The g
Pragmatic
ogranumers

Arduino

A Quick-Start Guide

Maik Schmidt

Edited by Susannah Davidson Pfalzer

What Readers Are Saying About
Arduino: A Quick-Start Guide

The most comprehensive book on the Arduino platform I have read.
Loaded with excellent examples and references, Arduino: A Quick-Start
Guide gets beginners up and running in no time and provides experi-
enced developers with a wealth of inspiration for their own projects.

» Haroon Baig
Creator of the Twitwee Clock, http://www.haroonbaig.com

Excellently paced for those who have never experimented with elec-
tronics or microcontrollers before and packed with valuable tidbits
even for advanced Arduino tinkerers.

» Georg Kaindl
Creator, Arduino DHCP, DNS, and Bonjour libs

The Arduino platform is a great way for anyone to get into embedded
systems, and this book is the road map. From first baby steps to com-
plex sensors and even game controllers, there is no better way to get
going on the Arduino.

» Tony Williamitis
Senior embedded systems engineer

I recommend this engaging and informative book to software develop-
ers who want to learn the basics of electronics, as well as to anyone
looking to interface their computers with the physical world.

» René Bohne
Software developer and creator of LumiNet

http://www.haroonbaig.com

A Quick-Start Guide

Maik Schmidt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Susannah Pfalzer
Indexing: Potomac Indexing, LLC
Copy edit: Kim Wimpsett

Layout: Samuel Langhorne
Production: Janet Furlow
Customer support: Ellie Callahan
International: Juliet Benda

Copyright © 2011 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-66-2
ISBN-13: 978-1-934356-66-1
Printed on acid-free paper.
P1.0 printing, Janurary, 2011
Version: 2011-1-24

http://www.pragprog.com

For Yvonne.

The greatest little sister on earth.

_ Confents

Acknowledgments 11
Preface 13
Who Should Read This Book 14
What'sin ThisBook 14
Arduino Uno and the Arduino Platform 16
Code Examples and Conventions 16
Online Resources 17
The Parts You Need 18
Starter Packs o oo 18
Complete Parts List 19
I Getting Started with Arduino 22
1 Welcome to the Arduino 23
1.1 WhatYouNeed 24
1.2 What Exactly Is an Arduino? 24
1.3 Exploring the Arduino Board 25
1.4 Installing the ArduinoIDE 31
1.5 Meeting the ArduinoIDE 33
1.6 Compiling and Uploading Programs 38
1.7 Workingwith LEDs 41
1.8 WhatIfIt Doesn’t Work? 43
1.9 Exercises 44
2 Inside the Arduino 46
2.1 WhatYouNeed 46
2.2 Managing Projects and Sketches 47
2.3 Changing Preferences 48
2.4 Using SerialPorts 49
2.5 WhatIf It Doesn't Work? 60

2.6 Exercises 61

CONTENTS «d 8

I Eight Arduino Projects 62
3 Building Binary Dice 63
3.1 WhatYouNeed 63
3.2 Working with Breadboards 64
3.3 Using an LED on a Breadboard 66
3.4 First Versionofa BinaryDie 69
3.5 Working with Buttons 74
3.6 Adding Our Own Button 79
3.7 BuildingaDiceGame. 80
3.8 WhatIfIt Doesn't Work? 86
3.9 Exercises 0o, 87
4 Building a Morse Code Generator Library 88
4.1 WhatYouNeed 88
4.2 Learning the Basics of Morse Code 88
4.3 Building a Morse Code Generator 89
4.4 Fleshing Out the Generator’s Interface 91
4.5 Outputting Morse Code Symbols 92
4.6 Installing and Using the Telegraph Class 94
4.7 FinalTouches 97
4.8 WhatIf It Doesn't Work? 99
49 EXxercises e 100
5 Sensing the World Around Us 102
5.1 WhatYouNeed 103
5.2 Measuring Distances with an Ultrasonic Sensor . . 104
5.3 Increasing Precision Using Floating-Point Numbers 110
5.4 Increasing Precision Using a Temperature Sensor . 113
5.5 Transferring Data Back to Your Computer Using Pro-
CESSING e e 119
5.6 Representing SensorData 123
5.7 Building the Application’s Foundation 125
5.8 Implementing Serial Communication in Processing 126
5.9 Visualizing Sensor Data 128
5.10 What If It Doesn’'t Work? 131

5.11 EXercises o i i i e 131

http://books.pragprog.com/titles/msard/errata/add?pdf_page=8

CONTENTS «d 9

6 Building a Motion-Sensing Game Controller 132
6.1 WhatYouNeed 133
6.2 Wiring Up the Accelerometer. 134
6.3 Bringing Your Accelerometer to Life 135
6.4 Finding and Polishing Edge Values 137
6.5 Building Your Own Game Controller 140
6.6 Writing Your Own Game 144
6.7 More Projects o oL 152
6.8 WhatIfIt Doesn'tWork? 153
6.9 Exercises oo 153
7 Tinkering with the Wii Nunchuk 154
7.1 WhatYouNeed 154
7.2 Wiring a Wii Nunchuk 155
7.3 TalkingtoaNunchuk. 156
7.4 Building a NunchukClass 159
7.5 Using Our Nunchuk Class 162
7.6 Rotating a ColorfulCube 163
7.7 WhatIfIt Doesnt Work? 169
7.8 Exercises e 169
8 Networking with Arduino 170
81 WhatYouNeed 171
8.2 Using Your PC to Transfer Sensor Data to the Inter-
net. e 172
8.3 Registering an Application with Twitter 174
8.4 Tweeting Messages with Processing. 175
8.5 Networking Using an Ethernet Shield 179
8.6 Emailing from the Command Line 186
8.7 Emailing Directly from an Arduino 188
8.8 Detecting Motion Using a Passive Infrared Sensor . 192
8.9 Bringing It All Together 196
8.10 What If It Doesn’t Work? 199
8.11 EXercises 201
9 Creating Your Own Universal Remote Control 202
9.1 WhatYouNeed 203
9.2 Understanding Infrared Remote Controls 204
9.3 Grabbing Remote Control Codes 205
9.4 Building Your Own Apple Remote 209

9.5 Controlling Devices Remotely with Your Browser . . 212

http://books.pragprog.com/titles/msard/errata/add?pdf_page=9

CONTENTS <« 10

9.6 Building an Infrared Proxy 214
9.7 WhatIfIt Doesn't Work? 221
9.8 EXercises 222
10 Controlling Motors with Arduino 223
10.1 WhatYouNeed 223
10.2 Introducing Motors 224
10.3 First Steps with a Servo Motor 225
10.4 Building a Blaminatr 228
10.5 What If It Doesn’t Work? 233
10.6 Exerciseso 234
III Appendixes 236
A Basics of Electronics 237
A.1 Current, Voltage, and Resistance 237
A2 Learning HowtoSolder. 241
B Advanced Arduino Programming 247
B.1 The Arduino Programming Language 247
B.2 BitOperations 249
C Advanced Serial Programming 251
C.1 Learning More About Serial Communication 251
C.2 Serial Communication Using Various Programming
Languages, 253
D Bibliography 266

Index 267

http://books.pragprog.com/titles/msard/errata/add?pdf_page=10

Writing books doesn’t get easier the more often I do it—I think there
will never be a time when I can do it on my own. I will always depend
on the help of others, and a lot of wonderful people contributed to this
book.

I have to start by thanking my unbelievably talented editor, Susannah
Davidson Pfalzer. Only because of her insightful advice, her patience,
and her encouragement have I finished this book. I owe her so much!

Also, the Pragmatic Bookshelf team again has been amazingly profes-
sional, and my publishers have been very sympathetic when I went
through some hard times. I am so thankful for that!

This book would not have been possible without the stunning work of
the whole Arduino team! Thank you so much for creating the Arduino!

A big “thank-you!” goes to all the people who contributed material to
this book: Christian Rattat took all the book’s photos, Kaan Karaca
created the Blaminatr’s display, and Tod E. Kurt kindly allowed me to
use his excellent C code for accessing an Arduino via serial port.

I have created all circuit diagrams with Fritzing,! and I'd like to thank
the Fritzing team for making such a great tool available for free!

For an author, there’s nothing more motivating than feedback. I'd like
to thank my reviewers: René Bohne, Stefan Christoph, Georg Kaind],
Kaan Karaca, Christian Rattat, Stefan Rédder, Christoph Schwaeppe,
Federico Tomassetti, and Tony Williamitis. This book is so much better
because of your insightful comments and suggestions! I am also grate-
ful to all readers who have sent in errata during the beta book period.

When I had written the first half of this book, my mother passed away
in February 2010. It has been one of the hardest times in my life, and

1. http://fritzing.org/

http://fritzing.org/

ACKNOWLEDGMENTS <« 12

without the support of my family and my friends, I would have never
finished this book. We miss you so much, Mom!

Finally, I'd like to thank Tanja for giving me confidence and for bringing
fun back into my life when I needed it most!

http://books.pragprog.com/titles/msard/errata/add?pdf_page=12

_ DPreface

Welcome to the Arduino, and welcome to the exciting world of physical
computing! Arduino? is an open source project consisting of both hard-
ware and software. It was originally created to give designers and artists
a prototyping platform for interaction design courses. Today hobby-
ists and experts all over the world use it to create physical computing
projects, and you can too.

The Arduino lets us get hands-on again with computers in a way we
haven’t been able to since the 1980s, when you could build your own
computer. And Arduino makes it easier than ever to develop hand-
crafted electronics projects ranging from prototypes to sophisticated
gadgets. Gone are the days when you had to learn lots of theory about
electronics and arcane programming languages before you could even
get an LED blinking. You can create your first Arduino project in a few
minutes without needing advanced electrical engineering course work.

In fact, you don’t need to know anything about electronics projects to
read this book, and you’ll get your hands dirty right from the begin-
ning. You'll not only learn how to use some of the most important elec-
tronic parts in the first pages, you'll also learn how to write the software
needed to bring your projects to life.

This book dispenses with theory and stays hands-on throughout. I'll
explain all the basics you need to build the book’s projects, and every
chapter has a troubleshooting section to help when things go wrong.
This book is a quick-start guide that gets you up to speed quickly and
enables you to immediately create your own projects.

2. http://arduino.cc

http://arduino.cc

WHO SHOULD READ THIS Book < 14

Who Should Read This Book

If you are interested in electronics—and especially in building your
own toys, games, and gadgets—then this book is for you. Although the
Arduino is a nice tool for designers and artists, only software developers
are able to unleash its full power. So, if you've already developed some
software—preferably with C/C++ or Java—then you’ll get a lot out of
this book.

But there’s one more thing: you have to build, try, and modify the
projects in this book. Have fun. Don’t worry about making mistakes.
The troubleshooting sections—and the hands-on experience you’ll gain
as you become more confident project by project—will make it all worth-
while. Reading about electronics without doing the projects yourself
isn’t even half the battle (you know the old saying: we remember 5 per-
cent of what we hear, 10 percent of what we write, and 95 percent of
what we personally suffer). And don’t be afraid: you really don’t need
any previous electronics project experience!

If you've never written a piece of software before, start with a program-
ming course or read a beginner’s book about programming first (Learn
to Program |] is a nice starting point). Then, learn to program in
C with The C Programming Language |] or in C++ with The C++
Programming Language | l.

What’s in This Book

This book consists of three parts (“Getting Started with Arduino,” “Eight
Arduino Projects,” and the appendixes). In the first part, you’'ll learn all
the basics you need to build the projects in the second part, so read the
chapters in order and do all the exercises. The chapters in the second
part also build on each other, reusing techniques and code from earlier
chapters.

Here’s a short walk-through:

* The book starts with the basics of Arduino development. You'll
learn how to use the IDE and how to compile and upload pro-
grams. You'll quickly build your first project—electronic dice—that
shows you how to work with basic parts such as LEDs, buttons,
and resistors. By implementing a Morse code generator, you'll see
how easy it is to create your own Arduino libraries.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=14

WHAT'S IN THIS Book < 15

* Then you’ll learn how to work with analog and digital sensors.
You'll use a temperature sensor and an ultrasonic sensor to build
a very accurate digital metering ruler. Then you’ll use a three-axis
accelerometer to build your own motion-sensing game controller,
together with a cool breakout game clone.

¢ In electronics, you don’t necessarily have to build gadgets yourself.
You can also tinker with existing hardware, and you’ll see how
easy it is to take full control of Nintendo’s Wii Nunchuk so you
can use it in your own applications.

* Using a Nunchuk to control applications or devices is nice, but
often it's more convenient to have a wireless remote control. So,
you’ll learn how to build your own universal remote control that
you can even control using a web browser.

* Speaking of web browsers: connecting the Arduino to the Inter-
net is easy, so you'll build a burglar alarm that sends you an
email whenever someone is moving in your living room during your
absence.

* Finally, you'll work with motors by creating a fun device for your
next software project. It connects to your continuous integration
system, and whenever the build fails, it moves an arrow to point
to the name of the developer who is responsible.

* In the appendixes, you'll learn about the basics of electricity and
soldering. You'll also find advanced information about program-
ming a serial port and programming the Arduino in general.

Every chapter starts with a detailed list of all parts and tools you need
to build the chapter’s projects. Every chapter contains lots of photos
and diagrams showing how everything fits together. You'll get inspired
with descriptions of real-world Arduino projects in sidebars throughout
the book.

Things won’t always work out as expected, and debugging circuits can
be a difficult and challenging task. So in every chapter you'll find a
“What If It Doesn’t Work?” section that explains the most common prob-
lems and their solutions.

Before you read the solutions in the “What If It Doesn’t Work?” sec-
tions, though, try to solve the problems yourself, because that’'s the
most effective way of learning. In the unlikely case that you don’t run

http://books.pragprog.com/titles/msard/errata/add?pdf_page=15

ARDUINO UNO AND THE ARDUINO PLATFORM <« 16

into any problems, you’'ll find a list of exercises to build your skills at
the end of every chapter.

All the projects in this book have been tested on the Arduino Uno, the
Arduino Duemilanove, and with the Arduino IDE versions 18 to 21. If
possible, you should always use the latest version.

Arduino Uno and the Arduino Platform

After releasing several Arduino boards and Arduino IDE versions, the
Arduino team decided to specify a version 1.0 of the platform. It will
be the reference for all future developments, and they announced it
on the first day of 2010.% Since then, they have released the Arduino
Uno, and they have also improved the IDE and its supporting libraries
step-by-step.

At the moment of this writing, it is still not completely clear what
Arduino 1.0 will look like. The Arduino team tries to keep this release as
backward compatible as possible. This book is up-to-date for the new
Arduino Uno boards. All the projects will also work with older Arduino
boards such as the Duemilanove or Diecimila. This book is current for
version 21 of the Arduino platform. You can follow the progress of the
Arduino platform online.*

Code Examples and Conventions

Although this is a book about open source hardware and electronics,
you will find a lot of code examples. We need them to bring the hardware
to life and make it do what we want it to do.

We use C/C++ for all programs that will eventually run on the Arduino.
For applications running on our PC, we use Processing,® but in Sec-
tion C.2, Serial Communication Using Various Programming Languages,
on page 253, you'll also learn how to use several other programming
languages to communicate with an Arduino.

Whenever you find a slippery road icon beside a paragraph, slow down
and read carefully. They announce difficult or dangerous techniques.

3. http://arduino.cc/blog/2010/01/01/uno-punto-zero/
4. http://code.google.com/p/arduino/issues/list?g=milestone=1.0
5. http://processing.org

http://arduino.cc/blog/2010/01/01/uno-punto-zero/
http://code.google.com/p/arduino/issues/list?q=milestone=1.0
http://processing.org
http://books.pragprog.com/titles/msard/errata/add?pdf_page=16

ONLINE RESOURCEs < 17

Online Resources

This book has its own web page at http://pragprog.com/titles/msard where
you can download the code for all examples (if you have the ebook ver-
sion of this book, clicking the little gray box above each code example
downloads that source file directly). You can also participate in a dis-
cussion forum and meet other readers and me. If you find bugs, typos,
or other annoyances, please let me and the world know about them on
the book’s errata page.®

On the web page you will also find a link to a Flickr’ photo set. It
contains all the book’s photos in high resolution. There you can also
see photos of reader projects, and we’d really like to see photos of your
projects, too!

Let’s get started!

6. http://www.pragprog.com/titles/msard/errata
7. http://flickr.com

http://pragprog.com/titles/msard
http://www.pragprog.com/titles/msard/errata
http://flickr.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=17

— ThePartsYoulNeed

Here’s a list of the parts you need to work through all the projects in
this book. In addition, each chapter lists the parts you’ll need for that
chapter’s projects, so you can try projects chapter-by-chapter without
buying all the components at once. Although there look to be a lot of
components here, they’re all fairly inexpensive, and you can buy all the
parts you need for all the projects in this book for about $200.

Starter Packs

Many online shops sell Arduino components and electronic parts. Some
of the best are Makershed® and Adafruit.® They have awesome starter
packs, and I strongly recommend buying one of these.

The best and cheapest solution is to buy the Arduino Projects Pack from
Makershed (product code MSAPK). It contains nearly all the parts you
need to build the book’s examples, as well as many more useful parts
that you can use for your own side projects. If you buy the Arduino
Projects Pack, you’ll need to buy these additional parts separately:

¢ Parallax PING))) sensor

¢ TMP36 temperature sensor from Analog Devices
¢ ADXL335 accelerometer breakout board

¢ 6 pin 0.1" standard header

¢ Nintendo Nunchuk controller

¢ A Passive Infrared Sensor

¢ An infrared LED

¢ An infrared receiver

¢ An Ethernet shield

8. http://makershed.com
9. http://adafruit.com

http://makershed.com
http://adafruit.com

COMPLETE PARTS LisT < 19

Alternatively, Adafruit also sells an Arduino Starter Pack (product ID
170). It’'s cheaper, but it doesn’t contain as many parts. For example, it
doesn’t have a Protoshield or a tilt sensor.

All shops constantly improve their starter packs, so it's a good idea to
scan their online catalogs carefully.

Complete Parts List

If you prefer to buy parts piece by piece (or chapter by chapter) rather
than a starter pack, here is a list of all the parts used in the book. Each
chapter also has a parts list and photo with all parts needed for that
chapter. Suggested websites where you can buy the parts are listed here
for your convenience, but many of these parts are available elsewhere
also, so feel free to shop around.

Good shops for buying individual components parts are RadioShack, !°
Digi-Key,!! sparkfun,!? and Mouser.!3

¢ An Arduino board such as the Uno, Duemilanove, or Diecimila
available from Adafruit (product ID 50) or Makershed (product
code MKSP4).

¢ A standard A-B USB cable for USB 1.1 or 2.0. You might already
have a few. If not, you can order it at RadioShack (catalog number
55011289).

¢ A half-size breadboard from Makershed (product code MKKN2) or
from Adafruit (product ID 64).

* Three LEDs (four additional ones are needed for an optional exer-
cise). Buying LEDs one at a time isn’'t too useful; a better idea is
to buy a pack of 20 at RadioShack (catalog number 276-1622).

* One 10012 resistor, two 10k? resistors, and three 1k{2 resistors.
It’'s also not too useful to buy single resistors; buy a value pack
such as catalog number 271-308 from RadioShack.

¢ Two pushbuttons. Don’t buy a single button switch; buy at least
four instead, available at RadioShack (catalog number 275-002).

10. http://radioshack.com
11. http://digikey.com

12. http://sparkfun.com
13. http://mouser.com

http://radioshack.com
http://digikey.com
http://sparkfun.com
http://mouser.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=19

COMPLETE PARTS LisT < 20

* Some wires, preferably breadboard jumper wires. You can buy
them at Makershed (product code MKSEEED3) or Adafruit (prod-
uct ID 153).

¢ A Parallax PING))) sensor (product code MKPX5) from Makershed.
¢ A Passive Infrared Sensor (product code MKPX6) from Makershed.

* A TMP36 temperature sensor from Analog Devices.!* You can get
it from Adafruit (product ID165).

e An ADXL335 accelerometer breakout board. You can buy it at
Adafruit (product ID 163).

¢ A 6 pin 0.1" standard header (included, if you order the ADXL335
from Adafruit). Alternatively, you can order from sparkfun (search
for breakaway headers). Usually, you can only buy stripes that
have more pins. In this case, you have to cut it accordingly.

¢ A Nintendo Nunchuk controller. You can buy it at nearly every toy
store or at http://www.amazon.com/, for example.

* An Arduino Ethernet shield (product code MKSP7) from Maker-
shed.

¢ An infrared sensor such as the PNA4602. You can buy it a Adafruit
(product ID 157) or Digi-Key (search for PNA4602).

¢ An infrared LED. You can get it from RadioShack (catalog number
276-143) or from sparkfun (search for infrared LED).

* A 5V servo motor such as the Hitec HS-322HD or the Vigor Hex-
tronic. You can get one from Adafruit (product id 155) or sparkfun.
Search for standard servos with an operating voltage of 4.8V-6V.

For some of the exercises, you'll need some optional parts:

* An Arduino Proto Shield from Adafruit (product ID 51) or Maker-
shed (product code MKAD®6). You'll also need a tiny breadboard
(product code MKKN1 at Makershed). I highly recommend this
shield!

* A piezo speaker or buzzer. Search for piezo buzzer at RadioShack
or get it from Adafruit (product ID 160).

14. http://www.analog.com/en/sensors/digital-temperature-sensors/tmp36/products/product.html

http://www.amazon.com/
http://www.analog.com/en/sensors/digital-temperature-sensors/tmp36/products/product.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=20

COMPLETE PARTS LisT <« 21

* A tilt sensor. Get it from Adafruit (product ID 173), or buy it at
Mouser (part number 107-2006-EV).

For the soldering tutorial, you need the following things:

¢ A 25W-30W soldering iron with a tip (preferably 1/16") and a sol-
dering stand.

¢ Standard 60/40 solder (rosin-core) spool for electronics work. It
should have a 0.031" diameter.

* A sponge.

You can find these things in every electronics store, and many have
soldering kits for beginners that contain some useful additional tools.
Take a look at Adafruit (product ID 136) or Makershed (product code
MKEE2).

http://books.pragprog.com/titles/msard/errata/add?pdf_page=21

Part 1

Getting Started with Arduino

Chapter 1

_ WelcometotheArduino
The Arduino was originally built for designers and artists—people with
little technical expertise. Even without programming experience, the
Arduino enabled them to create sophisticated design prototypes and
some amazing interactive artworks. So, it should come as no surprise

that the first steps with the Arduino are very easy, even more so for
people with a strong technical background.

But it’s still important to get the basics right. You'll get the most out
of working with the Arduino if you're familiar with the Arduino board
itself, with its development environment, and with techniques such as
serial communication.

One thing to understand before getting started is physical computing. If
you have worked with computers before, you might wonder what this
means. After all, computers are physical objects, and they accept input
from physical keyboards and mice. They output sound and video to
physical speakers and displays. So, isn’t all computing physical com-
puting in the end?

In principle, regular computing is a subset of physical computing: key-
board and mouse are sensors for real-world inputs, and displays or
printers are actuators. But controlling special sensors and actuators,
using a regular computer is very difficult. Using an Arduino, it’s a piece
of cake to control sophisticated and sometimes even weird devices.
In the rest of this book, you’ll learn how, and in this chapter you’ll
get started with physical computing by learning how to control the
Arduino, what tools you need, and how to install and configure them.
Then we’ll quickly get to the fun part: you'll develop your first program
for the Arduino.

WHAT YOoU NEED «d 24

1.1 What You Need

¢ An Arduino board such as the Uno, Duemilanove, or Diecimila.
¢ A USB cable to connect the Arduino to your computer.
e An LED.

® The Arduino IDE (see Section 1.4, Installing the Arduino IDE, on
page 31). You will need it in every chapter, so after this chapter,
I'll no longer mention it explicitly.

1.2 What Exactly Is an Arduino?

Beginners often get confused when they discover the Arduino project.
When looking for the Arduino, they hear and read strange names such
as Uno, Duemilanove, Diecimila, LilyPad, or Seeduino. The problem is
that there is no such thing as “the Arduino.”

A couple of years ago the Arduino team designed a microcontroller
board and released it under an open source license. You could buy fully
assembled boards in a few electronics shops, but people interested in
electronics could also download its schematic! and build it themselves.

Over the years the Arduino team improved the board’s design and
released several new versions. They usually had Italian names such
as Uno, Duemilanove, or Diecimila, and you can find a list of all boards
that were ever created by the Arduino team online.?

Figure 1.1, on the following page shows a small selection of Arduinos.
They may differ in their appearance, but they have a lot in common,
and you can program them all with the same tools and libraries.

The Arduino team did not only constantly improve the hardware design.
They also invented new designs for special purposes. For example, they
created the Arduino LilyPad® to embed a microcontroller board into
textiles. You can use it to build interactive T-shirts, for example.

In addition to the official boards, you can find countless Arduino clones
on the Web. Everybody is allowed to use and change the original board
design, and many people created their very own version of an Arduino-
compatible board. Among many others, you can find the Freeduino,

1. http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf
2. http://arduino.cc/en/Main/Boards
3. http://arduino.cc/en/Main/ArduinoBoardLilyPad

http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf
http://arduino.cc/en/Main/Boards
http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://books.pragprog.com/titles/msard/errata/add?pdf_page=24

EXPLORING THE ARDUINO BOARD <« 25

%
g
3
e

ausar O

Figure 1.1: You can choose fom many different Arduinos.

Seeduino, Boarduino, and the amazing Paperduino,* an Arduino clone

without a printed circuit board. All its parts are attached to an ordinary
piece of paper.

Arduino is a registered trademark—only the official boards are named
“Arduino.”—so clones usually have names ending with “duino.” You

can use every clone that is fully compatible with the original Arduino to
build all the book’s projects.

1.3 Exploring the Arduino Board

In Figure 1.2, on the next page, you can see a photo of an Arduino Uno
board and its most important parts. I'll explain them one by one. Let's
start with the USB connector. To connect an Arduino to your computer,

4. http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/

http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=25

EXPLORING THE ARDUINO BOARD <« 26

Digital I/0 Pins

USB Connector I 1

eSS e e e e e

‘INO.CC |

Micro-
Controller

P —————————— L Y

) “'WW.ARD'

Power Jack

)
I Analog Input Pins
Power Supply

Figure 1.2: The Arduino’s most important components

you just need an USB cable. Then you can use the USB connection for
various purposes:

* Upload new software to the board (you’ll see how to do this in
Section 1.6, Compiling and Uploading Programs, on page 38).

