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Preface

This is the tenth book in the series of Advances in Robot Kinematics.
Two were produced as workshop proceedings, Springer published one
book in 1991 and since 1994 Kluwer published a book every two years
without interruptions. These books deal with the theory and practice
of robot kinematics and treat the motion of robots, in particular robot
manipulators, without regard to how this motion is produced or con-
trolled. Each book of Advances in Robot Kinematics reports the most
recent research projects and presents many new discoveries.

The issues addressed in this book are fundamentally kinematic in
nature, including synthesis, calibration, redundancy, force control, dex-
terity, inverse and forward kinematics, kinematic singularities, as well as
over-constrained systems. Methods used include line geometry, quater-
nion algebra, screw algebra, and linear algebra. These methods are ap-
plied to both parallel and serial multi-degree-of-freedom systems. The
results should interest researchers, teachers and students, in fields of
engineering and mathematics related to robot theory, design, control and
application.

All the contributions had been rigorously reviewed by independent
reviewers and fifty three articles had been recommended for publica-
tion. They were introduced in seven chapters. The authors discussed
their results at the tenth international symposium on Advances in Robot
Kinematics which was held in June 2006 in Ljubljana, Slovenia. The
symposium was organized by Jozef Stefan Institute, Ljubljana, under
the patronage of IFToMM - International Federation for the Promotion
of Mechanism and Machine Science.

We are grateful to the authors for their contributions and for their
efficiency in preparing the manuscripts, and to the reviewers for their
timely reviews and recommendations. We are also indebted to the per-
sonnel at Springer for their excellent technical and editorial support.

Jadran Lenarc¢i¢ and Bernard Roth, editors
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Abstract

Keywords:

Wire-based tracking devices are an affordable alternative to costly track-
ing devices. They consist of a fixed base and a platform, attached to
the moving object, connected by six wires whose tension is maintained
along the tracked trajectory. One important shortcoming of this kind
of devices is that they are forced to operate in reduced workspaces so
as to avoid singular configurations. Singularities can be eliminated by
adding more wires but this causes more wire interferences, and a higher
force exerted on the moving object by the measuring device itself. This
paper shows how, by introducing a rotating base, the number of wires
can be reduced to three, and singularities can be avoided by using an
active sensing strategy. This also permits reducing wire interference
problems and the pulling force exerted by the device. The proposed
sensing strategy minimizes the uncertainty in the location of the plat-
form. Candidate motions of the rotating base are compared selected
automatically based on mutual information scores.

Tracking devices, Kalman filter, active sensing, mutual information,
parallel manipulators

1. Introduction

Tracking devices, also called 6-degree-of-freedom (6-DOF') devices, are
used for estimating the position and orientation of moving objects. Cur-
rent tracking devices are based on electromagnetic, acoustic, mechani-
cal, or optical technology. Tracking devices can be classified according
to their characteristics, such as accuracy, resolution, cost, measurement
range, portability, and calibration requirements. Laser tracking systems
exhibit good accuracy, which can be less than 1um if the system is well

calibrated.

Unfortunately, this kind of systems are very expensive, their
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4 J. Andrade-Cetto and F. Thomas

calibration procedure is time-consuming, and they are sensitive to the
environment. Vision systems can reach an accuracy of 0.1mm. They are
low-cost portable devices but their calibration procedure can be compli-
cated. Wire-based systems can reach an accuracy of 0.1mm, they are
also low cost portable devices but capable of measuring large displace-
ments. Moreover, they exhibit a good compromise among accuracy,
measurement range, cost and operability.

Wire-based tracking devices consist of a fixed base and a platform
connected by six wires whose tension is maintained, while the platform is
moved, by pulleys and spiral springs on the base, where a set of encoders
give the length of the wires. They can be modelled as 6-DOF parallel
manipulators because wires can be seen as extensible legs connecting
the platform and the base by means of spherical and universal joints,
respectively.

Dimension deviations due to fabrication tolerances, wire-length un-
certainties, or wire slackness, may result in unacceptable performance of
a wire-based tracking device. In general, the effects of all systematic er-
rors can be eliminated by calibration. Some techniques for specific errors
have already been proposed in the literature. For example, a method
for compensating the cable guide outlet shape of wire encoders is de-
tailed in Geng and Haynes, 1994, and a method for compensating the
deflections caused by wire self-weights is described in Jeong et al., 1999.
In this paper, we will only consider wire-length errors which cannot be
compensated because of their random nature.

Another indirect source of error is the force exerted by the measuring
device itself. Indeed, all commercial wire encoders are designed to keep
a large string tension. This is necessary to ensure that the inertia of the
mechanism does not result in a wire going slack during a rapid motion.
If a low wire force is used, it would reduce the maximum speed of the
object to be tracked without the wires going slack. On the contrary, if a
high wire force is used, the trajectory of the object to be tracked could
be altered by the measuring device. Hence, a trade-off between accuracy
and speed arises.

The minimum number of points on a moving object to be tracked for
pose measurements is three. Moreover, the maximum number of wires
attached to a point is also three, otherwise the lengths of the wires will
not be independent. This leads to only two possible configurations for
the attachments on the moving object. The 3-2-1 configuration was pro-
posed in Geng and Haynes, 1994. The kinematics of this configuration
was studied, for example, in Nanua and Waldron, 1990 and Hunt and
Primrose, 1993. Its direct kinematics can be solved in closed-form by
using three consecutive trilateration operations yielding 8 solutions, as
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platform

(a) (b) (¢) (d)

Figure 1. The main two configurations used for wire-based tracking devices: (a) the
“3-2-17, (b) the “2-2-2”  and (c) the proposed tracking device, with (d) the rotating
base.

in Thomas et al., 2005. The 2-2-2 configuration was first proposed in
Jeong et al., 1999 for a wire-based tracking device. The kinematics of
this configuration was studied, for example, in Griffis and Duffy, 1989,
Nanua et al., 1990, and Parenti-Castelli and Innocenti, 1990 where it
was shown that its forward kinematics has 16 solutions. In other words,
there are up to 16 poses for the moving object compatible with a given
set of wire lengths. These configurations can only be obtained by a nu-
merical method. The two configurations above were compared, in terms
of their sensitivity to wire-length errors, in Geng and Haynes, 1994. The
conclusion was that they have similar properties.

This paper is organized as follows. Section 2 contains the mathemat-
ical model of our proposed 3-wire-based sensing device, while Section 3
derives the filtering strategy for tracking its pose. Given that this device
has a moving part, Section 4 develops an information theoretic metric
for choosing the best actions for controlling it. A strategy to prevent
possible wire crossings is contemplated in Section 5. Section 6 is de-
voted to a set of examples demonstrating the viability of the proposed
approach. Finally, concluding remarks are presented in Section 7.

2. Kinematics of the Proposed Sensor

In order to reduce cable interferences, singularities, and wire tension
problems we choose to reduce the number of cables from six to three, and
to have the base rotate on its center. Provided the tracked object mo-
tion is sufficiently slow, two measurements at different base orientations
would be equivalent to a 2-2-2 configuration.

More elegantly, and to let the tracked object move at a faster speed,
measurements can be integrated sequentially through a partially observ-
able estimation framework. That is, a Kalman filter.
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Consider the 3-wire parallel device in Figure 1(c). It is assumed that
the platform configuration is free to move in any direction in IR? x SO(3).
Let the pose of our tracking device be defined as the 14-dimensional array

_p_

0
v

X = w ) (1)

0.4
wA

where p = (2,9, 2)" is the position of the origin of a coordinate frame
fixed to the platform, @ = (1,6, ¢) is the orientation of such coordinate
frame expressed as yaw, pitch and roll angles, v = (vm,vy,vz)T and
w = (u)gc,(,uy,wz)—r are the translational and rotational velocities of p,
respectively; and 04 and w4 are the orientation and angular velocity of
the rotating base.

Assume that the attaching points on the base a;, i = 1,2,3, are
distributed on a circle of radius a as shown in Figure 1(d). Then, the
coordinates of a; can be expressed in terms of the platform rotation
angle 0 4 as

Gyi acos(p; +04)
ay;i | = |asin(p; +60.4) | . (2)
Q45 0

Moreover, let e; be the unit norm vector specifying the direction from
a; to the corresponding attaching point b; in the platform; and let [;
be the length of the i-th wire, ¢ = 1,2,3. The value of b; is expressed
in platform local coordinates, where R is the rotation matrix describing
the absolute orientation of the platform. Then, the position of the wire
attaching points in the platform, in global coordinates, are

bgzai—i-liei:p—f—nbi. (3)

3. State Estimation

We adopt a smooth unconstrained constant-velocity motion model, its
pose altered only by zero-mean, normally distributed accelerations and
staying the same on average. The Gaussian acceleration assumption
means that large impulsive changes of direction are unlikely. In such
model the prediction of the position and orientation of the platform at
time ¢ plus a time interval 7 is given by

[p(t + 7)} _ [p(t) +v(t)T + da(t)T?/2 (4)
0(t+7) 0(t) + w(t)T + da(t)T?/2|
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with da and da zero mean white Gaussian translational and angular
acceleration noises. Moreover, the adopted model for the translational
and angular velocities of the platform is given by

[:((ffi:))} N w iﬁi(fﬁﬁ] : (5)

By the same token, the adopted models for the orientation and angular
velocity of the base are

OA(t +7’):| _
wAlt+7)

wa(t) + (aalt) + daa(t))r

in which the control signal modifying the base orientation is the accel-
eration impulse 4.

Since in practice, the measured wire lengths, [;, ¢ = 1,2,3, will be
corrupted by additive Gaussian noise, dz;, we have that

zi(t) = Li(t) + 0zi(t) = |[p(t) + R()bi —ai(t)[| +6zi(t) . (7)

Lastly, the orientation of the moving base is measured by means of
an encoder. Its model is simply

24(t) = 0a(t) + dza(t) . (8)

Eqs. 4 and 5 constitute our motion prediction model f(x, a4, 0x).
Egs. 7 and 8 complete our measurement prediction model h(x, z).
Now, an Extended Kalman Filter can be used to propagate the platform
pose and velocity estimates, as well as the base orientation estimates,
and then, to refine these estimates through wire length measurements.
To this end, éx ~ N(0,Q), 0z ~ N(0,R), and our plant Jacobians with
respect to the state F = 0f /0x, and to the noise G = 0f /0dx become

0a(t) +wa)T + (aa(t) + 5ozA(t))T2/2] ()

1 71 ] =]
1 . 71 . TTI
_ T
F= I and G = - . (9
1 7 %
L 1_ L T

The measurement Jacobians H = 0h/0x are simply

0] : (10)

Hi(t):[ez(t) b; x e;j(t) 0 0 ggj

with
p(t) + R(t)bi — ai(t)

~ lp(®) + R(t)b; — ait)]

€; (t)
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T
ry
Then, by rewriting R = rg , the term ggj\ in H; becomes
ry
Oh; _ T .
90, 2a((x(t) +r1(t) by)sin(0a(t) + pi) (12)

—(y(t) +r2(t)"bi) cos(0(t) + pi)) /Li(t) -

Lastly,
Hy¢t)=[0 0 0 0 1 0]. (13)

For the sake of clarity, in the sequel, when needed, time dependencies
will be placed as subscripts. Moreover, the term t + 7|t will be used
to indicate an a prior estimate (before measurements are incorporated),
and the terms ¢t and ¢ + 7|t 4+ 7 will represent posterior estimates (once
measurements are taken into account). The prediction of the state and
state covariance are given by

Xitrit = f(Xt\mOUb 0) (14)

P, .. =FP,F' +GQG' (15)

and, the revision of the state estimate and state covariance are

Xttrptr = Xeprft + K(Zt4r — h(Xeirp,0)) (16)
Pt+T|t+T = (I - KH)Pt-‘rT\t (17)

with I the identity matrix, and K = Py, ,;H' (HP, ., H" + R)™! the
usual Kalman gain.

4. Information Gain

This section builds from basic principles a metric for the expected
information gain as a result of performing a given action, and develops
from it, a strategy for controlling the base orientation. The aim is to
rotate the base in the direction that most reduces the uncertainty in
the entire pose state estimate, by using the information that should
be gained from future wire measurements were such a move be made,
but taking into account the information lost as a result of moving with
uncertainty.

The essential idea is to use mutual information as a measurement
of the statistical dependence between two random vectors, that is, the
amount of information that one contains about the other. Consider
the states x, and the measurements z. The mutual information of the



Wire-based Tracking Using Mutual Information 9

two continuous probability distributions p(x) and p(z) is defined as the
information about x contained in z, and is given by

= x,z)lo M xdz
I(x,z)—/x’zp( ,z) 1 gp(x)p(z)d dz . (18)

Note how mutual information measures the independence between
the two vectors. It equals zero when they are independent, p(x,z) =
p(x)p(z). Mutual information can also be seen as the relative entropy
between the marginal density p(x) and the conditional p(x|z)

p(x|z)

I(x,2z) /x’z p(x,z)log ) dxdz (19)

Given that our variables of interest can be described by multivariate

Gaussian distributions, the parameters of the marginal density p(x) are

trivially the Kalman prior mean x;.|; and covariance P; ;. Moreover,

the parameters of the conditional density p(x|z) come precisely from

the Kalman update equations x;-;4, and Py ;. Substituting the

genaral form of the Gaussian distribution in Eq. 19, we can obtain a
closed formula

1
I(x,2) = 5 (log [Py 7t —10g [Py yrisr) - (20)

Thus, in choosing a maximally mutually informative motion com-
mand, we are maximizing the difference between prior and posterior
entropies (MacKay, 1992). In other words, we are choosing the motion
command that most reduces the uncertainty of x due to the knowledge
of z.

The real-time requirements of the task preclude using an optimal con-
trol strategy to search for the base rotation command that ultimately
maximizes our mutual information metric. Instead, we can only evalu-
ate such metric for a discrete set of actions within the range of possible
commands, and choose the best action from those. The set of possible
actions is a discretization of a range of accelerations.

5. Preventing Wire Crossings

Providing the base with the ability to rotate has the added advantage
of increasing the range of motion of the tracked platform; mainly, for
rotations along the vertical axis. One of the main difficulties however,
is in appropriately choosing base rotation commands so as to prevent
wire crossings. Considering that wire end-point displacements are suf-
ficiently small per sampling interval, the trajectory described by each
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wire can be assumed to be circumscribed within a tetrahedron. One
way to predict wire crossings is by checking whether the tetrahedra
described by the current and posterior poses for each wire intersect
each other; each tetrahedron described by the four attaching points
{@i,0je @i 47t b;,t|t7 bg,t+7—|t}'

A very fast test of tetrahedra intersection is based on the Separating
Axis Theorem described in the computer graphics literature (Ganovelli
et al., 2003). The test consists on checking whether the plane lying on
the face of one tetrahedron separates the two of them. If this is not
the case, the test continues to find out if there exists a separating plane
containing only one edge on one of the tetrahedra.

6. Implementation and Examples
6.1 Mechanical Considerations

In a cable extension transducer, commonly known as a string pot,
the tension of the cable is guaranteed by a spring connected to its spool.
Using a cable guide, the cable is allowed to move within a 20° cone, mak-
ing it suitable for 3D motion applications. There are cable guides that
permit 360° by 317° displacement cable orientation flexibility. Manufac-
turers of such sensors are Celesco Transducer Products Inc., SpaceAge
Control Inc., Carlen Controls Inc., and several others.

String pots provide a long range (0.04 — 40m), with typical accuracy
of 0.02% of full scale. The maximum allowable cable velocity is about
7.2m/s and the maximum cable acceleration is about 200m /s?.

The usefulness of a tracking device depends on whether it can track
the motion fast enough. This ability is determined by the lag, or latency,
between the change of the position and orientation of the target being
tracked and the report of the change to the computer. In virtual reality
applications, lags above 50 milliseconds are perceptible to the user. In
general, the lag for mechanical trackers is typically less than 5ms.

6.2 Maximum Base Rotation Speed

The quality of the estimated pose is directly influenced by the velocity
at which the base can rotate. To determine the range of motion velocities
that can be tracked with our system, a tracking simulation was repeated
limiting the base rotation velocity. A set of 20 runs was conducted,
varying the maximum platform rotation speed from 0 to 1 rad/s, and
with time steps of 0.01 s; the tracked object translating at a constant
velocity of 0.2 m/s along the z axis, and rotating at {5 rad/s about an
axis perpendicular to the base. Figure 2 shows the average error of the pose
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Figure 2. Average position and orientation recovery error as a function of the

maximum platform rotation speed, and 2nd order curve fit.

Figure 3. Wire sensing device. The rotating base is attached to the Staubli arm
shown in the left side. The moving platform is attached to the arm shown to the
right.

estimation as a function of the maximum base rotational velocity. The
best pose estimations are achieved when the base rotates at twice the
speed of the tracked object, approximately £ rad/s for this experiment.

6.3 Pure Rotations

A second experiment consisted in testing the tracking system under
pure rotations along the vertical axis. The idea is to show that, whenever
cable crossing allows it, the largest acceleration commands are selected.
This is because prior and posterior entropy difference is maximized for
largest possible configuration changes. The attaching points in both the
base and the platform have been arranged to form equilateral triangles.
Their coordinates can be found in Table 1, and refer to the frames
shown in Figure 1. The actual testbench used is shown in Figure 6.3.

For this example, the object to be tracked rotated at {5 rad/s, whilst
kept at a distance of 1 m from the base. The maximum base rotation
speed was limited to § rad/s, and the limit for possible base accelera-
tion command was set to 5 rad/sec?. Figure 4(a) shows the evolution of
the wire length measurements along the trajectory. Wire length sensors
are modeled with additive Gaussian noise with zero mean and 1 mm
standard deviation. Moreover, readings of the base orientation are also
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Table 1. Coordinates of the attaching points (in meters) in their local coordinate
frames.

T y z T y z

a 0.3000,  0.0000,  0.0000 b: 0.1000,  0.0000,  0.0000
as —-0.1500, 0.2598, 0.0000 bs —0.0500, 0.0866, 0.0000
as —-0.1500, -0.2598, 0.0000 bs -0.0500, -0.0866, 0.0000

—roll
——pitch
—vyaw

o
o
5}

Position error (m)

Measured wire lengths (m)
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)
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o
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Figure 4.  Wire tracking of pure rotations along an axis perpendicular to the base
platform.

modeled with zero mean white additive Gaussian noise with 0.001 rad
standard deviation. Figures 4(b) and 4(c) show the tracked object po-
sition and orientation recovery errors, respectively. The motion of the
rotating base is depicted in Figures 4(d)-4(e), showing that commands
for maximal platform rotation velocities are being selected from our mu-
tual information metric (Figure 4(f)).

6.4 Compound Motions

In this last example, the tracked object moves back and forth in the
three Cartesian components along a line from (1,1, 1) to (2,2, 2) meters,
whilst rotating ™ rad about its center in all raw, pitch and yaw com-
ponents. This experiment shows that for compound motions it is more
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Figure 5. Wire tracking of compound motion.

difficult to disambiguate orientation error, while still doing a good job at
tracking the correct object pose. Once more, the maximum base rotation
speed was limited to ¢ rad/sec, and the limit for possible base accelera-
tion command was set to 30 rad/sec?. Figure 5(a) shows the evolution of
wire length measurements for this example. The tracked object position
and orientation errors is shown in Figures 5(b) and 5(c). The motion
of the rotating base is depicted in Figures 5(d)-5(e). And, our mutual
information action selection mechanism is shown in Figure 5(f).

7. Conclusion

An active sensing strategy for a wire tracking device has been pre-
sented. It has been shown how by allowing the sensor platform rotate
about its center, a wider range of motions can be tracked by reducing
the number of wires needed from 6 to 3. Moreover, platform rotation is
performed so as to maximize the mutual information between poses and
measurements, and at the same time, so as to prevent wire wrappings
as far as possible.
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Abstract  Singular postures of Stewart Gough Platforms must be avoided because
close to singularities they lose controllable degrees of freedom. Hence
there is an interest in a distance measure between the instantaneous
configuration and the nearest singularity. This article presents such a
measure, which is invariant under Euclidean motions and similarities,
which has a geometric meaning and can be computed in real-time. This
measure ranging between 0 and 1 can serve as a performance index.

Keywords: Stewart Gough Platform, distance measure, perfomance index

1. Introduction

In Section 3 of this article we define a new measure, which allows
to compare different postures of different nonredundant Stewart Gough
Platforms (SGPs). Such a measure should assign to each configuration
KC a scalar D(K) obeying the following six properties:

1. D(K) > 0 for all K of the configuration space,
. D(K) =0 if and only if K is singular,

. D(K) is invariant under Euclidean motions,

. D(K) is invariant under similarities,

. D(K) has a geometric meaning,

6. D(K) is computable in real-time.

U= W N

IC is singular if and only if the six legs belong to a linear line complex
(see Merlet, 1992) or, analytically seen, the determinant of the Jacobian

- Lo~ ,=P,—B;, and
-1 -1 7 7 7

L L= I L)t L, =Bix,=P;x]

Jh =

vanishes, where B; resp. P; are the coordinates of the base resp. platform
anchor points with respect to any fixed reference frame Yy with origin
O. Therefore the it" row of J equals the normalized Pliicker coordinates
11|71 (L, ;) of the carrier line £; of the i*" leg oriented in the direction
B;P;. We’ll assume for the rest of this article that B; # P; fori =1, ..,6.
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Kinematic meaning of the Jacobian. The velocity vector v(P;) of
P; due to the instantaneous screw (= twist) q := (q,q) of the platform
Y against Xy can be decomposed in a component v, (P;) along the it
leg £; and in a component v (P;) orthogonal to it (see Fig. 1), thus

v(Pi) =q+ (ax Py) = v, (Pi) + v (P (2)

with v (Pl = rv(P) = pra+ A =ide ()
Therefore the Jacobian J is the matrix of the linear mapping

v:gd=Jq with d=(di,...ds)". (4)

¢ has at least a one-dimensional kernel ker,, if K is singular. Let k € ker,
and k # o. Then also pk with 4 € R lies in ker,. Therefore we can say,
that v(P;) can be arbitrarily large for vanishing translatory velocities in
the six prismatic legs. The sole exeption is the case where P; lies on the
instantaneous screw axis (isa) and k is an instantaneous rotation.

Review. In the following we analyze some of the in our opinion most
important indices in view of the initially stated six properties.

The manipulabilitiy introduced by Yoshikawa, 1985 is not invariant
under similarities, because for SGPs it equals |det(J)|. So Lee et al.,
1998 used |det(J)|-|det(T)|,,} as index, where |det(J)|,, denotes the
maximum of |det(J)| over the SGP’s configuration space. But the com-
putation of |det(J )|, is a nonlinear task and was only done for planar
SGPs with very special geometries. Only for these SGPs |det(J)|m can
be interpreted geometrically as the volume of the framework.

Pottmann et al., 1998 introduced the concept of the best fitting linear
line complex c of L1, .., Le. The suggested index equals the square root
of the minimum of Y d? with respect to ¢ under the side condition
c’c = 1. The index is not invariant under similarities and it is not
defined for instantaneous translations c. In order to close this gap, the
authors proposed to minimize a further function, which yields a second
value. But how should these two values be combined to a single number?

The rigidity rate introduced by Lang et al., 2001 is based on the idea,
that a SGP at any position K permits a one-parametric self-motion
within the group of Euclidean similarities G;. The angle ¢ € [0,7/2]
between the tangent of the self-motion in I and the subgroup of Eucli-
dean displacements serves as an index. But the choice of the invariant
symmetric bilinear form in the tangent space of G7, which is necassary
in order to define a measure in the sense of non-Euclidean geometry, is
arbitrary. Although ¢ fulfills all six stated properties, its applicability is
limited. This becomes manifest in the remark at the end of Section 5.



The Control Number as Index for Stewart Gough Platforms 17

2. Preliminary Considerations

Now we take a closer look at the reciprocal of the condition number
(cdn™!) introduced by Salisbury and Craig, 1982, because it will be
the starting point of our considerations. cdn~! equals the ratio of the
minimum A and the maximum \ . of the quadratic objective function

E(g) : gTIGQ =w? + [@2 + wQinz} (5)

with p denoting the isa, w the angular velocity and & the translatory
velocity of the screw q, under the quadratic side condition

v(q): d'd=q'Nq=1 with N=J"J. (6)

Due to the linearity of ¢ in (4) the screw pq corresponds to the p-
fold translatory velocity d; in the six prismatic legs, and therefore the
side condition v(q) is well defined. The weak point of this index is the
objective function for the following reasons. First, it is not invariant
under translations, because ((q) depends on the choice of O. In practice
O is not selected arbitrarily, but placed in the tool center point. But
the real problem, which causes the variance of coinfl under similarities,
occurs from the dimensional inhomogeneity of ((q). To overcome this
deficiency, different concepts (e.g. characteristic length, see Zanganeh
and Angeles, 1997) were introduced, but they still weight the ratio of
length and angle in a more or less arbitrary way. The inhomogeneity and
the lacking invariance of {(q) do not allow a geometric interpretetion of
cdn~! and they question its adequacy as a performance index for SGPs.

The conslusion of this considerations is, that we have to look for a new
objective function ((q) which meets our initially stated demands. But
we want to add a further argument, which has the following motivation:
The cdn™' as well as the manipulability are also used to optimize the
design of SGPs. But these two indices do not depend on the choice of
B; and P; on £; as long as B; # P;. Thus we require:

7. D(K) depends on the geometry of the SGP, not
only on the carrier lines Ly,...,Lg of the six legs.

Pottmann et al., 1998 also presented a modified version of his method,
namely the line segment method, which statisfies the 7" demand but
does not eliminate the other weak points. The rigidity rate is indepen-
dent of the choice of the base anchor points and so it only takes the
geometry of the platform into consideration. This raises the following
problem: If we change the viewpoint and consider ¥ as the unmoved
base and ¥ as platform, we get another index for the same SGP con-
figuration. So the instantaneous rigidity of the SGP depends on the
viewpoint which is dissatisfying.
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2.1 Uncontrollable Postures of SGPs

In practice configurations must be avoided, where minor variations
of the leg lengths have uncontrollable large effects on the instantaneous
displacement of the platform Y. But how should the quantity of effects
be measured in relation to the variation of the leg lengths? The boarder
case of this uncontrollability is, if there exists an infinitesimal motion of
> while all actuators are locked. In such a singular position the velocities
of the platform points can be arbitrarily large, and therefore the posture
is uncontrollable. The question is, which measurable parameter of the
SGP indicates the circumstance of uncontrollability in a natural way
and has a geometric meaning for the manipulator.

3. Idea and Definition of the Control Number ctn

Let’s assume there is instantaneously a minor variation of the six leg
lenghts and the SGP is not singular. So there exists a unique screw q
which describes the motion of ¥ against ¥y according to (4). To meet
our 7 property, we consider the velocity v(P;) of P; with respect to
q. We are not interested in the instantaneous displacements of P; in
direction of the leg, because the leg length is an active joint which can
be controlled totally. Therefore only the component v (P;) can be an
indicator of uncontrollability. But v (P;) is no mechanical parameter
of a SGP and therefore we look at the angular velociety wg of the i
passive base joint. This wg is defined as (see Fig. 1)

v, v PP V@R
YBETNT T YR TP T L @)

according to (2) and (3) and so it is proportio-
nal to |[|[v, (P;)|. But there also exists angular
velocities wp, in the passive platform joints,
which are defined analogously. The sole diffe-
rence is that we regard the inverse motion of q.
So we have to substitute B; for P; and —q for
qin (2), (3) and (7). Obviously wp? and wp?
are quadratic forms with the coordinates of q ({q

as unkowns. Therefore we can rewrite them as
wg’ =q' Wgq and wp’=q' Wpq, (8) B;

where Wg and Wp, are symmetric 6 x 6
matrices. Figure 1.  Defining wg,
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Now we define the new objective function ((q) as
6

6
¢(a) = ngf + wpf = gTZg with  Z = Z Wg, + Wp,.  (9)

i=1 i=1
Definition 1. The control number of a SGP configuration IC is defined

as

ctn(K) :==+4/A_/A,  with  cn(K) € [0,1], (10)
where A_ resp. A, is the minimum resp. maximum of the objective func-
tion ((q) in (9) under the side condition v(q) in (6). ctn(K) = 0 cha-
racterizes a singular configuration and a value of 1 an optimal one.

4. Computation and Well-definedness of ctn

We solve the optimization problem in order to compute A_ resp. A,
by introducing a Lagrange multiplier A. Then the approach simplifies in
consideration of V¢ = 2 Zq and Vv = 2N q, to the general eigenvalue
problem (Z—AN) q = o. This system of linear equations has a nontrivi-
al solution, if and only if |Z — AN| = 0. The degree of the characteristic
polynomial in A corresponds with rank(J) because of N' = J7J. Every
general eigenvalue ); is linked with an general eigenvector e,. The smal-
lest A_ and the largest A, are the wanted extreme magnitudes because

of

Theorem 1. A_ and A\, of Def. 1 are the extreme general eingenvalues
of Z with respect to N'. All roots \; of the characteristic polynomial
|Z — AN| =0 are positive if and only if rank(J) = 6.

Proof: According to Hestenes, 1975 all A;’s are real. Due to (11) all \;’s
are nonnegative. If q is no pure translation (q # o), then all angular
velocities in the passive joints would vanish if and only if the 12 anchor
point lie on the isa. But such a configuration yields rank(J) = 1. In the
case of a pure translation, there would be no angular velocities in the
passive joints if and only if the legs are parallel to the direction of
the translation. But such a configuration yields rank(J) < 3. O

Theorem 2. The number of roots \; of the characteristic polynomial
|Z — AN| =0 dropping to infinity equals the defect(T).

Proof: All screws +puq € ker, with p € R cause arbitrarily large velocities
v(P;) = v, (P;) resp. v(B;) = v (B;) and therefore arbitrarily large wg,
resp. wp,. The proof follows by carring out lim, . and (11). O

Due to Theorem 1 and 2 the control number is well defined. Therefore
all initially stated seven properties are obviously fulfilled.
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Remark. It does not make sense to define ((q) only as ) wa (resp.
prf) for following reasons: First, the index would not fulfill our 7¢*
demand for the same reason as the rigidity rate. Second, the index would
not fulfill our 2" demand, because there exist nonsingular SGP confi-
gurations, where the £;’s are the path tangents of P; (resp. B;) with

regard to q. Consequently we get ((q) = 0 and the index would equal 0.

4.1 Instantaneous Motion near Singularities

According to Wolf and Shoham, 2003 the closest path normal complex
of a helical motion (rotations and translations included) to Ly, .., Cg,
described by its axis and pitch, provides additional information on the
SGP’s instantaneous motion and understanding of the type of singularity
when the SGP is at, or in the neighborhood of, a singular configuration.
Since the ctn is a performance index as well as a distance measure, a
small ctn indicates the closeness to a singularity. Due to Theorem 2 and
the continuity of the polynomial functions |Z — AN| = 0, which arise if
we move towards a singular position, we can say that the closest linear
complex to Ly, .., Le equals the path normal complex of e  according
o (11). Therefore this method additionally brings about a kind of best
approximating linear line complex in the neighbourhood of singularities,
and the calculation needs no case analysis like Pottmann’s method.

5. Final Example

We consider a two parametric set Sg of configurations X, given by

B; = (cos aj, sin ay, —h)T and P; = (cos f3;,sin (3;, h)T with

T ™ 27 T 4
am=fh-z=-a m=fi-—g=F-a oe=fi-z=g-o
2 4
a2:51+g:a a4:ﬂ3+§:—;+a aszﬁ5+§:—;+a

where « € [0, %] denotes the design parameter and h € R the posture
parameter of the SGP. All K € Sk with o # § and h ¢ {0,00} are
nonsingular. We study this example, because such manipulators are very
relevant in practice as flight simulators. The matrix Z — AN can be
manipulated by elementary row and column operations to the diagonal
matrix diag(Aq, .., Ag). Therefore the eigenvalues \; can be computed
explicitly using A; = 0, whereas A\; = Ay and Ay = A5. K, given by

+:%f~v0.4, oz+:—arctan(@)%4o, v=1v2v5-2 (12)

has the maximal ctn of all £ € Sk(see Figs. 2 and 3). For I, determined
by A2 = Ay 5 and A3 = Ag we get ctn(K,) = \/2v5 -4 ~ 0.687.

h
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Figure 2. Axonometry of K Figure 3. Contours of ctn(Sk)

The SGP with o, also makes sense from the practical point of view,
because contrary to the often propagandized 3-3 octahedral manipula-
tor (a = 0) no anchor points coincide. But coinciding anchor points are
hard to manufacture. Therefore we take a closer look to this SGP. Fig. 5
illustrates the graph of ctn depending on h.Fig. 4 shows the contour
lines of ctn when the platform is translated away from the central loca-
tion parallel to the base plane. The difference between two neighbouring
contour lines is 0.05, where the highest has the value of 0.65. Figs. 6, 7
and 8 illustrate the graphs of ctn dependig on the angle w of the rotation
of ¥ about an axis parallel to z, z or y, respectively, through (0,0,h, ).

-1 —0.5 1 06
0.8 o 4'@ cin \
0.6 ' AN
04 0.2
0.2 4 w
-0 0 02 04 06 08
Figure 4. Translation of ¥ in z = h Figure 5. Variation of h
06 0.6
0.4 cin 0'4Ectn ;
0.2 - 0.2
W i @ e
002 06 1 14 002 06 1 14
Figure 6. Rotation about a x-parallel Figure 7. Rotation about a z-parallel
0.6
0_4_€ctn
oL A ~

-15 -1 -05 0 0.5 1 1.5

Figure 8. Rotation about a y-parallel
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Remark. The rigidity rate of all nonsingular configurations of this set
Sk is constant at the maximal value of 7/2. Only in singular positions
it drops to zero. So if we approach a singularity of Sx the value of the
rigidity rate is constant 7/2. Therefore this index is not recommendable
for comparing different postures of different SGPs.

6. Conclusion

The presented index, called control number (ctn), allows to compare
different postures of different SGPs, because it obeys the initially stated
seven conditions. Therefore ctn can serve as a performance index as well
as a distance measure to the closest singularity. This concept can also
be modified for redundant SGPs and 3 dof RPR manipulators.

An article about optimal configurations K with c¢tn(KC) =1 is in pre-
paration. It can be proved, that such configurations do exist. New per-
formance indices for 6R robots have been presented in Nawratil, 2006.
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Abstract The paper presents a solution to all the spatial kinematics problems that
require determination of the 3 x 3 rotation matrices whose nine direction co-
sines satisfy three linear equations. After having expressed the direction co-
sines in terms of the Rodrigues parameters, a classical elimination method
to solve three quadratic equations in three unknowns is here extended to in-
clude all solutions at infinity. Therefore no admissible 3 x 3 rotation matrix is
neglected even though it corresponds to a singularity of the Rodrigues
parametrization of orientation. A case study exemplifies the new method.

Keywords: Rotation matrix, direction cosines, Rodrigues parameters

1. Introduction

A whole class of problems of spatial kinematics can be solved by de-
termining all 3x3 rotation matrices whose nine direction cosines obey
three given linear equations. Owing to the orthogonality constraints
among the direction cosines, these problems are equivalent to solving a
set of nine equations: three linear and six quadratic.

Rather than tackling right away the solution of such an equation set,
it 1s computationally more efficient to replace, in each equation, all un-
known direction cosines by their expressions in terms of the Rodrigues
parameters. In doing so, all orthogonality constraints are implicitly ful-
filled, whereas the former linear equations in the direction cosines turn
into second-order equations in the Rodrigues parameters.

Unfortunately, the known algebraic elimination algorithms that solve
a set of three quadratic equations — such as the Sylvester method — are

23
J. Lenarcic¢ and B. Roth (eds.), Advances in Robot Kinematics, 23—32.
© 2006 Springer. Printed in the Netherlands.



24 C. Innocenti and D. Paganelli

b)

Figure 1. a) Fully-parallel spherical wrist;
b) rigid body supported at six points by six planes.

not always suitable to the case at hand. The reason is twofold: i) they are
unable to find real solutions at infinity, which are here of interest too
because infinite real Rodrigues parameters are associated to finite real
3x 3 rotation matrices, and ii) in case one or more solutions at infinity
exist, these algorithms might fail to determine even the finite solutions.

After exemplifying the recurrence in kinematics of the addressed
three-equation set in the direction cosines, this paper presents an origi-
nal procedure to find all real solutions of the equation set. The proposed
procedure — based on the Rodrigues parametrization of orientation and
presented with reference to the Sylvester algebraic elimination algorithm—
is able to identify all real solutions in terms of Rodrigues parameters,
both finite and at infinity. Therefore its adoption guarantees that no real
3 x 3 rotation matrix compatible with the original three linear equations is
neglected.

A numerical example shows application of the proposed computational
procedure to a case study.

2. The Relevance to Kinematics

A linear three-equation set in nine direction cosines is the unifying
factor behind a number of seemingly different kinematics problems, such
as those epitomized in Fig. 1. Although these problems have already been
solved in the literature by ad-hoc algorithms, they could be also worked
out by determining all 3 X 3 rotation matrices satisfying three linear con-
ditions in the direction cosines. In this respect, the procedure proposed in
this paper is a viable alternative to already-known solving methods.

Figure 1a shows a fully- parallel spherical wrist, whose direct kinema-
tics aims at determining all possible orientations of the moving platform



Determining the 3 %3 Rotation Matrics 25

for a given set of actuator lengths (Innocenti and Parenti-Castelli, 1993).
If vi and wi are the coordinate vectors of points Qi and P; relative to the
fixed (S) and movable (S’) reference frames respectively, and R is the
rotation matrix for transformation of coordinates from .S’to .S, then — by
applying Carnot’s theorem to triangle OQiP; — the compatibility equa-
tions can be written as
vivi+wliw, —2vIRw, =L? (i=1,.3) (1

These equations are linear in the (unknown) elements of matrix R.

Figure 1b refers to another kinematics problem, which consists in find-
ing any possible positions of a rigid body C supported at six given points
Pi (i=1,..,6) by six fixed planes (Innocenti, 1994; Wampler, 2006). The co-
ordinate vector wi of each point Pi is known with respect to a reference
frame S”attached to C. Each supporting plane is defined with respect to
the fixed frame S by the coordinate vector vi of a point Qi lying on the
plane, together with the components in Sof a unit vector ni orthogonal to
the plane. The unknown position of C with respect to .S'is parametrized
through the coordinate vector s of the origin of S’ with respect to S, to-
gether with the rotation matrix R for transformation of coordinates from
S’to S. The compatibility equations can be written as:

n," [(s+Rw;)—v,]=0 (i=1,.06) (2

They are linear in both the elements of R and the components of s. If
there exist three supporting planes not parallel to the same line, three of
these equations can be linearly solved for the components of vector s, and
their expressions inserted into the remaining three equations. Therefore
a linear three-equation set that has the nine direction cosines of matrix R
as only unknowns is obtained once more.

Other kinematics problems susceptible of being reduced to the same
linear formulation as the one just exemplified are traceable in Gosselin
et al., 1994, Husain and Waldron, 1994, Wohlhart, 1994, Callegari et al.,
2004.

3. The Equations to be Solved

If r; (7,7=1,2,3) is the ijthelement (direction cosine) of a rotation matrix
R and ajx bk (G j, k£=1,..,3) are known quantities, the set of three linear
equations that has to be solved for r; (7,7=1,2,3) is
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> ayir;=b (k=1,..3) ®3)
3

ij=l,..

The expressions of r;in terms of the vector of Rodrigues parameters
p = (p1,p2,p9T are concisely given by (Bottema and Roth, 1979)

(1-p'pI+2p+2pp’
R= rp'p (4)

where p is the skew-symmetric matrix associated with vector p,
i.e., pe=pxe for any three-component vector e. As is known, the vector p
of Rodrigues parameters corresponds to a finite rotation of amplitude
0 =2tan '|p| about the axis defined by unit vector u = p/|p]|.

Unfortunately, the Rodrigues parametrization of orientation is singu-
lar for any half-a-turn rotation (§=x rad) about any line because, in this
instance, at least one of the components of p approaches infinity.

By considering Eq. (4), Eq. (3) can be re-written as:

1
——> Ajjxpipj+ Biypi+Ci |=0 (k=1,..3) ()
14pi+p3+p3 i,j:l,.Zﬁ;igj / ! izlz,..ﬁ

where quantities Ajx, Bix, and Cr (1,j,k =1,..,3; i<j) are known because
dependent on the given quantities aj,x and bx only.

Because the denominator of Eq. (5) does not vanish for any real vector
p, if p does not approach infinity Eq. (5) can be simplified as follows

Z Ajrpipj+ Biipi+Cy=0 (k=1,...3) (6)

ij=1,.3:i<j i=1,.3

Conversely, in case the denominator of Eq. (5) approaches infinity, so
does at least one of the components of p. If both the numerator and the
denominator of Eq. (5) are homogenized by replacing p; with expression
xi/x0 1= 1,..,3), and subsequently multiplied by x¢? the resulting denomi-
nator is definitely different from zero (the real quantities xq, x7, x2 and xz
cannot vanish simultaneously). Finally, for xo=0 (which means that at
least one Rodrigues parameter approaches infinity), Eq. (5) becomes

S Agxix=0  (k=1,.3) )

i,j=1,.3;i<j
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This is a set of three homogeneous quadratic equations in three un-
knowns, namely, the components of vector x = (x7, xz, x37.

If the set of the non-vanishing vectors that satisfy Eq. (7) is parti-
tioned into equivalence classes so that two solution vectors parallel one
to the other belong to the same class, then each class corresponds to a
vector p of Rodrigues parameters which satisfies Eq. (5) and has infinite
magnitude.

Finding all real solutions of Eq. (5) — both finite and at infinity — has
been thus reduced to determining all real finite solutions of Eq. (6), to-
gether with all equivalence classes of real solutions of Eq. (7). This im-
plies that all real solutions of Eq. (6) — including those at infinity — need
to be computed. Bezout’s theorem (Semple and Roth, 1949) ensures that
the maximum number of these solutions is eight.

4, The Solving Procedure

As will be proven further on, the existence of solutions at infinity
might affect the search for the finite solutions. It is therefore convenient
to compute the solutions at infinity first.

The Appendix at the end of the paper briefly summarizes the mathe-
matical tools that will be taken advantage of in this section.

4.1 Solutions at Infinity

The solutions at infinity, if existent, can be found by identifying Eq. (7)
with Eq. (1-A) of the Appendix. For the case at hand, Eq. (3-A) becomes

T
M(xl2 X3 X3 XXy XX3 x2x3) =0 (8

where M is a 6 x 6 matrix that depends on coefficients A;;x of Eq. (7) only.

In case the determinant of M is different from zero, there is only the
trivial solution for Eq. (7), and no solution at infinity exists for Eq. (6).

Conversely, if the determinant of M vanishes, Eq. (7) has non-
vanishing solutions. The number of equivalence classes of these solutions
matches the number of solutions at infinity for Eq. (6). Determination of
all solutions of Eq. (7) poses no hurdles and will not be detailed in this
paper. Suffices it to say that, in the worst possible scenario, the classes of
equivalence for the solutions of Eq. (7) can be found by solving a set of
two quadratic equations in two unknowns.
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4.2 Finite Solutions

In most cases, the finite solutions of Eq. (6) can be determined through
the procedure described by Roth, 1993, and here briefly summarized. If
(a,B,7) is a permutation of indices (1,2,3), two of the three unknowns, say
Pe and pg, are first replaced in Eq. (6) by quantities y,/yo and yz/yo. Fol-
lowing multiplication by y#?, the ensuing equation set is obtained:

Z Ajryiyit+ Z [Amin(i,fy)max(i,'y),kp’y+Bi,k]yiyO
i,j=aor 3;i<j i=aorf3 (9)

+<A7’7”kp%+B'y,kpv+Ck )y% =0 (k=1,..,3)

which is homogeneous with respect to unknowns yo, y,, and yz.

