

Getting
Started with
RFID

Tom Igoe

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Getting Started with RFID
by Tom Igoe

Copyright © 2012 Tom Igoe. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more informa-
tion, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Teresa Elsey
Cover Designer: Mark Paglietti
Interior Designers: Ron Bilodeau and Edie Freedman
Illustrators: Robert Romano and Rebecca Demarest

March 2012: First Edition.

Revision History for the First Edition:
March 09, 2012 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449324186 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. Getting Started with RFID and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

The font used in the figures is Architects Daughter, provided by Google Web Fonts under SIL
Open Font License 1.1.

ISBN: 978-1-449-32418-6
[LSI]

1331238382

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449324186
http://www.google.com/webfonts/specimen/Architects+Daughter

Contents

Preface . v

1/Radio Frequency Identification . 1

2/Reading RFID Tags in Processing . 5

Materials .5

Parallax RFID Reader . 5

The Circuit . 6

Try It . 7

3/Reading RFID Tags in Arduino . 11

Materials . 11

The Circuit . 12

Try It . 12

Searching for a Specific Tag . 14

4/RFID Meets Home Automation . 19

Materials . 20

The Circuit . 20

Try It . 21

Switching Power with RFID . 22

5/Conclusion . 27

Contents iii

Preface

The process of identifying physical objects is such a fundamental part of our
experience that we seldom think about how we do it. We use our senses, of
course: we look at, feel, pick up, shake and listen to, smell, and taste objects
until we have a reference for them—then we give them a label. The whole
process relies on some pretty sophisticated work by our brains and bodies,
and anyone who’s ever dabbled in computer vision or artificial intelligence
in general can tell you that teaching a computer to recognize physical objects
is no small feat. Just as it’s easier to determine location by having a human
being narrow it down for you, it’s easier to distinguish objects computation-
ally if you can limit the field, and if you can label the important objects.

Just as we identify things using information from our senses, so do com-
puters. They can identify physical objects only by using information from
their sensors. One of the best-known digital identification techniques is radio
frequency identification, or RFID. The network identity of a physical object
can be centrally assigned and universally available, or it can be provisional.
It can be used only by a small subset of devices on a larger network or used
only for a short time. RFID is an interesting case in point. The RFID tag pasted
on the side of a book may seem like a universal marker, but what it means
depends on who reads it. The owner of a store may assign that tag’s number
a place in his inventory, but to the consumer who buys it, it means nothing
unless she has a tool to read it and a database in which to categorize it. She
has no way of knowing what the number meant to the store owner unless
she has access to his database. Perhaps he linked that ID tag number to the
book’s title or to the date on which it arrived in the store. Once it leaves the
store, he may delete it from his database, so it loses all meaning to him. The
consumer, on the other hand, may link it to entirely different data in her own
database, or she may choose to ignore it entirely, relying on other means to
identify it. In other words, there is no central database linking RFID tags and
the things they’re attached to, or who’s possessed them.

Like locations, identities become more uniquely descriptive as the context
they describe becomes larger. For example, knowing that my name is Tom
doesn’t give you much to go on. Knowing my last name narrows it down some
more, but how effective that is depends on where you’re looking. In the Uni-
ted States, there are dozens of Tom Igoes. In New York, there are at least
three. When you need a unique identifier, you might choose a universal label,

like using my Social Security number, or you might choose a provisional
label, like calling me “Frank’s son Tom.” Which you choose depends on your
needs in a given situation. Likewise, you may choose to identify physical
objects on a network using universal identifiers, or you might choose to use
provisional labels in a given temporary situation.

The capabilities assigned to an identifier can be fluid as well. Taking the RFID
example again: in the store, a given tag’s number might be enough to set off
alarms at the entrance gates or to cause a cash register to add a price to
your total purchase. In another store, that same tag might be assigned no
capabilities at all, even if it’s using the same protocol as other tags in the
store. Confusion can set in when different contexts use similar identifiers.
Have you ever left a store with a purchase and tripped the alarm, only to be
waved on by the clerk who forgot to deactivate the tag on your purchase?
Try walking into a Barnes & Noble bookstore with jeans you just bought at a
Gap store, and you might trip the alarms if the two companies use the same
RFID tags but don’t set their security systems to filter out tags that are not
in their inventory.

NOTE: This short book presents a couple of RFID
projects for Processing and Arduino from the first
edition of Making Things Talk (O’Reilly 2007). When
this book was updated to a second edition in 2011,
the RFID examples were updated to work with
newer RFID readers, specifically those that intero-
perate with the Near-Field Communications (NFC)
readers found in mobile phones such as the Nexus
S. Because there is still interest in the Parallax RFID
reader used in the first edition, this book is here to
preserve those projects for anyone who’s interes-
ted in building them.