¢ Communicate with the Arduino board and your computer (you’'ll
learn that in Section 2.4, Using Serial Ports, on page 49).

¢ Supply the Arduino board with power.

As an electronic device, the Arduino needs power. One way to power it
is to connect it to a computer’s USB port, but that isn’t a good solution
in some cases. Some projects don’t necessarily need a computer, and it
would be overkill to use a whole computer just to power the Arduino.
Also, the USB port only delivers 5 volts, and sometimes you need more.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=26

EXPLORING THE ARDUINO BOARD <« 27

Figure 1.3: You can power an Arduino with an AC adapter.

In these situations, the best solution usually is an AC adapter (see
Figure 1.3) supplying 9 volts (the recommended range is 7V to 12V).5
You need an adapter with a 2.1 mm barrel tip and a positive center (you
don’t need to understand what that means right now; just ask for it in
your local electronics store). Plug it into the Arduino’s power jack, and
it will start immediately, even if it isn’t connected to a computer. By the
way, even if you connect the Arduino to an USB port, it will use the
external power supply if available.

Please note that older versions of the Arduino board (Arduino-NG and
Diecimila) don’t switch automatically between an external power supply
and a USB supply. They come with a power selection jumper labeled
PWR_SEL, and you manually have to set it to EXT or USB, respectively
(see Figure 1.4, on the next page).

Now you know two ways to supply the Arduino with power. But the
Arduino isn’'t greedy and happily shares its power with other devices.
At the bottom of Figure 1.2, on the preceding page, you can see several
sockets (sometimes I'll also call them pins, because internally they are
connected to pins in the microcontroller) related to power supply:

¢ Using the pins labeled 3V3 and 5V, you can power external devices
connected to the Arduino with 3.3 volts or 5 volts.

5. http://www.arduino.cc/playground/Learning/WhatAdapter

http://www.arduino.cc/playground/Learning/WhatAdapter
http://books.pragprog.com/titles/msard/errata/add?pdf_page=27

EXPLORING THE ARDUINO BOARD <« 28

P24 508
x o
w“y a» T wi
-uuummu. E- -
‘ .
TX° ﬁrdumo

umt.u.mm" ['..nx- Dlecmula

v .
-mw s

Bl wwuw.arduino.cc ®

\ 2D POMER ANALOG IN .
.cmeUGndUm AL 2N Bl

Figure 1.4: Older Arduinos have a power source selection jumper.

¢ Two ground pins labeled Gnd allow your external devices to share
a common ground with the Arduino.

* Some projects need to be portable, so they’ll use a portable power
supply such as batteries. You connect an external power source
such as a battery pack to the Vin and Gnd sockets.

If you connect an AC adapter to the Arduino’s power jack, you can
supply the adapter’s voltage through this pin.

On the lower right of the board, you see six analog input pins named
AO-A5. You can use them to connect analog sensors to the Arduino.
They take sensor data and convert it into a number between O and
1023. In Chapter 5, Sensing the World Around Us, on page 102, we’ll
use them to connect a temperature sensor to the Arduino.

At the board’s top are 14 digital IO pins named D0O-D13. Depending on
your needs, you can use these pins for both digital input and output,
so you can read the state of a pushbutton or switch to turn on and off
an LED (we’ll do this in Section 3.5, Working with Buttons, on page 74).
Six of them (D3, D5, D6, D9, D10, and D11) can also act as analog

http://books.pragprog.com/titles/msard/errata/add?pdf_page=28

EXPLORING THE ARDUINO BOARD <« 29

Anal | Digital Si Is
Nearly all physical processes are analog. Whenever you
observe a natural phenomenon such as electricity or sound,
you're actually receiving an analog signal. One of the most
important properties of these analog signals is that they are
continuous. For every given point in time, you can measure the
strength of the signal, and in principle you could register even
the tiniest variation of the signal.

But although we live in an analog world, we are also living
in the digital age. When the first computers were built a few
decades ago, people quickly realized that it’s much easier to
work with real-world information when it’s represented as num-
bers and not as an analog signal such as voltage or volume. For
example, it’s much easier to manipulate sounds using a com-
puter when the sound waves are stored as a sequence of num-
bers. Every number in this sequence could represent the signal’s
loudness at a certain point in fime.

So instead of storing the complete analog signal (as is done
on records), we measure the signal only at certain points in
fime (see Figure 1.5, on the following page). We call this pro-
cess sampling, and the values we store are called samples. The
frequency we use to defermine new samples is called sampling
rate. For an audio CD, the sampling rate is 44.1 kHz: we gather
44,100 samples per second.

We also have 1o limit the samples to a certain range. On an
audio CD, every sample uses 16 bits. In Figure 1.5, on the next
page, the range is denoted by two dashed lines, and we had
to cut off a peak at the beginning of the signal.

Although you can connect both analog and digital devices to
the Arduino, you usually don’t have to think much about it. The
Arduino automatically performs the conversion from analog to
digital, and vice versa, for you.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=29

EXPLORING THE ARDUINO BOARD <« 30

Figure 1.5: Digitizing an analog signal

output pins. In this mode, they convert values from O to 255 into an
analog voltage.

All these pins are connected to a microcontroller. A microcontroller com-
bines a CPU with some peripheral functions such as IO channels. Many
different types of microcontrollers are available, but the Arduino usu-
ally comes with an ATmega328 or an ATmegal68. Both are 8-bit micro-
controllers produced by a company named Atmel.

Although modern computers load programs from a hard drive, micro-
controllers usually have to be programmed. That means you have to
load your software into the microcontroller via a cable, and once the
program has been uploaded, it stays in the microcontroller until it gets
overwritten with a new program. Whenever you supply power to the
Arduino, the program currently stored in its microcontroller gets exe-
cuted automatically. Sometimes you want the Arduino to start right
from the beginning. With the reset button on the right side of the board,
you can do that. If you press it, everything gets reinitialized, and the
program stored in the microcontroller starts again (we use it in Sec-
tion 3.4, First Version of a Binary Die, on page 69).

http://books.pragprog.com/titles/msard/errata/add?pdf_page=30

INSTALLING THE ARDUINO IDE < 31

In this section, we had a closer look at the Arduino Uno, the newest
Arduino board. But several other types are available, and although
they're the same in principle, they differ in some details. The Arduino
Mega2560° has many more IO pins than all other Arduinos and uses
the powerful ATmega2560 microcontroller, while the Arduino Nano”
was designed to be used on a breadboard, so it doesn’t have any sock-
ets. From my experience, beginners should start with one of the “stan-
dard” boards, that is, with an Uno or a Duemilanove.

1.4 Installing the Arduino IDE

To make it as easy as possible to get started with the Arduino, the
Arduino developers have created a simple but useful integrated devel-
opment environment (IDE). It runs on many different operating sys-
tems. Before you can create your first projects, you have to install it.

Installing the Arduino IDE on Windows

The Arduino IDE runs on all the latest versions of Microsoft Windows,
such as Windows XP, Windows Vista, and Windows 7. Installing the
software is easy, because it comes as a self-contained ZIP archive,® so
you don’t even need an installer. Download the archive, and extract it
to a location of your choice.

Before you first start the IDE, you must install drivers for the Arduino’s
USB port. This process depends on the Arduino board you're using and
on your flavor of Windows, but you always have to plug the Arduino
into a USB port first to start the driver installation process.

On Windows Vista, driver installation usually happens automatically.
Lean back and watch the hardware wizard’s messages pass by until it
says that you can use the newly installed USB hardware.

Windows XP and Windows 7 may not find the drivers on Microsoft’s
update sites automatically. Sooner or later the hardware wizard asks
you for the path to the right drivers after you have told it to skip auto-
matic driver installation from the Internet. Depending on your Arduino
board, you have to point it to the right location in the Arduino installa-
tion directory. For the Arduino Uno and the Arduino Mega 2560, choose

6. http://arduino.cc/en/Main/ArduinoBoardMega2560
7. http://arduino.cc/en/Main/ArduinoBoardNano
8. http://arduino.cc/en/Main/Software

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardNano
http://arduino.cc/en/Main/Software
http://books.pragprog.com/titles/msard/errata/add?pdf_page=31

INSTALLING THE ARDUINO IDE <« 32

Arduino UNOQ.inf (respectively, Arduino MEGA 2560.inf) in the drivers direc-
tory. For older boards such as the Duemilanove, Diecimila, or Nano,
choose the drivers/FTDI USB Drivers directory

After the drivers have been installed, you can start the Arduino exe-
cutable from the archive’s main directory by double-clicking it. Follow
the instructions on the screen to install the IDE.

Please note that the USB drivers don’t change as often as the Arduino
IDE. Whenever you install a new version of the IDE, check whether you
have to install new drivers, too. Usually, it isn’t necessary.

Installing the Arduino IDE on Mac OS X

The Arduino IDE is available as a disk image for the most recent Mac
OS X.? Download it, double-click it, and then drag the Arduino icon to
your Applications folder.

If youre using an Arduino Uno or an Arduino Mega 2560, you are
done and can start the IDE. Before you can use the IDE with an older
Arduino such as the Duemilanove, Diecimila, or Nano, you have to
install drivers for the Arduino’s serial port. A universal binary is in the
disk image—double-click the FTDIUSBSerialDriver_10_4_10_5_10_6.pkg file for
your platform, and follow the installation instructions on the screen.

When installing a new version of the Arduino IDE, you usually don’t
have to install the FTDI drivers again (only when a more recent version
of the drivers is available).

Installing the Arduino IDE on Linux

Installation procedures on Linux distributions are still not very homo-
geneous. The Arduino IDE works fine on nearly all modern Linux ver-
sions, but the installation process heavily differs from distribution to
distribution. Also, you often have to install additional software (the Java
virtual machine, for example) that comes preinstalled with other oper-
ating systems.

It's best to check the official documentation'® and look up the instruc-
tions for your preferred system.

Now that we have the drivers and the IDE installed, let’s see what it has
to offer.

9. http://arduino.cc/en/Main/Software
10. http://www.arduino.cc/playground/Learning/Linux

http://arduino.cc/en/Main/Software
http://www.arduino.cc/playground/Learning/Linux
http://books.pragprog.com/titles/msard/errata/add?pdf_page=32

MEETING THE ARDUINO IDE <« 33

const int BAUD_RATE = 9668;

vold setup(y £
Serial.begin{BAUD_RATE) ;
¥

wold loop{)
Serial.println{"Hel loy world!");
e Loy (C1AREY 5

¥

Figure 1.6: The Arduino IDE is well arranged.

1.5 Meeting the Arduino IDE

If you have used an IDE such as Eclipse, Xcode, or Microsoft Visual Stu-
dio before, you'd better lower your expectations, because the Arduino
IDE is really simple. It mainly consists of an editor, a compiler, a loader,
and a serial monitor (see Figure 1.6 or, even better, start the IDE on
your computer).

http://books.pragprog.com/titles/msard/errata/add?pdf_page=33

MEETING THE ARDUINO IDE <« 34

Stop Open Upload

Verify New Save Serial Monitor

Figure 1.7: The IDE’s toolbar gives you quick access to important func-
tions.

It has no advanced features such as a debugger or code completion.
You can change only a few preferences, and as a Java application it
does not fully integrate into the Mac desktop. It’s still usable, though,
and even has decent support for project management.

In Figure 1.7, you can see the IDE’s toolbar that gives you instant
access to the functions you’ll need most:

¢ With the Verify button, you can compile the program that’s cur-
rently in the editor. So, in some respects, “Verify” is a bit of a
misnomer, because clicking the button does not only verify the
program syntactically. It also turns it into a representation suit-
able for the Arduino board.

¢ The New button creates a new program by emptying the content
of the current editor window. Before that happens, the IDE gives
you the opportunity to store all unsaved changes.

¢ With Open, you can open an existing program from the file system.
¢ Save saves the current program.

* When you click the Upload button, the IDE compiles the current
program and uploads it to the Arduino board you have chosen in

http://books.pragprog.com/titles/msard/errata/add?pdf_page=34

MEETING THE ARDUINO IDE <« 35

Status LED —§ ,
T
oy

¥

Serial

Communication_L\‘; i Am:m

Figure 1.8: The Arduino board comes with several LEDs.

the IDE’s Tools > Serial Port menu (you’ll learn more about this in
Section 1.6, Compiling and Uploading Programs, on page 38).

* The Arduino can communicate with a computer via a serial con-
nection. Clicking the Serial Monitor button opens a serial monitor
window that allows you to watch the data sent by an Arduino and
also to send data back.

¢ The Stop button stops the serial monitor.

Although using the IDE is easy, you might run into problems or want to
look up something special. In such cases, take a look at the Help menu.
It points to many useful resources at the Arduino’s website that provide
quick solutions not only to all typical problems but also to reference
material and tutorials.

To get familiar with the IDE’s most important features, we’ll create a
simple program that makes an light-emitting diode (LED) blink. An
LED is a cheap and efficient light source, and the Arduino already
comes with several LEDs. One LED shows whether the Arduino is cur-
rently powered, and two other LEDs blink when data is transmitted or
received via a serial connection (see them in Figure 1.8).

In our first little project, we’ll make the Arduino’s status LED blink.
The status LED is connected to digital IO pin 13. Digital pins act as a
kind of switch and can be in one of two states: HIGH or LOW. If set to
HIGH, the output pin is set to 5 volts, causing a current to flow through
the LED, so it lights up. If it's set back to LOW, the current flow stops,
and the LED turns off. You do not need to know exactly how electricity
works at the moment, but if you're curious, take a look at Section A.1,
Current, Voltage, and Resistance, on page 237.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=35

MEETING THE ARDUINO IDE <« 36

Open the IDE, and enter the following code in the editor:

Download welcome/HelloWorld/HelloWorld.pde

Line 1 const unsigned int LED_PIN = 13;
- const unsigned int PAUSE = 500;

- void setup() {
5 pinMode (LED_PIN, OUTPUT);
-3

void Toop() {
- digitalWrite(LED_PIN, HIGH);
10 delay (PAUSE) ;
- digitalWrite(LED_PIN, LOW);
delay (PAUSE);
B

Let’s see how this works and dissect the program’s source code piece by
piece. In the first two lines we define two int constants using the const
keyword. LED_PIN refers to the number of the digital IO pin we’re using,
and PAUSE defines the length of the blink period in milliseconds.

Every Arduino program needs a function named setup(), and ours starts
in line 4. A function definition always adheres to the following scheme:

<return value type> <function name> ’(’ <list of parameters>)’

In our case the function’s name is setup(), and its return value type is
void: it returns nothing. setup() doesn’t expect any arguments, so we left
the parameter list empty. Before we continue with the dissection of our
program, you should learn a bit more about the Arduino’s data types.

Arduino Data Types

Every piece of data you store in an Arduino program needs a type.
Depending on your needs, you can choose from the following:

* boolean values take up one byte of memory and can be true or false.

¢ char variables take up one byte of memory and store numbers
from -128 to 127. These numbers usually represent characters
encoded in ASCII; that is, in the following example, c1 and c2 have
the same value:

char cl 'A';
char c2 = 65;

Note that you have to use single quotes for char literals.

* byte variables use one byte and store values from O to 255.

http://media.pragprog.com/titles/msard/code/welcome/HelloWorld/HelloWorld.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=36

MEETING THE ARDUINO IDE <« 37

¢ An int variable needs two bytes of memory; you can use it to store
numbers from -32,768 to 32,767. Its unsigned pendant unsigned
int also consumes two bytes of memory but stores numbers from
0 to 65,535.

* For bigger numbers, use long. It consumes four bytes of mem-
ory and stores values from -2,147,483,648 to 2,147,483,647. The
unsigned variant unsigned long also needs four bytes but ranges
from O to 4,294,967,295.

¢ float and double are the same at the moment, and you can use
these types for storing floating-point numbers. Both use four bytes
of memory and are able to store values from -3.4028235E+38 to
3.4028235E+38.

* You need void only for function declarations. It denotes that a
function doesn’t return a value.

¢ Arrays store collections of values having the same type:

int values[2]; // A two-element array
int values[0] = 42; // Set the first element
int values[1] = -42; // Set the second element

int more_values[] = { 42, -42 };
int first = more_values[0]; // first == 42

In the preceding example, the arrays values and more_values con-
tain the same elements. We have used only two different ways of
initializing an array. Note that the array index starts at O, and keep
in mind that uninitialized array elements contain random values.

* A string is an array of char values. The Arduino environment sup-
ports the creation of strings with some syntactic sugar—all these
declarations create strings with the same contents.
char stringl[8] = { 'A', 'r', 'd', 'u', 'i', 'n', '0o', "\O' };
char string2[] = "Arduino";

char string3[8] "Arduino";
char string4[] { 65, 114, 100, 117, 105, 110, 111, O };

Strings should always be terminated by a zero byte. When you
use double quotes to create a string, the zero byte will be added
automatically. That’s why you have to add one byte to the size of
the corresponding array.

In Section 8.7, Emailing Directly from an Arduino, on page 188,
you’ll learn how to use the Arduino’s new Sfring class.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=37

COMPILING AND UPLOADING PROGRAMS <« 38

Arduino calls setup() once when it boots, and we use it for initializing the
Arduino board and all the hardware we have connected to it. We use
the pinMode() method to turn pin 13 into an output pin. This makes
sure the pin is able to provide enough current to light up an LED. The
default state of a pin is INPUT, and both INPUT and OUTPUT are predefined
constants.!!

Another mandatory function named loop() begins in line 8. It contains
the main logic of a program, and the Arduino calls it in an infinite loop.
Our program’s main logic has to turn on the LED connected to pin 13
first. To do this, we use digitalWrite() and pass it the number of our pin
and the constant HIGH. This means the pin will output 5 volts until
further notice, and the LED connected to the pin lights up.

The program then calls delay() and waits for 500 milliseconds doing
nothing. During this pause, pin 13 remains in HIGH state, and the LED
continues to burn. The LED is eventually turned off when we set the
pin’s state back to LOW using digitalWrite() again. We wait another 500
milliseconds, and then the loop() function ends. The Arduino starts it
again, and the LED blinks.

In the next section, you'll learn how to bring the program to life and
transfer it to the Arduino.

1.6 Compiling and Uploading Programs

Before you compile and upload a program to the Arduino, you have to
configure two things in the IDE: the type of Arduino you're using and
the serial port your Arduino is connected to.

Identifying the Arduino type is easy, because it is printed on the board.
Popular types are Uno, Duemilanove, Diecimila, Nano, Mega, Mini, NG,
BT, LilyPad, Pro, or Pro Mini. In some cases, you also have to check
what microcontroller your Arduino uses—most have an ATmegal68 or
an ATmega328. You can find the microcontroller type printed on the
microcontroller itself. When you have identified the exact type of your
Arduino, choose it from the Tools > Board menu.

Now you have to choose the serial port your Arduino is connected
to from the Tools > Serial Port menu. On Mac OS X, the name of
the serial port starts with /dev/cu.usbserial or /dev/cu.usbomodem (on my

11. See hittp://arduino.cc/en/Tutorial/DigitalPins for the official documentation.

http://arduino.cc/en/Tutorial/DigitalPins
http://books.pragprog.com/titles/msard/errata/add?pdf_page=38

COMPILING AND UPLOADING PROGRAMS <« 39

MacBook Pro, it’s /dev/cu.usomodemfal4l). On Linux systems, it should
be /dev/ttyUSBO, /dev/ityUSB1, or something similar depending on the
number of USB ports your computer has.

On Windows systems, it’s a bit more complicated to find out the right
serial port, but it’s still not difficult. Go to the Device Manager, and
look for USB Serial Port below the Ports (COM & LPT) menu entry (see
Figure 1.9, on the following page). Usually the port is named COM1,
COM2, or something similar.

After you have chosen the right serial port, click the Verify button, and
you should see the following output in the IDE’s message area (the
Arduino IDE calls programs sketches):

Binary sketch size: 1010 bytes (of a 32256 byte maximum)

This means the IDE has successfully compiled the source code into
1,010 bytes of machine code that we can upload to the Arduino. If you
see an error message instead, check whether you have typed in the
program correctly (when in doubt, download the code from the book’s
website).!2 Depending on the Arduino board you're using, the byte max-
imum may differ. On an Arduino Duemilanove, it’s usually 14336, for
example.

Now click the Upload button, and after a few seconds, you should see
the following output in the message area:

Binary sketch size: 1010 bytes (of a 32256 byte maximum)

This is exactly the same message we got after compiling the program,
and it tells us that the 1,010 bytes of machine code were transferred
successfully to the Arduino. In case of any errors, check whether you
have selected the correct Arduino type and the correct serial port in the
Tools menu.

During the upload process, the TX and RX LEDs will flicker for a few
seconds. This is normal, and it happens whenever the Arduino and
your computer communicate via the serial port. When the Arduino
sends information, it turns on the TX LED. When it gets some bits,
it turns on the RX LED. Because the communication is pretty fast, the
LEDs start to flicker, and you cannot identify the transmission of a
single byte (if you can, you are probably an alien).

12. http://www.pragprog.com/titles/msard

http://www.pragprog.com/titles/msard
http://books.pragprog.com/titles/msard/errata/add?pdf_page=39

COMPILING AND UPLOADING PROGRAMS < 40

5 pevice Manager _loix

File Action Wiew Help

= M EFE 2E A e

== COMPUTER

I'-E Batteries

f+] ¢ Computer

I'+] e Disk drives
& # Display adapters
- DVDJCD-ROM drives
{83 Human Interface Devices
-2 IDE ATAJATAPI controllers
I'Eh..-t kKevboards
f+] "‘, Mice and other painting devices
e L. Modems
FEI ?_:" Monitors
- B3 Mebwork adapters
[l PCMCIA adapters
= Ports (COM & LPT)
5 F\y; Commurnications Port {COM1}
R | |-F: Ccrial Port (COME)
fﬂﬂ Processors
FE g SC5I and RAID controllers
f+] Smart card readers
I'+]@ Sound, video and game controllers

fﬂ & Swstem devices
g Universal 3erial Bus controllers

Figure 1.9: Look up the serial port an Arduino is connected to on Win-
dows XP.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=40

WORKING WITH LEDs < 41

5

ov

Figure 1.10: What’s happening on pin 13 while the LED blinks.

As soon as the code has been transmitted completely, the Arduino exe-
cutes it. In our case, this means the status LED starts to blink. It turns
on for half a second, then it turns off for half a second, and so on.

In Figure 1.10, you can see a diagram showing the activity on the pin
while the program is running. The pin starts in LOW state and does not
output any current. We set it to HIGH in the software using digitalWrite()
and let it output 5 volts for 500 milliseconds. Finally, we set it back to
LOW for 500 milliseconds and repeat the whole process.

Admittedly, the status LED does not look very spectacular. So, in the
next section, we’ll attach a “real” LED to the Arduino.

1.7 Working with LEDs

The LEDs that come with the Arduino are nice for testing purposes, but
you should not use them in your own electronics projects. They all have
a specific meaning, and it’s bad style to use them in a different context.
Also, they are very small and not very bright, so it’s a good idea to get
some additional LEDs and learn how to connect them to the Arduino.
It’s really easy.

We will not use the same type of LEDs that are mounted on the Arduino
board. They are surface-mounted devices (SMD) that are difficult to
handle. You will rarely work with SMD parts, because for most of them
you need special equipment and a lot of experience. They save costs
as soon as you start mass production of an electronic device, but pure
hobbyists won’t need them often.

The LEDs that we need are through-hole parts; you can see some in
Figure 1.11, on the following page. They are named through-hole parts
because they are mounted to a circuit board through holes. That’s

http://books.pragprog.com/titles/msard/errata/add?pdf_page=41

WORKING WITH LEDS <« 42

Figure 1.11: A collection of through-hole LEDs

why they usually have one or more long wires. First you put the wires
through holes in a printed circuit board. Then you usually bend, sol-
der, and cut them to attach the part to the board. Where available, you
can also plug them into sockets as we have them on the Arduino or
on breadboards (you'll learn more about breadboards in Section 3.2,
Working with Breadboards, on page 64).

In Figure 1.12, on the following page, you can see how to attach an
LED to an Arduino. Put the short connector of the LED to the ground
pin (GND) and the longer one to pin 13. You can do that while the blink
sketch is still running. Both the status LED and the external LED will
start to blink.

Make absolutely sure that you're using pin 13! If you connect the LED
to any other pin, it will probably be destroyed. The reason is that pin
13 has an internal resistor that the other pins don’t have (you'll learn
more about this in Chapter 3, Building Binary Dice, on page 63). @

That’s it! You've just added your first external electronics part to your
Arduino, and you have created your first physical computing project.
You've written some code, and it makes the world a bit brighter. Your
very own digital version of “fiat lux.”13

You will need the theory and skills you have learned in this chapter
for nearly every Arduino project. In the next chapter, you'll see how to
gain more control over LEDs, and you’ll learn how to benefit from more
advanced features of the Arduino IDE.

13. http://en.wikipedia.org/wiki/Fiat_lux

http://en.wikipedia.org/wiki/Fiat_lux
http://books.pragprog.com/titles/msard/errata/add?pdf_page=42

WHAT IF IT DOESN'T WORK? <« 43

Arduina’ e
ny z iy "
" Duemilanove

Figure 1.12: Connect an LED to the Arduino.

1.8 What If It Doesn’t Work?

Don't panic! If it doesn’t work, you've probably attached the LED in the
wrong way. When assembling an electronics project, parts fall into two
categories: those you can mount any way you like and those that need
a special direction. An LED has two connectors: an anode (positive)
and a cathode (negative). It's easy to mix them up, and my science
teacher taught me the following mnemonic: the cathode is necative. It’s
also easy to remember what the negative connector of an LED is: it is
shorter, minus, less than. If you are a more positive person, then think
of the anode as being bigger plus more. You can alternatively identify a
LED’s connectors using its case. On the negative side the case is flat,
while it’s round on the positive side.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=43

EXERCISES < 44

Choosing the wrong serial port or Arduino type also is a common mis-
take. If you get an error message such as “Serial port already in use”
when uploading a sketch, check whether you have chosen the right
serial port from the Tools > Serial Port menu. If you get messages
such as “Problem uploading to board” or “programmer is not respond-
ing,” check whether you have chosen the right Arduino board from the
Tools > Board menu.

