bmp file and analyzed later.

Final Testing of Haptics Controllers
In this chapter, a series of subsection testing activities have been outlined to capture bugs in building the
hardware circuits. Using a DMM and an oscilloscope, the testing techniques described can be validated on the
bench. Depending on the vendor of the testing instruments, the results may vary by +/-10 %. Make sure the
wiring is correct prior to applying voltage to the Arduino and supporting circuits. Use proper wiring methods as
discussed in Chapter 3. The “How It Works” section of this chapter is a great reference to verify that the circuit
breadboard is working correctly. Also, review the sketch entered into the Arduino IDE Editor for typos that may
cause the hardware device to operate improperly.

Further Discovery Method Suggestions
For the haptics controllers introduced in this chapter, try experimenting with other kinds of vibration motors. Try
adding more button-switches to the project to test your knowledge in electronics hardware upgrade and software
code modification. Build the haptics feedback device shown in the system block diagram (Figure 7-3). In the
joystick haptics controller, replace the handle-operated potentiometer with a light detection circuit and observe
the control operation of the vibration motor to varying light levels. Finally, in the “Try It Out” section, experiment
with the sketch constant const int stepsPerRevolution = 200 and observe the PWM signal and frequency
on an oscilloscope. As mentioned in the “Physical Computing: A Vibration Motor” section, record the data in a
spreadsheet and plot a characteristic curve to capture the relationship between the two electrical parameters
and the effects on vibration motor functional behavior. Document designs and sketch modifications in a lab
notebook!

http://dx.doi.org/10.1007/978-1-4302-4266-6_3

179

Chapter 8

LCDs and the Arduino

Making machines talk to humans is quite easy using light indicators or other illumination devices. The most
common way of providing information is through a visible light source. By establishing a protocol (set of rules),
a messaging scheme is created based on the application definition.

Incandescent lightbulbs were once the component of choice for visual indicators because of their ability
to alert someone of a change in a process or the approaching of a dangerous threshold. LEDs improved on the
incandescent lightbulb because of low thermals (heat), small size, and greater longevity.

With the arrangement of seven discrete LEDs into a single package, sophisticated messages can be created
because of the optoelectronic device’s ability to be wired for displaying numbers and letters. The ability to make
alphanumerics (numbers and letters) with multiplexed seven-segment LED displays allows long messages to
be displayed easily. Although seven-segment LED displays are better than both discrete LEDs and incandescent
lightbulbs for visual information, washout and heat are problems with the optoelectronic part of the seven-
segment LED. (Washout is the effect of the sun making LEDs hard to see in daylight).

The LCD (liquid crystal display) eliminates both heat and washout, and can be packaged to create characters
and sophisticated graphics as well. In this chapter, we’ll investigate the LCD using an experimental test jig that
allows individual numbers, characters, and letters to be displayed based on an 8-bit binary code. Also, we’ll
explore physical-computing techniques for using the Arduino to create text messages by interacting with an LCD
using a variety of solid-state and electromechanical sensors. Figure 8-1 shows the parts required for the hands-on
projects and experiments.

Parts List
Arduino Duemilanove or equivalent

11 47K resistors

470K resistor

4 10K resistors

CdS photocell

8-bit DIP switch

74LS00 or 7400 NAND Logic IC

SPDT (single-pole, double-throw) switch

SPST (single-pole, single-throw) switch

CHAPTER 8 ■ LCDs and the Arduino

180

16×2 LCD

20×4 LCD

470W resistor

Solderless breadboard

22AWG solid wire

Digital multimeter

Oscilloscope (optional)

Electronic tools

Figure 8-1. Parts required for the LCD projects and experiments

Remixing Physical-Computing Input Interface Circuits
Continuing the remixing technique of physical-computing and driver interface circuits, you’ll use a FlexiForce
sensor, 8-bit DIP switch, CdS photocell, thermistor, joystick, and potentiometer to allow human interaction with
the LCD. The input interface circuits that you will build will allow different sensors to operate with the Arduino
and typical LCDs. You will build a prototype test jig for checking different sensors to work with the Arduino and
display the electrical operation on an LCD. You will be able to see the sensor’s data being displayed and interact
with the monitoring devices by means of physical-computing techniques.

The input interfacing circuits introduced in Chapters 4 and Chapters 5 will be remixed so that you can see
the electrical data that is produced by them. The Arduino will process the input signals and drive the control lines
on a basic LCD. To allow variety in experimentation with sensors, input interface circuits, and the LCD, several

http://dx.doi.org/10.1007/978-1-4302-4266-6_4
http://dx.doi.org/10.1007/978-1-4302-4266-6_5

CHAPTER 8 ■ LCDs and the Arduino

181

physical-computing models will be presented, allowing you the opportunity to explore and learn how electrical
data can be displayed on this unique optoelectronic device. Figures 8-2 through 8-6 show systems block diagrams
for displaying information using physical-computing techniques.

Contrast
Control

Arduino

LCD (16x2)

1

6

Figure 8-2. Systems block diagram for an Arduino-based LCD controller

Note■■  I n 1936, the Marconi Wireless Telegraph company patented the first practical application of this
technology, calling it the Liquid Crystal Light Valve.

Arduino

Light-Activated
Contrast Control

LCD (16x2)

1

6

λ

Figure 8-3. Systems block diagram for an Arduino-based LCD controller with auto-adjust contrast control

CHAPTER 8 ■ LCDs and the Arduino

182

1

61

Arduino

Contrast
Control

LCD (16x2)

Light Detection
Sensor

λ

Figure 8-6. Systems block diagram for an Arduino-based LCD controller with light detection

1

61

Arduino

SPDT Switch
with Debounce
Control

Contrast
Control

LCD (16x2)

Figure 8-5. Systems block diagram for an Arduino-based LCD controller with an improved event trigger

1

61

Arduino

PB Switch

Contrast
Control

LCD (16x2)

Figure 8-4. Systems block diagram for an Arduino-based LCD controller with simple event detection

Note■■   By keeping the core Arduino-based LCD controller design and changing the input interface detection
circuit, five new devices were created quite easily. Can you say “imagination”?

CHAPTER 8 ■ LCDs AnD THE ARDuino

183

The five Arduino LCD controllers I’ve shown are examples of creating new physical-computing designs
using different input detection circuits. In the pages to follow, I will show how to develop each one of these input
circuit–operated LCD controllers with a few junk-box electronic parts. To build these devices, I will introduce an
evaluation-kit approach to wiring the interface circuits to the Arduino-operated LCD controller.

How It Works: The LCD Test Jig
The approach I’m going to take in explaining the basics of an LCD is to use the test jig systems block diagram
shown in Figure 8-7. As shown in the diagram, there are four main subcircuits required to display characters,
letters, and numbers on an LCD. The 8-bit binary code circuit provides the necessary data for changing the LCD
operation or displaying characters and/or alphanumerics.

Contrast
Control

00001111

8-Bit Binary Code

8

1

1

1

ENABLE Switch
with Debounce
Control

REGISTER SELECT Switch

D

Clk

Q0

Q0’

D

Clk

Q1

Q1’

LCD(16x2)

Figure 8-7. Systems block diagram for the LCD test jig

CHAPTER 8 ■ LCDs and the Arduino

184

The operation of the LCD is based on simple command-control codes. Figure 8-8 shows a table listing the
command-control codes for the LCD. As shown in the table, LCD display operations such as Clear Display,
Display & Cursor Home, and Display On/Off & Cursor are executed by entering an 8-bit binary code.

Figure 8-8. Command-control codes (courtesy of Everyday Practical Electronics)

The data entry of the 8-bit code is done by using an 8-bit DIP switch. By setting the individual switches to
either Open or Closed, discrete binary bits of 1 or 0 will be fed to the eight data lines (D7–D0) of the LCD.

The contrast control is a potentiometer responsible for adjusting the visibility of the discrete LCD squares.
The Enable switch allows the 8-bit code entered using the DIP switch to be sent to the LCD’s data lines. This

switch is debounced to prevent sporadic data entry of the 8-bit code from being displayed on the LCD. Figure 8-9
shows the Debounce switch’s circuit schematic diagram, and the operation of the debounce circuit is illustrated
in Figure 8-10.

If you don’t wire this circuit to pin 6 of the LCD and use an ordinary switch, the LCD will show multiple
letters after each switch toggle, which is not a cool thing. Figure 8-11 shows the complete circuit schematic
diagram for the LCD test jig. The LCD test jig prototype is shown in Figure 8-12.

The Register Select switch is used to put the LCD in either command-control or alphanumeric/character
mode. I used this switch to set up the LCD test jig by placing it in command-control mode. After wiring the
LCD, I placed the switch in the alphanumeric/character mode position to allow the LCD display to show letters,
numbers, and special characters using the correct 8-bit code. Figure 8-13 shows the table of letters, numbers, and
characters. Notice the table is divided into upper and lower bits. It’s very important that you enter the binary data
on the 8-bit DIP switch in proper order. If you don’t, strange characters or a blank screen will be displayed on the
LCD. The upper four bits relate to DIP switches D7 through D4 and the lower bits use the remaining D3 through
D0 data lines.

CHAPTER 8 ■ LCDs and the Arduino

185

R1
47K

+5VDC

R2
47K

Set Reset Switch

1

2

4

5

U1-B
74LS00
or 7400

U1-A
74LS00
or 7400

3

14

Clean Pulse

Q
Set Reset

6

7

Q-NOT

Figure 8-9. A debounce circuit using two NAND logic gates

Tip■■  I f an 8-bit DIP switch is not available, individual slide switches can be used instead. More than one way to
skin a cat!

To use the command-control codes to do a specific operation for the LCD, you should have the Register
Select switch in a binary 0 position. Place a digital or analog voltmeter across the switch and adjust it so 0 volts
is displayed on the meter. Adjust the contrast control (10K potentiometer) so the squares on the LCD are slightly
visible.

Next, set the 8-bit DIP switch using the binary code 00001111 and toggle the Enable switch. A small square
will flash at the left side of the LCD.

Entering a letter, number, or character is quite easy as well. Toggle the Register Select switch and enter
01000001 on the 8-bit DIP switch. Toggle the Enable switch, and the letter A will be displayed on the LCD.

The flashing square moves to the right side on the LCD screen with each binary code entered using the 8-bit
DIP switch. For the final exam, enter 00111000 on the 8-bit DIP switch, and the number 8 will be displayed on
the LCD. You can make some unique and cool messages by entering the 8-bit binary code on the DIP switch.
Try displaying your name on the LCD using a series of 8-bit binary codes. The test jig can be used to check other
LCDs you may have sitting in a junk box in your lab or workshop. What a cool way to test your surplus LCDs using
this awesome testing device!

186

Figure 8-11. The LCD test jig

Reset

R1
47K

+5VDC

R2
47K

Set Reset Switch

Noisy Pulse from
Switch Contacts

Set

R1
47K

+5VDC

R2
47K

Set Reset Switch

1

2

4

5

U1-B
74LS00
or 7400

U1-A
74LS00
or 7400

3

14

Clean Pulse

Q
Set Reset

6

7

Q-NOT

Figure 8-10. Contact bounce and debounce circuit operation

CHAPTER 8 ■ LCDs and the Arduino

187

Tip■■   Remember, with an active-low switch, a binary 1 means “Open contacts” and a binary 0 means “Closed
contacts.” And always use a Debounce switch when building digital circuits that need a smooth sequential operation.
That’s how you do the Binary Slide!

The Real “Hello World”: Arduino and the LCD
The test jig provides a cool way to understand the operation of the LCD, but making messages is quite a slow and
long task. The Arduino makes it a snap because all you need is six control lines and a basic sketch. You wire the
Arduino to the LCD using the circuit schematic shown in Figure 8-14.

In the circuit schematic diagram, I’m using a standard LCD with 20×4 white text on a blue background.
Some key features about the LCD are listed here:

The LCD is 20 characters wide and 4 rows tall.•	

It has white text on a blue background.•	

Its connection port has a 0.1-inch pitch and is single-row, allowing for easy •	
breadboarding and wiring.

It includes a single LED backlight that can be dimmed easily with a resistor or PWM, and •	
it uses much less power than an LCD with EL (electroluminescent) backlights.

It can be fully controlled with only six digital lines.•	

It has a built-in character set that supports English and Japanese text (see the HD44780 •	
datasheet for the full character set).

Up to eight extra characters can be created for custom glyphs (such as special accent •	
marks) for foreign-language support.

Figure 8-12. The LCD test jig prototype: Complete build (left) and LCD close-up (right)

CHAPTER 8 ■ LCDs and the Arduino

188

Figure 8-15 shows the actual kit I purchased from Adafruit Industries to build the different LCD projects in
this chapter.

The basic circuits of this LCD module, as well as other optoelectronic versions, consist of a controller IC,
LCD panel, driving IC, and backlight driver. The controller IC is responsible for operating the six control lines,
consisting of the Register Select (RS), Enable (E), Contrast Control (V0), Read/Write (R/W), Source Supply
Voltage (Vss), and Drain Supply Voltage (Vdd). The controller IC sends the 8-bit binary data available on its data

Lower Four Bits

Upper Four Bits

Figure 8-13. The LCD letters, numbers, and character codes (courtesy of Everyday Practical Electronics)

CHAPTER 8 ■ LCDs and the Arduino

189

lines (DB7–DB0) to the LCD panel for displaying letters, characters, and numbers. The driving IC operates the
LCD panel by applying the correct voltage and current levels to it. Last, and optional on some LCD modules,
there is a backlight LED used to light up the device for nighttime viewing. The systems block diagram for an LCD
module is shown in Figure 8-16.