Who This Book Is For
If you’ve got some experience with Arduino and Processing, and are curious
to experiment with radio frequency identification, this book is for you. You
won’t need any advanced skills: as long as you know enough about Arduino
and Processing to run simple sketches, and are able to connect basic circuits
on a breadboard with jumper wire, you’ll be able to use this book. If you don’t
have any experience with Arduino or Processing, the book Getting Started
with Arduino, second edition, by Massimo Banzi (O’Reilly) and Getting

vi Preface

http://shop.oreilly.com/product/9780596510510.do
http://shop.oreilly.com/product/0636920021414.do
http://shop.oreilly.com/product/0636920021414.do
http://shop.oreilly.com/product/0636920000570.do

Started with Processing by Casey Reas and Ben Fry (O’Reilly) will get you
started.

Companion Kit
A kit is coming soon from Maker Shed to go along with this book. It will include
all the components you’ll need, from the Arduino to the RFID reader. For
more information, see http://www.makershed.com/.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file exten-
sions.

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

TIP: This icon signifies a tip, suggestion, or general
note.

CAUTION: This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code

Preface vii

http://shop.oreilly.com/product/0636920000570.do
http://www.makershed.com/

from this book does not require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require per-
mission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Getting Started with
RFID by Tom Igoe (O’Reilly). Copyright 2012 Tom Igoe, 978-1-449-32418-6.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book
and video form from the world’s leading authors in technology
and business. Technology professionals, software developers,
web designers, and business and creative professionals use
Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs
for organizations, government agencies, and individuals. Subscribers have
access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online,
please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

viii Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://shop.oreilly.com/product/0636920024842.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface ix

http://shop.oreilly.com/product/0636920024842.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1/Radio Frequency
Identification

Like bar code recognition, RFID relies on tagging objects in order to identify
them. Unlike bar codes, however, RFID tags don’t need to be visible to be
read. An RFID reader sends out a short-range radio signal, which is picked
up by an RFID tag. The tag then transmits back a short string of data. De-
pending on the size and sensitivity of the reader’s antenna and the strength
of the transmission, the tag can be several feet away from the reader, en-
closed in a book, box, or item of clothing. In fact, some large clothing man-
ufacturers are now sewing RFID tags into their merchandise, to be removed
by the customer.

There are two types of RFID system: passive and active. Passive RFID tags
contain an integrated circuit that has a basic radio transceiver and a small
amount of nonvolatile memory. They are powered by the current that the
reader’s signal induces in their antennas. The received energy is just enough
to power the tag to transmit its data once, and the signal is relatively weak.
Most passive readers can only read tags a few inches to a few feet away.

In an active RFID system, the tag has its own power supply and radio trans-
ceiver, and transmits a signal in response to a received message from a
reader. Active systems can transmit for a much longer range than passive
systems, and are less error-prone. They are also much more expensive. If
you’re a regular automobile commuter and you have to pass through a toll
gate in your commute, you’re probably an active RFID user. Systems like
E-ZPass, shown in Figure 1-1, use active RFID tags so that the reader can be
placed several meters away from the tag.

1

Figure 1-1. An E-ZPass active RFID tag mounted on a car’s windshield

You might think that because RFID is radio-based, you could use it to do radio
distance ranging as well, but that’s not the case. Neither passive nor active
RFID systems are typically designed to report the signal strength received
from the tag. Without this information, it’s impossible to use RFID systems
to determine the actual location of a tag. All the reader can tell you is that
the tag is within reading range. Although some high-end systems can report
the tag signal strength, the vast majority of readers are not made for location
as well as identification. You can do some limited location detection using
multiple readers, however. Because most passive RFID readers (like the one
used in this book) have a short range, you can be assured that if you get a
signal from a tag on a particular reader, the tag is within a few centimeters
of the reader. By using an array of readers spaced half a meter or so apart,
you could determine the rough location of a tag by knowing that it’s in a given
reader’s range.

RFID systems vary widely in cost. Active systems can cost tens of thousands
of dollars to purchase and install. Commercial passive systems can also be
expensive. A typical passive reader that can read a tag a meter away from
the antenna typically costs a few thousand dollars. At the low end, short-
range passive readers can come as cheap as $30 or less. As of this writing,
$30 to $100 gets you a reader that can read a few centimeters. Anything
that can read a longer distance will be more expensive.

There are many different RFID protocols, just as with bar codes. Short-range
passive readers come in at least three common frequencies: two low-fre-
quency bands at 125 and 134.2 Khz, and high-frequency readers at

2 Getting Started with RFID

13.56MHz. The higher-frequency readers allow for faster read rates and
longer-range reading distances. In addition to different frequencies, there
are also different protocols. For example, in the 13.56 band alone, there are
the ISO 15693 and ISO 14443 and 14443-A standards; within the ISO 15693
standard, there are different implementations by different manufacturers:
Philips’ I-Code, Texas Instruments’ Tag-IT HF, Picotag, and implementa-
tions by Infineon, STMicroelectronics, and others. Within the ISO 14443
standard, there’s Philips’ Mifare, Mifare UL, ST’s SR176, and others. So you
can’t count on one reader to read every tag. You can’t even count on one
reader to read all the tags in a given frequency range. You have to match the
tag to the reader.