If a triplet of values for p,, ps, and p, fulfils Eq. (6), Eq. (9) must be
satisfied by the same value of p, together with a non-vanishing triplet of
values for yv, y,, and y;. By also taking into account the dependence on
pyof the coefficients of the homogeneous system in Eq. (9), the solvability
condition for Eq. (9) that corresponds to Eq. (3-A) turns into

T
N(p)(¥6 Y2 ¥3 YoYa Yo¥s Yavs) =0 (10)

The solution of this linear set is meaningful only if the triplet
(0, Ya, y5) does not vanish, i.e., if the following condition is satisfied (see
Eq. (4-A))

det N(p,) =0 (11

This univariate polynomial equation in p, has degree not greater than
eight (Roth, 1993). It is the outcome of elimination of unknowns p, and pjs
from Eq. (6). For every root of Eq. (11), the corresponding values of p,
and pjs can be easily found by Eq. (10) through linear determination of a
non-vanishing triplet (yo, y,, 75). Thus far is the outline of the procedure
that has been presented — without investigating its singularities — in
Roth, 1993.

It is worth noting that Eq. (11) is unable to yield solutions at infinity.
Things keep manageable if an infinite p, satisfies Eq. (5) for some values
of p, and pg, as Eq. (11) has a degree lower than eight and its roots con-
vey information on finite solutions only. Regrettably, should an infinite
solution to Eq. (5) exist for a finite p, (i.e., only p, or ps or both approach
infinity) then Eq. (11) vanishes and the described elimination method
becomes pointless.
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This latter drawback can be explained by noticing that — for p, or py
approaching infinity — Eq. (10) should hold for yo=0 and for some (not
simultaneously vanishing) values of y, and yj, irrespective of the value of
Py (the left-hand side of Eq. (9) does not depend on p, when y»=0). Conse-
quently, the determinant of 6 x 6 matrix N(p,) should vanish for any finite
Py, which also means that Eq. (11) collapses into a useless identity.

If it is not possible to choose index ¥ so as to circumvent the just
mentioned inconvenience, the classical elimination method is definitely
unable to find any finite solution to Eq. (6). Even a different set of Rodri-
gues parameters consequent on a randomly-chosen offset rotation does
not guarantee removal of the inconvenience.

4.3 Adding robustness

To overcome the drawback outlined at the end of the previous subsec-
tion, once the solutions at infinity of Eq. (6) have been computed (see
subsection 4.1), and prior of attempting determination of the finite solu-
tions, the vector p of Rodrigues parameters is replaced by vector
q = (q1, g2, q97, related to the former by the ensuing relation

q=Lp (12)

where L is a 3x 3 non-singular constant matrix whose third row is not
orthogonal to each non-vanishing vector (xi, xz x5T that solves Eq. (7).

By selecting ¥ =3 and replacing g; and gz with quantities z:/zo and zz2/zo,
Eq. (9) turns into

Z A,'/j,kZiZj‘FZ(Ai/3,qu+Bi/,k )ZiZO
ij=12;i<j i=12 (13)

+ (A% ag3+Bicgs+CL)z0=0  (k=1,.3)

where coefficients A'jix, B, and C', depend on the coefficients of Eq. (6)
and on the chosen matrix L. By applying the elimination procedure de-
scribed in the previous subsection, the correspondent of Eq. (11) is

det N'(¢3) =0 (14)

which is a univariate polynomial equation in the unknown qgs.

Differently from Eq. (11), Eq. (14) does not lose trace of the finite solu-
tions of Eq. (6), because any solution at infinity in terms of p involves a
vector q whose third component, qs, approaches infinity too.
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5. Numerical Example

The ensuing linear equation set in the direction cosines is considered:

ryp +1ryy +13 +1 =0
13 +13, 133 +1 =0
rp + T +1p +31, —133+1 =0

In terms of homogenized Rodrigues parameters (x7, x2 x3), these equa-
tions have three solutions at infinity, i.e., (1, —=1,0), (0,1, -1), and (1,0,0).
Since each Rodrigues parameter is finite for at least one solution at infin-
ity, the change of variable in Eq. (12) is crucial. The third row of L is
expressly chosen not normal to each of the three solutions at infinity.
A possible expression for L is

1 0 O
L=| 0 1 0
—1 I -1

Following the change of variables in Eq. (12), Eq. (14) yields
a3 —9g% +54¢3 — 12643 +57q3 —9 =0

The only real root of this equation is q3= 3. Back-substitution of this
root into the analogous of Eq. (10) completes determination of vector
q=(-1,1,3)T. Next, Eq. (12) results into p =(~1,1, —=1)T. The rotation matri-
ces corresponding to the four real solutions — three at infinity in terms of
Rodrigues parameters, and the other finite — are respectively (see Eq. 4):

-1 0 -1 0 0 1 0 o0 0 0 1
1 01, 0 ~10, [0 =1 of, |-1 0 o]
0 —1 0 -1 0 0 0 -1 0 -1 0
6. Conclusions

This paper has presented a new procedure to find all 3 x 3 real rotation
matrices satisfying three linear equations in the direction cosines. The
proposed procedure is based on the Rodrigues parametrization of orienta-
tion and takes advantage of a classical algebraic elimination method in
order to solve a set of three quadratic equations in three unknowns.
To avoid neglecting any possible 3x 3 rotation matrix, the classical
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elimination method has been extended in the paper so that it keeps
effective even in case one or more Rodrigues parameters approach infinity.

A numerical example has shown application of the proposed procedure
to a case study.
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Appendix

Let f(g) be an n-dimensional vector function that depends on an
n-dimensional vector g. If all components of f are homogeneous functions
of the same degree in the components of g, for any non-vanishing solution
of the following homogenous system
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f(g) =0 (1-A)
the ensuing condition holds (Salmon, 1885)

VD=0 (2-A)

where Dis the determinant of the Jacobian matrix of f.

Sylvester (Salmon, 1885) has suggested the following procedure in or-
der to assess whether a set of three second-order homogeneous equations
in three unknowns has non-vanishing solutions:

i) compute the determinant D (which is a third-order homogeneous

polynomial in the components g;, i=1,..,3, of vector g);

i)  determine the gradient of D (its components are quadratic homo-

geneous polynomials in g3, i=1,..,3);

iii) consider Egs. (1-A)-(2-A) as a set of six equations that are linear

and homogeneous in the six monomials gigj G,j=1,..,3,1<7)

T
H(g? ¢ g 218 2183 $85) =0 (3-A)

where H is a 6 x6 matrix whose elements are functions of the coef-
ficients of Eq. (1-A).
The original set of three homogeneous quadratic equations has non-
vanishing solutions if and only if the ensuing condition is satisfied

detH=0 (4-A)
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Abstract  An open research question is how to define a useful metric on SE(n)
with respect to (1) the choice of coordinate frames and (2) the units
used to measure linear and angular distances. A technique is presented
for approximating elements of the special Euclidean group SE(n) with
elements of the special orthogonal group SO(n+1). This technique is
based on the polar decomposition (denoted as PD) of the homogeneous
transform representation of the elements of SE(n). The embedding of
the elements of SE(n) into SO(n+1) yields hyperdimensional rotations
that approximate the rigid-body displacement. The bi-invariant metric
on SO(n+1) is then used to measure the distance between any two
spatial displacements. The result is a PD based metric on SE(n) that is
left invariant. Such metrics have applications in motion synthesis, robot
calibration, motion interpolation, and hybrid robot control.

Keywords: Displacement metrics, metrics on the special Euclidean group, rigid-
body displacements

1. Introduction

Simply stated a metric measures the distance between two points in
a set. There exist numerous useful metrics for defining the distance be-
tween two points in Euclidean space, however, defining similar metrics
for determining the distance between two locations of a finite rigid body
is still an area of ongoing research, see Kazerounian and Rastegar, 1992,
Martinez and Duffy, 1995, Larochelle and McCarthy, 1995, Etzel and
McCarthy, 1996, Gupta, 1997, Tse and Larochelle, 2000, Chirikjian,
1998, Belta and Kumar, 2002, and Eberharter and Ravani, 2004. In
the cases of two locations of a finite rigid body in either SE(3) (spatial
locations) or SE(2) (planar locations) any metric used to measure the
distance between the locations yields a result which depends upon the
chosen reference frames, see Bobrow and Park, 1995 and Martinez and
Duffy, 1995. However, a metric that is independent of these choices,
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referred to as being bi-invariant, is desirable. Interestingly, for the spe-
cific case of orienting a finite rigid body in SO(n) bi-invariant metrics
do exist.

Larochelle and McCarthy, 1995 presented an algorithm for approxi-
mating displacements in SE(2) with spherical orientations in SO(3). By
utilizing the bi-invariant metric of Ravani and Roth, 1983 they arrived
at an approximate bi-invariant metric for planar locations in which the
error induced by the spherical approximation is of the order 25, where
R is the radius of the approximating sphere. Their algorithm for an
approximately bi-invariant metric is based upon an algebraic formula-
tion which utilizes Taylor series expansions of sine() and cosine() terms
in homogeneous transforms, see McCarthy, 1983. Etzel and McCarthy,
1996 extended this work to spatial displacements by using orientations in
SO(4) to approximate locations in SFE(3). This paper presents an alter-
native approach for defining a metric on SE(n). Here, the underlying geo-
metrical motivations are the same- to approximate displacements with
hyperspherical rotations. However, an alternative approach for reaching
the same goal is presented. The polar decomposition is utilized to yield
hyperspherical orientations that approximate planar and spatial finite
displacements.

2. The PD Based Embedding

This approach, analogous to the works reviewed above, also uses hy-
perdimensional rotations to approximate displacements. However, this
technique uses products derived from the singular value decomposition
(SVD) of the homogeneous transform to realize the embedding of SE(n-
1) into SO(n). The general approach here is based upon preliminary
work reported in Larochelle et al., 2004.

Consider the space of (n x n) matrices as shown in Fig. 1. Let [T be
a (n x n) homogeneous transform that represents an element of SE(n-1).
[A] is the desired element of SO(n) nearest [I'] when it lies in a direction
orthogonal to the tangent plane of SO(n) at [A]. The PD of [T] is used
to determine [A] by the following methodology.

The following theorem, based upon related works by Hanson and Nor-
ris, 1981 provides the foundation for the embedding

Theorem 1. Given any (n x n) matriz [T the closest element of SO(n)
is given by: [A] = [U][V]T where [T] = [U][diag(s1, sa, .- .,sn)][V]T is
the SVD of [T].

Shoemake and Duff, 1992 prove that matrix [A] satisfies the following
optimization problem: Minimize: ||[A]—[T]||% subject to: [A]T[A]—[I] =
[0], where [[[A] = [T][|% = >2; ;(as; —tij)? is used to denote the Frobenius
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. SE(n-1)
(R LI

Tangent plane
J to SO¢n) at [A)

[A]

SO(n)

Figure 1. General Case: SE(n-1) = SO(n).

norm. Since [A] minimizes the Frobenius norm in R" it is the element
of SO(n) that lies in a direction orthogonal to the tangent plane of SO(n)
at [R]. Hence, [A] is the closest element of SO(n) to [T']. Moreover, for
full rank matrices the SVD is well defined and unique. Th. 1 is now
restated with respect to the desired SVD based embedding of SE(n-1)
into SO(n).

Theorem 2. For [T] € SE(n-1) and [U] & [V] are elements of the SVD
of [T] such that [T) = [U][diag(s1,52,...,5,—1)][V]T if [A] = [U][V]¥
then [A] is the unique element of SO(n) nearest [T.

Recall that [T], the homogenous representation of SE(n), is full rank
(McCarthy, 1990) and therefore [A] exists, is well defined, and unique.
The polar decomposition is quite powerful and actually provides the
foundation for the better known singular value decomposition. The polar
decomposition theorem of Cauchy states that “a non-singular matrix
equals an orthogonal matrix either pre or post multiplied by a positive
definite symmetric matrix”, see Halmos, 1958. With respect to our
application, for [T] € SE(n-1) its PD is [T] = [P][Q], where [P] and [Q)]
are (nxn) matrices such that [P] is orthogonal and [Q)] is positive definite
and symmetric. Recalling the properties of the SVD, the decomposition
of [T yields [U][diag(s1, s2, - -, sn_1)][V]?, where matrices [U] and [V]
are orthogonal and matrix [diag(si, $2,. .., Sp—1)] is positive definite and
symmetric. Moreover, it is known that for full rank square matrices that
the polar decomposition and the singular value decomposition are related
by: [P] = [U][V]T and [Q] = [V][diag(s1,s2,---,5,—1)][V]T, Faddeeva,
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1959. Hence, for [A] = [U][V]T it is known that [A] = [P] and the
PD yields the same element of SO(n). The result being the following
theorem that serves as the basis for the PD based embedding.

Theorem 3. If [T] € SE(n-1) and [P] & [Q] are the PD of [T] such that
[T] = [P][Q] then [P] is the unique element of SO(n) nearest [T).

2.1 The Characteristic Length & Metric

A characteristic length is employed to resolve the unit disparity be-
tween translations and rotations. Investigations on characteristic lengths
appear in Angeles, 2005; Etzel and McCarthy, 1996; Larochelle and Mc-
Carthy, 1995; Kazerounian and Rastegar, 1992; Martinez and Dulffy,
1995. The characteristic length used here is R = % where L is the max-
imum translational component in the set of displacements at hand. This
characteristic length is the radius of the hypersphere that approximates
the translational terms by angular displacements that are < 7.5(deg). It
was shown in Larochelle, 1999 that this radius yields an effective balance
between translational and rotational displacement terms. Note that the
metric presented here is not dependent upon this particular choice of
characteristic length.

It is important to recall that the PD based embedding of SE(n-1)
into SO(n) is coordinate frame and unit dependent. However that this
methodology embeds SE(n-1) into SO(n) and that a bi-invariant metric
does exist on SO(n). One useful metric d on SO(n) can be defined using
the Frobenius norm as,

d = ||lI] - [A2)[A]"|IF. (1)

where [A1] and [As] of elements of SO(n). It is straightforward to verify
that this is a valid bi-invariant metric on SO(n), see Schilling and Lee,
1988.

2.2 A Finite Region of SE(3)

In order to yield a left invariant metric we build upon the work of
Kazerounian and Rastegar, 1992 in which approximately bi-invariant
metrics were defined for a prescribed finite rigid body. Here, to avoid
cumbersome volume integrals over the body a unit point mass model for
the moving body is used. Proceed by determining the center of mass
¢ and the principal axes frame [PF] associated with the n prescribed
locations where a unit point mass is located at the origin of each location:

" IR
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where d; is the translation vector associated with the " location (i.e.
the origin of the " location with respect to the fixed frame). Next,
define [PF] with origin at ¢ and axes along the principal axes of the n
point mass system by evaluating the inertia tensor [I] associated with
the n point masses,

[PF] = (3)

where v; are the principal axes associated with [I] Greenwood, 2003
and the directions v; are chosen such that [PF] is a right-handed system.
Note that the principal frame is not dependent on the orientations of the
frames at hand. However, the metric is dependent on the orientations
of the frames. For a set of n locations in a finite region of SE(3) the
procedure is:

1 Determine [PF] associated with the n displacements.

2 Determine the relative displacements from [PF] to each of the n
locations.

3 Determine the characteristic length R associated with the n relative
displacements and scale the translation terms in each by %

4 Compute the elements of SO(4) associated with [PF] and each of
the scaled relative displacements using the polar decomposition.

5 The magnitude of the i*" displacement is defined as the distance
from [PF] to the i*" scaled relative displacement as computed via
Eq. 1. The distance between any 2 of the n locations is similarly
computed via the application of Eq. 1 to the scaled relative dis-
placements embedded in SO(4).

Since ¢ and [PF] are invariant with respect to both the choice of coordi-
nate frames as well as the system of units (Greenwood, 2003) the relative
displacements determined in step 2 are left invariant and it follows that
the metric is also left invariant.

3. Case Study

Consider the 4 spatial locations in Table. 1 and shown in Fig. 2 along
with the fixed reference frame [F] where the x-axes are shown in
red, the y-axes in green, and the z-axes in blue. Their centroid is
¢ =[0.7500 1.5000 0.4375]7. Next, the principal axes directions are
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Table 1. Four Spatial Locations.

#  x y z 0 (deg) ¢ (deg) ¢ (deg) |[[T]ll
1 000 0.00 000 00 0.0 0.0 2.5281
2 000 1.00 025 150 15.0 0.0 2.5701
3 1.00 2.00 050  45.0 60.0 0.0 2.7953
4 200 3.00 1.00 450 80.0 0.0 2.8057

determined to define the principal frame,

—0.5692 0.8061 —0.1617 0.75000
—0.7807 —0.5916 —0.2012 1.5000 (4)
—0.2578 0.0117  0.9661  0.4375

0 0 0 1

[PF] =

shown in Fig. 2. The characteristic length is R = w = 13.0695 and
the magnitudes of the displacements are listed in Table 1. Interestingly,
the magnitude of the first displacement is not zero. This is because the
relative displacement from the principal frame to the first location is
non-identity and that the magnitudes of all displacements are computed
with respect to the principal frame.

The original locations and the principal frame

Figure 2. The 4 Spatial Locations.
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4. Conclusions

We have presented a metric on SE(n). This metric is based on embed-
ding SE(n) into SO(n+1) via the polar decomposition of the homoge-
neous transform representation of SE(n). It was shown that this method
determines the element of SO(n+1) nearest the given element of SE(n).
A bi-invariant metric on SO(n+1) is then used to measure the distance
between any two spatial displacements SE(n). The results is a PD based
metric on SE(n) that is left-invariant. Such metrics have applications
in motion synthesis, robot calibration, motion interpolation, and hybrid
robot control.
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Abstract  Checking the regularity of the inverse jacobian matrix of a parallel robot
is an essential element for the safe use of this type of mechanism. Ideally
such check should be made for all poses of the useful workspace of
the robot or for any pose along a given trajectory and should take
into account the uncertainties in the robot modeling and control. We
propose various methods that facilitate this check. We exhibit especially
a sufficient condition for the regularity that is directly related to the
extreme poses that can be reached by the robot.

Keywords: Inverse jacobian, singularity, parallel robots

1. Introduction

Determining if a parallel robot may be in a singular configuration dur-
ing its motion is a problem that is of high practical interest. Many papers
have addressed first the determination of the inverse jacobian, denoted
J~1, of such robots and then the analysis of the singularity condition
that can be deduced from the singularity of this matrix. J~! relates the
joint velocities to the twist of the end-effector and is usually pose de-
pendent. In a singularity the end-effector will exhibit non-zero velocities
for some motion although the actuators are locked. The determinant
of J=! is usually complicated but for most parallel robots J~! has as
rows the Pliicker vectors of well-defined lines. Consequently Grassmann
geometry may be used to characterize the geometry of the singularity
and to deduce simplified singularity conditions [Monsarrat 01; Merlet
89; Wolf 04]. It must be noted that even for robot with less than 6 d.o.f.
it is necessary to consider the full jacobian matriz i.e. the matrix that
involves the full twist of the end-effector. Indeed for a robot with n d.o.f.
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the jacobian that relates the n d.o.f. velocities to the n actuated joint
velocities may be not singular while J=! is singular [Bonev 01].

A singularity detection algorithm should be able to determine the
presence of a singularity within a motion variety with dimension 1 to n
for a n d.o.f. robot. An important point is that the singularity detection
should be certified i.e. the algorithm should provide a safe answer even
if numerical round-off errors occur. This certification constraint usually
rules out the use of an optimization procedure.

2. A Singularity Detection Scheme

This singularity detection problem has been addressed in [Merlet 01]
where an efficient algorithm was exhibited. This algorithm proceeds
along the following steps: symbolic computation is used to determine
an analytical form of the determinant of J~'and its sign at a particular
pose X3. Then an interval analysis based method [Jaulin 01; Moore 79],
that takes round-off errors into account, allows one to determine if the
motion variety includes a set of poses in which the determinant has a
sign opposite to the one found at Xj.

The main difficulty with this algorithm (apart of using efficiently in-
terval analysis) is the calculation of the closed-form of the determinant
as will be illustrated on a difficult example, the Gough platform.

2.1 The Inverse Jacobian of a Gough Platform

We define a reference frame (O, x,y,z). The attachment points of
the leg i on the base will be denoted by A;. The attachment points
on the platform will be denoted by B; and it is well known that the
coordinates of B; in the reference frame can be obtained as function of
the pose parameters. The inverse jacobian matrix is then constituted of
the normalized Pliicker vectors of the line associated to each leg:

AiBi OAi X OBi

-1 _
T =B as) ) @

Note that we may use the non normalized Pliicker vector to define an-
other matrix M = ((A;B; OA; x OB;)) with the property that the
sign of J~! is the same than those of [M|. As M is simpler than J = it
will be used for the singularity detection.

2.2 Evaluation of the Determinant

Being given a motion variety the pose parameters are functions of the
variety parameters and thus the components of the inverse jacobian may
be obtained as functions of the variety parameters. As mentioned earlier
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a closed-form of the determinant is obtained by symbolic computation.
It should be noted that this is not strictly necessary. Indeed being
given ranges for the variety parameters interval arithmetic may used
to determine ranges for each component of the inverse jacobian. We
get then an interval matriz JI_1 i.e. a matrix whose components are
intervals. Classical method for the calculation of determinant may then
be used to obtain an interval evaluation of the determinant but with a
large overestimation of the minimum and maximum of the determinant.
Indeed interval arithmetic is very sensitive to multiple occurrence of the
same variable. Consider for example the matrix A whose determinant
is zy and its interval version A; when x and y lie in the range [1,2]

r x [1,2] [1,2] >
A= A= ’ ’ 2
(3 o) 2=(0s e ?
The interval evaluation of |A| may be calculated as [-2,7]. Hence the
closed-form of the determinant allows one to show that |A| will always
be positive for any value of x,y in [1,2], while the use of the interval

matrix does not allow such conclusion. We have put an emphasis on
interval matrices that will be justified by the influence of uncertainties.

2.3 The Influence of Uncertainties

Uncertainties are inherent part of a real system such as a robot. They
occur at the modeling level: the geometry of the real robot differs from
its theoretical model due to the manufacturing tolerances (for example
for the Gough platform the locations of the A;, B; are known only up to
a known accuracy). Uncertainties are also due to control: there will be
a deviation of the robot motion from the theoretical motion variety.

An ideal singularity detection scheme should be able to determine
if the robot may be in a singular pose in spite of these uncertainties.
Although we may add the uncertainties as additional unknowns in the
components of J~1, a drawback is that the calculation of the closed-form
of the determinant may become difficult. For example for the Gough
platform Maple is no more able to calculate the determinant as soon as
we add the uncertainties on the A;, B;. In that case we have to resort to
a numerical interval evaluation of the determinant based on the interval
version of J™!, but we have seen that this leads to a large overestimation
of the determinant, that will result in a large computation time for the
singularity detection scheme. It is thus necessary to develop methods
that check the regularity of the set of matrices defined by an interval
matrix, without calculating its determinant. These methods should take
into account that J~! is a parametric matriz, i.e. that its components
are not independent.
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3. Various Methods for Regularity Check
3.1 A Classical Regularity Check

Checking the regularity of all matrices in a set defined by an interval
matrix is a classical problem in interval analysis and is known to be
NP-hard. Among possible approaches the one having shown the largest
efficiency in our case has been a method proposed by Rohn [Kreinovich
00]. We define the set H as the set of all n-dimensional vector h whose
components are either 1 or —1. For a given box we denote by [a;;, @;;| the
interval evaluation of the component JZ-;I of J71 at the i-th row and j-th
column. Given two vectors u, v of H, we then define the set of matrices
A" whose elements A}Y are

AZI-;-V = Q45 if Ui Vj = —1,&2‘]‘ if U;. V5 = 1

These matrices have thus fixed numerical components corresponding to
lower or upper bound of the interval Ji_»l. There are 22"~ such matrices
since A" = A%V, If the determinant of all these matrices have the
same sign, then all the matrices A’ whose components have a value
within the interval evaluation of Jigl are regular. Hence for the 6 x 6
J~1 of a Gough platform if the determinant of the 2048 matrices of A"V
have the same sign, then all matrices in the set are regular.

But A" includes matrices that are not inverse jacobian as the depen-
dency of the components of the matrix are not taken into account. This
may be seen, for example, for the interval matrix A; (2) that includes
the following matrices

me(a) as(os) me(hz) o
The matrices A1, As belong to the set A" and have determinants with
opposite signs. Consequently the test proposed by Rohn fails, which is
quite normal as the matrix Ag, that belongs to A is singular. For the
Gough platform the first column of J~! is written as « + Fj, = being a
coordinate of the center of the platform; if the range for x is [z, Z] while
the range for Fj is [a b;], then A" includes matrices with elements z+a;
and T + by that does not belong to the set of inverse jacobian matrices.

3.2 Pre-conditioning

A classical approach in interval analysis for regularity check is to pre-
condition the matrix by multiplying it by a real matrix K, usually the
inverse of the mid-matriz, i.e. the matrix whose components are the mid-
point of each range of the components. The purpose of this strategy is
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to get S = KJ~! close to the identity matrix so that its determinant
IS| = |K]||J~!| may be interval evaluated with a lower overestimation.
If we apply this strategy to the matrix (2) the inverse of the mid-matrix
and the interval matrix KA are:

B 4/3  -2/3 B B [0, 2] [—4/3,4/3]
K‘(—z/s 2/3 )S‘KAI‘<[—2/3,2/3] 0,2] ) 4)

The interval evaluation of [S| is [—8/9,44/9] ~ [—0.8889, 4.88889] while
|K| is positive. In term of sign determination this interval evaluation is
indeed sharper than the one obtained with a direct evaluation of |A|, but
is still not satisfactory. We propose another method which consists first
to compute symbolically the matrix S, using k;; as components of K and
then plugging in the numerical values. The symbolic matrix Sy = AK
and its interval version Sy for the numerical K are

o x(kini+ k) z(kiz+ k22) [ 22/3 0
s.= (e e Vse= (M 45 ) )

If we use now the range [1,2] for x,y the interval evaluation of |S] is
[4/3,8/3] that shows that all matrices have a positive determinant. Note
that we have used AK instead of KA, which is justified as it allows to
reduce the multiple occurrences of the variables. However as J~! exhibits
the same variables in a column it is better to pre-multiply it by the
conditioning matrix.

3.3 A Regularity Test for Parametric Matrices

Assume that some components of some rows (denoted the linear rows)
of a parametric matrix A = a;; can be written as linear combination with
real or interval coefficients of a set of unknowns {z1,z2,...,z,}.

We denote by A’ the set of real or interval matrices that can be derived
from A by assigning independently to each linear rows either a lower or
upper bound to each unknown z; that appears in the linear combination.
For example for matrix A the set A’ is

veilha) (ea) (D) (2i) o

The following theorem hold:
Theorem 1: If the determinant of all matrices in the set A’ have all
the same sign, then all matrices in the set A are regular.

Proof (derived from [Popova 04]): Assume that there is a singular
matrix Ag in the set A. Without lack of generality we will assume that



46 J.-P. Merlet and P. Donelan

the first row of Ag is linear. We consider the unknown 1, whose value
for Ag is 2§ and lie in [21,77]. Each component of the first row of A
may be written either as A} ;14015 or a(l)j if the component is not linear.
Using row expansion the determinant of the matrix may be written as

A= Y (DM OLa )M+ Y () ey My (7)
k=J1,-,Jm lg{]l,ﬂm}
where {j1,...,Jm} are the column indices of the linear components of

A and M;; denotes the minor associated to the first line and column j.
For x1 = a:(l) this expression will cancel. If we assume now that x; =
2y + dxy we get

Al=dei( Y (“DMIAL) = dnK, (8)
E=j1,.rjim

K being either a real number or an interval. We may always assign dx;
to either 71 — 29 or z; — 20 so that |A| is positive or has a positive upper
bound. Thus by assigning x; or 1 to x1 we have constructed a matrix
Af whose determinant will be positive or has a positive upper bound.
The process may be repeated for constructing a matrix A] whose de-
terminant will be negative or has a negative lower bound. Starting from
these matrices we may now assign xa to xo or T3 to get a matrix Ai“z
whose determinant is |A| plus a positive quantity (i.e. still positive)
and a matrix Aj, whose determinant will be lower than the determinant
of |A7| (i.e. still negative). The process is repeated for each unknowns
in the row. As soon as all unknowns in the row have a fixed value the
process is repeated for the next linear row. When all linear rows have
been processed the matrices AT, A~ belong to A’. Note however that
the assignment of the unknowns in a row to ensure that |A™| is positive
may differ between two linear rows. Hence if there is a singular matrix
in A, then we are able to determine matrices whose determinant have
opposite signs (or whose lower bound is negative and upper bound is
positive), which concludes the proof.

For example as all matrices in A’ defined by (6) have the same de-
terminant sign, then the set A contains only regular matrices. Another
theorem may be derived for the full inverse jacobian matrices that have
Pliicker vectors as rows. Let us define A;(a},a?,a?) and B;(b}, b2, b3) as
two points that belong to the line associated to the Pliicker vector i.
A row of J~! may be written as

((by — a1,ba — ag,bs — as,azby — a1 B2, agby — a1bs, a1ba — agby)) (9)

so that each row is linear in the b;. Assume now that the locations of
the A; are fixed, while the locations of the B; are functions of the end-
effector motion. Using interval analysis (or an optimization method)
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being given ranges for the motion parameter we may find a bounding
box B; for the location of each B;. Let J7! be the set of inverse jacobian
that may be obtained for the motion parameters ranges. Theorem 1
allows one to state the following corollary:

Corollary: Let A* be the set of matrices obtained by choosing as
location of B; all possible combinations of the corners of B; (there will
be 8% such matrices). If the determinants of all matrices in A* have the
same sign, then all matrices in J; ! are regular.

The number of matrices in A* may even be reduced in some cases,
using the property that we may choose as B; any point on the line.

Assume that the bounding box B; is defined by the set of ranges [b;;, b;;],

J € [1,3] for b;. The following cases may occur:

e aj; € [big, bix] for two indices in [1,2,3], while aj, < by, or ay > by, for
one index. The line always enters the bounding box B; by the face defined
by by = .bj, or by, = bir.. We may thus choose as B; the intersection point
of the line with this face i.e. fix the value of b;. Hence only 4 corners

will have to be checked

e ai € [bik, bi] for only one index. The line may enter the bounding

box by 2 faces and we have to check 6 corners

o ai & [bik, by for all index. The line may enter the bounding box by

3 faces and we have 7 corners to check

e aj € [by, by for all index. In that case the corresponding row
of the jacobian may include a line of 0 and the ranges for the motion
parameters must be bisected

In practice we will have between 45 and 7% matrices in A*. Uncer-
tainties in the locations of the A; may also be dealt with by considering
that the matrices in A* are interval matrices.

Theorem 2 shows that checking the extreme poses of the B; may be

sufficient to check the regularity of J~! over the whole workspace.

4. Examples

The proposed regularity check has been implemented in the singular-
ity detection scheme and has been extensively tested. It appears that
among the three regularity checks the most efficient combination is to
use first the pre-conditioning and then to apply Rohn test on the result-
ing matrix. A 6D workspace W is defined with the ranges x,y in [-15,15],
z in [45,50] and the three Euler angles having the ranges [-15,15] degree.
The computation time on a Dell D400 laptop (1.7 Ghz) is established as
follows:



48 J.-P. Merlet and P. Donelan

e 6D workspace without uncertainty: for W no singularity detected
in 3.12s. If the orientation ranges of W is extended to [-40,40] degree a
singularity is detected in 9.46s.

e 6D workspace with uncertainties: for a 4+ 0.05 uncertainty on each
coordinates of the A;, B; points no singularity is detected in W in 43mn
on a cluster of 15 PC’s without the regularity checks and only in 263s
on a laptop if they are incorporated in the detection scheme. For an
uncertainty of £ 0.1 the computation time establishes respectively at
10h 22mn and 1176s.

5. Conclusion

We have proposed regularity checks for the inverse jacobian of parallel
robots that may be used to determine if such matrix may be singular
over a motion variety. They allow to deal with uncertainties in the robot
modeling and control and have been proved to be very efficient. One
of this regularity check, that is sufficient but not necessary, is related
to the extremal poses that can be reached by the end-effector: if the
determinant of a finite number of real matrices that are related to these
extremal poses have all the same sign, then the inverse jacobian matrix
is regular.
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Abstract In this work we present several parallel robots with reduced mobility whose
platforms can change their subgroups of displacement when the robot is
displaced continuously from one set of positions to another one. In some
cases, also the number of degrees of freedom of the platform may change, in
other cases, only the group of displacement or its invariant properties are
modified. By using some results on mobility of single-loop kinematic chains
based on the theory of the displacement groups, the way to synthesize these
robots is discussed.

Keywords: Parallel robots, displacement groups, kinematotropy, mobility

1. Introduction

In recent years the literature on robot mechanisms shows a growing
interest in parallel robots with reduced numbers of degree of freedom
whose mobility can be carefully investigated, (e.g., Kong and Gosselin,
2004, Kong and Gosselin, 2005, Gogu, 2005). In general, a platform of a
robot of this kind can move in a subgroup of the Euclidean displacement
group, or in a subset of a subgroup.

In a different field of kinematics, various studies have been performed
related to mechanisms in which variations in the position variables can
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result in changes in the permanent finite mobility of the mechanisms.
Wohlhart, 1996, called this very peculiar mobility property kinematotropy.

In this paper, some results concerning kinematotropic kinematic
chains are used to synthesize parallel robots with reduced mobility,
whose platforms change their subgroups of displacement when the robot
1s displaced from one set of positions to another one. Several robots are
obtained in this way and their mobility properties are presented.

In Section 2, three single-loop kinematotropic chains are shown and
their finite mobility discussed.

In Section 3, the single-loop kinematotropic chains are used to
synthesize 3 parallel robots that change both their displacement groups
and the numbers of their degrees of freedom.

In Section 4, the proposed approach leads to 2 parallel robots that
change their displacement groups but not the numbers of their degrees of
freedom, and 1 robot that only change the invariant properties of its
displacement group.

In Section 5 alternative ways for selecting the robot joints and the
driver locations are discussed.

In this paper it is assumed that the readers have a basic knowledge of
the displacement groups in kinematics, as can be found, for instance, in
Hervé, 1978 and in Section 5.3 of Angeles, 1988.

2. Single-loop Kinematotropic Chains

Figure 1 shows three single-loop kinematotropic chains presented by
Galletti and Fanghella, 2001. They are shown in the singular position
that separates the two branches of positions in which the displacements
between bodies a1 and bz belong to different displacement groups.

Figure 1.  Single-loop kinematotropic chains.

All these chains can be represented by the scheme of Fig. 2. The
subchain from body a1 to b1 generates a displacement group Gi, and the
subchain from body a2 to b2 generates a group Gs. The kinematic pairs
KP. and KPy provide displacements between bodies a1 and az, and b1 and
bz respectively: the meaning of Gi, G2, KPs:, and KPy, are given in Table 1.
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Let G be the intersection group between Gi1 and Gz. By moving KPa and
KP, the group G, changes and, as a consequence, the group of
displacement between bodies a: and bz varies.

@
a \3/

Figure 2. Scheme of a kinematotropic chain.

Table 1.  Groups and pairs in Fig. 1.

Case G1=Ge KP. = KPy Displacements between a1 and be
a E (planar) R (revolute) From planar E to cylindrical C
b S (spherical) P (prismatic) From spherical S to cylindrical C

Y (translating
screw)

From translating screw Y to

¢ cylindrical C

R (revolute)

The last column in Table 1 shows the resulting displacements between
bodies a1 and be when a chain, passing through the singular position, is
displaced from one branch of positions to the other one.

3. Robots that Change Displacement Group and
Number of Degrees of Freedom

The scheme of Fig. 2 is now applied for synthesizing parallel robots
whose platforms can change the number of degrees of freedom (d.o.f.) and
the displacement group. Since a maximum of 3 d.o.f. can be achieved by
all chains, 3 legs are introduced to connect the platform and the robot
frame. The general scheme of the kinematic chain of the robots is shown
in Fig. 3. The kinematic chains of the 3 robots obtained in this way are
reported in Fig. 4. Each chain is shown in the singular position that
separates the two branches of positions belonging to different groups (E,
S,Y and C).

In order to exemplify the characteristics of these chains, let us
consider the chain in Fig. 4-a, obtained from case a) of Table 1. Suppose
there are drivers on pairs P1, P2, P3 and Pa.

Starting from the singular position, by moving the drivers Pi1, P2 and
P3 the revolutes Ps and Ps-P5 become unaligned, so they cannot rotate
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anymore. Therefore, the robot acts as a standard planar platform, with 3
d.o.f., with drivers Pi1, P2 and Ps.

Starting again from the singular position, by moving driver P the
plane formed by pairs Pi1-P11-P12, and the planes formed by P2-P7-Ps and
P3-P9o-P10 become not parallel, so their intersection group gives a
prismatic constraint with axis parallel to the common axis of pairs P4, Ps,
and Ps. Therefore, the robot acts as “cylindrical” platform, with 2 d.o.f.,
with two drivers: one of P4, P5 or Ps, and one of P1, Pz or Ps.

Figure 3. General scheme of a 3-legs robot.

An analogous discussion shows that the motion of the platform in Fig.
4-b switches from spherical (S) to cylindrical (C) and that, for the
platform in Fig. 4-c, it changes from translating screw (Y) to cylindrical

©).

Figure 4. Robots that change No. of d.o.f. and displacement group.

4. Robots that Change Displacement Group or
their Invariant Properties

As shown in Section 2, the change of displacement group between
bodies a1 and bz is a consequence of the change of the intersection group
G.. The chains of Fig. 1 ensure the change of G, and of the number of
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d.o.f. of the chains. It is also possible to obtain chains that change G- but
not the number of d.o.f. Using again the scheme of Fig. 2, the results
reported in Table 2 can be achieved (see Fanghella and Galletti, 1994).
From these results the schemes of Fig. 5 are obtained. Other similar
configurations can be obtained through suitable permutations of
kinematic pairs and groups.

Table 2. Modified groups and pairs in Fig. 1.

Case G1=Ge KP. = KPp Displacements between a1 and bz
d E (planar) (Schoz(nﬂies) From E to a subset of X with 3 d.o.f.
e Y (translating X . From Y to a subset of X with 3 d.o.f.

screw) (Schoenflies)

Figure 5. Robots with E, X, Y, and R groups.

Figure 6 shows the kinematic chains resulting from the two cases d
and e of Table 2. The chains are drawn in their singular position that
separates the two branches of positions belonging to different groups.
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Figure 6. Robots that change displacement group but not No. of d.o.f.
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For example, in the case d, starting from the position drawn and
rotating the revolutes with horizontal axes, the robot acts as a standard
planar platform, with 3 d.o.f. Starting again from the singular position,
by moving the revolutes with vertical axes, the platform of the robot
has a displacement that is a subset of the group X, with 3 d.o.f. (2
translations and 1 rotation). Then, the group of displacement is changed,
but the number of d.o.f. is preserved.

An analogous situation applies to case e.

A slightly different case can be derived from a further interesting
intersection group. Two Schoenflies groups X can give a group G~ = X or
a group G, = U (three-dimensional translation), depending on the
relative positions of their rotation directions (see Fanghella and Galletti,
1994). Therefore, according to Fig. 2, the following chain can be derived.

Case G1=Ge KP. = KPy Displacements between a; and be

X From the original X (Schoenflies)

f (Schoenflies) R to an X (Schoenflies) with the axis
parallel to the axis of R

Since a group X with 4 d.o.f. is obtained in both branches, the platform
must have 4 legs in order to apply one driver to each leg, according to the
scheme of Fig. 7.

Figure 7. Scheme of a 4-legs robot.

Figure 8 shows the resulting kinematic chain of the robot in the
singular position where the two branches merge.

Starting from this position and rotating the revolutes with horizontal
axes, the platform moves in an X group with a horizontal rotation axis,
the vertical revolutes being locked. The number of d.o.f. is 4. Starting
again from the singular position, by moving the revolutes with vertical
axes, the platform moves in an X group with a vertical rotation axis, the
horizontal revolutes resulting locked. Again the number of d.o.f. is 4. The
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group of displacement is not changed, but its invariant property (rotation
axis) is changed.

Figure 8. Robot that changes the invariant of its displacement group.

5. Joint Modifications, Actuators and Branches

The schemes of Figs. 3, 5, and 7, define kinematic structures in which
specific displacement groups are generated by sequences of bodies and
pairs. It is evident that in order to obtain the aforesaid mobility
properties, the way in which the groups GR are realized is immaterial.
For instance, it is well known that the group X can be generated by 3 non
parallel prismatic pairs and one revolute, by 3 parallel revolutes and
1 prismatic pair not normal to them, and so on. Moreover, the revolutes
KP in the chains can be substituted, in several circumstances by helical
pairs. Therefore, many different robot structures can be obtained
starting from the schemes of Figs. 3, 5, and 7.

From a practical point of view, in order to control the motion of a
kinematotropic chain in a branch it is necessary to provide a number of
drivers equal to the number of degrees of freedom of the chain in that
branch. For a complete control of the chain in all branches, it is
necessary to provide a set of drivers equal to the union of the drivers
used to control each branch. In each branch, the chain is actuated only by
the drivers associated with that branch, while other drivers become
driven; when passing through a singular position (where the number of
infinitesimal degrees of freedom grows), all drivers must act either to
maintain their position or to drive the chain to a specific branch.

Finally, it is worth noting that, in some cases, starting from the
singular positions in Figs. 4, 6 and 8, more than two branches may
be reached. For example, for the mechanism in Fig. 6-d, a translation in the
direction orthogonal to the drawing plane leads to a branch in which the
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allowed relative motion between the frame and the platform is a pure
planar translation. In the paper, for each case, the discussion is limited
to the two branches with the highest number of degrees of freedom.

6. Conclusions

Special kinematic chains, in which displacements between two bodies
can belong to different displacement groups when the chains are moved
by one branch to another, are the basic components we have used
for synthesizing a particular type of parallel robots. Three different
situations arise for the displacement of the platform when the robot is
displaced continuously from one set of positions to another one: i) in 3
cases the platform can change its group of displacement and the number
degrees of freedom; i1) in 2 cases only the group of displacement is
altered; ii1) in 1 case only the invariant properties of the group of
displacement are modified.
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Abstract  This paper presents a procedure to synthesize planar linkages, composed
of rigid links and revolute joints, that approximate a shape change de-
fined by a set of curves. These “morphing curves” differ from each
other by a combination of rigid-body displacement and shape change.
Rigid link geometry is determined through analysis of piecewise linear
curves, and increasing the number of links improves the shape-change
approximation. The framework is applied to an open-chain example.

Keywords: Shape change, morphing structures, planar synthesis

1. Introduction

For a mechanical system whose function depends on its geometric
shape, the controlled ability to change that shape can enhance per-
formance or expand applications. Examples of adaptive or morphing
structures include antenna reflectors (Washington, 1996) and airfoils
(Bart-Smith & Risseeuw, 2003) proposed to include many smart mater-
ial actuators. Compliant mechanisms also provide a means of achieving
shape changes. Saggere & Kota, 2001 developed a synthesis procedure
for compliant four-bars that guide their flexible couplers through dis-
crete prescribed “precision shapes” that involve both shape change and
rigid-body displacement. Lu & Kota, 2003 introduced a more general
approach using finite element analysis and a genetic algorithm to deter-
mine an optimized compliant mechanism’s topology and dimensions.