Figure 8-14. Circuit schematic for the Arduino-based LCD controller. LCD power pins: Vss equals 1 and Vdd equals 2

Figure 8-15. Standard 20×4 LCD with header pins and 10K potentiometer (courtesy of Adafruit Industries)

CHAPTER 8 ■ LCDs and the Arduino

190

The circuit schematic diagram shown in Figure 8-14 will allow you to display the familiar “Hello World”
message on the 20×4 LCD module. You can adjust the contrast of the LCD using the 10K potentiometer. The
Arduino LCD controller I built from the circuit schematic diagram is shown in Figure 8-17. The wiring technique
used in connecting the LCD correctly to the Arduino is to align the 16 pins to their corresponding numbers on
the solderless breadboard. Using this layout technique, I had no wiring errors when connecting the LCD to the
Arduino and the contrast control (10K potentiometer). After you have completed the wiring of the LCD circuit,
turn on the power supply, and the LCD module will display segmented squares for a few seconds, and then light
up with a bluish glow. You can adjust the sharpness of the display to your liking using the contrast control.

The next step is to upload the Hello World sketch to the Arduino. The Hello World sketch is shown in
Listing 8-1.

VSS
VDD

V0

RS

R/W

E

DB0~DB7

CONTROL IC

DRIVING IC

LCD PANEL

BACK LIGHTLED+

LED–

Figure 8-16. Systems block diagram for an LCD module (courtesy of Tinsharp datasheet)

Figure 8-17.  An Arduino-based LCD controller prototype

CHAPTER 8 ■ LCDs and the Arduino

191

Note■■  I n addition to selling Arduinos and accessory kits (shields), Adafruit Industries also stocks electronic parts,
toolkits, and electronic tech books. Can you say “one-stop store”?

Listing 8-1.  Hello World Sketch

/*
 LiquidCrystal Library - Hello World

 Demonstrates the use of a 16x2 LCD display. The LiquidCrystal
 library works with all LCD displays that are compatible with the
 Hitachi HD44780 driver. There are many of them out there, and you
 can usually tell them by the 16-pin interface.

 This sketch prints "Hello World!" to the LCD
 and shows the time.

 The circuit:
 * LCD RS pin to digital pin 12
 * LCD Enable pin to digital pin 11
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * LCD R/W pin to ground
 * 10K resistor:
 * ends to +5 V and ground
 * wiper to LCD VO pin (pin 3)

 Library originally added 18 Apr 2008
 by David A. Mellis
 library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 example added 9 Jul 2009
 by Tom Igoe
 modified 22 Nov 2010
 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/LiquidCrystal
 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 // Print a message to the LCD.

CHAPTER 8 ■ LCDs and the Arduino

192

 lcd.print("hello, world!");
}

void loop() {
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // print the number of seconds since reset:
 lcd.print(millis()/1000);
}

Try It Out!
There are fun and cool things you can play with using this basic circuit and sketch. The most obvious activity is to
change the message. Here is the line of code you can modify to change the message:

lcd.print("hello, world!");

Instead of using lowercase letters for “hello, world,” make them all uppercase. Change the message
altogether by having the LCD display your name or favorite hobby. I changed the “hello, world!” to “Arduino: Hi,”
as shown in Figure 8-18. Coding messages is easy to do on an Arduino. Also, notice the seconds counting up on
the LCD. The counter is showing the number of seconds since the Arduino has been powered off. To speed up
counting, try changing the 1000 in lcd.print(millis()/1000); to 100, and then watch the numbers. When you
upload the new value to the Arduino’s ATmega328 microcontroller, the counter’s speed increases.

Figure 8-18. A talking Arduino!

Another cool feature to try out is sending text to the LCD using the Arduino-Processing serial monitor. The
serial monitor is used to display information from sensors or troubleshooting prompts during a software debug
session. You can use the serial monitor as a mini-keyboard to send short text messages to the Arduino. The
serial monitor sends the text message at a rate of 9600kbps (kilobits per second) to the Arduino using the USB
connection. Whatever you type in the serial monitor’s text box is displayed on the LCD. Long messages will wrap
to show the message on the LCD. The Serial Monitor sketch is shown in Listing 8-2.

CHAPTER 8 ■ LCDs AnD THE ARDuino

193

Listing 8-2. Serial Monitor Sketch

/*
 LiquidCrystal Library - Serial Input

 Demonstrates the use of a 16x2 LCD display. The LiquidCrystal
 library works with all LCD displays that are compatible with the
 Hitachi HD44780 driver. There are many of them out there, and you
 can usually tell them by the 16-pin interface.

 This sketch displays text sent over the serial port
 (e.g., from the serial monitor) on an attached LCD.

 The circuit:
 * LCD RS pin to digital pin 12
 * LCD Enable pin to digital pin 11
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * LCD R/W pin to ground
 * 10K resistor:
 * ends to +5 V and ground
 * wiper to LCD VO pin (pin 3)

 Library originally added 18 Apr 2008
 by David A. Mellis
 library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 example added 9 Jul 2009
 by Tom Igoe
 modified 22 Nov 2010
 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/LiquidCrystal
 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup(){
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 // initialize the serial communications:
 Serial.begin(9600);
}

CHAPTER 8 ■ LCDs and the Arduino

194

void loop()
{
 // when characters arrive over the serial port…
 if (Serial.available()) {
 // wait a bit for the entire message to arrive
 delay(100);
 // clear the screen
 lcd.clear();
 // read all the available characters
 while (Serial.available() > 0) {
 // display each character to the LCD
 lcd.write(Serial.read());
 }
 }
}

After uploading to the code to the Arduino, I copied the title of the sketch, pasted it inside of the serial
monitor, and clicked the Send button with the mouse. A few seconds later, the title was visible on the LCD. Talk
about teleportation! Figure 8-19 shows an experiment of sending a portion of the sketch to be displayed on the
LCD . The speed for receiving the text from the serial monitor to the LCD can be explored by changing the delay
time. Here is the sketch instruction that’s used to manage the speed at which the LCD displays text:

delay(100);

You can change the number inside the parentheses to tweak how quickly the message reaches the LCD.
Making the number small allows quick display of the message on the LCD. A big number allows you time to get
a cup of coffee before the message is displayed. Replace the existing number (100) with 10, and upload the new
sketch change to the Arduino. You should see the message pop up immediately on the LCD. Now change the
number to 800, and the message will be delayed by a few seconds.

You can also program the Arduino to scroll the message using a simple sketch. Messages can be scrolled
either left or right using the following code instructions below:

scrollDisplayLeft();
scrollDisplayRight();

Some really cool physical-computing devices can be built using these code instructions. If you wire a sensor
to the Arduino, a message can be made to move right or left on the LCD based on the sensor’s signal level. For
example, you can use a thermistor (a temperature-activated resistor) and the Arduino to detect body temperature
and display the message “You’re Healthy” on the LCD, scrolling from left to right. If there is no human contact
with the thermistor, the message “You’re a Zombie” will scroll on the LCD. The basic Scroll Text sketch is shown
in Listing 8-3. Figure 8-20 shows “hello, world!” scrolling in both directions on the LCD.

Note■■   Marquee display denotes an electronic device filled with rows and columns of discrete LEDs. Each row
and column is addressable, enabling the software to scroll messages. In industrial environments, assembly-line
operations are sent to a marquee display to get the attention of factory personnel. Using the scrolldisplay()
instruction is a cool way to create miniature marquee displays to allow ordinary household machines to alert
occupants of conditions in the home.

CHAPTER 8 ■ LCDs and the Arduino

195

Listing 8-3.  Hello World Sketch

/*
 LiquidCrystal Library - scrollDisplayLeft() and scrollDisplayRight()

 Demonstrates the use of a 16x2 LCD display. The LiquidCrystal
 library works with all LCD displays that are compatible with the
 Hitachi HD44780 driver. There are many of them out there, and you
 can usually tell them by the 16-pin interface.

 This sketch prints "Hello World!" to the LCD and uses the
 scrollDisplayLeft() and scrollDisplayRight() methods to scroll
 the text.

Figure 8-19. Text from sketch can be pasted into the serial monitor, and sent to display on the LCD

CHAPTER 8 ■ LCDs and the Arduino

196

 The circuit:
 * LCD RS pin to digital pin 12
 * LCD Enable pin to digital pin 11
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * LCD R/W pin to ground
 * 10K resistor:
 * ends to +5 V and ground
 * wiper to LCD VO pin (pin 3)

 Library originally added 18 Apr 2008
 by David A. Mellis
 library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 example added 9 Jul 2009
 by Tom Igoe
 modified 22 Nov 2010
 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/LiquidCrystal
 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.print("hello, world!");
 delay(1000);
}

void loop() {
 // scroll 13 positions (string length) to the left
 // to move it offscreen left:
 for (int positionCounter = 0; positionCounter < 13; positionCounter++) {
 // scroll one position left:
 lcd.scrollDisplayLeft();
 // wait a bit:
 delay(150);
 }

CHAPTER 8 ■ LCDs and the Arduino

197

 // scroll 29 positions (string length + display length) to the right
 // to move it offscreen right:
 for (int positionCounter = 0; positionCounter < 29; positionCounter++) {
 // scroll one position right:
 lcd.scrollDisplayRight();
 // wait a bit:
 delay(150);
 }

 // scroll 16 positions (display length + string length) to the left
 // to move it back to center:
 for (int positionCounter = 0; positionCounter < 16; positionCounter++) {
 // scroll one position left:
 lcd.scrollDisplayLeft();
 // wait a bit:
 delay(150);
 }

 // delay at the end of the full loop:
 delay(1000);

}

Figure 8-20. The “hello, world!” message scrolling left and right on the LCD

What’s really nice about these three sketches is the ability to personalize the Arduino by coding and
displaying unique messages. You can do the personalization task by adding the message inside the parentheses
of the lcd.print() code instruction. The delay() instruction to change message speed on the LCD is another
sketch operation that allows for quick remixing of the electronics device as well. So what are you waiting for?
Try it out!

CHAPTER 8 ■ LCDs and the Arduino

198

The Vanishing Message
This project is pretty cool and fun because the light detection circuit discussed in Chapter 1 has been remixed to
provide interaction with the LCD’s contrast without the need to turn a knob. I slightly modified the light detection
circuit in Figure 8-2, whereby the CdS cell and the fixed resistor have been swapped to act as a contrast control
for the LCD. The potentiometer contrast control provides approximately 0 V at pin 3 of the LCD, allowing full
sharpness of the message, number, or character on the LCD. To meet this electrical requirement with an auto-
adjust feature, I created the circuit schematic diagram shown in Figure 8-21.

Figure 8-21. The auto-adjust contrast control for the Arduino-based LCD controller. LCD power pins: Vss equals 1
and Vdd equals 2

I modified the contrast control feature by removing the 10K potentiometer and replacing it with the CdS
cell and a 470W resistor voltage divider circuit. Next, I measured the voltage across the 470W resistor using a
DMM’s digital voltmeter to ensure the DC voltage at pin 3 (V0) of the LCD was less than 1.0VDC. To measure
this DC value, I placed a small piece of electrical tape over the CdS cell. The DC voltage I measured with the
digital voltmeter was 0.231 V, or 231 mV. Figure 8-22 illustrates the new contrast control circuit. The DC voltage
measured at pin 3 of the LCD is shown in Figure 8-23.

http://dx.doi.org/10.1007/978-1-4302-4266-6_1

CHAPTER 8 ■ LCDs and the Arduino

199

To check the DC voltage at pin 3, I removed the electrical tape from the sensor and measured a value of
1.17VDC on the digital voltmeter. With a high voltage reading, the LCD’s message was not visible, as shown in
Figure 8-24.

Figure 8-22. The auto-adjust contrast control circuit built on the solderless breadboard

Figure 8-23. Measuring the DC voltage at pin 3 with a CdS cell covered with electrical tape

Tip■■  I nstead of doing the circuit design with paper and a calculator for interface circuits, try building the device
on the actual prototype and test for proper operation. That’s how the 470W resistor was determined. Jump in, the
water is fine!

CHAPTER 8 ■ LCDs and the Arduino

200

Although the Hello World sketch was used to test the light detection sensor, you can use the circuit with the
other devices discussed in this chapter to create some cool LCD gadgets that respond to waving hands!

Building an Evaluation Board
The nice thing about a solderless breadboard is how easy it is to add circuits without the hassle of a soldering iron.
To explore some cool sensor-monitoring applications using the Arduino, I combined Figures 8-4 and 8-6 into an
evaluation board. An evaluation board is a PCB that has target electronic components to test for hardware and
software operations. Circuit schematic diagrams for the systems block diagrams are shown in Figures 8-25 and 8-26.

Figure 8-25. Push-button switch for evaluating digital LCD applications. LCD power pins: Vss equals 1 and Vdd
equals 2

Figure 8-24. Measuring the DC voltage at pin 3 of the LCD with the electrical tape removed from the CdS cell

CHAPTER 8 ■ LCDs and the Arduino

201

Using the schematic diagram in Figure 8-25 and modifying the Hello World sketch, I was able to build an
event counter. An event is basically an outside triggering device such as a switch, whereby a press or toggle will
allow the counter to increment based on the input signal. Every time you press the button, the LCD will show
the count value. I’ve also added an auto-clear feature that makes the LCD go blank if the button switch is not
used within a few seconds. You can replace the push-button switch with other digital circuits, such as clocks or
logic gate circuits (AND, OR, NAND, NOR) that can provide a 0 to 5VDC input voltage signal to the Arduino. The
Manual Counter sketch is shown in Listing 8-4.

Note■■   The AND, OR, NAND, and NOR logic gates are used to make low-level true/false decisions for computing
and embedded-device technology.

Listing 8-4.  Manual Counter Sketch

/*
 LiquidCrystal Library - Hello World

 Demonstrates the use of a 16x2 LCD display. The LiquidCrystal
 library works with all LCD displays that are compatible with the
 Hitachi HD44780 driver. There are many of them out there, and you
 can usually tell them by the 16-pin interface.

 This sketch prints "Hello World!" to the LCD
 and shows the time.