There are a number of inexpensive and easy-to-use readers on the market
now, covering the range of passive RFID frequencies and protocols. Maker
Shed sells a 125KHz reader from Parallax that can read EM Microelectronic
tags, such as EM4001 tags. It has a built-in antenna, and the whole module
is about 2.5″ × 3.5″, on a flat circuit board. The EM4001 protocol isn’t as
common in everyday applications as the Mifare protocol, a variation on the
ISO 14443 standard in the 13.56 MHz range. This book doesn’t cover the
Mifare tags, but Making Things Talk, second edition (O’Reilly, 2011) does.

RFID tags come in a number of different forms, as shown in Figure 1-2: sticker
tags, coin discs, key fobs, credit cards, playing cards, even capsules de-
signed for injection under the skin. The last are used for pet tracking and are
not designed for human use, though there are some adventurous hackers
who have had these tags inserted under their own skin. Like any radio signal,
RFID can be read through a number of materials, but it is blocked by any kind
of RF shielding, like wire mesh, conductive fabric lamé, metal foil, or ada-
mantium skeletons. This feature means that you can embed it in all kinds of
projects, as long as your reader has the signal strength to penetrate.

Before picking a reader, think about the environment in which you plan to
deploy it, and how that affects both the tags and the reading. Will the envi-
ronment have a lot of RF noise? In what range? Consider a reader outside
that range. Will you need a relatively long-range read? If so, look at the active
readers, if possible. If you’re planning to read existing tags rather than tags
you purchase yourself, research carefully in advance, because not all read-
ers will read all tags. Pet tags can be some of the trickiest, as many of them
operate in the 134.2 KHz range, where there are fewer readers to choose
from.

In picking a reader, you also have to consider how it behaves when tags are
in range. For example, even though the Parallax reader used in this book and
a compatible reader from ID Innovations can read the same tags, they be-
have very differently when a tag is in range. The ID Innovations reader reports

Radio Frequency Identification 3

http://www.makershed.com/product_p/mkpx2.htm
http://shop.oreilly.com/product/0636920010920.do
http://shop.oreilly.com/product/0636920010920.do

the tag ID only once. The Parallax reader reports it continually until the tag
is out of range. The behavior of the reader can affect your project design, as
you’ll see later on.

The Parallax reader has a TTL serial interface, so it can be connected to a
microcontroller or a USB-to-serial module very easily. You’ll see sketches in
Processing (which run on a computer and connect to the reader over USB-
to-serial) for the Parallax reader in this book, in fact.

Figure 1-2. Various RFID tags

4 Getting Started with RFID

2/Reading RFID Tags
in Processing

In this project, you’ll read some RFID tags and get a sense of how the readers
behave. You’ll see how far away from your reader a tag can be read. This is
a handy test program for use any time you’re adding RFID to a project.

Materials
RFID reader

Parallax’s RFID Reader Module, available from Maker Shed as part of a
starter pack or by itself.

RFID tags
The starter pack includes several tags, and you can buy them
separately.

USB-to-TTL serial adaptor
The FTDI Friend can do the job.

Breadboard
You can use a half-size or mini breadboard to make connections be-
tween the reader and the USB-to-TTL serial adaptor.

Jumper wire
You’ll need a set of jumper wire to make your connections.

Parallax RFID Reader
The Parallax reader is one the simplest readers available. It communicates
serially at 2400 bps. When the Enable pin is held low (connected to ground),
it sends a reading whenever a tag is in range. The tag ID is a 12-byte string
starting with a carriage return (ASCII 13) and finishing with a newline (ASCII
10). The ten digits in the middle are the unique tag ID. The EM4001 tags
format their tag IDs as ASCII-encoded hexadecimal values, so the string will
never contain anything but the ASCII digits 0 through 9 and the letters A
through F.

5

http://www.makershed.com/product_p/mkpx16.htm
http://www.makershed.com/product_p/mkpx2.htm
http://www.makershed.com/product_p/mkpx16.htm
http://www.makershed.com/SearchResults.asp?Search=rfid
http://www.makershed.com/SearchResults.asp?Search=rfid
http://www.makershed.com/FTDI_Friend_v1_0_p/mkad22.htm)can
http://www.makershed.com/product_p/mkkn2.htm
http://www.makershed.com/Mini_Breadboards_p/mkkn1.htm
http://www.makershed.com/product_p/mkseeed3.htm

The Circuit
The circuit for this reader is very simple. Connect the module to 5V and
ground, and connect the reader’s serial transmit line (labeled SOUT) to the
serial adaptor’s serial receive line (labeled RX). You’ll also need to attach the
enable pin to ground. Figure 2-1 shows these connections.

Figure 2-1. Wiring the RFID reader to the FTDI Friend

6 Getting Started with RFID

Try It
The following Processing sketch waits for twelve serial bytes, strips out the
carriage return and the newline, and prints the rest to the screen. Before you
run this sketch, plug the FTDI Friend into your computer with a USB Mini
cable.

NOTE: You will probably need to look at the output
of Serial.list() and change the number on the
next line of code match the serial port that corre-
sponds to your microcontroller.