The present work introduces synthesis techniques for planar, rigid-
body mechanisms that approximate a desired shape change defined by
an arbitrary number of curves, one morphing into another. Higher load-
carrying capacity makes rigid-body mechanisms better suited than
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compliant mechanisms for applications with large applied loads. Similarly,
rigid-body mechanisms would likely require fewer actuators acting in
parallel, such as along an airfoil with changing camber. Furthermore,
actuation is not an additional development need because existing tech-
nology rather than, for example, smart material technology, is typically
used to actuate rigid-body mechanisms. With rigid links, synthesis can
be purely kinematic, so the system can be modeled precisely without
a priori knowledge of exact external loads. Finally, rigid-body mechanisms
can typically achieve larger displacements, enabling more dramatic shape
changes. This paper details a methodology for designing rigid links that
can be joined together in a chain by revolute joints to approximate the
shapes of a set of morphing curves. The methodology is applicable to
both open and closed chains, and an open-chain example is presented.

2. Rigid Link Geometry

The procedure for generating rigid links that compose a shape-changing
linkage involves converting the desired curves, denoted as “design pro-
files”, into “target profiles” that are readily manipulated and compared.
The target profiles are divided into segments, and corresponding seg-
ments from all of the target profiles are used to generate the rigid links.
The key is to divide the target profiles and then generate the rigid links
so as to reduce the error in approximating the design profiles.

Design Profiles and Target Profiles. A design profile is a curve
defined such that an ordered set of points on the curve and the arc length
between any two such points can be determined. The piecewise linear
curve (solid line) in Fig. 1 is a simple example of a design profile. A
set of p design profiles defines a shape change problem. Because the
change will be approximated with a rigid-body linkage, the error in the
approximation is generally smaller if all p profiles have roughly equal arc
length, though this is not an explicit requirement of the methodology.
A target profile is formed by distributing n points, separated by equal
arc lengths, along a design profile. Thus, a target profile is a piecewise
linear curve composed of the line segments connecting the ordered set of
points, and any design profile can be represented by a target profile of
two or more points. In Fig. 1, five (x,y) points generate a target profile
from the design profile defined by three (a,b) points. The target profile
includes the dashed line and does not pass through the design profile’s
second point. In this case, three points could be used to exactly represent
the design profile, but the approach is more generally applicable to any
design profile. The motivation is to convert a set of p design profiles into
target profiles all defined by n points such that corresponding points can
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Figure 1. Three-point (a,b) design profile and five-point (z,y) target profile.

be found on each target profile. For a closed curve design profile, any
point can be deemed the first/last point, yielding a closed target profile.
Important characteristics of a target profile include the fact that its
arc length is always shorter than the design profile it represents. The
most significant loss of shape information occurs where the curvature is
largest for a continuous design profile or where the angle at a vertex is
smallest in magnitude for a piecewise linear design profile. Since points
on the target profile are separated by equal arc lengths along the design
profile, they are not at equidistant intervals along the target profile.
Large values of n produce smaller variations between the design profile
and target profile and in the distances between consecutive points on the
target profile. A useful heuristic is selection of n such that the target
profile arc length is greater than 99% of the design profile arc length.

Shifted Profiles.  The j'" target profile is defined by, 7, = {;, yjl.}T,
1=1,...n. A rigid-body transformation in the plane,

Z = A5, +d where A= |50 WP anad= {1,
will relocate the profile preserving the respective distances between points
in it. Any profile relocated in this fashion is called a shifted profile. Tar-
get and mean profiles (described below) are both shifted to perform
useful design operations without altering the original design problem.

The “distance” between target profiles j and k is defined to be,

n n

D = Z(ajjz - xkz‘)Q + (yji - ykz‘)Q = Z |'ng - Zki‘Q‘
i=1 =1

(Subsequent summations are ¢ = 1,...n.) Viewing the target profile’s n
points as a single point in 2n-dimensional space, this distance is the
square of the Euclidean norm in that space, so D is an appropriately
defined metric. To determine the rigid-body transformation that shifts
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target profile j to the location that minimizes D with respect to target
profile k, one must find # and d such that %—? = g—ﬁ = gTDZ = 0, where,
D =Y "zTz +d'd+ 5%, + 2d7Az;, - 25TAz;, — 2d7%,.
Introducing the definition ) 2}, = 2, = {z, ij}T yields a solution,
tanf — %(kaij - :EjTykT) ZZ(xkzsz 7 szykz) 7 CZZ l(ZkT _ AZ—‘]T)
Z(x.hwkz + yjiyk'i) - H('TijkT + ijykT) n
Mean Profiles and Segmentation. A mean profile is one profile
that approximates the shapes of all target profiles in a set. A mean
profile is formed by shifting target profiles 2 through p to minimize
their respective distances relative to reference target profile 1. A new
piecewise linear curve defined by n points, each the geometric center
of the set of p corresponding points in the shifted target profiles, is
generated. For example, two target profiles in Fig. 2a are shifted in Fig.
2b to their respective distance minimizing positions relative to the first
profile. Fig. 2¢c shows the mean profile that approximates the target
profiles when regarded as rigid bodies. In Fig. 2d, this mean profile
is shifted to approximate the shape and location of the target profiles.
The described procedure could convert a shape-changing problem to a
rigid-body guidance problem, as the three locations of the mean profile
in Fig. 2d define three finitely separated positions of a moving lamina.
A chain of two or more rigid links connected by revolute joints can
better approximate a shape change than can a single rigid body with the
shape of a mean profile. The procedure for generating a mean profile
may be applied to any segment of the target profiles. To generate a
linkage composed of s rigid links, an initial solution divides the target
profiles into s segments of roughly equal numbers of points, the last
point of a segment being the first of the next segment. A mean profile
is generated for each set of segments. For example, given target profiles
of n =102 points, if s =4, the segments are composed of points 1-26, 26-
51, 51-76, and 76-102. The first three segments and their corresponding
mean profiles each have 26 points, and the last has 27. Once generated,
each mean profile can be shifted individually to the location relative to
its corresponding segment in each target profile that minimizes D. The
positions of the s mean profiles relative to each other will differ as they
are superimposed on each target profile. The end points of the segments
in general will not coincide in any of the positions at this stage.

Error Reducing Segmentation. Non-uniform target profile seg-
mentation can reduce the error in approximating a shape change by
shortening segments on the profile where shape change is most dramatic.
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Figure 2. a) Three target profiles, b) Shifted target profiles to minimize D, ¢) Mean
profile (solid line), d) Mean profile shifted to minimize D for each target profile.

The distance D is a poor segmentation metric because it depends on a
segment’s number of points. A better metric, the error E, is defined as
follows. For mean profile [, the error Ej; associated with matching the
corresponding segment in target profile j is the maximum distance be-
tween any two corresponding points on the two profiles when the mean
profile is shifted to the distance-minimizing location relative to the tar-
get profile segment. The error E; associated with this mean profile is
the maximum value of Ej; for all target profiles j =1,...p. The overall
error F is the maximum value of E; for all mean profiles [ = 1,...s.

To reduce E, the segmentation locations on the target profiles are
moved. Starting with segment 1, the number of points in each segment
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[, except the last segment s, is increased by one if E; < E and decreased
by one if E; > E., where E is the average of the E;’s. Segments 1 and s
change by one point, and the others by two. F, does not explicitly deter-
mine whether segment s increases or decreases in length, but its effect on
E and E does so indirectly. With the target profile segments redefined,
a new mean profile for each set is generated, the error F recomputed,
and the process repeated until F ceases to decrease. To avoid local min-
ima, the process continues for several iterations after E increases, and
each FE is compared to several previous iterations instead of just the im-
mediate predecessor. The segmentation providing the smallest E is the
error reducing segmentation, and the corresponding mean profiles define
the geometry of the rigid links that compose the linkage. Because the
target profiles typically contain thousands of points, altering segments
by two points is a modest change, and exhaustive approaches involving
single-point alterations are unlikely to offer significant benefit.

An alternative approach for initial segmentation is to specify an ac-
ceptable error E, instead of a number of segments, and “grow” segments,
starting with 1, point by point until the error E; of the corresponding
mean profile exceeds E,. This generates an unknown number of sege-
ments, the last of which generally has the smallest error.

3. Example

The three design profiles used to generate the target profiles in Fig. 2a
are defined by the points listed in Th. 1, and their arc lengths are 6.72,
6.78, and 6.76, respectively. The target profiles contain 1800 points,
as does the mean profile in Fig. 2c. The subset of points from the
mean profile listed in Th. 1 are key points that mark the locations of
significant change in slope along the mean profile. Figure 3 plots the error

Table 1. Defining points of design profiles and key points of mean profile in Fig. 2.
Mean profile points are in two columns, each ordered top to bottom.

Design Profile 1 Design Profile 2  Design Profile 3 Mean Profile
(2.3,7.6) (7.6,4.3) (4.7,6.4) (2.52,7.23)  (0.78,4.39)
(1.4,6.5) (7.4,5.1) (4.0,6.2) (1.94,6.85)  (0.85,4.01)
(1.0,5.5) (6.9,5.8) (3.1,5.6) (1.87,6.80)  (0.90,3.83)
(1.0,4.0) (6.4,6.4) (2.7,5.0) (1.46,6.38)  (0.94,3.73)
(1.3,2.8) (5.7,7.0) (2.7,3.9) (1.32,6.19)  (1.29,3.08)
(1.9,2.1) (4.8,7.3) (3.0,3.4) (1.24,6.10)  (1.38,2.93)
(2.3,1.7) (4.0,7.3) (3.7,2.9) (0.93,5.54)  (1.74,2.53)

(3.3,7.3) (4.4,2.6) (0.91,5.49)  (1.76,2.52)
(2.5,6.8) (5.3,2.4) (0.90,5.48)  (2.04,2.32)
(0.79,4.64)  (2.52,2.02)
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Figure 3. Error in matching target profiles shown in Fig. 2a as a function of number
of segments. Inset shows 4-segment solution superimposed on target profiles. Solution
segments correspond to unassembled rigid links of a shape-changing linkage.

FE in matching the target profiles as a function of the number of segments,
with a curve fit to the data to more clearly illustrate the trend. The data
point for 1 segment represents the solution shown in Fig. 2d, for which
the error clearly is defined by the top end point of the middle target
profile. In Fig. 3, increasing the number of segments beyond 4 offers
noticably diminishing returns in terms of reduced error. The plot inset
in Fig. 3 contains the 4-segment solution superimposed on the target
profiles with the segments shown in alternating shades of gray.

4. Mechanization

Once the geometry of the rigid links is determined, the links are
joined together at their end points with revolute joints to form a link-
age. This increases the error since it requires movement of the links
from their distance-minimizing positions to bring together the generally
non-coincident adjacent endpoints. Furthermore, the relative motion
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required between adjacent links to achieve their distance-minimizing po-
sitions is more general than that allowed by revolute joints. Still, if the
error prior to connecting the links is small, the linkage approximates
well the desired shape change. With the links joined, it is often desir-
able to add additional links that constrain the linkage to have a reduced
number of degrees of freedom. To constrain an s-link open chain to
be a 1-DOF mechanism, s + 1 binary links must be added. If five or
fewer design profiles are involved, circle and center points for additional
binary links can be found exactly, but for six or more design profiles,
least-square approximations such as those developed by Sarkisyan, et al.,
1973 are required. The details of mechanization are beyond the scope
of this paper, but each additional link further constrains the motion of
the shape-change-approximating links, thereby increasing the error.

5. Conclusions

This work introduces a systematic procedure to determine the geom-
etry of rigid links that can be assembled together with revolute joints to
compose a linkage that approximates a desired shape change defined by
an arbitrary number of morphing curves. The procedure involves com-
paring piecewise linear curves to reduce the error in the shape change
approximation, and increasing the number of links generally reduces
that error. Mechanizing the generated chains of rigid links presents a
number of challenges, but rigid-body mechanisms have great potential
as morphing structures, particularly in heavy load applications.
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Abstract In parallel mechanisms (PMs), the passive joint velocities can be elimi-
nated from the velocity equations by a standard screw-theory method,
obtaining a system of linear input-output equations. A general method
for the elimination of the passive joint velocities in non purely paral-
lel mechanisms is not yet known. The paper addresses the problem by
studying the instantaneous kinematics of two non-parallel closed-chain
4-dof mechanisms derived from a 5-dof PM. With some modifications
and appropriate geometric reasoning the PM methodology can be suc-
cessfully applied to the analysis of non-parallel mechanisms.

Keywords: Velocity analysis, parallel mechanisms, closed chain mechanisms

1. Introduction

Parallel mechanisms (PMs) are composed of an end-effector connected
to the base by separate serial leg chains, Fig. 1. Most published closed
spatial kinematic chains are PMs, but occasionally authors describe as
“parallel” kinematic chains that do not strictly belong to this class.

A relatively simple generalization of a parallel (or serial) mechanism is
when the kinematic chain is a two-terminal series-parallel graph connect-
ing the base to the end-effector. Starting with a parallel (or serial) chain,
substitute individual joints with parallel subchains; a mostly parallel (or
serial) series-parallel (S-P) chain (and mechanism, S-PM) is the result
(Fig. 2). More complex chains can be obtained from a mostly parallel
S-P connection when subchains (with at least one joint) are added be-
tween links belonging to different leg chains. Such mechanisms can be
referred to as interconnected chains (IC) mechanisms (ICMs) (Fig. 3).

In a PM, out of singularities, the input-output velocity equations (re-
lating the output twist, & = (w,v), or (w!|v!)T as a column vector,
and the actuated joint velocities, () are obtained in the form: Z¢€ = Aq.

For PMs, Z and A are computed by a screw-theory based method
that can be considered standard. It is relatively easy (ignoring unusual
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Figure 1.  5-dof PM: architecture with leg screws (left) and graph (right).

singularities such as RPM or IIM singularities, (Zlatanov et al., 1994)) to
generalize the passive-velocity elimination for series-parallel chains. The
method cannot be used, without changes, for ICMs. In the general case,
one deals with the velocity loop equations (rather than linear expressions
of € in terms of the leg’s joint screws). Analogously, Ohm’s laws suffice
when an electrical network is series-parallel; otherwise the more general
Kirchhoff laws are needed (Davies, 1981).

As we have shown (Zoppi et al., 2006), the ideas of PM velocity
analysis can be applied successfully to ICMs. The present paper illus-
trates this further by studying two new non-PMs. We modify a 5-dof
PM and its analysis to obtain and solve first a 4-dof S-PM and then a
4-dof ICM.

2. A 5-dof PM

In the 5-dof PM in Fig. 1 (Huang and Li, 2003), the PRRRR legs are
identical and labeled L = A,..., E. Numerical indices count the leg’s
joints, always from the base. The joint screws and their directions are EZL
and kiL, 1 =1,...,5, while the links are denoted biL, with b= bl e = bé
the base and platform. The P joints are horizontal while axes 2 and 3
are vertical in plane 7Z; with normal nl;. Axes 4 and 5 intersect at the
rotation center O fixed in the platform; their plane is ﬂ£5.

2.1 Constraint and Mobility Analysis

Assume nonsingular leg postures. The leg system of structural con-
straints (wrenches reciprocal to all leg joints) is Wy, = Span (¢,), with
o, a vertical force at O. The actuated constraints (reciprocal to the leg
passive joints) are Vj, = Span (¢,, ¢T), with force ¢! along 7y N k.
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The combined constraint systems are: W = ) ; Wi, = Span (g,);
V = 3,Vr = W+ Span (¢4,...,9). So the platform has full ro-
tational capability about its point O, which can translate horizontally.
Out of singularity, dim )V = 6 and the mechanism can be controlled by
actuating the five P joints.

2.2 Jacobian Analysis

The screw-theoretical method for the velocity analysis of PMs was
developed in works like (Hunt, 1978); (Mohamed and Duffy, 1985);
(Kumar, 1992); (Agrawal, 1990); (Zlatanov et al.,1994); (Zlatanov et al.,
2002); (Joshi and Tsai, 2002). We provide a detailed general formulation
in (Zoppi et al., 2006).

For each leg, a non-unique actuation system, Uy, is identified, V; =
Wy, @ Uy, for this PM we use Uy, = Span (¢”). The reciprocal product
of the actuations (any basis of Uy) eliminates the passive joint velocities
from the leg twist equation, here & = q'lLEf + 2?22 wif*ﬁiL.

To obtain an equation Z§& = Aq with coefficients in terms of the
PM’s geometry, we need symbolic expressions for the actuation screws
o = (f¥, m*). We use a moving frame Oijk, Oz always vertical. Since
@k, a pure force, and the origin are in 7r4L5, ml = an4LS, where n4L5
is the unit normal to 7y and r” is the distance of ¢’ from O. Since
the intensity is irrelevant, f = n£5 X ngg and, ignoring the singularity
o3 || mas:

L L L L L. L.LT\T
" = (nj5 x ng | |nj5 x ng|ring’) (1)

We can now write the input-output equations. The structural con-
straints amount to the condition v, = 0, in £ = (wx,wy,wz|vx,vy,vz)T.
The v, output velocity can be ignored and the system becomes five-

dimensional:

[ fATAnZ%T fo fAy ] q'f‘
fBTBnZ%T fo fo @?13
FerenG | e, 1O, | E=diag (kf-£5) | € (2)
foronR” g0, gp, | PR i
_fETEn4EST wa ny_ a7

& is € with the z coordinate of its moment suppressed.

3. A 2R2T 4-dof S-PM

The PM of Fig. 1 has instantaneous end-effector motions spanned by
2 translations and 3 rotations, all independent. Mobility types allowing
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Figure 2. 4-dof 2R2T S-PM: architecture with leg screws (left) and graph (right).

instantaneous motions spanned by 2 translations and 2 rotations (2R2T)
are potentially useful for possible practical application and because of the
few mechanisms proposed in the technical literature having this mobility.

The 5 dof of the PM of Fig. 1 are reduced to 4 if two third links, say
b5 and bY, are joined in one b5°. The result is an S-PM, Fig. 2. (The
same result can be obtained from the PM by an extra link between Ef
and £3C creating an immobile spatial 4-bar, see Fig. 3.)

3.1 Constraint and Mobility Analysis

Legs B and C are combined in a mostly serial leg BC, composed of a
planar PM and a passive spherical 4-bar in series.

The spherical 4-bar’s coupler, e, has one dof with respect to b” ¢ and
a constraint 5-system WJI’BC = Span (¢, @, ¢, ul, ,u%), where ¢, ¢,
¢, span all forces at O and u£5 is a couple about n£5. All four joints
are passive, hence V%C = W%C.

The 2-PRR planar PM from b to b€ imposes the (planar) structural
constraints, W = Span (¢, p,, i,), and the actuated constraints
Vo = Whe @ Span (@8, ¢%). The actuation L can be any nonvertical
force in 7ly, in particular (out of singularity) ¢ as chosen in Section 2.1.

The whole leg BC' imposes the constraint systems: Wpc = Wgo N
W%C = Span (¢, uOBC), where “(J)BC is a pure moment with direction
k x nf x n%; and Vo = Vo N V%C = Wge @ Span (p?, %) =
Span (7, 0%, ¢, uf°).

The combined platform constraints, for the 4-legged S-PM, are: W =
S Wr = Span (¢, ui’“); V = 3, Vi = Span (¢, 07, 0%, pP) @ W
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(@4, P as in Section 2.1). dimV = 6 and the S-PM is commanded by
the four actuated Pf. (Leg E is thus not needed and removed.)

3.2 Jacobian Analysis

The velocity analysis proceeds as in the original PM. Locking any
PIL adds one independent basis screw in (%, as in the original PM.
Therefore, we can proceed writing the velocity equations along the four
serial chains (two of which share b%¢) and eliminating the passive joint
velocities without considering the presence of the additional link.

The velocity equations are & = ¢F&¥ + Z?:Q wkel, L = A,B,C,D.
We eliminate the passive joint velocities from the L-th equation by recip-
rocal product with ¢% from Eq. (1).

The couple puF¢ is horizontal. In a reference frame Oijk with i || uZ¢,
the w, and v, components of £ are zero, and the system of four velocity
equations becomes four-dimensional. From Eq. (2), we obtain:

ALA, A AA, A A A .
f r n45y f T Nys, f x f y qf
c,.C,C c,c,C c c = 1 -C
o T4, Jortngs | fTe f y L=A,...D CI}D
D,.D, D D,.D, D D D ;
for N5y Jortngs | [P 7y 4y

4. A 2R2T 4-dof ICM

Consider finally the ICM in Fig. 3, derived from the S-PM in Fig. 2
by moving the fifth joints of legs A and D from the end-effector to links
bf and bf, respectively.

We refer three subchains as “legs”: the central S-P leg BC' (same as
in the S-PM); and the the two lateral P4R serial chains, from the base
to bf and bf.

4.1 Constraint and Mobility Analysis

From Section 3.1, the structural constraint applied to the end-effector
by leg BC is Wpc = Span (@, uF¢). Lateral leg A applies on bf the
same structural constraint Span (¢, ), which is also reciprocal to €2, and
similarly for leg D and bf. Thus, the combined structural constraint on
the end-effector is still W = Span (¢, uF“) as for the S-PM; dim W = 2
and the ICM has the same 4-dof mobility.

For the actuated end-effector constraint, we consider joints 5113 , E?
and 5‘14, E{j separately.

Consider first the constraint when actuators B and C are locked.
Because 5’14 and E? are free, it does not matter whether the lateral legs
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Figure 3. 4-dof 2R2T ICM: architecture with leg screws (left) and graph (right).

are connected to the end-effector or to bf and, as in Section 3.1, the
actuation wrenches are ¢”, L = B,C, Vpc = W + Span (¢?, ¢%).

Consider now the contribution of leg A. We analyze, first, the con-
straint on bf. Joint 5’14 is locked: the constraint of leg A on bf is
Span (¢, ¢*) P)
where u? is a pure moment with direction k x k. The total actuated
constraint on bf with &4 locked is V{* = Span(p,, 4, uP). This is
an IB(h =0,7y) 3-system containing pure forces with direction k in the
plane 7r64 through O orthogonal to p?, and pure forces in the pencil
centered at the point P where ¢4 intersects 7r()4, in the plane through
p* parallel to k.

Only wrenches reciprocal to 55];3 are transmitted to the platform. The
subsystem Vit = V! N Span (€8)* is a cylindroid, Span (¢, ¢2), ¢ in
the pencil at P4 and intersecting 55],3 . Another wrench in er is ¢45,
obtained by linear combination of ¢? and p?:

AP = (&P o)t — (e oM = MPpt + NP (4)

Thus, the platform constraint with 5’14 locked is V4 = W @ Span (CAB).
Similarly, VP = Wpe @ Span (¢P) and, out of singularities, V = V4 +
Ve + Vp is the 6-system.

. The constraint on bf coming from leg BC'is Span (¢, p

)

4.2 Jacobian Analysis

In this case, the analysis needs to be changed significantly. We cannot
proceed as before, because the “legs” do not all reach the end-effector.
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We analyze, first, leg A and the subchain B of leg BC'. The velocity
equations are:

5
E=qlel+) Wi +wlel (5)
5
E=qrer+)_wiel (6)
1=2

We compute the reciprocal product of Egs. (5) and (6) by A\{Be4 and
MBuB | respectively. Then we add them and simplify using Eq. (4) and
£5BOCAB = 0. The same is done for leg D and subchain C of leg BC.

We obtain:
Eo¢MM =glel oMMl (L,M)=(A,B),(D,0) (7)

Two more veloc1ty equat1ons come from the subchains B and C of
leg BC: £ = ¢y 51 + ZZ 9 wL£ L = B,C. The passive joint velocities
are eliminated by computlng the rec1procal products with ¢ and ¢,
respectively, obtaining: &o@’ = jf LeLopl. These equations and (7) can
be arranged in the matrix form:

T TetorBet 0 0 0 it
Pole=| 0 Eeet 00 )
2 0 0 &Fop® 0 i
&b 0 0 0 &PoAP%P a7

The matrices in Eq. (9) are written as in terms of the geometry para-
meters. We use £ = (0|k¥); @F = (£ fErink), ¥ as in Section 2.2.
Also, MA=KY { AV = Frld ndy (P (4(1— fPriu).
k45z_kMkMkM (L,M)=(A, B);(D,C). Thus:

kf’)z(l - fA A)nfk’)y klﬁ’)z(l - fA A)nf{’)z kf’)sz klﬁ’)zf;

fBT ”45 fBT n45z ff ff 3
T o
k45,z(1 - fD )n45y ké%z(l - fDTD)nZ%z k%zfxD k%zfyD
KR kt-£4 0 0 0 gt
B 0 kB.-fB 0 0 qP (9)
- 0 0 k¢ f¢ 0 i

0 0 0 kLK. || gP
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5. Conclusions

The paper shows by means of two examples how, with some modi-
fications, the standard method for the constraint and velocity analysis
of PMs can be applied for the derivation of the input-output velocity
equations of non-parallel closed chain mechanisms.

In such mechanisms part of the constraint wrenches applied to the
end-effector are not in the vector-space sum of the leg constraint systems.
These additional constraints have to be taken into account in order to
eliminate the passive joint velocities from the velocity equations.
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Abstract Manufacturing of micro-robots by MEMS technology may cause large
clearance at the joints — only one order smaller and even of the same order of
magnitude as the links themselves. Due to the clearances, the direct
kinematic solutions are not discrete, but form a volume that is defined here
as the “Clearance-space”. When clearances are large enough, two separate
regions of the clearance-space may unite, causing a major failure as the
forward kinematic may be shifted into a different unwanted solution. This
paper suggests an algorithm that calculates the minimal value of the joint
clearance in which this severe phenomenon occures.

Keywords: Clearance, direct kinematics, parallel robot, MEMS, micro joint

1. Introduction

Contemporary MEMS technology enables manufacturing of micro-
robot using masks and lithograpy process. This technolgical process
requires keeping relatively large gaps between links in order to maintain
the mechanism’s motion. These gaps result in clearances between moving
parts, that can be as large as about the same order of magnitude as
the typical dimensions of the mechanism itself. These were the
circumstances in traditional machinery during the 18th century that
caused 1naccuracy of the mechanism, shocks, vibrations, noise and wear
at the joints, as opposed to the high accuracy achievable in the macro-
world nowadays.

Modeling of clearances is always implemented by adding degrees-of-
freedom to enable parasitic motion between the joint parts. The motion
in these degrees-of-freedom is limited by the joint geometry, where the
most common ones are the revolute, prismatic, and spherical joints.
Consequently, most of the models deal with these three joints. It is worth

75
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© 2006 Springer. Printed in the Netherlands.
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noting that some of the models can be expanded to helical or cylindrical
joints. Most models assume that the clearances are small, thus enable
using linearization and similar simple mathematical tools.

Dubowsky and Freudenstein, 1971, have investigated the dynamics of
revolute and spherical joints with clearances, and discovered some
interesting dynamic phenomena, like limit cycles and natural frequencies
changing vs. the motion amplitude. Stoenescu and Marghitu, 2003, have
solved the dynamics of a slider-crank-mechanism, and applied impacts
when the two parts contact.

Other researches focus on the static behavior of mechanisms with
clearances, that are subjected to an external load. Wang and Roth, 1989,
have shown all the relative situations between the journal and bearing of
a spatial revolute joint. The mathematical conditions relate the joint
geometry and reactions at the joint due to the external load, and the
valid situation must satisfy the conditions ensuring that all normal
forces are positive. Parenti-Castelli and Venanzi, 2002, have applied a
gravitation force on moving robots, and assumed that the motion is
quasi-static, thus one can find the contact points using static analysis.
They have found that the accuracy of the parallel robot is quite good
compared with the serial counterpart, except for near singular configu-
ration.

One example for dealing with relatively large clearances, without
assuming that they are much smaller than the links, is given in
Voglewede and Ebert-Uphoff, 2004. In their work, the authors have
calculated the possible poses of the end effectors of two planar parallel
robots resulting from the clearances, and have shown that the effect of
clearances becomes worse near or at singular configurations. This
kinematic approach is based only on the robot geometry, without taking
into account the loads applied on the robot.

Behi et al., 1990, and DeVoe et al., 2000, were the first to build, based
on MEMS technology, 3RRR and 3PRR planar parallel robots, res-
pectively. Kosuge et al., 1991, was aware of the clearances in the
3RRR version, and calculated their affect on the accuracy of the moving
platform, while assuming that the clearances are very small compared to
the robot links.

The present paper deals with large joint clearances that are typical of
MEMS manufacturing, and determines the clearance conditions under
which two forwards kinematic solutions merge, which results in an
undetermined location of the output link.
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2. The Clearance-Space as an Expansion of the
Direct Kinematics Solutions

The 3RRR and 3PRR kinematic structures are discussed hereinafter.
Fig. 1 shows the 3PRR robot!.

4 45

(a) general view (b) zoom on one link
Figure 1. 'The 3PRR robot.

The robot consists of an equilateral triangle platform, whose center is
the point P. The platform pose is determined by point P x and y
coordinates and by the platform orientation 6. Points P, P, and Ps are
located on the platform in an equal distance r from the platform center P.
The linear motors detemine the vectors p”, ng, and p™, where p
stands for a position vector from the origin to the corresponding point. In
case of 3RRR kineamtic structure the motors would be rotational,
although this is not shown here. The physical length of the links
which are marked by asterisks, and which connect the motors with
the platform, is [, meaning that under zero clearance, this would be the
distance between each motor and the corresponding point on the
platform.

It is likely that the manufacturing process would introduce clearances
into all six revolute joints. The clearance is expressed by an offset
between the axes of the bearing and the journal. Therefore, those axes
are not coincident, but may be distant from each other. The simplest
model assumes that the difference in radius between the bearing and the
journal of any joint is %A (see Fig. 1b). Therefore, the distances between
each motor and the corresponding point on the platform, which we refer

14’ ‘g’ and ‘b’ stand for the red, green, and blue links, respectively. All colored figures

can be found at the website http://robotics.technion.ac.il/Projects/hagay/Robochip.html
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to as the “effective lengths” of the links M,P,, MgP., and MyPs, is bounded
by:

[-A< ‘M'pp', MepPel [MopP| <7+ A. 1)
Defining the parameters s, s¢, and sy such that
1< 5, sq, 8, <1 @)
enables writing the effective lengths as
MrpPrl=1+5,A
Meplel=i4s,A. 3)
My Pl =14 5,A

In order to find the possible locations of point P, three auxiliary annuli
are drawn. They are described in the next figure, with the robot arranged
in a specific orientation 6.

271 ’
26f
25F ©
24F
231

22F

211

-1 0 1 2 3 4 5 6 7 2 22 24 26 28
X X

(a) the robot and the annuli (b) zoom near the point P

Figure 2. Possible positions for a given platform orientation due to clearances
at the joints.

Note that the angle 6 determines the vectors “p?” Fe p”, and " p”,
which are pointing from the platform corners to its center. Those vectors
lead to the auxiliary points 7%, Tg, and T%, which can be calculated by

rp — rp
Mepls = Tep? (4)
Mprb _Ppr
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The annuli A,, Ag, and Ap of the radii [-A and [+A are centered at
points Tr, Tg, and Tb, respectively. The annulus A,, for example, describes
the possible positions of point P, if only the red link is connected to the
platform. When all links are connected, point P is forced to be at the
intersection of the three annuli. This area is bolded in Fig. 2, and can be
calculated by A;NA;NAs, as shown in Voglewede and Ebert-Uphoff, 2004.
If the three annuli do not intersect, then there is no solution for the
direct kinematic problem for this specific orientation angle 6.

Physically, when the robot tracks the bolded green curve in Fig. 2, the
effective length of the green link is always [-A (s¢ =—1), while the effective
lengths of the other links are in the boundaries defined in Egs. 1 and 2.
Furthermore, moving along the long blue curve (sy =—1) changes the
length of the red link between its extreme values (s, = —1 and s, = 1), while
the green link is always in the allowed range. The intersecting point
between two curves means a configuration where the clearances of two
links are closed.

Fig. 2 describes a specific orientation of the platform. Generalizing it
to all possible orientations yields the “Clearance-Space”, shortly named
“Cl-space”. This space is a sub-space of the configuration-space, and it
consists of six boxes that describe all possible platform poses resulting
from the clearances. Note that the term “box” is being used since it has
eight vertices, although its shape is not cubic. Actually, the “Cl-space” for
3RRR or 3PRR robots is identical to the workspace of an equivalent
3RPR robot, whose link lengths are limited as described in Eq. 1
(Voglewede and Ebert-Uphoff, 2004).

3.5

25 3
x ° 35 4 15 2 y
Figure 3. The clearance-space.
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In the case of no clearance, the direct kinematics problem has six
solutions, as shown in Gosselin and Merlet, 1994. These solutions are
points in the 3D C-space, and each of them is located in one of the boxes
in Fig. 3. Therefore, it can be concluded that each of the boxes in the
Cl-space is an expansion of one of the direct kinematics solutions.

Each of the boxes has six side walls, which are two degree-of-freedom
manifolds: two red, two green, and two blue. As described before, the red
side wall, for example, includes poses in which the clearances in the
joints of the red link are closed, i.e. the effective length is minimal or
maximal (see Eq. 1). Therefore, while manipulating the robot along an
intersecting curve of two side walls, which is a one degree-of-freedom
manifold, the effective lengths of the two relevant links remain fixed. In
fact, this motion is similar to the motion of a four bar mechanism that
consists of a platform that serves as a coupler, and the two fixed length
links. The black curve in Fig. 3 describes the motion of such a four bar
mechanism, in which the lengths of the red and green links are minimal
(sr = s¢ = —1). Indeed, this curve meets all the boxes along the intersecting
curve of the two relevant side walls. The motion of the mechanism is
limited by the third link, since its effective length is constrained by Eq. 1.
However, when clearance A is large enough, the effective length of the
third link does not limit the motion of the four bar mechanism.

Each of the boxes in Fig. 3 has eight vertices, which correspond to the
poses where all the clearances are closed. These poses can be calculated
analytically using the algorithm in Gosselin and Merlet, 1994, since each
of the extreme situations can be treated as an equivalent 3RPR robot,
whose link lengths are fixed and known. For example, the circles in Fig.
3 indicate the poses where all the effective lengths are minimal (s, = sg =
sb = —1), while the cases of maximal blue link (sr=s¢ =-1, s =1) are
marked by the diamonds. As expected, there are six circles and six dia-
monds, and all of them lay on the black curve.

When the clearance increases, the volumes of the boxes also increases
and may cause two adjacent boxes to meet. Kinematically, such a case
must be avoided, since the robot may pass from one direct kineamtic
solution to another, thus resulting in an undesired platform pose. The
interesting question is how to quantify a boundary for the clearance in
order to prevent this phenomenon.
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3. Merging Conditions of Clearance-Space Boxes

In order to find an analytical answer for the above question, note that
two boxes meet when their vertices meet. As explained, the vertices are
calculated by solving a direct kinematics problem, so it can be concluded
that this problem has at least one multiple solution. Since the direct
kinematics problem yields a six degree polynomial equation, conditions
where such a polynomial has multiple roots should be found.

Lemma: Given the general polynomial equation:

g - P vert —dP + ez —bz+a=0. 5)

It can be shown that this equation has multiple roots if its coefficients
satisfy the next equation:

bl d* e P —4b*rdPePg —27a%d e £ +38880abfgt +...= 0. (6)

This equation has 246 terms, so only some of its terms are shown. The
complete expression can be found online at the website htip://robotics.
technion.ac.il/Projects/hagay/Robochip.html

Proof: If the solutions of Eq. 5 are z1, 22, 23, 24, 25, and zs, it is evident

that:
g(z—zl)(Z_Zz)(2_23)(2_24)(2_25)(2_26) )
= g26 - £ tvezt —dz® +cz? —bz+a=0.
Therefore,
a _
= Z1Z9Z3Z4Z5Z¢
g
ﬁ_ Z1ZyZ3Z4Z5 +2122232426 +2122232526
g +2122242526 +ZIZ3Z42526 +2223Z4ZSZ6
21292324 + 21292325 + Z1Z2923Z¢ + Z1Z29Z4Z5 + Z1Z29Z4Z¢
C
—= +21222526 +ZIZ3Z425 +ZIZ3Z4Z6 +ZIZ3Z5Z6 +ZIZ4Z5Z6
g
+ ZyZ3ZyZ5 + ZyZ3ZyZg + ZyZ3Z5Z¢ + Z3Z4Z5Z¢ + ZyZpZ5Zg (8)
d Z1ZyZy +lezz4 +212225 +212226 +ZIZ3Z4 +ZIZ3Z5 +ZIZ3Z6
g = + Z1Z4Z5 + Z1Z4Z¢ + Z1Z5Z¢ + ZyZ3Zy + ZyZ3Z4 + ZyZ3Zg + ZyZyZs

+ZZZ4Z6 +ZZZSZ6 +Z3Z4ZS +Z3Z4Z6 +Z3ZSZ6 +Z4ZSZ6
Z1Zy +le3 +le4 +ZIZS +le() +ZzZ3 +ZzZ4 +2225

+ZzyzZ¢ + 2224+ 22325+ 232 + 2425 + 2420 + 252,
246 344 345 346 445 446 546

= Zl+22+23+Z4+Zs +Zﬁ
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Substituting Eq. 8 into Eq. 6 yields

(21 _22)(21 _23)(21 _24)(21 _ZS)(ZI _26) ?

8" (22 —23)(z2 =24 )z, — 25 ) (22 — 26 ) (25 — 24) | =0, )

(23 _Zs)(z3 _26)(24 —Zs )(24 _26)(25 _26)

meaning that there exists at least one pair of multiple roots.
The following equation is obtained while solving the direct kinematical
problem:

(g2A2 +g,A+g, )t6 —(szz + fiA+ 1, )t5 +(62A2 +e1A+e0)t4
(A2 v d A+ dy )P ey A v e Aty )i (b, A2 +b A+ ), (10)

+(azA2 +alA+aO)= 0

where:

t= tan[%}, (11)

and all coefficients ao, a1, az, ..., go, g1, g2 are known functions of the
. M, M M,
geometric parameters p~, p % p *,Lr and s, Sg, and sp.
Substituting the coefficients of Eq. 10 into Eq. 6 yields a polynomial
equation in A only:

20 )
ZKIAI =0. (12)
i=0

For all the solutions of the above equation, Eq. 10 has multiple solutions.
The smallest positive solution has a physical meaning, since it is the
clearance A where the vertices of two different boxes meet. For a
complete solution, it is required to repeat the calculation for all eight
combinations (sr =+1, s¢ =+1, s, = +1), in order to find the first meeting
of two boxes, whereas it cannot be known in advance in which of the eight
vertices the meeting will occur.

4, Numerical Example

Given the motor positions at p*~ = 0% + 0y, ng = 7%+ 0y, p** =2%+5y,
and the geometric parameters [ =2, r = 4. Fig. 2 shows a possible area for
the platform center P at a constant orientation angle 8 =12.5° due to a
clearance A = 0.2, which is one order smaller than the link lengths. Fig. 3
shows all the Cl-space for A = 0.1.

Implementation of the process described in Eqs. 10 and 6 for each of
the combinations of s, s¢, and sp yields eight equations in A. For example,
for s, = s =—1, sp = 1, one gets:
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0.04096 +1.7241A + 6.4984A% — 261.64A° + 474.52A% +2071.7A°

—3280.54° ~8679.5A7 +10067A° +19083A” —17010A" - 20825A"" (13)
+14420A% +10771A" — 4820.9A" —2523.8A"° + 415.36A'°

+147.69A"7 —17.53A1% —1.9558A° +0.21726A%° =0

The real solutions of Eq. 13 are —-7.2367, —3.5072, —2.3201, —1.5742,
—0.8661, —0.7204, 0.1279, 0.8696, 1.1962, 4.8039, 7.7946, and 8.9655.

The lowest positive solutions of the eight combinations of s, sg, and s
are shown in the next table:

Table 1. The clearances causing meeting of vertices of the Cl-space.

Sr Sg Sb Amin
1 5.7662
) R 0.7204
1 0.2776
-1 0.1528
1 0.5665
1 ] 0.1656
=1 1 0.1279
-1 0.4935

The smallest value in the table is bolded and, as expected, it results in
meeting of the two vertices that are indicated by a diamond in the top of
Fig. 3. The next figure shows the Cl-space for A=0.14, and it can be seen
that the two boxes became one and there are only four solutions for
Sr=8g=—-1,sp=1.

2 25 35
x 235 3 15 2 25 3

Figure 4. The clearance-space for large clearances.
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5. Conclusions

The kinematic effects of large joint clearances in parallel robots was
discussed. It was shown that the direct kinematics solutions expand due
to the clearances, and the clearance-space was defined as the set of
possible platform poses resulting from given clearances. Instability of
direct kinematics solutions may occur, as the clearances get bigger when
two distinct clearance-space boxes might merge. An analytical approach
for finding the minimal clearance that causes this unwanted behavior
was suggested, along with a numerical example showing that for a 3
DOF planar parallel robot, clearance of about 10% of the typical robot
link length may be problematic. Future work will investigate the effects
of clearances on the static and the dynamic behaviors of micro-robots.
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Abstract This paper presents a stiffness mapping of a mechanism having two planar
compliant parallel mechanisms in a serial arrangement. The stiffness
matrix of the mechanism is obtained by taking a derivative of the static
equilibrium equations. A derivative of spring force connecting two moving
bodies is derived and it is applied to obtain the stiffness matrix of the
mechanism. A numerical example is presented.

Keywords:  Stiffness matrix, compliant coupling, parallel mechanism

1. Introduction

There are many robotic tasks involving contacts of man and machine
or the robot and its environment. A small amount of positional error of
the robot system, which is almost inevitable, may cause serious damage
to the robot or the object with which it is in contact. Compliant couplings
which may be inserted between the end effecter and the last link of the
robotic manipulator can be a solution to this problem (Whitney, 1982,
Peshkin, 1990, and Griffis, 1991).

Dimentberg, 1965, studied properties of an elastically suspended body
using Screw theory which was introduced by Ball, 1900. Screw theory is
employed throughout this paper to describe the motion of rigid bodies
(twist) and the forces applied to rigid bodies (wrench) (Crane et al., 2006).
A small twist applied to the compliant coupling generates a small change
of the wrench which the compliant coupling exerts on the environment.
This relation is well described by the stiffness matrix of the compliant
coupling.
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Parallel mechanisms have several advantages over serial mechanisms
such as high stiffness, compactness, and small positional errors at the
cost of a smaller work space and increased complexity of analysis.
Griffis, 1991, obtained a global stiffness model for parallel mechanism-
based compliant couplings. Huang and Schimmels, 1998, Ciblak and
Lipkin, 1999, and Roberts, 1999, studied synthesis of stiffness matrices.

2. Problem Statement
Ba ’\ @2
B' o
B2
<]
< <
> > k.
kl :> k’) 5 3
A3 P
-
™ M- - w D1
A =
A2
k. k,
k4 5 6
E2
E3
E
B
Figure 1. Mechanism having two planar parallel mechanisms in a serial
arrangement.

Figure 1 depicts the compliant mechanism whose stiffness matrix will be
obtained in this paper. Body A is connected to ground by three compliant
couplings and body B is connected to body A in the same way. Each
compliant coupling has a revolute joint at each end and a prismatic joint
with a spring in the middle. It is assumed that an external wrench w,,,
is applied to body B and that both body B and body A are in static
equilibrium. The poses of body A and body B and the spring constants
and free lengths of all compliant couplings are known.

The stiffness matrix [K] which maps a small twist of the moving body
B in terms of the ground, Eé‘]_)B, into the corresponding wrench varia-

tion, dw,,,, 1s desired to be derived. This relationship can be written as
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SW,y =[K]"sD". 1)
The static equilibrium equation of bodies B and A can be written by

Wext = £1 +£2 +£3

@)

=f,+f;+£f,

where f; are the forces from the compliant couplings.