Figure 8-26. Potentiometer for evaluating analog LCD applications. LCD power pins: Vss equals 1 and Vdd equals 2

CHAPTER 8 ■ LCDs and the Arduino

202

 The circuit:
 * LCD RS pin to digital pin 12
 * LCD Enable pin to digital pin 11
 * LCD D4 pin to digital pin 5
 * LCD D5 pin to digital pin 4
 * LCD D6 pin to digital pin 3
 * LCD D7 pin to digital pin 2
 * LCD R/W pin to ground
 * 10K resistor:
 * ends to +5 V and ground
 * wiper to LCD VO pin (pin 3)

 Library originally added 18 Apr 2008
 by David A. Mellis
 library modified 5 Jul 2009
 by Limor Fried (http://www.ladyada.net)
 example added 9 Jul 2009
 by Tom Igoe
 modified 22 Nov 2010
 by Tom Igoe
 added counter feature 20 Feb 2012
 by Don Wilcher

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/LiquidCrystal
 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int inputPin = 6;
int val = 0;
int count = 0;

void setup() {
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 4);
 pinMode(inputPin, INPUT);
}

void loop() {
 val = digitalRead(inputPin);
 if(val==HIGH) {
 // Print a message to the LCD.
 count = count + 1;
 lcd.setCursor(0,3);
 lcd.print(count);
 delay(500);
 } else{

CHAPTER 8 ■ LCDs AnD THE ARDuino

203

 lcd.setCursor(0,3);
 //lcd.print(count);
 delay(1000);
 //lcd.setCursor(0,3)
 count = 0;
 lcd.clear();
 }
}

The circuit schematic diagram in Figure 8-26 allows you to test analog sensors such as photocells (CdS
cells), FlexiForce resistors, microphones, joysticks, and thermistors. The sketch allows the raw analog data to be
displayed on the LCD. I used the potentiometer to test the sketch with success. As I adjusted the potentiometer,
the ATmega328 microcontroller’s ADC (analog-to-digital converter) processed the voltage data and displayed the
digital values on the LCD. You can easily replace the potentiometer with a light detection circuit to create a cool
electronic light-level meter. The Read Sensor sketch is shown in Listing 8-5.

Listing 8-5. Read Sensor Sketch

int sensorPin = A0;
int sensorValue = 0;
/*
 LiquidCrystal Library - Read Sensor
 by Don Wilcher
 20 Feb 2012

 Demonstrates the use of a 20x4 LCD display. Analog values are displayed on the Liquid Crystal
Display based on a change in sensor value.*/

//include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
 pinMode(sensorPin, INPUT);
 digitalWrite(sensorPin, HIGH); // turns on the internal pull-up resistor
 lcd.begin(20,4);

}

void loop() {
 sensorValue = analogRead(sensorPin);
 lcd.setCursor(0,0);
 lcd.print("Sensor value = ");
 lcd.setCursor(0,1);
 lcd.print(sensorValue);
 delay(100);
 sensorValue = 0;
 lcd.clear();
}

CHAPTER 8 ■ LCDs and the Arduino

204

One last item to explain about the sketch is that the internal pull-up resistor is used instead of an external
part. The ATmega328 microcontroller provides this neat feature to save PCB space and cost when designing with
the device. Here is the code instruction used for the internal pull-up resistor:

digitalWrite(sensorPin, HIGH); // turns on the internal pull-up resistor

The sketch operates quite nicely. As you change the sensor signal, the LCD updates quickly (in real time).
The prototype build of the miniature evaluation board is shown in Figure 8-27.

Figure 8-27. Low-cost proto-evaluation breadboard. The push-button switch and potentiometer allow quick
evaluation of the Manual Counter and Read Sensor sketches.

Further Discovery Methods
For the LCD controllers introduced in this chapter, try experimenting with other kinds of digital and analog
sensor circuits. Try replacing the potentiometer for the analog sensor with a joystick or FlexiForce sensor.
Modify the Read Sensor sketch to make the message display the Arduino conversion data related to the actual
application. Build a temperature controller using a thermistor to measure heat and a small DC motor to cool it
when the temperature threshold value is reached. Remember to document your designs in a lab notebook along
with any modifications you made to the sketches for the new controllers you’ve created.

205

Chapter 9

A Logic Checker

In this chapter I’m going to explain how to build simple-to-intermediate logic checkers using an Arduino
together with common electronics parts that you may have in your junk box. Also, I’ll show how the Arduino
can drive a seven-segment LED display directly using a basic circuit and a sketch. I will use the design of my
open source logic probe as a case study to illustrate the design process you can use to create your own electronic
gadgets. In the process I’ll show you how to create truth tables to design and troubleshoot digital circuits.

A truth table is a graphical analysis tool used to explain the operation of digital circuits such as logic gates,
counters, and shift registers. The table provides a list of circuit inputs and corresponding outputs. By setting the
proper inputs from the truth table, you can check the outputs using a special tester such as a logic probe or logic
analyzer.

Figure 9-1 shows the parts required for the hands-on projects and experiments.

Parts List
Arduino Duemilanove or equivalent

AND logic gate IC (74LS08 or 7408)

OR logic gate IC (74LS32 or 7432)

NAND logic gate IC (74LS00 or 7400)

Hex inverter IC (74LS04 or 7404)

4-bit DIP switch

16×2 LCD

20×4 LCD

2×8 330W DIP resistor pack

MAN72 common anode seven-segment LED display

2 (two) 10KW resistors

Solderless breadboard

22AWG solid wire

CHAPTER 9 ■ A Logic Checker

206

Digital multimeter

Oscilloscope (optional)

Electronic tools

Figure 9-1. Parts required for the logic checker projects and experiments

Input Interface Circuits
The logic checker projects and lab experiments in this chapter will require basic input circuits to operate the
digital device under test (DDUT). Active-high and active-low logic switches, discussed in Chapter 4, can be used
to provide input binary codes for the DDUT, and its output signal is wired to the Arduino for displaying the test
results. I’ll provide a brief discussion about logic gates in this chapter. As I explain digital electronics, you’ll learn
by building and testing circuits using the logic checkers.

How It Works
Logic checkers are testing circuits used to check out the operation of a digital device. The operation of logic
checkers is based on setting binary switches to the input data from a truth table and having the Arduino capture
and display the output signal of the DDUT. The testing results of the DDUT can be shown on an LCD or a seven-
segment LED display. Figure 9-2 shows the system block diagram of a logic checker.

http://dx.doi.org/10.1007/978-1-4302-4266-6_4

CHAPTER 9 ■ A Logic Checker

207

Tip■■  I f two lines of text are required for your logic checker, use a 16×2 LCD; otherwise, use a 20×4 screen.

Figure 9-3 shows a system block diagram for a basic logic checker. As you can see, the logic probe circuit is
used to test the DDUT.

Seven Segment
LED Display

Arduino

Output(s)

Digital
Device
Under
Test

Input
Binary
Code

n

or

LCD (20x4)

LCD (16x2)

Figure 9-2. System block diagram for an Arduino logic checker

CHAPTER 9 ■ A Logic Checker

208

Testing a NAND Gate
The circuit schematic diagram for the logic probe is shown in Figure 9-4. To test this logic checker I used a 74LS00
NAND gate as the DDUT. The NAND (Not AND) gate requires at least one input pin to be +5VDC for its output to
turn on. If both input pins are +5VDC, the logic gate’s output will be 0VDC. To explain the logic gate operation,
a math equation called the Boolean expression is used. The NAND gate Boolean expression, shown following, is
C equals not (A and B).

C Not(AB) o r C (AB)′= =

Seven Segment
LED Display

Input
Binary
Code

n

1

2

Digital
Device
Under
Test

Logic
Probe
Circuit

Figure 9-3. System block diagram for a basic logic checker

Figure 9-4. Circuit schematic diagram for the logic probe

CHAPTER 9 ■ A Logic Checker

209

Note■■  I n 1854, George Boole published a paper titled An Investigations of the Laws of Thought on Which Are
Founded the Mathematical Theories of Logic and Probabilities. This paper established Boolean algebra, a branch
of math used (among other things) to express the operation of logic circuits. In 1938, Claude Shannon of MIT was
the first to apply Boole’s work to the analysis and design of logic circuits. Boole and Shannon were rock stars of the
digital electronics movement. Rock on, Boole and Shannon!

Figure 9-5. The NAND gate with its corresponding truth table

Figure 9-6. NAND gate circuit schematic diagram

The symbol and truth table of a NAND gate is shown in Figure 9-5. To test the circuit, I built a Multisim
model using the schematic diagram of Figure 9-6. I used the binary codes from the truth table to operate the
NAND gate.

CHAPTER 9 ■ A Logic Checker

210

Opening a binary switch (A or B) turns on the LED. If you close both of the binary switches, the LED turns
off. Figure 9-7 shows the Multisim NAND gate being operated by the binary switches. You can build a NAND gate
circuit (Figure 9-6) on a breadboard and test it using the truth table of Figure 9-5.

Figure 9-7. Operating a NAND gate using Multisim

Figure 9-8. An open source logic probe kit

I was so happy with the operation of the logic probe on the solderless breadboard that I went on to create an
open source version. Figure 9-8 shows the Smart Logic Probe kit assembled and ready for digital circuit testing.
I used a free PCB software package called ExpressPCB (see www.expresspcb.com) to create the logic probe board.
The components shown in Figure 9-4 are soldered onto the PCB, making a permanent digital testing tool for my
lab bench. You can purchase the kit at my web site, at www.family-science.net/store.htm.

http://www.expresspcb.com
http://www.family-science.net/store.htm

CHAPTER 9 ■ A Logic Checker

211

Tip■■  I nstead of using individual resistors (R2–R7), use a 330W DIP pack. That will make wiring easy and save
breadboard space!

The NAND gate circuit can be tested thoroughly using the truth table. You can wire the NAND gate to the
logic probe using the circuit schematic diagram of Figure 9-9. Set the binary switches to the off (open) position,
and the seven-segment LED display will show the letter H (for logic high). If you place either binary switch in the
on (closed) position, the letter L (for logic low) will be displayed. Complete the logic testing of the NAND gate
using the truth table. The 74LS00 has four logic gates packaged into one IC. You can check the remaining logic
gates using the same testing technique. If you have any other logic gates in your junk box, you can check that they
are working with this handy testing tool.

Figure 9-9. Circuit schematic diagram for a logic checker with a seven-segment LED display

The Seven-Segment LED Display and the Arduino
In Chapter 2, I introduced the seven-segment LED display through a series of lab projects and experiments. In
that chapter, I explained how the 7447 BCD Decade Decoder Driver IC is used to operate the seven-segment LED
display. In this section, I’ll show how the Arduino is capable of directly operating the seven-segment LED display.
Each segment is controlled by the Arduino using a basic driver sketch. The sketch operates the LED display by
turning on the individual LEDs inside of it. The table shown in Figure 9-10 illustrates how the digits 0 through 9
are made to appear on the display by turning on designated segments.

The binary 1 in the table equals an electrical +5VDC, and the binary 0 equals 0VDC. The seven-segment LED
display uses the electrical voltages of +5VDC and 0VDC for operating properly. By looking at the placement of the
1s and 0s in the table, we can see that this display is a common cathode type. Common cathode seven-segment
LEDs have one ground connection, and the other pins require a positive voltage for proper operation. In the table
in Figure 9-10, the segments are set to binary 1 (+5VDC) to display numbers 0 through 9. The common anode
seven-segment LED display (discussed in Chapter 2) works in exactly the opposite way from the cathode device.
You can create a table like the one in 9-10, but all of the 1s and 0s will be opposite in bit value. I built a test circuit
in which the Arduino operates the common anode seven-segment LED display shown in Figure 9-11.

http://dx.doi.org/10.1007/978-1-4302-4266-6_2
http://dx.doi.org/10.1007/978-1-4302-4266-6_2

CHAPTER 9 ■ A Logic Checker

212

Tip■■   Letters and characters can be created on a seven-segment LED display by building a table like that in
Figure 9-10. Bow down to the coolness of the seven-segment LED display!

Figure 9-11. Circuit schematic diagramfor an Arduino seven-segment LED display test

Figure 9-10. Creating numbers on a seven-segment LED display (courtesy of the Learning Pit)

er

213

The prototype I built is shown in Figure 9-12. You can use the Fritzing software to lay out your prototype
to ensure correct placement of parts and wiring connections between component pins on the solderless
breadboard. The seven-segment LED display sketch is shown in Listing 9-1.