Your Arduino programs, like all programs, will contain bugs. Typos and
syntax errors will be detected by the compiler. In Figure 1.13, on the fol-
lowing page, you can see a typical error message. Instead of pinMode(),
we called pinMod(), and because the compiler did not find a function
having that name, it stopped with an error message. The Arduino IDE
highlights the line, showing the error with a yellow background, and
prints a helpful error message.

Other bugs might be more subtle and sometimes you have to care-
fully study your code and use some plain old debugging techniques (in
Debug It! Find, Repair, and Prevent Bugs in Your Code [] you can
find plenty of useful advice on this topic).

It might happen—although it’s rare—that you actually have a damaged
LED. If none of the tricks mentioned helps, try another LED.

1.9 Exercises

¢ Try different blink patterns using more pauses and vary the pause
length (they don’t necessarily have to be all the same). Also, exper-
iment with very short pauses that make the LED blink at a high
frequency. Can you explain the effect you're observing?

* Let the LED output your name in Morse code.!*

14. http://en.wikipedia.org/wiki/Morse_code

http://en.wikipedia.org/wiki/Morse_code
http://books.pragprog.com/titles/msard/errata/add?pdf_page=44

EXERCISES < 45

& MM Helloworld | Arduino 0021

const int LED_PIMN = 13;
const int PAUSE = 588;

void setup(y {
pintod(LED_PIN, OUTRUTY;
¥

void loop(h {
digitalWrite{LED_PIN, HIGH);
de Loy (PAUSE)3
digitalbrite{LED_PIN, LOW);
e Loy (PAUSE) ;

¥

‘pinMod’ was not declared in this scope

Figure 1.13: The Arduino IDE explains syntax errors nicely.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=45

2.1

Chapter 2

fuside the Ard

For simple applications, all you have learned about the Arduino IDE in
the preceding chapter is sufficient. But soon your projects will get more
ambitious, and then it will come in handy to split them into separate
files that you can manage as a whole. So in this chapter, you'll learn
how to stay in control over bigger projects with the Arduino IDE.

Usually, bigger projects need not only more software but also more
hardware—you will rarely use the Arduino board in isolation. For exam-
ple, you will use many more sensors than you might imagine, and you’ll
have to transmit the data they measure back to your computer. To
exchange data with the Arduino, you’ll use its serial port. This chapter
explains everything you need to know about serial communication. To
make things more tangible, you’ll learn how to turn your computer into
a very expensive light switch that lets you control an LED using the
keyboard.

What You Need

To try this chapter’s examples, you need only a few things:
¢ An Arduino board such as the Uno, Duemilanove, or Diecimila
¢ A USB cable to connect the Arduino to your computer
¢ An LED (optional)

* A software serial terminal such as Putty (for Windows users) or
screen for Linux and Mac OS X users (optional)

MANAGING PROJECTS AND SKETCHES < 47

2.2 Managing Projects and Sketches

Modern software developers can choose from a variety of development
tools that automate repetitive and boring tasks. That’s also true for
embedded systems like the Arduino. You can use integrated develop-
ment environments (IDEs) to manage your programs, too. The most
popular one has been created by the Arduino team.

The Arduino IDE manages all files belonging to your project. It also pro-
vides convenient access to all the tools you need to create the binaries
that will run on your Arduino board. Conveniently, it does so unob-
trusively. For example, you might have noticed that the Arduino IDE
stores all code you enter automatically. This is to prevent beginners
from losing data or code accidentally (not to mention that even the pros
lose data from time to time, too).

Organizing all the files belonging to a project automatically is one of
the most important features of an IDE. Under the hood, the Arduino
IDE creates a directory for every new project, and it stores all the files
belonging to the project in this directory. To add new files to a project,
click the tabs button on the right to open the tabs pop-up menu, and
then choose New Tab (see Figure 2.1). To add an existing file, use the
Sketch > Add File menu item.

As you might have guessed already from the names of the menu items,
the Arduino IDE calls projects sketches. If you do not choose a name,
it gives them a name starting with sketch_. You can change the name
whenever you like using the Save As command. If you do not save a
sketch explicitly, the IDE stores it in a predefined folder you can look

E:Z::-
E New Tab

Rename
Delete

Hide

1ide | 4

Previous Tab 38+
Next Tab N3

HelloWorld
r’

Figure 2.1: The tabs menu in action

http://books.pragprog.com/titles/msard/errata/add?pdf_page=47

CHANGING PREFERENCES <« 48

up in the preferences menu. You can change this behavior so that the
IDE asks you for a name when you create a new sketch. Whenever you
get lost, you can check what folder the current sketch is in using the
Sketch > Show Sketch Folder menu item.

The IDE uses directories not only to organize projects. It also stores
some interesting things in the following folders:

* The examples folder contains sample sketches that you can use as
a basis for your own experiments. Get to them via the File > Open
dialog box. Take some time to browse through them, even if you
do not understand anything you see right now.

¢ The libraries directory contains libraries for various purposes and
devices. Whenever you use a new sensor, for example, chances are
good that you have to copy a supporting library to this folder.

The Arduino IDE makes your life easier by choosing reasonable defaults
for a lot of settings. But it also allows you to change most of these
settings, and you’ll see how in the next section.

2.3 Changing Preferences

For your early projects, the IDE’s defaults might be appropriate, but
sooner or later you'll want to change some things. As you can see in
Figure 2.2, on the following page, the IDE lets you change only a few
preferences directly. But the dialog box refers to a file named prefer-
ences.ixt containing more preferences. This file is a Java properties file
consisting of key/value pairs. Here you see a few of them:

editor.external.bgcolor=#168299
preproc.web_colors=true
editor.font.macosx=Monaco,plain,10
sketchbook.auto_clean=true
update.check=true
build.verbose=true
upload.verbose=true

Most of these properties control the user interface; that is, they change
fonts, colors, and so on. But they can also change the application’s
behavior. For example, you can enable more verbose output for opera-
tions such as compiling or uploading a sketch. Edit preferences.txt, and
set both build.verbose and upload.verbose to frue. Then load the blinking
LED sketch from Chapter 1, Welcome to the Arduino, on page 23 and

http://books.pragprog.com/titles/msard/errata/add?pdf_page=48

USING SERIAL PORTS <« 49

MmN Preferences

Sketchbook location:

{Users /mschmidt/Documents /Arduino |;' Browse |

Editor font size: 10 (requires restart of Arduino)

E Delete previous applet or application folder on export
"1Use external editor
E Check for updates on startup

More preferences can be edited directly in the file
{Users/mschmidt/Library/Arduino/preferences.txt
tedit anly when Arduino is not running

{' DK '_. (Cancel)

Figure 2.2: The IDE lets you change some preferences.

compile it again. The output in the message panel should look similar
to Figure 2.3, on the following page (in recent versions of the IDE, you
can achieve the same effect by holding down the Shift key when you
click the Verify/Compile or Upload button in the toolbar).

Note that the IDE updates some of the preferences’ values when it
shuts down. So before you change any preferences directly in the pref-
erences.ixt file, you have to stop the Arduino IDE first.

Now that you're familiar with the Arduino IDE, let’s do some program-
ming. We'll make the Arduino talk to the outside world.

2.4 Using Serial Ports

Arduino makes many stand-alone applications possible—projects that
do not involve any additional computers. In such cases you need to con-
nect the Arduino to a computer once to upload the software, and after
that, it needs only a power supply. More often, people use the Arduino
to enhance the capabilities of a computer using sensors or by giving
access to additional hardware. Usually, you control external hardware
via a serial port, so it is a good idea to learn how to communicate seri-
ally with the Arduino.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=49

USING SERIAL PORTS <«

ANM HelloWorld | Arduino 0021

const Int LED_PIN = 13;
cokst int PAUSE = BG83

oid setup(h £
intode{LED_PIN, OUTPUT};

woid loop) {
digitaliirite(LED_PIN, HIGH);
ol Loy (PAUSE)5
italirite(LED_PIN, LOW);
de Loy {PAUSE)5

Figure 2.3: IDE in verbose mode showing output of command-line tools

http://books.pragprog.com/titles/msard/errata/add?pdf_page=50

USING SERIAL PORTS < 51

7 N

The Arduino Programming Lan

People sometimes seem to be a bit irritated when it comes to
the language the Arduino gets programmed in. That’s mainly
because the typical sample sketches look as if they were writ-
ten in a language that has been exclusively designed for pro-
gramming the Arduino. But that’s not the case—it is plain old
C++ (which implies that it supports C, to0).

Every Arduino uses an AVR microcontroller designed by a com-
pany named Atmel. (Atmel says that the name AVR does not
stand for anything.) These microcontrollers are very popular,
and many hardware projects use them. One of the reasons
for their popularity is the excellent tool chain that comes with
them. It is based on the GNU C++ compiler tools and has been
optimized for generating code for AVR microcontrollers.

That means you feed C++ code to the compiler that is not
franslated into machine code for your computer but for an AVR
microcontroller. This technique is called cross-compiling and is
the usual way to program embedded devices.

Although the standards for serial communication have changed over
the past few years (for example, we are using USB today, and our com-
puters no longer have RS232 connectors), the basic working principles
remain the same. In the simplest case, we can connect two devices
using only three wires: a common ground, a line for transmitting data
(TX), and one for receiving data (RX).

GND T GND
Device #1 TX 4 L TX Device #2
RX+— —— Rx

Serial communication might sound a bit old-school, but it’s still the
preferred way for hardware devices to communicate. For example, the
S in USB stands for “serial”—and when was the last time you saw a
parallel port? (Perhaps this is a good time to clean up the garage and
throw out that old PC that you wanted to turn into a media center
someday....)

http://books.pragprog.com/titles/msard/errata/add?pdf_page=51

USING SERIAL PORTS <« 52

For uploading software, the Arduino has a serial port, and we can use it
to connect the Arduino to other devices, too (in Section 1.6, Compiling
and Uploading Programs, on page 38, you learn how to look up the
serial port your Arduino is connected to). In this section, we will use
it to control Arduino’s status LED using our computer’s keyboard. The
LED should be turned on when you press 1, and it should be turned
off when you press 2. Here’s all the code we need:

Download welcome/LedSwitch/LedSwitch.pde

lnel const unsigned int LED_PIN = 13;
- const unsigned int BAUD_RATE = 9600;

- void setup() {

5 pinMode (LED_PIN, OUTPUT);

- Serial.begin(BAUD_RATE);
B

- void Toop() {

10 if (Serial.available() > 0) {

- int command = Serial.read();

if (command == '1') {
digitalWrite(LED_PIN, HIGH);
Serial.printin("LED on");

15 } else if (command == '2') {
digitalWrite(LED_PIN, LOW);
Serial.printin("LED off");

} else {
Serial.print("Unknown command: ");

20 Serial.printin(command) ;

B
B
}

As in our previous examples, we define a constant for the pin the LED
is connected to and set it to OUTPUT mode in the setup() function. In
line 6, we initialize the serial port using the begin() function of the Serial
class, passing a baud rate of 9600 (you can learn what a baud rate is in
Section C.1, Learning More About Serial Communication, on page 251).
That's all we need to send and receive data via the serial port in our
program.

So, let’s read and interpret the data. The loop() function starts by calling
Serial’s available() method in line 10. available() returns the number of
bytes waiting on the serial port. If any data is available, we read it
using Serial.read(). read() returns the first byte of incoming data if data
is available and -1 otherwise.

http://media.pragprog.com/titles/msard/code/welcome/LedSwitch/LedSwitch.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=52

USING SERIAL PORTS < 53

7 N

Fashionable LEDs

Both pervasive and wearable computing got very popular over
the past years, so T-shirts with an equalizer are still cool but not
that exciting any longer.* But by using a few LEDs, you can cre-
ate some astonishing accessories for the ladies. For example,
Japanese engineers have created LED eyelashes.

This particular product does not use an Arduino, but with the
Lilypad,} you can easily create similar things yourself. You have
to be extremely careful with LEDs, because most of them are
very bright and can cause serious damage to your eyes!

*. http://www.thinkgeek.com/tshirts-apparel/interactive/8abb/
t. http://blog.makezine.com/archive/2009/10/led_eyelashes.html
t. http://www.arduino.cc/en/Main/ArduinoBoardLilyPad

If the byte we have read represents the character 1, we switch on the
LED and send back the message “LED on” over the serial port. We use
Serial.prinfin(), which adds a carriage return character (ASCII code 13)
followed by a newline (ASCII code 10) to the text.

If we received the character 2, we switch off the LED. If we received an
unsupported command, we send back a corresponding message and
the command we did not understand. Serial.print() works exactly like
Serial.printin(), but it does not add carriage return and newline characters
to the message.

Let’s see how the program works in practice. Compile it, upload it to
your Arduino, and then switch to the serial monitor (optionally you can
attach an LED to pin 13; otherwise, you can only control the Arduino’s
status LED). At first glance, nothing has happened. That’s because we
have not sent a command to the Arduino yet. Enter a 1 in the text box,
and then click the Send button. Two things should happen now: the
LED is switched on, and the message “LED on” appears in the serial
monitor window (see Figure 2.4, on the next page). We are controlling a
LED using our computer’s keyboard!

Play around a bit with the commands 1 and 2, and also observe what
happens when you send an unknown command. If you type in an
uppercase A, for example, the Arduino will send back the message
“Unknown command: 65.” The number 65 is the ASCII code of the let-
ter A, and the Arduino outputs the data it got in its most basic form.

http://www.thinkgeek.com/tshirts-apparel/interactive/8a5b/
http://blog.makezine.com/archive/2009/10/led_eyelashes.html
http://www.arduino.cc/en/Main/ArduinoBoardLilyPad
http://books.pragprog.com/titles/msard/errata/add?pdf_page=53

USING SERIAL PORTS <« 54

MMNM Jdev/tty.usbmodemfal4 1
[Send)
LED on
LED off
LED on
LED off
LED on
LED off
LED off
LED off
LED on
LED on
LED an
LED on
LED off
LED off
LED an
™ Autoscroll "No line ending 4] (9600 baud %]

Figure 2.4: The Arduino IDE’s serial monitor

That’s the default behavior of Serial’s print() method, and you can change
it by passing a format specifier to your function calls. To see the effect,
replace line 20 with the following statements:

Serial.printin(command, DEC);

Serial.printin(command, HEX);

Serial.println(command, OCT);

Serial.printin(command, BIN);
Serial.printin(command, BYTE);

The output looks as follows when you send the character A again:

Unknown command: 65
41

101

1000001

A

Depending on the format specifier, Serial.printin() automatically converts
a byte into another representation. DEC outputs a byte as a decimal
number, HEX as a hexadecimal number, and so on. Note that such an
operation usually changes the length of the data that gets transmitted.
The binary representation of the single byte 65, for example, needs 7
bytes, because it contains seven characters.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=54

USING SERIAL PORTS < 55

Numbering Systems

It's an evolutionary accident that 10 is the basis for our numbering
system. If we had only four fingers on each hand, it'd be probably eight,
and we’d probably have invented computers a few centuries earlier.

For thousands of years, people have used denominational number sys-
tems, and we represent a number like 4711 as follows:

4x103 + 7x10% + 1x10' + 1x10°

This makes arithmetic operations very convenient. But when working
with computers that only interpret binary numbers, it's often advanta-
geous to use numbering systems based on the numbers 2 (binary), 8
(octal), or 16 (hexadecimal).

For example, the decimal number 4711 can be represented in octal and
hexadecimal as follows:

o Ix8 + 1x8% + 1x8% +4x8' +7x8°=011147
o 1x163 +2x162 + 6x16! + 7x16° = 0x1267

In Arduino programs, you can define literals for all these numbering
systems:

int decimal = 4711;

int binary = B1001001100111;

int octal = 011147;
int hexadecimal = 0x1267;

Binary numbers start with a B character, octal numbers with a 0, and
hexadecimal numbers start with Ox.

Using Different Serial Terminals

For trivial applications, the IDE’s serial monitor is sufficient, but you
cannot easily combine it with other applications, and it lacks some
features (for example, it could not send newline characters in older IDE
versions). That means you should have an alternative serial terminal to
send data, and you can find plenty of them for every operating system.

Serial Terminals for Windows

Putty! is an excellent choice for Windows users. It is free, and it comes
as an executable that does not even have to be installed. Figure 2.5, on
the following page shows how to configure it for communication on a
serial port.

1. http://www.chiark.greenend.org.uk/~sgtatham/putty/

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=55

USING SERIAL PORTS <« 56

€ PuTTY Configuration

Categony:
= Seszzion Optiong controlling local senal lines
L.ogglng Select a senial line
= Temninal
Keyboard Serial line to connect to |COMY
Bell - S
ot Configure the serial line :
= Wwindow Speed [baud) SE00
ek Data tits 8
Behaviour
Translation Stop bits 1
Selection :
Calours ety No_ne b
= Connection Flowy control Mare ~
Data
Prawy
Telnet
Rlogin
Open] I Cancel

Figure 2.5: Configuring Putty to make it work with Arduino

After you have configured Putty, you can open a serial connection to the
Arduino. In Figure 2.6, on the next page, you can see the corresponding
dialog box. Click Open, and you’'ll see an empty terminal window.

Now press 1 and 2 a few times to switch on and off the LED. In Fig-
ure 2.7, on the following page, you can see a typical session.

Serial Terminails for Linux and Mac OS X

Linux and Mac users can use the screen command to communicate
with the Arduino on a serial port. Check which serial port the Arduino
is connected to (for example, in the IDE’s Tools > Board menu), and
then run a command like this (with an older board the name of the
serial port might be something like /dev/cu.usbserial-A9007LUY, and on
Linux systems it might be /dev/ttyUSB1 or something similar):

$ screen /dev/cu.usbmodemfal4l 9600
screen expects the name of the serial port and the baud rate to be used.

In Figure 2.8, on page 58, you can see a typical session. To quit the
screen command, press Ctrl-a followed by Ctrl-k.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=56

USING SERIAL PORTS < 57

Category:

= Session B asic options for your PUTTY session
L.ogglng Specify the destinalion you want to connect to

= Terrninal Serial Spsed
Eegbias arial line Jul=s]
Bell COMY 9600
Features Connection tpe:

= \window O Baw (O eknet O Rlogin C)55H
Appearance

o] Load, save or delete & stored session

Behaviour
Trabudation Saved Sessionz
Selection

Calours :
Default Settings
= Connection E'
Data Save

Prowy
Telnet Delete |
Rlogin
+ S5H
Serial

Cloge window on exit:
() Ahways (I Mever (2 Only on clean exit

| About [Open] | LCancel

Figure 2.6: Opening a serial session to Arduino with Putty

#* COM10 - PuTTY,

Figure 2.7: Putty communicates with Arduino.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=57

USING SERIAL PORTS < 58

Terminal — screen — 65x24

Figure 2.8: The screen command communicates with Arduino.

We can now communicate with the Arduino, and this has great impli-
cations: whatever is controlled by the Arduino can also be controlled
by your computer, and vice versa. Switching LEDs on and off is not too
spectacular, but try to imagine what's possible now. You could move
robots, automate your home, or create interactive games.

Here are some more important facts about serial communication:

* The Arduino’s serial receive buffer can hold up to 128 bytes. When
sending large amounts of data at high speed, you have to synchro-
nize sender and receiver to prevent data loss. Usually, the receiver
sends an acknowledgment to the sender whenever it is ready to
consume a new chunk of data.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=58

USING SERIAL PORTS < 59

7 N

Exciting LED Projects

Fromm what you have seen in this and the preceding sections,
you might think that LEDs are useful but not very exciting. You
can use them for showing a device's status or even to build a
complete TV set, but that’s something you are used to.

But LEDs are the basis for some really spectacular projects. One
of the most amazing ones is the BEDAZZLER.* The BEDAZZLER is
a nonlethal weapon that uses blinking LEDs to cause nauseq,
dizziness, headache, flash blindness, eye pain, and vomiting.
Criginally it has been developed for the military, but now it is
available as an open source project.f

All scientific curiosity aside, you should keep in mind that the
BEDAZZLER is a weapon. Do not use it as a toy, and do not target
it at humans or animals.

*. http://www.instructables.com/id/Bedazzler-DIY-non-lethal-weaponry/
1. hitp://www.ladyada.net/make/bedazzler/

* You can control many devices using serial communication, but the
regular Arduino has only one serial port. If you need more, take a
look at the Arduino Mega 2560, which has four serial ports.?

® A Universal Asynchronous Receiver/Transmitter (UART)® device
supports serial communication on the Arduino. This device han-
dles serial communication while the CPU can take care of other
tasks. This greatly improves the system’s overall performance.
The UART uses digital pins 0 (RX) and 1 (TX), which means you
cannot use them for other purposes when communicating on the
serial port. If you need them, you can disable serial communica-
tion using Serial.end(.

e With the SoftwareSerial* library, you can use any digital pin for
serial communication. It has some serious limitations regarding
speed and reliability, and it does not support all functions that
are available when using a regular serial port.

2. http://arduino.cc/en/Main/ArduinoBoardMega2560
http://en.wikipedia.org/wiki/UART
4. http://www.arduino.cc/en/Reference/SoftwareSerial

w

http://www.instructables.com/id/Bedazzler-DIY-non-lethal-weaponry/
http://www.ladyada.net/make/bedazzler/
http://arduino.cc/en/Main/ArduinoBoardMega2560
http://en.wikipedia.org/wiki/UART
http://www.arduino.cc/en/Reference/SoftwareSerial
http://books.pragprog.com/titles/msard/errata/add?pdf_page=59

WHAT IF IT DOESN'T WORK? <« 60

MMNM Jdev/tty.usbmodemfal4 1
{ send)
"B E0" c;a UAGACSUG" ;<06 8" ¢; 8 DAGECSUG" ; <0'8 " 60" ¢;a ' UAGECSUA" ;<06 &G ¢;a' DAGS -~
-/
A
v
- — — — ——————— — — — — — 4 e
™ Autoscroll "No line ending 4] (14400 baud | %]

Figure 2.9: A wrong baud rate creates a lot of garbage.

In this chapter, you saw how to communicate with the Arduino using
the serial port, which opens the door to a whole new world of physical
computing projects (see Section C.1, Learning More About Serial Com-
munication, on page 251 for more details about serial communication).
In the next chapters, you'll learn how to gather interesting facts about
the real world using sensors, and you’ll learn how to change the real
world by moving objects. Serial communication is the basis for letting
you control all these actions using the Arduino and your PC.

2.5 What If It Doesn’t Work?

If anything goes wrong with the examples in this chapter, you should
take a look at Section 1.8, What If It Doesn’t Work?, on page 43 first.
If you still run into problems, it may be because of some issues with
serial communication. For example, you might have set the wrong baud
rate; in Figure 2.9, you can see what’s happening in such a case.

Make sure that the baud rate you have set in your call to Serial.begin()
matches the baud rate in the serial monitor.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=60

EXERCISES < 61

2.6 Exercises

¢ Add new commands to the sample program. For example, the com-
mand 3 could make the LED blink for a while.

* Try to make the commands more readable; that is, instead of 1,
use the command on, and instead of 2, use off.

If you have problems solving this exercise, read Chapter 4, Build-
ing a Morse Code Generator Library, on page 88 first.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=61

Part 11

Eight Arduino Projects

3.1

Things will really start to get interesting now that you've learned the
basics of Arduino development. You now have the skills to create your
first complex, stand-alone projects. After you have worked through this
chapter, you’ll know how to work with LEDs, buttons, breadboards,
and resistors. Combining these parts with an Arduino gives you nearly
endless opportunities for new and cool projects.

Our first project will be creating an electronic die. While regular dice
display their results using one to six dots, ours will use LEDs instead.
For our first experiments, a single LED has been sufficient, but for
the dice we need more than one. You need to connect several external
LEDs to the Arduino. Because you cannot attach them all directly to
the Arduino, you'll learn how to work with breadboards. Also, you need
a button that rolls the dice, so you’'ll learn how to work with pushbut-
tons, too. To connect pushbuttons and LEDs to the Arduino, you need
another important electronic part: the resistor. So, at the end of the
chapter, you’ll have many new tools in your toolbox.

What You Need

1. A half-size breadboard

2. Three LEDs (for the exercises you’ll need additional LEDs)

3. Two 10k(? resistors (see Section A.1, Current, Voltage, and Resis-
tance, on page 237 to learn more about resistors)

4. Three 1k(2 resistors

Two pushbuttons

o

6. Some wires

3.2

WORKING WITH BREADBOARDS < 64

TS D\
2%

T e
I ®e
(6]

L.

\

Figure 3.1: All the parts you need for this chapter

7. An Arduino board such as the Uno, Duemilanove, or Diecimila
8. A USB cable to connect the Arduino to your computer
9. A tilt sensor (optional)

Figure 3.1 shows the parts needed to build the projects in this chapter.
You'll find such photos in most of the following chapters. The numbers
in the photo correspond to the numbers in the parts list. The photos do
not show standard parts such as the Arduino board or an USB cable.

Working with Breadboards

Connecting parts such as LEDs directly to the Arduino is only an option
in the most trivial cases. Usually, you will prototype your projects on a
breadboard that you connect to the Arduino. A breadboard “emulates”

http://books.pragprog.com/titles/msard/errata/add?pdf_page=64

WORKING WITH BREADBOARDS < 65

L B
L L
L

(AR RN EEEE N
(NN
(LB R EE ENEEENN]
(B R R R EEENEEREEN]

Tem w2 - axaepcEtzisnlL S
®EEEER RN E RN R
LB A R AR EBEEEE RS RS RN RSN NESENRE ™
ERB AT RN AR AP A AR R R AR AR R AR R
AR AR AR R EEEEREEEEEENEEENNENERENERS Y
LA L B B O B IO B B I I I e
PR LR B I O O O B O T O
n" e e ew L L L L L B Y

FE B R R

L
"eww
L L]
fTEsRTEERAREEERERFRERRERE RS
L
-

Figure 3.2: A collection of breadboards

a circuit board. You don’t have to solder parts to the board; instead,
you can simply plug them into it.