The stiffness matrix will be derived by taking a derivative of the static
equilibrium equation, Eq. 2, to yield

5V_Vext = 5£1 +5£2 +5£3

: ®3)
=of +of +0f,

Expressions for 6f; for the compliant couplings joining body A and
ground, i.e., for 1=4, 5, 6, were obtained by Griffis, 1991.

The contribution of this new effort is in the analysis of the derivative
of the spring force joining bodies A and B which will lead to the
derivation of the compliant matrix that will relate the change in the
external wrench to the twist of body B with respect to ground.

3. Derivative of Spring Force Connecting
Two Moving Bodies

N

Body A .

Figure 2. Compliant coupling conneting two moving bodies and variation of
point P2 due to twist of body B with respect to body A.

Figure 2 depicts two rigid bodies connected to each other by a compliant
coupling with a spring constant k, a free length /, and a current length
[. The spring force may be written as
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f=k(l-1,)$ 4)

S S
$:{E A 1:[12 B } ®)
- r'p xS I'py xS

and where, S is a unit vector along the compliant coupling. r%, and

where

E g}}iz are the position vector of the point P1 in body A and that of point
P2 in body B, respectively, measured with respect to the reference
system embedded in ground (body E).

The derivative of the spring force as in Eq. 4 can be written by
EsE=ksl$+R(1-1))"58 . (6)

From the twist equation, the variation of position of point P2 in body B
with respect to body A can be expressed as

Asrh, = 45r” + Aé‘gB x 4rh, (7)

where “rp, is the position of P2, which is embedded in body B,
measured with respect to a coordinate system embedded in body A which
at this instant is coincident and aligned with the reference system

attached to ground. In addition, A5(£B is the differential of angle of body

B in terms of body A. It can also be decomposed into two perpendicular

vectors along S and 8195 which is a known unit vector perpendicular to
S. These two vectors correspond to the change of the spring length &1

and the directional change of the spring 166 in terms of body A as shown
in Fig. 2. Thus Eq. 7 can be rewritten as

A A
-y sy, 5
- 06 06
. ®)
=06lS+160 5
- 00
where
Aas
| e ©)
00 | , 4 A0S

r X —
—P1 PY
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From Eqgs. 7 and 8, 6/ and /60 can be expressed as
Sl ="orp, -S =451 - S+ 59" x xh, -8

= 4or" .8+ 459" - Arlh, xS (10)
_ §T Aé-]_)B
A A A
oS oS oS
160 = A61f, —= = “orf - —=+ 45@" x Arlh, —=
T2 oy T Lo Tay T ORI EP2 T,
A A
AcB “O0S AL B A B S
=r.  ——=+ 05 X 11
—o0 0 (2 rpo 00 ( )
A T
_ o8 AsDP
00 -
where
A A6§
a ’
% _ 06 . (12)
00 A B A58
Y pg X——=
06
A Aqr A
— has the same direction as —= but has a different moment term.

E5§ in Eq. 6 is a derivative of the unit screw along the spring in terms
of the inertial frame and may be written as

E
Fsg = [ o3 ] (13)

Eg A E
ot xS+ Fr4, x E58

Using an intermediate frame attached to body A,
P58 =458+ Pop” xS . (14)

Then, E5§ may be decomposed into three screws as follows

I EsS
Fo$ = Ec. A E
- St xS+ Frd, x £58
[ A58 + Es@h xS
- (15)
Esrd, xS+ Fr4, <A5S+ E5(p ><S)

458 Foph X8 0
= - —+ -
Byl x A5S Eyd x(Eﬁ(gA ><§) Borp, xS

Since S is a function of @ alone from the vantage of body A and 150 is

already described in Eq. 11, the first screw in Eq. 15 can be written as
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A
oS
I
E A _A A )
Tpx O8] N pa 108 5 16)
- 00
A Ane Arq/T
0 0% “0
:_§l 59:l_§ $ AsDB
00 1 1 00 06 -

As to the second screw in Eq. 15, “5¢@” xS has the same direction as
) 2

T with magnitude of ;0¢, and thus may be written as

Es@h xS = E5¢A Aas 17)
Then the second screw in Eq. 15 can be expressed as
Eé(gA xS B ;ZS EPA
rhox(Poet S| g 108 g a9
00
_ ‘s 2 5, = Aa$ [0 0 1]"%sD*

06

As to the third screw in Eq. 15, E&gﬁl can be decomposed into two
A

perpendicular vectors along S and —=, respectively as

Es A _E Espd o EpA
51'13:5r+5q) r'p

A A 19)
Eq A Ec.A 0S]70S (
=("Orp -S|S+| "o
(“orii -8)s [ 100 o0
where
Eorpy -8 = Fory - S+ Poe? xxp, -8
= For’y - S+ ot - x'p xS (20)
$TE5DA
A A A
1) = = “or* - =+ =0 =
=P1 P) =0 00 X —P1 00
A A
EcoA ~OS Eo A A oS
= "or =+ 70@" ‘T = 21
° oo T 0% IR @D
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By combining Egs. 19, 20, and 21, E&gﬁl can be written as

AneT A
0% oS
Ec A T E syA E A
Orp, = oD*|)S+| —=— 6D |—=. 22
Ypi (§ = )_ [ 20 4 J 20 (22)
Then the third screw in Eq. 15 can be written as
i 0
) = 408" 458
Eorty xS |{(8" PoD*)S+| ——"sD* |2 ix8
= = - - 00 00 | ~
| 0 0
_ | AneT A _| a T (23)
6_§E51_)A igxg _iEé‘DA
06 00 o0 =

0
A6$TE A 458
- 00

T
=-|0|——"sD =[0 0 1]} FsD4
20

A
because = S=-1(k).
06

By substituting 61 and E5§ in Eq. 6 with Egs. 10, 16, 18, and 23 and
arranging the terms by the twists, the derivative of the spring force can
be written as

Esf =kol$ + k(I -1,) P58

24
=[K;]*sD" +[K,, ] *sD* @y
where

l Aa$ Aa$rT

_ T _loy__"= =
[Kp]=k$$" +EQ l) %9 20 (25)

Aa Aa T

[Ky |=k(-1,) 5_3[0 0 1]—{6—6?[0 0 1]} . (26)

As shown in Eq. 24, the derivative of the spring force joining two rigid
bodies depends not only on a relative twist between two bodies but also
on the twist of the intermediate body, in this case body A, in terms of the

inertial frame. [K F] is identical to the stiffness matrix of the spring
connecting a moving body to the ground which was derived by Griffis,
1991. [K M] 1s newly introduced from this research and results from the
motion of the base frame, in this case body A. [KM] takes a skew
symmetric form in general.
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4, Stiffness Matrix of the Mechanism

The stiffness matrix [K ] which maps a small twist of body B in terms
of the inertial frame into the corresponding change of the wrench on body
B is derived from Eq. 3 (see Fig. 1). The derivatives of spring forces can
be written by Eqs. 27 and 28 since Springs 4, 5, and 6 connect body A and
ground and Springs 1, 2, and 3 join two moving bodies.

Sf 4 +0f 5 +0f ¢ =[Kp |, "6D* +[ Ky | "oD* +[ Ky |, "oD*

E oA @27
:[KF]R,L oD

S8, +08y 08y [ Ky, 20D <[Kp], %6D" 4 K, ], YoD"
+[Ky ], B6DA +[ Ky, ], B6DA +[K,, ], BsD4  (29)
= I:KF :IR U Aé‘DB + [KM :IR U Eé‘DA
where

[KF :|R,L = g[KF l‘ ’ [KF :|R,U = Zi:[KF l‘ ) [KM :'R,U - il[KM ]i

and where [KF l. and [KM l. are defined as Egs. 25 and 26.

Then from Eqgs. 3, 27, and 28 the derivative of the external wrench can
be written by

5"_Vext = [K] Egl_)B
=[Kp ], “oD* : (29)
=[Kyp]py D7 +[ Ky |, P6D*

Finally, from Eq. 29 and the twist equation, Eq. 30, the stiffness
matrix can be obtained as Eq. 31.

Eé‘l_)B — E5]_)A + A5I_)B (30)
-1
[K] = [KF :'R,L ([KF ]R,L + [KF ]R,U - [KM ]R,U) [KF :|R,U (31
5. Numerical Example

The geometry information and spring properties of the mechanism in
Fig. 1 and the external wrench w,, are given below.

0.01 N
w,,=| -0.02 N
0.03 Ncm
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Table 1.  Spring properties (Unit: N/cm for k, cm for 1o).

93

Spring No. 1 2 3 4 5 6
Stiffness
0.2 0.3 0.4 0.5 0.6 0.7
constant k
Free length lo 5.0040 | 2.2860 | 4.9458 | 5.5145 | 3.1573 | 5.2568

Table 2. Positions of pivot points in terms of the inertial frame (Unit: cm).

Pivot points E1 E2 E3 B1 B2 B3
X 0.0000 1.5000 3.0000 0.0903 1.7063 1.9185
Y 0.0000 1.2000 0.5000 9.8612 8.6833 10.6721
(continue)
Al A2 A3 A4
0.9036 2.5318 2.7236 1.6063
4.5962 3.4347 5.4255 5.4659
The stiffness matrices [K] is obtained by using Eq. 31.
0.0108 N/cm -0.0172 Nlcem -0.0797 N
[K]=]-0.0172 N/cm 0.3447 Nlcm 0.8351 N
-0.0997 N 0.8251 N 2.6567 Ncm

To evaluate the result, a small wrench S w, is applied to body B and
the static equilibrium pose of the mechanism is obtained by a
numerically iterative method. From the equilibrium pose of the
mechanism, the twist of body B with respect to ground *sD?” is obtained

as below.

Sw,=10"

EsD® =| -0.0012

0.5 N
x| 02 N

0.4 Ncm

0.0077 cm

0.0007 rad

Then the twist “6D” is multiplied by the stiffness matrices to see if
the given small wrench 6w, results.

sw =[K]*sD® =10 x

0.4991 N
0.1988 N
0.4016

Nem
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The numerical example indicates that [K] produces the given wrench
0w, with high accuracy.

6. Conclusion

In this paper, a derivative of spring force connecting two moving
bodies was derived by using screw theory and an intermediate frame and
applied to obtain a stiffness matrix of a mechanism having two compliant
parallel mechanisms serially arranged. A derivative of spring force
connecting two moving bodies depends not only on a relative twist
between the two bodies but also on the twist of the intermediate body in
terms of the inertial frame. This result also can be applied for
mechanisms having any arbitrary number of parallel mechanisms in a
serial arrangement.
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Abstract  Understanding how errors propagate in serial revolute manipulators is
important for developing better designs and planning algorithms, as
well as understanding the practical limitations on accuracy of multi-
link arms. In this paper we provide a systematic propagation method-
ology and numerical example that illustrates how large kinematic errors
propagate by convolution on the Euclidean motion group.

Keywords: Kinematic error, error propagation, revolute manipulators

1. Introduction

Kinematic errors arising from spatial uncertainties put strong limita-
tions on the performance of serial manipulators. The accumulation
of these errors could lead to the failure of executing nominal tasks.
Evaluating the propagation effects of kinematic errors is essential in
manipulator design, failure prediction, and algorithms planninng. It is also
important for understanding the practical limitations on accuracy of
multi-link arms.

In this paper, we presents a systematic methodology of propagating
large errors in revolute manipulators from the point view of Euclidean
motion group. Our approach is to treat errors using probability densi-
ties on the Euclidean group. Whereas concepts such as integration and
convolution of these densities follow in a natural way when considering
the Lie group setting [Chirikjian and Kyatkin, 2001}, standard concepts
associated with the Gaussian distribution in IR do not follow in a
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natural way to Lie groups. Several of the most closely related works are
reviewed below. These include the theory of Lie groups, robot kinemat-
ics, methods for describing spatial uncertainty, and state estimation.

Murray, Li and Sastry [Murray, Li and Sastry, 1994] and Selig [Selig,
1996] presented Lie-group-theoretic notation and terminology to the
robotics community, which has now become standard vocabulary. Park
and Brockett [Park and Brockett, 1994] showed how dexterity measures
can be viewed in a Lie group setting, and how this coordinate-free
approach can be used in robot design. Wang and Chirikjian [Wang and
Chirikjian, 2004] showed that the workspace densities of manipulators
with many degrees of freedom can be generated by solving a diffusion
equation on the Euclidean group. Blackmore and Leu [Blackmore and
Leu, 1992] showed that problems in manufacturing associated with swept
volumes can be cast within a Lie group setting. Kyatkin and Chirikjian
[Chirikjian and Kyatkin, 2001] showed that many problems in robot
kinematics and motion planning can be formulated as the convolution
of functions on the Euclidean group.

Starting with the pioneering work of Brockett [Brockett, 1972], the
controls community has embraced group-theoretic problems for many
years. This includes PD control on the Euclidean group [Bullo and Mur-
ray, 1999; Leonard and Krishnaprasad 1995], tracking problems [Han and
Park, 2001; Han, 2004], and estimation [Lo and Eshleman, 1979]. The
representation and estimation of spatial uncertainty has also received
attention in the robotics and vision literature [Smith and Cheeseman,
1986; Su and Lee, 1992]. Recent work on error propagation described by
the concatenation of random variables on groups has also found promis-
ing applications in mobile robot navigation [Smith, Drummond, and
Roussopoulos, 2003]. We note that while all of these works focus on
small errors, our emphasis is a formulation that applies to large errors
as well.

2. Review of Rigid-Body Motions
2.1 Euclidean Motion Group

The Euclidean motion group, SE(N), is the semi direct product of
IR with the special orthogonal group, SO(N). We denote elements of
SE(N) as g = (a,A) € SE(N) where A € SO(N) and a € IR". For
any g = (a,A) and h = (r,R) € SE(N), the group law is written as
goh = (a+ Ar, AR), and g~ = (—ATa, AT). It is often convenient
to express an element of SE(N) as an (N + 1) x (N + 1) homogeneous
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transformation matrix of the form:

A a
g= .
o” 1

In this way, rotation and translation are combined into a single matrix.
A homogeneous transformation matrix takes the place of the pair (a, A),
and the group operation becomes the matrix multiplication

For example, each element of SE(2) parameterized using polar coor-
dinates can be written as:

cosf) —sinf rcos¢
; (1)

g(r,¢,0) = ( sinf cosf rsing
0 0 1

where 0 < ¢,0 <27 and 0 < r < co. SE(2) is a 3-dimensional manifold
much like IR3. We can integrate over SFE(2) using the volume element
d(g(r,0,¢)) = rdrdfdg.

2.2 Motion-Group Fourier Transform

The Fourier transform of a function on G = SE(N) is defined as:

fp) = /G F@)U (g™, p) d(g) 2)

where d(g) is a volume element at g, and U (g, p) is an infinite-dimensional
unitary matrix called an irreducible unitary representation, or ITUR
[Chirikjian and Kyatkin, 2001]. It possess the important homomorphism
property, U(g1 © g2,p) = U(g1,p)U(g2,p). One can show that the gener-
alization of the classical Fourier transform in (2) admits a convolution
theorem due to the homomorphism property of U(g,p), and that the
following inverse transform can be used to reconstruct the original
function:

flg) = /0 b trace(f(p)U (g, p))p" "dp. (3)

This is because the matrix elements of the full set of IURs form an
orthonormal basis with which to expand functions on SE(N).

A number of works [Chirikjian and Kyatkin, 2001] have shown that
the matrix elements of the IURs for SE(2) can be expressed as

U (g (7, §,0), p) = iV OFm= 1 () (4)

where J, () is the v order Bessel function, and m and n take values
in the integers.
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The Fourier inverse transform can be written in terms of elements as

f(g) = Z /OOO fmnunm(gvp)pdp' (5)

mnel

The motion-group Fourier transform has the property that when
applied to convolutions of the form

(fi=f)lg) = [ S alh™ 0 g)a(h)
the result is the product of Fourier transform matrices: fa(p)fi(p).

3. Propagation of Error in Serial Linkages

Suppose we are given a manipulator consisting of two concatenated
serial links connected with a revolute joint. Omne unit is stacked on
top of the other one. The proximal unit will be able to reach each
frame hy € SE(3) with some error when its proximal end is located at
the identity e € SE(3). This error may be different for each different
frame hy. This is expressed mathematically as a real-valued function
of g1 € SE(3) which has a peak in the neighborhood of h; and decays
rapidly away from hq. If the unit could reach hy exactly, this function
would be a delta function. Explicitly the error may be described by one
of many possible density functions depending on what error model is
used. However, it will always be the case that it is of the form p;(hi, g1)
for h1,g1 € SE(3). That is, the error will be a function of g; € SE(3)
for each frame h; that the top of the module tries to attain relative to its
base. Likewise, the second module will have an error function pa(ha, g2)
for ha,go € SE(3) that describes the distribution of frames around hg
that might be reached when hs is the expected end frame for module 2
relative to its base, and the base of module 2 is located at the identity
e € SE(3).

The error distribution that results from the concatenation of two mod-
modules with errors pi(-) and py(-) results from sweeping the error distrib-
ution of the second module by that of the first. This is written
mathematically as:

p(h1 o ha, g)
(p1 @ p2)(h1 0 h2,g) (6)
fSE(z) p1(hi, g1)p2(he, gfl o g)d(g1).

el

Here d(g) is the unique bi-invariant integration measure for SE(3) eval-
uated at g [Chirikjian and Kyatkin, 2001]. Sometimes this is simply
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written as dg. In the case of no error, the multiplication of homoge-
neous transforms h; and ho as hi o he represents the composite change
in position and orientation from the base of the lower unit to the inter-
face between units, and from the interface to the top of the upper unit.
In the case of inexact kinematics, the error function for the upper unit
is shifted by the lower unit (p2(ha, g7 ' 0g)), weighted by the error distri-
bution of the lower unit (p1(h1,g1)) and integrated over the support of
the error distribution of the lower unit (which is the same as integrating
over all of SE(3) since outside of the support of the error distribution
the integral is zero). The result of this integration is by definition the
error density function around the frame hj o ho, and this is denoted as
(p1 ® p2)(h1 o ha, g). It should be noted that (6) holds regardless of the
size of the errors or the form of the error density.

It is often convenient to suppress the explicit dependence of p;(cot)
on h;, which can be viewed as a constant set of parameters. When this
is done, Eq. 6 reduces to a convolution on SE(N).

4. Numerical Example

Consider the three-link planar revolute manipulator shown in Figure
1. Each rigid link has length L, and each joint has some backlash that
is described by a probability distribution f(6 — 6y) centered around the
value 0y = 30 degrees. The error density for a single link is then of the
form

p(g(r,¢,0)) = f(6 —00)6(¢ — 0)d(r — L)/r (7)

where §() is the usual Dirac delta function in one dimension and an
arbitrary element of g(r,¢,0) € SE(2) is parametrized as in Eq. 1.
Integration over G = SF/(2) is then integration over all values of r € IR
and ¢, 0 € [0, 27].

Error
distribution

Figure 1. A three-link planar manipulator with joint backlash.

In Equation 7, the delta functions enforce the rigidity of the links,
and division by r is due to the r in the volume element. The function
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f(0) has its mode at 0, but the backlashes can be potentially large (i.e.,
not highly concentrated). For this reason, we cannot take it to be a
Gaussian, but rather, a folded Gaussian of the form:

1o —(6-2mn)?/20° (8)
o0

2wo —N=—

The error density that accumulates at the end effector due to back-
lashes in each of the joints is computed as the convolution

pee(g) = (p*p*p)(9).

Computing this numerically by the definition of convolution is not as
convenient as using the SE/(2)-convolution theorem and the correspond-
ing concept of Fourier transform, which is what we shall do here.

Computing the SE(2)-Fourier transform of the one-link backlash-
error density in Equation 7, one finds (after the delta functions kill the
integrals over r and ¢) that:

prn(p) = A" (pL) JoT £(O — Op)e™0do
— infme_n(pL)em%fn s

(9)

Using the convolution theorem, we compute pe.(p) = ppp, where the
matrix elements of p are given by Equation 9. Then the original error
density pec(g(r, ¢,0)) can be reconstructed by applying the Fourier in-
version formula (3) to pee(p). Since it is difficult to view the error density
p(g) graphically, the marginal density function p(r, ¢) is computed. The
marginal density function p(r, ¢) is found by just integrating the Fourier
reconstruction formula (3) for p(g) with respect to 6 as

ord) = 5 [ plo)is

27

T /O " fon () Jn(pr)pdp.

nez

To validate the results obtained from our convolution-based error
propagation method, the error distribution (8) is sampled and applied
to each joint of the manipulator directly. Then brute force enumeration
is used to obtain the error distribution directly.

The marginal error densities p(r, ¢) obtained from both methods are
plotted in Figures 2 and 3 with the left one from the propagation method
and the right one from brute force. The variance o2 of 0.1 is given in
Figure 2 and o2 of 0.3 in Figure 3.
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Figure 2. The marginal error density p(r, ¢) for o = 0.1.

Figure 3. The marginal error density p(r, ¢) for o® = 0.3.

For the above computations, the link length L is taken as 1, and
60 samples points are generated for the distribution (8). The infinite-
dimensional matrix function U(g,p) in the SE(2) Fourier transform is
truncated at finite values of |m|,|n| < 10 (i.e., the dimension of U(g,p)
is 2 x 10 4+ 1). The band-limited approximation still gives very accurate
results because the magnitude of the Fourier transform of a sufficiently
smooth function can be ignored beyond a certain cutoff frequency. The
frequency parameter p is sampled in the interval of 300 with an inte-
gration step of 0.2. All the calculations in this example (excluding the
brute force method) took less then 3 minutes using Matlab with a 1.0
GHz, 516 MB RAM computer.

5. Conclusions

In this paper it is shown how the accumulation of large kinematic er-
rors in serial manipulators can be computed by performing convolutions
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on the Euclidean motion group. This theory is demonstrated with the
example of a planar revolute manipulator with three links.
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Abstract  Analysis and design of parallel robots are often treated separately due to
different methods. Thus, a framework is needed to combine important
aspects of both tasks. In this paper, it is shown that workspace calcula-
tion/verification and synthesis/optimization can be summarized within
the context of an interval analysis based constrained global optimiza-
tion. Specializing this general formulation leads to a flexible technique
which can be used to solve each of the aforementioned subtasks. In this
setting, the constraints specify the machine’s properties like size and
quality of the workspace of the machine. Starting with workspace calcu-
lation for some criterions, one extends the requirements and seamlessly
advance to parameter synthesis and optimization. These techniques
present a framework for workspace calculation, parameter design, and
optimization which allows for analysis and synthesis by means of the
same model. The method is demonstrated for a 6 d.o.f. Gough-platform.

Keywords: Parallel Robot, Analysis, Optimization, Interval Analysis, Modular
Framework

1. Introduction

For the design of parallel kinematic machines (PKM), it is important
to make an appropriate choice for the geometrical parameters in order
to fulfill the customers requirements. Unfortunately, one cannot start
with the design of new machines unless one can cope with a number of
issues that are related to the analysis of parallel machines. In partic-
ular, this includes the determination of the size, shape, and properties
of the workspace. In the last two decades, many scientists have been
working on different aspects of analysis. Especially for spatial parallel
robots, most results can only be determined numerically due to the in-
herent complexity of PKMs. But mostly these results cannot be used to
solve the design problem, i.e. how one has to choose the parameters so
that the resulting machines have the desired properties. For example,
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the widely used calculation of the workspace by discretization reveals
nothing about how one has to change the geometry of the machine to
enlarge the workspace. Thus, methods are needed that allow for both
analysis and synthesis within one framework to assist during the whole
development process: Firstly, a preliminary analysis is needed to prove
the concept of a machine. Subsequently, one switches to parameter de-
sign with respect to given process requirements and optimization due to
factors like costs. Finally, one has to verify that the developed machine
has all desired properties.

In this paper, interval analysis based constraint satisfaction is used
as common framework to perform workspace calculation and parame-
ter synthesis. It is shown how the general form of a constrained global
optimization problem can be specialized to perform workspace calcula-
tion, parameter synthesis, and optimization using an extendable scheme
of constraints. The paper is organized as follows: In section 2 interval
methods for constraint satisfaction and optimization are reviewed and
applied to the design problem of PKMs. In section 3, the constraints
for Gough-platforms are deduced from imperative process requirements
and examples from the analysis, synthesis, and optimization are given
in section 4. Conclusions are drawn in section 5.

2. Constraint Satisfaction and Global
Optimization

At first, consider the constrained global optimization problem of the
form

minimize f(g) (1)
st. ®(g,x) > O (2)
vV z € W, (3)

where f is the objective function, ® is a system of nonlinear constraints,
g is the vector of the design parameters (calculation domain), W is the
compact set of configurations to be verified, and the configuration x is
any vector from the set W. In contrast to classical optimization prob-
lems, this formulation is extended by constraints, that must be fulfilled
for all configurations & given by the set W. In this paper, it is assumed
that the set YW can be approximated by hypercubes. Thus, this special
type of optimization problem is denoted as global constrained optimiza-
tion over intervals.

As pointed out above, the analysis, design, and optimization of PKMs
can be regarded as such a constrained global optimization problem. For
PKMs, one identifies ® with imperative process requirements, g with
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the geometrical design parameters of the machine, x are the world coor-
dinates (position and orientation) of the platform, and W is the desired
workspace of the robot.

The basic algorithm to solve this problem is based on interval analysis
and can be found in (Hansen, 1992). Interval analysis is a powerful tool
to deal with both, the constraint satisfaction problem (CSP) given by
Egs. (2)-(3) and the constrained global optimization problem which is gen-
erated by Egs. (1)-(3). Interval analysis have been applied to PKMs for
analysis by e.g. (Chablat et al., 2002; Chablat et al., 2004; Merlet, 2004),
and (Pott et al., 2004). Furthermore, interval analysis based algorithms
were successfully used for the design of PKMs by (Merlet, 2001), (Hao
and Merlet, 2005), (Pott et al., 2005), and (Pott and Hiller, 2006). Since
the algorithm is already known, the key features are quickly reviewed.
Interval methods are implemented such that numerical round-off errors
are taken into account. Furthermore, interval analysis based constraint
solvers and optimizers do not rely on a point-wise discretization of the
parameter space. Therefore, it is guaranteed that constraints hold in
any point of the considered set and optimizers are able to find guaran-
teed bounds for both, the optimum of the objective function and the
environment of the parameter space containing the optimum.

2.1 Framework

The main advantage of the proposed framework is that one can save
much development time, because the same solver algorithm and the
same model equations are used to perform the different investigations.
Furthermore, the system ® is composed from subsets of inequations that
are related to different properties of the machine, e.g. taking into account
geometric relations for the workspace, limits on the active and passive
joints, link interference, and bounds on the dexterity. The presented
framework allows among others

m to verify, if a given machine design g, exhibits a given orientation
workspace Wy,

m to calculate the constant orientation workspace V., and the total
orientation workspace W,, for a given machine design g, and

= to determine all machine designs g that provide a given (orienta-
tion) workspace Wj.

Here, workspace includes all criterions that are introduced by the re-
quirements ®, e.g. the verified /calculated workspace is guaranteed to be
consistent with active and passive joint limits and free of link interfer-
ence. The different investigations can be deduces from the general form
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as follows. Firstly, one can verify that a machine with given parameters
go exhibits the given workspace Wy by analyzing

®(gy,x) >0 YV x Wy, (4)
with the CSP solver. In contrary, determining all poses x, where
(I)(QOam) > 07 (5)

responds the problem to calculate the workspace of a given machine
design. Finally, the determination of all g that fulfill

®(g,x) >0 YV W, (6)

corresponds to the design problem for PKMs, i.e. finding all machine
designs that fulfill given requirements throughout a given workspace W;.
Such designs are then called feasible. Finally, the objective function f
can be taken into account to find an optimal machine within the set of
feasible designs generated by the CSP.

2.2 Modular Program Design

A flexible framework is intended to provide the following properties:

»  Switch quickly between workspace verification (Eq.4), workspace
calculation (Eq. 5), parameter design (Eq. 6), and optimization.

m  Add or remove constraints for reachable workspace, limits on ac-
tive/passive joints, link interference, etc.

s Constraints should be independent from each other. New require-
ments may be added without reconsideration of other constraints.

m  Workspace requirements can be used for parameter synthesis and
optimization.

To achieve this, a modular program design of the framework is proposed
(Fig. 1). This algorithm was proposed by (Pott and Hiller, 2006). A
generic implementation of the interval based CSP solver (or the global
optimizer) passes the interval boxes g to the constraint abstraction layer
(CAL) that encapsulates the system of constraints for evaluation. The
result of the evaluation is an abstract information like wvalid, invalid,
or undefined that can be interpreted by the algorithm without further
information on the system. To achieve the desired reconfigurability for
the framework, the constraints must not be fixed to one special set of
variables. This adaptability is realized by storing all variables that may
be considered in a shared database. During the initialization, a mapping
is set up between the constraints ® and the variables in the database
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Figure 1.  Structure of the modular interval CSP solver and optimizer.

that the user defines to be unknown. All other variables in the database
are set to constant values. Before evaluating the constraints ®, the
CAL copies the actual values from g into the database. Note, that the
implementation in C++ manages these apparent complicated relations
very efficiently by means of pointers and virtual function.

The constraints ® are generated with computer algebra (Maple) and
transformed into C++ code with Maple’s automatic code generator. At
this point, a little post-processing is needed to prepare the code to be
used with interval analysis. For a calculation, one has only to select the
variables/constraints to be taken into account from a library and assign
initial values to the variables.

3. Process Related Constraints

The constraints ® for this framework are deduced from imperative
process requirements, like the size of the workspace or limits for the
passive joints. As shown by (Pott et al., 2005) for PKMs with constant
length legs, one can also take into account auto-collision in terms of link
interference, as well as, bounds on the kinematic dexterity. Due to space
limitation of this paper, the following list is rather an example than an
comprehensive list of requirements. To set up the equations, firstly a
machine model has to be introduced.

3.1 Simplified Symmetric Manipulator (SSM)

To deduce constraints for the well-known simplified symmetric ma-
nipulator (SSM, Merlet, 2000, p. 62), the inverse kinematics is quickly
reviewed. The SSM has a planar hexagonal base and platform where the
platform is connected to the base by six legs which consist of prismatic
joints with universal and spherical joints at their ends. The pivot points
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Figure 2. Parameter and kinematics of a SSM robot.

of the legs are arranged on circle with radii r, and r;, for platform and
base, respectively. The distribution of the pivot points on platform
and base is shown in Fig. 2. The position of the platform is given in world
coordinates r.., and the orientation is defined by the matrix R.., with
respect to the base frame Ky. Using a vector loop yields the closure
condition

li=7rico + Ricob; —a; for i=1,...6, (7)

where a; and b; are the positions of the pivot points on the base and
the platform, respectively. The length I; = |l;| of the leg can be easily
determine from a given pose 7rcp, Rrce Of the platform. It is a necessary
condition for a pose to belong to the workspace, that I; does not exceed
the stroke of the actuator [I,.,,! Thus, from [, < [; < lmax oOne
receives the 12 inequations

min 3 rnax] .

Z-12, >0

min

2. -1 >0

max

} for i=1,...6 (8)
that can be added to the constraint system ® > 0.

3.2 Limits on the Passive Joints

The universal and spherical joints may limit the motion of the plat-
form due to their technical realization. Therefore, one has to take into
account the mechanical limits of these joints. For universal joints, Mer-
let, 2000, p. 205f suggested to use a pyramid described by its four face
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normals 11, no, N3, ny, to take into account these limits. For spherical
joints, the motion of the joints is limited by a cone with a known apex
angle (... Thus, one received the following inequality

li~u; —l;cos 3

max

>0 for i=1,...6, (9)

where u; is a unit vector of the direction of the leg at the reference
configuration. A similar considerations can be used for the platform. In
that case, one must take into account that the reference vector wv; is fixed
to the platform frame and must be transformed to world coordinates by

li"R.opv; —l;jcosfB,..>0 for i=1,...6. (10)

max

3.3 Technological Requirements

As an example for a technological requirement, the distance TA]
between neighboring pivot points on the base and/or on the platform is
considered. Since the joints need a minimal installation space, there is
a lower bound Aa,,, for this distance. This can be taken into account
by considering the constraints

riy/2 — 2cos(28a;) — Aa,, >0 for i€ {p,b}. (11)

Technological requirements have often a very simple structure and can
be easily implemented into the framework. Nevertheless, they introduce
restrictions that are important in practise and allow to neglect many
designs without considering any details of the workspace.

3.4 Objective Function

Since the system of constraints ® collects all imperative process re-
quirements, the objective function f focuses on minimizing a selected
criterion. For example, one can minimize the total volume of the ma-
chine. In general, this criterion may be chosen more sophisticated for
example by taking into account the total monetary costs of manufactur-
ing. In the framework of the proposed algorithm for global optimization,
this function is not even required to be continuous. Therefore, it is easy
to incorporate for example tables with costs of components like actu-
ators or other available components. It is clearly out of the scope of
kinematics, to define and discuss, how one can set up such cost calcula-
tions. But at this point, an interface is defined, that explicitly separates
economic requirements in terms of the cost function f and technological
requirements in terms of imperative process requirements ®. For sim-
plicity, in section 4 a simple minimization of the volume of the machine
is performed as an example of the algorithm.
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Table 1. Nominal Geometrical Parameters of the SSM.

Parameter value  Description

T 1m radius of the base frame
rp 0.25m radius of the mobile platform
Aay 45°  angular offset for the pivot points on the base
Aay, 15°  angular offset for the pivot points on the platform
Linin 1m  minimal length of the strut
lmax 2m  maximal length of the strut
ALBrmax 45°  maximal rotation of the spherical joints

Figure 3. Workspace of the SSM a) constant orientation workspace b) total orien-
tation workspace.

4. Computational Examples

In this section, the presented framework is applied step by step to a
SSM. Parameters which are not part of the calculation, i.e. appear in g
and « are assumed to have their nominal value (Table 1). All calculations
are carried out for limits of the active joints, as well as limits of the
passive joints at the base frame.

Workspace Calculation. At first, the workspace is determined us-
ing the CSP solver, i.e. both the constant orientation workspace (R cp =
I3) and the total orientation workspace is calculated. Fig. 3a shows the
constant orientation workspace as it was determined by setting the vec-
tor of design variables to g = (x,y, z) and leaving the vector of configu-
rations to be verified empty & = (). For the total orientation workspace
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Table 2. Parameters for the optimal machine design of the SSM for a total orientation
workspace of 200 x 200 x 200mm.

Parameter: Tp Th Ay Aay Az
0.38125 0.278125 0.78125 0.625 0.753125

(Fig. 3b) all positions which can be reached with all orientations of
Bryant-angles * = (¢ € [-0.1,0.1,6 € [-0.1,0.1],% € [-0.1,0.1])
were determined. Accuracy was € = 0.025 and the calculation time was
t = 1.7s and t = 41s, respectively.

Parameter Synthesis. For the parameter synthesis example, the
total orientation workspace of the robot is required to include a cubic
workspace of size 200 x 200 x 200mm. Thus, the desired workspace
is described by @ = (z € [-0.1,0.1],y € [-0.1,0.1],z € [0.0,0.2],¢ €
[-0.1,0.1],0 € [-0.1,0.1],% € [—0.1,0.1]) and all geometrical parame-
ters g = (rp, rp, Ay, Aay) are sought, that fulfill this requirement. The
solution set is described in the 4-dimensional parameter space and can-
not be printed into a simple diagram. Therefore, only some key data are
given. Totally, 214547 boxes with a volume of 7.2% out of a total search
space volume were verified to be feasible designs by the CSP solver. The
calculation time was ~27h.

Optimization. The results from the parameter synthesis, i.e. the
solution set from the constraint satisfaction problem can be used as
input for the global optimization. As an example, the overall size of
the machine and the distance between the pivot points is used as an
objective function, which yields

f(TIJ?Tb: Aab? Aalﬂ AZ) = 7“3 + Az TI? =+ (Aap - 1)2 + (Aab - 1)2 (12)

Applying this optimization function to the CSP of the previous step,
one obtains the values given in Table 2. The computational time of the
program on a Pentium IV with 3.2GHz is 56min, and the optimizer per-
formed approximately 57500 constraint evaluations per second, which
demonstrates that the modular system can be implemented very effi-
ciently. Note, that the combined use of the CSP solver and the optimizer
can reduces significantly the calculation time.

5. Conclusions

In this paper, a framework for the analysis and design of parallel kine-
matic machines based on interval analysis and global optimization algo-
rithms is proposed. It was shown how practically relevant calculations
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for PKMs may be addressed in terms of a constrained global optimiza-
tion problem. The proposed algorithm enforces the fulfillment of given
process requirements throughout a workspace of desired size and guar-
antee the validity of the calculations. A global optimization is performed
simultaneously, which assures to find the global minimum. Constraints
were exemplarily deduced for the SSM and calculation results from the
framework were presented.

Acknowledgement

This work is supported by the German Research Council (Deutsche
Forschungsgemeinschaft) under HI370/19-3 as part of the priority pro-
gram SPP1099 Parallel Kinematic Machine Tools.

References

Chablat, D., Wenger, P., Majou, F., and Merlet, J.-P. (2004). An Interval Analysis
Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic
Machines. International Journal of Robotics Research.

Chablat, D., Wenger, P., and Merlet, J.-P. (2002). Workspace Analysis of the Or-
thoglide Using Interval Analysis. In Advances in Robot Kinematics, pages 397-406,
Dordrecht, Netherlands. Kluwer Academic Publishers.

Hansen, E. (1992). Global Optimization using Interval Analysis. Marcal Dekker, Inc.

Hao, F. and Merlet, J.-P. (2005). Multi-criteria optimal design of parallel manipulators
based on interval analysis. Mechanism and Machine Theory, 40(2):157-171.

Merlet, J.-P. (2000). Parallel Robots. Solid Mechanics and its Application. Kluwer
Academic Publishers, Dordrecht.

Merlet, J.-P. (2001). An improved design algorithm based on interval analysis for
spatial parallel manipulators with specified workspace. In IEEE International
Conference on Robotics and Automation, Seoul, Korea.

Merlet, J.-P. (2004). Guaranteed in-the-workspace improved trajectory/surface/volume
verification for parallel robots. In IEEFE International Conference on Robotics and
Automation, New Orleans, USA.

Pott, A., Boye, T., and Hiller, M. (2005). Parameter synthesis for parallel kine-
matic machines from given process requirements. In Proceedings of the Inter-
national Conference on Advanced Intelligent Mechatronics, Monterey, California,
USA, IEEE/ASME.

Pott, A., Franitza, D., and Hiller, M. (2004). Orientation workspace verification for
parallel kinematic machines with constant leg length. In Proceedings of Mechatron-
ics and Robotics 2004, pages 984-989, Aachen, Germany.

Pott, A. and Hiller, M. (2006). A parallel implementation for the optimization of par-
allel kinematic machines under process requirements. In 1st Furopean Conference
on Mechanism Science, Obergurgl, Austria.



SEARCHING FOR UNDISCOVERED
PLANAR STRAIGHT-LINE LINKAGES

Zhenjun Luo
Department of Mechanical Engineering
King’s College London

zhenjun.luo@kcl.ac.uk

Jian S Dai

Department of Mechanical Engineering
King’s College London

jian.dai@kcl.ac.uk

Abstract In this paper we investigate if there are undiscovered 6-bar linkages for
generating a straight-line. First we successfully deduce the relationships
in Hart’s second straight-line mechanisms using symbolic methods. For
more complicate cases, we formulate the problem as precision position
synthesis problems, and solve the derived equations using classic iter-
ative methods and verify solutions using interval methods. Although
no new mechanisms have been found at the current stage, this research
initiates an e ort towards an automatic approach for obtaining over-
constrained linkages (Dai and Rees Jones, 1999).

Keywords: Path generation, algebraic curves, overconstrained, numerical methods

1. Introduction

Synthesis of planar linkages for curves generation is a classic topic
in the field of kinematics. It had attracted many noted mathemati-
cians and kinematicians since the time of industrial revolution. However
before the Peaucellier-Lipkin linkage (Peaucellier, 1864) was discovered,
most mathematicians doubted that there are linkages capable of draw-
ing exact straight lines. Kempe (1873) enunciated a striking theorem
that a portion of any algebraic curve on a plane can be generated by a
planar linkage. Koenigs (1897) stated a spatial equivalence of Kempe’s
theorem. Those e orts predates a large body of modern work on the-
orems of “algebraic universality” starting from the 1970’s (see Smith,
1998; Kapovich, 2002). Smith (1998) and Gao et al. (2000) presented
new constructive approaches to prove Kempe’s theorem. Nevertheless
the constructive approaches are of less interests in practice since they
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can only find feasible linkages with a large number of links. As Hunt
stated in Chapter 4 of his book (Hunt, 1978):

Yet neither Kempe nor anyone else since has established a method
for isolating the best, or the simplest, linkage for tracing a particular
curve.

In the history all feasible linkages with a small number of links for
algebraic curves generation were invented by some great masters using
their geometrical intuitions (Please see the Appendix for details). Nev-
ertheless geometrical intuitions are difficult to be duplicated, and they
may not guarantee all solutions for a synthesis problem be found. The
above investigation raises a question: Are there any undiscovered 6-bar
linkages for straight-line generation? This paper proposes a numerical
approach to attack the problem. Note that it is possible to extend the
approach for nding spatial 6R single loop overconstrained mechanisms
(see remarks at the end of Section 2.2).

2. Searching for 6-bar Straight-line Linkages

*
* * *
Watt-I1 Stephenson-1 Stephenson-IT1 Stephenson-ITT
" *
Watt-12 Stephenson-112

Figure 1. Six arrangements of 6-bar linkages for a path generation, with the asterisk
denoting the position of coupler-point.

Figure 1 illustrates 6 possible arrangements of 6-bar linkages for straight-
line generation. As can be seen from Fig. 4 that the existing straight-line
6-bar linkages are either Watt-11 linkages or Stephenson-I linkages. In-
deed based on the principle of inversion and Robert’s cognate theorem,
we can conclude that Stephenson-I12 linkages and Stephenson-IIT link-
ages cannot generate a straight-line. Other arrangements should be

IThis is still an open problem. Smith, 1998 tried to prove it but failed.

2 According to (Artobolevskii, 1964), Alekseyev, 1939 discovered the dimensional relationships
of the generalized linkage on 1939, but the authors are not able to find Alekseyev’s proof,
while the short proof given in Artobolevskii’s book is indeed invalid.
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examined individually. Synthesizing straight-line linkages is closely related
to the derivation of coupler-curve equations of general planar linkages
(see Primrose et al., 1967, Almadi, 1996, and Wampler, 1999). However
it is important to develop problem-specific methods based on symbolic
analysis (Dukkipati, 2001, Karger, 1998) or numerical analysis (Luo and
Dai, 2005).

2.1 Synthesize Stephenson-I Linkages for
a Straight-line Motion

¥

f

(b)

Figure 2. Two representations for synthesizing Stephenson-I linkages. (a) is Alek-
seyev’s representation (see Artobolevskii, 1964), and (b) is a new representation.