Listing 9-1. Sketch for the Seven-Segment LED Display

/*
Make Projects: How to Drive a seven-segment LED
URL:
By: Riley Porter
Modified by: Don Wilcher 3/07/12

This is an introduction on how to drive a seven-segment LED using only a Arduino. This is
not the best way to do this; it is a simplified learning exercise. In later tutorials
I will show you how to use an dedicated IC using SPI or a shift register. Enjoy.
digitalWrite(A, HIGH) = turn off the "A" segment in the LED display
digitalWrite(B, LOW) = turn on the "B" segment in the LED display
*/

int A=2;
int B=3;
int C=4;
int D=5;
int E=6;
int F=7;
int G=8;

void clr()
{
 //Clears the LED
 digitalWrite(A, HIGH);
 digitalWrite(B, HIGH);
 digitalWrite(C, HIGH);
 digitalWrite(D, HIGH);
 digitalWrite(E, HIGH);
 digitalWrite(F, HIGH);
 digitalWrite(G, HIGH);
}

void char_A()
{
digitalWrite(D, HIGH);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

CHAPTER 9 ■ A Logic Checker

214

void char_B()
{
//Displays B
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, HIGH);
digitalWrite(B, HIGH);
digitalWrite(C, LOW);
}

void char_C()
{
//Displays C
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, HIGH);
digitalWrite(A, LOW);
digitalWrite(B, HIGH);
digitalWrite(C, HIGH);
}

void char_D()
{
//Displays D
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, HIGH);
digitalWrite(G, LOW);
digitalWrite(A, HIGH);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void char_E()
{
//Displays E
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, HIGH);
digitalWrite(C, HIGH);
}

CHAPTER 9 ■ A Logic Checker

215

void char_F()
{
//Displays F
digitalWrite(D, HIGH);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, HIGH);
digitalWrite(C, HIGH);
}

void char_H()
{
// Displays H
digitalWrite(D, HIGH);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, HIGH);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void char_L()
{
// Displays L
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, HIGH);
digitalWrite(A, HIGH);
digitalWrite(B, HIGH);
digitalWrite(C, HIGH);
}

void one()
{
//Displays 1
digitalWrite(D, HIGH);
digitalWrite(E, HIGH);
digitalWrite(F, HIGH);
digitalWrite(G, HIGH);
digitalWrite(A, HIGH);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

CHAPTER 9 ■ A Logic Checker

216

void two()
{
//Displays 2
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, HIGH);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, HIGH);
}

void three()
{
//Displays 3
digitalWrite(D, LOW);
digitalWrite(E, HIGH);
digitalWrite(F, HIGH);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void four()
{
//Displays 4
digitalWrite(D, HIGH);
digitalWrite(E, HIGH);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, HIGH);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void five()
{
//Displays 5
digitalWrite(D, LOW);
digitalWrite(E, HIGH);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, HIGH);
digitalWrite(C, LOW);
}

CHAPTER 9 ■ A Logic Checker

217

void six()
{
//Displays 6
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, HIGH);
digitalWrite(C, LOW);
}

void seven()
{
//Displays 7
digitalWrite(D, HIGH);
digitalWrite(E, HIGH);
digitalWrite(F, HIGH);
digitalWrite(G, HIGH);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void eight()
{
//Displays 8
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void nine()
{
//Displays 9
digitalWrite(D, LOW);
digitalWrite(E, HIGH);
digitalWrite(F, LOW);
digitalWrite(G, LOW);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void zero()
{
//Displays 0
digitalWrite(D, LOW);

CHAPTER 9 ■ A Logic Checker

218

digitalWrite(E, LOW);
digitalWrite(F, LOW);
digitalWrite(G, HIGH);
digitalWrite(A, LOW);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void LoopDisplay()
{
//Loop through all Chars and Numbers
char_A();
delay(1000);
char_B();
delay(1000);
char_C();
delay(1000);
char_D();
delay(1000);
char_E();
delay(1000);
char_F();
delay(1000);
char_H();
delay(1000);
char_L();
delay(1000);
one();
delay(1000);
two();
delay(1000);
three();
delay(1000);
four();
delay(1000);
five();
delay(1000);
six();
delay(1000);
seven();
delay(1000);
eight();
delay(1000);
nine();
delay(1000);
zero();
delay(1000);
}

CHAPTER 9 ■ A Logic Checker

219

void setup()
{
//Set up our pins
pinMode(A, OUTPUT);
pinMode(B, OUTPUT);
pinMode(C, OUTPUT);
pinMode(D, OUTPUT);
pinMode(E, OUTPUT);
pinMode(F, OUTPUT);
pinMode(G, OUTPUT);
Serial.begin(9600); //Begin serial communcation
}

void loop()
{
Serial.println("Starting\n");
LoopDisplay();
}

Figure 9-12. The Arduino seven-segment LED display prototype

A couple of cool things about this sketch make it fun to use and easy to remix:

Numbers 0 through 9 code are included.•	

Letters •	 A through F are included.

I also added the letters •	 H and L for the logic checker project (sneaky, aren’t I?).

The serial monitor will display “Starting” at the beginning of the letters-numbers •	
sequence cycle (see Figure 9-13).

Based on the code structure, you’ll be able to display your own cool characters on the •	
seven-segment LED device.

CHAPTER 9 ■ A Logic Checker

220

Note■■   Although the sketch is quite long, it’s worth doing, since learning about seven-segment LED displays
provides a huge benefit in electronics technology education.

Once you’ve uploaded the sketch to the Arduino, a sequence of letters and numbers will be shown on the
display. You can change the order by moving the char_letter() code, creating a new display pattern.

Tip■■   You can create diagnostics in your Arduino sketches using the Serial.println() instruction and have
them display error messages on the serial monitor.

Building a Smart Logic Probe
To make a logic checker (Smart Logic Probe), I wrote a new sketch by adding the char_H() and char_L() code to
the Button sketch. Listing 9-2 shows the Smart Logic Probe sketch. I also remixed the circuit schematic diagram
in Figure 9-11 with two changes:

A digital port (D12) is used to check high and low voltages from the DDUT.•	

A 10K resistor is attached from digital port D12 to ground.•	

The Smart Logic Probe circuit schematic diagram is shown in Figure 9-14. The prototype I built is shown in
Figure 9-15.

Figure 9-13. The serial monitor displaying “Starting” at the beginning of the letters-numbers sequence cycle

CHAPTER 9 ■ A Logic Checker

221

Tip■■  I f you’re looking for new electronics projects to build, take a discrete digital circuit and remix it with an
Arduino and a sketch. Who said you can’t teach an old dog new tricks! Ruff!

Listing 9-2.  Smart Logic Probe Circuit Sketch

/*
 Smart Logic Probe

 Don Wilcher 3/07/12

 Displays the letters "H" and "L" when detecting a Hi or Low voltage level.
 Turns on and off a light emitting diode (LED) connected to digital pin 13.
 Input signal is received at pin 12.

 The circuit:
 * LED attached from pin 13 to ground
 * push-button attached to pin 2 from +5V
 * 10K resistor attached to pin 12 from ground

 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.

 Based off of orginal Button Sketch created 2005
 by DojoDave <http://www.0j0.org>
 modified 30 Aug 2011
 by Tom Igoe

 This example code is in the public domain.

Figure 9-14. Smart Logic Probe circuit schematic diagram

CHAPTER 9 ■ A Logic Checker

222

 http://www.arduino.cc/en/Tutorial/Button
 */

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin=12; // the number of the push-button pin
const int ledPin=13; // the number of the LED pin

// variables will change:
int buttonState=0; // variable for reading the push-button status
int A=2;
int B=3;
int C=4;
int D=5;
int E=6;
int F=7;
int G=8;

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the push-button pin as an input:
 pinMode(buttonPin, INPUT);
 //Set up our pins
 pinMode(A, OUTPUT);
 pinMode(B, OUTPUT);
 pinMode(C, OUTPUT);
 pinMode(D, OUTPUT);
 pinMode(E, OUTPUT);
 pinMode(F, OUTPUT);
 pinMode(G, OUTPUT);
}

void char_H(){
 digitalWrite(D, HIGH);
 digitalWrite(E, LOW);
 digitalWrite(F, LOW);
 digitalWrite(G, LOW);
 digitalWrite(A, HIGH);
 digitalWrite(B, LOW);
 digitalWrite(C, LOW);
}

void char_L(){
 digitalWrite(D, LOW);
 digitalWrite(E, LOW);
 digitalWrite(F, LOW);
 digitalWrite(G, HIGH);
 digitalWrite(A, HIGH);
 digitalWrite(B, HIGH);
 digitalWrite(C, HIGH);
}

er

223

void loop(){
 // read the state of the push-button value:
 buttonState=digitalRead(buttonPin);

 // check if the push-button is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 // Displays H
 char_H();
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 // Displays L
 char_L();
 }
}

Figure 9-15. Smart Logic Probe prototype

Before testing an OR gate IC (7408) that I found in my junk box, I used the +5VDC and GND rails on the
solderless breadboard to check out the operation of the Smart Logic Probe. As shown in Figure 9-15, when I
applied a 0V source to the Smart Logic Probe, it displayed an L. When I connected the probe wire to +5VDC, an H
was displayed on the optoelectronic device. Truly amazing and smart!

Tip I if you want to add an Easter egg to your Arduino project, use the Serial.println() instruction to print a
message on the serial monitor during normal operation Here comes Peter Cottontail...

CHAPTER 9 ■ A Logic Checker

224

Building an Improved Smart Logic Probe
What’s really cool about the Arduino is the ability to remix a sketch to create a new tech gadget. The improvement
I made to the original Smart Logic Probe is to have the seven-segment LED display “HI” and “Lo” based on the
digital circuit’s binary output. I left the circuit input, but remixed the sketch shown in Listing 9-2 to toggle the two
words on the seven-segment LED display. The new sketch for the improved logic probe is shown in Listing 9-3.

Listing 9-3.  Sketch for the Improved Smart Logic Probe

/*
 Smart Logic Probe

 Don Wilcher 3/07/12

 Displays the words "HI" and "Lo" when detecting a high or low voltage level.
 Turns on and off a light emitting diode (LED) connected to digital pin 13.
 Input signal is received at pin 12.

 The circuit:
 * LED attached from pin 13 to ground
 * push-button attached to pin 2 from +5V
 * 10K resistor attached to pin 12 from ground

 * Note: on most Arduinos there is already an LED on the board
 attached to pin 13.

 Based off of orginal Button Sketch created 2005
 by DojoDave <http://www.0j0.org>
 modified 30 Aug 2011
 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Button
 */

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin=12;   // the number of the push-button pin
const int ledPin=13;    // the number of the LED pin

// variables will change:
int buttonState=0; // variable for reading the push-button status
int A=2;
int B=3;
int C=4;
int D=5;
int E=6;
int F=7;
int G=8;

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the push-button pin as an input:

CHAPTER 9 ■ A Logic Checker

225

 pinMode(buttonPin, INPUT);
 //Set up our pins
 pinMode(A, OUTPUT);
 pinMode(B, OUTPUT);
 pinMode(C, OUTPUT);
 pinMode(D, OUTPUT);
 pinMode(E, OUTPUT);
 pinMode(F, OUTPUT);
 pinMode(G, OUTPUT);
}

void char_H(){
 digitalWrite(D, HIGH);
 digitalWrite(E, LOW);
 digitalWrite(F, LOW);
 digitalWrite(G, LOW);
 digitalWrite(A, HIGH);
 digitalWrite(B, LOW);
 digitalWrite(C, LOW);
}

void char_L(){
 digitalWrite(D, LOW);
 digitalWrite(E, LOW);
 digitalWrite(F, LOW);
 digitalWrite(G, HIGH);
 digitalWrite(A, HIGH);
 digitalWrite(B, HIGH);
 digitalWrite(C, HIGH);
}

void char_I(){
//Displays I
digitalWrite(D, HIGH);
digitalWrite(E, HIGH);
digitalWrite(F, HIGH);
digitalWrite(G, HIGH);
digitalWrite(A, HIGH);
digitalWrite(B, LOW);
digitalWrite(C, LOW);
}

void char_o(){
//Displays I
digitalWrite(D, LOW);
digitalWrite(E, LOW);
digitalWrite(F, HIGH);
digitalWrite(G, LOW);
digitalWrite(A, HIGH);
digitalWrite(B, HIGH);
digitalWrite(C, LOW);
}

CHAPTER 9 ■ A Logic Checker

226

void loop(){
 // read the state of the push-button value:
 buttonState=digitalRead(buttonPin);

 // check if the push-button is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 // Displays H and I
 char_H();
 delay(1000);
 char_I();
 delay(1000);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 // Displays L and o
 char_L();
 delay(1000);
 char_o();
 delay(1000);
 }
}

Further Discovery Methods
The discovery method challenge for this chapter is to design, build, and test an LCD-based logic checker for the OR
gate (7408) shown in Figure 9-16. You will write the code for the sketch to display “Binary –Hi” and “Binary –Lo” on
the LCD. Wire active-high digital switches to feed the binary data of the truth table shown in Figure 9-16 to the OR
gate inputs. Refer to the gate’s datasheet for pinout information. When the logic checker is operating properly, you
can record the final design in your lab notebook along with the sketch.

An additional discovery method challenge is to add a piezo buzzer to make two tones in sync with binary
messages being displayed on the LCD. Have fun!

Figure 9-16. An OR gate with truth table (courtesy of All About Circuits[www.allaboutcircuits.com])

http://www.allaboutcircuits.com

227

Chapter 10

Man, It’s Hot: Temperature
Measurement and Control

Besides controlling motors, LCDs, and LEDs, the Arduino can also be used to measure temperature. An analog
temperature sensor can be wired to the Arduino, turning it to an electronic thermometer. This chapter will
show you how to wire and test the precision centigrade temperature sensor. You will also learn how to build
an electronic thermometer using the sensor and off-the-shelf electronic parts. In addition, you will learn
how to display the data using a serial monitor and an LCD. Finally, you will learn how to wire a DC motor for
temperature control of electromechanics. Figure 10-1 shows the parts required for these hands-on projects and
experiments.

Parts List
1 Arduino Duemilanove or equivalent

1 LM35 precision centigrade temperature sensor

1 10K potentiometer

1 2N3904 NPN transistor

1 small DC motor

1 1N4001 diode

1 1K resistor

1 100W resistor

1 16x2 LCD

1 SPST switch

1 LED

Solderless breadboard

22 AWG solid wire

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

228

Digital multimeter

Oscilloscope (optional)

Electronic tools

Figure 10-1. Parts required for the temperature measurement projects and experiments

What Is a Precision Centigrade Temperature Sensor?
A precision centigrade temperature sensor is an IC whose output voltage is directly proportional to the Celsius
temperature scale. It doesn’t require any external components to calibrate for temperature accuracies because
they’re added at the wafer level of the IC. If you want to add external readout devices like LEDs or LCDs to the
sensor, it’s no problem because the IC has low output impedance (AC resistance), a proportional output driver
circuit, and precision external calibration components that help in operating these optoelectronic displays
properly.

Another cool feature of the precision centigrade temperature sensor is that you can operate it using a single
DC power supply or bipolar (positive/negative) voltage source, so it’s convenient for the hobbyist! To use a
temperature IC, you just have to add three wires to the device and provide a DC power supply.

How It Works
The temperature sensor IC delivers an output voltage based on the temperature (Celsius scale). The LM35
temperature sensor’s output is approximately 0.23 V in room air. When you apply heat to the IC, the sensor’s output
voltage increases. To see the changing output voltage of the sensor, you can attach a voltmeter to the IC’s output
pin. The system block diagram for monitoring the temperature sensor’s output voltage is shown in Figure 10-2.