Breadboards come in various types and sizes (in Figure 3.2, you can
see two of them), but they all work the same way. They have a lot of
sockets that you can use for plugging in through-hole parts or wires.
That alone wouldn’t be a big deal, but the sockets are connected in a
special way. In Figure 3.3, on the next page, you can see how.

As you can see, most sockets are connected in columns. If one socket
of a column is connected to a power supply, then automatically all the
other sockets in this column are powered, too. On the bigger board
in the photo, you can also see four rows of connected sockets. This
is convenient for bigger circuits. Usually, you connect one row to your
power supply and one to the ground. This way, you can distribute power
and ground to any point on the board. Now let’s see how to put parts
on a breadboard.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=65

USING AN LED ON A BREADBOARD < 66

/'

Columns

/

g
tgha

abcde

Figure 3.3: How sockets on a breadboard are connected
I

3.3 Using an LED on a Breadboard

Up to now, we used the LEDs that are installed on the Arduino board,
and we connected one LED directly to the Arduino. In this section, we’ll
plug an LED into a breadboard and then connect the breadboard to the
Arduino.

In Figure 3.4, on the following page, you can see a photo of our final cir-
cuit. It consists of an Arduino, a breadboard, an LED, three wires, and a
1k resistor (more on that part in a few minutes). Connect the Arduino
to the breadboard using two wires. Connect pin 12 with the ninth col-
umn of the breadboard, and connect the ground pin with the tenth
column. This automatically connects all sockets in column 9 to pin 12
and all sockets in column 10 to the ground. This choice of columns was
arbitrary, and you could have used other columns instead.

Plug the LED’s negative connector (the shorter one) into column 10 and
its positive connector into column 9. When you plug in parts or wires
into a breadboard, you have to press them firmly until they slip in. You

http://books.pragprog.com/titles/msard/errata/add?pdf_page=66

~
©
v
q
&
<
o)
@
q
<
&)
x
m
<
4
5
@)
=
.
z
<
)
=
2
-}

_ [1y 64 6 pogqge

D@ ™ & m & o % & & ®OC

GZE & & & = . & B & =52

gz @ & & - B B oW mgZ

[za W m e E - .s

9k & & & & = & & & ®9Z

Gze B B & 8 = = & G2

pom m m & B "N E mpz

gg® & & & 8 ."..ﬁN.

e e @ m @ R LR

& & & s 8 - & & & = 7

o | gze ® B & & = = & = mQz
m. & & & a & - = = = &g
= || E & 8 8 8 * = = = mg
“ e e e @ s s m omy
< e e BB e - s W W
e e @@ - s e B

-.. T a s s e my
ur -k eEE @ "= m e owg
> “ e een LR RPN
’ (R = oo,
M lllr‘ILll-‘vo—
llln,ﬂ—‘—ﬁr/ur i 6

R EwEEwg

R R RN LR

g E B B8 LR

cMEEE® LR RS

y " E e W s e ww,

c M EE B W LR I

P e,

e e e - e

-+ oSy apoge

€ € ¢ @ @
€ ¢ d d g

4o
S & & & «

€ & & & &
4 & 4 & &

Connecting an LED on a breadboard to the Arduino

Figure 3.4

http://books.pragprog.com/titles/msard/errata/add?pdf_page=67

USING AN LED ON A BREADBOARD < 68

i)

-

\ i \

Figure 3.5: A resistor in various processing stages

might need more than one try, especially on new boards, and it often
comes in handy to shorten the connectors before plugging them into the
breadboard. Make sure that you can still identify the negative and the
positive connector after you have shortened them. Shorten the negative
one a bit more, for example. Also wear safety glasses to protect your
eyes when cutting the connectors!

The things we have done until now have been straightforward. That is,
in principle we have only extended the Arduino’s ground pin and its
IO pin number 12. Why do we have to add a resistor, and what is a
resistor? A resistor limits the amount of current that flows through an
electric connection. In our case, it protects the LED from consuming too
much power, because this would destroy the LED. You always have to
use a resistor when powering an LED! In Section A.1, Current, Voltage,
and Resistance, on page 237, you can learn more about resistors and
their color bands. In Figure 3.5, you can see a resistor in various stages:
regular, bent, and cut.

You might ask yourself why we didn’t have to use a resistor when we
connected the LED directly to the Arduino. The answer is simple: pin
13 comes with an internal resistor of 1k{). Now that we use pin 12, we
have to add our own resistor.

We don’t want to fiddle around too much with the connectors, so we
build the circuit as shown in Figure 3.6, on the next page. That is, we
use both sides of the breadboard by connecting them with a short wire.
Note that the resistor bridges the sides, too.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=68

FIRST VERSION OF A BINARY DIE < 69

il
Ld
“
(3
=
o

wuw.arduino.cc

POWER anacoc v @
SVGnd9V D0 L2345

=
w
v m
w >
e m

Figure 3.6: You can use both sides of a breadboard.

3.4 First Version of a Binary Die

You're certainly familiar with regular dice displaying results in a range
from one to six. To emulate such dice exactly with an electronic device,
you'd need seven LEDs and some fairly complicated business logic.
We'll take a shortcut and display the result of a die roll in binary.

For a binary die, we need only three LEDs that represent the current
result. We turn the result into a binary number, and for every bit that is
set, we will light up a corresponding LED. The following diagram shows
how the die results are mapped to LEDs (a black triangle stands for a
shining LED).

http://books.pragprog.com/titles/msard/errata/add?pdf_page=69

FIRST VERSION OF A BINARY DIE <« 70

ESL7AVAY W EBEY VAYAY
LML -ALA
CJLAMGED-AAL

We already know how to control a single LED on a breadboard. Con-
trolling three LEDs is similar and requires only more wires, LEDs, 1k(2
resistors, and pins. In Figure 3.7, on the following page, you can see
the first working version of a binary die.

The most important difference is the common ground. When you need
ground for a single LED, you can connect it to the LED directly. But
we need ground for three LEDs now, so we’ll use the breadboard’s rows
for the first time. Connect the row marked with a hyphen (-) to the
Arduino’s ground pin, and all sockets in this row will work as ground
pins, too. Then you can connect this row’s sockets to the LEDs using
short wires.

Everything else in this circuit should look familiar, because we only had
to clone the basic LED circuit from the previous section three times.
Note that we have connected the three circuits to pins 10, 11, and 12.
The only thing missing is some software:

Download BinaryDice/BinaryDice.pde

lnel const unsigned int LED_BITO = 12;
- const unsigned int LED_BIT1 11;
const unsigned int LED_BIT2 = 10;

5 void setup() {
pinMode (LED_BITO, OUTPUT);
pinMode (LED_BIT1, OUTPUT);
pinMode (LED_BIT2, OUTPUT);

10 randomSeed(analogRead(A0));
- long result = random(1l, 7);
output_result(result);

}

15 void Toop() {
-}

void output_result(const long result) {
digitalWrite(LED_BITO, result & B001);
20 digitalWrite(LED_BIT1, result & B010);
digitalWrite(LED_BIT2, result & B100);

}

http://media.pragprog.com/titles/msard/code/BinaryDice/BinaryDice.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=70

—
o~
=
A
>
&
<
=
M
<
=
o
z
g
3
&
2
>
&
N
&2
f

b
-
-
-

oo & & B B B B N AS SR
_llllq'I--

£

8RNSO EE YR
SR B UNEEDEEEEEEYEREEEEEE

;

o A B A8 & B E S8 0EENEFENENSEEFENEEE N

" E e e AR

e

- - .-

Figure 3.7: A first working version of our binary die

http://books.pragprog.com/titles/msard/errata/add?pdf_page=71

FIRST VERSION OF A BINARY DIE d 72

7 N

More LEDs, Dice, and Cubes

Building binary dice is fun, and it's an easy project even for
beginners. But what about the opposite—reading real dice?
Steve Hoefer* has built a dice reader using an Arduino, and
it’s really impressive. He uses five pairs of infrared emitters
and receivers to “scan” a die’s surface. It’s a fairly advanced
project, and you can learn a lot from it.

Another interesting project is an LED cube: building a cube con-
sisting of LEDs.T It's surprisingly difficult to control more than a
few LEDs, but you can produce astonishing results.

*. http://grathio.com/2009/08/dice-reader-version-2.html
t. http://arduinofun.com/blog/2009/12/02/led-cube-and-arduino-lib-build-it/

This is all the code we need to implement the first version of binary
dice. As usual, we define some constants for the output pins the LEDs
are connected to. In the setup() function, we set all the pins into OUTPUT
mode. For the dice, we need random numbers in the range between one
and six. The random() function returns random numbers in a specified
range using a pseudorandom number generator. In line 10, we initialize
the generator with some noise we read from analog input pin AO (see
the sidebar on the next page to learn why we have to do that). You might
wonder where the constant AO is from. Since version 19, the Arduino
IDE defines constants for all analog pins named A0, Al, and so on.
Then we actually generate a new random number between one and six
and output it using the output_result() function. (the seven in the call to
random() is correct, because it expects the upper limit plus one).

The function output_result() takes a number and outputs its lower three
bits by switching on or off our three LEDs accordingly. Here we use the
& operator and binary literals. The & operator takes two numbers and
combines them bitwise. When two corresponding bits are 1, the result
of the & operator is 1, too. Otherwise, it is 0. The B prefix allows you to
put binary numbers directly into your source code. For example, B11 is
the same as 3.

You might have noticed that the loop() function was left empty, and
you might wonder how such dice work. It's pretty simple: whenever
you restart the Arduino, it outputs a new number, and to roll the dice
again, you have to press the reset button.

http://grathio.com/2009/08/dice-reader-version-2.html
http://arduinofun.com/blog/2009/12/02/led-cube-and-arduino-lib-build-it/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=72

FIRST VERSION OF A BINARY DIE d 73

Generating Random Numbers
Some computing problems are surprisingly difficult, and cre-
ating good random numbers is one of them. After all, one
of the most important properties of a computer is determinis-
tic behavior. Still, we often need—at least seemingly—random
behavior for a variety of purposes, ranging from games to cryp-
tographic algorithms.

The most popular approach (used in Arduino’s random() func-
tion, for example) is to create pseudorandom numbers.* They
seem to be random, but they actually are the result of a for-
mula. Different kinds of algorithms exist, but usually each new
pseudorandom number is calculated from its predecessors.
This implies that you need an initialization value to create the
first random number of the sequence. This initialization value
is called a random seed, and to create different sequences
of pseudorandom numbers, you have to use different random
seeds.

Creating pseudorandom numbers is cheap, but if you know the
algorithm and the random seed, you can easily predict them.
So, you shouldn’t use them for cryptographic purposes.

In the real world, you can find countless random processes, and
with the Arduino, it’s easy fo measure them to create real ran-
dom numbers. Often it’s sufficient to read some random noise
from analog pin 0 and pass it as the random seed to the ran-
domSeed() function. You can also use this noise to create real
random numbers; there is even a library for that purpose.t

If you need strong random numbers, the Arduino is a perfect
device for creating them. You can find many projects that
observe natural processes solely to create random numbers.
One of them watches an hourglass using the Arduino, for exam-
ple.t

*. http://en.wikipedia.org/wiki/Pseudo-random_numbers
t. hitp://code.google.com/p/tinkerit/wiki/TrueRandom
t. http://www.circuitiake.com/usb-hourglass-sand-timer.html

http://en.wikipedia.org/wiki/Pseudo-random_numbers
http://code.google.com/p/tinkerit/wiki/TrueRandom
http://www.circuitlake.com/usb-hourglass-sand-timer.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=73

WORKING WITH BuTTONS < 74

Compile the code, upload it to the Arduino, and play a bit with your
binary dice. You have mastered your first advanced electronics project!
Enjoy it for a moment!

So, whenever you want to see a new result, you have to reset the
Arduino. That's probably the most pragmatic user interface you can
build, and for a first prototype, this is OK. But often you need more
than one button, and it’s also more elegant to add your own button
anyway. So, that’s what we’ll do in the next section.

3.5 Working with Buttons

In this section, we’ll add our own pushbutton to our binary dice, so
we no longer have to abuse the Arduino’s reset button to roll the dice.
We'll start small and build a circuit that uses a pushbutton to control
a single LED.

So, what exactly is a pushbutton? Here are three views of a typical
pushbutton that can be used as the Arduino’s reset button.

Top Front Side

Connected

N & A
5 M| =

v)

Connected

It has four connectors that fit perfectly on a breadboard (at least after
you have straightened them with a pair of pliers). Two opposite pins
connect when the button is pushed; otherwise, they are disconnected.

In Figure 3.8, on the following page, you can see a simple circuit using a
pushbutton. Connect pin 7 (chosen completely arbitrarily) to the push-
button, and connect the pushbutton via a 10k{2 resistor to ground.
Then connect the 5 volts power supply to the other pin of the button.

All in all, this approach seems straightforward, but why do we need a
resistor again? The problem is that we expect the pushbutton to return
a default value (LOW) in case it isn’t pressed. But when the button isn’t
pressed, it would not be directly connected to ground and would flicker
because of static and interference. A little bit of current flows through
the resistor, and this helps prevent random noise from changing the
voltage that the input pin sees.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=74

WORKING WITH BuTTONS < 75

T® i
=t Arduino

Wi - ardulno.ce

Bm POuER anaces v @
& m5V Gnd SV 02 345

Figure 3.8: A simple pushbutton circuit

When the button is pressed, there will still be 5 volts at the Arduino’s
digital pin, but when the button isn’t pressed, it will cleanly read the
connection to ground. We call this a pull-down resistor; a pull-up resistor
works exactly the other way around. That is, you have to connect the
Arduino’s signal pin to power through the pushbutton and connect the
other pin of the pushbutton to ground using a resistor.

Now that we've eliminated all this ugly unstable real-world behavior, we
can return to the stable and comforting world of software development.
The following program checks whether a pushbutton is pressed and
lights an LED accordingly:

Download BinaryDice/SimpleButton/SimpleButton.pde

const unsigned int BUTTON_PIN
const unsigned int LED_PIN

75
13;

void setup() {
pinMode (LED_PIN, OUTPUT);
pinMode (BUTTON_PIN, INPUT);
}

void Toop() {
const int BUTTON_STATE = digitalRead(BUTTON_PIN);

if (BUTTON_STATE == HIGH)
digitalWrite(LED_PIN, HIGH);
else
digitalWrite(LED_PIN, LOW);

http://media.pragprog.com/titles/msard/code/BinaryDice/SimpleButton/SimpleButton.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=75

WORKING WITH BuTTONS < 76

We connect the button to pin 7 and the LED to pin 13 and initialize the
pins accordingly in the setup() function. In loop(), we read the current
state of the pin connected to the button. If it is HIGH, we turn the LED
on. Otherwise, we turn it off.

Upload the program to the Arduino, and you’ll see that the LED is on
as long as you press the button. As soon as you release the button,
the LED turns off. This is pretty cool, because now we nearly have
everything we need to control our dice using our own button. But before
we proceed, we'll slightly enhance our example and turn the button into
a real light switch.

To build a light switch, we start with the simplest possible solution.
Do not change the current circuit, and upload the following program to
your Arduino:

Download BinaryDice/UnreliableSwitch/UnreliableSwitch.pde

7;
13;

lnel const unsigned int BUTTON_PIN
- const unsigned int LED_PIN

- void setup() {

5 pinMode (LED_PIN, OUTPUT);

- pinMode (BUTTON_PIN, INPUT);
}

int Ted_state = LOW;

void Toop() {
const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);

- if (CURRENT_BUTTON_STATE == HIGH) {
15 led_state = (led_state == LOW) ? HIGH : LOW;
digitalWrite(LED_PIN, led_state);
h
}

We begin with the usual pin constants, and in setup() we set the modes
of the pins we use. In line 9, we define a global variable named led_state
to store the current state of our LED. It will be LOW when the LED is
on and HIGH otherwise. In loop(), we check the button’s current state.
When we press the button, its state switches to HIGH, and we toggle the
content of led_state. That is, if led_state was HIGH, we set it to LOW, and
vice versa. At the end, we set the physical LED’s state to our current
software state accordingly.

Our solution is really simple, but unfortunately, it does not work. Play
around with it a bit, and you’ll quickly notice some annoying behavior.

http://media.pragprog.com/titles/msard/code/BinaryDice/UnreliableSwitch/UnreliableSwitch.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=76

WORKING WITH BuTTONS < 77

If you press the button, for example, the LED sometimes will turn on
and then off immediately. Also, if you release it, the LED will often
remain in a more or less arbitrary state; that is, sometimes it will be on
and sometimes off.

The problem is that the Arduino executes the loop() method over and
over again. Although the Arduino’s CPU is comparatively slow, this
would happen very often—no matter if we currently press the button
or not. But if you press it and keep it pressed, its state will constantly
be HIGH, and you'd constantly toggle the LED’s state (because this hap-
pens so fast it seems like the LED’s constantly on). When you release
the button, the LED is in a more or less arbitrary state.

To improve the situation, we have to store not only the LED’s current
state but also the pushbutton’s previous state:

Download BinaryDice/MoreReliableSwitch/MoreReliableSwitch.pde

const unsigned int BUTTON_PIN ;
const unsigned int LED_PIN = 13;

void setup() {
pinMode (LED_PIN, OUTPUT);
pinMode (BUTTON_PIN, INPUT);
}

int old_button_state = LOW;
int led_state = LOW;

void Toop() {
const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);
if (CURRENT_BUTTON_STATE != old_button_state &&
CURRENT_BUTTON_STATE == HIGH)
{
led_state = (led_state == LOW) ? HIGH : LOW;
digitalWrite(LED_PIN, led_state);

}
old_button_state = CURRENT_BUTTON_STATE;

}

After initializing the button and LED pins, we declare two variables
now: old_button_state stores the previous state of our pushbutton, and
led_state stores the LED’s current state. Both can be either HIGH or LOW.

In the loop() function, we still have to read the current button state,
but now we not only check whether it is HIGH. We also check whether
it has changed since the last time we read it. Only when both conditions
are met do we toggle the LED’s state. So, we no longer turn the LED

http://media.pragprog.com/titles/msard/code/BinaryDice/MoreReliableSwitch/MoreReliableSwitch.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=77

WORKING WITH BuTTONS < 78

Button pressed Button released

' '

5V

ov

Figure 3.9: Mechanical switches have to be debounced.

on and off over and over again as long as the button is pressed. At
the end of our program, we have to store the button’s current state in
old_button_state.

Upload our new version, and you’ll see that this solution works much
better than our old one. But you will still find some edge cases when
the button does not fully behave as expected. Problems mainly occur in
the moment you release the button.

The cause of these problems is that mechanical buttons bounce for a
few milliseconds when you press them. In Figure 3.9, you can see a
typical signal produced by a mechanical button. Right after you have
pressed the button, it doesn’'t emit a clear signal. To overcome this
effect, you have to debounce the button. It’s usually sufficient to wait
a short period of time until the button’s signal stabilizes. Debouncing
makes sure that we react only once to a push of the button. In addition
to debouncing, we still have to store the current state of the LED in a
variable. Here’s how to do that:

Download BinaryDice/DebounceButton/DebounceButton.pde

lnel const unsigned int BUTTON_PIN
- const unsigned int LED_PIN

75
13;

- void setup() {

5 pinMode (LED_PIN, OUTPUT);

- pinMode (BUTTON_PIN, INPUT);
B

- 1int old_button_state = LOW;
10 1int Ted_state = LOW;

http://media.pragprog.com/titles/msard/code/BinaryDice/DebounceButton/DebounceButton.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=78

ADDING OUR OWN BUuTTON <« 79

void Toop() {
const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);
if (CURRENT_BUTTON_STATE != old_button_state &&
15 CURRENT_BUTTON_STATE == HIGH)
- {
led_state = (led_state == LOW) ? HIGH : LOW;
digitalWrite(LED_PIN, led_state);
delay(50);
20 }
old_button_state = CURRENT_BUTTON_STATE;
h

This final version of our LED switch differs from the previous one in
only a single line: to debounce the button, we wait for 50 milliseconds
in line 19 before we enter the main loop again.

This is everything you need to know about pushbuttons for now. In the
next section, we’ll use two buttons to turn our binary dice into a real
game.

3.6 Adding Our Own Button

Up to now, we had to abuse the Arduino’s reset button to control the
dice. This solution is far from optimal, so we’ll add our own buttons. In
Figure 3.10, on page 81, you can see that we need to change our cur-
rent circuit only slightly. Actually, we don’t have to change the existing
parts at all; we only need to add some things. First we plug a button
into the breadboard and connect it to pin 7. Then we connect the but-
ton to the ground via a 10k resistor and use a small piece of wire to
connect it to the 5 volts pin. That’s all the hardware we need. Here’s the
corresponding software:

Download BinaryDice/DiceWithButton/DiceWithButton.pde

const unsigned int LED_BITO 12;
const unsigned int LED_BIT1 = 11;
const unsigned int LED_BIT2 = 10;
const unsigned int BUTTON_PIN = 7;

void setup() {
pinMode (LED_BITO, OUTPUT);
pinMode (LED_BIT1, OUTPUT);
pinMode (LED_BIT2, OUTPUT);
pinMode (BUTTON_PIN, INPUT);
randomSeed (analogRead(A0));
}

int current_value = 0;

http://media.pragprog.com/titles/msard/code/BinaryDice/DiceWithButton/DiceWithButton.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=79

BUILDING A DICE GAME <« 80

int old_value = 0;

void loop() {
current_value = digitalRead(BUTTON_PIN);
if (current_value != old_value && current_value == HIGH) {
output_result(random(1l, 7));
delay(50);
h

old_value = current_value;

}

void output_result(const long result) {
digitalWrite(LED_BITO, result & B001);
digitalWrite(LED_BIT1, result & B010);
digitalWrite(LED_BIT2, result & B100);
}

That’s a perfect merge of the original code and the code needed to con-
trol a debounced button. As usual, we initialize all pins we use: three
output pins for the LEDs and one input pin for the button. We also
initialize the random seed, and in the loop() function we wait for new
button presses. Whenever the button gets pressed, we roll the dice and
output the result using the LEDs. We've replaced the reset button with
our own!

Now that we know how easy it is to add a pushbutton, we’ll add another
one in the next section to turn our simple dice into a game.

3.7 Building a Dice Game

Turning our rudimentary dice into a full-blown game requires adding
another pushbutton. With the first one we can still roll the dice, and
with the second one we can program a guess. When we roll the dice
again and the current result equals our guess, the three LEDs on the
die will blink. Otherwise, they will remain dark.

To enter a guess, press the guess button the right number of times.
If you think the next result will be a 3, for example, press the guess
button three times and then press the start button.

To add another button to the circuit, do exactly the same thing as for
the first one. In Figure 3.11, on page 82, you can see that we have
added yet another button circuit to the breadboard. This time we've
connected it to pin 5.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=80

BUILDING A DICE GAME < 81

H B

L=

Figure 3.10: Our binary dice with its own start button

Now we need some code to control the new button, and you might be
tempted to copy it from our last program. After all, we copied the hard-
ware design also, right? In the real world, some redundancy is totally
acceptable, because we actually need two physical buttons, even if they
are in principle the same. In the world of software, redundancy is a no-
go, so we won't copy our debounce logic but use a library! that was writ-
ten for this purpose. Download the library, and unpack its content into
~/Documents/Arduino/libraries (on a Mac) or My Documents\ Arduino\libraries
(on a Windows box). Usually that’s all you have to do, but it never

1. http://www.arduino.cc/playground/Code/Bounce

http://www.arduino.cc/playground/Code/Bounce
http://books.pragprog.com/titles/msard/errata/add?pdf_page=81

N
o
v
2
=
<
O]
=
©
A
<
@]
=
A
=
5
m

» |BSV
Wv(
2 €V
v

TV

L)

4% ur

& ano
a

.
L
L]

3

-

o,

{1

8 F R EFBRDSE

e

il @ & & 2 8 & & 8 % &5 8 0w
LI

TR

2]

L

—

- B B A
o® & B8
s & BN
o® & 0@

Figure 3.11: Our binary die now has a “guess” button.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=82

BUILDING A DICE GAME < 83

hurts to read the installation instructions and documentation on the
web page.

Here’s the final version of our binary dice code:

Download BinaryDice/DiceGame/DiceGame.pde

Line 1 #include <Bounce.h>
const unsigned int LED_BITO = 12;
- const unsigned int LED_BIT1 = 11;
5 const unsigned int LED_BIT2 = 10;

const unsigned int START_BUTTON_PIN
const unsigned 1int GUESS_BUTTON_PIN = 7;
const unsigned int BAUD_RATE = 9600;

Il
%]

10 void setup() {
pinMode (LED_BITO, OUTPUT);
pinMode (LED_BIT1, OUTPUT);
pinMode (LED_BIT2, OUTPUT);
- pinMode (START_BUTTON_PIN, INPUT);
15 pinMode (GUESS_BUTTON_PIN, INPUT);
- randomSeed(analogRead (A0)) ;
Serial.begin(BAUD_RATE);
}

20 const unsigned int DEBOUNCE_DELAY = 20;

- Bounce start_button(START_BUTTON_PIN, DEBOUNCE_DELAY);
Bounce guess_button(GUESS_BUTTON_PIN, DEBOUNCE_DELAY);
int guess = 0;

25 void Toop() {
- handle_guess_button();
handle_start_button();

}

30 void handle_guess_button() {
if (guess_button.update()) {
if (guess_button.read() == HIGH) {
guess = (guess % 6) + 1;
output_result(guess);
35 Serial.print("Guess: ");
Serial.println(guess);
B
}
b
40
void handle_start_button() {
if (start_button.update()) {
if (start_button.read() == HIGH) {
const int result = random(1l, 7);
45 output_result(result);

http://media.pragprog.com/titles/msard/code/BinaryDice/DiceGame/DiceGame.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=83

BUILDING A DICE GAME <« 84

Serial.print("Result: ");
Serial.printin(result);
if (guess > 0) {

if (result == guess) {

50 Serial.printin("You win!'");
hooray();
} else {
Serial.printin("You Tose!");
}
55 }
delay(2000);
guess = 0;
b
h
60 }

void output_result(const long result) {

digitalWrite(LED_BITO, result & B001);

- digitalWrite(LED_BIT1, result & B010);

65 digitalWrite(LED_BIT2, result & B100);
-}

void hooray() {
for (int i =0; i < 3; i++) {

70 output_result(7);
delay(500);
output_result(0);
delay(500);

- }

75}

Admittedly that is a lot of code, but we know most of it already, and the
new parts are fairly easy. In the first line, we include the Bounce library
we’ll use later to debounce our two buttons. Then we define constants
for all the pins we use, and in the setup() method, we initialize all our
pins and set the random seed. We also initialize the serial port, because
we’ll output some debug messages.