/*
 Parallax RFID Reader
 language: Processing

 */

// import the serial library
import processing.serial.*;

Serial rfidPort; // the serial port you're using
String tagID = ""; // the string for the tag ID

void setup() {
 size(600, 200);
 // list all the serial ports
 println(Serial.list());

 // based on the list of serial ports printed from the
 // previous command, change the 0 to your port's number
 String portnum = Serial.list()[0];

 // initialize the serial port
 rfidPort = new Serial(this, portnum, 2400);

 // incoming string from reader will have 12 bytes:
 rfidPort.buffer(12);

 // create a font with the third font available to the system:
 PFont myFont = createFont(PFont.list()[2], 24);
 textFont(myFont);
}

Reading RFID Tags in Processing 7

http://processing.org/

void draw() {
 // clear the screen:
 background(0);

 // print the string to the screen
 text(tagID, width/4, height/2 - 24);
}

/*
 this method reads bytes from the serial port
 and puts them into the tag string.
 It trims off the \r and \n
 */
void serialEvent(Serial rfidPort) { //
 tagID = trim(rfidPort.readString());
}

Here’s an explanation of the key parts of the code:

This line imports the serial library that comes with Processing. With it,
you’ll be able to use serial functions later in this sketch.

This line will print all the available serial ports to the Processing console.
You should examine the output of this command and identify which of
your serial ports corresponds to the FTDI Friend that’s plugged into your
computer.

If the output of the previous line of code was anything other than the first
serial port (index 0), change the 0 in this line to the index of the correct
serial port.

This line begins serial communications at 2400 bits per second.

Processing’s draw() function runs continuously as long as the sketch is
running. This line will display whatever’s in the tagID variable to the
screen, even if it’s still blank.

This function is invoked any time there’s some incoming activity on the
serial port. When the Parallax reader sends something to the Processing
sketch, it will be a tag id. This line puts that tag’s ID into the tagID variable.

Figure 2-2 shows the results of holding a tag up to the reader while this Pro-
cessing sketch is running.

8 Getting Started with RFID

Figure 2-2. The Processing sketch reading a tag

Reading RFID Tags in Processing 9

3/Reading RFID Tags
in Arduino

In this project, you’ll connect Arduino directly to the RFID reader. This project
accomplishes the same thing as the project in Chapter 2, but the reader is
connected to an Arduino, not to your computer. As a starter step, you’ll see
how to read in an RFID tag’s ID and send its value to a computer over the
serial port. After you’ve done that, you’ll see how to read in an RFID tag’s ID
and compare it to a stored tag ID: if you wave the right tag at the RFID reader,
it will light an LED. In this way, the RFID tag will behave as a key.

WARNING: Some RFID tags have many well-
documented vulnerabilities. Certain types of RFID
tags can be cloned easily, for example. So in theory,
if an attacker gets close enough to your RFID tag
(or you code) to determine the ID of the tag, they
may be able to create a copy of it.

Materials
Arduino

The Arduino Uno is a good model of Arduino to get started with for all
the microcontroller-based projects in this book.

RFID reader
Parallax’s RFID Reader Module, available from Maker Shed as part of a
starter pack or by itself.

RFID tags
The starter pack includes several tags, and you can buy them sepa-
rately.

Breadboard
You can use a half-size or mini breadboard to make connections be-
tween the reader and the USB-to-TTL serial adaptor.

Jumper wire
You’ll need a set of jumper wire to make your connections.

11

http://www.makershed.com/product_p/mksp4.htm
http://www.makershed.com/product_p/mkpx16.htm
http://www.makershed.com/product_p/mkpx2.htm
http://www.makershed.com/product_p/mkpx16.htm
http://www.makershed.com/SearchResults.asp?Search=rfid
http://www.makershed.com/SearchResults.asp?Search=rfid
http://www.makershed.com/product_p/mkkn2.htm
http://www.makershed.com/Mini_Breadboards_p/mkkn1.htm
http://www.makershed.com/product_p/mkseeed3.htm

The Circuit
The circuit for this reader is similar to the one from Chapter 2. Connect the
module to the Arduino’s 5V and ground connections, and connect the
reader’s serial transmit line (labeled SOUT) to digital pin 6 on the Arduino,
which we’ll enable as a secondary serial port by using Arduino’s Software-
Serial library (the Arduino Uno has a primary serial port that we’ll use to send
messages to the computer). You’ll also need to attach the enable pin to
ground. Figure 3-1 shows these connections.

Try It
This sketch reads in bytes similar to the Processing sketches shown in
Chapter 2. Upload it to your Arduino, launch the Arduino Serial Monitor
(Tools→Serial Monitor), and make sure the Serial Monitor is configured for
9600 bps. Next, bring an RFID tag within range of the reader, and you should
see the tag ID appear in the Serial Monitor window.