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

229

Using the system block diagram as a design guide, you can build a simple electronic thermometer. I used the
block diagram in Figure 10-2 to create the simple electronic thermometer circuit schematic diagram shown in
Figure 10-3.

Precision Centigrade
Temperature Sensor

DMM
(Digital Voltmeter)

1

Figure 10-2. Measuring a temperature sensor’s output voltage with a digital voltmeter system block diagram

Figure 10-3. A simple electronic thermometer circuit schematic diagram

Building an Electronic Thermometer
In building the electronic thermometer, I used a recycled computer ribbon cable to allow the sensor to move
freely instead of soldering it to a prototype board. The ribbon cable provides flexibility in attaching the sensor to
the Arduino because you can insert the three pins of the IC into the cavities (holes) of the connector. The other
end of the ribbon cable connector can be extended by inserting wires into it. I can change the ribbon cable
length by using longer wires to the connector. If you have a different way of allowing the sensor to move freely for
remote temperature measurements, go for it! Figure 10-4 shows the temperature sensor attached to the computer
ribbon cable.

Tip■■   When recycling electronics, remember to save screws, nuts, and mini jumper wires for future Arduino
projects!

I used an ohmmeter to match up the temperature sensor pins inserted into one connector with the wires
attached to the other end of the computer ribbon cable. I placed the ohmmeter in continuity mode while
matching the sensor pins to the jumper wires during this assembly step. Figure 10-5 shows a close-up of the
ribbon cable end connectors.

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

230

I used the LM35 datasheet’s pinout for assembly of the sensor IC to the ribbon cable end connector.
Figure 10-6 shows the LM35 pinout. After assembling the ribbon cable, I completed the final wiring of the simple
electronic thermometer on the solderless breadboard. Figure 10-7 shows the completed electronic thermometer.

Figure 10-4. Extending the temperature sensor pins by using a recycled computer ribbon cable and additional
wires

Figure 10-5. Close-up of ribbon end connectors with attached temperature sensor and jumper wires

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

231

Figure 10-6. LM35 precision centigrade temperature sensor IC T0-92 package. Pinout courtesy of Texas Instrument
datasheet.

Figure 10-7. A LM35-based electronic thermometer

Note■■   Building cool temperature sensing gadgets is easy with the Arduino because no additional amplifier
circuits are needed. We love you, Arduino!!

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

232

A Computer Thermometer
You can build a computer thermometer by replacing the DMM digital voltmeter with the Arduino-Processing
Serial Monitor. By opening a serial connection with the computer, you can view the voltage values from
the temperature sensor. Figure 10-8 shows the system block diagram for a computer thermometer. I found
information on how to read temperature sensor data and display it on the Serial Monitor at www.ladyada.net/
learn/sensors/tmp36.html.

Precision Centigrade
Temperature Sensor Arduino

1(Rx)

1(Tx)

Computer
(notebook or desktop)

1

Figure 10-8. A computer-based thermometer

To convert the temperature sensor data, the following equation is used:

Voltage at pin (Vpin) (readings from ADC) (5000/1024)= ×

Listing 10-1 shows the sketch for programming the Arduino to convert the temperature sensor data to volts
and display it on the Serial Monitor.

Listing 10-1.  LM35 Sensor Sketch

/* Converting LM35 Sensor data to Volts
Sketch will take sensor data and convert it to volts.
Volts value will be displayed on serial monitor

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/16/12

*/

//LM35 Pin Variables

int sensorPin = 0;// The analog pin the LM35's Vout is connected to.

/*
 Initialize serial connection with the computer*/
void setup()
{
 Serial.begin(9600); // Begin serial connection with the computer
 pinMode(sensorPin, INPUT);

}

http://www.ladyada.net/learn/sensors/tmp36.html
http://www.ladyada.net/learn/sensors/tmp36.html

CHAPTER 10 ■ MAn, IT’s HoT: TEMPERATuRE MEAsuREMEnT And ConTRol

233

void loop()
{
 int reading = analogRead(sensorPin);// read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0;// Convert sensor data to voltage
 voltage /= 1024.0;
 Serial.print(voltage); Serial.println("volts");// Print voltage on serial monitor

 delay(1000);// print data every second
}

You can use the analog pin (A0) of the Arduino to read the LM35’s output voltage. The circuit schematic
diagram is shown in Figure 10-9.

Figure 10-9. The computer thermometer circuit schematic diagram

After building the circuit schematic diagram, upload the sketch and open the Serial Monitor. You will see
voltage data scrolling on the screen, as shown in Figure 10-10.

Tip■ Removing the check from the Autoscroll box will show one line of data.

To manage the computer ribbon cable on the solderless breadboard, I placed a jumper wire across it, as
shown in Figure 10-11.

By placing an SPST (single pole single throw) switch between pin 1 of the IC and +5VDC, you can stop the
sensor from supplying data to the Arduino. Figure 10-12 shows the circuit schematic diagram of the modified
computer thermometer. To test the prototype, I used my bench light as a heat source. As I moved the bench light
to the sensor, the output voltage increased (see Figure 10-13).

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

234

Figure 10-10. Serial Monitor displaying sensor data

Figure 10-11. Temperature sensor prototype with ribbon cable management via a jumper wire

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

235

Final Completion of Computer Thermometer
With the LM35 sensor circuit working correctly, you can remix the sketch to show actual temperature readings.
Add the following lines of code to the LM35 sketch so temperature data will display on the Serial Monitor:

Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

float temperatureC=(0.5-voltage)*100; //Convert voltage to temperature

Serial.print(temperatureC); Serial.println(" degrees C");// Print Temperature in C

Figure 10-12. Data start switchd (enable) added to temperature sensor

Figure 10-13. Testing temperature sensor with bench light and Serial Monitor results

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

236

Upload the remixed sketch to the Arduino to see voltage and temperature (Celsius) values scrolling on the
Serial Monitor, as shown in Figure 10-14.

Figure 10-14. LM35 sensor IC output voltage and equivalent temperature value

Note■■   Room temperature (ambient) is 25 °C (78 °F). The serial monitor is displaying 24.61 °C. The Arduino is the
ultimate in personal environmental measurement gear for amateur scientists and professional meteorologists. Man,
it rocks!

To show Fahrenheit temperature, you can use the following lines of code:

float temperatureF=(temperatureC*9.0/5.0)+32; //Convert voltage to temperature

Serial.print(temperatureF); Serial.println("degrees F");// Print Temperature in C

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

237

The results of the remixed sketch on the Serial Monitor are shown in Figure 10-15.

Figure 10-15. Farenheit temperature readings scrolling on the Serial Monitor

Listing 10-2 is the sketch for the displaying Celsius temperature and Listing 10-3 displays Fahrenheit.

Listing 10-2.  LM35 Celsius Temperature Sketch

/* Converting LM35 Sensor data to Volts
Sketch will take sensor data and convert it to volts.
Volts value will be displayed on serial monitor

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/16/12

*/

//LM35 Pin Variables

int sensorPin = 0;// The analog pin the LM35's Vout is connected to.

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

238

/*
 Initialize serial connection with the computer*/
void setup()
{
 Serial.begin(9600); // Begin serial connection with the computer
pinMode(sensorPin, INPUT);

}

void loop()
{
 int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0; // Convert sensor data to voltage
 voltage /= 1024.0;
 Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

 float temperatureC=(0.5-voltage)*100; //Convert voltage to temperature

 Serial.print(temperatureC); Serial.println("degrees C");// Print Temperature in C

 delay(1000);// print data every second
}

Listing 10-3.  LM35 Farenheit Temperature Sketch

/* Converting LM35 Sensor data to Volts
Sketch will take sensor data and convert it to volts.
Volts value will be displayed on serial monitor

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/16/12

*/

//LM35 Pin Variables

int sensorPin = 0;// The analog pin the LM35's Vout is connected to.

/*
 Initialize serial connection with the computer*/
void setup()
{
 Serial.begin(9600); // Begin serial connection with the computer
 pinMode(sensorPin, INPUT);

}

void loop()
{
 int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0; // Convert sensor data to voltage
 voltage /= 1024.0;
 Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

239

 float temperatureC=(0.5-voltage)*100;

 float temperatureF=(temperatureC*9.0/5.0)+32; //Convert voltage to temperature

 Serial.print(temperatureF); Serial.println(" degrees F");// Print Temperature in C

 delay(1000);// print data every second
}

Tip■■   If you want your Arduino interactive art piece to respond to touch, wire a temperature sensor IC to it. Man,
it’s hot!

Try It Out!
The LM35 sensor is an awesome IC for temperature-measuring applications, as demonstrated in the computer
thermometer project. You can take the basic sensor circuit, the Fahrenheit sketch, and remix them into a
temperature monitor. Figure 10-16 shows a system block diagram of a temperature monitor.

Precision Centigrade
Temperature Sensor

Arduino

LED
Indicator

1 1
+5V

GND

+Vout

+Vs
1

LM35

3

2

Figure 10-16. Temperature monitor system block diagram

The concept behind the monitoring device is to turn off the flashing LED when the temperature is greater
than a threshold value hard-coded into the sketch. The threshold value I used is 78 °F, which is above normal
room temperature. The circuit schematic diagram you can use to build the prototype temperature monitor is
shown in Figure 10-17.

The prototype I built using the circuit schematic diagram is shown in Figure 10-18. After the sketch in
Listing 10-4 is uploaded to the Arduino, the LED will flash at a rate of 2 seconds. Blowing on the temperature
sensor will stop the flashing LED. As you experiment with different hot and cold levels, watch the temperature
measurements scroll on the Serial Monitor. Remix the flash rate and the threshold values in the sketch, and watch
changes on the LED and the serial monitor. Also, see how fast the sensor responds between hot and cold. Record
your observations in a lab notebook.

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

240

Listing 10-4.  LM35 Farenheit Temperature with Flashing LED Sketch

/* Converting LM35 Sensor data to Volts
Sketch will take sensor data and convert it to volts.
Volts value will be displayed on serial monitor

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/16/12

*/

//LM35 Pin Variables

const int sensorPin = 0;// The analog pin the LM35's Vout is connected to.
const int ledPin = 9; //the number of the LED Pin

/*
 Initialize serial connection with the computer*/
void setup()
{
 Serial.begin(9600); // Begin serial connection with the computer
 pinMode(ledPin, OUTPUT);
 pinMode(sensorPin, INPUT);

}

Figure 10-17. Temperature monitor circuit schematic diagram

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

241

void loop()
{
 int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0; // Convert sensor data to voltage
 voltage /= 1024.0;
 Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

 float temperatureC=(0.5-voltage)*100;

 float temperatureF=(temperatureC*9.0/5.0)+32; //Convert voltage to temperature

 Serial.print(temperatureF); Serial.println(" degrees F");// Print Temperature in C

 if(temperatureF >78){
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
 }
 else{
 digitalWrite(ledPin, LOW);
 }

 delay(1000);// print data every second
}

Figure 10-18. Responding to room temperature

Another cool sketch remix is to have different flash rates for normal and high temperatures. I took the
flashing LED code, duplicated it, and made the flash rate faster under high temperatures. The LED flashes slowly
under normal room temperatures. The remix sketch for this temperature monitor effect is shown in Listing 10-5.

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

242

Listing 10-5.  LM35 Farenheit Temperature with Dual LED Flash Rates Sketch

/* Converting LM35 Sensor data to Volts
Sketch will take sensor data and convert it to volts.
Volts value will be displayed on serial monitor

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/16/12

*/

//LM35 Pin Variables

const int sensorPin = 0;// The analog pin the LM35's Vout is connected to.
const int ledPin = 9; //the number of the LED Pin

/*
 Initialize serial connection with the computer*/
void setup()
{
 Serial.begin(9600); // Begin serial connection with the computer
 pinMode(ledPin, OUTPUT);
 pinMode(sensorPin, INPUT);

}

void loop()
{
 int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0; // Convert sensor data to voltage
 voltage /= 1024.0;
 Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

 float temperatureC=(0.5-voltage)*100;

 float temperatureF=(temperatureC*9.0/5.0)+32; //Convert voltage to temperature

 Serial.print(temperatureF); Serial.println("degrees F");// Print Temperature in C

 if(temperatureF >78){
 digitalWrite(ledPin, HIGH);
 delay(1000);
 digitalWrite(ledPin, LOW);
 delay(1000);
 }
 else{
 digitalWrite(ledPin, HIGH);
 delay(100);
 digitalWrite(ledPin, LOW);
 delay(100);
 }

 delay(1000);// print data every second
}

CHAPTER 10 ■ MAn, IT’s HoT: TEMPERATuRE MEAsuREMEnT And ConTRol

243

You can add a second LED and have it flash separately from the first one. Also, change the monitor threshold
value to detect a window of temperatures. Try it out!

An LCD Electronic Thermometer
Using the base circuit schematic shown in Figure 10-12 as the core measuring device, you can build a cool LCD
electronic thermometer. The parts needed for this project are the LCD and two resistors. Figure 10-19 shows the
system block diagram for the LCD electronic thermometer. In designing the circuit, I added the LCD to make
the electronic instrument portable for field temperature measurements. If you want temperature readings to be
displayed on a computer, connect a USB cable between the Arduino and the desktop PC or notebook. In wiring
the LCD to the Arduino, the power (Vdd) and ground (Vss) pins are connected with the 10 K potentiometer
adjusted so the pixel-squares are not shown on the display. The LCD’s LED backlight is wired to a 100ohm
resistor. This preliminary step will ensure proper operation of the LCD before final wiring of the part to the
Arduino. The LCD electronic thermometer circuit schematic diagram is shown in Figure 10-20.

Precision Centigrade
Temperature Sensor

Arduino

LCD (16x2)
1 6

+5V

GND

+Vout

+Vs
1

LM35

3

2

Figure 10-19. The LCD electronic thermometer system block diagram

Figure 10-20. The LCD electronic thermometer circuit schematic diagram

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

244

You can mount the LCD where pin 1 matches the same row location on the solderless breadboard to ease
Arduino wiring. Figure 10-21 shows the final LCD electronic thermometer prototype.