The Bounce library declares a class named Bounce, and you have to cre-
ate a Bounce object for every button you want to debounce. That’s what
happens in lines 21 and 22. The constructor of the Bounce class expects
the number of the pin the button is connected to and the debounce
delay in milliseconds. Finally, we declare and initialize a variable named
guess that stores our current guess.

Our loop() function has been reduced to two function calls. One is
responsible for dealing with guess button pushes, and the other one
handles pushes of the start button. In handle_guess_button(), we use the

http://books.pragprog.com/titles/msard/errata/add?pdf_page=84

BUILDING A DICE GAME <« 85

AMNM /dev/tty.usbserial-ABOOG1V7
| Send)
Guess: 1
Guess: £
Guess: 3
Result: 4
You lose!
Guess: 1
Guess: £
Guess: 3
Result: 4
You lose!
Guess: 1
Guess: 2
Guess: 3
Result: 3
You win!
™ Autoscroll Mo line ending T1 9600 baud ?,

Figure 3.12: We have a winner!

Bounce class for the first time. To determine the current state of our
guess_button object, we have to call its update() method. Afterward, we
read its current status using the read() method.

If the button was pressed, its state is set to HIGH, and we increment
the guess variable. To make sure that the guess is always in the range
between 1 and 6, we use the modulus operator (%) in line 33. This
operator divides two values and returns the remainder. For 6, it returns
values between O and 5, because when you divide a number by 6, the
remainder is always between O and 5. Add 1 to the result, and you get
values between 1 and 6. Finally, we output the current guess using the
three LEDs, and we also print it to the serial port.

The handling of the start button in handle_start_button() works exactly
the same as the handling of the guess button. When the start button
was pressed, we calculate a new result and output it on the serial port.
Then we check whether the user has entered a guess (guess is greater
than zero in this case) and whether the user has guessed the right
result. In either case, we print a message to the serial port, and if the
user guessed right, we also call the hooray() method. hooray() lets all
three LEDs blink several times.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=85

WHAT IF IT DOESN'T WORK? <« 86

At the end of the method, we wait for two seconds until the game starts
again, and we set back the current guess to zero.

After you've uploaded the software to the Arduino, start the IDE’s serial
monitor. It will print the current value of the guess variable whenever
you press the guess button. Press the start button, and the new result
appears. In Figure 3.12, on the preceding page, you can see a typical
output of our binary dice.

In this chapter, you completed your first really complex Arduino project.
You needed a breadboard, LEDs, buttons, resistors, and wires, and you
wrote a nontrivial piece of software to make all the hardware come to
life.

In the next chapter, we’ll write an even more sophisticated program for
generating Morse code. You'll also learn how to create your own Arduino
libraries that you can easily share with the rest of the world.

3.8 What If It Doesn’t Work?

A lot of things will probably go wrong when you work with breadboards
for the first time. The biggest problem usually is that you didn’t connect
parts correctly. It takes some time to find the right technique for plug-
ging LEDs, wires, resistors, and buttons into the breadboard. You have
to press firmly but not too hard—otherwise you’ll bend the connectors,
and they won't fit. It’s usually easier to plug parts in after you've short-
ened the connectors. When cutting the connectors, wear safety glasses
to protect your eyes!

While fiddling around with the parts, don’t forget that some of them—
LEDs, for example—need a certain direction. Pushbuttons are candi-
dates for potential problems, too. Take a close look at the pushbuttons
on page 74 and make sure that you've mounted them in the right direc-
tion.

Even simple things such as ordinary wires can lead to problems, espe-
cially if they aren’t the right length. If a wire is too short and might
potentially slip out of its socket, replace it immediately. Wires are too
cheap to waste your valuable time with unnecessary and annoying
debugging sessions.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=86

EXERCISES < 87

3.9 Exercises

* Binary dice are all very well when you're playing Monopoly with
your geeky friends, but most people prefer more familiar dice. Try
turning binary dice into decimal dice with seven LEDs. Arrange
the LEDs like the eyes on regular dice.

¢ The 1k() resistors we have used to protect our LEDs in this chap-
ter are rather big. Read Section A.1, Resistors, on page 239, and
replace them with smaller ones. Can you see the difference in
brightness?

¢ LEDs can be used for more than displaying binary dice results.
Provided you have enough LEDs, you can easily build other things,
such as a binary clock.?

You already know enough about electronics and Arduino program-
ming to build your own binary clock. Try it or think about other
things you could display using a few LEDs.

* Using a button to roll the dice seems a bit awkward, doesn’t it?
Usually, you take dice into both hands and shake them. You can
easily simulate that with a tilt sensor.

Tilt sensors detect the tilting of an object and are perfect devices
for simulating the roll of a dice. In principle, they work like a push-
button, but you don’t press them—you shake them. Try to add one
to the binary dice by working your way through the tutorial on the
Arduino website.3

2. http://www.instructables.com/id/LED-Binary-Clock/
3. http://www.arduino.cc/en/Tutorial/TiltSensor

http://www.instructables.com/id/LED-Binary-Clock/
http://www.arduino.cc/en/Tutorial/TiltSensor
http://books.pragprog.com/titles/msard/errata/add?pdf_page=87

4.1

4.2

Chapter 4

Building a Morse Code Generator

You now know enough about the Arduino development environment
and about blinking LEDs to start a bigger project. In this chapter, we’ll
develop a Morse code generator that reads text from the serial port and
outputs it as light signals using an LED.

By building this project, you'll deepen your understanding of serial
communication between the Arduino and your computer. You'll also
learn a lot about the typical Arduino development process: how to use
existing libraries and how to structure bigger projects into your own
libraries. At the end, you’'ll be able to create a library that is ready for
publishing on the Internet.

What You Need

* An Arduino board such as the Uno, Duemilanove, or Diecimila
¢ A USB cable to connect the Arduino to your computer

* An LED

* A speaker or a buzzer (they are optional)

Learning the Basics of Morse Code

Morse code was invented to turn text into sounds.! In principle, it
works like a character set encoding such as ASCII. But while ASCII

1. http://en.wikipedia.org/wiki/Morse_Code

http://en.wikipedia.org/wiki/Morse_Code

BUILDING A MORSE CODE GENERATOR <« 89

encodes characters as numbers, in Morse code they're sequences of
dots and dashes (also called dits and dahs). Dits are shorter in length
than dahs. An A is encoded as - —and — - - - is Z.

Morse code also specifies a timing scheme that defines the length of the
dits and dahs. It also specifies how long the pauses between symbols
and words have to be. The base unit of Morse code is the length of a dit,
and a dah is as long as three dits. You insert a pause of one dit between
two symbols, and you separate two letters by three dits. Insert a pause
of seven dits between two words.

To transmit a message encoded in Morse code, you need a way to emit
signals of different lengths. The classic approach is to use sounds, but
we will use an LED that is turned on and off for varying periods of time.
Sailors still transmit Morse code using blinking lights.

Let’s implement a Morse code generator!

4.3 Building a Morse Code Generator

The main part of our library will be a C++ class named Telegraph. In this
section, we’ll define its interface, but we will start with a new sketch
that looks as follows:

Download Telegraph/Telegraph.pde

void setup() {
b

void Toop() {
}

This is the most minimalistic Arduino program possible. It does not do
anything except define all mandatory functions, even if they are empty.
We do this so we can compile our work in progress from time to time
and check whether there are any syntactical errors. Save the sketch as
Telegraph, and the IDE will create a folder named Telegraph and a file
named Telegraph.pde in it. All the files and directories we need for our
library will be stored in the Telegraph folder.

Now open a new tab, and when asked for a filename, enter telegraph.h.
Yes, we will create a good old C header file (to be precise, it will even be
a C++ header file). The listing in on the next page.

http://media.pragprog.com/titles/msard/code/Telegraph/Telegraph.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=89

BUILDING A MORSE CODE GENERATOR <« 90

Download Telegraph/telegraph.h

#ifndef _ TELEGRAPH_H__
#define _ TELEGRAPH_H__

class Telegraph {

publ-ic:
Telegraph(const int output_pin, const int dit_length);
void send_message(const char* message);

private:
void dit(Q);
void dah(Q);
void output_code(const charx code);
void output_symbol(const int length);

int _output_pin;

int _dit_length;

int _dah_Tength;
};

#endif

Ah, obviously object-oriented programming is not only for the big CPUs
anymore! This is an interface description of a Telegraph class that you
could use in your next enterprise project (provided that you need to
transmit some information as Morse code, that is).

We start with the classic double-include prevention mechanism; that
is, the body of header file defines a preprocessor macro with the name
__TELEGRAPH_H__. We wrap the body (that contains this definition) in an
#ifndef, so that the body is only complied if the macro has not been
defined. That way, you can include the header as many times as you
want, and the body will only be compiled once.

The interface of the Telegraph class consists of a public part that users
of the class have access to and a private part only members of the class
can use. In the public part, you find two things: a constructor that
creates new Telegraph objects and a method named send_message() that
sends a message by emitting it as Morse code. In your applications, you
can use the class as follows:

Telegraph telegraph(13, 200);
telegraph.send_message("Hello, world!");

In the first line, we create a new Telegraph object that communicates on
pin 13 and emits dits that are 200 milliseconds long. Then we emit the
message “Hello, world!” as Morse code. This way, we are able to send

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.h
http://books.pragprog.com/titles/msard/errata/add?pdf_page=90

FLESHING OUT THE GENERATOR’S INTERFACE <« 91

whatever message we want, and we can change the pin and the length
of a dit easily.

Now that we have defined the interface, we will implement it in the next
section.

4.4 Fleshing Out the Generator’s Interface

Declaring interfaces is important, but it’s as important to implement
them. Create a new tab, enter the filename telegraph.cpp, and then
enter the following code:2

Download Telegraph/telegraph.cpp

#include <ctype.h>
#include <WProgram.h>
#include "telegraph.h"

char+ LETTERS[] = {

1

s
Like most C++ programs, ours imports some libraries first. Because we
need functions such as toupper() later, we include ctype.h. and we have

to include telegraph.h to make our class declaration and its correspond-
ing function declarations available. But what is WProgram.h good for?

Until now we haven’t thought about where constants such as HIGH,
LOW, or OUTPUT came from. They are defined in several header files
that come with the Arduino IDE, and you can find them in the hard-
ware/cores/arduino directory of the IDE. Have a look at WProgram.h, and

2. Older versions of the Arduino IDE have an annoying bug that will prevent you from
creating a new file this way. The IDE claims that a file having the same name already
exists. See http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1251245246 for a workaround.

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1251245246
http://books.pragprog.com/titles/msard/errata/add?pdf_page=91

OUTPUTTING MORSE CODE SyMBOLs <« 92

notice that it includes a file named wiring.h that contains all the con-
stants we have used so far and many more. It also declares many useful
macros and the Arduino’s most basic functions.

When you edit regular sketches, you do not have to worry about includ-
ing any standard header files, because the IDE does it automatically
behind the scenes. As soon as you start to create more complex projects
that contain “real” C++ code, you have to manage everything yourself.
You have to explicitly import all the libraries you need, even for basic
stuff such as the Arduino constants.

After importing all necessary header files, we define two string arrays
named LETTERS and DIGITS. They contain the Morse code for all letters
and digits, and we’ll use them later to translate regular text into Morse
code. Before we do that, we define the constructor that is responsible
for creating and intializing new Telegraph objects:

Download Telegraph/telegraph.cpp

Telegraph::Telegraph(const int output_pin, const int dit_length) {
_output_pin = output_pin;
_dit_length = dit_length;
_dah_length = dit_length = 3;
pinMode (_output_pin, OUTPUT);
}

The constructor expects two arguments: the number of the pin the
Morse code should be sent to and the length of a dit measured in mil-
liseconds. Then it stores these values in corresponding instance vari-
ables, calculates the correct length of a dah, and turns the communi-
cation pin into an output pin.

You've probably noticed that all private instance variables start with an
underscore. That is a convention that I like personally. It is not enforced
by C++ or the Arduino IDE.

4.5 Outputting Morse Code Symbols

After everything has been initialized, we can start to output Morse code
symbols. We use several small helper methods to make our code as
readable as possible:

Download Telegraph/telegraph.cpp

void Telegraph: :output_code(const char* code) {
for (int i = 0; i < strlen(code); i++) {
if (code[i] == "'.")

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://books.pragprog.com/titles/msard/errata/add?pdf_page=92

OUTPUTTING MORSE CODE SYMBOLS <« 93

ditQ;
else
dahQ);
}
b

void Telegraph::dit() {
Serial.print(".");
output_symbol(_dit_length);
}

void Telegraph::dah() {
Serial.print("-");
output_symbol(_dah_length);
}

void Telegraph::output_symbol(const int Tength) {
digitalWrite(_output_pin, HIGH);
delay(length);
digitalWrite(_output_pin, LOW);

}

The function output_code() takes a Morse code sequence consisting of
dots and dashes and turns it into calls to dif() and dah(). The dit() and
dah() methods then print a dot or a dash to the serial port and delegate
the rest of the work to output_symbol(), passing it the length of the Morse
code symbol to be emitted. output_symbol() sets the output pin to HIGH
for the length of the symbol, and then it sets it back to LOW. Everything
works exactly as described in the Morse code timing scheme, and only
the implementation of send_message() is missing:

Download Telegraph/telegraph.cpp

tnel void Telegraph::send_message(const char* message) {
for (int i = 0; i < strlen(message); i++) {

const char current_char = toupper(messagel[i]);

- if (isalpha(current_char)) {
5 output_code(LETTERS[current_char - 'A']);
delay(_dah_Tength);

} else if (isdigit(current_char)) {
output_code(DIGITS[current_char - '0']);
delay(_dah_Tlength);

10 } else if (current_char == ' ') {
Serial.print(" ");
delay(_dit_length = 7);

}

b
15 Serial.println(Q);

}

http://media.pragprog.com/titles/msard/code/Telegraph/telegraph.cpp
http://books.pragprog.com/titles/msard/errata/add?pdf_page=93

INSTALLING AND USING THE TELEGRAPH CLASS < 94

send_message() outputs a message character by character in a loop. In
line 3, we turn the current character into uppercase, because lower-
case characters are not defined in Morse code (that’'s the reason why
you can’'t implement a chat client using Morse code). Then we check
whether the current character is a letter using C’s isalpha() function. If
it is, we use it to determine its Morse code representation that is stored
in the LETTERS array. To do that, we use an old trick: in the ASCII table
all letters (and digits) appear in the right order, that is, A=65, B=66,
and so on. To transform the current character into an index for the LET-
TERS array, we have to subtract 65 (or ‘A’) from its ASCII code. When we
have determined the correct Morse code, we pass it to output_symbol()
and delay the program for the length of a dah afterward.

The algorithm works exactly the same for outputting digits; we only
have to index the DIGITS array instead of the LETTERS array, and we have
to subtract the ASCII value of the character O.

In line 10, we check whether we received a blank character. If yes,
we print a blank character to the serial port and wait for seven dits.
All other characters are ignored: we only process letters, digits, and
blanks. At the end of the method, we send a newline character to the
serial port to mark the end of the message.

4.6 Installing and Using the Telegraph Class

Our Telegraph class is complete, and we should now create some exam-
ple sketches that actually use it. This is important for two reasons: we
can test our library code, and for users of our class it's good documen-
tation for how to use it.

The Arduino IDE looks for libraries in two places: in its global libraries
folder relative to its installation directory and in the user’s local sketch-
book directory. During development it’s best to use the local sketch-
book directory. You can find its location in the IDE’s preferences (see
Figure 4.1, on the next page). Create a new directory named libraries in
the sketchbook directory.

To make our Telegraph class available, create a Telegraph subfolder in
the libraries folder. Then copy telegraph.h and telegraph.cpp to that folder
(do not copy Telegraph.pde). Restart the IDE.

Let’s start with the mother of all programs: “Hello, world!” Create a new
sketch named HelloWorld, and enter the following code:

http://books.pragprog.com/titles/msard/errata/add?pdf_page=94

INSTALLING AND USING THE TELEGRAPH CLASS < 95

AN Preferences

Sketchbook location:

{Users /mschmidt/Documents /Arduino |;' Browse)

Editor font size: 10 (requires restart of Arduino)

EDelele previous applet or application folder on export
"1Use external editor
E Check for updates on startup

More preferences can be edited directly in the file
{Users/mschmidt/Library/Arduino/preferences.txt

tedit anly when Arduino is not running)

(] - | Cancel |

Figure 4.1: Find the sketchbook location in the preferences.

Download Telegraph/examples/HelloWorld/HelloWorld.pde

#include "telegraph.h"

const unsigned int OUTPUT_PIN 13;
const unsigned int DIT_LENGTH = 200;

Telegraph telegraph(OUTPUT_PIN, DIT_LENGTH);
void setup() {}

void Toop() {
telegraph.send_message("Hello, world!");
delay(5000);

}

This sketch emits the string “Hello, world!” as Morse code every five sec-
onds. To achieve this, we include the definition of our Telegraph class,
and we define constants for the pin our LED is connected to and for
the length of our dits. Then we create a global Telegraph object and an
empty setup() function. In loop(), then we invoke send_message() on our
Telegraph instance every five seconds.

When you compile this sketch, the Arduino IDE automatically compiles
the telegraph library, too. So if you made any syntactical errors in the
library, you'll be notified now. If you have to correct some errors, make

http://media.pragprog.com/titles/msard/code/Telegraph/examples/HelloWorld/HelloWorld.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=95

INSTALLING AND USING THE TELEGRAPH CLASS < 96

sure you change your original source code files. After you've fixed the
errors, copy the files to the libraries folder again, and don’t forget to
restart the IDE.

Turning a static string into Morse code is nice, but wouldn't it be great
if our program could work for arbitrary strings? So, let's add a more
sophisticated example. This time, we’ll write code that reads messages
from the serial port and feeds them into a Telegraph instance. Create a
new sketch named MorseCodeGenerator, and enter the following code:

Download Telegraph/examples/MorseCodeGenerator/MorseCodeGenerator.pde

#include "telegraph.h"

const unsigned int OUTPUT_PIN 13;

const unsigned int DIT_LENGTH = 200;
const unsigned int MAX_MESSAGE_LEN = 128;
const unsigned int BAUD_RATE = 9600;
const 1int LINE_FEED = 13;

char message_text[MAX_MESSAGE_LEN];
int index = 0;

Telegraph telegraph(OUTPUT_PIN, DIT_LENGTH);

void setup() {
Serial.begin(BAUD_RATE);
B

void Toop() {
if (Serial.available() > 0) {
int current_char = Serial.read();
if (current_char == LINE_FEED || index == MAX_MESSAGE_LEN - 1) {
message_text[index] = 0;

index = 0;
telegraph.send_message(message_text);
} else {
message_text[index++] = current_char;
B
}

}

Again, we include the header file of the Telegraph class, and as usual we
define some constants: OUTPUT_PIN defines the pin our LED is connected
to, and DIT_LENGTH contains the length of a dit measured in milliseconds.
LINE_FEED is set to the ASCII code of the linefeed character. We need it to
determine the end of the message to be emitted as Morse code. Finally,
we set MAX_MESSAGE_LEN to the maximum length of the messages we
are able to send.

http://media.pragprog.com/titles/msard/code/Telegraph/examples/MorseCodeGenerator/MorseCodeGenerator.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=96

FINAL TOUCHES <« 97

Next we define three global variables: message_text is a character buffer
that gets filled with the data we receive on the serial port. index keeps
track of our current position in the buffer, and telegraph is the Telegraph
object we'll use to convert a message into “blinkenlights.”3

setup() initializes the serial port, and in loop() we check whether new
data has arrived, calling Serial.available(). We read the next byte if new
data is available, and we check whether it is a linefeed character or
whether it is the last byte that fits into our character buffer. In both
cases, we set the last byte of message_text to 0, because strings in
C/C++ are null-terminated. We also reset index so we can read the next
message, and finally we send the message using our telegraph. In all
other cases, we add the latest byte to the current message text and
move on.

You should compile and upload the program now. Open the serial mon-
itor, and choose “Carriage return” from the line endings drop-down
menu at the bottom of the window. With this option set, the serial mon-
itor will automatically append a newline character to every line it sends
to the Arduino. Enter a message such as your name, click the Send
button, and see how the Arduino turns it into light.

Because we've encapsulated the whole Morse code logic in the Telegraph
class, our main program is short and concise. Creating software for
embedded devices doesn’t mean we can’'t benefit from the advantages
of object-oriented programming.

Still, we have some minor things to do to turn our project into a first-
class library. Read more about it in the next section.

4.7 Final Touches

One of the nice features of the Arduino IDE is its syntax coloring. Class
names, function names, variables, and so on, all have different colors
in the editor. This makes it much easier to read source code, and it’s
possible to add syntax coloring for libraries. You only have to add a file
named keywords.txt to your project:

Download Telegraph/keywords.ixt

Syntax-coloring for the telegraph Tlibrary

Telegraph KEYWORD1
send_message KEYWORD2

3. http://en.wikipedia.org/wiki/Blinkenlights

http://media.pragprog.com/titles/msard/code/Telegraph/keywords.txt
http://en.wikipedia.org/wiki/Blinkenlights
http://books.pragprog.com/titles/msard/errata/add?pdf_page=97

FINAL TOUCHES <« 98

Lines starting with a # character contain comments and will be ignored.
The remaining lines contain the name of one of the library’s members
and the member’s type. Separate them with a tab character. Classes
have the type KEYWORDT1, while functions have the type KEYWORD2. For
constants, use LITERALIT.

To enable syntax coloring for the telegraph library, copy keywords.txt to
the libraries folder, and restart the IDE. Now the name of the Telegraph
class will be orange, and send_message() will be colored brown.

Before you finally publish your library, you should add a few more
things:

¢ Store all example sketches in a folder named examples, and copy
it to the lioraries folder. Every example sketch should get its own
subdirectory within that folder.

* Choose a license for your project, and copy its terms into a file
named LICENSE.# You might think this is a bit over the top for many
libraries, but it will give your potential audience confidence.

* Add installation instructions and documentation. Usually, users
expect to find documentation in a file named README, and they
will look for installation instructions in a file named INSTALL. You
should try to install your library on as many operating systems as
possible and provide installation instructions for all of them.

After you've done all this, your library folder should look like Figure 4.2,
on the following page.

Finally, create a ZIP archive containing all the files in your project. On
most operating systems, it’s sufficient to right-click the directory in the
Explorer, Finder, or whatever you are using and turn the directory into
a ZIP archive. On Linux systems and on a Mac, you can also use one of
the following command-line statements to create an archive:

maik> zip -r Telegraph Telegraph
maik> tar cfvz Telegraph.tar.gz Telegraph

The first command creates a file named Telegraph.zip, and the second
one creates Telegraph.tar.gz. Both formats are widespread, and it’s best
to offer them both for download.

4. At hitp://www.opensource.org/, you can find a lot of background information and many
standard licenses.

http://www.opensource.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=98

WHAT IF IT DOESN'T WORK? < 99

A ™ [/Users/mschmidt/Documents/Arduino/libraries

<[>][z mm]|[2e-][€2-] a

DEVICES Name

10

¥ | Telegraph
¥ | examples

PLACES ¥ (@ Helloworld
SEARCH FOR = HelloWorld.pde

SHARED

¥ [MorseCodeGenerator
= MorseCodeGenerator.pde
INSTALL
README
g— telegraph.cpp i
[kl telegraph.h v
I
E e Ee o @ B Arduino » [libraries |

23 items, 107.29 GE available A

Figure 4.2: This is what a typical Arduino library needs.

Although you have to perform a lot of manual file operations, it’s still
easy to create an Arduino library. So, there’s no excuse: whenever you
think you've built something cool, make it publicly available.

Until now our projects have communicated with the outside world using
LEDs (output) and pushbuttons (input). In the next chapter, you'll learn
how to work with more sophisticated input devices, such as ultrasonic
sensors. You'll also learn how to visualize data that an Arduino sends
to programs running on your computer.

4.8 What lf It Doesn’t Work?

The Arduino IDE has a strong opinion on naming files and directories,
and it was built for creating sketches, not libraries. So, you need to
perform a few manual file operations to get everything into the right
place. In Figure 4.2, you can see the final directory layout. If you have
more than one version of the Arduino IDE installed, make sure that
you’re using the right libraries folder.

Remember that you have to restart the IDE often. Whenever you change
one of the files belonging to your library, restart the IDE.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=99

EXERCISES <« 100

=]
c
D
3
=
—

aAoue

Figure 4.3: It’s easy to connect a speaker to an Arduino.
I

If syntax coloring doesn’t work, make sure your keywords file is actually
named keywords.txt. Double-check if you have separated all objects and
type specifiers by a tab character! Restart your IDE!

4.9 Exercises

* Morse code supports not only letters and digits. It also defines
symbols such as commas. Improve the Telegraph class so it under-
stands all characters of the Morse code.