/*
 RFID Reader
 */

#include <SoftwareSerial.h> // Bring in the software serial library

const int tagLength = 10; // each tag ID contains 10 bytes
const int startByte = 0x0A; // Indicates start of a tag
const int endByte = 0x0D; // Indicates end of a tag

char tagID[tagLength + 1]; // array to hold the tag you read

const int rxpin = 6; // Pin for receiving data from the RFID reader
const int txpin = 7; // Transmit pin; not used
SoftwareSerial rfidPort(rxpin, txpin); // create a Software Serial port

void setup() {
 // begin serial communication with the computer
 Serial.begin(9600);

 // begin serial communication with the RFID module
 rfidPort.begin(2400);
}

void loop() {

 // read in and parse serial data:
 if (rfidPort.available() > 0) { //

 if (readTag()) { //

12 Getting Started with RFID

 Serial.println(tagID);
 }

 }

}

/*
 This method reads the tag, and puts its
 ID in the tagID
 */
boolean readTag() {

 char thisChar = rfidPort.read(); //
 if (thisChar == startByte) { //

 if (rfidPort.readBytesUntil(endByte, tagID, tagLength)) { //
 return true;
 }

 }
 return false;
}

Here’s how the code works:

This line imports a library called SoftwareSerial, which allows you to use
any pair of digital pins as a serial port. It’s not as robust as the built-in
hardware serial port (pins 0 and 1), but it is well-behaved at low trans-
mission rates, which is perfect here, since we’re communicating with the
RFID reader at 2400 bits per second.

These lines of code declare several constants used throughout the
sketch. The first, tagLength, is the number of characters in the RFID tags
that the Parallax reader can process. The second, startByte, is the value
of the character that the RFID reader sends when it’s beginning to trans-
mit a tag ID. And the last, endByte, is what the RFID reader uses to signal
that it’s done transmitting a tag ID.

This line declares a buffer (tagID) that’s big enough to hold the tag ID,
along with an extra byte at the end to hold the character (zero) that ter-
minates a character array. This way, when you use the println command
to display the tagID later, the zero will signify to Arduino that it’s reached
the end of the string.

This initializes the Software Serial session with pin 6 as the receiving pin,
and 7 as the transmitting pin. Since you don’t transmit anything to the
RFID reader, you don’t need to hook pin 7 up. In the setup() module, you’ll

Reading RFID Tags in Arduino 13

see that the code calls begin() on both the built-in serial port (to talk to
the computer and this port that you just initialized).

This expression checks the Software Serial port to see if any messages
are coming in from the RFID reader.

If the previous expression evaluated to true, this line calls the readTag()
function. If that returns true, the next line (println()) displays the tag to
the built-in serial port, which makes it appear on the Serial Monitor’s
display.

This line reads one character from the RFID reader, and stores it in
thisChar.

If thisChar is equal to the startByte indicator, the next line is run.

The readBytesUntil function will read bytes from the RFID reader until it
hits the endByte delimiter, and it stores the result into tagID. If it succeeds
in reading tagLength (10) bytes from the RFID reader, this function returns
true.

Here’s the sort of output you’ll see in the Serial Monitor as you bring different
tags in range (since you have different tags than I do, you’ll see different
values there). Because the Parallax reader transmits a tag ID continuously
while it is in range, you’ll see the ID repeated as long as you hold it next to
the reader:

04162F7CAC
04162F7CAC
0415EA09BE
0F02A684B1
0F02A684B1
0F02A684B1

Searching for a Specific Tag
With the same circuit, and just a few changes to the code, you can make the
Arduino take action only when a certain tag comes within range. Before you
try this, you’ll need to run the sketch from the previous section, and copy
the ID of the tags you want to match. For this example, I’ll use 04162F7CAC,
but you will need to use a tag ID from your collection of tags.

14 Getting Started with RFID

Figure 3-1. Wiring the RFID reader to the Arduino

Reading RFID Tags in Arduino 15

Here’s the modified sketch, which lights the Arduino’s built-in LED when the
right tag is brought within range of the reader:

/*
 RFID Reader
 */

#include <SoftwareSerial.h> // Bring in the software serial library

const int tagLength = 10; // each tag ID contains 10 bytes
const int startByte = 0x0A; // Indicates start of a tag
const int endByte = 0x0D; // Indicates end of a tag

char tagID[tagLength + 1]; // array to hold the tag you read

const int rxpin = 6; // Pin for receiving data from the RFID reader
const int txpin = 7; // Transmit pin; not used
SoftwareSerial rfidPort(rxpin, txpin); // create a Software Serial port

String matchingTag = "04162F7CAC"; // The tag to match
const int ledPin = 13; // The digital pin for the built-in LED

void setup() {
 // begin serial communication with the computer
 Serial.begin(9600);

 // begin serial communication with the RFID module
 rfidPort.begin(2400);

 pinMode(ledPin, OUTPUT); // enable the pin for output
}

void loop() {

 // read in and parse serial data:
 if (rfidPort.available() > 0) {

 if (readTag()) {
 Serial.println(tagID);
 if (matchingTag.equals(tagID)) { //
 digitalWrite(ledPin, HIGH); // Turn on the LED
 }
 else {
 digitalWrite(ledPin, LOW); // Turn it off
 }
 }

 }

}

16 Getting Started with RFID

/*
 This method reads the tag, and puts its
 ID in the tagID
 */
boolean readTag() {

 char thisChar = rfidPort.read();
 if (thisChar == startByte) {

 if (rfidPort.readBytesUntil(endByte, tagID, tagLength)) {
 return true;
 }

 }
 return false;
}

Here’s what those new lines of code do:

This is an Arduino String variable that holds the ID of the tag you’re trying
to match.