After you upload the LCD electronic thermometer sketch to the Arduino, a temperature reading will be on
the screen. You can increase the temperature by placing the sensor between your fingers. The temperature data
updates every 10milliseconds (ms) and can easily be changed in the sketch with the delay(10) instruction. The
complete sketch for the LCD electronic thermometer is shown in Listing 10-6.

Listing 10-6.  Sensor Data to Temperature Sketch

/* Converting LM35 Sensor data to Temperature
Sketch will take sensor data and convert it to volts then to temperature.
Volts and Temperature values will be displayed on serial monitor and LCD.

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/17/12

*/

//LM35 Pin Variables

int sensorPin = 0;// The analog pin the LM35's Vout is connected to.

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
/*
 Initialize serial connection with the computer*/
void setup()

Figure 10-21. The LCD electronic thermometer prototype

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

245

{
 Serial.begin(9600); // Begin serial connection with the computer
 lcd.begin(16,2);
 analogReference(INTERNAL);
 pinMode(sensorPin, INPUT);

}

void loop()
{
 int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0; // Convert sensor data to voltage
 voltage /=1024.0;

 Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

 float temperatureC=((100*1.1*voltage)/1024)*100;

 float temperatureF=(temperatureC*(9.0/5.0))+32; //Convert voltage to temperature

 Serial.print(temperatureF); Serial.println(" degrees F");// Print Temperature in C

 // display Temperature on LCD
 lcd.setCursor(0,0);
 lcd.print("Temperature=");
 lcd.setCursor(0,1);
 lcd.print(temperatureF); lcd.println(" degrees F ");

 delay(10);// print data every 10milliseconds
}

A Temperature Controller
You can change the LCD electronic thermometer into a temperature controller using a few electronic parts.
A temperature controller is a device used to operate an external component such as a light bulb or a motor when
the sensor’s electrical signal exceeds some trigger value. Here, the Arduino will turn on a transistor DC motor
driver circuit when the temperature is greater than the sketch preset value.

A trigger (threshold) value is built in the sketch using if-else statements. You program the sketch condition
using the “greater- than” sign to monitor the sensor’s temperature. The Arduino stops the motor when the
temperature is below the threshold and turns the motor on when the temperature is above the threshold. The
temperature controller circuit schematic diagram is shown in Figure 10-22.

I used a separate DC supply for the transistor motor driver circuit to prevent electrical interference
with the LCD. Setting the transistor motor driver circuit to 1.5VDC reduces electrical interference to the LCD.
The prototype for the controller is shown in Figure 10-23.

Check for wiring mistakes before powering the transistor motor circuit and uploading the sketch to the
Arduino. With the temperature sensor held between your fingers, the rising value should show on the LCD. When
the temperature reaches 58 °F, the motor turns on until the reading drops below this value. The temperature
controller sketch is shown in Listing 10-7.

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

246

Listing 10-7.  Temperature Controller Sketch

/* Converting LM35 Sensor data to Temperature
Sketch will take sensor data and convert it to volts then to temperature.
Volts and Temperature values will be displayed on serial monitor and LCD.
It turns ON a small dc motor when sensor temperature is greater than the threshold value.

Remixed sketch of ladyada's TM36 sensor tutorial
http://www.ladyada.net/learn/sensors/tmp36.html

Don Wilcher 03/17/12

*/

//LM35 Pin Variables

int sensorPin = 0;// The analog pin the LM35's Vout is connected to.
const int motorPin = 9; // the number of the motor pin

Figure 10-22. The temperature controller circuit schematic diagram

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

247

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

/*
 Initialize serial connection with the computer*/
void setup()
{
 Serial.begin(9600); // Begin serial connection with the computer
 lcd.begin(16,2);
 analogReference(INTERNAL);
 /* for Arduino Mega please use analogReference(INTERNAL1v1); */
 pinMode(motorPin, OUTPUT);

}

void loop()
{
 int reading = analogRead(sensorPin); // read data from LM35 using Arduino (A0) pin
 float voltage = reading *5.0; // Convert sensor data to voltage
 voltage /=1024.0;

 Serial.print(voltage); Serial.println("volts"); // Print voltage on serial monitor

 float temperatureC=((100*1.1*voltage)/1024)*100;

 float temperatureF=(temperatureC*(9.0/5.0))+32; //Convert voltage to temperature

 Serial.print(temperatureF); Serial.println(" degrees F");// Print Temperature in C

 // display Temperature on LCD
 lcd.setCursor(0,0);
 lcd.print("Temperature=");
 lcd.setCursor(0,1);
 lcd.print(temperatureF); lcd.println(" degrees F ");

 //DC Motor control
 if(temperatureF >58){
 digitalWrite(motorPin, HIGH);
 }
 else{
 digitalWrite(motorPin, LOW);
 }

 delay(10);// print data every 10milliseconds
}

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

248

Further Discovery Method
The activity challenge for this chapter is to design a system block diagram for the temperature controller.
Additional activities include the following:

Add an LED to turn on and off with the small DC motor when detecting temperature •	
limits.

Replace the motor and the LED with a piezo-buzzer for audible temperature alerts.•	

Replace the 16x2 display with a 20x4 LCD.•	

Replace the DC motor with a vibration unit and observe the electrical operation.•	

Add a speed control feature as the temperature increases to operate a small DC motor.•	

As always, record the final designs in your lab notebook along with the sketches. Enjoy!

Final Thoughts and Suggestions
The intent of this book was to explain basic electronics concepts using the Arduino and common parts. I hope
you found the lab experiments and projects to be entertaining and educational. I had fun building the Arduino
electronic circuits and writing the sketches to make cool gadgets. Here’s a list of additional project ideas that use
the Arduino electronic circuits discussed in this book.

Figure 10-23. The temperature controller prototype

CHAPTER 10 ■ Man, It’s Hot: Temperature Measurement and Control

249

Build a temperature-activated robot using the TM35 temperature sensor discussed in this •	
chapter.

Operate a LEGO NXT machine using an Arduino and FlexiForce sensor.•	

Build an LCD-based logic checker using the Arduino.•	

Build an electronic dice game using an LCD and the Arduino.•	

Build an Arduino AM transmitter using a PWM signal.•	

Build an electronic lock using an Arduino and a keypad.•	

Have fun with these project suggestions as you continue to learn electronics with Arduino!

251

Index

n  A
Android Droid X smartphone, 165
Arduino-based LCD controller

with an improved event trigger, 182
with auto-adjust contrast control, 181
block diagram, 189, 190
circuit diagram, 187, 189
delay() function, 197
features, 187
Hello World Sketch, 191–192, 195–197
kit, 188
with light detection, 182
prototype, 190
Serial Monitor Sketch, 193–194
with simple event detection, 182
talking Arduino, 192

Arduino-based unipolar stepper motor controller
actual build, 111
circuit diagram, 111
Darlington transistor driver, 110
Easter egg, 112
Knob sketch, 113
Serial Monitor access, 114
stepper_oneRevolution Sketch, 112

Arduino Flasher-Tester system
block diagram, 40
circuit diagram, 41
common anode display, 41, 42
completed circuit, 42, 43
potentiometer LED control sketch, 43–44

ATmega328 microcontroller
block diagram, 66
description, 65
interactive light sequencer device, 59, 60
pin out configuration, 123
waveform generator, 124

Audio transformer
circuit diagram, 10
closed switch, 13
description, 9
inverted pulsed waveform signals, 10, 11
open switch, 12

Auto-adjust contrast control
for Arduino-based LCD controller, 198
circuit diagram, 198, 199
DC voltage measurement, 199, 200

n  B
Base biasing transistor driver circuit, 72–74
7447 BCD-to-Decode IC, 44–46

n  C
Computer thermometer

block diagram, 232
circuit diagram, 233
completed stage

Farenheit temperature readings, 237
LM35 Celsius Temperature Sketch, 237–238
LM35 Farenheit Temperature Sketch, 238–239
LM35 sensor, 236

data start switch, 233, 235
description, 232
LM35 Sensor Sketch, 232–233
Serial Monitor displaying sensor data, 233, 234
temperature monitor

block diagram, 239
circuit diagram, 239, 240
LM35 Farenheit temperature with Dual LED

flash rates sketch, 242–243
LM35 Farenheit temperature with flashing LED

sketch, 240–241

■ Index

252

Computer thermometer (cont.)
room temperature response, 241

temperature sensor
prototype, 234
testing, 235

n  D
Darlington transistor

circuit, 106
description, 105
unipolar stepper motor phase sequences, 106, 107

DC motor controller, 80
Digital multimeter (DMM), 16–18

n  E
Electric motors, 80
Electromechanical relay

active-high digital input circuit, 79
IC socket, 78
pinout, 78

Electronic singing bird
audio transformer

circuit diagram, 10
closed switch, 13
description, 9
inverted pulsed waveform signals, 10, 11
open switch, 12

biasing, 3
breadboard assembly

2N3904 and 2N3906 transistors, 21
prototype, 21, 22
pulsed tone oscillator circuit, 20
relay, 20, 21

circuit diagram, 3, 6
DMM, 16–18
duty cycle, 7
electronic oscillator circuit, 6
interactive control software

Arduino processing editor, 23–24
Button sketch code, 22–23
description, 22

light detection circuits
photocells, 14–15
using oscilloscope, 16, 18, 19
using voltmeter, 16–18

Multisim virtual oscilloscope, 4
parts, 1–2
physical computing, 2
pulsed waveform signal, 5–6
PWM, 7
sketch, 23
system block diagram, 2

testing, 24–25
transistor biasing, 7

function generator, 9
switching circuit, 8

voltage divider, 12–14
Electronic thermometer

circuit diagram, 229
computer ribbon cable, 229, 230
description, 229
LCD

block diagram, 243
circuit diagram, 243
description, 243
prototype, 244
sensor data to temperature sketch, 244–245

LM35-based, 231
LM35 precision centigrade temperature sensor

IC T0-92 package, 231
ribbon end connectors, 230

n  F, G
FlexiForce sensor (FFS)

haptics
block diagram, 174
circuit diagram, 175
prototype, 175, 176
Robot End Effector Test Stand, 177–178
stepper_speedControl Sketch, 176–177

servo motor control
FlexiForce-operated controller, 103, 104
Fritzing circuit, 104
input interface circuit, 103
prototype, 105
tactile force, 102

Flyback diode, 74, 75
Fritzing software

Arduino-based controller prototype, 95
circuit, 94
description, 94
music box controller, 122
sweep sketch, 95–96

Function generator, 9

n  H
Haptics controller system

block diagram, 151
description, 149
discovery method, 178
driver interface circuit, 150–152
FlexiForce sensor haptics

block diagram, 174
circuit diagram, 175

■ Index

253

prototype, 175, 176
Robot End Effector Test Stand, 177–178
stepper_speedControl Sketch, 176–177

285Hz PWM signal, 163, 164
keypad haptics

button sketch, 171–172
circuit diagram, 166, 167
Grayhill 16 keypad, 169
interface circuit testing, 170, 171
Keypad_VibrationMotor_control Sketch,

172–173
output voltage, 167
pin identification, 168, 169
prototype, 170
Real Calculator app, 165
switch matrix datasheet, 168
truth table, 168
virtual three-button keypad circuit model, 166

mechatronics, 174
parts, 149–150
robotics-based haptics system, 151
test and measurement setup, 164–165
testing, 178
vibration motor

Arduino computational platform, 153, 154
Arduino port D5, 156, 157
22AWG stranded wire, 153, 154
circuit diagram, 158
description, 152
examples, 152
Itotal measurement, 156
joystick-controlled, 159–161
PWM signal, 161–162
Ra current measurement, 153, 155
recycled, 153
stepper motor control sketch, 162–163
test sketch, 156

working process, 152

n  I
Improved Smart Logic Probe, 224–226
Interactive control software

Arduino processing editor, 23–24
Button sketch code, 22–23
description, 22

Interactive light sequencer device
block diagram, 52
circuit diagram, 53
LEDs

ATmega328 microcontroller, 59, 60
fan-out, 59
interactive LED sequencer device, 62
parts layout, 62

wiring diagram, 60, 61
wiring prototyping tools, 61

measurement setup
excel results, 58
output frequency, 59
procedure, 56
prototype, 57
resistance, 58
resistance vs. voltage data table, 57
voltage, 58

parts, 51–52
potentiometer

description, 54
symbol, 54, 55
total resistance measurement, 54, 55
voltage divider circuit, 55, 56

remix design technique, 52
block diagram, 53
circuit diagram, 53, 54

remixed interactive LED sequencer device, 63
sequential-switching software

ATmega328 microcontroller, 65–67
interactive LED light sequencer sketch, 64–65

testing, 67
Interactive music box controller

CdS photocell data, 145
line of code, 143
serial monitor, 143, 144
tonePitchFollower sketch, 142–143

n  J
Jig systems

block diagram, 183
command-control codes, 184
contact bounce and debounce circuit

operation, 185
debounce circuit, 184, 185
letters, numbers, and character codes, 188
prototype, 187

Joystick, servo motor control
circuit diagram, 101
description, 100
mechanical linkage assembly, 100, 101
prototype, 102
soldered pigtail wire harness, 102

n  K
Keypad haptics

button sketch, 171–172
circuit diagram, 166, 167
Grayhill 16 keypad, 169
interface circuit testing, 170, 171

■ Index

254

Keypad haptics (cont.)
Keypad_VibrationMotor_control Sketch, 172–173
output voltage, 167
pin identification, 168, 169
prototype, 170
Real Calculator app, 165
switch matrix datasheet, 168
truth table, 168
virtual three-button keypad circuit model, 166

n L
LCD. See Liquid crystal display (LCD)
LEDs. See Light emitting diodes (LEDs)
Light detection circuits

photocells, 14–15
using oscilloscope, 16, 18, 19
using voltmeter, 16–18

Light emitting diodes (LEDs)
ATmega328 microcontroller, 59, 60
bar display, 32–34
circuit analysis, 31–32
fan-out, 59
forward biasing mode, 30
interactive LED sequencer device, 62
multisim circuit model, 30
parts layout, 62
reverse biasing mode, 30, 31
seven-segment display