¢ Blinking LEDs are great, but when we think of Morse code, we
usually think of beeping sounds, so replace the LED with a piezo
speaker, which are cheap and easy to use. Figure 4.3 shows how
you connect it to an Arduino. They have a ground pin and a sig-
nal pin, so connect the speaker’s ground to the Arduino’s ground,
and connect the signal pin to Arduino pin 13. Then replace the
output_symbol() method with the following code:
void Telegraph::output_symbol(const int length) {

const int frequency = 131;

tone(_output_pin, frequency, Tlength);
}

This sends a square wave to the speaker, and it plays a tone having
a frequency of 131 Hertz (find the “Melody” example that comes

http://books.pragprog.com/titles/msard/errata/add?pdf_page=100

EXERCISES <« 101

with the Arduino IDE to learn more about playing notes with a
piezo speaker).

e Improve the library’s design to make it easier to support different
output devices. For example, you could pass some kind of Output-
Device object to the Telegraph constructor. Then derive a LedDevice
and a SpeakerDevice from OutputDevice. It could look as follows:

class OutputDevice {

publ-ic:
virtual void output_symbol(const int Tength);
I
class Led : public OutputDevice {
publ-ic:
void output_symbol(const int Tength) {
// ...
}
1
class Speaker : public OutputDevice {
publ-ic:
void output_symbol(const int length) {
// ...
}
b

You can then use these classes as follows:

Led led;

Speaker speaker;

OutputDevicex led_device = &led;
OutputDevice* speaker_device = &speaker;

led_device->output_symbo1(200);
speaker_device->output_symbol1(200);

The rest is up to you.

* Try to learn Morse code. Let someone else type some messages
into the serial terminal and try to recognize what he or she sent.
That’s not necessary for learning Arduino development, but it’s a
lot of fun!

http://books.pragprog.com/titles/msard/errata/add?pdf_page=101

Chapter 5

Instead of communicating via mouse or keyboard as with regular com-
puters, you need to connect special sensors to the Arduino so that it
can sense changes around it. You can attach sensors that measure the
current temperature, the acceleration, or the distance to the nearest
object.

Sensors make up an important part of physical computing, and the
Arduino makes using various sensor types a breeze. In this chapter,
we will use both digital and analog sensors to capture some real-world
state, and all we need is a couple of wires and some small programs.

We will take a close look at two sensor types: an ultrasonic sensor
that measures distances and a temperature sensor that measures, well,
temperatures. With the ultrasonic sensor, we will build a digital meter-
ing rule that helps us measure distances remotely. Although ultrasonic
sensors deliver quite accurate results, we can still improve their preci-
sion with some easy tricks. Interestingly, the temperature sensor will
help us with this, and at the end of the chapter, we will have created a
fairly accurate digital metering rule. We will also build a nice graphical
application that visualizes the data we get from the sensors.

But the Arduino doesn’t only make using sensors easy. It also encour-
ages good design for both your circuits and your software. For example,
although we end up using two sensors, they are completely indepen-
dent. All the programs we’ll develop in this chapter will run without
changes on the final circuit.

WHAT YoUu NEED <« 103

Figure 5.1: All the parts you need in this chapter

5.1 What You Need

1. A Parallax PING]))) sensor
. A TMP36 temperature sensor from Analog Devices
. A breadboard

. An Arduino board such as the Uno, Duemilanove, or Diecimila

2
3
4. Some wires
5
6. A USB cable to connect the Arduino to your computer
7

. An installation of the Processing programming language'

1. http://processing.org

http://processing.org
http://books.pragprog.com/titles/msard/errata/add?pdf_page=103

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR < 104

5.2 Measuring Distances with an Ultrasonic Sensor

Measuring distances automatically and continuously comes in handy
in many situations. Think of a robot that autonomously tries to find
its way or of an automatic burglar alarm that rings a bell or calls the
police whenever someone is too near to your house or to the Mona Lisa.
All this is possible with Arduino. But before you can create that burglar
alarm or robot, you need to understand some key concepts.

Many different types of sensors for measuring distances are available,
and the Arduino plays well with most of them. Some sensors use ultra-
sound, while others use infrared light or even laser. But in principle
all sensors work the same way: they emit a signal, wait for the echo to
return, and measure the time the whole process took. Because we know
how fast sound and light travel through the air, we can then convert the
measured time into a distance.

In our first project, we will build a device that measures the distance
to the nearest object and outputs it on the serial port. For this project,
we use the Parallax PING))) ultrasonic sensor,? because it’s easy to use,
comes with excellent documentation, and has a nice feature set. It can
detect objects in a range between 2 centimeters and 3 meters, and we
use it directly with a breadboard, so we do not have to solder. It’s also a
perfect example of a sensor that provides information via variable-width
pulses (more on that in a few paragraphs). With the PING))) sensor, we
can easily build a sonar or a robot that automatically finds its way
through a maze without touching a wall.

As mentioned earlier, ultrasonic sensors usually do not return the dis-
tance to the nearest object. Instead, they return the time the sound
needed to travel to the object and back to the sensor. The PING))) is no
exception (see Figure 5.2, on the next page), and its innards are fairly
complex. Fortunately, they are hidden behind three simple pins: power,
ground, and signal.

This makes it easy to connect the sensor to the Arduino. First, connect
Arduino’s ground and 5V power supply to the corresponding PING)))
pins. Then connect the PING)))’s sensor pin to one of the Arduino’s dig-
ital IO pins (we're using pin 7 for no particular reason). For a diagram
of our circuit, see Figure 5.3, on the following page, and for a photo see
Figure 5.5, on page 108.

2. http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/28015/List/0/SortField/4/ProductlD/92/Default.aspx

http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/28015/List/0/SortField/4/ProductID/92/Default.aspx
http://books.pragprog.com/titles/msard/errata/add?pdf_page=104

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR < 105

Figure 5.2: Basic working principle of the PING))) sensor

C I
LR R
L A
LR
LR
LR
LR
LR
LR

L I B
“ e e ss

Figure 5.3: PING))) basic circuit

http://books.pragprog.com/titles/msard/errata/add?pdf_page=105

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR <« 106

To bring the circuit to life, we need some code that communicates with
the PING))) sensor:

Download ultrasonic/simple/simple.pde

lnel const unsigned int PING_SENSOR_IO_PIN = 7;
- const unsigned int BAUD_RATE = 9600;

- void setup() {
5 Serial.begin(BAUD_RATE);
-1

void Toop() {
- pinMode (PING_SENSOR_IO_PIN, OUTPUT);
10 digitalWrite(PING_SENSOR_IO_PIN, LOW);
- delayMicroseconds(2);

digitalWrite(PING_SENSOR_IO_PIN, HIGH);
- delayMicroseconds(5);
15 digitalWrite(PING_SENSOR_IO_PIN, LOW);

pinMode (PING_SENSOR_IO_PIN, INPUT);
const unsigned long duration = pulseIn(PING_SENSOR_IO_PIN, HIGH);
if (duration == 0) {
20 Serial.printin("Warning: We did not get a pulse from sensor.");
} else {
Serial.print("Distance to nearest object: ');
Serial.print(microseconds_to_cm(duration));
Serial.printIn(" cm");
25 }

delay(100);
h

30 unsigned long microseconds_to_cm(const unsigned long microseconds) {
return microseconds / 29 / 2;

}

First we define a constant for the 10 pin the PING))) sensor is connected
to. If you want to connect your sensor to another digital IO pin, you
have to change the program’s first line. In the setup() method, we set
the serial port’s baud rate to 9600, because we’d like to see some sensor
data on the serial monitor.

The real action happens in loop() where we actually implement the
PING))) protocol. According to the data sheet,® we can control the sensor
using pulses, and it returns results as variable-width pulses, too.

3. http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.5.pdf

http://media.pragprog.com/titles/msard/code/ultrasonic/simple/simple.pde
http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.5.pdf
http://books.pragprog.com/titles/msard/errata/add?pdf_page=106

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR < 107

clean start gap measure distance

HIGH

LOowW

Figure 5.4: PING))) pulse diagram

In lines 9 to 11, we set the sensor’s signal pin to LOW for 2 microsec-
onds to bring it to a proper state. This will ensure clean HIGH pulses
that are needed in the next steps (in the world of electronics, you should
always be prepared for jitters in the power supply).

Finally, it's time to tell the sensor to do some work. In lines 13 to 15,
we set the sensor’s signal pin to HIGH for 5 microseconds to start a
new measurement. Afterward, we set the pin to LOW again, because
the sensor will respond with a HIGH pulse of variable length on the
same pin.

With a digital pin, you have only a few options to transmit information.
You can set the pin to HIGH or LOW, and you can control how long
it remains in a particular state. For many purposes, this is absolutely
sufficient, and in our case it is, too. When the PING]))) sensor sends out
its 40 kHz chirp, it sets the signal pin to HIGH and then sets it back
to LOW when it receives the echo. That is, the signal pin remains in a
HIGH state for exactly the time it takes the sound to travel to an object
and back to the sensor. Loosely speaking, we are using a digital pin
for measuring an analog signal. In Figure 5.4, you can see a diagram
showing typical activity on a digital pin connected to a PING))) sensor.

We could measure the duration the pin remains in HIGH state manu-
ally, but the pulseln() method already does all the dirty work for us. So,
we use it in line 18 after we have set the signal pin into input mode
again. pulseln() accepts three parameters:

¢ pin: Number of the pin to read the pulse from.

¢ type: Type of the pulse that should be read. It can be HIGH or
LOW.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=107

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR < 108

e — RD 0

C
1

| == e aae .« s o =e - - n o= - = = 8 8 -5 s ws
- ® % = e -« = e e a - = 8 = - = & e o ® & 8 & =
-numewo~nBa @I N0 e ssanfaednEr g
~® & & & 2 F 2 0 B N R EE s U B FE NN FFD-
~ % & & & 8 F 8 8 & 0N E BB BE YR L B B L BN BN BE B B O
@ % & & " S8 E SN EE A L & N & ¥ FPFPFBSNC
o B 8 3 E S S EE RS () RN
~— & ® & & " " &0 &0 anm e L I

Figure 5.5: Photo of PING))) basic circuit

* timeout: Timeout measured in microseconds. If no pulse could
be detected within the timeout period, pulseln() returns O. This
parameter is optional and defaults to one second.

Note that in the whole process only one pin is used to communicate
with the PING))). Sooner or later, you will realize that IO pins are a
scarce resource on the Arduino, so it’s really a nice feature that the
PING))) uses only one digital pin. When you can choose between differ-
ent parts performing the same task, try to use as few pins as possible.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=108

MEASURING DISTANCES WITH AN ULTRASONIC SENSOR <« 109

We have only one thing left to do: convert the duration we have mea-
sured into a length. Sound travels at 343 meters per second, which
means it needs 29.155 microseconds per centimeter. So, we have to
divide the duration by 29 and then by 2, because the sound has to
travel the distance twice. It travels to the object and then back to the
PING))) sensor. The microseconds_to_cm() method performs the calcula-
tion.

According to the specification of the PING))) sensor, you have to wait
at least 200 microseconds between two measurements. For high-speed
measurements, we could calculate the length of a pause more accu-
rately by actually measuring the time the code takes. But in our case,
this is pointless, because all the statements that are executed dur-
ing two measurements in the loop() method take far more than 200
microseconds. And outputting data to the serial connection is fairly
expensive. Despite this, we have added a small delay of 100 microsec-
onds to slow down the output a bit.

You might wonder why we use the const keyword so often. The Arduino
language is based on C/C++, and in these languages it’'s considered a
good practice to declare constant values as const (see Effective C++: 50
Specific Ways to Improve Your Programs and Designs | 1). Not only
will using const make your program more concise and prevent logical
errors early, it will also help the compiler to decrease your program’s
size.

Although most Arduino programs are comparatively small, software
development for the Arduino is still software development and should
be done according to all the best practices we know. So, whenever you
define a constant value in your program, declare it as such (using const,
not using #define). This is true for other programming languages, too,
so we will use final in our Processing and Java programs a lot (you’ll
learn more about Processing in Section 5.5, Transferring Data Back to
Your Computer Using Processing, on page 119).

Now it's time to play around with the sensor and get familiar with
its strengths and weaknesses. Compile the program, upload it to your
Arduino board, and open the serial monitor (don’t forget to set the baud
rate to 9600). You should see something like this:

Distance to nearest object: 42 cm

Distance to nearest object: 33 cm

Distance to nearest object: 27 cm
Distance to nearest object: 27 cm

http://books.pragprog.com/titles/msard/errata/add?pdf_page=109

INCREASING PRECISION USING FLOATING-POINT NUMBERS <« 110

Distance to nearest object: 29 cm
Distance to nearest object: 36 cm

In addition to the output in the terminal, you will see that the LED
on the PING))) sensor is turned on whenever the sensor starts a new
measurement.

Test the sensor’s capabilities by trying to detect big things or very small
things. Try to detect objects from different angles, and try to detect
objects that are below or above the sensor. You should also do some
experiments with objects that do not have a flat surface. Try to detect
stuffed animals, for example, and you will see that they are not detected
as well as solid objects (that’s probably the reason why bats don’t hunt
bears: they cannot see them).

With only three wires and a few lines of code, we have built a first
version of a digital metering rule. At the moment, it only outputs cen-
timeter distances in whole numbers, but we will increase its accuracy
tremendously in the next section by changing our software and adding
more hardware.

5.3 Increasing Precision Using Floating-Point Numbers

According to the specification, the PING))) sensor is accurate for objects
that are between 2 centimeters and 3 meters away. (By the way, the
reason for this is the length of the pulse that is generated. Its min-
imum length is 115 microseconds, and the maximum length is 18.5
milliseconds.) With our current approach, we do not fully benefit from
its precision because all calculations are performed using integer val-
ues. We can only measure distances with an accuracy of a centimeter.
To enter the millimeter range, we have to use floating-point numbers.

Normally it is a good idea to use integer operations, because compared
to regular computers the Arduino’s memory and CPU capacities are
severely limited and calculations containing floating-point numbers are
often expensive. But sometimes it’s useful to enjoy the luxury of highly
accurate floating-point numbers, and the Arduino supports them well.
We will use them to improve our project now:

DownTload ultrasonic/float/float.pde

Line 1 const unsigned int PING_SENSOR_IO_PIN = 7;
- const unsigned int BAUD_RATE = 9600;
const float MICROSECONDS_PER_CM = 29.155;
const float MOUNTING_GAP = 0.2;

http://media.pragprog.com/titles/msard/code/ultrasonic/float/float.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=110

INCREASING PRECISION USING FLOATING-POINT NUMBERS <« 111

5 const float SENSOR_OFFSET = MOUNTING_GAP = MICROSECONDS_PER_CM = 2;

void setup() {
Serial.begin(BAUD_RATE);
b

void Toop() {
const unsigned long duration = measure_distance();
if (duration == 0)
Serial.printin("Warning: We did not get a pulse from sensor.');
15 else
output_distance(duration);

}

- const float microseconds_to_cm(const unsigned long microseconds) {
20 const float net_distance = max(0, microseconds - SENSOR_OFFSET);
return net_distance / MICROSECONDS_PER_CM / 2;
}

- const unsigned long measure_distance() {

25 pinMode (PING_SENSOR_IO_PIN, OUTPUT);

- digitalWrite(PING_SENSOR_IO_PIN, LOW);
delayMicroseconds(2);

digitalWrite(PING_SENSOR_IO_PIN, HIGH);
30 delayMicroseconds(5);
digitalWrite(PING_SENSOR_IO_PIN, LOW);

pinMode (PING_SENSOR_IO_PIN, INPUT);
return pulseIn(PING_SENSOR_IO_PIN, HIGH);
3B}

void output_distance(const unsigned long duration) {
Serial.print("Distance to nearest object: ');
Serial.print(microseconds_to_cm(duration));
40 Serial.printIn(" cm™);

}

This program does not differ much from our first version. First, we use
the more accurate value 29.155 for the number of microseconds it takes
sound to travel 1 centimeter. In addition, the distance calculation now
takes a potential gap between the sensor and the case into account.
If you plug the sensor into a breadboard, for example, usually a small
gap between the sensor and the breadboard’s edge exists. This gap is
defined in line 5, and it will be used in the distance calculation later
on. The gap is measured in centimeters, and it gets multiplied by two,
because the sound travels out and back.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=111

INCREASING PRECISION USING FLOATING-POINT NUMBERS <« 112

The loop() method looks much cleaner now, because the program’s
main functionality has been moved to separate functions. The whole
sensor control logic lives in the measure_distance() method and out-
put_distance() takes care of outputting values to the serial port. The
big changes happened in the microseconds_to_cm() function. It returns
a float value now, and it subtracts the sensor gap from the measured
duration. To make sure we do not get negative values, we use the maox()
function.

Compile and upload the program, and you should see something like
the following in your serial monitor window:

Distance to nearest object: 17.26 cm

Distance to nearest object: 17.93 cm

Distance to nearest object: 17.79 cm

Distance to nearest object: 18.17 cm

Distance to nearest object: 18.65 cm

Distance to nearest object: 18.85 cm
Distance to nearest object: 18.78 cm

This not only looks more accurate than our previous version, it actually
is. If you have worked with floating-point numbers in any programming
language before, you might ask yourself why the Arduino rounds them
automatically to two decimal digits. The secret lies in the print() method
of the Serial class. In recent versions of the Arduino platform it works for
all possible data types, and when it receives a float variable, it rounds it
to two decimal digits before it gets output. You can specify the number
of decimal digits. For example, Serial.printin(3.141592, 4); prints 3.1416.

Only the output is affected by this; internally it is still a float variable
(by the way, on the Arduino float and double values are the same at the
moment).

So, what does it actually cost to use float variables? Their memory
consumption is 4 bytes—that is, they consume as much memory as
long variables. On the other hand, floating-point calculations are fairly
expensive and should be avoided in time-critical parts of your soft-
ware. The biggest costs are the additional library functions that have to
be linked to your program for float support. Serial.print(3.14) might look
harmless, but it increases your program’s size tremendously. Uncom-
ment line 39, and recompile the program to see the effect. With my
current setup, it needs 3,192 bytes without float support for Serial.print()
and 4,734 bytes otherwise. That’s a difference of 1,542 bytes!

http://books.pragprog.com/titles/msard/errata/add?pdf_page=112

INCREASING PRECISION USING A TEMPERATURE SENSOR <« 113

In some cases, you can still get the best of both worlds: float support
without paying the memory tax. You can save a lot of space by con-
verting the float values to integers before sending them over a serial
connection. To transfer values with a precision of two digits, multiply
them by 100, and do not forget to divide them by 100 on the receiving
side. We will use this trick (including rounding) later.

5.4 Increasing Precision Using a Temperature Sensor

Support for floating-point numbers is certainly an improvement, but
it mainly increases the precision of our program’s output. We could
have achieved a similar effect using some integer math tricks. But now
we will add an even better improvement that cannot be imitated using
software: a temperature sensor.

When I told you that sound travels through air at 343m/s, I wasn’t
totally accurate, because the speed of sound is not constant—among
other things it depends on the air’s temperature. If you do not take
temperature into account, the error can grow up to a quite significant
12 percent. We calculate the actual speed of sound C with a simple
formula:

C=3315+(0.6*1

To use it, we only have to determine the current temperature t in Cel-
sius. We will use the TMP36 voltage output temperature sensor from
Analog Devices.? It’s cheap, and it’s easy to use.

To connect the TMP36 to the Arduino, connect the Arduino’s ground
and power to the corresponding pins of the TMP36. Then connect the
sensor’s signal pin to the pin AO, that is, the analog pin number O (see
Figure 5.6, on the following page).

As you might have guessed from its vendor’s name, the TMP36 is an
analog device: it changes the voltage on its signal pin corresponding to
the current temperature. The higher the temperature, the higher the
voltage. For us it is an excellent opportunity to learn how to use the
Arduino’s analog 10 pins. So, let’s see some code that uses the sensor:

Download temperature/sensortest/sensortest.pde

lnel const unsigned int TEMP_SENSOR_PIN = 0;
- const float SUPPLY_VOLTAGE = 5.0;

4. http://tinyurl.com/msard-analog

http://media.pragprog.com/titles/msard/code/temperature/sensortest/sensortest.pde
http://tinyurl.com/msard-analog
http://books.pragprog.com/titles/msard/errata/add?pdf_page=113

INCREASING PRECISION USING A TEMPERATURE SENSOR <« 114

Figure 5.6: Connecting the temperature sensor to the Arduino
I

const unsigned int BAUD_RATE = 9600;

5 void setup() {
Serial.begin(BAUD_RATE);

}
void Toop() {

10 Serial.print(get_temperature());
Serial.printin("” C");
delay(1000);

}

15 const float get_temperature() {
const 1int sensor_voltage = analogRead(TEMP_SENSOR_PIN);
const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;
return (voltage = 1000 - 500) / 10;
}

In the first two lines, we define constants for the analog pin the sensor
is connected to and for the Arduino’s supply voltage. Then we have a
pretty normal setup() method followed by a loop() method that outputs
the current temperature every second. The whole sensor logic has been
encapsulated in the get_temperature() method.

For the PING))) sensor, we only needed a digital pin that could be
HIGH or LOW. Analog pins are different and represent a voltage rang-
ing from OV to the current power supply (usually 5V). We can read
Arduino’s analog pins using the analogRead() method that returns a

http://books.pragprog.com/titles/msard/errata/add?pdf_page=114

INCREASING PRECISION USING A TEMPERATURE SENSOR <« 115

value between O and 1023, because analog pins have a resolution of
ten bits (1024 = 2!Y). We use it in line 16 to read the current voltage
supplied by the TMP36.

There’s one problem left, though: we have to turn the value returned
by analogRead() into an actual voltage value, so we must know the
Arduino’s current power supply. It usually is 5V, but there are Arduino
models (the Arduino Pro, for example) that use only 3.3V. You have to
adjust the constant SUPPLY_VOLTAGE accordingly.

Knowing the supply voltage, we can turn the analog pin’s output into
a voltage value by dividing it by 1024 and by multiplying it with the
supply voltage afterward. That’s exactly what we do in line 17.

We now have to convert the voltage the sensor delivers into degree Cel-
sius. In the sensor’s data sheet, we find the following formula:

T = ((sensor output in mV) - 500) / 10

500 millivolts have to be subtracted, because the sensor always outputs
a positive voltage. This way, we can represent negative temperatures,
too. The sensor’s resolution is 10 millivolts, so we have to divide by 10.
A voltage value of 750 millivolts corresponds to a temperature of (750 -
500) / 10 = 25°C, for example. See it implemented in line 18.

Compile the program, upload it to the Arduino, and you’'ll see something
like the following in your serial monitor:

10.06
26.64
28.62
28.50
28.50
29.00
29.00
28.50
29.00

@]

aNeNeoNeoNeaNaNaNe!

As you can see, the sensor needs some time to calibrate, but its results
get stable fairly quickly. By the way, you’ll always need to insert a short
delay between two calls to analogRead(), because the Arduino’s internal
analog system needs some time (0.0001 seconds) between two readings.
We have used a delay of a whole second to make the output easier to
read and because we do not expect the temperature to change rapidly.
Otherwise, a delay of a single millisecond would be enough.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=115

INCREASING PRECISION USING A TEMPERATURE SENSOR <« 116

- e
Lo
.
®
TR
e eae s
OO
e e e w
LI]
(R

TR
TERE
L
L
RN
EE R
EEE R
AEE
e Eew
LR
L
8888

Figure 5.7: The TMP36 and the PING))) sensors working together

Now we have two separate circuits: one for measuring distances and
one for measuring temperatures. See them combined to a single circuit
in Figure 5.7, as well as in Figure 5.8, on page 120. Use the following
program to bring the circuit to life:

Download ultrasonic/PreciseSensor/PreciseSensor.pde

Line 1 const unsigned int TEMP_SENSOR_PIN = 0;
- const float SUPPLY_VOLTAGE = 5.0;
const unsigned int PING_SENSOR_IO_PIN = 7;
- const float SENSOR_GAP = 0.2;
5 const unsigned int BAUD_RATE = 9600;

float current_temperature = 0.0;

http://media.pragprog.com/titles/msard/code/ultrasonic/PreciseSensor/PreciseSensor.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=116

INCREASING PRECISION USING A TEMPERATURE SENSOR <« 117

unsigned long last_measurement = millis(Q);

10 void setup() {
- Serial.begin(BAUD_RATE);
b

void Toop() {
15 unsigned Tong current_millis = millisQ;
if (abs(current_millis - last_measurement) >= 1000) {
current_temperature = get_temperature();
last_measurement = current_millis;
}

20 Serial.print(scaled_value(current_temperature));
Serial.print(",");
const unsigned long duration = measure_distance();
Serial.printin(scaled_value(microseconds_to_cm(duration)));
}
25
Tong scaled_value(const float value) {
float round_offset = value < 0 ? -0.5 : 0.5;
return (long)(value * 100 + round_offset);

B
30
const float get_temperature() {
const 1int sensor_voltage = analogRead(TEMP_SENSOR_PIN);
const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;
- return (voltage * 1000 - 500) / 10;
3B}
const float microseconds_per_cm() {
return 1 / ((331.5 + (0.6 * current_temperature)) / 10000);
}
40

const float sensor_offset() {
return SENSOR_GAP * microseconds_per_cm() =* 2;

}

45 const float microseconds_to_cm(const unsigned long microseconds) {
const float net_distance = max(0, microseconds - sensor_offset());
return net_distance / microseconds_per_cm() / 2;

}

50 const unsigned long measure_distance() {
pinMode (PING_SENSOR_IO_PIN, OUTPUT);
digitalWrite(PING_SENSOR_IO_PIN, LOW);
delayMicroseconds(2);

55 digitalWrite(PING_SENSOR_IO_PIN, HIGH);
- delayMicroseconds(5);
digitalWrite(PING_SENSOR_IO_PIN, LOW);

http://books.pragprog.com/titles/msard/errata/add?pdf_page=117

INCREASING PRECISION USING A TEMPERATURE SENSOR <« 118

pinMode (PING_SENSOR_IO_PIN, INPUT);
60 return pulseIn(PING_SENSOR_IO_PIN, HIGH);
}

The code is nearly a perfect merge of the programs we used to get
the PING))) and the TMP36 sensors working. Only a few things were
changed:

¢ The constant MICROSECONDS_PER_CM has been replaced by the
microseconds_per_cm() function that determines the microseconds
sound needs to travel 1 centimeter dynamically depending on the
current temperature.

* Because the current temperature will usually not change often
or rapidly, we no longer measure it permanently but only once a
second. We use millis() in line 8 to determine the number of mil-
liseconds that have passed since the Arduino started. From lines
15 to 19, we check whether more than a second has passed since
the last measurement. If yes, we measure the current temperature
again.