In Alekseyev’s representation, suppose a coupler-curve equation in
(xQ,yq) is obtained, the coupler curve is a straight line if and only if
there exist (z¢,f) which satisfy yo = tan (xg — z9). However since
tanf can vary from zero to in nity, (z¢g,yg) should be parameterized.
In our representation, we assume the straight-line is along the z-axis,
thus yo = 0. We further specify x4 = 0. As can be seen, there are 10
structural parameters (a, b, c,e, f,g,h,ya,p,yp). Alternatively we can
use (a,b,c,d,e, f,g,h,y,00). Refer to Fig. 2(b), we obtain the following
three loop-closure equations:

acost +bcosly —ccosbls =xp — x4 (1)
asinf@; 4+ bsinfy — csinf3 = yp — ya

(a+e€)cosby + fcosby =29 — x4 @)
(a+e)sinh; + fsinby =yg —ya
(¢4 h)cosbs + gcosbs =xg —xp (3)
(¢4 h)sinfs + gsinbs = yo — yp

Using classic resultant methods, it is not difficult to eliminate 6;(i =
1,...,5) and a 16* degree bivariate polynomial in (z¢, yg) is obtained.
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Since yg = 0, we obtain a univariate polynomial in zg. Denote it as:

16

Py = Z aﬂ:b =0 (4)
i=0

Since the linkage can pass infinity many points along the z axis, all
the coefficients of P, should be incidentally zero. Using a symbolic
computing software such as Mathematica, we obtain that:

a16 = 0; a1 = 0; ajq = 65536 a*c?(ce — ah)?d? (5)

Since link lengths can not be zero, we obtain ce = ah. It follows that
a3 = 0. Substitute ¢ = ah/e into a;2 we obtain

—a?b? 4 a(—20* + d®)e + (—b* + d*)e? = 0 (6)

Solve the above equation yields e; = ab®/(d? — b?) or e3 = —a. Only e;
is feasible. It follows that h = ¢b?/(d? — b?) and a1 = 0. Substitute the
above into coefficients ajg to a7 yields

alg = f1 (a, b, C, d, f,g, 90)

ag = f2(a’7 b7 G, d7 f79790) (7)
ag = f3(aabvc7d7fvgayA790)

ar = f4(a7b7c7d7fag7yA760)

Note that we use zp = x4 + dcosby, yp = ya + dsinfp to simplify
symbolic expressions. One may want to eliminate (y 4, 0y) from the above
equations and then solve for (f, g). Unfortunately those equations are
quite complicate to solve due to the “pyramidal effect” (Karger, 1998).

We then adapt Karger’s technique to the problem and try to obtain
more information (see Karger, 1998 for more details).

Karger’s Proposition: Let P(z) = > 7 (a; + bj cosz) sin z = 0 for
all z. Thena; =b; =0(j =0,...,n).

Now we eliminate 6;(¢ = 2,...,5) and z¢g using Resultant methods, this
leads to

7 .
P(6,) = ijo (aj +bjcosby)sin? 6, =0 (8)

Following the procedures in (Karger, 1998), we obtain the coefficients of
the two terms with the highest order in variables (cos61,sin ;).

az :gl(a7c7 fa h,?JAJ?D»?JD) (9)
b6 = 92(aac>h7yAaxD7yD)
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Incidentally b; = 0, and e is substituted by ah/c. From the above
equations, we obtain
zp=0 or yp=0 (10)
When zp = 0, we have 6y = 7/2, Substitute 6y = /2 into Eq. (7), from
f1 we can obtain
9 b2 c2d? — a’b*d?

2
— g% = 11
Substitute the above equation into fs in Eq. (7), we obtain
bed adb
f= 21 and ¢ = pr—~ (12)
When =0, Eq. (7) still can’t be simpli ed. Currently we are not able

to get enough information using symbolic computation.

It seems that even for the simplest case of 6-bar linkages, symbolic de-
ductions are not quite straightforward. Indeed we have tried the above
procedure to synthesize other generic 6-bar linkages but currently no
analogous results have been obtained. However a supercomputer may
help the symbolic computations. In contrast, we can use numerical algo-
rithms to solve the above problem conveniently. For example, given 10
points along the z-axis, we obtain a system of 10 polynomials (i.e. Eq. (4))
in 10 unknown variables (a, b, c, e, f,g,h,y4,zp,yp). Together with tun-
nelling techqniques, random restarts of Levenberg-Marquart method can

nd multiple solutions (see Luo and Dai, 2005 for more information).

2.2 Synthesize Watt-12 Linkages for
a Straight-line Motion

Symbolic Synthesis Equations.  Consider a generic Watt-12 mech-
anism shown in Fig. 3, let’s call the illustrated pose the initial pose of the

Figure 3. Design parameters in the Watt-12 mechanism.



118 Z. Luo and J.S. Dai

mechanism. For simplicity, we set the the origin of the xed frame coin-
cident with the coupler-point () at the initial pose. There are 14 design

variables (2o, Yo, A,Y4,%B,YB,2C,YC> LD, YD, TE, YE, TP, yp). Alter-
natively, we can use complex vectors Z; (i = 1,...,7) as design variables.
For this problem, we prefer to derive the synthesis equations using com-
plex numbers for compactness. Referring to Fig. 3, when @ is moved to
a new position Q' after a displacement of § = x + iy, the following three
loop-closure vector equations can be obtained

7 (200 — 1) 4 Zo(e'2%2 — 1) — Z3("2% — 1) =0 (13a)

Z3 (205 — 1) 4 Zy(e'2%2 — 1) + Z5(2% — 1) = 4§ (13b)

Z(e20% — 1) 4 Zy (207 — 1) + Zg(e'2%5 —1) =4 (13c)
Rearrange Eqgs. (13a) and (13b), one obtains:

Zl@iAel — Zg(eiAeg . 1) o ZQ(eiAQQ _ 1) + Zl (14&)
Zs5e'0 = § — Zy(e'® — 1) — Zy(¢'2” — 1) + Zs (14b)
The angles Af; and Afs can be eliminated by multiplying each side

of Eqgs. (14a) and (14b) with its complex conjugate. Expanding and
rearranging the results yields

p1e2% + pye™ 3% 4 p3 =0 (15a)
pae®? 4 pse™ B0 4 pg = 0 (15b)
where p;(i = 1,...,6) are expressions in 63 and the 14 design variables.

Note that Eqgs. (15a) and (15b) are indeed two real number equations.
Solve Egs. (15a) and (15b) for 'elAe2 and e~*A% by Cramer’s rule, and
then apply the identity e'2%2¢~*4% = 1 leads to

(p1p6 — p3pa)(P2ps — P3ps) + (p1ps — papa)® = 0 (16)

It is easy to verify that Eq. (16) is also a real number equation. De-
note 2% as @5, and multiply the above equation by 0%, a sixth-order
polynomial in 83 can be obtained as:

m50g + m50§ + m49§ + mgeg -+ m29§ +m103+mog=20 (17)

where the coe cients ;( =0  6) are expressions in design variables.
Similarly, by manipulating Eqs. (13b) and (13c), one obtains another
two equations

(0196 — 9394) (9296 — 4305) + (9105 — q2q4)*> = 0 (18)
naog + n50§ + 77,4931 + ngeg + n20§ 4+n103+n9=0 (19)
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The necessary condition for Egs. (17) and (19) to have a common solu-
tion of O3 is that the determinant of their resultant matrix becomes zero.
Here the Bezout resultant matrix will be used, which can be obtained
using the Bezout-Cayley formulation (Almadi, 1996).

B = [bij]6x6 (20)
Expand the determinant of the Bezout matrix, one obtains
T T
det(B) = Z Z amnx"y" =0, m4+n<r (21)

m=0n=0

where a.,, are expressions in the aforementioned 14 design variables,
while r is case dependent. In a generic case where Zg # 0,Z5 # 0,
r = 54; in case Zg = 0, r = 16; while in case Zs = 0, r = 8. It can be
veri ed that the imaginary component of the determinant is identically
zero. Eq. (21) can be further factored since it always has a trivial factor:

ged(memo, neno) = (x — 20) + (y — yo)? (22)

where ged means the greatest common factor. Thus for a generic Watt-
12 linkage, its coupler curve equation is a bivariate polynomial of order
52, which in general has 1431 monomials. It is impractical to expand
det(B) and collect coe cients of x as did in subsection 3.1.

Numerical Approach and Analysis. In path generation synthesis,
for each given precision point § = x + iy, Eq. (21) is a polynomial in 14
design variables. Therefore if 14 precision points besides the origin are
speci ed, a determined system of 14 polynomials in 14 design variables
will be obtained. In other words, a Watt-12 linkage generally can pass
at maximum 15 precision points including the origin. Therefore if it can
pass 16 precision points on a line, then theoretically it must contain a
segment of that line.

Note that in precision position synthesis problems there are generally
positive dimensional manifolds of extraneous solutions. Extraneous so-
lutions arise when mgmg or ngng is identically zero. It can be shown
that the conditions for mgmg or ngng to be identically zero are,

Z3=0 or Zo+Z4=0 or Z1+2Zy—72Z3=0 (23)
Z3:0 or ZGZO or Z5=Zgzo or Z5Z6—23Z8:0 (24)
Some of the conditions correspond to degenerated linkages while other

are mathematical gments. An e ective approach to exclude such extra-
neous solutions is the tunnelling (deflation) method (Luo and Dai, 2005).
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Although the above formulation is compact, numerical tests show that
classic iterative methods normally can not converge within 1000 itera-
tions when double-precision oat-point arithmetic is used. Therefore we
should choose equations with less nonlinearity. Besides multi-precision
arithmetic may be preferable for better accuracy and reliability. Cur-
rently we use the following approach for better reliability.

1 Two real equations Eq. (16) and Eq. (18) are used rstGiven 15
points (besides the origin) to be passed along the x-axis, there are
the 14 structural variables (xo,y0,TA, Y4, TB,YB, TC,YCsTD, YD,
g, YE,xp,yp) and 15 incremental angular variables Afs, (k =
1,...,15). There are 30 equations in 29 variables. Multi-start
of Levenberg-Marquart method is used to solve the system.

2 Once a converged point is obtained, we then assign small intervals
to the 14 structural parameters of the converged point, and use
interval arithmetic to evaluate the corresponding interval box.

After a coupler of days of program running, we have got a large num-
ber of converged approximate solutions. It is observed that most runs
can converge to stationary points with a function residual smaller than
1.0e-10. However all the converged solutions are not exact solutions.
Most converged approximate solutions pass 14 precision points in di er-
ent con gurations and pass near a 15*® point. Later we have also added
more points to increase the reliability. However there is no obvious posi-
tive e ect. Currently we are programming to include another constraint
that the instantaneous center of velocity at the initial pose should be
on the y-axis. Meanwhile we are planning to run interval method use
parallelized computers to identify potential interval boxes. The obtained
interval boxes will then be used as the search domains of multi-start
classic iterative methods to accelerate the process.

The numerical approach can be extended to the synthesis of overcon-
strained spatial single-loop mechanisms. It is well known that a spatial
6R manipulator has up to 16 con gurations, while a spatial 5R open
chain can reach 21 precision positions (Perez, 2003). Therefore give more
than 16 rotation angles about a xed axis, spatial 6R single-loop over-
constrained mechanisms can be found by precision position synthesis.
Nevertheless similar numerical di culties arise, e.g. planar 6R mecha-
nisms should be avoided using tunnelling techniques.

3. Conclusions

In this paper, we have investigated the problem of searching for undis-
covered straight-line linkages. The dimensional relationships in Hart’s
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second straight-line linkage have been deduced using symbolic calcula-
tions. A numerical approach is then proposed for solving more compli-
cate cases. Although no new mechanisms have been found at the current
stage, this research is a first step towards an automatic approach for dis-
covering new overconstrained mechanisms.
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Appendix: Existing 6-bar Straight-Line Linkages

Figures 4 illustrates four known 6-bar straight-line linkages. Cases
(a) is based on the principle of inversor (Hart, 1877). Case (b) is a
generalized case of Case (a) discovered by Sylvester, 1875 and Kempe,
1877. Cases (c) and (d) were first invented by Hart, 1877 and Bricard,
1927 respectively. Later Dijksman, 1975 unified the two cases into a
generalized Case (e). For all four cases, the coupler points drawing a
straight-line are labelled as @. Especially in case (c), @1 and Q2 trace
two perpendicular straight-lines, while any other point G on the same
coupler traces an ellipse. In case (a), BD = CE, BE = CD, OC =
BC, BO/BE = CP/CE = BP/BD,0OpO = OpP. In case (b), BD =
CE, BE = CD,AOBE = AQBD = APCE, and 0§ = ZPOQ In
the generalized case of Cases (c¢) and (d), AB = a,BC = b,CD =
¢,AD = d,BE = ¢,CF = h,EQ = f,GQ = g,e = ab®/(d*> — b?), f =
cdb/(d? — b?),g = adb/(d?* — b?),h = cb?/(d* — b?). Especially in case
(¢), AB=BC,0C = CB; and in case (d), AFE = CF,EQ = FQ.

©

Figure 4.  Four known 6-bar linkages for a straight-line motion.
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Abstract  Three-DOF UP-equivalent parallel manipulators are the parallel coun-
terparts of the 3-DOF UP serial manipulators, which are composed
of one U (universal) and one P (prismatic) joint. Such parallel ma-
nipulators can be used either independently or as modules of hybrid
manipulators. Using the virtual-chain approach that we proposed else-
where for the type synthesis of parallel manipulators, this paper deals
with the type synthesis of this class of 3-DOF parallel manipulators.
In addition to all the 3-DOF UP-equivalent parallel manipulators pro-
posed in the literature, a number of new 3-DOF overconstrained or
non-overconstrained UP-equivalent parallel manipulators are identified.

Keywords: Three-DOF parallel manipulator, Type synthesis, Virtual chain, Screw

Theory, Overconstrained mechanism

1. Introduction

Three-DOF UP-equivalent parallel manipulators have a wide range
of applications including assembly and machining. Such parallel manip-
ulators can be used either independently or as modules of hybrid ma-
nipulators. Two UP-equivalent parallel manipulators, which are used
as modules in hybrid manipulators, have been proposed in [Neumann,
1988; Huang et al., 2005]. However, the systematic type synthesis of the
UP-equivalent parallel manipulator is very difficult and has not been
investigated yet. In order to provide alternatives to the current
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UP-equivalent parallel manipulators, the type synthesis of UP-equivalent
parallel manipulators needs further investigation.

Using the virtual-chain approach proposed in [Kong and Gosselin,
2005a]', the type synthesis of UP-equivalent parallel manipulators is
dealt with in this paper. In Section 2, the virtual-chain approach for the
type synthesis of parallel manipulators is recalled. The type synthesis
of 3-DOF single-loop kinematic chains is performed in Section 3. In
Section 4, we discuss how to construct UP-equivalent parallel kinematic
chains and UP-equivalent parallel manipulators using 3-DOF single-loop
kinematic chains. Two new UP-equivalent parallel manipulators are also
presented. Finally, conclusions are drawn.

In this paper, we limit ourselves to non-redundant parallel mani-
pulators.

2. The Virtual-chain Approach
2.1 The Virtual Chain

As proposed in [Kong and Gosselin, 2005a], the motion pattern of
an f-DOF parallel manipulator can be represented by a virtual chain
which is the simplest serial or parallel kinematic chain that can express
the motion pattern well.

The virtual chain for the motion pattern of the 3-DOF PMs to be
synthesized in this paper is the UP virtual chain shown in Fig. 1(a).
In the UP virtual chain, the direction of the P (prismatic) joint is per-
pendicular to the axis of its adjacent R (revolute) joint within the U
(universal) joint.

Virtual chain Virtual chain

i Moving platform i Moving platform

L
2" R joint 1 R joint
N

U joint () (b)

Figure 1. UP virtual chain: (a) schematic representation and (b) wrench system.

2.2 Representation of Instantaneous Constraints

In the type synthesis of parallel manipulators, one needs to deal
with the instantaneous constraints. Screw theory, see [Kumar et al.,
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2000; Davidson and Hunt, 2004] for example, provides an efficient tool
to address this issue.

The instantaneous constraints exerted on the moving platform by the
base through the kinematic chain (virtual chain, leg of a parallel kine-
matic chain or a parallel kinematic chain) is represented by a screw sys-
tem which is called the wrench system of the kinematic chain (virtual
chain, leg of a parallel kinematic chain or a parallel kinematic chain).
For brevity, the wrench system of a leg is also called a leg-wrench system.

Wrench system of UP-equivalent parallel kinematic chains.
In any general configuration, a UP-equivalent parallel kinematic chain
and its corresponding UP virtual chain have the same wrench system.
Finding the wrench system of the UP-equivalent parallel kinematic chain
is thus equivalent to finding the wrench system of the UP virtual chain
[Fig. 1(b)].

It can be found without difficulty that the wrench system of the UP-
equivalent parallel kinematic chain is a 2-{-1- . -system [see Fig. 1(b)].
Here, ¢, and (., denote, respectively, a wrench of zero pitch and a
wrench of infinite-pitch. One base of the 2-{-1-(,-system is composed
of (a) two non-collinear ¢, whose axes pass through the center of the U
joint and are perpendicular to the direction of the P joint and (b) a ¢,
whose direction is perpendicular to the axes of the R joints within the
U joint.

Leg-wrench system of UP-equivalent parallel kinematic chains.
As the wrench system of a parallel kinematic chain is the linear com-
bination of all of its leg-wrench systems in any configuration [Kumar
et al., 2000], it is then concluded that the wrench system of any leg in a
UP-equivalent parallel kinematic chain is a ¢*(0 < ¢! < 3)-¢-system, in-
cluding 2-{-1-{ ,-system, 2-{y-system, 1-y-1-C-system, 1-y-system,
1-¢ -system and 0-system, in any general configuration.

2.3 Conditions for a UP-equivalent Parallel
Manipulator

When we connect the base and the moving platform of a parallel
kinematic chain by an appropriate UP virtual chain, the function of the
parallel kinematic chain is not affected (Fig. 2). Any of its legs and the
UP virtual chain will constitute a 3-DOF single-loop kinematic chain.

Thus, a parallel kinematic chain is a UP-equivalent parallel kinematic
chain if it satisfies the following two conditions:
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Virtual chain

Moving platform \ ,,,,,,, “Moving platform
o \"', Leg 3 i Leg 3
Leglipega ) | B Leg

() (b)

Figure 2. (a) Three-legged UP-equivalent parallel kinematic chain; (b) Three-legged
UP-equivalent parallel kinematic chain with a UP virtual chain added.

(1) Each leg of the parallel kinematic chain and the same UP virtual
chain constitute a 3-DOF single-loop kinematic chain.

(2) The wrench system of the parallel kinematic chain is the same as
that of the UP virtual chain in any one general configuration.

The first condition guarantees that the moving platform can undergo
at least the UP-motion. The second condition further guarantees that
the degree of freedom of the moving platform is three.

Based on the above conditions, the type synthesis of parallel manipu-
lators can be performed by first performing the type synthesis of 3-DOF
single-loop kinematic chains and then constructing UP-equivalent paral-
lel manipulators using the types of 3-DOF single-loop kinematic chains.

3. Type Synthesis of 3-DOF Single-loop
Kinematic Chains Involving a UP Virtual Chain

In Section 2.2, the wrench systems of legs for UP-equivalent paral-
lel manipulators have been determined. Then, the number of 1-DOF
joints of a leg with a ¢/(0 < ¢! < 2)-¢-system is equal to (6 — ¢!). In
the case of ¢ = 0, the associated single-loop kinematic chains are not
overconstrained. Such a single-loop kinematic chain is composed of the
UP virtual chain and six R and P joints. Many types of single-loop kine-
matic chains can be obtained. Among these types, the types with simple
structure, such as UPSV, PUSV and RUSV, are of practical interest.

In the following, we will focus on the type synthesis of overconstrained
single-loop kinematic chains involving a UP virtual chain.

As pointed out in [Kong and Gosselin, 2005b], the types of over
constrained single-loop kinematic chains can be constructed using seven
compositional units. A compositional unit is a serial kinematic chain
with specific characteristics, namely: In any general configuration, the
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Table 1. Composition of 3-DOF overconstrained single-loop kinematic chains with a
UP virtual chain.

Composition
ct f;g;g;ench Planar | Spherical | Coazial | Codirectional | Parallelaxis
unit unit unit unit unit
2-Cp-1-C oo 2 1
1-¢o-1-C 1 1
2-¢, 1 1
1 | 1-¢ 1
1
1-¢, 1 1

wrench system of each of these kinematic chains always includes a spec-
ified number of independent wrenches of zero-pitch or infinite-pitch.

By analyzing the wrench system of the compositional units, it can be
found that a single-loop kinematic chain that has a UP virtual chain
and a specified leg-wrench system is composed of two or three of the
following five compositional units as shown in Table 1.

(a)

()

Parallelaxis compositional units. Serial kinematic chains composed
of at least one R joint and at least one P joint in which the axes
of all the R joints are parallel and not all the directions of the P
joints are perpendicular to the axes of the R joints.

Planar compositional units. Serial kinematic chains in which all
the links are moving along parallel planes. A planar serial kine-
matic chain is denoted by ()g.

Spherical compositional units. Serial kinematic chains composed
of two or more concurrent R joints. Each R joint of a spherical
serial kinematic chain is denoted by R.

Coazial compositional units. Serial kinematic chains composed of
two coaxial R joints.

Codirectional compositional units. Serial kinematic chains com-
posed of two P joints whose directions are parallel. Each P joint
of a codirectional serial kinematic chain is denoted by P!

For each class of single-loop kinematic chains that has a UP virtual
chain and a specified leg-wrench system, the specific types can be readily
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obtained and shown in Table 2. It is noted that in the existing works on
the type synthesis of single-loop mechanisms, a mechanism with a coax-
ial or codirectional compositional unit is regarded to be degenerated
and is therefore discarded. In the type synthesis of parallel mechanisms,
however, a single-loop kinematic chain that contains a coaxial or codi-
rectional compositional unit should be used since one joint of the coaxial
or codirectional compositional unit belongs to one leg of a parallel mech-
anism while the other joint belongs to the virtual chain.

In the representation of types of 3-DOF single-loop kinematic chains
involving a UP virtual chain, the following notations are used. The joints
within a ()‘E constitute a planar kinematic chain, whose associated plane
of relative motion is parallel to the direction of the P joint of the UP vir-
tual chain. The joints within a ()‘]‘3 constitute a planar kinematic chain,
whose associated plane of relative motion is parallel to the direction of
the P joint of the UP virtual chain and perpendicular to the axis of the
second R joint within the U joint of the UP virtual chain. The P joint
whose direction is parallel to the direction of the P joint within the UP
virtual chain is denoted by PI. The R joints are represented by R, R, R,
R, R and R due to the different geometric conditions that the R joints
satisfy. The axes of all the R joints within a leg intersect at a common
point on the axis of the first R joint within the U joint of the UP virtual
chain. The axes of all the R joints within a leg intersect at the center
of the U joint of the UP virtual chain. R (R) denotes an R joint that
is coaxial with the first (second) R joint within the U joint of the UP
virtual chain. R (R) denotes an R joint whose axis is parallel to the axes
of the the first (second) R joint within the U joint of the virtual chain.

Considering that each leg of the UP-equivalent parallel kinematic
chain and the same UP virtual chain constitute a 3-DOF single-loop
kinematic chain, the above notations can also be used to represent the
types of UP-equivalent parallel kinematic chains, UP-equivalent paral-
lel manipulators and their legs. The geometric conditions for the UP-
equivalent parallel kinematic chains, UP-equivalent parallel mani-
pulators and their legs can be obtained as follows.

All the Pl joints are along the same direction. All the planes of
relative motion of the planar chains associated with ()|1|~J are parallel.
The above planes, the planes of relative motion of the planar chains

associated with ()lE as well as the direction of the P!l joints all parallel
to a common direction. The axes of the R joints are parallel to a line
that is perpendicular to (a) the planes of relative motion of the planar
chains associated with ()‘]‘E, (b) the intersection of the planes of relative
motion of the planar chains associated with ()‘E, and (c) the direction
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Virtual chain Virtual chain

52\

(a) RRPIV. (b) R(RRR)L V. (c) RRR(RR)LV.

Figure 3.  Three-DOF single-loop kinematic chains involving a UP virtual chain or
some legs for UP-equivalent parallel kinematic chains.

of the P!l joints. The axes of R joints, the intersections of the R joints
within the same leg, the intersections of the R joints within the same
leg, and the intersection of the axes of the R joint and the R joint within
the same leg determine a common line. The axes of the R joints are
parallel to the above common line.

For a better understanding of the notation used, a few single-loop
kinematic chains involving a UP virtual chain are shown in Fig. 3. In
Fig. 3, the UP virtual chain is enclosed using dashed lines. The joints
of a single-loop kinematic chain indicated by the same number form a
compositional unit.

As mentioned above, single-loop kinematic chains [Figs. 3(a)-3(b)]
involving a coaxial or codirectional compositional unit are usually re-
garded to be degenerated in the literature. However, these kinematic
chains are useful in the type synthesis of parallel manipulators.

4. Construction of UP-equivalent Parallel
Manipulators

Now let us see how to construct UP-equivalent parallel manipulators
from the 3-DOF single-loop kinematic chain involving a virtual chain.

By removing the virtual chain in a 3-DOF single-loop kinematic chain
involving a virtual chain, one leg for UP-equivalent parallel manipula-
tors can be obtained. For example, by removing the virtual chain in
a RRR(RR)%V kinematic chain [Fig. 3(c)], an RRR(RR)EE leg can be
obtained . Such a leg has a 1-(j-system. The {, passes through the
common point of the axes of three R joints and is parallel to the axes

of the R joints within (RR)B'E. Using this approach, a large number of
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Table 2. Three-DOF single-loop kinematic chains with a UP virtual chain or Legs
for UP-equivalent parallel kinematic chains.

i | Leg-wrench NP

c Type (Remove V if representing legs)

system
2-Co-1-Coe | 1 RRPIV
2 | 1-¢-1-¢.. | 28 | RRRR)LV R®RRP)LV R(RPR)LV R(PRR)LV
R@RPP)LV  R(PRP)LV R(PPR)LV
2-C, 9 RRRPIV
1| 1-¢, 10-58 | RRPPPV ~ RPRPPV ~ RPPRPV  RPPPRV

RRRPPV ~ RRPRPV ~ RPRRPV  RPPRRV
RPRPRV ~ RRRRPV ~ RRRPRV ~ RRPRRV
RPRRRV ~ RRRRRV  RRRRV PRRRRV
RPRRRV  RRPRR RRRPRV  RRRRPV
PRRRR RPRRRV  RRPRRV  RRRPR

BRRRRPV  PRPRRV  PRRPRV  PRRRPV
RPPRRV  RPRPRV  RPRRPV  RRPPRV
RRPRPV  RRRPPV  PPRRRV  PRPRRV
RPPRRV ~ PRPPRV ~ PRPRPV  PRRPPV
RPPPRV ~ RPPRPV  RPRPPV  PPRPRV
PRPPRV BRPPPRV  PPRRPV  PRPRPV

RPPRPV

1-¢, 59-80 | RRR(RR)LV ~RR(RRR)LV RRR(RP)TV
RRR(PR)V RR(RRP).V RR(RPR)|V
RR(PRR)!,V RRR(PP)LV RR(RPP)LV
RR(PRP)LV  RR(PPR)|V
RRR(RR),V RR(RRR),V RRR(RP),V
RRR(PR),V RR(RRP),V RR(RPR),V
RR(PRR),V RRR(PP),V RR(RPP),V
RR(PRP),V RR(PPR),V

0 | O-system 81— omitted

legs for UP-equivalent parallel manipulators have been obtained and are
listed in Table 2. In Table 2, only the basic types of legs are listed. The
variations of UP-equivalent parallel manipulators involving U, C (cylin-
drical) and S (spherical) joints and parallelograms can be obtained using
the techniques summarized in [Kong and Gosselin, 2005¢].

Using the types of legs obtained in Section 3 and Condition (2) for
UP-equivalent parallel kinematic chains, we can obtain a large num-
ber of UP-equivalent parallel kinematic chains. By further applying
the validity condition of actuated joints [Kong and Gosselin, 2005a], we
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Table 3. Families of 3-DOF m-legged UP-equivalent parallel manipulators.

m Family
Querconstrained Non-overconstrained
3-3 3-2 3-1 2-2 3-0 2-1

3 | 333 3-3-2 3-3-1 3-2-2 3-3-0 3-0-0 2-1-0
3-2-1 2-2-2 3-2-0 3-1-1 2-2-1 1-1-1

3-1-0 2-2-0 2-1-1
4 13333 3332 3331 3322 3-330] 3-0-0-0 2-1-0-0
3-3-2-1  3-2-2-2 3-3-2-0 3-3-1-1 3-2-2-1 | 1-1-1-0
2-2-2-2 3-3-1-0 3-2-2-0 3-2-1-1 2-2-2-1
3-3-0-0 3-2-1-0 3-1-1-1  2-2-2-0 2-2-1-1
3-2-0-0  3-1-1-0  2-2-1-0 2-1-1-1  3-1-0-0
2-2-0-0  2-1-1-0  1-1-1-1

Moving platform Moving platform

Figure 4.  Two UP-equivalent parallel manipulators: (a) R(RRR)%Q-RRR(RR)E,
and (b) RR(RRR)!-2-RRR(RR).

can obtain a large number of m(m > 2)-legged UP-equivalent paral-
lel manipulators. Due to the large number of UP-equivalent parallel
manipulators, we only list the families of UP-equivalent parallel manip-
ulators in Table 3 and show two new 3-legged UP-equivalent parallel ma-
nipulators in Fig. 4. The R(RRR)%-Q-RHR(RR)'E parallel manipulator
shown in Fig. 4(a) belongs to Family 2-1-1 and is overconstrained. The
ﬁﬁ(RRR)%Q—RRR(RR)'E shown in Fig. 4(b) belongs to Family 1-1-1
and is not overconstrained.

It is noted that the UP-equivalent parallel manipulators proposed in
[Neumann, 1988; Huang et al., 2005] belong respectively to Families
3-0-0-0 and 3-0-0 listed in Table 3.
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5. Conclusions

The type synthesis of UP-equivalent parallel manipulators has been
systematically solved using the virtual-chain approach proposed in [Kong
and Gosselin, 2005a]. Both overconstrained and non-overconstrained
UP-equivalent parallel manipulators can be obtained. The UP-equivalent
parallel manipulators obtained include some new UP-equivalent parallel
manipulators as well as all the known UP-equivalent parallel manipula-
tors.

The optimal selection of types of UP-equivalent parallel manipulators
based on kinematic and dynamic indices is still an open issue.
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Notes

1. In addition to our approach to the type synthesis of parallel manipulators, there are
also several others, such as those proposed by Profs. J. M. Hervé, J. Angeles, Z. Huang, L.-
W. Tsai, T.-L. Yang, G. Gogu and their colleagues. For a comprehensive list of references on
this issue, see [Kong and Gosselin, 2005a; Kong and Gosselin, 2005¢] and visit the webpage of
Dr. Jean-Pierre Merlet at http://www-sop.inria.fr/coprin/equipe/merlet/merlet_eng.html.
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Abstract In this paper, a method for managing redundancy for a mobile robot
manipulator is proposed, which is aimed at kinematic control of the sys-
tem in interaction tasks with humans. The method considers those parts
of the manipulator structure —virtual end-effectors (VEEs)— which
could potentially hit objects or persons during human-robot interac-
tion. The positioning of each of these various VEEs is considered as
a lower-priority task in the inverse kinematics resolution of the robot
manipulator, while the order of priorities is dynamically changed during
task execution. In addition, it is shown that suitable trajectories are
to be planned for VEEs using sensory data, e.g., with potential field
methods. A simulation case study for anthropic domains is proposed.
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1. Introduction

Human-robot interaction addresses important issues to avoid that the
physical body of a robot could result in damages to humans. In the lat-
est years the attention was focused on cognitive aspects of the growing
interaction from robots and humans, like mental models and interfaces.
It is important to notice that the presence of physical “bodies” is a
crucial aspect in the interaction between humans and robots. In partic-
ular, physical human-robot interaction (pHRI) addresses the two crucial
issues of safety and dependability, especially when environments are un-
structured. The physical interaction with a robot in anthropic domains
becomes every day more interesting for assistance and service robotics in
the houses and for the elderly-dominated society. The EURON project
PHRIDOM (Albu-Schaffer et al., 2005), e.g., is addressing these issues.
The crucial goals of safety and dependability are related to technical
issues such as collision avoidance, redundancy resolution, compliance
control and sensory-based safety systems for close interaction.

Safe and dependable interaction can be accomplished both in a passive
and in an active fashion. Passive safety is introduced, e.g., using springs,
elastic joints (De Luca, 2000); other interesting techniques were also
proposed, like the variable-stiffness actuators (Bicchi et al., 2001) and
the distributed macro-mini actuation (Zinn et al., 2002). To improve
safety, and also to add dependability for the users, active control of
the physical interaction is to be considered. Force control (Siciliano and
Villani, 1999) and safe postures of robot manipulators should be focused
as fundamental issues. In addition, the whole kinematic structure of a
manipulator must be controlled, because the robot can hit a person with
different parts of the structure.

This paper considers the problem of controlling the positioning of cru-
cial parts of the kinematic structure of a robot in interaction tasks, which
are termed “virtual end-effectors” (VEEs). Proper Closed-Loop Inverse
Kinematics (CLIK) schemes (Siciliano, 1990) are adopted to achieve
resolution in the presence of redundancy, so as to take into account
the issues discussed above in the positioning of such VEEs. Each VEE
is controlled with a different level of priority with respect to the task,
programming the positioning of each dangerous part of the articulated
structure in a safe configuration; then, the priorities between the tasks
are handled in a hierarchical inverse kinematics scheme (Siciliano and
Slotine, 1991). The trajectory planning phase is designed to make the
multiple VEEs approach suitable to control of the interaction. In detail,
an obstacle avoidance technique based on the well-known potential field
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method (Khatib, 1986) is adopted to dynamically change the priority
order according to the position of goals and objects in the environment.

2. Modelling

The application domain hereby considered is domestic assistance. For
dependable pHRI a redundant mobile robot is needed: movements in a
room, objects picking and other tasks may be accomplished, for instance,
with a manipulator mounted on a mobile base.

2.1 Kinematics

The mobile robot manipulator considered for the purpose of the present
study has the kinematic structure of Fig. 1, which is equivalent to the
assembly of a commercial mobile robot (Pioneer PowerBot) and an in-
dustrial robot manipulator (Comau Smart-3S), although the method is
at all applicable for any kinematic structure with a known Jacobian. In
the figure, several critical points are evidenced (A, B, C, D, E), which
describe those extremities of the robot that can collide with a human
being. Also, they are crucial in order to locate the positions of the ma-
nipulator links, since the robot can run into an obstacle not only by a
VEE, but also with an intermediate point between two VEEs located on
a link.

It should be pointed out, however, that safety issues suggest using
accurate sensor information to localize goals and obstacles, lightweight
structures and other additional facilities to make the robot intrinsically
safe in event of collisions. Here, however, only kinematic aspects are
focused. By the way, the manipulator should be lightweight, while in-
dustrial manipulators are heavy and cart robots able to carry them are
not yet available for potential use in houses.

2.2 Redundancy Resolution

Redundancy resolution is related to the problem of finding movements
of available joints that respect the desired motion of the end-effector,
while satisfying some additional task. The solution of the problem can
be found on the basis of the well-known differential mapping

p=J(q)q (1)

where
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Figure 1. Mobile robot manipulator with VEEs A, B, C, D, E.

are respectively the end-effector position vector and the joint position
vector of an n-DOF mobile robot manipulator, and J denotes the usual
Jacobian. For the purpose of the present work, the end-effector orien-
tation is not considered, while n = 8, i.e. 2 DOF’s for the mobile base
and 6 DOF’s for the manipulator. Since the robot is redundant (n > 3),
the simplest way to invert the mapping (1) is to use the pseudo-inverse
of the Jacobian matrix, which corresponds to the minimization of the
joint velocities in a least-square sense (Sciavicco and Siciliano, 2000).
Because of the different characteristics of the available DOFs, it could
be required to modify the velocity distribution. This might be achieved
by adopting a weighted pseudo-inverse J }L,V

Jhy =w gt aw- gt (2)

with the (n x n) matrix W1 = diag{, B2, ..., B}, where f3; is a weight
factor belonging to the interval [0, 1] such that 3; = 1 corresponds to full
motion for the i-th degree of mobility and (; = 0 corresponds to freeze
the corresponding joint (De Santis et al., 2005a).
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Redundancy of the system can be further exploited by using a task-
priority strategy (Nakamura, 1991) corresponding to a solution to (1) of
the form

a=Jly(@v+ (I, - Ty(9)J (@) 4 (3)

where I, is the (n x n) identity matrix, q, is an arbitrary joint velocity
vector and the operator (I, —J ;VJ projects the joint velocity vector
in the null space of the Jacobian matrix. Also in (3), v = p;+ k(py—Pp)
which provides a feedback correction term of p to the desired position p,
according to the well-known CLIK algorithm, being k& > 0 a suitable
gain (Siciliano, 1990). This solution generates an internal motion of the
robotic system (secondary task) which does not affect the motion of the
end-effector while fulfilling the primary task.

The kind of secondary tasks employed for the algorithm discussed in
this work are based on the inverse kinematics of a reduced part of the
structure. As an example of positioning of different parts of manip-
ulator (rather than only the actual end-effector), consider the human
arm: the structure is redundant for the positioning of the hand, and
thus it is possible to position the elbow (which can be considered a first
VEE); the so-computed joint values can then be used as references for
the positioning of the wrist (second VEE), and so far for the hand (real
end-effector) (De Santis et al., 2005b). Therefore, a hierarchical solution
of redundancy is achieved, where the various lower-priority tasks are to
be selected according to some suitable criteria (Featherstone, 1988).

3. The multiple VEEs approach

Virtual end-effectors (VEESs) are parts of the manipulator structure,
whose positions are to be controlled in addition to the control of the
end-effector of the mobile robot manipulator. In detail, let g; denote
the vector of the n; joint variables which determine the position p; of
the i-th VEE. Therefore, the differential mapping for the VEE is

p; = Ji(4,)q; (4)

where J; denotes the associated Jacobian.

The multiple VEEs approach is hereby introduced in a general fashion,
by adopting a multiple task priority strategy for specifying secondary
tasks, along with a proper trajectory planning technique for the desired
motion of each VEE. The result is a nested N-layer CLIK scheme, where
N is the number of considered VEEs. To this regard, please notice that
the end-effector is included in the counting of the VEESs; in fact, it may
well be the case the highest priority be assigned to an intermediate VEE
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other than to the end-effector, say when an obstacle is obstructing the
end-effector motion.

With this approach, the control of different points is not considered
in a global matrix, but with multiple mappings. The VEEs approach
can be used for maneuvering a kinematic structure in a volume, e.g., for
tube inspections and endoscopy with snake robots, by considering the
most critical prominences of the structure as VEEs.

3.1 Nested Closed-loop Inverse Kinematics

Inverse kinematics with the VEEs approach orders the VEE posi-
tioning tasks according to a priority management strategy. Since the
trajectories of lower priority VEESs are assigned as secondary task, they
will be followed only if they do not interfere with the higher priority
task to be fulfilled. Hence, a list of VEEs is considered, starting from
the one with highest priority. When a VEE gets close to an obstacle,
its desired path following (necessary to avoid the obstacle) becomes of
higher priority for the CLIK scheme and the priority order is switched
with respect to the distance of each VEE from the obstacle. This can be
achieved by considering the N-layer priority algorithm described in the
following. The idea is summarized in Fig. 2, being N the lowest priority.

Py
Py (D) CLIK > Pya (1+A1)
VEE PRIORITY N qx > —_—
TRAJECTORY PLANNER
) (GOALS AND OBJECTS)
Pv-1a (0 CLIK £ Praa (140
VEE PRIORITY N—-1 4y > EVALUATE PRIORITY ORDER
NEST SECONDARY TASKS
USE POTENTIAL FIELDS FOR
J PATH PLANNING OF EACH VEE
P (D) CLIK AN Pua (1+A7)
g VEE PRIORITY 1 [T ‘ >

Figure 2. Scheme of nested CLIK with VEEs.

At the lowest layer, the differential mapping corresponding to the
velocity of the VEE with lowest priority is considered, i.e. (4) with ¢ = N.
Hence, a CLIK algorithm with weighted pseudo-inverse is adopted to
compute the inverse kinematics:

ay = I (an)vn, (5)
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with vy = Py + kN (PNng — PN ), being py, the desired position for the
VEE with lowest priority and ky > 0. The pseudo-inverse matrix is
substantially weighted as in (2).

At the generic i-th layer of the nested scheme, withi =N —1,...,1,
the inverse kinematics is computed as in (3), i.e.

a; = Il (@i + (Ln, = Ty (@) Ti(9)) @ia (6)
where
Ty =wial(gwah)™ (™)

with W' = diag{Bi1, Biz, -, Bin, } and v; = p;q+ ki(p;qa —P;), being Py
the desired position for the VEE with priority 4, and k; > 0. Further,
g, is the gradient of the objective function:

o,
n; i=1 qi,jM — Gi,5m

Gi=—

where ¢; jar (¢ijm) is the maximum (minimum) value of the joint vari-
able ¢; ;, i.e. the j-th component of the joint vector g;. The above choice
corresponds to achieving a joint motion for the joint variables as close as
possible to that computed in the previous layer q;,,, which are feeded
as secondary reference values to the next layer, providing a way to ful-
fill inverse kinematics of different parts of the structure, with different
priorities.

Going on, the nested CLIK algorithm computes the inverse kinematics
for the structures ending with each of the considered VEEs. It is worth
emphasizing that the order of priorities is dynamically changed during
task execution. As illustrated in Fig. 2, the scheme takes the desired
positions for the ordered VEEs at time ¢; then, the output of the CLIK
algorithms at the NV levels are input to a trajectory planning block which
re-evaluates the priority order among the various VEEs according to the
positions of the goals and the obstacles in the environment, and thus
generates the new ordered sequence of desired positions for the VEEs
at time t + At, where At is the sampling time at which the CLIK algo-
rithm is discretized for practical implementation; the planning aspects
are discussed in the following section.

The weights 3;; of the matrices W; are chosen according to the crite-
rion described above (De Santis et al., 2005a). In particular, the joints
of the mobile base have a higher weight with the respect to the joints
of the manipulator. In Fig. 3 it is possible to see how trajectories are
followed for various VEEs with different priorities. It is easy to recognize
that planned trajectories for VEEs with lower priorities are abandoned
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when they interfere with the higher priority planned trajectories. With
the priority strategy, which ranks the VEEs, it is possible to fulfill the
most critical positioning problems on line.
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Figure 3. Planned (gray) and actual (black) trajectory for the VEE labelled with
A and B in Fig. 1.

The time history of a joint variable is also reported in Fig. 4; move-
ments planned in the task space are abandoned if they interfere with
higher-priority tasks.

Figure 4. Planned (dashed) and actual (solid) trajectory for the joint value g

The priority management strategy is crucial: if a mobile robot ma-
nipulator is considered, which avoids the head of a person in a room
with the end-effector, it is difficult to predict the possibility of hitting
him /her with other parts of the structure, because a possible avoidance
movement can be incompatible with the path of the real end-effector or
of a VEE with higher priority.
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3.2 Trajectory Planning

For each VEE it should be possible to plan a complete trajectory off-
line, but this approach is not satisfying, since the trajectories imposed
to the VEEs, if planned a priori, do not have realistic application (most
obstacles are moving and their trajectories are not known a priori). Fur-
thermore, the positioning of VEESs in task space is only a secondary task
for the positioning of other VEEs with higher priority. On-line trajec-
tory planning is needed: potential fields methods (Khatib, 1986) can
be used for such a planning: the manipulator moves in a field of forces;
the position to be reached is an attractive pole for the end-effector, and
obstacles are repulsive surfaces for the manipulator parts. The field of
artificial forces F' is produced by a differentiable potential function, with
F(p;) = —V(U(p;)), where V(U (p;)) is the gradient vector of U at p;,
that is the position of the VEE under the field effect.