Arduino Flasher-Tester system, 40–44
Arduino prototype, 219
arrangements, 37
BCD-to-Decimal circuit, 46–47
circuit diagram, 212
component, 38
numbers creation, 211, 212
serial monitor display, 219, 220
sketch, 213–219
testing, 38–40

wiring diagram, 60, 61
wiring prototyping tools, 61

Liquid crystal display (LCD)
Arduino-based controller

with an improved event trigger, 182
with auto-adjust contrast control, 181
block diagram, 189, 190
circuit diagram, 187, 189
delay() function, 197
features, 187
Hello World Sketch, 191–192, 195–197
kit, 188
with light detection, 182
prototype, 190
Serial Monitor Sketch, 193–194

with simple event detection, 182
talking Arduino, 192

auto-adjust contrast control
for Arduino-based LCD controller, 198
circuit diagram, 198, 199
DC voltage measurement, 199, 200

block diagram, 180–183
description, 179
discovery methods, 204
electronic thermometer

block diagram, 243
circuit diagram, 243
description, 243
prototype, 244
sensor data to temperature sketch, 244–245

evaluation board
low-cost proto-evaluation breadboard, 204
manual counter sketch, 201–203
potentiometer, 201
push-button switch, 200
read sensor sketch, 203

parts, 179–180
remixing physical-computing input interface

circuits, 180–183
test jig systems

block diagram, 183
command-control codes, 184
contact bounce and debounce circuit

operation, 185
debounce circuit, 184, 185
letters, numbers, and character codes, 188
prototype, 187

LM35
computer thermometer

Celsius Temperature Sketch, 237–238
Farenheit Temperature Sketch, 238–239
sensor sketch, 232–233

electronic thermometer, 231
precision centigrade temperature sensor

IC T0-92 package, 231
temperature monitor

Farenheit temperature with dual LED flash
rates sketch, 242–243

Farenheit temperature with flashing LED
sketch, 240–241

Logic checker
block diagram

Arduino logic checker, 207
basic logic checker, 208

discovery methods, 226
input interface circuits, 206
NAND gate

circuit diagram, 209
logic probe circuit diagram, 208

■ Index

255

open source logic probe kit, 210
with seven-segment LED display, 211
truth table, 209
using Multisim, 210

OR gate, 226
parts, 205–206
seven-segment LED display

Arduino prototype, 219
circuit diagram, 212
numbers creation, 211, 212
serial monitor display, 219, 220
sketch, 213–219

Smart Logic Probe
circuit sketch, 220–223
improved, 224–226
prototype, 223

truth table, 205
working procedure, 206–208

n  M
Mini digital roulette games

7447 BCD-to-Decode IC, 44–46
bill of materials (BOM), 27
block diagram, 28
breadboard assembly, 47
circuit diagram, 29
forward biasing, 29
game software, 35–37, 48
LED

bar display, 32–34
circuit analysis, 31–32
forward biasing mode, 30
multisim circuit model, 30
reverse biasing mode, 30, 31

new circuit design, 48–49
parts, 27–28
reverse bias, 30
seven-segment LED display

Arduino Flasher-Tester system, 40–44
arrangements, 37
BCD-to-Decimal circuit, 46–47
component, 38
testing, 38–40

testing, 48
version 1

DIP package, 35
prototype, 34

Windows calculator, 32
Motion control

Darlington transistor
circuit, 106
description, 105
unipolar stepper motor phase sequences, 106, 107

remixing, 90–91
servo motor control (see Servo motor control)
stepper motor control (see Stepper motor control)

Motor speed control
2N2222 transistor pinout, 84
potentiometer input control

Arduino controlled DC motor, 83
circuit diagram, 81
controller prototype, 82
PWM control signal, 84

software
light detection input control, 85–86
sketch, 85

Multisim digital controller model
circuit diagram, 108, 109
CW/CCW timing diagrams, 110
description, 108
virtual Function Generator setup, 109

Multisim virtual oscilloscope, 4
Music box controller

block diagram
Arduino-based physical-computing, 121
keypad-activated, 121
potentiometer-activated, 122
remixed FlexiForce sensor-activated, 121

building and testing
basic block diagram, 127
circuit diagram, 128
Code for Playing “Twinkle, Twinkle,

Little Star,” 129–130
Fritzing music box controller sketch, 127, 128
with oscilloscope, PWM signal, 130–133
physical prototype, 129

discovery methods, 148
driver interface circuits, 120–122
driving a speaker

adjusted PWM output signal, 135
circuit diagram, with prototype, 133, 135
Fritzing sketch, 134
PWM output signal, 133, 134

Fritzing model, 122
interactive, 141

CdS photocell data, 145
line of code, 143
serial monitor, 143, 144
tonePitchFollower sketch, 142–143

parts, 119–120
piezo-buzzer, 122
PMOSFET

description, 136
Multisim circuit model, 137–141
N-channel PMOSFET (IRF630A)

pinout, 136
P-channel electrical symbol, 136, 137

■ Index

256

Music box controller (cont.)
PWM

ATmega328 Microcontroller, 123–124
Multisim function generator setup, 126
Multisim PWM virtual circuit, 124, 125
one-shot component configuration, 125, 126
triangle wave, 125, 127
value table, 125

remixing physical-computing, 120–122
testing, 148
three-key

circuit diagram, 145, 146
prototype, 146
toneKeyboard Sketch, 147

working procedure, 122

n  N
NAND gate

circuit diagram, 209
logic probe circuit diagram, 208
open source logic probe kit, 210
with seven-segment LED display, 211
truth table, 209
using Multisim, 210

N-channel PMOSFET (IRF630A), 136

n  O
OR gate, 226
Oscilloscope

ambient and no ambient lighting, 18, 19
laboratory test bench setup, 18, 19
multisim circuit diagram, 16, 18

n  P, Q
P-channel MOSFET, 136, 137
Physical-computing DC motor control systems

base biasing transistor driver circuit, 72–74
block diagram, 71
DC motor controller, 80
electric motors, 80
electromechanical relay preparation

active-high digital input circuit, 79
IC socket, 78
pinout, 78

energization, 74
flyback diode, 74, 75
motor speed control

2N2222 transistor pinout, 84
potentiometer input control, 81–84
software, 85–86

multisim circuit transistor driver models, 73–74

parts, 69–70
remix design technique, 70, 71
testing, 87
transistor relay driver

block diagram, 71
circuit diagram, 72
DC motor control circuit, 75–77

PMOSFET
description, 136
Multisim circuit model

LED driver demonstration circuit, 137–138
remixed interactive music box controller,

138–141
N-channel PMOSFET (IRF630A) pinout, 136
P-channel electrical symbol, 136, 137

Potentiometer
interactive light sequencer device

description, 54
symbol, 54, 55
total resistance measurement, 54, 55
voltage divider circuit, 55, 56

motor speed control
Arduino controlled DC motor, 83
circuit diagram, 81
controller prototype, 82
PWM control signal, 84

servo motor control
circuit diaram, 98
Fritzing circuit, 98
Knob sketch, 99, 100
prototype, 99

Precision centigrade temperature sensor, 228
Pulse width modulation (PWM)

electronic singing bird, 7
music box controller

ATmega328 Microcontroller, 123–124
Multisim function generator setup, 126
Multisim PWM virtual circuit, 124, 125
one-shot component configuration, 125, 126
triangle wave, 125, 127
value table, 125

signal, vibration motor, 161–162

n  R
Remix design technique

interactive LED sequencer device, 63
interactive light sequencer device

block diagram, 53
circuit diagram, 53, 54

Remixed interactive music box controller
block diagram, 138
Fritzing circuit diagram, 138, 139
prototype, with cricuit diagram, 139

■ Index

257

PWM signal
under ambient lighting, 140
with hand passing over the photocell, 140
Piezo buzzer, 141

Robot end effector test stand application, 177–178

n  S
Sequential-switching software

ATmega328 microcontroller, 65–67
interactive LED light sequencer sketch, 64–65

Servo motor control
Arduino-based computing platform, 92
Arduino-based system block diagram, 90
controlling with Arduino, 93
discovery methods, 117
FFS

FlexiForce-operated controller, 103, 104
Fritzing circuit, 104
input interface circuit, 103
prototype, 105
tactile force, 102

Fritzing software
Arduino-based controller prototype, 95
circuit, 94
description, 94
sweep sketch, 95–96

joystick
circuit diagram, 101
description, 100
mechanical linkage assembly, 100, 101
prototype, 102
soldered pigtail wire harness, 102

negative feedback, 93
parts, 89, 90
potentiometer, 97

circuit diaram, 98
Fritzing circuit, 98
Knob sketch, 99, 100
prototype, 99

pulse widths, 92
remixed FlexiForce sensor-activated block

diagram, 91
testing, 116
wiring, 93

Seven-segment LED display
Arduino Flasher-Tester system

block diagram, 40
circuit diagram, 41
common anode display, 41, 42
completed circuit, 42, 43
potentiometer LED Control Sketch, 43–44

Arduino prototype, 219
arrangements, 37

BCD-to-Decimal circuit, 46–47
circuit diagram, 212
component, 38
numbers creation, 211, 212
serial monitor display, 219, 220
sketch, 213–219
testing, 38–40

Smart Logic Probe
circuit sketch, 220–223
improved, 224–226
prototype, 223

Speed control function
circuit diagram, 115
stepper_speedControl Sketch, 115–116

Stepper motor control
Arduino-based system block diagram, 91
discovery methods, 117
parts, 89, 90
remixed FlexiForce sensor-activated

block diagram, 91
testing, 116
unipolar (see Unipolar Stepper Motor)

n  T
Temperature controller

circuit diagram, 245, 246
description, 245
prototype, 245, 248
sketch, 246–247

Temperature measurement
computer thermometer

block diagram, 232
circuit diagram, 233
data start switch, 233, 235
description, 232
final completion, 235–239
LM35 Sensor Sketch, 232–233
Serial Monitor displaying

sensor data, 233, 234
temperature monitor, 239–243
temperature sensor prototype, 233, 234
testing temperature sensor, 233, 235

description, 227
digital voltmeter system block diagram, 229
discovery method, 248
electronic thermometer

circuit diagram, 229
computer ribbon cable, 229, 230
description, 229
LM35-based, 231
LM35 precision centigrade temperature

sensor IC T0-92 package, 231
ribbon end connectors, 230

■ Index

258

Temperature measurement (cont.)
LCD electronic thermometer

block diagram, 243
circuit diagram, 243
description, 243
prototype, 244
Sensor Data to Temperature Sketch, 244–245

parts, 227–228
precision centigrade temperature sensor, 228
temperature controller

circuit diagram, 245, 246
description, 245
prototype, 245, 248
sketch, 246–247

working procedure, 228–229
Temperature monitor

block diagram, 239
circuit diagram, 239, 240
LM35 Farenheit Temperature

with Dual LED Flash Rates
Sketch, 242–243

with Flashing LED Sketch, 240–241
room temperature response, 241

Test jig systems
block diagram, 183
command-control codes, 184
contact bounce and debounce

circuit operation, 185
debounce circuit, 184, 185
letters, numbers, and character codes, 188
prototype, 187

Three-key music box controller
circuit diagram, 145, 146
prototype, 146
toneKeyboard Sketch, 147

Transistor biasing, 7
function generator, 9
switching circuit, 8

Transistor relay driver
block diagram, 71
circuit diagram, 72
DC motor control circuit

Arduino-based circuit diagram, 77
circuit diagram, 75
multisim circuit model analysis, 76

n  U
Unipolar stepper motor

Arduino-based
actual build, 111
circuit diagram, 111
Darlington transistor driver, 110
Easter egg, 112
Knob sketch, 113
Serial Monitor access, 114
stepper_oneRevolution Sketch, 112

description, 107
Multisim digital controller model

circuit diagram, 108, 109
CW/CCW timing diagrams, 110
description, 108
virtual Function Generator setup, 109

sink driver circuit, 107, 108
speed control function, 114

circuit diagram, 114, 115
stepper_speedControl Sketch, 115–116

n  V, X, Y, Z
Vibration motor

Arduino computational platform, 153, 154
Arduino port D5

circuit diagram, 157
Itotal, 159
output voltage, 156, 157

22AWG stranded wire, 153, 154
circuit diagram, 158
description, 152
examples, 152
Itotal measurement, 156
joystick-controlled

block diagram, 159, 160
circuit diagram, 160
prototype, 161

PWM signal, 161–162
Ra current measurement, 153, 155
recycled, 153
stepper motor control sketch, 162–163
test sketch, 156

Voltage divider, electronic singing bird, 12–14

Learn Electronics
with Arduino

Donald Wilcher

Learn Electronics with Arduino

Copyright © 2012 by Donald Wilcher

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4266-6

ISBN-13 (electronic): 978-1-4302-4267-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Tom Welsh
Technical Reviewer: Razvan Chiriac
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editors: Damon Larson and Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at www.
apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-
code.

To Mattalene, Tiana, D’Vonn, and D’Mar. Thanks for being supportive
and understanding. I love you all.