This constant specifies which digital pin to use to light the LED. Digital pin
13 corresponds to the LED that’s built into the Arduino board.

This configures the pin so you can use it for output.

This line checks to see if the tag ID you just read from the reader matches
the one you seek.

If so, it lights the LED by writing HIGH to it.

If not, it turns it off by writing LOW.

These last few lines of code didn’t add a lot, but they opened the door to a
powerful new capability: taking action in the physical world based on the
bytes you received from the RFID reader. In Chapter 4, you’ll see how to go
from turning on an LED to turning on an actual light (or any other electrically-
powered device).

Reading RFID Tags in Arduino 17

4/RFID Meets
Home Automation

Between my officemate and me, we have dozens of devices drawing power
in our office: two laptops, two monitors, four or five lamps, a few hard drives,
a soldering iron, Ethernet hubs, speakers, and so forth. Even when we’re not
here, the room is drawing a lot of power. What devices are turned on at any
given time depends largely on which of us is here, and what we’re doing. This
project is a system to reduce our power consumption, particularly when
we’re not there.

When either of us comes into the room, all we have to do is tap our key fobs
on a reader mounted by the door, and the room turns on or off what we
normally use. Each of us has a keyring with an RFID-tag key fob. The reader
by the door reads the presence or absence of the tags.

The reader is connected to a microcontroller module that controls the AC
power lines using a device called the PowerSwitch Tail, shown in
Figure 4-1. Each of the various power strips is plugged into one of these.
Depending on which tag is read, the microcontroller knows which power strip
to turn on or off.

Figure 4-1. The PowerSwitch Tail II

19

Materials
Arduino

The Arduino Uno is a good model of Arduino to get started with, and it
will work for all the microncontroller-based projects in this book.

RFID reader
Parallax’s RFID Reader Module, available from Maker Shed as part of a
starter pack or by itself.

RFID tags
The starter pack includes several tags, and you can buy them
separately.

Breadboard
You can use a half-size or mini breadboard to make connections be-
tween the reader and the USB-to-TTL serial adaptor.

2 PowerSwitch Tails
Each one can control 15 amps of current. They are available from Maker
Shed.

The Circuit
The RFID module is connected to the microcontroller as in Chapter 3. Con-
nect the microcontroller to the PowerSwitch Tails as shown in Figure 4-2:

First PowerSwitch Tail

• “1: +in” to Arduino digital pin 2

• “2: -in” to breadboard ground

Second PowerSwitch Tail

• “1: +in” to Arduino digital pin 3

• “2: -in” to breadboard ground

WARNING: This project controls high-voltage, high-
current alternating current. Even though the
PowerSwitch Tail is designed to make this safe, you
should take extra care when wiring or rewiring the
circuits for this project. Make sure everything is
wired correctly and mounted securely before you
plug either the Arduino or the PowerSwitch Tails in.

20 Getting Started with RFID

http://www.makershed.com/product_p/mksp4.htm.
http://www.makershed.com/product_p/mkpx16.htm
http://www.makershed.com/product_p/mkpx2.htm
http://www.makershed.com/product_p/mkpx16.htm
http://www.makershed.com/SearchResults.asp?Search=rfid
http://www.makershed.com/product_p/mkkn2.htm
http://www.makershed.com/Mini_Breadboards_p/mkkn1.htm
http://www.makershed.com/PowerSwitch_Tail_II_p/mkps01.htm
http://www.makershed.com/PowerSwitch_Tail_II_p/mkps01.htm

Figure 4-2. Arduino connected to the PowerSwitch Tail II

Try It
Run this sketch to test the PowerSwitch Tail:

/*
 PowerSwitch Tail test
 language: Wiring/Arduino

*/

const int switchOne = 2; // the first PowerSwitch Tail control pin
const int switchTwo = 3; // the second PowerSwitch Tail control pin

void setup() {
 pinMode(switchOne, OUTPUT); // Configure the pins
 pinMode(switchTwo, OUTPUT);

 digitalWrite(switchOne, LOW); // Make sure they are off
 digitalWrite(switchTwo, LOW);
}

void loop() {

 // turn on first power strip, turn off the second

RFID Meets Home Automation 21

 digitalWrite(switchOne, HIGH);
 digitalWrite(switchTwo, LOW);
 delay(2000);

 // turn on second power strip, turn off the first
 digitalWrite(switchTwo, HIGH);
 digitalWrite(switchOne, LOW);
 delay(2000);

}

Here’s what happens in the sketch:

First, the sketch initializes two variables, switchOne and switchTwo, to hold
the pin numbers of the two PowerSwitch Tail units you have connected.

In setup(), you configure the pins to be OUTPUTs.

Next, we make sure the pins are off (this is the default, but it makes it clear
that your sketch expects to start with everything off).

The loop() function repeatedly turns the first switch on and the second
off, then waits two seconds, and does the opposite.