* We no longer transfer the sensor data as floating-point numbers
on the serial port but use scaled integer values instead. This is
done by the scaled_value() function that rounds a float value to two
decimal digits and converts it into a long value by multiplying it
by 100. On the receiving side, you have to divide it by 100 again.

If you upload the program to your Arduino and play around with your
hand in front of the sensor, you'll see an output similar to the following:
1940,2818

2914,3032

3045,34156

3005,2843

3045,2476
3085,2414

The output is a comma-separated list of values where the first value
represents the current temperature in degree Celsius, and the second
is the distance to the nearest object measured in centimeters. Both
values have to be divided by 100 to get the actual sensor data.

Our little project now has two sensors. One is connected to a digital pin,
while the other uses an analog one. In the next section, you'll learn how
to transfer sensor data back to a PC and use it to create applications
based on the current state of the real world.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=118

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING <« 119

7 N

How to Encode Sensor Data

Encoding sensor data is a problem that has to be solved often
in Arduino projects, because all the nice data we collect usu-
ally has to be interpreted by applications running on regular
computers.

When defining a data format, you have to take several things
info account. For example, the format should not waste the
Arduino’s precious memory. In our case, we could have used
XML for encoding the sensor data, for example:
<sensor-data>

<temperature>30.05</temperature>

<distance>51.19</distance>
</sensor-data>

Obviously this is not a good choice, because now we are wast-
ing a mulfiple of the actual data’s memory for creating the file
format’s structure. In addition, the receiving application has to
use an XML parser to interpret the data.

But you shouldn’t go to the other extreme either. That is, you
should use binary formats only if it’s absolutely necessary or if
the receiving application expects binary data anyway.

All'in all, the simplest data formats such as character-separated
values (CSV) are often the best choice.

5.5 Transferring Data Back to Your Computer Using Processing

All the programs in this chapter transfer sensor data back to your com-
puter using a serial port. But until now we've only watched the data
passing by in the IDE’s serial monitor and haven’t used it in our own
applications.

In this section, we will build an application that graphically visualizes
the sensor data. The program will implement a kind of inverted sonar:
it draws a small dot on the screen showing the distance to the nearest
object, while the position of the dot will move in a circle itself (see the
picture on page 130).

To implement the application, we’ll use the Processing programming
language, and in Figure 5.9, on page 121 you can see how we’ll organize
the project. The Processing code runs on our computer while all the

http://books.pragprog.com/titles/msard/errata/add?pdf_page=119

o
N
—
©]
=
N
n
=
O
o]
04
[a B}
@]
=
2]
-
04
€3]
=
=]
o,
=
o
O
04
=]
o
>~
o
=
X
©]
<
m
<
>
<
A
@]
=
04
04
m
<
n
3
=

- N M oew w0 NEeD
—~ 8 & & & & ® & & B
-5 & & & % % & 0 &
8 ® % 8 " F NN BN

" EE NN
& B F B PFPEFESC

s B BB R EEEEN
e I I B]
o™ & W EE NN

o & E AR EE

A EEENEEREE R R]
FE R B

-

N oM oe W W~ @
- = & & =

o® & W a® e on

e & A =8

- - - = =

- - = =

Figure 5.8: Photo of final circuit

http://books.pragprog.com/titles/msard/errata/add?pdf_page=120

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING < 121

(A

Save the Climate Using Sonar Sensors

Researchers from Northwestern and University of Michigan
have created a sonar system that only uses a computer’s
microphone and speakers to detect whether the computer is
currently used or not.* If it’s not being used, the computer auto-
matically powers off its screen, saving the environment.

Instead of using a microphone and speakers, you can also use
a PING))) sensor. With the lessons you’ve learned in this chapter,
you can build such a system yourself with ease. Try it!

*. http://blog.makezine.com/archive/2009/10/using_sonar_to_save_power.html

4)
PC/Mac

Processing < Serial Port
Code
ﬁ

Figure 5.9: System architecture of our inverted Sonar project

PING))) sensor code still runs on the Arduino. Communication between
the Processing code and the Arduino happens via serial port.

Processing is an extension of the Java programming language, and its
focus is on computational art. With Processing, it’s very easy to cre-
ate multimedia applications: applications that produce sound and ani-
mated 2D or 3D graphics. It also has excellent support for user inter-
actions and is well documented (for example, see Processing: Creative
Coding and Computational Art [D.

http://blog.makezine.com/archive/2009/10/using_sonar_to_save_power.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=121

TRANSFERRING DATA BACK TO YOUR COMPUTER USING PROCESSING < 122

(o NN InvertedSonar | Processing 1.2.1

SensorData

1es SensorData
rivate floot temperoture;
vate floot distonce;

SensorDatall (oot temperature, oot distonce) {
isJtemperature = temperature;
thiz.distance = distance;

¥

ot getTemperature() {
sburn thisz.temperature;

ot getDistance() {

return this.distance;
}

b

Figure 5.10: The Processing IDE is the basis for the Arduino IDE.
I

It was originally built for design students who do not have a lot of
programming experience but who still wanted to use computers and
electronic devices to create interactive artwork. That’s the reason why
Processing is easy to learn and very beginner-friendly. But many peo-
ple also use it for serious and advanced tasks, especially for presenting
data in visually appealing ways.

You can download Processing for free,® and it comes with a one-click
installer for all popular operating systems. Start it or take a look at Fig-
ure 5.10. Looks familiar, doesn’t it? That is not a coincidence, because
the Arduino IDE was derived from the Processing IDE. Instead of writ-

5. http://processing.org/download/

http://processing.org/download/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=122

REPRESENTING SENSOR DATA <« 123

ing a new programming environment from scratch, the Arduino team
decided to modify the Processing IDE. That’s the reason why both IDEs
look so similar and why Arduino sketches have the file extension .pde
(Processing Development Environment), for example.

Using Processing as the basis for the Arduino project provided a good
and well-tested IDE for free. Processing and the Arduino are a good
team for several other reasons:

* The Arduino simplifies embedded computing, and Processing sim-
plifies the creation of multimedia applications. So, you can easily
visualize sensor data in often spectacular ways.

* Processing is easy to learn, especially if you already know Java.
* Processing has excellent support for serial communication.

So, for many reasons, Processing is well worth a look, but it's espe-
cially useful when working with the Arduino. That’s why we’ll use it for
several of the book’s examples.

5.6 Representing Sensor Data

We start with a Processing class that represents the current sensor
data we return from the Arduino via serial port. Open a new file in the
Processing IDE, and enter the following code:

Download ultrasonic/InvertedSonar/SensorData.pde

class SensorData {
private float temperature;
private float distance;

SensorData(float temperature, float distance) {
this.temperature = temperature;
this.distance = distance;

}

float getTemperature() {
return this.temperature;

}

float getDistance() {
return this.distance;
}
B

If you are familiar with Java or C++, the SensorData class will be per-
fectly clear to you. It encapsulates a temperature value and a distance

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/SensorData.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=123

REPRESENTING SENSOR DATA <« 124

as floating-point numbers and provides access to the data via accessor
methods (getTemperature() and getDistance()). You can create new Sensor-
Data objects using the constructor, passing it the current temperature
and distance.

Processing is an object-oriented programming language and allows us
to define new classes using the class keyword. Classes have a name and
they contain data (often called attributes or properties) and functions
(often called methods). Our SensorData class contains two attributes
named temperature and distance. They are both of type float, and we
have declared them both private. Now only members of the SensorData
class are allowed to access them. This is considered good style, because
it prevents unwanted side effects and makes future changes much eas-
ier. A class should never expose its innards.

To set and get the values of our attributes, we have to use public meth-
ods, and our class has three of them: SensorData(), getTemperature(), and
getbistance(). (Java and C++ programmers should note that in Process-
ing everything is public if not specified otherwise!) A method that has
the same name as the class is called a constructor, and you can use it
for creating and initializing new objects of that particular class. Con-
structors do not have return values, but they may specify parameters.
Ours, for example, takes two arguments and uses them to initialize our
two attributes.

There’s a small problem, though: our method’s parameters have the
same names as our classes’ attributes. What would happen if we simply
assigned the method parameters to the attributes like this:

temperature = temperature;
distance = distance;

Right: we simply assigned every method parameter to itself, which is
effectively a no-operation. That's why we use the this keyword. It refers
to the class itself, so we can distinguish between the method parame-
ters and the classes’ attributes. Alternatively, we could have used dif-
ferent names for the method parameters or the attributes, but I prefer
to use this.

After the constructor, we define the methods getTemperature and getDis-
tance. Their definitions are very similar; we declare the method’s return
type (float), the method’s name, and a list of parameters in parentheses.
In our case, the parameter list is empty. In the methods, we return the

http://books.pragprog.com/titles/msard/errata/add?pdf_page=124

BUILDING THE APPLICATION’S FOUNDATION <« 125

current value of the corresponding attributes using the return keyword.
return stops the method and returns its argument to the method’s caller.

Now we can create and initialize new SensorData objects:

SensorData sensorData = new SensorData(31.5, 11.76);

The previous statement creates a new SensorData object named sensor-
Data. It sets temperature to 31.5 and distance to 11.76. To read those
values, we use the corresponding “get” methods:

sensorData.getTemperature(); // -> 31.5
sensorData.getDistance(); // -> 11.76

Because getTemperature() and getDistance() are members of the Sensor-
Data class, you can only invoke them using an instance of the class.
Our instance is named sensorData, and to call the “get” methods we have
to use the instance name, followed by a dot, followed by the method
name.

Now that we can store sensor data, we’ll continue to build our inverted
sonar application in the next section.

5.7 Building the Application’s Foundation

In this section, we’ll create all the boilerplate code we need for our appli-
cation by importing some libraries and defining some global constants
and variables:

Download ultrasonic/InvertedSonar/InvertedSonar.pde

import processing.serial.x;

final int WIDTH = 1000;

final int HEIGHT = 1000;

final int xCenter = WIDTH / 2;
final int yCenter = HEIGHT / 2;
final int LINE_FEED = 10;

Serial arduinoPort;
SensorData sensorData;
int degree = 0;

int radius 0;

To communicate with the Arduino via a serial port, we import Process-
ing’s support for serial communication in the first line. The import state-
ment imports all classes from the processing.serial package and makes
them available in our program.

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/InvertedSonar.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=125

IMPLEMENTING SERIAL COMMUNICATION IN PROCESSING < 126

Our application will have a 1000x1000 pixel screen, so we define con-
stants for its width, height, and its center. We set the LINE_FEED constant
to the ASCII value of a linefeed character, because we need it later to
interpret the data sent by the Arduino.

Then we define a few global variables (yes, you Java programmers out
there: Processing allows you to define global variables!):

* arduinoPort: An instance of Processing’s Serial class. It's from the
processing.serial package we have imported and encapsulates the
serial port communication with the Arduino.

¢ sensorData: The current sensor data that have been transferred
from the Arduino to our application. We use the SensorData class
we defined in Section 5.6, Representing Sensor Data, on page 123.

* degree: We will visualize the current distance to the nearest object
on a circle. This variable stores on which degree of the circle we
are right now. Values range from O to 359.

* radius: The current distance to the nearest object is interpreted as
a radius value.

5.8 Implementing Serial Communication in Processing

The following functions read data from the serial port the Arduino is
connected to, and they interpret the data the Arduino is sending:

Download ultrasonic/InvertedSonar/InvertedSonar.pde

tnel void setup() {
- size(WIDTH, HEIGHT);
println(Serial.list());
String arduinoPortName = Serial.Tlist()[0];
5 arduinoPort = new Serial(this, arduinoPortName, 9600);
arduinoPort.bufferUntil(LINE_FEED);
b

void serialEvent(Serial port) {
10 sensorData = getSensorData();
if (sensorData != null) {
printin("Temperature: " + sensorData.getTemperature());
printin("Distance: " + sensorData.getDistance());
- radius = min(300, int(sensorData.getDistance() =* 2));
15 }
-}

SensorData getSensorData() {

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/InvertedSonar.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=126

IMPLEMENTING SERIAL COMMUNICATION IN PROCESSING < 127

SensorData result = null;
20 if (arduinoPort.available() > 0) {
final String arduinoOutput = arduinoPort.readStringUntil(LINE_FEED);
result = parseArduinoOutput(arduinoQutput);
b
return result;
25 %}

SensorData parseArduinoQOutput(final String arduinoOutput) {
SensorData result = null;
- if (arduinoOutput !'= null) {
30 final int[] data = int(split(trim(arduinoOutput), ',"'));
if (data.length == 2)
result = new SensorData(data[0] / 100.0, data[l] / 100.0);

}
return result;
35}

setup() is one of Processing’s standard functions and has the same
meaning as the Arduino’s setup() method. The Processing runtime envi-
ronment calls it only once at application startup time and initializes
the application. With the size() method, we create a new screen having
a certain width and height (by the way, you can find excellent reference
material for all Processing classes online®).

After initializing the screen, we prepare the serial port communication.
First we print a list of all serial devices that are currently connected to
the computer using Serial.list). Then we set the name of the serial port
we are going to use to the first list entry. This might be the wrong port,
so either you hard-code the name of your system’s serial port into the
code or you have a look at the list of serial ports and choose the right
one!

In line 5, we create a new Serial object that is bound to our application
(that’s what this is for). We use the serial port name we have from the
list of all serial ports and set the baud rate to 9600. If you'd like to
communicate faster, you have to change both the baud rate here and
in the Arduino sketch.

Finally, we tell the Serial object that we want to be notified of new serial
data only when a linefeed has been detected. Whenever we find a line-
feed, we know that a whole line of data was transmitted by the Arduino.

For our application, we chose an asynchronous programming model;
that is, we do not poll for new data in a loop but get notified whenever

6. http://processing.org/reference/

http://processing.org/reference/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=127

VISUALIZING SENSOR DATA <« 128

there’s new data on the serial port (to be concise, we want to be notified
only if a new linefeed was found). This way, we can change our applica-
tion’s state in real time and can prevent disturbing delays between the
arrival of data and graphics updates on the screen.

When new data arrives, serialEvent() gets called automatically and is
passed the serial port the data was found on. We have only one port,
so we can ignore this parameter. We try to read the current sensor data
using getSensorData(), and if we find some, we print them to the console
for debugging purposes and set the radius to the measured distance.
To make the visualization more appealing, we multiply the distance by
two, and we cut values bigger than 300 centimeters.

getSensorData()’s implementation is fairly simple. First it checks to see
if data is available on the serial port in line 20. This might look redun-
dant, because this method gets called only if data is available, but if
we’d like to reuse it in a synchronous context, the check is necessary.
Then we read all data until we find a linefeed character and pass the
result to parseArduinoOutput().

Parsing the output is easy because of Processing’s split() method. We
use it in line 30 to split the line of text we get from the Arduino at
the comma (frim() removes trailing and leading whitespace characters).
It returns a two-element array containing the textual representation
of two integer values. These strings are turned into integers afterward
using int(). Please note that in our case inf() takes an array containing
two strings and returns an array containing two int values.

Because it’s possible that we have an incomplete line of text from the
Arduino (the serial communication might start at an arbitrary byte
position), we’d better check whether we actually got two sensor val-
ues. If yes, we create a new SensorData object and initialize it with the
temperature and distance (after we have divided them by 100).

That’s all we need to read the sensor data asynchronously from the
Arduino. From now on, sensor data will be read whenever it's available,
and the global sensorData and radius variables will be kept up-to-date
automatically.

5.9 Visualizing Sensor Data

Now that the serial communication between our computer and the
Arduino works, let’s visualize the distance to the nearest object:

http://books.pragprog.com/titles/msard/errata/add?pdf_page=128

VISUALIZING SENSOR DATA <« 129

Download ultrasonic/InvertedSonar/InvertedSonar.pde

tnel void init_screen() {
background(255);
stroke(0);
- strokeWeight(1);
5 int[] radius_values = { 300, 250, 200, 150, 100, 50 };
- for (int r = 0; r < radius_values.length; r++) {
final int current_radius = radius_values[r] = 2;
ellipse(xCenter, yCenter, current_radius, current_radius);

- }
10 strokeWeight(10);

}

void draw() {

- init_screen();

15 int x = (int)(radius * Math.cos(degree * Math.PI / 180));
int y = (int)(radius * Math.sin(degree * Math.PI / 180));
point(xCenter + x, yCenter + y);
if (++degree == 360)

degree = 0;

20 }

init_screen() clears the screen and sets its background color to white in
line 2. It sets the drawing color to black using stroke(0) and sets the
width of the stroke used for drawing shapes to 1 pixel. Then it draws
six concentric circles around the screen’s center. These circles will help
us to see how far the nearest object is away from the PING))) sensor.
Finally, it sets the stroke width to 10, so we can visualize the sensor
with a single point that is 10 pixels wide.

Processing calls the draow() method automatically at a certain frame
rate (default is 60 frames per second), and it is the equivalent of the
Arduino’s loop() method. In our case, we initialize the screen and cal-
culate coordinates lying on a circle. The circle’s radius depends on the
distance we have from the Arduino, so we have a point that moves on
a circle. Its distance to the circle’s center depends on the data we mea-
sure with the PING))) sensor.

http://media.pragprog.com/titles/msard/code/ultrasonic/InvertedSonar/InvertedSonar.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=129

VISUALIZING SENSOR DATA <« 130

7 N

Some Fun with Sensors

With an ultrasonic sensor, you can easily detect whether some-
one is nearby. This automatically brings a lot of useful applica-
tions to mind. For example, you could open a door automati-
cally as soon as someone is close enough.

Alternatively, you can use advanced technology for pure fun.
What about some Halloween gimmicks like a pumpkin that
shoots silly string whenever you cross an invisible line?* It could
be a nice gag for your next party, and you can build it using the
PING))) sensor.t

*. http://www.instructables.com/id/Arduino-controlled-Silly-String-shooter/
t. http://arduinofun.com/blog/2009/11/01/silly-string-shooting-spider-contest-entry/

So, we've seen that there are two types of sensor: digital and analog. You
have also learned how to connect both types of sensors to the Arduino
and how to transfer their measurements to your computer. Working
with these two different IO types is the basis for all physical computing,
and nearly every project—no matter how complex—is a derivation of the
things you have learned in this chapter.

http://www.instructables.com/id/Arduino-controlled-Silly-String-shooter/
http://arduinofun.com/blog/2009/11/01/silly-string-shooting-spider-contest-entry/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=130

WHAT IF IT DOESN'T WORK? <« 131

5.10 What If It Doesn’t Work?

See Section 3.8, What If It Doesn’t Work?, on page 86, and make sure
that you have connected all parts properly to the breadboard. Take spe-
cial care with the PING))) and the TMP36 sensors, because you haven'’t
worked with them before. Make sure you have connected the right pins
to the right connectors of the sensors.

In case of any errors with the software—mo matter if it's Processing
or Arduino code—download the code from the book’s website and see
whether it works.

If you have problems with serial communication, double-check whether
you have used the right serial port and the right Arduino type. It might
be that you have connected your Arduino to another port. In this case,
you have to change the index O in the statement arduinoPort = new
Serial(this, Serial.listQ[0], 9600); accordingly. Also check whether the baud
rate in the Processing code and serial monitor matches the baud rate
you have used in the Arduino code. Make sure that the serial port is not
blocked by another application like a serial monitor window you forgot
to close, for example.

5.11 Exercises

® Build an automatic burglar alarm that shows a stop sign whenever
someone is too close to your computer.” Make the application as
smart as possible. For example, it should have a small activation
delay to prevent it from showing a stop sign immediately when it's
started.

* The speed of sound not only depends on the temperature but also
on humidity and atmospheric pressure. Do some research to find
the right formula and the right sensors.® Use your research results
to make our circuit for measuring distances even more precise.

¢ Use an alternative technology for measuring distances, for exam-
ple, an infrared sensor. Try to find an appropriate sensor, read its
data sheet, and build a basic circuit so you can print the distance
to the nearest object to the serial port.

7. You can find a stop sign here: http://en.wikipedia.org/wiki/File:Stop_sign_MUTCD.svg.
8. Try http://parallax.com.

http://en.wikipedia.org/wiki/File:Stop_sign_MUTCD.svg
http://parallax.com
http://books.pragprog.com/titles/msard/errata/add?pdf_page=131

Chapter 6

Building a Motion-Sensing Game

_ Controller

It’'s astonishing how quickly we get used to new technologies. A decade
ago, not many people would have imagined that we’d use devices some-
day to unobtrusively follow our movements. Today it’s absolutely nor-
mal for us to physically turn our smartphones when we want to change
from portrait to landscape view. Even small children intuitively know
how to use motion-sensing controllers for video game consoles such as
Nintendo’s Wii. You can build your own motion-sensing devices using
an Arduino, and in this chapter you’ll learn how.

We’ll work with one of the most widespread motion-sensing devices: the
accelerometer. Accelerometers detect movement in all directions—they
notice if you move them up, down, forward, backward, to the left, or to
the right. Many popular gadgets such as the iPhone and the Nintendo
Wii controllers contain accelerometers. That's why accelerometers are
cheap.

Both fun and serious projects can benefit from accelerometers. When
working with your computer, you certainly think of projects such as
game controllers or other input control devices. But you can also use
them when exercising or to control a real-life marble maze. You can also
use them to measure acceleration more or less indirectly, such as in a
car.

You will learn how to interpret accelerometer data correctly and how to
get the most accurate results. Then you’ll use an accelerometer to build
your own motion-sensing game controller, and you’ll implement a game
that uses it.

WHAT YoUu NEED <« 133

A R
"eW

[coeolpoooooo0ee N\ 9

; oo00000®
000000 ®
polo0R0O0e

ee0000 9N

pleTysdyaAeuy/iauepehpernnny iduy

Figure 6.1: All the parts you need in this chapter

6.1 What You Need

1. A half-size breadboard or—even better—an Arduino Prototyping
shield with a tiny breadboard

. An ADXL335 accelerometer

. A pushbutton

. A 10k resistor

. Some wires

. An Arduino board such as the Uno, Duemilanove, or Diecimila

. A USB cable to connect the Arduino to your computer

0 N O O o~ W N

. A 6 pin 0.1" standard header

http://books.pragprog.com/titles/msard/errata/add?pdf_page=133

WIRING UP THE ACCELEROMETER < 134

® ADXL335

B .,.....Tx

Figure 6.2: An ADXL335 sensor on a breakout board

6.2 Wiring Up the Accelerometer

There are many different accelerometers, differing mainly in the num-
ber of spacial axes they support (usually two or three). We use the
ADXL335 from Analog Devices—it’s easy to use and widely available.!

In this section, we’ll connect the ADXL.335 to the Arduino and create
a small demo program showing the raw data the sensor delivers. At
that point, we will have a quick look at the sensor’s specification and
interpret the data.

In Figure 6.2, you see a breakout board containing an ADXIL.335 sensor
on the right. The sensor is the small black integrated circuit (IC), and
the rest is just a carrier to allow connections. On the top, you see a 6
pin 0.1" standard header. The sensor has six connectors labeled GND,
Z, Y, X, 3V, and TEST. To use the sensor on a breadboard, solder the
standard header to the connectors. This not only makes it easier to
attach the sensor to a breadboard but also stabilizes the sensor, so it

1. http://www.analog.com/en/sensors/inertial-sensors/adxI335/products/product.html

http://www.analog.com/en/sensors/inertial-sensors/adxl335/products/product.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=134

BRINGING YOUR ACCELEROMETER TO LIFE < 135

does not move accidentally. You can see the result on the left side of
the photo (note that the breakout board on the left is not the same as
on the right, but it’s very similar). Don’t worry if you've never soldered
before. In Section A.2, Learning How to Solder, on page 241, you can
learn how to do it.

You can ignore the connector labeled TEST, and the meaning of the
remaining connectors should be obvious. To power the sensor, connect
GND to the Arduino’s ground pin and 3V to the Arduino’s 3.3 volts
power supply. X, Y, and Z will then deliver acceleration data for the x-,
y-, and z-axes.

Like the TMP36 temperature sensor we used in Section 5.4, Increasing
Precision Using a Temperature Sensor, on page 113, the ADXL335 is an
analog device: it delivers results as voltages that have to be converted
into acceleration values. So, the X, Y, and Z connectors have to be
connected to three analog pins on the Arduino. We connect Z to analog
pin O, Y to analog pin 1, and X to analog pin 2 (see Figure 6.3, on the
following page, and double-check the pin labels on the breakout board
you’re using!).

Now that we’ve connected the ADXL335 to the Arduino, let’s use it.

6.3 Bringing Your Accelerometer to Life

A pragmatic strategy to get familiar with a new device is to hook it up
and see what data it delivers. The following program reads input values
for all three axes and outputs them to the serial port:

Download MotionSensor/SensorTest/SensorTest.pde

const unsigned int X_AXIS_PIN 2
const unsigned int Y_AXIS_PIN =1
const unsigned int Z_AXIS_PIN = 0
const unsigned int BAUD_RATE = 96

00;

void setup() {
Serial.begin(BAUD_RATE);
B

void Toop() {
Serial.print(analogRead (X_AXIS_PIN));
Serial.print(" ");
Serial.print(analogRead(Y_AXIS_PIN));
Serial.print(" ");
Serial.printin(analogRead(Z_AXIS_PIN));
delay(100);

http://media.pragprog.com/titles/msard/code/MotionSensor/SensorTest/SensorTest.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=135

BRINGING YOUR ACCELEROMETER TO LIFE < 136

Figure 6.3: How to connect an ADXL335 sensor to an Arduino

Our test program is as simple as it can be. We define constants for the
three analog pins and initialize the serial port in the setup() function.
Note that we did not set the analog pins to INPUT explicitly, because
that’s the default anyway.

In the loop() function, we constantly output the values we read from
the analog pins to the serial port. Open the serial monitor, and move
the sensor around a bit—tilt it around the different axes. You should
see an output similar to the following:

344 331 390
364 276 352
388 286 287
398 314 286
376 332 289
370 336 301
379 338 281

http://books.pragprog.com/titles/msard/errata/add?pdf_page=136

FINDING AND POLISHING EDGE VALUES <« 137

These values represent the data we get for the x-, y-, and z-axes. When
you move the sensor only around the x-axis, for example, you can see
that the first value changes accordingly. In the next section, we’ll take
a closer look at these values.