The potential U is constructed as the sum of two elementary potential
functions: U(p;) = Uatt(p;) + Urep(p;) In this relation Uy is the attrac-
tive potential and depends only on the final position, whereas U, is the
repulsive function and depends only on the obstacles position. During
the simulation, the attractive potential field is chosen to be a parabolic
well, centered in the goal positions, whereas a repulsive field is related
to a distance of influence from obstacles. So, the goal is a source of
an attractive potential field; obstacles are sources of repulsive potential
fields.

Simulations of robot movements with this approach are shown in the
next section. Notice again the importance of the priority management in
the CLIK schemes, as discussed above: even with on-line path planning,
a desired path could be not executable, so it is necessary to switch the
priority order, as emphasized by the trajectory planning block in Fig. 2.

4. A Case Study

In this section, operations of the considered mobile manipulator are
examined in an anthropic domain, while the robot is performing an
assistance task. The model has been simulated under the Virtual Reality
Toolbox (VRT) in Matlab. The VRT is a solution for interacting with
virtual reality models of dynamic systems over time. The complete CLIK
algorithm with multiple priority handling and potential fields method
for trajectory planning is considered. The robot has to take a soda
can which is placed in a fitted cupboard, where an impaired person
cannot arrive. In the first phase, the person on the wheelchair is a
moving obstacle to be avoided. When the robot takes the can, the
person becomes a goal point to be reached by the end-effector bringing
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the can. The first desired position for the robot is the location of the can
on the cupboard; after the end of the goal reaching, the second desired
position is the location of the person, who is moving in an independent
way. The anthropic environment where the task is executed is shown in
Fig. 5.

Figure 5.  Interaction with the service robot in an anthropic environment.

In the shown environment, the robot has to avoid the lamps (it has to
slow down in order to keep away from objects attached to the ceiling),
as well as the person (turning around him/her) and finally the desktop
and the table. The obstacles are modelled as spheres: a lamp is a sphere
having a small radius, whereas a person is a set of spheres with different
radiuses. Notice that these radiuses may take into account cognitive
evaluations. As an example, consider the potentially unpredictable be-
haviours of children in the scene: in such a case, safety issues suggest to
magnify the radiuses for repulsive potential fields. It is possible, in in-
telligent environments, to provide radio-frequency identification tags to
assign different set of parameters, depending on the skills of interacting
people, for robot kinematic and force control. The table has been mod-
elled differently: it is characterized by a succession of points (each point
represents a corner or the lower point of a foot of the table). The robot
is equipped with seven leds, each one placed next to one critical points:
when a particular VEE assumes the highest priority, its led lights up.
The priority assignment for the nested CLIK of the different VEEs is
reported in Fig. 6, where EE stands for the end-effector and WMR, for
the wheeled-mobile robot.
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EE—
VEEE I “
VEED

VEEC
VEEB
VEE A
WMR

highest priority VEE

0 5 10 15
[s]

Figure 6.  Time history of priority assignments.

In Fig. 7 it is possible to see the paths for one VEE and the EE
avoiding the obstacles as well as the motion of the impaired person.
Strong hypothesis about sensory system are assumed: positions of robot,
people and objects are exactly known and tracked.

6
4 °
E 2 R . B ‘s
= 0 ‘{Eﬂj’—-’_ ~ .f’:ﬂ -
-2 — ——
4
g~ — 5 L 5
] 8 -5 0 -

(a) (b)

Figure 7.  Trajectories for the VEE labelled with A and the EE of the robot (solid)
in the task of Fig. 5, where the spheres are edges of obstacles and the thin line is the
trajectory of the impaired person during the task.

5. Conclusion

The virtual end-effectors (VEEs) approach has been proposed for si-
multaneous inverse kinematics, with proper trajectory planning, of mo-
bile robot manipulators operating in unstructured environments. For
pHRI, the VEEs approach can actually complement interaction schemes,
where intrinsical and active safety issues are to be considered. The pro-
posed approach may be also used to keep a robot in proper postures in
narrow spaces (e.g., snake robots) and for self-collision avoidance too.
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For comparison, a global optimization of different forces acting on the
manipulator without null-space techniques should also be considered,
with a weighted extended Jacobian approach. In addition, automatic
techniques for the location of the VEEs should be of interest as well.
Future work will also be devoted to add soft-computing techniques for
both trajectory planning and inverse kinematics, and to consider inte-
gration with force control on real mobile robot manipulators.
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Abstract  The purpose of this study is to describe the necessary conditions for the
motion controller of a humanoid robot to perform the vertical jump.
We performed vertical jump simulations using three different control
algorithms and showed the effects of each algorithm on the vertical jump
performance. We showed that motion controllers which consider one of
two conditions separately are not appropriate to control the vertical
jump. We demonstrated that the motion controller has to satisfy both
conditions simultaneously in order to achieve a desired vertical jump.

Keywords: Humanoid robot, Vertical jump, dynamic stability

1. Introduction

The vertical jump is an example of a fast explosive movement that
requires quick and completely harmonized coordination of all segments of
the robot, for the push-off, for the flight and, finally, for the landing. The
most important part of the vertical jump which influences the efficiency
and therefore the height of the jump is the push-off phase. The push-off
phase can be defined as a time interval when the feet are touching the
ground before the flight. The primary task of the actuators during the
push-off phase is to keep the robot balanced during the entire jump.
The secondary task of the actuators is to accelerate the robot’s center
of mass upwards in the vertical direction to the extended body position.

In the past, several research groups developed and studied jumping
robots but most of these were simple mechanisms not similar to humans.
They were controlled by empirically derived control strategies. Probably
the best-known hopping robots were designed by Raibert, 1986 and his
team. They developed different hopping robots, all with telescopic legs
and with a steady-state control algorithm. Later, De Man et al., 1996
developed a trajectory generation strategy based on the angular mo-
mentum theorem which was implemented on a model with articulated
legs. Recently Hyon et al., 2003 developed a one-legged hopping robot
with a structure based on the hind-limb model of a dog. They used an
empirically derived controller based on the characteristic dynamics.
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The purpose of this study is to mathematically formulate the neces-
sary conditions that the motion controller of a humanoid robot has to
consider in order to perform the vertical jump.

2. Dynamical Model of Jumping Robot

The model of the jumping robot is planar and is composed of four
segments which represent the foot, shank, thigh and trunk (Fig. 1).
The segments are connected by frictionless rotational hinges whose axes
are perpendicular to the sagittal plane. The model consists of two parts,
the model of the robot in the air and the model of the robot in contact
with the ground. While the tip of the foot is on the ground, the contact
between the foot tip and the ground is modelled as a rotational hinge
joint between the foot tip and the ground at point F. Therefore, the
robot has six degrees of freedom during flight and four degrees of freedom
during stance (with the assumption that the foot tip of the robot does
not slip and does not bounce back). The generalized coordinates used
to describe the motion of the robot are coordinates xp and yr of the
foot tip measured in the reference frame and joint angles «, 3, 7, 9.

Figure 1. Jumping robot during flight.

3. Vertical Jump Conditions and Control
Algorithm

To assure the verticality of the jump, the robot’s center of mass
(COM) has to move in the upward direction above the support poly-
gon during the push-off phase of the jump. The second condition, which
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refers to the balance of the robot during the push-off phase, is the posi-
tion of the zero moment point (ZMP). ZMP is the point on the ground
at which the net moment of the inertial forces and the gravity forces has
no component along the horizontal axes (Vukobratovi¢ et al., 2004). In
the following sections we will analyse how these two conditions influence
the vertical jump. First we will design two control algorithms based
on the COM condition and ZMP condition separately and then we will
design a control algorithm that considers both conditions together.
Equations that define the position of COM are

o Z?:lmimi _ Z?:lmzyz (1)

Lcom = n ) Ycom = n )
=11 =1

where Zcom and yeom are horizontal and vertical positions of COM of the
whole system, respectively. z; and y; are the coordinates of COM of
the i-th segment, m; is the mass of the i-th segment and n is the number
of segments.

The position of ZMP is

Dotz (i + g) — D i Yk + T, 2)

X = .
o Siami(iji + 9)

where

n
Ty = Z(Izd)z “+ w; X Iiwi). (3)
i=1
g is the quadratic norm of the gravity vector, I; is the inertial tensor of
the ¢ — th segment around its COM and w; is the angular velocity of the
i —th segment. When the robot is at rest, the position of ZMP coincides
with the horizontal position of COM.
For the control purposes we have to find the second derivatives of Zcopm,
and Yeom (Eq. 1). We get the following equations

Feom = k116 + k128 + k135 + k140 + dy (4)

and

Geom = ko1t + kool + Ko™ + koad + da, (5)

where the parameters k;; and d; are functions of joint angles (k;; =
f(a7ﬁ7775)) dl = f(OZ;Ba’Y)(S))

The position of ZMP on the ground can not be described in this form
because the denominator of Eq. 2 is also a function of joint angles.
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However, in many cases we can freely move the coordinate system to co-
incide with the position of the desired ZMP and the balancing condition
becomes x,,, = 0. In this case we can express .., as

Temp = 0= k31& + k323 + k33¥ + ksad + ds. (6)

Egs. 4, 5 and 6 can be combined and written in the matrix form

Zeom ki1 k2 kiz ki i dq
Yeom | = | k21 ko2 Koz koa . || d2 ], (7)
0 k31 kso k33 k3 5 ds

where Zcom and .., are the conditions that relate with the balance.
On the other hand, ¥eom is the prescribed vertical acceleration of the
robot’s COM during the push-off phase of the jump which enables the
robot to jump.

3.1 Control of z..m,

In the first case we analyse the vertical jump when the motion con-
troller keeps the horizontal position of the robot’s COM over the virtual
joint connecting the foot with the ground at point F during the entire
push-off phase of the vertical jump. Motion controller does not control
the position of ZMP .

By rewriting Eq. 7 for x.om and yeom we get

[ Zeom ] _ { ki1 k12 kiz kuia }

dq
. 8
kor koo koz kos * [ do } ®)

ycom

2 Qo O

Since the system is under-determinate (the degree of redundancy is
two), we have to set up two additional constraints. To achieve a human
like motion of the vertical jump we chose the following simple constraints

:7./ = ClBa (.S. = 6267 (9)

where ¢; and co are constants. By substitution of Eq. 9 into Eq. 8 we
get

ko1 koo + c1kaz + cakoa 3

ycom

[iwm}:[/@n k12+c1k13+c2k14Hd]+{d1]



Balance and Control of Human Inspired Jumping Robot 151

The system of equations is determinate and the joint accelerations can
be written as

a | { kii Fi2 + cikis + cokig }1 ({ Teom } _ [ d D (11)
B ka1 koo + cikos + cokoa Yeom da |)°

3.2 Control of x.,,

In the second case we analyse the vertical jump when the motion
controller keeps the position of ZMP aligned with the virtual joint at
point F. The motion controller does not control the horizontal position

of COM (Zcom)-
By rewriting Eq. 7 for .., and yeom we get

(8]
Yeom ko1 koo koz ko ] 3 [ }
= . . 12
[ 0 } [k:n k3a k33 k34 o + ds (12)

Similarly as in the previous case we have to find the joint accelerations.
If we again use the same constraints (9) we get the following determinate
system of equations

{ Yeom ] _ { kv koo + cikag + cokoa } al { da } (13)
0 k31 k3o + c1ksz + cokay g ds |’

and the joint accelerations are
al_ [ kot koo + cikos + cokoa ]‘1 ({ ficom } - [ d D (14
B k31 ka2 + c1kss + co2kaa 0 ds )

3.3 Control of z.om and .,

In the third case we will analyse the vertical jump when the motion
controller considers both conditions from the precedent two sections. It
keeps the position of ZMP and the horizontal position of the robot’s
COM aligned with the virtual joint at point F.

In this case the degree of redundancy is one. The following constraint
that abolishes the redundancy of Eq. 7 is the relationship of the ankle
and knee joint accelerations

5 =C1, (15)
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where C] is a constant. By substitution of Eq. 15 into Eq. 7 we get

Teom ki1 k2 +Cikiz kg a di
Yeom | = | ko1 koo + Crkaz kou B+ d |, (16)
0 k31 k3o + Cikss  kaa ) ds

and the joint accelerations are

a kii ki + Cikis ks Zeom dy
Bl =] kan kan+Cikoy ky Yeom | — | d2 . (17)
) k31 kso + Cikss ksa

3.4 Motion Controller

For the control of the robot we used a simple feed forward joint ac-
celeration controller

7. = H(q)§. + C(4,q) +9g(q), (18)

where 7. and g denote the control torque and the vector of joint posi-
tions, respectively. H, C and g denote the inertia matrix, the vector
of Coriolis and centrifugal forces and the vector of gravity forces, re-

. AT
spectively. . is the vector of control accelerations (. = {d, 38,5, 5} ).

During the push-off phase of the jump ¢, is defined by Egs. (11),(14) or
(17). During the flight phase, when the robot is in the air, the angular
momentum and the linear momentum are conserved and the ¢, is set in
such a way that the joint motions stops and the robot is prepared for
landing.

4. Simulation Study

We performed vertical jump simulations using three different control
algorithms described in the previous section. First we simulated the
vertical jump using the control algorithm based on the COM condition,
then we simulated the vertical jump using the control algorithm based
on the ZMP condition and, finally, we simulated the jump where the
controller considered both conditions together.
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Control of x.,,,. In this case we controlled #com and Zcop, as defined
by Eq. 11. From the requirement that %, has to be above the support
polygon (point F) follows that com = 0 and Zeem = 0. Figure 2 shows
the position of COM during the jump. The solid line represents the
horizontal position while the dashed line represents the vertical position
of COM. Dotted line shows the moment of take-off. It is evident that
the horizontal position of COM remains zero, i.e. COM is above point F.
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Figure 2. Position of center of mass  Figure 3. Required torque in virtual

during vertical jump considering only the  joint considering only COM condition.
COM condition.

Due to the fact that we did not control the position of ZMP, the
required torque in the virtual joint between the foot and the ground
during the push-off phase of the jump is not zero (see Fig. 3). As this
torque can not be applied to the real robotic system, this controller is
not appropriate for performing the vertical jump. Without applying this
torque at the virtual joint the robot becomes unbalanced. Figure 4 shows
the configurations of the robot during the jump.

Control of x.,,,. In this case we controlled §jcom, and x.p,yp, as defined
by Eq. 14. To satisfy the balance criteria x,,, has to be over the support
polygon (z.mp = 0). As evident from Fig. 5, the horizontal position of
COM during the push-off phase of the jump is not zero and, therefore,
the robot does not perform the vertical jump as it should.

On the other hand, the torque in the virtual joint is zero (Fig. 6) and
the system is balanced without the torque in the virtual joint between
the foot and the ground. Therefore, the robot performs a jump, but this
is not a vertical jump, since COM is not above point F at the take-off
moment. Figure 7 shows the configurations of the robot during the jump.
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Control of xcom and x.,np,.  In this case we controlled §jcon, together
with both Z.om and .y, as defined by Eq. 17. Figure 8 shows the
position of COM during the jump and Fig. 9 shows the torque in the
virtual joint. As the position of COM is always above point F and
the torque in the virtual joint is zero, the robot performs the desired
vertical jump. Therefore, both conditions have to be fulfilled to assure
the verticality of the jump. Both, the horizontal position of COM and
the position of ZMP have to coincide with point F. Figure 10 shows the
configurations of the robot during the jump when the motion controller
considers both necessary conditions.



Balance and Control of Human Inspired Jumping Robot 155
t=0s t=0.13s t=0.25s t=0.38s t=05s
1.5 1.5 1.5 1.5 1.5
]
1 1 1 1 1
£ £ £ £ £
= = = = =
0.5 0.5 0.5 0.5 0.5
]
[
0 0 0 0 0
-02 0 0.2 -02 0 0.2 -0.2 0 0.2 -0.2 00.2 -0.2 0 0.2
x/m x/m x/m x/m x/m
Figure 7.  Configurations of robot during vertical jump considering only ZMP
condition.
1 - —= 1 -
: ’ :
08 :/ s -
£ ’ 05 -
= 0.6 Pt -
o - £ -
9 ~ 7’ - = 0 _
s 0.4 o == - B -
o] - :
O - -
< 02 : -0.5 :
0 - :
-1
0 0.2 0.4 0.6 0 0.2 0.4 0.6
t/s t/s
Figure 8. Position of center of mass  Figure 9.  Torque in virtual joint con-

during vertical jump considering both
COM and ZMP conditions.

sidering both COM and ZMP conditions.

5. Conclusions

In this study, we mathematically formulated the necessary conditions
which have to be considered by the motion controller to perform the
vertical jump. The first condition refers to the robot’s center of gravity
which has to move in the upward direction above the support polygon
during the push-off phase of the jump. The second condition refers to
the position of the zero moment point that has to lie inside the support
polygon to assure the balance of the robot. We analysed how these
two conditions influence the vertical jump performance. Based on these
conditions we designed three different control algorithms and used them
in vertical jump simulations. We showed that motion controllers that
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Figure 10.  Configurations of robot during vertical jump considering both COM and

ZMP conditions.

consider one of two conditions separately are not appropriate for the
control of the vertical jump. We demonstrated that the motion controller
has to satisfy both conditions simultaneously in order to achieve a desired
vertical jump.
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Abstract  This paper presents a convex optimization algorithm for the stabiliza-
tion of whole-body motions for humanoid robots. Given a possibly
unstable input reference trajectory in the form of joint and base frame
acceleration time profiles, the algorithm determines, at each time step,
the optimal acceleration profile subject to stability constraints on the
zero-moment point (ZMP), and under the assumption that joint posi-
tion and velocity measurements are available. We show that the above
optimization can be formulated as a second-order cone programming
(SOCP) problem, a well-known class of convex optimization problem
that admits efficient interior-point algorithms. Simulations suggest that
efficient whole-body stabilization is possible for typical humanoid struc-
tures, even in dynamic environments.

Keywords: Whole-body motion, humanoid robot, motion stabilization, convex op-
timization, second-order cone programming

1. Introduction

This paper addresses the problem of refining a reference whole-body
motion for a humanoid robot such that it is stable, and closely approx-
imates the reference motion. As a possible application scenario, one
can envision a reference motion obtained from human motion capture
data; directly transferring this data to a humanoid robot can easily re-
sult in an unstable motion, causing the robot to lose balance. We seek
an online algorithm that optimally tracks the reference motion, in an
appropriate least-squares sense, while ensuring stability as prescribed
by the zero-moment point (ZMP) condition.

Since the early work of [Vukobratovic and Borovac, 2004] on dy-
namic stability and stabilization of legged robots using the zero mo-
ment point, many methods have been proposed for generation of stable
motions for humanoid robots based on the ZMP notion. One of the
first optimization-based approaches to whole-body motion stabilization
is the work of Kagami et al. [Kagami et al., 2000], who develop an
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algorithm to achieve dynamic balance for humanoid robots based on the
least square method while satisfying desired ZMP and center-of-gravity
(COG) constraints. The main disadvantage with this approach is that
COG is constrained from moving along z and y axes in order to simplify
the problem. Sugihara and Nakamura [Sugihara et al., 2002] propose an
alternative COG optimization-based method for balancing a humanoid
with two different loops; this algorithm assumes a stable reference tra-
jectory that is subject to short-term disturbances, whereas our objective
is to stably adjust an unstable trajectory. Park et al. [Park et al., 2005]
propose a control algorithm for tracking a ZMP trajectory and the mo-
tions of some links which want to be controlled. This method is useful
for real-time control, but the resulting ZMP tracking errors can lead to
unstable motions. Related work preceding the above is [Nishiwaki
et al., 2002], [Morisawa et al., 2005, which investigate pattern generation
algorithms for stable motions.

In this paper we present a convex optimization algorithm for the sta-
bilization of whole-body motions for humanoid robots. Given a (possibly
unstable) input reference trajectory in the form of joint and base frame
acceleration time profiles, the algorithm determines, at each time step,
the optimal acceleration profile subject to stability constraints on the
zero-moment point (ZMP), and under the assumption that state mea-
surements (i.e., the joint position and velocity) are available.

We show that the above optimization can be formulated as a second-
order cone programming (SOCP) problem, which is a well-known class
of convex optimization problems that admit efficient interior-point algo-
rithms. Simulation results suggest that online whole-body stabilization
is possible for typical humanoid structures, even in dynamic environ-
ments.

2. Problem Formulation

We assume an n degree-of-freedom humanoid robot with a tree topol-
ogy structure, and define the optimization vector to be

zz[vo} (1)

q

where Vj € se(3) denotes the generalized acceleration of the root link,
and ¢ € R™ denotes the joint acceleration vector. The ensuing con-
strained optimization problem is formulated as

min |z — @e? (2)
subject to  Aeqx = beg (3)
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Aineg® < bineg (4)
f(z) <0, (5)
The kinematics and dynamics equations can be formulated as
Vi = Apa+by (6)
Fzmp = Mzupr+ Czup (7)

where V; € se(3) is the generalized acceleration of link i, and Fzysp is
the generalized force between the robot and environment, described in
the coordinates whose origin is at the desired ZMP. AVZ_ , bVi , Mzyp and
Cyznp are functions of position and velocity. From these equations the
linear equality constraint (3) follows:

Ay Veonst — by
Ae = Vv be = const 1% :| 8
e [ MzripMay ] 1 [ —CzMP,Mzy (®)

where Ay, and by, are made by stacking Ay, and by, of some links whose
motions need to be constrained (e.g., foot link), and Mzarp gy and
CzmpMey denote the components of the moments about the x and y
axes in MZMP and CZMP-

The linear inequality constraint (4) comes from the static constraint
and joint bounds. The static constraint causes the motion to stay within
a statically stable region, and can be approximated as a linear inequality.
The nonlinear constraint comes from the friction constraint, which can
be expressed as

f(x) = —Fzupf:+ 1 Fzmppayll/ 1+ | Fzrp )/ pn (9)

where p is the friction coefficient about the force in the xy plane, p, is
the rotational friction coefficient about the z axis, Fzp, s, is the force
along the z axis, Fznp, fzy is the force in the xy plane, and Fzyp - is
the moment about the z axis of Fz;;p. This problem can be recast as a
second-order cone programming (SOCP) problem by introducing some
additional variables as follows:
min t1
subject to ||z — xpep|| <ty

Mz p fayx + Crmp,fayll < pito

IMzyp -z + Czyvpz| < pints

0 < —Agg + by

0 < Aegz — beg

0 < —Ameq.’L' + bmeq

0< Mzyups.x+Czupyf. —t2 —13 (10)
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Efficient interior point algorithms for SOCP problems have been de-
veloped in, e.g., [Boyd and Vandenverghe, 2004], [Lobo et al., 1998],
[MOSEK]. These algorithms are shown to have complexity O(n?), where
n denotes the dimension of the optimization vector, and typically con-
verge in around 50 iterations for very wide range of problem size. For
typical humanoid robots where n is around 30, online solutions to the
optimization are feasible.

3. Case Study

In this section, we evaluate the algorithm through simulations with a
humanoid robot model with 25 degrees of freedom: six at each limb and
one at the waist along the z axis as shown in Figure 1. To obtain natural
reference motions we capture some human motions and transform them
to those compatible with our humanoid robot model. Each optimization
is performed using Matlab version 6.5, running on a Pentium 4 (1.8 GHz)

personal computer.

Shoulder
(3DOF)

Elbow
(2DOF)
Hip(3DOF) ’ ;‘E%H
Knee(1DOF) Waist
e (1DOF)

Ankle(2DOF)
DS

4

Figure 1. Humanoid robot model.

3.1 Whole-Body Motion Stabilization

Using the algorithm, we stabilize some motions obtained from motion
capture data as shown in Table 1. Here beta refers the ratio between
the support polygon and the region of the original motion’s projected
center of mass (CoM) distribution. In the case of beta= 0, the original
motion’s projected CoM is located at the center of the support polygon.

From the values of Beta and time per step, we can observe that the
results are dependent on the complexity of the motion. If the motion is
too complex or too fast for the robot, it cannot be stabilized at every
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Table 1. Stabilization of given motions.

Motions Beta  Time/step (sec)
Right leg raise forward 0.4 0.891918
Right kick forward 0.4 0.862366
Right leg raise aside 0 0.961157
Right kick aside(x0.95) 0 0.635591
Bartender Motion 0.1 0.629111
Easy dance(x0.9) 0 0.502345
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moment. In this case from the values of Beta we can conclude that the
motion along the x axis, which is the forward direction of the robot, is
easier to stabilize; the characteristics of the robot model can be regarded
as a cause of these results. The computational time per step for the
optimization, coded in Matlab, is less than 1 second in all cases, clearly
suggesting that online solutions are feasible.

0.4

02
03 0.18
0.16
0.2 0.14
E ~.0.12
=z 0.1 E 01
>
0 0.08
0.06
-0y / 0.04
02 0.02
0
203-02 01 0 01 02 03 005 0 005 01
x(m) x(m)
(a) ZMP trajectory before sta- (b) ZMP trajectory after stabi-
bilization lization
Figure 2. ZMP trajectories before and after stabilization.

The dynamic stability of the “right kick forward” motion before and
after stabilization can be ascertained in Figure 2. The red square in the
figure denotes the support polygon. The +z and +y directions are the
forward and left directions of the robot. From the figures we can verify
that the resulting motion has been stabilized.

11

(b) Stabilized motion

(a) Reference motion

Figure 3.  Motions before and after stabilization.
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From Figure 3 we can see the motion after stabilization is similar to
the reference motion. In the stabilized motion, the robot appears to
stabilize itself much as a human would, by repeatedly overcompensating
and reacting. While the reference motion looks reasonable in the figure,
this motion is unstable and will cause the robot to fall over.

3.2 Posture Stabilization in Dynamic
Environments

One of the important features of our proposed algorithm is that it
can be applied online. The algorithm depends only on the states at
each time, in this case the joint position and velocity measurements.
One can thus achieve posture stabilization in a dynamically changing
environment; in what follows we consider a simple standing posture,
i.e., 0 =0.

Table 2. Posture stabilization in a dynamic environment.

Acceleration profile a  Time/step
(A =2n/ty) (m/s? or deg /s?) (sec)
asin At 1 0.400948
(translation along x axis) —-0.7 0.460664
—aX’sin At 6 0.336903
(rotation along y axis) -5 0.334582

For the test cases of a dynamically varying environment, the standing
posture is stabilized as shown in Table 2. «, a coefficient for the accel-
eration profile, is described in m/s? in the case of translational motions
of the environment and deg /s? in the case of rotational motions. From
the Table we see that the algorithm works satisfactorily in our sample
dynamic environments.

From the ZMP and projected CoM trajectories in Figure 4 and 5,
both dynamic and static stability of the motions can be examined. In
both cases the reference motion, which is not dynamically stable, is
stabilized. In Figure 5(b) and 5(d) we can see how the trajectory has
been stabilized intuitively.

We can observe from Figures 6(a) and 6(b) that the reaction of the
robot resembles that of a human. The motions shown Figure 6(a) re-
semble the reaction of human standing in a moving vehicle.
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Figure 4.  ZMP and projected CoM trajectories before and after stabilization of a
standing posture in a translating moving environment when o = 1.
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Figure 5. ZMP and projected CoM trajectories before and after stabilization of a
standing posture in a rotating environment when o = 6.

i i

(a) Translating environment when o =1 (b) Rotating environment when a = 6

Figure 6.  Stabilized motions in a dynamic environment.

3.3 Motion Stabilization in a Dynamic
Environment

From the former section, we can see the algorithm is applicable to the
case of dynamic environments, and that the results resemble the natural
reactions of a human. Based on these results we evaluate the performance
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mance of the algorithm by attempting to stabilize a reference motion in
a dynamic environment. The reference motion in this simulation is the
“right kick forward” motion.

Table 3. Motion stabilization in a dynamic environment.

Acceleration profile a  Time/step
(N =2x/ty) (m/s? or deg /s?) (sec)
asin At 0.6 0.752351
(translation along = axis) —-0.55 0.769769
asin At 0.45 0.658306
(translation along y axis) —-0.45 0.805410
—a)?sin Mt 4 0.862881
(rotation along y axis) -2.5 0.676269
—a)?sin Mt 2.5 0.730828
(rotation along x axis) -2.5 0.882090

From the results of Table 3, we can see that motions can be success-
fully stabilized in various cases of dynamic environments. The obtained
results are similar to the reference motion, and stable as shown in Fig-
ures 7 and 8.

=006 0 008 01 =008 0 0058 01

x{m} *{m)
(a) ZMP trajectory (b) ZMP trajectory (c) Projected CoM (d) Projected CoM
before stabilization after stabilization trajectory before trajectory after sta-
stabilization bilization

Figure 7. ZMP and projected CoM trajectories before and after stabilization of
"right kick forward” motion in a rotating environment when a = 4.

(a) Reference motion (b) Stabilized motion

Figure 8. Motions before and after stabilization in a rotating environment about
the y axis.
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4. Conclusion

This paper has proposed an algorithm that stabilizes whole-body mo-
tions for humanoid robots, even in dynamically changing environments,
via the solution of a convex optimization problem at each timestep. By
expressing the stabilization constraints as linear equalities and inequali-
ties in the acceleration vector, we show that the whole-body stabilization
problem can be formulated as a second-order conic programming prob-
lem. The optimization depends only the current states (i.e., position and
velocity), and can be solved in nearly real-time for moderately complex
humanoid models with up to thirty kinematic degrees of freedom.
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Abstract A procedure to design new orthoses for the human knee articulation is
presented. The design is based on knee equivalent parallel mechanisms
whose links closely replicate the main knee anatomical structures; this
makes it possible to design orthoses which can either re-establish the
complete functionality of the knee articulation or, selectively, only the
function of an injured knee structure.

Keywords: Articulation, knee, equivalent mechanisms, orthoses

1. Introduction

Recent studies showed that the human knee passive motion, i.e. the
relative motion of femur and tibia under virtually unloaded conditions,
can be replicated quite well by mechanisms (equivalent mechanisms)
with one degree of freedom (dof). Early studies (Goodfellows and
O’Connor, 1978; O’Connor et al., 1989; Fuss, 1989) proposed planar
equivalent mechanisms, which replicate the knee motion in the sagittal
plane. Later in (Wilson and O’Connor, 1997; Wilson et al., 1998; Parenti-
Castelli and Di Gregorio, 2000; Di Gregorio and Parenti-Castelli, 2003,
Ottoboni et al., 2005) spatial mechanisms were proposed that replicate
the femur-tibia spatial motion.

The equivalent spatial mechanisms (ESMs) rely upon the clinical
evidence that some fibers of the three main ligaments (the anterior
cruciate (ACL), the posterior cruciate (PCL) and the medial collateral
(MCL) ligament) are almost isometric during the knee flexion and guide

167
J. Lenarcic and B. Roth (eds.), Advances in Robot Kinematics, 167-176.
© 2006 Springer. Printed in the Netherlands.



168 R. Di Gregorio and V. Parenti-Castelli

the knee motion while the femur and tibial condyles remain in mutual
contact.

The proposed ESMs (Fig. 1) model the ACL, PCL and MCL by means
of three binary links each joined to the tibia and to the femur by a
universal joint (U) and a spherical pair (S) respectively, and consider two
contact points between the condyle surfaces. Different approximations of
the surfaces lead to different mechanisms. In (Wilson and O’Connor,
1997; Wilson et al., 1998), the femur condyles 61 and o2 are spherical and
the tibia condyles n1 and nz are planar (Fig. 1(a) mechanism ESM-1). In
(Parenti-Castelli and Di Gregorio, 2000) both the femur (o1, 2) and tibia
(81, 82) condyles are spherical surfaces (Fig. 1(b) mechanism ESM-2),
whereas in (Di Gregorio and Parenti-Castelli, 2003) all condyles are
general smooth surfaces. In Fig. 1 points Ci, 1 = 1,2, and D, 1= 1,2 are the
centers of the spherical surfaces. The geometry of the ESMs was deter-
mined by slightly adjusting the measurements on the knee specimen
taken from cadavers.

This paper focuses on the knee orthoses, i.e. on orthopedic devices
which support or fully replace the functionality of the human knee
(Thoumie et al., 2001).

The knee orthoses available on the market mainly try to replicate the
femur-tibia motion by means of a revolute pair whose axis must be
cleverly located (Schache et al., 2005). This is an empirical approach
based on a rough approximation of the actual motion which is indeed a
complex spatial motion. Up to now the ESMs have not been exploited to
build orthoses. Orthoses based on ESMs could be devised either to re-
establish the complete functionality of the knee articulation or selectively
support (replace) specific structures of the knee which are injured or do not

(b)
Figure 1. Equivalent spatial mechanisms of the knee: (a) ESM-1, (b) ESM-2.
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work properly. The use of the ESMs for such applications requires effi-
cient techniques both for the measurement of the knee motion and for the
determination of the ESMs’ geometry.

Taking as a reference for the orthosis design an equivalent mechanism
of the knee passive motion could be considered as a limitation. However,
this approximation is believed to be of the same order of other un-
certainty factors such as, for instance, measurement errors, and there-
fore acceptable.

In this paper, the potentiality of using ESM-1 and/or ESM-2 as a basic
reference for building orthoses for either a single patient or a class of
them, is investigated. Issues on both the measurement of the tibia-femur
spatial motion in the healthy knee and the determination of the
corresponding ESM geometry are addressed. Finally, guidelines for the
design of new orthosis architectures capable either for global or selective
re-habilitation actions are presented.

2. Determination of the ESMs’ Geometry

The synthesis of an ESM requires: (i) the data to compute the passive
motion of the healthy knee and (ii) the topology of the ESM to synthesize.
Then, synthesis algorithms can be applied to determine the ESM
geometry that replicates the assigned knee motion.

2.1 Motion Data of the Healthy Knee

Measurement of the relative passive motion between the femur and
tibia can be performed by several techniques (DellaCroce et al., 2005;
Freeman and Pinskerova, 2005), provided external loads are somehow
compensated. Compliant-adaptive and haptic devices can be also used to
this purpose.

Data collection consistent with the anatomical parameters of the
patients is another important issue. Indeed, direct measurements on the
patient under treatment might not be possible for various reasons.
The problem, however, can be solved in different ways. For instance, by
measurements performed on the other healthy knee of the patient Gf
possible) or by adjusting data taken from a database of a class of people
the patient belongs to (same age, sex, height, etc.).

In the first case it seems reasonable to reconstruct the motion of the
damaged knee from the motion of the other knee under the hypothesis
that the two motions are symmetric with respect to the sagittal plane. In
other words a one-to-one correspondence between shin-thigh relative
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poses of one leg is established with the shin-thigh relative poses of the
other leg. The relationships that provide the motion data of one knee
from those of the other can be explicitly written by using the notations of
Fig. 2. In Fig. 2, O is a point of the sagittal plane. n is a unit vector
perpendicular to the sagittal plane. Bi, are points embedded in the left
thigh. B’, are points that are symmetric to B;, with respect to the sagittal
plane, and are fixed to the right thigh. A;, are points embedded in the left
shin. A’;, are points that are symmetric to Ai, with respect to the sagittal
plane, and are fixed to the right shin.
With these notations, the following vector relationships hold:

A -0)=[15-2nn" (Ai-0O) (1
Bi-0)=[13-2nnT B:-0) 2

where 13 is the 3 x 3 identity matrix, and T is for transpose.

If the coordinates, in a Cartesian reference system, of the points A;
and Bi (A’ and B%) are available from measurements on the healthy leg,
the coordinates of the points A’ and B’i (Ai and By, in the same reference
system, can be computed through relationships (1) and (2). Once the
coordinates of shin points and of thigh points are known for each leg
posture the shin-thigh relative pose parameters can be calculated and
referred to a set of standard reference systems (Grood and Suntay (1983).

2.2 Synthesis of the ESM

The determination of the ESM’s geometry may resort to the solution of
a rigid body guidance problem. The shin (thigh) is the guided body, the
thigh (shin) is the frame, the healthy knee motion data provides the path
to generate, and the topology of the one-dof mechanism to synthesize is
that of ESM-1 or ESM-2.

The solution of the body guidance problem can be addressed either (1)
through techniques based on precision points, or (II) through optimi-
zation techniques. The first technique consists in imposing that the
guided body assumes a finite number of assigned poses (precision
points). The second one consists in the minimization of an objective
function which somehow measures the “distance” between the path of the
guided body and the path to generate.

2.2.1 Precision point techniques: The techniques based on precision
points usually start writing, in all the assigned poses, the equations that
express the constraint, on the guided body motion, due to each serial
kinematic chain (leg) which connects the guided body to the frame. The
resulting system has the geometric parameters of each leg as unknowns
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‘ n X\ Sagittal Plane

Right Thigh Left Thigh

Figure 2. Notations.

and can be arranged into a number of decoupled subsystems equal to the
number of the different leg topologies that appear in the one-dof
mechanism to synthesize. Then, all the subsystems are separately solved.

Finally, the solutions of each subsystem are combined with the
solutions of the other subsystems, according to the combinatorial
calculus’ rules, for generating the geometry of all mechanisms that make
the guided body move through the assigned poses. If the number of
assigned poses is sufficient to write a number of equations equal to the
number of the unknown geometric parameters for each subsystem, a
finite number of mechanism geometries will be obtained.

General methodologies for writing and solving the constraint equations
of a wide number of leg topologies have been presented in (Chen and
Roth, 1969a, 1969b; Nielsen and Roth, 1995; Wampler et al., 1990).
Moreover, some papers (Innocenti, 1995; Liao and McCarthy, 2001; Di
Gregorio, 2005) have found the analytic solution of leg topologies that are
particularly interesting for the applications.

The ESM-1, has two different leg topologies (Fig. 1(a)): three legs of
US topology and two sphere-plane contact pairs, each kinematically
equivalent to a leg of RRS topology (R is for revolute pair, the spherical
pair S is centered in C: (C2) and the two revolute pairs have axes
orthogonal to the plane m1 (n2). This, in fact, constrains the point C1 (C2)
to move in a plane parallel to m1 (n2) at a distance equal to the radius of
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the spherical condyle o1 (52)). Analogously, the contact sphere-sphere in
the ESM-2 (Fig. 1(b)) can be modeled by a leg of US topology with U and
S pairs centered at points D1 (D2) and C: (C2) respectively. Therefore,
from a kinematic viewpoint, the ESM-1 and ESM-2 are one-dof fully
parallel mechanisms with three legs of type US plus two legs of type
RRS, and with five legs of type US respectively.

A US leg makes the distance between a point of the guided body and a
point of the frame constant. Such a geometric constraint is analytically
expressed by one scalar equation with seven geometric parameters: the
three coordinates of the guided-body’s point, the three coordinates of the
frame’s point and the constant distance between the two points. Thus,
if seven poses are assigned, a system of seven equations in seven
unknowns will result. This system was analytically solved (Innocenti,
1995) and reduced to the solution of a 20t degree univariate polynomial
equation. Therefore, the system admits 20 solutions in the complex field
and at most 20 real solutions.

An RRS leg makes a point of one body move on a plane belonging to
the other body. The analytic expression of this constraint is a scalar
equation with six geometric parameters: the three coordinates of the
point and the three parameters which identify the location of the plane
(e.g. two components of the unit vector normal to the plane, and the
signed distance of the plane from the origin of the Cartesian reference
system). Thus, if six poses are assigned, a system of six equations in six
unknowns will result. Such a system was analytically solved (Nielsen
and Roth (1995) and reduced to the solution of a 10th degree univariate
polynomial equation. Therefore, it admits 10 solutions in the complex
field and at most 10 real solutions.

Thus, by using the rules of the combinatorial calculus, the ESM-1
geometries that solve the body guidance problem are at most the
combinations in triplets of the 20 solutions of the US leg by the combi-
nations in couples of the 10 solutions of the RRS leg, that is:

[2()) (IOJ =51300 3)
3\ 2

The ESM-2 geometries that solve the same problem are at most the
combinations in quintets of the 20 solutions of the US leg, that is:

(2()) =15504 (4)
5
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Despite the high number of complex solutions, the real solutions are in
general much less than 20 for the US leg and less than 10 for the RRS
leg. Therefore, the number of real mechanisms’ geometries dramatically
reduces, and, sometimes, there is no real geometry for one or the other
mechanism topology. Moreover, the order that the assigned poses must
follow to reproduce the knee motion and the smoothness of the path
performed by the guided body between two successive assigned poses are
not guaranteed.

2.2.2 Optimization techniques: In order to overcome these drawbacks,
optimization techniques can be used. One technique to introduce an
optimization criterion is to arbitrarily change one (or more than one)
assigned pose until the path performed by the guided body is
satisfactory. This approach reduces the number of precision points, but
still maintains some of them.

In general, optimization techniques use the constraint equations in a
great number (much more than 7) of poses, and calculate the geometric
parameters (which now are much less than the equations) by minimizing
an objective function related to the sum of the absolute values of the
errors in each equation. For instance, one objective function might be the
mean square root of the errors. These techniques allow the introduction
of equations that take into account some limitations on the values of the
searched geometric parameters. The main drawback of this approach is
that the equations are nonlinear which makes the resulting optimization
process cumbersome. Moreover, the computed mechanism geometry does
not make the guided body pass through any assigned pose even though
its path is near to the desired path.

3. Design of the Orthosis

Once a satisfactory geometry of ESM-1 or ESM-2 has been identified,
the design stage of the orthosis starts. The design problem is now to
manufacture the identified ESM by satisfying the following conditions:
(a) all the kinematic chains, i.e. the legs of type US and RRS must be
external to the patient’s knee; (b) the joints of the legs must be simple
and free of problems like jamming; (c¢) the workspace of each leg must
contain the path to generate; (d) when the orthosis is applied to the
patient’s leg, the patient should still be able to wear trousers.

All legs in the ESM-1 and ESM-2 are of type US or RRS, that is of type
5R if considering that a U joint and an S spherical pair are in practice
kinematically equivalent, respectively, to an RR chain with the two R
axes intersecting each other and to an RRR chain with the three R axes
intersecting at one common point. Figures 3(a) and 3(b) show a schematic
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of a 5R leg kinematically equivalent to a US leg (Fig. 3(a)) and to an RRS
leg (Fig. 3(b)) respectively.

A 5R leg can satisfy all the above said conditons. Indeed, condition (a)
is easily satisfied since the hardware of the revolute pairs can be
arbitrarily located along their axes. Condition (b) is satisfied because the
revolute pairs do not undergo jamming. Condition (c) can be satisfied by
suitably sizing the geometric parameters of the 5R chain. Finally, when a
US leg is manufactured, the leg hardware can be confined into a thin
shell located near the patient’s knee. Moreover, when an RRS leg is
manufactured, the planar RR chain — that reproduces the motion of the
condylar contact point in the 5R leg —in the worst conditions (considering
that experimental data reported in (Wilson et al., 1998) show that the
condylar contact point moves inside a rectangle whose sides are shorter
than 40 mm) does not occupy regions farther than 25 mm from the
patient’s knee. Therefore, condition (d) can be satisfied too.

The endings of each 5R leg are connected to rigid rings fixed to the
thigh (guided body in Figures 3(a) and 3(b)) and to the shin (frame in
Figures 3(a) and 3(b)) respectively by means of braces (Fig. 3 (c)).