–Donald Wilcher

vii

Contents

Foreword..xiii

About the Author .. xv

About the Technical Reviewer... xvii

Acknowledgments.. xix

Introduction.. xxi

Chapter 1: Electronic Singing Bird■■ ...1

Parts List... 1

What Is Physical Computing?.. 2

How It Works... 3

Pulse Width Modulation Basics.. 7

Transistor Basics.. 7

Transformer Action... 9

The Voltage Divider... 12

Light Detection Circuits with a Photocell.. 14

Testing the Light Detection Circuit with a Voltmeter and an Oscilloscope... 15

Assembly of the Electronic Singing Bird Circuit on a Breadboard.. 20

Creating the Interactive Control Software.. 22

What Is a Sketch?... 23

Final Testing of the Electronic Singing Bird... 24

Further Discovery Methods... 25

■ Contents

viii

Chapter 2: Mini Digital Roulette Games■■ ..27

Parts List... 27

How It Works... 29

Forward Biasing a LED.. 30

LED Circuit Analysis.. 31

The LED Bar Display... 32

Mini Roulette Game, Version 1... 34

Adding the Game Software... 35

The Seven-Segment LED Display Basics.. 37

Testing the Seven-Segment LED Display.. 38

Build an Arduino-based Seven Segment LED Display Flasher-Tester... 40

The 7447 BCD-to-Decoder IC Basics... 44

Build a BCD-to-Decimal Circuit with Seven Segment LED Display....................................... 46

Assembly of the Final Circuit on the Breadboard.. 47

Adding the Mini Digital Roulette Game Software.. 48

Final Testing of the Mini Digital Roulette Game... 48

Further Discovery Method Suggestions.. 48

Chapter 3: An Interactive Light Sequencer Device■■ ...51

Parts List... 51

Remix Revisited... 52

How It Works... 54

The Potentiometer... 54

Measurement Setup Procedure... 56

How to Drive Multiple LEDs with a Microcontroller... 59

Building the Remixed Interactive LED Sequencer Device... 63

Creating the Sequential-Switching Software.. 64

Final Testing of the Interactive Light Sequencer Device... 67

Further Discovery Methods... 67

■ Contents

ix

■Chapter 4: Physical Computing and DC Motor Control69 Parts Lists .

... 69

Remixing Revisited ... 70

How It Works .. 71

A Base Biasing Transistor Driver Circuit .. 72

D1: Flyback Diode .. 74

Experimenting with a Transistor Relay Driver DC Motor Control Circuit .. 75

Electromechanical Relay Preparation .. 78

The Basics of Physical Computing with Electric Motors .. 80

Achieving Motor Speed Control with Physical Computing ... 81

Potentiometer Input Control .. 81

The 2N2222 Transistor Pinout .. 84

The Motor Speed Control Software . .. 85

Light Detection Input Control ... 85

Final Testing of the Devices . .. 87

Further Discovery Methods . .. 87

■Chapter 5: Motion Control with an Arduino: Servo and Stepper

Motor Controls ...89

Parts List .. 89

Remixing Motion Controls . .. 90

How It Works .. 92

Experimenting with a Servo Motor 93

Fritzing Software . .. 94

Try It! .. 97

Physical Computing: A Servo Motor with a Potentiometer 97

Physical Computing: A Servo Motor with a Joystick . .. 100

Physical Computing: A Servo Motor with a FlexiForce Sensor 102

Motion Control Basics . .. 105

■ Contents

x

The Darlington Transistor.. 105

The Unipolar Stepper Motor.. 107

A Multisim Digital Controller Model for a Unipolar Stepper Motor...................................... 108

Build an Arduino Unipolar Stepper Motor Controller... 110

Adding a Speed Control Function ... 114

Final Testing of the Servo and Stepper Motor Controllers... 116

Further Discovery Method Suggestions.. 117

Chapter 6: The Music Box■■ ...119

Parts List... 119

Remixing Physical-Computing and Driver Interface Circuits... 120

How It Works... 122

Experimenting with PWM.. 123

Building and Testing a Basic Music Box Controller... 127

Try It!.. 130

Driving a Speaker... 133

Physical Computing and the Music Box Controller.. 135

What Is a PMOSFET?.. 136

A PMOSFET Multisim Circuit Model.. 137

Sketch for the Interactive Music Box Controller... 141

Building and Testing a Basic Music Box Controller with a Keypad...................................... 145

Final Testing of the Music Box Controllers.. 148

Further Discovery Methods... 148

Chapter 7: Fun with Haptics■■ ...149

Parts List... 149

Remixing Physical Computing and Driver Interface Circuits... 150

How It Works... 152

Experimenting with a Vibration Motor... 152

■ Contents

xi

Physical Computing: A Vibration Motor... 159

Try It Out.. 163

Keypad Haptics... 165

Mechatronics and Haptics... 174

FlexiForce Sensor Haptics... 174

A Robot End Effector Test Stand.. 177

Final Testing of Haptics Controllers... 178

Further Discovery Method Suggestions.. 178

Chapter 8: LCDs and the Arduino■■ ..179

Parts List... 179

Remixing Physical-Computing Input Interface Circuits... 180

How It Works: The LCD Test Jig... 183

The Real “Hello World”: Arduino and the LCD... 187

Try It Out!... 192

The Vanishing Message... 198

Building an Evaluation Board.. 200

Further Discovery Methods... 204

Chapter 9: A Logic Checker■■ ..205

Parts List... 205

Input Interface Circuits.. 206

How It Works .. 206

Testing a NAND Gate... 208

The Seven-Segment LED Display and the Arduino.. 211

Building a Smart Logic Probe.. 220

Building an Improved Smart Logic Probe.. 224

Further Discovery Methods... 226

■ Contents

xii

Chapter 10: Man, It’s Hot: Temperature Measurement and Control■■227

Parts List... 227

What Is a Precision Centigrade Temperature Sensor?.. 228

How It Works... 228

Building an Electronic Thermometer... 229

A Computer Thermometer... 232

Final Completion of Computer Thermometer.. 235

Try It Out!.. 239

An LCD Electronic Thermometer... 243

A Temperature Controller.. 245

Further Discovery Method... 248

Final Thoughts and Suggestions... 248

Index..251

xiii

Foreword

Don Wilcher is a gifted experimenter and circuit designer who has applied his creativity and engineering abilities
to producing a series of electronics books and articles. In this latest book, Don presents an array of Arduino
projects, each in a standalone chapter that zeroes in on a specific aspect of electronics. He includes various
experiments, describes how to use electronic test instruments, and introduces the reader to the world of Arduino
microcontroller software development.

Projects in this book include an LED sequencer, a DC motor controller, a music box, a sound effects
generator, an interactive LCD display, and more. Like Don’s other books, this new volume is packed with details
and diagrams. For example, when Don describes how to control a relay using an Arduino, he includes a helpful
explanation of why a diode is connected across the relay coil to bypass the voltage spike generated when current
suddenly stops flowing through the coil. He also provides detailed explanations for transistor driver circuits,
LEDs, sensors, circuit testing, and other topics, using Multisim circuit simulation when appropriate. Don is
no novice, for he has worked as an electrical engineer and as a columnist and feature writer for Nuts and Volts
magazine. He has considerable experience with LEGO Mindstorms as well as the Basic Stamp, the PICAXE, and
the Arduino microcontrollers.

In between tinkering with the projects in this book, you can learn much more about Don, his many interests
and activities, and his advocacy of engineering education at www.family-science.net.

—Forrest Mims III

xv

About the Author

Donald Wilcher has 26 years of electrical engineering experience. He’s worked on industrial robotic systems,
automotive electronic modules and systems, and embedded wireless controls for small consumer appliances.
While working at Chrysler Corporation, he developed a weekend enrichment pre-engineering program for
inner-city kids. In addition, he’s the author of LEGO Mindstorms Interfacing and LEGO Mindstorms Mechatronics
(McGraw-Hill) and one self-published book on sci-tech and robotic gadgets. He writes for inventors, students,
and engineering educators. He’s taught computer and electronics engineering technology classes at universities,
community colleges, and technical institutes.

xvii

About the Technical Reviewer

Razvan Chiriac was born in Bucharest, Romania and went to school there until tenth
grade, when he and his family moved to the United States. He was fascinated by
electronics and physics at a young age. Electronics was a mystery and physics had the
answers to everything around him. Once in the States, he started making robots and
programming microchips such as Arduino and Teensy. He likes programming in C for
the microchips and Java for computer programming. He has worked on many projects
with the Arduino, which is his favorite microcontroller.

xix

Acknowledgments

Many thanks to the Arduino Team, who created a wonderful tool to teach electronics. I would like to thank
Technical Reviewer Razvan Chiriac for reviewing the circuits, sketches, and Fritzing models with a critical eye.
Thanks also to Development Editor and writing coach Tom Welsh of Apress for challenging me to let my voice
be heard in the pages of this book and to Michelle Lowman, Apress Acquisitions Editor, who saw the real subject
matter of this book from my sketchy proposal. I would also like to thank Limor Fried of Adafruit for providing a
wealth of technical Arduino resources on her web site.

Thanks to Forrest Mims III for writing a wonderful foreword. Also, I thank my kids, D’Vonn, D’Mar, and
Tiana, for being understanding while I spent most of my time in the lab building circuits, drawing schematic
diagrams and illustrations, and writing this book. Finally, I thank my wonderful wife, Mattalene, for encouraging
to me write and for providing a fresh perspective to editing the manuscript.

	9781430242666_Ch01_O
	Chapter 1: Electronic Singing Bird
	Parts List
	What Is Physical Computing ?
	How It Works
	Pulse Width Modulation Basics
	Transistor Basics
	Transformer Action
	The Voltage Divider
	Light Detection Circuits with a Photocell
	Testing the Light Detection Circuit with a Voltmeter and an Oscilloscope
	Using a Voltmeter
	Using an Oscilloscope

	Assembly of the Electronic Singing Bird Circuit on a Breadboard
	Creating the Interactive Control Software
	What Is a Sketch ?

	Final Testing of the Electronic Singing Bird
	Further Discovery Methods

	9781430242666_Ch02_O
	Chapter 2: Mini Digital Roulette Games
	Parts List
	How It Works
	Forward Biasing a LED
	LED Circuit Analysis
	The LED Bar Display

	Mini Roulette Game, Version 1
	Adding the Game Software
	The Seven-Segment LED Display Basics
	Testing the Seven-Segment LED Display
	Build an Arduino-based Seven Segment LED Display Flasher-Tester

	The 7447 BCD-to-Decoder IC Basics
	Build a BCD-to-Decimal Circuit with Seven Segment LED Display
	Assembly of the Final Circuit on the Breadboard
	Adding the Mini Digital Roulette Game Software
	Final Testing of the Mini Digital Roulette Game
	Further Discovery Method Suggestions

	9781430242666_Ch03_O
	Chapter 3: An Interactive Light Sequencer Device
	Parts List
	Remix Revisited
	How It Works
	The Potentiometer
	Measurement Setup Procedure
	How to Drive Multiple LEDs with a Microcontroller
	Building the Remixed Interactive LED Sequencer Device
	Creating the Sequential-Switching Software
	Final Testing of the Interactive Light Sequencer Device
	Further Discovery Methods

	9781430242666_Ch04_O
	Chapter 4: Physical Computing and DC Motor Control
	Parts Lists
	Remixing Revisited
	How It Works
	A Base Biasing Transistor Driver Circuit
	D1: Flyback Diode
	Experimenting with a Transistor Relay Driver DC Motor Control Circuit
	Electromechanical Relay Preparation

	The Basics of Physical Computing with Electric Motors
	Achieving Motor Speed Control with Physical Computing
	Potentiometer Input Control
	The 2N2222 Transistor Pinout

	The Motor Speed Control Software
	Light Detection Input Control

	Final Testing of the Devices
	Further Discovery Methods

	9781430242666_Ch05_O
	Chapter 5: Motion Control with an Arduino: Servo and Stepper Motor Controls
	Parts List
	Remixing Motion Controls
	How It Works
	Experimenting with a Servo Motor
	Fritzing Software
	Try It!
	Physical Computing: A Servo Motor with a Potentiometer
	Physical Computing: A Servo Motor with a Joystick
	Physical Computing: A Servo Motor with a FlexiForce Sensor
	Motion Control Basics
	The Darlington Transistor
	The Unipolar Stepper Motor
	A Multisim Digital Controller Model for a Unipolar Stepper Motor
	Build an Arduino Unipolar Stepper Motor Controller
	Adding a Speed Control Function
	Final Testing of the Servo and Stepper Motor Controllers
	Further Discovery Method Suggestions

	9781430242666_Ch06_O
	Chapter 6: The Music Box
	Parts List
	Remixing Physical-Computing and Driver Interface Circuits
	How It Works
	Experimenting with PWM
	Building and Testing a Basic Music Box Controller
	Try It!
	Driving a Speaker

	Physical Computing and the Music Box Controller
	What Is a PMOSFET ?
	A PMOSFET Multisim Circuit Model
	Sketch for the Interactive Music Box Controller

	Building and Testing a Basic Music Box Controller with a Keypad
	Final Testing of the Music Box Controllers
	Further Discovery Methods

	9781430242666_Ch07_O
	Chapter 7: Fun with Haptics
	Parts List
	Remixing Physical Computing and Driver Interface Circuits
	How It Works
	Experimenting with a Vibration Motor
	Physical Computing: A Vibration Motor
	Try It Out
	Keypad Haptics
	Mechatronics and Haptics
	FlexiForce Sensor Haptics
	A Robot End Effector Test Stand
	Final Testing of Haptics Controllers
	Further Discovery Method Suggestions

	9781430242666_Ch08_O
	Chapter 8: LCDs and the Arduino
	Parts List
	Remixing Physical-Computing Input Interface Circuits
	How It Works: The LCD Test Jig
	The Real “Hello World”: Arduino and the LCD
	Try It Out!
	The Vanishing Message
	Building an Evaluation Board
	Further Discovery Methods

	9781430242666_Ch09_O
	Chapter 9: A Logic Checker
	Parts List
	Input Interface Circuits
	How It Works
	Testing a NAND Gate
	The Seven-Segment LED Display and the Arduino
	Building a Smart Logic Probe
	Building an Improved Smart Logic Probe
	Further Discovery Methods

	9781430242666_Ch10_O
	Chapter 10: Man, It’s Hot: Temperature Measurement and Control
	Parts List
	What Is a Precision Centigrade Temperature Sensor ?
	How It Works
	Building an Electronic Thermometer
	A Computer Thermometer
	Final Completion of Computer Thermometer
	Try It Out!
	An LCD Electronic Thermometer
	A Temperature Controller

	Further Discovery Method
	Final Thoughts and Suggestions

	9781430242666_Index_O