The result is that each PowerSwitch Tail will turn on and off every two sec-
onds. You probably don’t want to leave this running for very long, unless
you’re trying to do endurance tests for light bulbs (or whatever you have
plugged in).

Now that you’ve got control over your PowerSwitch Tails, you can combine
the RFID and the PowerSwitch Tail code.

Switching Power with RFID
The following sketch will toggle the state of each PowerSwitch Tail when the
corresponding RFID tag is held up to the reader. You can now use the RFID
reader like a light (or power strip) switch:

/*
 RFID–to-PowerSwitch Tail control
 language: Wiring/Arduino

 */
#include <SoftwareSerial.h> // Bring in the software serial library

const int tagLength = 10; // each tag ID contains 10 bytes
const int startByte = 0x0A; // Indicates start of a tag
const int endByte = 0x0D; // Indicates end of a tag

const int rxpin = 6; // Pin for receiving data from the RFID reader

22 Getting Started with RFID

const int txpin = 7; // Transmit pin; not used

String currentTag; // String to hold the tag you're reading

String tag[] = { "04162F7CAC", "0415EA09BE"}; // List of tags
int numTags = 2; // Number in that list

// PowerSwitchTail unit pins and unit states:
int numUnits = 2; // Two PowerSwitch Tails
int unit[] = {2, 3}; // Pins 2 and 3
int unitState[] = {LOW, LOW}; // Both start in the off position

long lastRead; // the time when we last read a tag
long timeOut = 1000; // required time between reads

SoftwareSerial rfidPort(rxpin, txpin); // create a Software Serial port

void setup() {

 lastRead = millis(); // Initalize to the sketch's start time

 // begin serial communication with the computer
 Serial.begin(9600);

 // begin serial communication with the RFID module
 rfidPort.begin(2400);

 // Initialize all the PowerSwitchTail controller pins.
 for (int thisUnit = 0; thisUnit < numUnits; thisUnit++) {
 pinMode(unit[thisUnit], OUTPUT); // Enable this pin for output
 digitalWrite(unit[thisUnit], unitState[thisUnit]);
 }
}

void loop() {
 // read in and parse serial data:
 if (rfidPort.available()) {
 readByte();
 }
}

void readByte() {

 char thisChar = rfidPort.read(); // Read a character from the port

 // depending on the byte's value,
 // take different actions:
 switch(thisChar) {
 // if the byte == startByte, you're at the beginning
 // of a new tag:
 case startByte:

RFID Meets Home Automation 23

 currentTag = "";
 break;
 //if the byte == endByte, you're at the end of a tag:
 case endByte:
 checkTags();
 break;
 // other bytes, if the current tag is less than
 // 10 bytes, you're still reading it:
 default:
 if (currentTag.length() < 10) {
 currentTag += thisChar;
 }
 }
}

void checkTags() {

 // iterate over the list of tags:
 for (int thisTag = 0; thisTag < numTags; thisTag++) {

 // if the current tag matches the tag you're on:
 if (currentTag.equals(tag[thisTag])) {

 // Only flip a switch if the tag has been away for a while
 if (lastRead + timeOut < millis()) {

 // unit number starts at 1, but list position starts at 0:
 Serial.print("unit " + String(thisTag +1));

 // change the status of the corresponding unit:
 if (unitState[thisTag] == HIGH) {
 unitState[thisTag] = LOW;
 Serial.println(" turning OFF");
 }
 else {
 unitState[thisTag] = HIGH;
 Serial.println(" turning ON");
 }

 // Set the switch to the new state.
 digitalWrite(unit[thisTag], unitState[thisTag]);
 }
 lastRead = millis(); // mark the last time you got a good tag

 }
 }
}

The top part of the sketch is essentially the same as what you saw in the
example in Chapter 3.

24 Getting Started with RFID

This string contains the tag that’s currently being read. As the RFID reader
collects each byte of the tag ID, it will add it to this string until it’s full.

This array contains a list of tags that the sketch will accept. This array
should have the same number of elements as the array (unit[]) that you’ll
see later. That’s because each element in this array corresponds to one
PowerSwitch Tail unit. That means that the first RFID tag in the tag[] array
will turn the first PowerSwitch Tail on and off, and the second RFID tag
will turn the second PowerSwitch Tail on and off.

Here’s where you set up an array (unit[]) containing the Arduino pin
number corresponding to a single PowerSwitch Tail. You also set up an
array to track the current state (HIGH or LOW) of each unit.

This variable is used to make sure you don’t continuously toggle a switch
on and off as long as you hold a tag in place. The Parallax reader contin-
uously transmits a tag as long as you hold it in place. Later on, you’ll see
that the sketch requires that you keep the tag away for at least one second
before it will let you toggle a switch.

This loop goes over each pin in the unit() array and sets its initial state
(LOW, or off).

In the loop() function, you look for any serial activity from the RFID reader,
and call readByte() if there is any.

Here, we read one character from the RFID reader.

This switch statement takes action based on what was read from the RFID
reader. If it sees the start of tag byte, it initializes the currentTag string.

If you reached the end of a tag, call checkTags().