It is worth noting that for both ESM-1 and ESM-2, each 5R leg has an
anatomical structure as a direct counterpart: namely a ligament or a
condylar surface contact pair. Therefore, when only one or a few specific
anatomical structures of the knee must be replicated by the orthosis, the
ESM synthesis can be focused on the corresponding 5R legs of the
mechanism, so that the synthesized ESM fairly reproduces the motion
constraints due to those structures. The correspondence between the legs’
geometry and the articular structures to be replaced can be checked
through radiographs before the orthosis is sized. After such a

Figure 3. 5R kinematic chains: (a) US leg (sphere-sphere contact), (b) RRS leg
(sphere-plane contact), (¢) 5R legs applied to the knee.
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correspondence is verified, an orthosis, which contains only the legs
corresponding to the damaged structures of the knee, can be
manufactured. This opportunity is particularly appealing for the post-
reconstruction therapy of many knee traumas. For instance, the
reconstruction of a knee ligament is frequent among players of many
popular sports, and ligament breakdowns occur both to professional
players and to amateurs.

4. Conclusions

A procedure has been presented that leads to design novel knee
orthoses inspired by equivalent spatial mechanisms (ESM) proposed
recently in the literature for replicating the human knee passive motion.

In particular, in-vivo measurement issues of knee motion as well as
techniques for the synthesis of ESM have been addressed. Finally,
guidelines for the design of new orthoses that can reestablish either the
complete functionality of the knee articulation or selectively only the
functionality of the injured knee structures have been presented.
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Abstract  This paper proposes that two-degree-of-freedom Curvature Theory pro-
vides a mathematical representation of the kinematics of planar human
arm motion coordination. Arguing that an internal inverse, time-
invariant kinematic model is fundamental to human motor coordination,
Curvature Theory provides a concise, efficient mapping of a desired out-
put trajectory geometry to the joint angles’ instantaneous speed ratios.
If the speed ratios for a motion are learned through experience, one can
subsequently execute the motion at different speeds. This formulation
is consistent with a structure for the internal model that the central ner-
vous system may use as a feed-forward element for planning motions.
A simple example is presented to illustrate how the model works.

Keywords: Human motor coordination, arm kinematics, Curvature Theory

1. Introduction

A well-recognized theory in modern motor control research suggests
that through experience, the central nervous system (CNS) builds and
maintains internal models of the motor apparatus and external world
(Atkeson, 1989). Experimental work (Flanagan et al., 1999 and Lac-
quaniti et al., 1982) shows that separate internal kinematic and dynamic
models are consistent with typical behavior. Further evidence indicates
that the internal kinematic model separates time-invariant and time-
dependent aspects of motion. Hand path shape in reaching, often a
straight line, is independent of trajectory speed, and tangential hand ve-
locity has a single, bell-shaped curve regardless of magnitude (Atkeson &
Hollerbach, 1985, Morasso, 1981, Soechting & Lacquaniti, 1981). Fixed
relations between instantaneous elbow and shoulder angular positions
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are observed across a range of tasks and speeds (Lacquaniti & Soechting,
1982, Soechting & Lacquaniti, 1981). Based on these observed time in-
variances in human movement, this paper theorizes that the fundamental
internal model employed for motor coordination is based on a geometric
mapping of position and higher order motion properties. While signifi-
cant research has focused on explaining observed hand trajectories with
dynamics-based theories (Hollerbach & Flash, 1982), this work proposes
that an internal inverse dynamic model is an additional layer of a unified,
coherent model for motion planning whose foundation is kinematic. The
separation offers computational benefits compared to an exclusively dy-
namic model in which the mappings for geometrically equivalent motions
would be stored completely separate from one another.

Consider that a pianist sight-reading a piece of new music plays the
notes more slowly than prescribed by the piece, but in proper relation
to one another. At this stage, he is learning the kinematic geometry
of the finger motion — represented in a mathematical model by the in-
stantaneous speed ratios. Experimental studies show that the ratios
between interstroke intervals in piano playing are in fact independent
of duration (Soechting et al., 1996). After gaining experience with the
piece, he “plays back” the same kinematic finger geometry at increas-
ing speed until mastering it at the proper tempo. When teaching the
piece to someone else, though, the pianist can still demonstrate it at
slower speeds because his CNS has learned the piece by separating the
time-invariant and time-dependent aspects of the motion.

Roth, 2004 showed how to derive geometric properties from time-
based planar 1-DOF motions and to determine all time-dependent mo-
tions that generate trajectories with identical geometric properties. His
work inspired the idea introduced in this paper that Curvature The-
ory offers a compact mathematical representation of the internal inverse
kinematic model humans use for motor coordination. The focus here,
though, is 2-DOF motion, so the formulation follows closely Lorenc et al.,
1995, who presented a general form of planar 2-DOF Curvature Theory
and applied it to trajectory generation in planar path tracking systems.
While they suggested use of a processed video image to calculate the
instantaneous speed ratios required for coordination of robotic systems,
humans are more likely to “learn” the speed ratios required to execute
a desired motion over the course of several motions. Furthermore, the
CNS likely applies the internal kinematic model for motion planning in
a feed-forward control loop augmented by a feedback loop that allows
adaptation to novelty in the current situation (Atkeson, 1989).

This paper applies 2-DOF Curvature Theory to be a mathematical
description of how a human’s internal kinematic model could be built
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Figure 1. General planar motion of a point P in moving frame M.

over the course of several hand motions. This building of the internal
model may be how the CNS learns to coordinate arm movement. The
motivation for the work is ultimately to achieve a better understand-
ing of human motor coordination, with potential applications such as
enhancing rehabilitation for stroke patients.

2. Internal Kinematic Model

The internal kinematic model for planning multi-joint arm movements
is an inverse model that maps desired hand motion to required shoul-
der and elbow motions. Time invariance provides for model compact-
ness, which should reduce the CNS’s computational load. The proposed
mathematical representation of this model assumes that wrist motion is
decoupled from elbow and shoulder motions to separate the problems of
positioning and orienting the hand, which has been observed in human
reaching (Lacquaniti & Soechting, 1982). The formulation also assumes
that motion planning takes place in the visual coordinate system defining
the output space and sensing takes place in a kinesthetic coordinate sys-
tem defining the control space (Soechting & Lacquaniti, 1981, Morasso,
1981). The model focuses on planar reaching motions, which involve
only the 2 DOF’s associated with positioning the wrist in the plane.

Mathematical Formulation. Frame M moving in a plane with res-
pect to fixed frame F is shown in Fig. 1. The coordinates of the
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Figure 2.  Planar RR representation of the human arm with the canonical coordinate
system located at the elbow.

origin of M in F are (a,b), and ¢ is the orientation of M with respect
to F. Point P has coordinates (z,y) in M and (X,Y) in F, related as,

X cos¢p —sing| [z a

=l G 0
If point P is the wrist center, M is fixed in the forearm and F is fixed
in the trunk for purposes of positioning the hand relative to the body.
An additional transformation would be required to relate these frames
to the environment since the trunk-fixed and visual coordinate systems
do not coincide (Schmiedeler et al., 2004). In Fig. 2, the arm is repre-
sented by the two-link RR open chain in which O4 and A indicate the
shoulder and elbow joints, respectively. The angular displacements of
the upper arm and forearm are A and u, and the motion variables are
functions of these: a = a(\, 1), b = b(\, 1), ¢ = ¢(\, ). Without loss of
generality, the depicted position is taken to be the zero position. Using a
trailing subscript to indicate a derivative evaluated in the zero position
(i.e. X\ = %%\(’/\,#:07 Yy, = %\,\?“:0» the second-order Taylor series
expansion of Eq. 1 about the zero position is,

{ X } _ { T+ XA+ Xpp+ 2 (X0 + 2X,A 0 + Xpup?) } @)
Y Y+ oA+ Y4 5 (YA + 2V 0 + Yyup?) 7

where X = ax—yox, Ya, = by +202,—ydr0yu, etc. The time dependent
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motion of point P with respect to F' is obtained by differentiating
Eq. 2 with respect to time.

{X} _ { (—yox + an) A+ (—yd, + am} |

Y (zdx +ba)A + (xd, + bt (3)

) [—yox + CU\];‘ + .[_y¢u + a,u]ﬂ ) )
H[=2(OaA + Gut)dx — Y(DraA + dauf) + @A + arufi]A
{ X } +[_x(¢>\)\ + ¢uﬂ)¢,u - y(¢/mﬂ + ¢)\,u/\) + au,u,a + CL)\/)\],[L

) [xdx + b/\]-).‘ + (2 + bulji _ )
[z (DA + Dauft) — Y(OAA + Bpuft) dx + baaA + baufA
+[x<¢uuﬂ + ¢)\MA) - y((b)\A + ¢uﬂ>¢,u + b)\u/\ + b,u,u/l]/l

(4)

The simplest description of the motion is obtained in the canonical co-
ordinate system (Bottema & Roth, 1979), which is desirable to provide
for model compactness. The canonical system satisfies three conditions:
1) frames M and F' are instantaneously coincident in the zero position,
2) the Yy axes are aligned with the polar line, which in this case passes
through the shoulder and elbow joints, and 3) the instantaneously co-
incident origins of M and F' are placed on the polar line such that at
least one of the three second order Taylor coefficients byy, by,, and by,
has zero magnitude. The remaining non-zero Taylor coefficients are the
instantaneous invariants. With the canonical coordinate system located
at the elbow, as shown in Fig. 2, the instantaneous invariants for the
planar RR mechanism are ay = —ly, ¢) =1, ¢, = 1, and by = —1;.

3. Discussion

According to the proposed model, the instantaneous invariants ob-
tained here mathematically would be “learned” by the CNS. The CNS
would likely use information gathered over a substantial period of time
and resulting from many hand motions to determine the invariants. This
can be represented mathematically as the generation of Egs. 3 and 4
multiple times over several hand motions and then solved simultaneously
for the invariants. This activity would be a continuous process when an
individual is growing since the length of the upper arm /; changes. Even
later, refinement in the values of the invariants would be anticipated,
given that data obtained by the CNS is likely to contain noise.

The CNS’s planning and control of a desired new hand motion can
be explained in terms of the present model as follows. A target toward
which the hand will reach is typically defined in the visual coordinate
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system, and the corresponding hand path, typically a straight line, is
planned in the same coordinate system. The instantaneous geometry
of the path is thus defined, and the CNS maps the path geometry to

instantaneous first and second order speed ratios of the arm n and n’,

where n = 2 and n’ = 2. Lorenc et al., 1995 show that the speed ratios

can be expressed in terms of the geometry of the path,

—0
n = _a/)\ )\y[) (5)
ap — Ouyp
n' =n' (a)\, Ay O, ‘gua XNy Qpps Ay s O, Hu;m 9>\u7 n, (PJ)J:) ) (6)

where y, is the distance from the origin to the instant center and (PJ),
is the projection of the inflection circle’s diameter through the instant
center onto the Xz axes. For the planar RR mechanism in Fig. 2, the

! 3 e
_Y¥th o d ) = (1+n)ll(PJ) '

speed ratios are n = .

The CNS does not measure y, and (PJ),. Rather, these geometric
quantities represent in the present formulation the mapping that the
CNS learns through experience and updates with each new movement.
Once the speed ratios are obtained, the joint angles A and p can be

controlled using the second order Taylor series,
L /2
w=n\+ " A%, (7)

or its inverse that expresses A\ as a function of u. Regardless, the two
parameters are coordinated to instantaneously achieve the desired hand
motion. Further, the desired path can be traversed at any speed, as A
and A can be chosen arbitrarily and j and ji can be computed (or vice
versa) for the same speed ratios n and n'.

Since only second order coordination of A and p is presented here, the
model would require regular recalculation of speed ratios to accurately
track a desired hand path. As the hand moves away from the position
in which the speed ratios were calculated, the error in path-tracking
increases. Higher order coordination would reduce the error and require
less frequent updates for accurate tracking, suggesting a computational
trade-off between this approach and the regular updating of lower order
coordination. To detect these errors, visual and/or kinesthetic feedback
is required and would generally be expected throughout the course of the
motion. When an unanticipated disturbance is encountered, the desired
instantaneous path may be entirely redefined. The speed ratios can be
obtained again, with the motion shifting toward the new target.



Modeling Time Invariance in Human Arm Motion Coordination 183

Figure 3.  Example of motion planning showing desired and actual hand paths.

4. Numerical Example

As an example, the arm segment lengths are taken to be I; = lo =500
mm. An arbitrary zero position of the arm-segments in which the fore-
arm is at an angle of 98 degrees relative to the Xz axis is shown in Fig.
3. The target location expressed in the canonical coordinate system is
(-183.4 mm, 134.8 mm), so the desired straight-line hand path toward
the target is 378 mm long. The instant center and inflection circle are
constructed, but not shown in the figure, to obtain y,=473.2 mm and
(PJ); =—367.4 mm, along the Yy and Xx axes, respectively. Egs. 5 and
6 yield speed ratios of n=-2.06 and n’=0.87, and Eq. 7 is then used
to compute angles A and p. In Fig. 3, A is plotted in 5-degree incre-
ments to illustrate the motion. Near the zero position, the hand motion
closely tracks the desired path, but after A has been incremented by 30
degrees, the hand position deviates from the path by 24.5 mm. This
highlights the need for regular feedback to update the motion planning
accomplished with the internal kinematic model.

5. Conclusion

This work applies an established formulation of 2-DOF Curvature
Theory to the coordination of planar human arm motion. The result is a
concise and computationally efficient model explaining the kinematics of
planar arm motion. The model requires knowledge of the instantaneous
invariants and the geometry of the desired path. The invariants are
the same for any planar motion, and the path tangent and curvature
represent the novelty in each situation. Mathematically, the invariants
are formulated, and the path properties measured. By analogy, the
CNS must learn through experience the mapping between the trajectory
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tangent and curvature in the output space (hand path and curvature)
and the control space (first and second order joint angle speed ratios)
that is mathematically defined by these geometric quantities. Since the
mapping is time invariant, a motion can be repeated at any speed. The
model also offers an explanation as to how a feed-forward and a feed-
back system may be employed by the CNS to coordinate the arm motion
with limited computational effort.
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Abstract

Keywords:

The aim of the paper is to present a method for assessment of joint angles
in human fingers. The method is based on an optical tracking device and
a kinematical model of human hand. The method was validated against
already proposed optimization methods for assessment of joint centers of
rotation. The segment lengths acquired from statistical anthropometry and
those from the calculated centers of rotation do not differ notably. The joint
angles estimated by our method and those from centers of rotation, are also
comparable. The proposed method requires small number of markers which
makes it suitable for the calibration of an instrumental glove. The results of
the glove calibration show that its accuracy is limited to +£5°.

Hand modeling, assessment of joint angles, instrumental glove calibration

1. Introduction

Understanding of kinematics of grasping is a demanding task.
Although first anthropomorphic hands were designed more than two
decades ago, control of many degrees of freedom to carry out specific task
remains to be a challenging problem.

At the moment a generally accepted system for accurate noninvasive
assessment of hand kinematics is not available. A well established
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technique, which does not hinder the movement as exoskeletons do,
includes reflective markers, which are placed over bony landmarks. Due
to its accuracy, the method can be taken as a reference. Modeling of
upper extremity or finger kinematics is performed by using rigid bodies,
which are linked together with the ball or hinge joints. In the opti-
mization methods (Halvorsen et al., 1999, Zhang et al., 2003), it is
assumed that a marker attached to the rigid body traces out a sphere or
circle. The difficulty in capturing hand kinematics originates from
relatively large number of degrees of freedom concentrated in a very
small place. Large skin artifacts compared to the distances between
markers, make the reconstruction of a frame attached to the rigid body
even more difficult. Besides, the range of motion of some joints is very
small. As a consequence, characteristic patterns of the finger motion are
to be used in finding the centers of rotation (Miyata et al., 2004). In this
case the number of markers can be reduced.

The main drawback of optical tracking system 1is occlusion of markers.
This deficiency becomes obvious when the number of markers is inc-
reased and it is the main reason why an optical tracking system is
not suitable for assessment of hand kinematics during dexterous
manipulation of an object. The object of this work is to develop a method
using the minimal possible set of markers, which would still enable
the reconstruction of hand kinematics and would be suitable for the
calibration of an instrumental glove.

The instrumental glove has been used in many experiments. In most
cases the raw data from the glove was used. Significant effort in
experiment design was made to compensate the offset in the response,
which occurs when the bend sensors are fully extended, and to estimate
the sensitivity of individual bend sensor. The claim that the calibration
of the glove can be carried out by a set of specific hand movements is
misleading. By the movements across the whole range of motion in finger
joints, only the active range of analog to digital converters can be
established. For a hand with known range of joint motions, rough
estimates of joint angles can be given. However, due to the nonlinear
response of the bend sensors, the accuracy can not be estimated. We are
not aware of any article which would describe the results of measure-
ments in actual units and compare those results with a reference
method. The described deficiency of the instrumental glove is most often
hidden behind the statistical analysis of the data measured. The second
aim of this work was instrumental glove calibration and its validation
against the reference method.
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2. Methods

2.1 Kinematic Model of a Human Hand

Hand kinematics can be described by Denavit-Hartenberg (D-H)
notation. Four degrees of freedom (DOF) were used to describe each
finger, two for metacarpophalangeal joint (MCP) flexion/extension (f/e)
and abduction/adduction (ab/ad) and two for the proximal interphalangeal
(PIP) and distal interphalangeal (DIP) joint f/e. The model of a thumb is
not covered in this paper.

The center of wrist rotation was selected for the origin of the model.
The base frame of the i-th finger (i =2, 3, 4, 5; j = 0 ) was attached to the
center of i-th MCP joint. Transformation from the wrist frame to the i-th
finger base can be described by Eq. 1, where PJ;;x and PJi;. denote
position of the i-th MCP joint relative to the wrist frame. Transformation
from the frame j-1 toj (j = 1, 2, ...) can be described by Eq. 2, where
parameters a;, dj, aj, and ©; denote translations along x and z axis and
rotations around x and z axis respectively.

T,,; =trans(PdJ, ,0,PJ, )roty(-z!2)rotx(rx) (1)

ilx? ilz

T, =rotz(®,)trans(0,0,d;)trans(a;,0,0)rotx(a;) (2)

Position and orientation of the i-th fingertip can be obtained by post-
multiplication of transformation matrix in Eq. 1 by matrices from Eq. 2.
D-H parameters are collected within Table 1, where parameter PdJ;2
denotes the distance from i-th MCP joint to PIP joint, PJ;s from PIP to DIP
joint, and PLis the length of i-th proximal phalanx.

Table 1. Denavit-Hartenberg parameters for fingers

(©) d a o (©) d a o
Oi1 0 0 —1/2 Oi3 0 Pdi3 0
Oi2 0 Pdio 0 Oiq 0 PLis 0

The model was parameterized by hand length and by palm width, as
proposed by Buchholz et al., 1992.

2.2 Inverse Kinematics

The joint angles were obtained by solving the inverse kinematics
problem. Each finger is a serial manipulator with four internal variables
qu, q1, g2, and g3 which are related to MCP ab/ad and MCP, PIP, and DIP
fle respectively. A direct solution of finger inverse kinematics can be
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obtained when the fingertip position and its orientation are given. When
only fingertip position M[Xwm, Ym, Zu] is known, the simplification from
Eq. 3 can be applied. It is justified as f/e angles of PIP and DIP joints are,
due to the anatomical structure of ligaments, not independent.
Coefficients ¢ which describe the correlations of PIP and DIP joint angles,
were reported by Kamper et al., 2003.

q; =cq, 3
The triangle relationships in Fig. 1 A leads to a system of Eq. 4 to Eq. 7:
L=X; +Y., 4)

=0 +L.  +2L L cosgq,

prox ‘mid prox

=L+ —2LL - ®
=Ly + Ly, 0 distcos(‘]2+93 ﬁ)a

Ly=L,+L, +2L, L, cosqy =L +L 2L L  cosf, (6

dist ‘mid prox

g, =arctan(Y, /X, )- p. (7

Its solution is obtained by numerical computation which yields the
angles £, qz2, and gs3. Internal coordinate go can be according to Fig. 1 B
calculated from Eq. 8. However, if position of DIP joint is known, an
explicit solution of the inverse kinematics for qo, qz, and g2 can be
written, while a good approximation of g3 is obtained with Eq. 3.

q, =arctan(Z,, /X ,,). €
A M B
YA qs .
]—'J/dais/t
L1,/ )}
/ 9
L Lmid_ -
S
L%
R, X

Figure 1. Inverse kinematics of a finger, A flexion/extension, B abduction/adduction.

A motion tracking system (Optotrak, Northern Digital Inc.) was
used for validation of the model and DataGlove (DataGlove Ultra Series,
5DT Inc., 14 DOF) kinematic calibration. The index and middle finger
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kinematics of one subject, free from any musculoskeletal disorders, was
considered. A set of two cameras was used in the investigation. Infrared
markers were attached to the anatomical landmarks of the hand, above
MCP, PIP, and DIP joints and on the fingertips. An additional three
markers were attached to the hand dorsum.

The initial data acquisition was performed for f/e of MCP joints with
immobilized PIP and DIP joints, and f/e of PIP and DIP joints at fixed
angle in MCP joints. The method validation and kinematic calibration of
the glove comprised simultaneous f/e of MCP, PIP and DIP joints. The
data from the motion tracking system and instrumental glove were
recorded simultaneously.

2.3 Finger Joints Centers of Rotation

A general method for lower or upper extremity joint axis and center of
rotation (AoR, CoR) estimation is not appropriate for fingers. Satisfactory
results can be obtained when markers are separated apart from each
other as far as possible. This can be achieved by a small set of markers.
3D parameter estimation problem for PIP and DIP joints was simplified
to a 2D one, as proposed by Zhang et al., 2003. Parameters for estimation
of PIP and DIP joint locations were obtained by minimizing a cost
function defined by Eq. 9, where Dpip and Dpip denote the depths of PIP
and DIP joints below surface marker and Dppr and Dprpe the depths
calculated for the k-th frame. N stands for the number of all frames. The
average of the cost function is due to a non-uniform distribution of the
acquired samples, weighted by wk.

N ) )
C= kzwk ((DPIP - DPIP) + (DDIPk - DDIP) ) (9)
=1

The calculation of the cost function is explained in Fig. 2. Lnia and Laist
denote lengths of middle and distal phalange and m are the positions of
markers. The lengths Laist, Lmia, Dpir, and Dpp are changed during
optimization subjected to linear constraints to obtain the minimum of
Eq. 9.

Figure 2. Calculation of PIP and DIP joint centers of rotation.
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In the case of MCP joint improved results can be obtained by using the
marker which is distant from the joint, as proposed by Miyata et al.,
2004. The coordinate frame Cyy, defined by markers mmcp, mpip, and
mpip, was positioned to the PIP joint marker. Its z-axis formed a normal
vector to the common plane defined by mucp, mpp, and mpip, while x-axis
pointed in the direction of the proximal phalange. The CoR for MCP joint
was found by minimization of the cost function (Eq. 10), where Tk denotes
a transformation matrix which moves the coordinate frame Cre from the
initial (k=1) to the k-th (k =2, ..., N) pose. cucp represents a point, which
is invariant to transformations 7 and can be taken for CoR of the MCP
joint. The average is for similar reasons as in PIP and DIP joint CoR
estimation weighted with wk.

Parameters cmcp, Ldist, Lmia, Dpip, and Dprp were obtained during the
initial data acquisition. The relative position of PIP and DIP joints was
calculated from the calibration movements (simultaneous f/e of MCP,
PIP, and DIP joints) as an intersection of circles, as shown in Fig. 2,
while cucp represented a standstill point within the coordinate frame
attached to the hand dorsum.

N
C= Zwk "chMCP ~ Cymep "2 (10)
=1

The reference joint angles were calculated from the known positions
of CoR. The lengths of finger segments were obtained as a by-product of
CoR estimation.

3. Results

The hand width of a subject who took part in the study was 90 mm
and hand length 204 mm. The mean lengths of proximal (Lprox), middle
(Lmid) and distal phalanx (Ldist), which were obtained from CoR
estimation, are presented in Table 2 for index and middle finger. They are
compared to the lengths estimated from hand external dimensions via
scaling factors reported by Buchholz et al., 1992.

The f/le angles in MCP, PIP, and DIP joints of index finger are
presented in Fig. 3. They were calculated for the simultaneous flexion in
MCP, PIP, and DIP joints. The angles acquired through inverse
kinematics are presented with dash-doted line and compared to the
reference angles, plotted with full lines. The reference angles were
estimated from CoR. The mean differences and accompanying standard
deviations are shown in Table 3.
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Table 2. Length of proximal, middle, and distal phalanx of index and middle

finger
From CoR
Finger | Lprox (mm) Lmid (mm) Ldist (mm)
Index 47.35+0.65 25.37+0.60 23.81+0.08
Middle | 44.63+0.50 30.82+0.85 24.63+0.03
Statistically-based
Index 45.48+0.45 25.96+0.21 22.99+0.06
Middle | 41.95+0.13 30.87+0.22 25.85+0.08

Table 3. Mean difference and standard deviation between reference joint angles
and angles acquired through inverse kinematics

Finger MCP (°) PIP (°) DIP (°)
Index 2.7+1.7 ~7.9+2.9 6.3£2.1
Middle 1.3+3.0 -6.6+2.9 -1.5+3.5

One record of simultaneous f/e in MCP, PIP, and DIP joints, obtained
from the optical tracking device and instrumental glove, was used for the
glove calibration. Four records were used to validate the calibration.
Joint angles for calibration were estimated through inverse kinematics.
Analytic functions, which transform analog to digital converter raw
values from the glove into the bend angles of individual sensors were
obtained as a result of calibration. Angles reported by the calibrated
glove were compared with the reference angles estimated from CoR.

g0 >
&40 e 40
= 20 A 20
L0 =0

2 0 2

1
t (s)
Figure 3. Validation of the method.

1
t(s)

< 50 3 £ 80
B 40 £ 60
o 20 £ 20
&S =~

800 1200 1600
ADC raw value

500 600
ADC raw value

Figure 4. Data Glove calibration results.
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The responses of bend sensors attached above the MCP and PIP joints
of index finger are shown in Fig. 4 with dashed line. They are compared
to the reference angles, which were acquired via estimated CoR, and are
presented with full lines. The mean difference and standard deviation
between joint angles recorded with the calibrated glove and the reference
angles reached (-1.7+1.8)° and (-5.1+ 0.6)° for PIP and DIP joints,
respectively.

5. Conclusions

A method for assessment of finger joint angles and calibration of
instrumental glove based on optical tracking system and a kinematic
model of a hand has been proposed. The model and the method were
validated against the methods for estimation of joint CoR. The results
show that lengths of finger segments, which were obtained from external
dimensions of the hand and from the CoR of joints, are comparable. The
angles obtained by the proposed method slightly differ from reference
angles, however, the number of markers which is to be used for the
reconstruction of finger motion is considerably smaller. Only markers on
fingertips and additional 3 markers on hand dorsum are required. The
proposed method was used for the instrumental glove calibration and
proved to be appropriate for this application.
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Abstract  This paper shows that it is possible to determine analytically all singular
configurations of the 9-DoF DLR medical robot setup for minimally
invasive applications. It is shown that the problem can be devided
into the determination of the singularities of the general 7-DoF DLR
medical arm and of the 2-DoF surgical instrument, used in a minimally
invasive application. The formula of Cauchy-Binet is used to calculate
the singularities of the redundant medical arm, and an interpretation of
this formula for any serial redundant robot design is given.

Keywords: Medical robotics, singularities, manipulability, robotic assistance, mini-
mally invasive surgery, optimization, robot design

1. Introduction

In robotically assisted minimally invasive applications, a surgical robot
is used to access the operating field inside the human body through small
incisions with thin cylindrical instruments. The design of such robotic
devices for medical applications is liable to exceptionally high require-
ments in terms of safety and reliability. A thorough analysis of the
robot’s kinematic structure is important to ensure complete reachability
as well as the absence of any singular configuration inside the desired
workspace. The desired workspace is usually defined by the operator
during a planning step, and serves to determine the optimal robot setup
(Adhami, 2002; Konietschke et al., 2004). The robot setup comprises the
position and orientation of the robot base and the position of the entry
point into the human body as well as any adjustable DH parameter (as
for example adjustable instrument lengths).
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The determination of the singular configurations of a robot is espe-
cially important in the case of teleoperation, where the exact path is
not known in advance. Though singular configurations can be detected
by monitoring certain manipulability measures as e.g. in Yoshikawa,
1990; Konietschke et al., 2004, these measures are to the author’s knowl-
edge insufficient to signal vicinity to singular configurations. Since the
behaviour of robots near singularities is in most cases not very intuititive
for the operator, it is highly desirable to restrict the workspace admissi-
ble to the operator to a space that does not contain any singularities or
to control the robot in a way that singular configurations are avoided.
This is facilitated if an analytic description of all singularities of the
robot design is known, since the use of computationally cheap strategies
for singularity avoidance in analogy with well known strategies for joint
limit avoidance becomes possible.

In the next section, the kinematic structure of the considered robotic
system is presented. The singularities of the DLR medical arm and the
attached surgical instrument are given in the sections 3 and 4. Section 5
gives a short conclusion.

2. Kinematic Structure

The kinematic structure of the considered robot with the attached
actuated instrument and the used coordinate frames are shown in Fig. 1.
The medical robot itself has 7DoF (41, 7) and the attached instrument
disposes of two additional DoF (¢gg). The kinematic chain of the robot
itself is denoted thereafter as K7, that of the actuated instrument as Ks.

In the following, the problem of determining the singular configura-
tions of the robot kinematics is divided into two subproblems. This is
possible due to the restrictions at the entry point (see section 4).

3. The Singular Configurations of the DLR
Medical Arm

Written in the wrist frame {W}, the geometric Jacobian J of the
forward kinematics has the following form (Yoshikawa, 1990):

: Ju 0 \: .
(ZZ):M:(Ji J22)¢, with (:ﬁ) (1)

the translational and rotational velocity of the wrist frame {W} and

Jip, Jog € R Jgy e RS (2)

A singular configuration occurs if the following determinant equals
Zero:
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= Base B

y, Initial system |

Figure 1. Kinematic description of the considered kinematic chains (K1 and K>).

|J3T| =0. (3)

With the formula of Cauchy-Binet (see e.g. Gantmacher, 1959), Eq. 3
can be transformed into a sum of squares of determinants:

J, 0 Ju 0
51 Ja22 Jo1 Jy
with J? . the i-th submatrix (minor) obtained by suppressing column

1 of the matrix J,,,. The terms of the first sum have a lower block
triangular form and can be combined to:

Ji 0 2 i
;‘( b J2o )‘ N ‘J22‘2;|J11‘2 = |Jg2/* | I TF - (5)

4

T =3

=1

2 3

2

i=1

2

: (4)
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In the last step, the formula of Cauchy-Binet is applied inversely.
Since the sum in Eq. 4 consists of squared summands, all of them have to
equal zero in a singular configuration. Simplifications are possible with
consideration of the rank of the Jacobian. Due to the special structure
of J, a sufficient condition for a singular configuration is:

rank (J11) < 3. (6)
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For the remaining singular configurations, a necessary condition is:
rank (ng) < 3. (7)

Thus, the second sum of Eq. 4 has to be evaluated only for joint angles
that cause |[Ja2| to be zero. The following singularities e; can thus be
determined, with k € N:

e1: ¢qg=7k), (8)
e : ¢2:72r+7rk/\¢3:72r+7rk, 9)
es: ¢2—72T+7rk/\¢4—:|:arccos(—2—z)+27rk, (10)
ey : ¢2:72T+7Tk:/\¢6:7rk,and (11)
T
es : ¢5:2+7rk/\¢6:7rk. (12)

The singular configuration e3 only appears if ||az|| < [|d5|. Details
about the zero points of the relevant determinants are given in the ap-
pendix. The classical “wrist singularity” (¢¢ = 7k) that occurs in many
6-DoF kinematic chains (consider for example a kinematic chain K/
obtained with joint ¢3 held constant) does only appear in conjunction
with additional conditions (Singularities e45). To illustrate this, the
pseudo inverse J of the Jacobian J, in the non singular configuration
$a = (0,0, 0, 7/2,0,0,0)7T as shown left in figure 2 is considered, writ-
ten in frame {I}:

0 0 0 0 0 1
L 0 0 00 O
3
o L o0 00 -2
+ = 3T (3,907, 3F L 9 -Loo o
Ja :Ja (JaJa) ) Ja = a3 ds (13)
0 1 0 I g —ds
2as 2 2a3
0 0 ;—5 01 0
1 1 d
0 35 0 5 0 —g2%

With ds/as ~ 1, all joint velocities remain small for arbitrary rota-
tions of the tool tip. Particularly, pure rotation around an axis b as
shown left in Fig. 2 (perpendicular to the rotation axes of ¢g and ¢7
and intersecting them), constituting the singular direction in case of a
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Figure 2. In case of the considered robot, pure rotations around the axis b can still
be performed even if ¢ = 0 (left). Only if also ¢5 = 7/2+7k, a singular configuration
occurs, as can be seen on the right where the norm [|J7 - (0, 0, 0, 0, 0, 1)T||2 is shown
as a function of the joint angle ¢s.

kinematic chain as K7 in this configuration, leads to the following (rea-
sonably small) joint velocities:

ds ds

. d
$=J-(0,0,0 00 DT =(1,0, ‘@0’ 0,— . )T (14)

- 2 as ’ B 2 as

On the right of Fig. 2 the norm ||J - (0, 0, 0, 0, 0, 1)T||2 is shown
as a function of the joint angle ¢5 with all other angles remaining in
configuration ¢,.

3.1 Generalisation to the Case of a Serial Robot
with n-fold Redundancy

The singular configurations of a general, n-fold redundant robot can
be calculated by considering the roots of the following determinant:
(m+n)!
2(m!)
33T = D 3P, T ermximn), (15)
i=1
(m+n)!
2(ml!)
pressing n columns of the Jacobian J. It can be seen from Eq. 15 that the
singularities of a serial redundant structure with m + n joints of which
n are redundant are identical with the intersection of the singularities of
all those robotic structures obtained by fixing any possible set of n joints

with J; representing all (different) matrices obtainable by sup-
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of the redundant structure. It has to be noted however, that already for
the case of a 2-fold redundant robot with 8 DoF, 2%! = 28 minors have
to be considered, each of which being usually a rather complex function

of the joint angles ¢.

4. Singularities of the Instrument in a Minimally
Invasive Application

The kinematics in minimally invasive applications have the peculiarity
of a fulcrum point where the surgical instrument enters into the human
body. At that point, a constraint is imposed upon the system, resulting
in a loss of two DoF. In order to regain full dexterity inside of the patient,
an articulated instrument can be used, adding two DoF (¢g and ¢9, see
Fig. 3) to obtain full 6 DoF at the distal end of the instrument. To
analyze the singular configurations introduced by the fulcrum point and
the two extra DoF of the instrument, the following Jacobian matrix is
considered:

dy—dy

i L0 0 00 0
Je 0 1 0 0 0 0
<v9 >_6J G ey | 0 0T 0 0 0
- v (;5 b) v 1 )
wy o7 0 0 7z 0 —cr —sic
7
s 0 0 0 -1 0  sg
P9 _dL; 0 0 0 —s7 cres

(16)
with vg resp. wg the translational and rotational velocity of frame
{9} and (&6, ys, 26) the translational velocities of frame {W}. The de-
terminant of §J,, yields:

(7, — d7)*cg
3, ’

and a singular configuration can be stated when

53] = — (17)

cs =0, (18)

with the axes z7 and z9 aligned. The singular configuration that
occurs if

d7, = dy (19)

corresponds to a configuration where the fulcrum point is coincident
with the origin of {W}. In this case, translations of the frame {W} are
partly restricted by the constraint of the fulecrum point, and an altered
Jacobian matrix (a matrix that takes into consideration the rotation of
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Figure 3.  Kinematic description of the articulated instrument in MIS. The length
dy signifies the distance between the wrist frame {W} and the fulcrum point.

frame {W} rather than its translation) would have to be considered.
Since, due to the design of the considered robot, the wrist joint cannot
be coincident with the fulcrum point this case is not further analyzed.

5. Conclusion

In this paper the analytical solution for the determination of all singu-
larities of the DLR medical robot with attached articulated instrument
is given. The use of the formula of Cauchy-Binet simplifies the equations
considerably and is suggested for the calculation of the singularities of
similar redundant kinematic structures. Particularly, the singular con-
figurations of both the DLR light weight robots II and III (7-DoF robots)
can be easily determined. As for the DLR medical robot, all singularities
except for ey (¢4 = 7k) and e5 (¢5 =7 +7k N ¢ = 7Tk:) are outside of
the joint limits.

Appendix

The relevant determinants yield:

[Jao| = —s6, |J11| = —asdscsss (dscs + as)

’J%’ = a3dsc8384 (dscq + ag) , ’J?l} = asdssy (s2¢3 (a3 + dscq) + dscasy) ,
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J 0
‘Jill‘ =0, ‘ ( J; Il ) ‘ = —a3zdsca54 (dsSe + agsacsce + azcase) ,
Jll 0 J11 0
‘( Jo1 Jg2 )‘ - a§d502525556, < Jo1 J§2 - a§d5025405;

The determinants equal zero for the following joint angles:

az

‘Jh‘:(): ¢3=72r+7fk V ¢g=mk V ¢4::|:arccos<—d >—|—27Tk:;

5
‘JQ‘:O' o} :7T+ EVos=7mkVos=7kV oy ==+ _ @ Ik
1 o p= ATk V gy =mkV gy =mkV dy = tarccos | — %5—7r :

5405

I3 =0: =7k V = +arct + 7k,
|7, | Gy =T ®2 arcan<cg(d504+a3)> T

Ji1 0
J21 J%Q se=0
Ji1 0
Jn I3,
Ji1 0
Jo1 I3,

:0:¢2:72r+7rk V. ¢g=7k V g—l—wk;
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Abstract  This paper studies the structure of the inverse kinematics (IK) map of a
fragment of protein backbone with 6 torsional degrees of freedom. The
images (critical sets) of the singularities of the orientation and position
maps are computed for a slightly idealized kinematic model. They yield
a decomposition of SO(3) and R? into open regions where the number
of IK solutions is constant. A proof of the existence of at least one
16-solution cell in R® x SO(3) is given and one such case is shown.

Keywords: Protein backbone, inverse kinematics, critical sets

1. Introduction

A protein (Creighton, 1993) is a sequence of amino-acids connected
by peptide bonds. It is often modeled as a serial linkage, the backbone,
with short side-chains. Each amino-acid contributes three atoms — N,
Ca, and C — and two torsional degrees of freedom (dofs) to the backbone
(Fig. 1). These dofs correspond to the dihedral angles ¢ and v around
the N - C, and the C,— C bonds. The inverse kinematics of the backbone
is of considerable interest in biology (Coutsias et al., 2004).

Let F' be a backbone fragment with 6 dihedral angles ¢ and 1, and f
be its forward kinematics. It is well-known that the number of solutions
of the inverse kinematics (IK) map f~! has 16 as an upper bound, but
it has often been questioned whether this bound is tight (Coutsias et al.,
2004). Available algorithms only compute these solutions for given
poses of the moving frame T of F'. Here, we study the global structure
of f~1 over the entire 6-D manifold of poses of T in R3 x SO(3). The
images of the singularities of f are the critical poses, which, according
to the Morse-Sard theorem, decompose the noncritical part of the image
into open regions, such that in each region E, f~!(x) for each x € E
contains the same number of points. These decompositions of the 6-D
manifold can be very complex, so we study the position map p and an
orientation map p separately. It turns out p is quite easy to understand
and the original question reduces to studying the projection to R3 from
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the inverse images of p. Given the frame associated to T, the set of
configurations that give the frame is either a copy of (S!)? or a copy
of the disjoint union (S')? U (S')3. Focusing on these (S')3, we can
compute p~! more efficiently and we find regions with 16 inverse image
points. This result is reasonable since a 6-dof protein fragment does not
satisfy any of the conditions under which the IK of a 6-dof serial linkage
has less than 16 solutions (Mavroidis and Roth, 1994).

2. Kinematic Model of a Protein Fragment

Let F' be a 6-dof fragment of a protein backbone as illustrated in
Fig. 1. The coordinates of F' are the 3 dihedral angles ¢; around the
bonds N— C? | and the 3 dihedral angles 1; around the bonds C? — C?. For
convenience, we rename ¢; by 0o;_o and 1; by 62;_1, so each conformation
of F is specified by a 6-tuple 6 = (01,...,05) € (S1)S.

We represent F' by a kinematically equivalent sequence of 3 identical
units, each made of two perpendicular links, a “long” one of length /4
and a “short” one of length ¢;, as shown in Fig. 2. We number the links
1,2,...,6, so that each link 2¢ — 1 is a long link and each link 2 is a
short link. Angle 05; 1 rotates short link 2i about long link 2i — 1. So,
each short link moves in a plane perpendicular to the preceding long
link. Angle 69; rotates the long link 2i + 1 about an axis parallel to long
link 2¢—1 and passing through the extremity of short link 2i. Link 2741
makes the constant angle o = 19 degrees with the plane perpendicular
to link 2¢ — 1. Finally, we add a long link 7 to F. This is the link

associated with the moving frame T
We summarize these remarks and put them into a mathematical set-
ting as follows. Set

cos(f;) —sin(6;) 0 —sin(a) 0 cos(a)
R, = | sin(f;) cos(f;) O ] , L= [ 0 -1 0 ,
0 0 1 cos(a) 0 sin(«)

where a ~ .1055567 is fixed and LT = L~! = L. Then, the orientations
of the frames are given by
O1 = I3x3, O2; = 02;—1R2;—1, O241 = O2RyL,
and f is the composition of p and p with
p: (SN - R* 60— (RioL+ Ria2LRssL)v
+ (R + Ri2LRs + RisLRs.aLRs)va, (1)
p:(SH)® — SO(3), 0 — RipLRsuLRseL, (2)
where R;.; = R;Rj, v1 = [0, 0, £2])7, and vy = [¢1, 0, 0]7.

This paper studies the structure of the inverse kinematics f~! =
(p, p)~t. Noticing that for any (X, R) € R x SO(3),

(p.p)H(X,R) =p~H(X) N p~H(R),
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¥ T,

Figure 1. 6-dof fragment. Figure 2.  Equivalent model.

we proceed in two steps. First, we derive the inverse orientation map
p~!:SO(3) — (S')% and show that in general p~!'(R) is the disjoint
union of two 3-D tori M; and My. Next, we compute plzl(X ), where
Dk, k € 1,2, is the map p with its domain restricted to M.

3. Inverse Orientation Map
Reduction. In Eq. (2) only the sums 05;_1 +69; appear. So, we write

Ti =01 +09,i=1,2, 3,and 7 = (11,72, 73). As 6 runs over (S1)9,
7 runs over the 3-D torus (S!)3, and p factors as composition

p = po(+): ()" — (8" — 50(3)

where p : (S1)? — SO(3), 7 — R, LR, LR L. R, is the rotation of
angle 7; around the z axis. Given R € SO(3), the values of p~!(R) are
the solutions of p(7) := R, LR,,LR,,L. = R, which is equivalent to:

p(r)L = R, LR.,LR,, = RL. (3)

Since p(7)L defines the frame on the z-axis, (which is fixed by R,
we further reduce Eq. (3) by eliminating the variable 73. To do this, we
define 4, : SO(3) — S?, R — Rz, where z = [0, 0, 1]7 and S? denotes
the unit 2-D sphere. Since A.(R,,) = z, applying A, to both sides of
Eq. (3) yields:

A.(p(t)L) == R;)LR;,Lz = RLz (4)

where R, LR;,L defines the orientation of the z-axis of frame 6 in W.
We can solve this equation for (7, 72). The value of 73 is then uniquely
determined by:

R., = (R, LR.,L)TRL. (5)



204 G. Liu et al.

critical point a circle of solutions

two solutions

N =~ 0

P -05

-1

/ -15

-2

critical circle one solution -2.5
—4 _3 3 4

empty
Figure 4. The discriminant curve Xy

Figure 3. Critical set of 7. computed with v =7 and d = —0.32.