6.4 Finding and Polishing Edge Values

The physical world often is far from being perfect. That’s especially true
for the data many sensors emit, and accelerometers are no exception.
They slightly vary in the minimum and maximum values they generate,
and they often jitter a bit. They might change their output values even
though you haven’t moved them, or they might not change their output
values correctly. In this section, we’ll determine the sensor’s minimum
and maximum values, and we’ll flatten the jitter.

Finding the edge values of the sensor is easy, but it cannot be eas-
ily automated. You have to constantly read the sensor’s output while
moving it. Here’s a program that does the job:

Download MotionSensor/SensorValues/SensorValues.pde

const unsigned int X_AXIS_PIN = 2;
const unsigned int Y_AXIS_PIN = 1;
const unsigned 1int Z_AXIS_PIN = 0;

const unsigned int BAUD_RATE = 9600;

int min_x, min_y, min_z;
int max_x, max_y, max_z;

void setup() {
Serial.begin(BAUD_RATE);
min_x = min_y = min_z = 1000;
max_x = max_y = max_z = -1000;

}

void Toop() {
const int x = analogRead(X_AXIS_PIN);
const int y = analogRead(Y_AXIS_PIN);
const 1int z = analogRead(Z_AXIS_PIN);

min_x = min(x, min_x); max_Xx = max(x, max_x);
min_y minCy, min_y); max_y = max(y, max_y);
min_z min(z, min_z); max_z = max(z, max_z);

Serial.print("x(");
Serial.print(min_x);
Serial.print("/");
Serial.print(max_x);

http://media.pragprog.com/titles/msard/code/MotionSensor/SensorValues/SensorValues.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=137

FINDING AND POLISHING EDGE VALUES <« 138

Serial.print("), y(;
Serial.print(min_y);
Serial.print("/™);
Serial.print(max_y);
Serial.print("), z(";
Serial.print(min_z);
Serial.print("/™;
Serial.print(max_z);
Serial.printin(")");
}

We declare variables for the minimum and maximum values of all three
axes, and we initialize them with numbers that are definitely out of the
sensor’s range (-1000 and 1000). In the loop() function, we permanently
measure the acceleration of all three axes and adjust the minimum and
maximum values accordingly.

Compile and upload the sketch, then move the breadboard with the
sensor in all directions, and then tilt it around all axes. Move it slowly,
move it fast, tilt it slowly, and tilt it fast. Use long wires, and be careful
when moving and rotating the breadboard so you do not accidentally
loosen a connection.

After a short while the minimum and maximum values will stabilize,
and you should get output like this:
x(247/649), y(253/647), z(278/658)

Write down these values, because we need them later, and you’ll prob-
ably need them when you do your own sensor experiments.

Now let’s see how to get rid of the jitter. In principle, it is simple. Instead
of returning the acceleration data immediately, we collect the last read-
ings and return their average. This way, small changes will be ironed
out. The code looks as follows:

Download MotionSensor/Buffering/Buffering.pde

]
N

Lne1 const unsigned int X_AXIS_PIN
- const unsigned int Y_AXIS_PIN =
const unsigned int Z_AXIS_PIN = 0;
- const unsigned int NUM_AXES = 3;
5 const unsigned int PINS[NUM_AXES] = {
- X_AXIS_PIN, Y_AXIS_PIN, Z AXIS_PIN
}
const unsigned int BUFFER_SIZE = 16;
const unsigned int BAUD_RATE = 9600;

I
Jany

int buffer[NUM_AXES][BUFFER_SIZE];
int buffer_pos[NUM_AXES] = { 0 };

http://media.pragprog.com/titles/msard/code/MotionSensor/Buffering/Buffering.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=138

FINDING AND POLISHING EDGE VALUES <« 139

- void setup() {
15 Serial.begin(BAUD_RATE);
-}

int get_axis(const int axis) {
- delay(1);
20 buffer[axis] [buffer_pos[axis]] = analogRead(PINS[axis]);
buffer_pos[axis] = (buffer_pos[axis] + 1) % BUFFER_SIZE;

long sum = 0;
for (int i = 0; i < BUFFER_SIZE; i++)
25 sum += buffer[axis][i];
return round(sum / BUFFER_SIZE);
}

- dint get_x() { return get_axis(0); }
30 1int get_y() { return get_axis(1l); }
int get_z() { return get_axis(2); }

void Toop() {
Serial.print(get_x();
35 Serial.print(" ");
Serial.print(get_y(Q));
Serial.print(" ");
Serial.printin(get_z());
}

As usual, we define some constants for the pins we use first. This time,
we also define a constant named NUM_AXES that contains the amount of
axes we are measuring. We also have an array named PINS that contains
a list of the pins we use. This helps us keep our code more generic later.

In line 11, we declare buffers for all axes. They will be filled with the
sensor data we measure, so we can calculate average values when we
need them. We have to store our current position in each buffer, so in
line 12, we define an array of buffer positions.

setup() only initializes the serial port, and the real action takes place in
the get_axis() function. It starts with a small delay to give the Arduino
some time to switch between analog pins; otherwise, you might get bad
data. Then it reads the acceleration for the axis we have passed and
stores it at the current buffer position belonging to the axis. It increases
the buffer position and sets it back to zero when the end of the buffer
has been reached. Finally, we return the average value of the data we
have gathered so far for the current axis.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=139

BUILDING YOUR OWN GAME CONTROLLER < 140

 Arduino

Figure 6.4: Game controller with accelerometer and pushbutton

That’s the whole trick. To see its effect, leave the sensor untouched on
your desk, and run the program with different buffer sizes. If you do not
touch the sensor, you would not expect the program’s output to change.
But if you set BUFFER_SIZE to 1, you will quickly see small changes. They
will disappear as soon as the buffer is big enough.

The acceleration data we measure now is sufficiently accurate, and we
can finally build a game controller that will not annoy users because of
unexpected movements.

6.5 Building Your Own Game Controller

To build a full-blown game controller, we only need to add a button to
our breadboard. In Figure 6.4, you can see how to do it (please, double-
check the pin labels on your breakout board!).

http://books.pragprog.com/titles/msard/errata/add?pdf_page=140

BUILDING YOUR OWN GAME CONTROLLER <« 141

5nd Vin B O S A
(SR - P |
fAnalog In

Figure 6.5: An Arduino prototyping shield

That’'s how it looks inside a typical modern game controller. We will
not build a fancy housing for the controller, but we still should think
about ergonomics for a moment. Our current breadboard solution is
rather fragile, and you cannot really wave around the board when it’s
connected to the Arduino. Sooner or later you will disconnect some
wires, and the controller will stop working.

To solve this problem, you could try to attach the breadboard to the
Arduino using some rubber bands. That works, but it does not look
very pretty, and it’s still hard to handle.

A much better solution is to use an Arduino Prototyping shield (see
Figure 6.5). It is a pluggable breadboard that lets you quickly build cir-
cuit prototypes. The breadboard is surrounded by the Arduino’s pins,
so you no longer need long wires. Shields are a great way to enhance
an Arduino’s capabilities, and you can get shields for many different
purposes such as adding Ethernet, sound, displays, and so on.2

Using the Proto Shield our game controller looks as in Figure 6.6, on
the next page. Neat, eh?

2. At http://shieldlist.org/, you find a comprehensive list of Arduino shields.

http://shieldlist.org/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=141

BUILDING YOUR OWN GAME CONTROLLER < 142

i

)}
9
>
2
i
£
5

D.0.G

Figure 6.6: The complete game controller on a Proto shield

Now that the hardware is complete, we need a final version of the game
controller software. It supports the button we have added, and it per-
forms the anti-jittering we have created in Section 6.4, Finding and
Polishing Edge Values, on page 137:

Download MotionSensor/Controller/Controller.pde

#include <Bounce.h>

const unsigned int BUTTON_PIN
const unsigned int X_AXIS_PIN
const unsigned int Y_AXIS_PIN
const unsigned int Z_AXIS_PIN =
const unsigned int NUM_AXES = 3;
const unsigned int PINS[NUM_AXES] = {
X_AXIS_PIN, Y_AXIS_PIN, Z_ AXIS_PIN
};
const unsigned int BUFFER_SIZE = 16;
const unsigned int BAUD_RATE = 19200;

Il
O NN

int buffer[NUM_AXES][BUFFER_SIZE];
int buffer_pos[NUM_AXES] = { 0 };

Bounce button(BUTTON_PIN, 20);

void setup() {
Serial.begin(BAUD_RATE);
pinMode (BUTTON_PIN, INPUT);
}

http://media.pragprog.com/titles/msard/code/MotionSensor/Controller/Controller.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=142

BUILDING YOUR OWN GAME CONTROLLER < 143

int get_axis(const int axis) {
delay(1);
buffer[axis] [buffer_pos[axis]] = analogRead(PINS[axis]);
buffer_pos[axis] = (buffer_pos[axis] + 1) % BUFFER_SIZE;

Tong sum = 0;
for (int i = 0; i < BUFFER_SIZE; i++)
sum += buffer[axis][i];
return round(sum / BUFFER_SIZE);
h

int get_x() { return get_axis(0); }
int get_y() { return get_axis(1l); }
int get_z() { return get_axis(2); }

void Toop() {
Serial.print(get_xQ);
Serial.print(" ");
Serial.print(get_yQ);
Serial.print(" ");
Serial.print(get_zQ);
Serial.print(" ");
if (button.update())
Serial.printin(button.read() == HIGH ? "1" : "0");
else
Serial.printin("0");
h

As in Section 3.7, Building a Dice Game, on page 80, we use the Bounce
class to debounce the button. The rest of the code is pretty much stan-
dard, and the only thing worth mentioning is that we use a 19200 baud
rate to transfer the controller data sufficiently fast.

Compile and upload the code, open the serial terminal, and play around
with the controller. Move it, press the button sometimes, and it should
output something like the following:

324 365 396 0
325 364 397
325 364 397
325 364 397
325 365 397
325 365 397
326 364 397

ORrRr OORrOo

A homemade game controller is nice, but wouldn’t it be even nicer if we
also had a game that supports it? That's what we will build in the next
section.

http://books.pragprog.com/titles/msard/errata/add?pdf_page=143

WRITING YOUR OWN GAME <« 144

6.6 Writing Your Own Game

To test our game controller, we will program a simple Breakout® clone
in Processing. The game’s goal is to destroy all bricks in the upper half
of the screen with a ball. You can control the ball with the paddle at the
bottom of the screen, and you can tilt the controller around the x-axis
to move the paddle horizontally. It'll look something like this:

Hﬁ

Although this is not a book about game programming, it will not hurt
to take a look at the game’s innards, especially because game program-
ming with Processing is really pure fun! Download the code from the
book’s website* and play the game before you dive into the code.

Because we will connect our game controller to the serial port, we have
to initialize it:
Download MotionSensor/Game/Game.pde

import processing.serial.x;
Serial arduinoPort;

3. http://en.wikipedia.org/wiki/Breakout_%28arcade_game%29
4. http://www.pragprog.com/fitles/msard

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://en.wikipedia.org/wiki/Breakout_%28arcade_game%29
http://www.pragprog.com/titles/msard
http://books.pragprog.com/titles/msard/errata/add?pdf_page=144

WRITING YOUR OWN GAME < 145

Then we define some constants that will help us to customize the game
easily:
Download MotionSensor/Game/Game.pde

final int COLUMNS = 7;
final int ROWS = 4;
final int BALL_RADIUS =
final int BALL_DIAMETER BALL_RADIUS = 2;

final int MAX_VELOCITY = 8;

final int PADDLE_WIDTH = 60;

final int PADDLE_HEIGHT = 15;

final int BRICK_WIDTH = 40;

final int BRICK_HEIGHT = 20;

final 1int MARGIN = 10;

final int WIDTH = COLUMNS # BRICK_WIDTH + 2 * MARGIN;
final int HEIGHT = 300;

final int X_AXIS_MIN = 252;

final int X_AXIS_MAX = 443;

final int LINE_FEED = 10;

final int BAUD_RATE = 19200;

8;

Most of these values should be self-explanatory—they define the size
of the objects that appear on the screen. For example, PADDLE_WIDTH is
width of the paddle measured in pixels, and COLUMNS and ROWS set
the layout of the bricks. You should replace X_AXIS_MIN and X_AXIS_MAX
the minimum and maximum values you measured for your sensor in
Section 6.4, Finding and Polishing Edge Values, on page 137.

Next we choose how to represent the game’s objects:
Download MotionSensor/Game/Game.pde

int px, py;

int vx, vy;

int xpos = WIDTH / 2;

int[][] bricks = new int[COLUMNS] [ROWS];

We store the balls’ current x and y coordinates in px and py. For its

current x and y velocity, we use vx and vy. We store the paddle’s x
position in xpos.

bricks is a two-dimensional array and contains the current state of the
bricks on the screen. If an array element is set to 1, the corresponding
brick is still on the screen. O means that it has been destroyed already.

Finally, we need to store the possible states of the game:

Download MotionSensor/Game/Game.pde

boolean buttonPressed = false;
boolean paused = true;
boolean done = true;

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=145

WRITING YOUR OWN GAME €@ 146

Unsurprisingly, we set buttfonPressed to true when the button on the con-
troller is pressed. Otherwise, it is false. paused tells you whether the
game is currently paused, and done is true when the current level is
done, that is, when all bricks have been destroyed.

Every Processing program needs a setup() function, and here is ours:
Download MotionSensor/Game/Game.pde

void setup() {
size(WIDTH, HEIGHT);
noCursor();
textFont(loadFont("Verdana-Bold-36.viw"));
initGame();
printIn(Serial.list(Q));
arduinoPort = new Serial(this, Serial.list()[0], BAUD_RATE);
arduinoPort.bufferUntil(LINE_FEED);
h

void initGame() {
initBricks(Q);
initBall(Q);

}

void initBricks() {
for (int x = 0; x < COLUMNS; x++)
for (int y = 0; y < ROWS; y++)
bricks[x][y] = 1;
}

void initBall() {

px = width / 2;

py = height / 2;

vx = int(random(-MAX_VELOCITY, MAX_VELOCITY));

vy = -2;
}
The setup() function initializes the screen, hides the mouse pointer with
noCursor(), and sets the font that we will use to output messages (create
the font using Processing’s Tools > Create Font menu). Then we call
initGame() to initialize the bricks array and the ball’s current position
and velocity. To make things more interesting, the velocity in x direction
is set to a random value. We set the velocity for the y direction to -2,
which makes the ball fall at a reasonable speed.

Now that everything is initialized, we can implement the game’s main
loop. Processing’s draw() method is a perfect place:®

5. http://processing.org/reference/ has excellent documentation for all Processing classes.

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://processing.org/reference/
http://books.pragprog.com/titles/msard/errata/add?pdf_page=146

WRITING YOUR OWN GAME < 147

Download MotionSensor/Game/Game.pde

void draw() {
background(0);
stroke(255);
strokeWeight(3);

done = drawBricks(Q);
if (done) {
paused = true;
printWinMessage();

}

if (paused)
printPauseMessage();
else
updateGame();

drawBall1(Q);
drawPaddTle();
B

We clear the screen and paint it black using background(). Then we set
the stroke color to white and the stroke weight to three pixels. After
that we draw the remaining bricks. If no bricks are left, we pause the
game and print a “You Win!” message.

If the game is paused, we print a corresponding message, and if it’s not,
we update the game’s current state. Finally, we draw the ball and the
paddle at their current positions using the following functions:

Download MotionSensor/Game/Game.pde

booTlean drawBricks() {
boolean allEmpty = true;
for (int x = 0; x < COLUMNS; x++) {
for (int y = 0; y < ROWS; y++) {
if (bricks[x][y]l > 0) {
allEmpty = false;
fi11(0, 0, 100 + y = 8);
rect(
MARGIN + x * BRICK_WIDTH,
MARGIN + y * BRICK_HEIGHT,
BRICK_WIDTH,
BRICK_HEIGHT
)
}
}
b
return allEmpty;
b

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=147

WRITING YOUR OWN GAME <« 148

void drawBall1() {

strokeWeight(1);

fi11(128, 0, 0);

ellipse(px, py, BALL_DIAMETER, BALL_DIAMETER):
}

void drawPaddle() {
int x = xpos - PADDLE_WIDTH / 2;
int y = height - (PADDLE_HEIGHT + MARGIN);
strokeWeight(1);
£111(128);
rect(x, y, PADDLE_WIDTH, PADDLE_HEIGHT);
b

As you can see, the ball is nothing but a circle, and the bricks and the
paddle are simple rectangles. To make them look more appealing, we
give them a nice border.

Printing the game’s messages is easy, too:
Download MotionSensor/Game/Game.pde

void printWinMessage() {

fi11(255);

textSize(36);

textAlign(CENTER);

text("YOU WIN!", width / 2, height = 2 / 3);
}

void printPauseMessage() {

fi11(128);

textSize(16);

textAlign(CENTER);

text("Press Button to Continue", width / 2, height = 5 / 6);
}

The update() function is very important, because it updates the game’s
state—it checks for collisions, moves the ball, and so on:

Download MotionSensor/Game/Game.pde

void updateGame() {

if (bal1Dropped()) {
initBall(Q);
paused = true;

} else {
checkBrickCollision();
checkWallCollision();
checkPaddleCollision();
pX += VX;
py += Vy;

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=148

WRITING YOUR OWN GAME <« 149

When the player does not hit the ball with the paddle and it drops out
of the playfield, the game stops, and the user is allowed to continue
after pressing the button. In the final game, you'd decrease some kind
of a life counter and print a “Game Over” message when the counter
reaches zero.

If the ball is still in play, we check for various collisions. We check if the
ball has hit one or more bricks, if it has hit a wall, or if it has hit the
paddle. Then we calculate the ball’s new position. The collision checks
look complicated, but they are fairly simple and only compare the ball’s
coordinates with the coordinates of all the other objects on the screen:

Download MotionSensor/Game/Game.pde

boolean ballDropped() {
return py + vy > height - BALL_RADIUS;
b

boolean inXRange(final int row, final int v) {
return px + v > row * BRICK_WIDTH &&
px + v < (row + 1) » BRICK_WIDTH + BALL_DIAMETER;
}

boolean inYRange(final int col, final int v) {
return py + v > col % BRICK_HEIGHT &&
py + v < (col + 1) = BRICK_HEIGHT + BALL_DIAMETER;
h

void checkBrickCollision() {
for (int x = 0; x < COLUMNS; x++) {
for (int y = 0; y < ROWS; y++) {
if (bricks[x][y] > 0) {
if (inXRange(x, vx) && inYRange(y, vy)) {
bricks[x][y] = 0;
if (inXRange(x, 0)) // Hit top or bottom of brick.

vy = -Vy;
if (inYRange(y, 0)) // Hit Teft or right side of brick.
VX = -VX;
3
b
}
}

void checkWallCollision() {
if (px + vx < BALL_RADIUS || px + vx > width - BALL_RADIUS)
VX = -VX;

if (py + vy < BALL_RADIUS || py + vy > height - BALL_RADIUS)
vy = -vy;

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=149

WRITING YOUR OWN GAME <« 150

7 A

M F ith Motion-Sensing Technologles
Since motion-sensing technologies became popular and
cheap, people have used them to create some unbelievably
cool and funny projects. A hilarious example is the Brushduino.*
A father built it to encourage his young children to brush their
teeth properly. Its main component—apart fromm an Arduino—
is a three-axis accelerometer. The Brushduino indicates which
section of the mouth o brush next using LEDs, and whenever
the child has successfully finished a section, it plays some music
from the Super Mario Brothers video game.

But you do not need an accelerometer to detect motion and
to create cool new electronic toys. An ordinary tilt sensor is suf-
ficient to build an interactive hacky-sack game, for example.
This hacky-sack blinks and beeps whenever you kick it, and
after 30 successful kicks, it plays a song.

*. http://camelpunch.blogspot.com/2010/02/blog-post.html
1. hitp://blog.makezine.com/archive/2010/03/arduino-powered_hacky-sack_game.html

void checkPaddleColTlision() {
final int cx = xpos;
if (py + vy >= height - (PADDLE_HEIGHT + MARGIN + 6) &&
px >= cx - PADDLE_WIDTH / 2 &&
px <= cx + PADDLE_WIDTH / 2)

{
vy = -Vy;
vx = int(
map (
pX - CX,
- (PADDLE_WIDTH / 2), PADDLE_WIDTH / 2,
-MAX_VELOCITY,
MAX_VELOCITY
)
)
}

}

Note that the collision checks also change the velocity of the ball if
necessary.

Now that the ball is moving, it'd be only fair to move the paddle, too.
As said before, you control the paddle by tilting the game controller

http://camelpunch.blogspot.com/2010/02/blog-post.html
http://blog.makezine.com/archive/2010/03/arduino-powered_hacky-sack_game.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=150

WRITING YOUR OWN GAME <« 151

around the x-axis. Here’s the code that gets the controller data via the
serial port:

Download MotionSensor/Game/Game.pde

tnel void serialEvent(Serial port) {
final String arduinoData = port.readStringUntil(LINE_FEED);

if (arduinoData != null) {
5 final int[] data = int(split(trim(arduinoData), ' '));
if (data.length == 4) {
buttonPressed = (data[3] == 1);
if (buttonPressed) {
- paused = !paused;
10 if (done) {
- done = false;
initGame();
}
}

if (!paused)
xpos = int(map(data[0], X_AXIS_MIN, X_AXIS_MAX, 0, WIDTH));
}
}

20 }
Processing calls the serialEvent() function whenever new data is avail-
able on the serial port. The controller sends its data line by line. Each
line contains the current acceleration of the x-, y-, and z-axes and the
current state of the button. It separates all attributes by blanks. So, in
serialEvent(), we read the new line, split it at the blank characters, and
convert the resulting strings into int values. This all happens in line 5.

We check whether we actually got all four attributes, and then we see
whether the player has pushed the button on the game controller. If
yes, we toggle the pause state: if the game currently is in pause mode,
we continue the game; otherwise, we pause it. Also, we check whether
the game has been finished. If yes, we start a new game.

Finally, we read the current X acceleration in line 17 and map it to the
possible x positions of our paddle. That’s really all we have to do to
move the paddle using our own game controller. Also, it doesn’t matter
if you use the controller to control a game or a completely different type
of software. You only have to read four integer values from the serial
port when you need them.

In this section, you have learned much more about game program-
ming than about Arduino programming or hardware. But you should

http://media.pragprog.com/titles/msard/code/MotionSensor/Game/Game.pde
http://books.pragprog.com/titles/msard/errata/add?pdf_page=151

MORE PROJECTS <« 152

7 A

Creating G ith the Arduino
You can use the Arduino to build more than your own cool
game controllers. You can also use it to build some cool games.
With the right extension shields, you can even turn an Arduino
info a powerful gaming console.* It’s pricey, but suddenly your
Arduino has a 320x200 pixel OLED touch screen, an analog
stick, tfwo buttons, and even an vibration motor for force feed-
back effects.

While looking for a cheaper solution, someone built a Super
Mario Bros clone with minimal hardware requirements.t It's a
perfect example of the unbelievable creativity that the Arduino
sefts free.

*. http://antipastohw.blogspot.com/2009/02/getting-started-with-gamepack-in-3.html
t. http://blog.makezine.com/archive/2010/03/super_mario_brothers_with_an_arduino.html

have also learned that it’s easy to integrate a well-designed electronics
project into your regular software projects. We carefully analyzed the
analog data returned by the accelerometer, and then we eliminated all
unwanted jitter. This is a technique you’ll use often in your electronics
projects, and we will use it again in the next chapter.

6.7 More Projects

If you keep your eyes open, you'll quickly find many more applications
for accelerometers than you might imagine. Here’s a small collection of
both commercial and free products:

¢ Nike’s iPod Sport Kit supports you in your daily exercise, and it’s
based on an accelerometer, too. You can learn a lot from its inner
workings.®

¢ It’s a lot of fun to create a marble maze computer game and control
it using the game controller we build in this chapter. How much
more fun will it be to build a real marble maze?”

¢ In this chapter, we have measured only direct acceleration; that
is, we usually have the accelerometer in our hand and move it.

6. http://www.runnerplus.com/read/1-how_does_the_nike_ipod_sport_kit_accelerometer_work/
7. http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-accelerometer.html

http://antipastohw.blogspot.com/2009/02/getting-started-with-gamepack-in-3.html
http://blog.makezine.com/archive/2010/03/super_mario_brothers_with_an_arduino.html
http://www.runnerplus.com/read/1-how_does_the_nike_ipod_sport_kit_accelerometer_work/
http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-accelerometer.html
http://books.pragprog.com/titles/msard/errata/add?pdf_page=152

WHAT IF IT DOESN'T WORK? <« 153

But you can also build many interesting projects that measure
indirect acceleration, such as when you are driving a car.®

6.8 What If It Doesn’t Work?

All advice from Section 5.10, What If It Doesn’t Work?, on page 131 also
applies to the project in this section. Still, we have some special items
such as the protoshield. Make sure that it sits correctly on top of the
Arduino and that none of its connectors accidentally slipped past its
socket. Sometimes the headers are out of shape, so it might happen.

Check if you have soldered the pin header correctly to the breakout
board. Use a magnifying glass and study every single solder joint care-
fully. Did you use enough solder? Did you use too much and connect
two joints?

6.9 Exercises

® Create your own computer mouse using the ADXL.335 accelerom-
eter. It should work in free air, and it should emit the current
acceleration around the x- and y-axes. It should also have a left
button and a right button. Write some Processing code (or per-
haps code in a programming language of your choice?) to control
a mouse pointer on the screen.

8. http://www.dimensionengineering.com/appnotes/Gmeter/Gmeter.htm

http://www.dimensionengineering.com/appnotes/Gmeter/Gmeter.htm
http://books.pragprog.com/titles/msard/errata/add?pdf_page=153

7.1

Chapter 7

One of the most entertaining electronic activities is tinkering: taking an
existing product and turning it into something different or using it for
an unintended purpose. Sometimes you have to open the product and
void its warranty; other times you can safely make it