Otherwise, keep appending the character to the currentTag string, as long
as you don’t exceed the maximum tag length.

At the top of checkTags(), start a loop that iterates over the list of tags.

For each of the tags in the list, check to see if it matches the one you just
read from the RFID reader.

This line checks the lastRead variable to make sure you’ve waited long
enough before toggling a switch.

Here’s where you toggle the switch’s state: if it’s on, set it to LOW, or off. If
it’s off, set it to HIGH, or on.

This line calls digitalWrite() to turn a PowerSwitch Tail on or off.

Finally, set lastRead to the current time (the time at which you last read
a valid tag).

RFID Meets Home Automation 25

Note that the reader lacks the ability to read multiple tags if more than one
tag is in the field. That’s an important limitation. It means that you have to
design the interaction so that the person using the system places only one
tag at a time, then removes it before the second one is placed. In effect, it
means that two people can’t hold their key tags to the reader at the same
time. In other words, users of the system need to take explicit action to make
something happen. Presence isn’t enough. That’s why I mounted the reader
vertically on a wall, so that tags wouldn’t just lay on the antenna all the time.

26 Getting Started with RFID

5/Conclusion

Despite what some authors would have you think, RFID is pretty far from
being a “big brother” technology. The “identity” of each RFID tag is just a
number. What you do with that information is up to you. There is no single
universal RFID protocol, nor are there readers that can read every tag out
there. There’s no secret database somewhere that holds all the RFID num-
bers and associates them with the things they’re attached to, or worse, the
people who own those things. To make RFID meaningful, you have to build
your own database associating the tags you distribute with the objects to
which you attach them, and you have to make sure that you’re using readers
that can read that particular brand of tag. The range of passive RFID systems
is very short, and most of the time you have to be very close to a tag to read
it. With most readers, you can only read one tag at a time; a cluster of tags
together generally won’t be read. If you’re really concerned about the secu-
rity of an RFID tag, you can always wrap it in a shield of conductive fabric or
aluminum foil, which will make it difficult or impossible to read. There is a lot
you can do with RFID within those limitations, and the more you understand
how it works, the more you can use it to your advantage.

The projects shown here barely scratch the surface of what you can do with
RFID. Even staying within the limits of passive RFID tags and inexpensive
readers, there is more you can do. For example, most tags are not just read-
able, but also writeable; you can store small amounts of data on them. To do
this, you need a reading device that’s capable of both reading from tags and
writing to them, unlike the one shown here.

If you’re interested in other passive RFID readers, several of them are cov-
ered in Making Things Talk, second edition. A few of my favorites are listed
below:

SonMicro’s SM130 series
These are reader/writer modules for the 13.56 MHz ISO14443A Mifare
standard tags. Mifare is a very popular tag standard, used by many
transit systems around the world. SonMicro’s modules give you the
ability to both read to and write from these tags.

ID Innovations’ readers
These cover a wide range of physical forms and RFID protocols. The
company makes some super-compact ID-12 and ID-20 readers for
125KHz tags, and recently added ID-20MF Mifare read/write modules

27

http://lessemf.com/
http://shop.oreilly.com/product/0636920010920.do
http://www.sonmicro.com/
http://id-innovations.com/httpdocs/products.htm

as well. It also makes long-range passive RFID readers, which claim to
be able to read up to 1.2 meters.

Texas Instruments
TI makes a wide range of both passive and active RFID readers, partic-
ularly in the 134.2kHz range that’s popular with pet tagging systems.

Adafruit’s PN532 RFID and NFC reader
This reader is particularly interesting to try. Compatible with the Mifare
tags, it can also communicate with near field communications devices
that are coming on the market now. NFC is an extension of RFID, a com-
munications protocol for devices that are very close to each other or
touching. Look for many interesting NFC applications in the near future,
as cards, tags, and other small objects begin to acquire interesting
behaviors.

28 Getting Started with RFID

http://www.ti.com/rfid/
https://www.adafruit.com/products/364

About the Author
Tom Igoe likes playing with electronics, mechanics, and programming;
making things that let people express themselves; and unusual clocks. He
has written two books for makers, Physical Computing with Dan O’Sullivan
and Making Things Talk, and is a contributor to Make magazine. He teaches
at the Interactive Telecommunications Program at NYU. He is a cofounder
of Arduino because he believes that open fabrication can change the world.
He is a fan of women’s flat-track roller derby and lives in Brooklyn with a cat
named Noodles. He is currently realizing his dream of working with monkeys,
and wants to visit Svalbard someday.

http://shop.oreilly.com/product/0636920010920.do

	Contents
	Preface
	Who This Book Is For
	Companion Kit
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Radio Frequency Identification
	Chapter 2. Reading RFID Tags in Processing
	Materials
	Parallax RFID Reader
	The Circuit
	Try It

	Chapter 3. Reading RFID Tags in Arduino
	Materials
	The Circuit
	Try It
	Searching for a Specific Tag

	Chapter 4. RFID Meets Home
 Automation
	Materials
	The Circuit
	Try It
	Switching Power with RFID

	Chapter 5. Conclusion