To each solution 7 = (71, 72, 73) of Egs. (4) and (5) corresponds a set of
values of 6 = (01, ...,0s) such that Oy;_1 + 0; = 7; for i = 1, 2, 3. This
set is a 3-D torus (S1)3.

Singular set.  The singularities of  are the points in (S')? where the
3 x 3 Jacobian matrix Jp has rank less than 3. When working with Lie
groups, the Jacobian is (dp)p~!. This gives a map to the Lie algebra.
The Lie algebra of SO(3) is 3-dimensional and a change of basis gives
Jp = [z, R Lz, R; LR;,Lz], z as above. Jp has at least rank 2. It
has has rank exactly 2 if and only if: det(Jp) = sin(72) cos(a) = 0. As
cos(a) # 0, the singular set of pis {7 | 7o =0} U {7 | 2 = 7}.

Critical set and number of solutions. The quotient map 7 :
(S1)? — SO(3) — S? that appears in the left-hand side of Eq. (4),
has the same singular set as p. The critical set of n — i.e., the image
of {1 | m =0} U{r | » = w} — is the union of C; = R Rz = z
and Co = R, LR;LR.;,z = R, LR;Lz for all 7| € Sl C; is the
point that corresponds to the situation where the z-axes of W and
frame 6 are parallel. Indeed, when 7o = 0, the z-axis of frame 6 is
parallel to the z-axis of W for any value of ;. On the other hand,
R, LR,Lz = [(sin(2a) cos(7y), sin(2a)sin(y), — cos(2a)]T, so Cy is the
circle perpendicular to the z-axis and passing through the point LR, Lz.
See Fig. 3.

The inverse map 1!, hence p~!, has a constant structure in Cy, Co,
and in each of the two open subsets of S? bounded by C; and Cs. We
notice that: L(LR,,Lz) = [cos(a)cos(T2), cos(a)sin(ry), sin(a)]T. So,
LR, Lz is a circle perpendicular to Lz contained in the subset of S?
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between Cq and Cs, except at 79 = 0 and 7o = 7 where it coincides with Cy
and Cy, respectively (Fig. 3). For any fixed 71 € S!, the set R, LR, Lz
is the circle obtained by rotating LR, Lz by 7 around the z axis. Thus,
for every point s in the region between C and C5, R, LR, Lz contains
s for two distinct values of 7. We conclude that ~! has two values
(TF,7%), k=1, 2. In C1, s = z and 7 '(s) = {(71,0) | 71 € S'}. For
any s € Cy, n71(s) has a single value of the form (71, 7). Elsewhere
n~1(s) is empty.

Corresponding to each value (71, 72) of n7!(s) there is a unique value
of 73 given by Eq. (5), hence a single value of p~1(R). Thus, as we
initialize an orientation R € SO(3) not in the critical sets C7 and Cy,
p~Y(R) is the disjoint union of two 3-D tori, written My, k = 1,2.

4. Inverse Position Map

Restriction to M.  We now study p,;l(X), where X € R? and py,
k € 1,2, is the position map p with its domain restricted to M. Since
Ooj—1+02;, 7 =1, 2, 3, are constant on M}, and equal to Tjk, each point
on My, is uniquely defined by the values of 61, 05, and 5. Eq.(1) yields:

Dk - (51)3 — 7—\’,3, (91, 03, 95) — Vot (R1 + RT{CLRg + RT{CLRTécLR5)U2

where v, = (RT{cL + RTfLRrgL)UI is a constant vector and {Rjva},
{RT{c LR3vs}, and {RT{C LR LRsvse} are constant circles of radius /1 con-
tained in three different planes.

Computing p, ' (X) amounts to solving the equation:

X' = ﬁk(—eg, 03, 95) = R_9vy + LR3vy + LRTégLRE,’UQ, (6)

where X’ = RY, (X —vp) and R_5 is the rotation of —fy around z.
T )

Critical set. Here we directly determine the critical positions X’
where the number of solutions of pj changes. We rewrite Eq. (6) as:

X/ - T(’LU) = q(t>u)7 (7)
where we rename the variables as t = —fs, u = 03, w = 05, and v = 7¥.
X'—r(w) is a unit circle centered at X’ and ¢(¢, u) spans a quartic surface
Q in R3. Q is the Minkowski sum of two circles, so it is bounded and
connected. Eq. 7 can be solved by computing the intersections between
X' —r(w) and the coss-section curve of @ by the plane containing X' —
r(w). We compute r(w) = Z¢y,+8y. & = [s20y+C2, SySas SaCa(l—cy)]T
and § = [~8aSy, Cy, Casy|T form an orthonormal basis for the plane
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Figure 5. Zoom on a portion of Xy in Figure 6. The planar graph determined
Fig. 4. The centers of the small squares by the discriminant curve of Fig. 4. The
and the small circles are cusp points and number of solutions is shown in each node.
self-intersection points, respectively.

containing the circle r(w). Setting Z = Z X ¢, the equation of the plane
containing X' — r(w) is:

g = d (8)
where d = 27 X’. We let P; denote the plane defined by this equation.
When X'’ spans R?, P, translates, but its orientation remains constant.

On the other hand, we can easily compute:
q(t,u) = [er — SaCus St — Su, cacu]T. (9)
By replacing ¢ by this expression in Eq. (8), we get the equation of the
cross-section Qg of @ by Py in terms of (¢,u):
d
Clu—y) + K(V)S@1rp = — (10)

Ca

sa(l—cy)

where ¢g = —%, $6="g(y »and K(y) = \/82Y +52(1 —¢y)2.

The number of intersection points in Qg N (X’ — r(w)) varies as X'
runs over R3. The X’ such that the circle is tangent to Q4 form the
critical set X C R3 of . Let dmin and dmax be the extreme values
of d between which the plane 27¢ = d and Q intersect. For any d €
[dimin, dmaz], the values of X’ such that X’ — r(w) lies in the plane Py
and is tangent to (04 form a curve X called the discriminant curve at d.
The union of the discriminant curves for d in [dyin, dmax] is the critical
surface X of pg. Fig. 4 shows a discriminant curve, with several cusp
and self-intersection points. An animation of both the cross-section of
() and the corresponding discriminant curve when d varies is available
at www.stanford.edu/ phwul/curve when v = .



Inverse Kinematics of a Fragment of Protein Backbone 207

Figure 7. The cusp curves when v = 7. Figure 8. Four of the 16 solutions.

Decomposition of R3 into regions. The surface X decomposes
R3 into open 3-D regions such that the number of solutions of the inverse
position map is constant over each one. We first compute the decompo-
sition of a plane P; by Xy. Next, we partition [dy,in, dmaz] into smaller
open intervals, such that over each such interval the discriminant curves
X, are equivalent. We get the decomposition of R3 by “stacking” the
decompositions in the successive intervals.

Decomposition of Py: We sweep a line L parallel to the y-axis across
the plane P, from left to right to construct a set S of sub-regions and
their adjacency relations. S is initialized to the empty set. During the
sweep, whenever L crosses a cusp point, a self-intersection point, or a
vertical tangency point, sub-regions are added to S and the adjacency
relation is updated. When the sweep is completed, adjacent sub-regions
in S not separated by X; are merged to form the decomposition of Py.
The outcome is a planar graph in which the nodes are the computed
regions and the edges represent the adjacency relation. The number
of solutions of the inverse position map varies by 2 at each crossing
of a region boundary. We compute cusp and self-intersection points
numerically by approximating the discriminant curve by line segments.
Fig. 6 shows the graph computed from the discriminant curve shown in
Fig. 4. An animation of the discriminant curve and the corresponding
graph when d varies is available at www.stanford.edu/~phwul/curve when
v =.

Decomposition of R3: As d varies from d,n;p, t0 dpae, the planar graph
in Py changes only at a finite number of critical values of d, which we
denote d;, i = 1,...,m. Over each open interval (d;,d;y1), i = 0,...,m,
with dg = dmin and dp1 = dipag, the discriminant curves are equivalent
and the planar graph remains constant. Let G; be the planar graph in
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interval (d;, d;1+1). The decomposition of R? is obtained by merging every
pair of regions from G; and G411, for all ¢ = 0, ..., m, that are adjacent,
but not separated by X. The corresponding nodes of the planar graphs
are also merged to obtain the graph of the decomposition of R3.

The 2-D surface X’ is made of smooth patches separated by cusp and
self-intersection curves. The cusp (resp. self-intersection) curves are
the locus X°%P (resp. A!) of all the cusp (self-intersection) points of
the discriminant curves X; when d varies. The critical values of d are
contributed by &'\ (X®P U xsef) xeusp and x5, For lack of space, we
do not describe their computation here. Fig. 7 shows X'“*P for v = .

5. Existence of a 16-Solution Cell

Theorem 1. There exists a nonempty open region in R> x SO(3) such
that for all (X, R) in this region, (p, p) ' (X, R) contains 16 points.

Proof: Consider first an orientation Ry € SO(3) that lies in the critical
circle Cy. p~!(Rp) is a copy of (S')3. There is a nonempty open region
Ey C Cy such that for all R in Eg, p(p~!(R)) has an open region U so that
p~1(X) contains 8 points for X € U (see Fig. 6). Let R’ be a noncritical
orientation that is close to Ry. Then p~!(R') is a disjoint union of two
3-D tori My, k = 1,2. For each pg, there exists a nonempty open region
E) with 8 inverse image points. Moreover, for R’ sufficiently close to
Ry, E = Ey N E5 is nonempty. Then (p, p) 1 (X, R") has 16 solutions for

al X e E. =
Using the idea in the proof, we constructed the following pose (X, R)

of T:
1.9760
X = 4.5809 and R=

—2.2402

0.6742 —0.3715 —0.6383
0.2378  —0.7091 0.6638 |,
—0.6992 —-0.5993 —0.3897

such that (p, p) "1 (X, R) contains 16 solutions (for a fragment in which
¢1 =1 and ¢ = 3). Four of them are shown in Fig. 8. (It is easily seen
that the existence of 16-solution cell is independent of the link lengths
as long as the short links all have the same length.)
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PREDICTING REACHING POSTURES
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Abstract  We present a new muscle effort criteria for predicting physiologically
accurate upper limb motion in human subjects based on skeletal kine-
matics, muscle routing kinematics, and muscle strength characteristics.
The new criteria properly accounts for the cross-joint coupling associ-
ated with the routing kinematics of multi-articular muscles. We also
employ a new kinematically constrained model of the human shoulder
complex, which is critical for the proper evaluation of our muscle effort
criteria. Through a set of subject trials we have shown good correlation
between natural reaching postures and our proposed criteria.

Keywords: Muscle effort, shoulder complex, constraints, muscle routing kinematics

1. Introduction

The prediction and synthesis of human movement has presented a
daunting challenge to the biomechanics, neuroscience, and robotics com-
munities. In the presence of this challenge there is a significant motiva-
tion to understand and emulate human movement. Given a specific task
the prediction of kinematically redundant upper limb motion is a prob-
lem of choosing one of a multitude of control solutions which all yield
kinematically feasible solutions. It has long been observed that humans
resolve this redundancy problem in a relatively consistent manner (Lac-
quaniti and Soechting, 1982; Kang et al., 2005). For this reason general
mathematical models have proven to be valuable tools for motor control
prediction across human subjects.

Many of the models for predicting human arm movement, including
the minimum work model (Soechting et al., 1995) and the minimum
torque-change model (Uno et al., 1989), do not involve any direct in-
clusion of muscular properties such as routing kinematics and strength
properties. Even models described as employing biomechanical variables
(Kang et al., 2005) typically employ only variables derivable purely from
skeletal kinematics and not musculoskeletal behavior. We feel that the
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utilization of a model-based characterization of muscle systems (Zajac,
1993; Delp and Loan, 2000), which accounts for muscle kinematic and
strength properties, is critical to authentically simulating human mo-
tion since all human motion is rooted in, and bounded by, physiological
capabilities.

We will present a new methodology for predicting arm configuration
in reaching movements by examining the muscular effort required to
perform positioning tasks. This is built upon the work of Khatib et al.,
2004, but involves a number of improvements in methodology. An im-
portant element of this approach is the implementation of a sufficiently
sophisticated musculoskeletal model of the upper limb that accounts for
kinematic coupling between the constituents of the human shoulder com-
plex (Holzbaur et al., 2005). This provides fidelity in predicting muscle
forces, joint moment arms, and resulting muscle induced joint moments,
particularly in the shoulder complex. With our methodology and phys-
iological models we show that natural task-driven human arm postures
can be predicted accurately using a criteria based on a skeletal kine-
matics, muscle routing kinematics, and muscle strength characteristics.
This is validated through a set of targeted subject trials.

2. Human Upper Extremity Model

The upper extremity model of Holzbaur et al., 2005, has been em-
ployed, with some modification, in this work. The model, consisting of a
shoulder complex and a lower arm, has been implemented in the SIMM
(Software for Integrated Musculoskeletal Modeling) environment (Delp
and Loan, 2000). A minimal set of 7 generalized coordinates were chosen
to describe the configuration of the shoulder complex, elbow, and wrist
(3 for the shoulder complex, 2 for elbow flexion and pronation, and 2 for
wrist flexion and deviation). This is depicted in Fig. 1.

Fidelity in predicting muscle action was an important requirement
for the model employed in this work. In particular, proper kinematics of
the shoulder complex is critical in generating realistic muscle paths and
associated joint moments. While the purpose of the shoulder complex is
to produce spherical articulation of the humerus, the resultant motion
does not exclusively involve motion of the glenohumeral joint (see Fig.
1). The shoulder girdle, which is comprised of the clavicle and scapula,
connects the glenohumeral joint to the torso and produces some of the
motion associated with the overall articulation of the humerus. While
this motion is small compared to the glenohumeral motion its impact on
overall arm function is significant (Klop¢ar and Lenarci¢, 2001; Lenarcic
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glenohumeral joint

sternoclavicular

torso / joint
scapulothoracic

joint P /7}) clavicle 41,95, 94

Y
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joint
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Figure 1. (Left) Constituents of the shoulder complex including the scapula, clavi-
cle, and humerus. The glenohumeral joint produces spherical motion of the humerus.
The shoulder girdle attaches the glenohumeral joint to the torso and influences the
resultant motion of the humerus. (Right) Kinematic parameterization of the model
of Holzbaur et al.

et al., 2000). Part of this impact is related to the shoulder girdle’s
influence on the muscle routing kinematics.

The constrained movement of the shoulder girdle was determined from
the shoulder rhythm regression analysis of de Groot and Brand, 2001.
The model obtained from this regression analysis was shown to fit well
for an independent set of shoulder motions and on a different set of sub-
jects than was used for the regression analysis. For these reasons the
model of de Groot and Brand is considered to be superior in predicting
shoulder motion than a simple unconstrained model which only reflects
glenohumeral rotation. Using the results of de Groot and Brand the
constraints that model the shoulder girdle are implicitly handled, with
all motions of the shoulder girdle being dependent on the three gleno-
humeral rotation coordinates. These are elevation plane, ¢, elevation
angle, q2, and shoulder rotation, gs.

Due that fact that SIMM restricts any joint motion to a function of a
single independent generalized coordinate, the regression equations were
simplified by Holzbaur et al. to be a function of only thoracohumeral
(humerus elevation) angle, g2. The shoulder kinematics for this param-
eterization are shown in Table 1.

The terms di, d2, and ds are fixed translation vectors and Q,-- -,
Q; are rotation matrices associated with spins about successive local
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Table 1. Shoulder kinematics using a minimal set of generalized coordinates.

Translation ‘ Rotation
clavicle
'd, = dy \ LQ = Q1 (c192)Q5(c2q2)
scapula
‘ds = 'de + .Qds ‘ (Q = Q3(c3q2)Q4(caq2) Q5 (c5q2)
humerus
‘dy = 'd. +'Qds \ 1Q = Q4(01)Q7(g2) Qs (—a1) Qs (a5)

coordinate axes, where the arguments identify the spin angles. The super-
script t refers to the torso as the frame of reference. The constraint con-
stants, ¢, associated with the dependency on humerus elevation angle, g¢o,
were obtained from the regression analysis of de Groot and Brand, 2001.
De Sapio et al., 2006, provide an extensive analysis of the impact
of shoulder girdle motion, associated with glenohumeral coupling con-
straints, on the muscle routing kinematics and moment arms about the
glenohumeral joint. The constrained model employed here typically gen-
erates moment arms of substantially larger magnitude than those of a
simple model with no kinematic coupling between glenohumeral and
shoulder girdle motion. The resulting moment generating capacities as-
sociated with the constrained model are also typically larger in magni-
tude than those associated with the simple model. This is of paramount
importance for the implementation addressed in the following section.

3. Muscle Effort Minimization

A scalar measure of instantaneous (path independent) muscle effort
at a specific configuration can be defined based on the necessary gravity
torque to maintain the configuration and the muscle strength capacity
at the configuration. Activation, which represents the normalized ex-
ertion of muscles, provides a natural measure for this. Specifically, the
magnitude of the muscle activation vector, a, has been used as a scalar
optimization criteria in both static and dynamic optimizations. That
is, we can choose our instantaneous muscle effort measure, U, to be
U(q,q) = ||al|>. To express this measure we first represent the joint
torques, I' in terms of muscle action,

I'(g,q4,a) = Kr(q,4)a (1)
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where Kr(g, q) is the muscle torque-activation gain matrix. That is, it
maps muscle activation, a, to joint torque (De Sapio et al., 2005). Due
to the fact that there are typically more muscles spanning a set of joints
than the number of generalized coordinates used to describe those joints
this equation will have an infinite set of solutions for a. Choosing the
solution, a,, which has the smallest magnitude yields,

a, = K{T = K[(KrK{)™'T (2)

where K ff is the pseudoinverse of Kr. Our muscle effort measure can
then be expressed as,

U(a) = llao||* = ¢" (Kr K1) 'g 3)

Note that we have eliminated the dependency on ¢, as we will concern
ourselves only with static configurations for the remainder of our analy-
sis. Similarly, T' has been replaced with the configuration space gravity
vector, g, since in the static case I' — g. Expressing this in terms of
constituent terms we have,

Ula,q) =g"[L"(K;K})L] g (4)

where we have made use of the relationship, Kr = LT K #- The muscle
force-activation gain matrix, K y, maps muscle activation to muscle force
(De Sapio et al., 2005). The transpose, LT, of the muscle Jacobian is
a kinematic quantity, based on muscle routing kinematics, that maps
muscle force to joint torque (Khatib et al., 2004). If we dissect the
structure of this effort criteria as follows,

muscular capacity
U=g"| L. (K;Kj) L ]7'g (5)

kinematics

LY. kinematics
kinetics

we gain some physical insight into what is being measured. The terms
inside the brackets represent a measure of the net capacity of the muscles.
This is a combination of the force generating kinetics of the muscles as
well as the mechanical advantage of the muscles, as determined by the
muscle routing kinematics. The terms outside of the brackets represent
the kinetic requirements of the task/posture; in this case the gravity
torques at the joints.

Eq. 5 represents a generalization of the joint decoupled measure used
by Khatib et al., 2004. That measure projected muscle strength capac-
ities to the joint level in a decoupled manner. Consequently, the cross-
joint coupling associated with multi-articular muscles (muscles that span
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more than one joint) was ignored. The measure of Eq. 5 properly ac-
counts for multi-articular muscle coupling in the musculoskeletal system.

It is noted that the solution of Eq. 1 expressed in Eq. 2 corresponds
to a constrained minimization of ||a/|?, however, this solution does not
enforce the constraint that muscle activation must be positive (muscles
can only produce tensile forces). Imposing the inequality constraint,
a = 0, on the activations requires a quadratic programming approach
to performing the constrained minimization. In this case the solution to
Eq. 1 which minimizes ||a|* and satisfies a > 0 can be represented in
shorthand as,

a, = qp(Kp, r, ||a'||2’ a; = 0) (6)

where gp(+) represents the output of a quadratic programming function
(eg. quadprog() in the Matlab optimization toolbox). Our muscle effort
criteria is then U(q) = ||a,||?, where a, is given by Eq. 6. Despite the
preferred use of quadratic programming for computational purposes,
Eq. 5 provides valuable insights at a conceptual level.

To find a task consistent static configuration which minimizes U(q),
we first define the self~-motion manifold associated with a fixed task point,
X,. This is given by M(x,) = {q|x(q) = x,} where x(q) is the op-
erational point of the kinematic chain (e.g. the position of the hand).
The problem of finding a minimal effort task consistent configuration
can then be stated as minimizing U(q) on M (x,).

4. Experiments

A set of experiments was conducted to provide validation for the mus-
cle effort minimization approach of Section 3. The subjects chosen were
six right-handed adult males with normal or corrected-to-normal vision.
The subjects were seated with a test fixture directly in front of them.
The test fixture contained five visual targets represented as physical
markers positioned at different locations. A set of weights (5, 8, and 15
Ibs) were placed to the side of the subjects. An eight-camera Qualisys
retroreflective motion capture system was used to record subject motion
during the trials at a capture rate of 250 Hz.

The subjects performed a set of tasks designed to isolate upper limb
reaching motion. While seated each subject was instructed to pick up
a weight and move it to each target and hold a static configuration at
the target for 4 seconds (see Fig. 2). The subjects were instructed to
perform the movement in any manner which felt natural and comfortable
to them. Five consecutive trials were performed for each weight (8, 12,
and 151b) as well as a trial with no weight in hand, for a total of 20
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trials. The total number of 20 trials took each subject roughly an hour
to perform; including time for hardware set up and marker placement.
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Figure 2. Subject reaching to a set of 5 target locations from a seated configuration.
The subject performs these targeted reaching movements freehand and with a total
of three different weights in hand. Time histories of shoulder joint angles, g1, g2, and
g3, and elbow joint angle, g1, show steady state configurations at each of the targets.

Following motion capture the marker data was segmented using the
Qualisys Track Manager software. To obtain joint space trajectories,
custom Matlab scripts were written based on the inverse kinematics of
the constrained shoulder complex presented in Section 2. The steady
state configurations associated with the five targets were obtained from
the joint space trajectories for each trial (see Fig. 2). For each con-
figuration a 1-dimensional self motion manifold, M (x,), was computed
numerically given the fixed target location, x,. The manifold was asso-
ciated with the variation of the 3 shoulder complex joint angles, g1, ¢2,
and g3, and the elbow joint angle, q4.

The muscle effort criteria of Section 3 was then computed. SIMM
was used to generate the maximum muscle induced moments over the
self motion manifold for each trial. Matlab scripts were then written
to construct the muscle torque-activation gain matrix, K, from the
computed muscle moments as well as the gravity vector, g. A quadratic
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programming routine (quadprog() from Matlab’s optimization toolbox)
was used to enforce positive values for muscle activation.

Figure 3 depicts the results of the muscle effort computations for one of
the subject trials with no weight in hand. The subject’s chosen config-
uration was typically within several degrees (norm based metric along
the self motion manifold) of the predicted configuration associated with
minimizing the computed muscle effort. This was consistent across the
set of subjects, with the largest deviation between experimental and

predicted configurations being on the order of 25° and more commonly
under 10°.
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Figure 3.  Muscle effort variation for one of the subject trials with no weight in

hand. Each plot depicts the muscle effort for one of the five target configurations.
The locations of the subject’s chosen configurations are depicted with a red +. The
full range of motion is depicted by the black silhouettes (+90° from nominal).

Figure 4 depicts the results of the muscle effort computations for a set
of trials with different weights. In each case the weight at the hand was
projected into joint space and added to the gravity vector associated
with the limb segments. The arm configurations at the targets did not
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dramatically change with increased weight at the hand. This implies
that the subjects tended to generate stereotyped reaching postures that
were not highly sensitive to the weight being carried. As a consequence
we included a weighting between the component of the gravity vector
associated with limb masses and the component associated with the
external weight carried at the hand. With this weighting we were able
to maintain good predictions with increases in the weight at the hand.
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Figure 4.  Muscle effort variation for a set of trials to the fourth target location with
different weights in hand. The weight at the hand was projected into joint space and
added to the gravity vector associated with the limb segments The locations of the
subject’s chosen configurations are depicted with a red +.

5. Conclusions

Building upon the work of Khatib et al., 2004, we have implemented
a new muscle effort criteria for predicting physiologically accurate up-
per limb motion. This criteria is a generalization of the joint decou-
pled measure used previously. The new criteria properly accounts for
the cross-joint coupling associated with multi-articular muscle routing
kinematics. We also employ a new kinematically constrained model of
the human shoulder complex (Holzbaur et al., 2005). The modeling of
the shoulder rhythm using constraints between the scapula, clavicle, and
humerus provides more physiologically accurate muscle routing kinemat-
ics and, consequently, better estimates of muscle induced moment arms
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about the glenohumeral joint (De Sapio et al., 2006). Through a set of
subject trials we have shown good correlation between natural reaching
postures and those predicted by our proposed criteria.
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Abstract  This paper studies the kinematic geometry of a 3-RPR planar parallel
robot with actuated base joints and congruent equilateral base and mo-
bile platform. The singularity loci are first determined. Then the global
behavior at all singularities is geometrically described by studying the
degeneracies of the direct kinematic model. This study is made easier
by the fact that one of the two direct kinematic solutions is trivial and
singular. It is shown that this parallel robot has Cardanic self motions.

Keywords: Kinematic geometry, planar parallel mechanism, singularity, self motion

1. Introduction

Often, the main drawback of choosing design conditions for which the
direct kinematic problem of a parallel robot becomes simplified is the
appearance of self motions (Husty and Zsombor-Murray, 1994; Karger,
2002; Wohlhart, 2002). While self motions are certainly the worst type
of singularity a parallel robot could cross, they should simply be avoided
like any other type of singularity. Then, why not use parallel robots with
self motions if these robots have simpler direct kinematics?

For example, in a recent paper (Bonev et al., 2006), the authors have
shown that all singularities of the popular spherical parallel robot design,
known as the Agile Fye, correspond to self motions, yet this design is
arguably the “best” spherical wrist. (In the Agile Eye, any two axes
that are fixed to one another are orthogonal.) Indeed, the singularity
loci of the Agile Eye are not surfaces but curves, which means that the
robot’s theoretical workspace is undivided and unlimited. Furthermore,
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while the Agile Fye still has eight assembly modes, like any other 3-RRR
parallel wrist (R stands for revolute and P for prismatic joint, and an
underline indicates which joint is actuated), half of them correspond to
four singular orientations and the other half are easily found in cascade.

Self motions have been investigated mainly for Stewart-Gough plat-
forms. Few planar parallel robots with self motions have been studied,
and the kinematics of the general 3-RPR planar parallel robot was only
briefly considered in two papers (Merlet, 1996; Bonev et al., 2003). We
came up with a special design for this peculiar planar parallel robot on
a fruitless search for a planar equivalent to the Agile Eye. While our
special 3- RPR planar parallel robot is certainly not the most useful one,
the study of its self motions brings insight into the complex relationship
between direct kinematics and singularities of parallel robots.

In the next section, we will briefly present the analytic expression for
the singularity loci of our special 3-RPR planar parallel robot. We will
identify a range of orientations for which the robot has a sufficiently
large singularity-free workspace. Then, in Section 3, we will describe
the several types of singular configurations by studying the degeneracies
of the direct kinematics and show that they belong to self motions.
Conclusions are given in the last section.

2. Singularity Loci

The special 3-RPR planar parallel robot is shown in Fig. 1. Its mobile
platform and base form congruent equilateral triangles. We denote with
O; and B; (in this paper, i = 1,2,3) the intersections of the base and
platform revolute joint axes, respectively, with a plane normal to these
axes. Then, let Ozy and Cz'y’ be the base and mobile reference frames,
respectively. The generalized coordinates locating the mobile platform,
i.e., the mobile frame Cz'y’, in the base frame Ozy will be denoted by
z, y, and ¢. We define each active-joint variable 6; as the angle between
the z-axis and a unit vector v; that defines the direction of the prismatic
joint of leg 7, measured in counter-clockwise sense. Finally, the directed
distance from point O; to point B; along vector v; is denoted by p;.

Skipping the derivation and referring the reader to (Bonev et al.,
2003), the velocity equation for the 3-RPR planar parallel robot is

m1 £ [ ¢ p1 0 0 (9:1 _
Ag=|me ||z |=1]0 p2 0|6, =B, (1)
ms fg y 0 0 p3 (93
where
—sinﬂi
fi = Ev; = [ cos0; } = E(roc +rcB;, —roo;)/pi, (2)
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Figure 1. 3-RPR planar parallel robot with congruent equilateral base and platform.

m; = f] Ercp, =ff ER1p, (3)
and 5 5
0 —1 cos @ —sin
E_{l 0]’R_[sin¢ cosqﬁ}' (4)

Furthermore, roc = [7,y]T, roo, and rcp, are the vectors along OO;
and CB;, respectively, expressed in the base frame, and rj, B, 1s the vector
along C'B; expressed in the mobile frame. Without loss of generality, we
define these vectors as

, ~1/2 , 1/2
roo, =Top, = l_\/gp], roo, =Trcp, = [_\/3/217

0
r003:r/033: [0}’

or, in other words, we set the sides of the base and platform to unity,
and fix the base and platform frames at points O3 and Bs, respectively.

Type 2 singularities occur when A is singular. Geometrically, this
means that the lines normal to the directions of the prismatic joints and
passing through points B; are concurrent or parallel. Simplifying the
determinant of A and zeroing yields:

V3(cos ¢ — 1)

det(A) = 201p203 (('r - l'c)Q + (y - yc) - 7"2> =0, (5)
where
Te = \1@ sing, y. = \}g(l —cos), T = 2(1_3COS¢)_
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Singularity-free
workspace

Figure 2. Singularity loci and singularity-free workspace for ¢ € [120°,240°].

Therefore, Type 2 singularity loci for this mechanism are (a) the whole
xy-plane, when ¢ = 0 (the directions of all prismatic joints are parallel),
and (b) a circle of radius r, centered at (x.,y.), which passes through
Os, when ¢ # 0. Note, however, that Eq. (1) is of indeterminate form
(0/0) at a Type 1 singularity. Indeed, at a Type 1 singularity, a motor
can freely rotate without affecting the pose of the platform. Such a pose
would be Type 2 singular only for specific combinations of the active-
joint variables that correspond to singular legs.

We will conclude this section by proposing a range of orientations for
which the singularity-free workspace is sufficiently large. Apparently,
this range needs to exclude ¢ = 0, and if symmetry is to be observed,
the best choice would be a range centered at ¢ = 180°. Figure 2 shows
our parallel robot with a series of Type 2 singularity circles corresponding
to ¢ = 120° 4+ k10° (k = 0,1,2,...,12). The dots correspond to Type 1
singularities. The singularity-free workspace for the orientation range
¢ € [120°,240°] is the one that excludes the circle-swept region in Fig. 2.

Based on this purely algebraic analysis, it is certainly not obvious, but
one can verify by using Eq. (5) that for any Type 2 singular configuration
for which ¢ # 0, lines O;B; intersect at a common point lying on the
circumcircle of the base (see the gray-colored configuration in Fig. 2).
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Figure 3.  Geometric interpretation of the direct kinematic model.

3. Degeneracies of the Direct Kinematics

In order to study the global behavior of the parallel robot at all singu-
larities, we will analyze its direct kinematic model. Indeed, this approach
is the most intuitive one and gives a clear geometric interpretation of
all singular configurations. It is usually very difficult or even impossible
to follow this approach, but in our case the direct kinematic model is
particularly simple. Indeed, whatever the active-joint variables, there is
always the trivial solution when the base and platform coincide.

Merlet (1996) showed that the direct kinematic problem of 3-RPR
planar parallel robots is equivalent to intersecting an ellipse with a line,
but did not study any special cases. Let us dismount the revolute joint
at B3. For given active-joint variables, points By and Bj are constrained
to move along two lines (Fig. 3), £1 and Lo, respectively, and the mobile
platform undergoes a Cardanic movement (see for example Tischler
et al., 1998). As a result, Bg describes a curve, &, that is an ellipse, two
parallel lines, a line, or a doubly traced line segment. Obviously, this
curve contains point Os (i.e., O). Considering leg 3, B3 should also lie
on a line passing through Os, denoted by L3. Thus, the direct kinematic
problem is equivalent to finding the intersections between L3 and &.

Let us now derive the elliptic curve £. We can write the following
closure equation for point C' = Bs:

roc =Troo, + pP1V1 — TCcB, = T00, + pP2V2 — TCB,- (6)
This yields the following system of two equations:

—14 pjcosBy + cosp — pacosfy = 0, (7)
p18infy +sin¢ — posinfy = 0. (8)
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Figure 4.  Cardanic self motion when the legs are concurrent and make equal angles.

Solving Egs. (7) and (8) for p; and p2, and substituting the results in
Eq. (6), we obtain the following parametric equation in ¢:

cos@isinfy 1 cosfycosfy 3\ .
e A S AR it R
v (sin(@l — 92) + 2>(COS¢ ) (sin(@l — 92) + 2 )Sln d)’ (9)
:<sm91sm92 —i—\/g)(cosé—l)— <31n91cos€2 1

(o 6y T 3 — )sin ¢. (10)

sin(01 — 92) 2

The above parametric equation is not defined when sin(6; — 6) = 0,
a case that will be studied later. If sin(6; — 2) # 0, i.e., if £; and Lo
are not parallel, then the elliptic curve degenerates if, and only if, its
curvature is zero for any ¢. The curvature, k, of £ can be derived as

@ —ygi  sin(fy — 0o+ 7/3) (1)
@)Y D3 ’

where D is a relatively large expression in 61, 02, and ¢.

Therefore, when £1 and £9 make a 60° angle, x = 0, and £ degenerates
to a line. In other words, if, and only if, the point of intersection between
L1 and Lo, denoted by P9, lies on the curcumcircle of the base, denoted
by C, £ degenerates to a line (Fig. 4). In fact, it degenerates to a doubly
traced line segment of length 4/v/3 (Tischler et al., 1998). This line
segment is centered at Pjo and passes through O. When P = O, the
doubly traced line segment is parallel to O105.

As we said before, the direct kinematic problem is equivalent to find-
ing the two intersection points between L3 and &, of which one is always
O. We will not present an actual algorithm for determining the other
intersection point (x,y) and the corresponding platform orientation ¢,
but only investigate the singular configurations corresponding to all par-
ticular cases in which there is a single or infinitely many solutions.
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Case 1a: sin(f; — 03) = 0 and cos 6 cos s # 0
In this case, £1 and L9 are parallel and £ degenerates to two lines parallel
to £1 and Lo, one of which passes through O.

x If L3 is parallel to £ and Lo, the platform vertices can slide along
L1, Lo and L3, with ¢ = 0, even though all actuators are blocked.

x If L3 is not parallel to £; and Lo, the platform can assume a
nonsingular configuration, as well as the trivial solution q = 0,
for which the corresponding configuration is only Type 1 singular
(i.e., the platform is not shaky; in fact, it is jammed).

Case 1b: cosf; =0 and cosfy; =0
In this case, £1 and L9 are parallel to the y-axis and £ degenerates to a
single line parallel to £1 and L9, and passing through O.

x If L3 is parallel to £1 and Lo, the platform vertices can slide along
L1, Lo and L3, with ¢ = 0, even though all actuators are blocked.

x If L3 is not parallel to £1 and Lo, the platform can assume only
the trivial solution q = 0, and the configuration is Type 1 and
Type 2 singular (the platform can rotate infinitesimally).

Case 2: sin(fy — 02+ 7/3) =0

In this case, £1 and Lo make a 60° angle and their intersection point,
Py, lies on C (Fig. 4). The curve £ degenerates to a doubly traced line
segment passing through Py and O (if Pio = O, £ is parallel to O103).

x If L3 is collinear with £, then point Bj can slide along £ while the
platform changes orientation simultaneously (Fig. 4), even though
all actuators are blocked (as in Reuleaux straight-line mechanism).

X If L3 is not collinear with &£, then the platform can assume two
possible poses. The first one is the trivial solution q = 0, while the
second one is q = [180°,0,0]7. For both poses, the corresponding
configurations are only Type 1 singular (the platform is jammed).

Case 3: sin(f; — 62 + 7/3)sin(61 — 62) # 0
In this case, £1 and Lo intersect at a point that does not lie on C, and
€ is an ellipse (Fig. 3).

x If L3 is tangent to £ at O, then the platform can assume only the
pose q = 0, and the corresponding configuration is both Type 1
and Type 2 singular (there is no self motion). Indeed, it can be
shown that at this configuration, the normals to £i, Lo and L3
passing through B, By and Bs, respectively, are concurrent.

x If L3 is not tangent to the ellipse, then the mobile platform can
assume the pose q = 0, for which the corresponding configuration
is only Type 1 singular, and another nonsingular pose (Fig. 3).
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4. Conclusions

This paper described the kinematic geometry of a 3-RPR planar par-
allel robot with congruent equilateral base and mobile platform. It was
shown that the only singular configurations, for which the base and mo-
bile platform do not coincide, belong to self motions. They occur when
the legs intersect at the circumcircle of the base or are parallel. Once
again, It was demonstrated that careful analysis of the degeneracies of
the direct kinematic model provides a convenient geometrical tool for
better understanding the global behavior of singularities.

Parallel robots with identical base and mobile platform allow self mo-
tions but have interesting characteristics and simpler geometric models.
The authors believe that these robots deserve further attention as they
are likely to find use in practice or lead to better understanding some
theoretical issues. This design simplification approach will next be ap-
plied to 3-RRR planar parallel robots. These robots are undoubtedly
the cheapest alternative for planar motion, from the hardware point of
view, but are still too complex to design optimally.
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Abstract This paper introduces a new approach to identify singularities of planar
parallel manipulators (PPMs). This method is based on Maxwell’s reciprocal
figure theory which establishes a duality between self-stress frameworks
and reciprocal figures. We use line geometry tools to introduce a new
graphical construction called the Mechanism’s Line of action Graph (MLG).
The MLG is introduced in order to implement Maxwell’s Reciprocal Figure
theory to mechanisms. In this paper, we show that the configurations where
the MLG has a connected reciprocal figure imply a singularity type-II in the
mechanism. This singularity analysis tool is also used to trace the
singularity loci of the PPM.

Keywords: Graphical Analysis, Maxwell’s Reciprocal Figure Theory, Parallel Manipulators,
Singularity

1. Introduction

This paper focuses on the singularity analysis of planar parallel
manipulators (PPMs). Specifically we analyze the type-II singularity of
fully parallel planar manipulators which are planar three-degree-of-
freedom (3-DOF) parallel manipulators, consisting of three limbs, each
consisting of one actuated joint and two unactuated (passive) joints. Most
of the approaches to finding singularities of parallel manipulators
address the singularity types that were introduced by Gosselin and
Angeles (Gosselin and Angeles, 1990). These types of singularities are
based on the singularity of the Jacobian matrix, which maps the
Cartesian velocities of the end-effector onto the joint velocity vector.

We confront the problem of the singularity analysis somewhat
differently than most approaches. We first represent the manipulator
graphically using a known line geometry tool, the reciprocal screw. This
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screw, which is reciprocal to all the unactuated joint twists of the limb,
represents the line of action of a limb, which is the wrench that a limb
applies to the end-effector. We represent the line of action of each limb of
the manipulator as an edge in the Mechanism’s Line of action Graph
(MLG). Then, in order to find the “graphical singularities” we use a
theory that goes back to the mid 19th century, Maxwell’s Reciprocal
Figure theory (Maxwell, 1864), to construct a dual graph (reciprocal
figure) of the MLG. We will show that when a reciprocal figure of the
MLG can be constructed, this specific configuration of the manipulator is
a type-II singular configuration (Gosselin and Angeles, 1990). A different
starting point of the analysis is with a connected reciprocal figure upon
which the MLG is built. In this type of analysis, when the configuration
of the reciprocal figure is changed (while still being connected), the cor-
responding manipulator will change configuration but will continuously
be in a singular configuration, resulting in the PPM’s singularity loci.

2. Preliminaries

We first present a brief explanation of the tools that led to the
development of the presented graphical approach.

2.1 Reciprocal Screws and the Limb’s Line of Action

Finding the line of action for each limb of the manipulator is the first
step in constructing the Mechanism’s Line of Action Graph (MLG). We
use reciprocal screws to find these lines of action. Tsai developed a
specific procedure for the derivation of reciprocal screw and its app-
lication for the Jacobian analysis of parallel manipulators (Tsai, 1998).
Bonev used derivations of reciprocal screws in the specific case of PPMs
(Bonev, 2002), which is relevant for the current analysis.

The reciprocal screw, which is reciprocal to the two unactuated joints
of each limb, is a wrench which if applied to the platform, can be resisted
solely by the actuated joint of the limb. This reciprocal screw is the line of
action of the ith limb, also known as the governing line of the limb (Hunt,
1978; Tsai, 1998). The two most common cases of unactuated joints in
PPMs are either two revolute joints or one revolute joint and one
prismatic joint. A third, less common case, is a limb consisting of two
unactuated prismatic joints. In the case of two revolute joints, the
reciprocal screw is a pure force (zero pitch screw) passing through the
two unactuated revolute joints (Fig. 1la,b,c). In the case of one revolute
and one prismatic unactuated joints, the screw is a pure force passing
through the unactuated revolute joint and perpendicular to the axis of
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the unactuated prismatic joint (Fig. 1d,e). In the case of a limb consisting
of two unactuated prismatic joints, the line of action is a pure torque in
the direction going out of the plane (Fig. 1f), which will only enable a
pure torque and will constrain the platform to rotation only. For this
reason, only one such limb can be included in the design of a PPM.

> N ~ "
° —
a b c d

OPassive revolute joint @ Active revolute joint «<
/// Passive prismatic joint #/Active prismatic joint ,” line of action

Figure 1. Examples of typical limbs of PPMs and their reciprocal screws corres-
ponding to the lines of action.

2.2 Maxwell’s Reciprocal Figure Theory

In the mid 19th century James Clerk Maxwell (Maxwell, 1864)
described a three-way connection between self stresses in planar bar-
joint framework (static rigidity), reciprocal figures, which are dual
figures of the bar framework, and spatial polyhedra. In this paper, we
only focus on the first two components of the theory, i.e. the connection
between self stress framework and the existence of a reciprocal figure.

A bar framework in the plane is a graph which represents a structure
constructed out of bars and joints. The bars are represented as edges and
the joints as vertices. If the ith vertex is marked p: then the direction of
the edge connected by the ith and jth joint is represented as pi-p,;. The
force inside the bar is in the direction of the edge multiplied by a scalar
wi which is the scale of the force in the bar (@y > 0 represents tension
and wj; <0 represents compression.)

The forces reach equilibrium at the joint p: if the sum of the forces in
j bars connected to the joint p: is equal to zero:

> o, -p)=0 )

A self stress of a bar framework is an assignment of scalars @i to the
edges such that, for each vertexp:, Eq. 1 will be realized.

A bar framework is fully self stressed if for allwy , w; # 0.

Mazxwell’s reciprocal figure theory states that a plane framework or a
planar graph supports a full self stress if and only if it has a reciprocal
figure. Moreover, this graph should be vertex 2-connected and edge
3-connected which means that removing any one vertex and its edges
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leaves the vertex set connected by the remaining edges, and removing
any two edges leaves the vertex set connected by the remaining edges.

A graph is a reciprocal figure to another if the two graphs consist of
an equal number of edges, corresponding edges in the two graphs are
perpendicular, and corresponding edges which converge to a point in one
graph form a closed polygon in the other. This definition of a reciprocal
figure clarifies the connection between Eq. 1 (equilibrium at a vertex in a
self stressed framework), and the duality between edges converging to a
point in one graph and edges forming a closed polygon in the other.

This connection between reciprocal figure and self stress in a frame-
work is the foundation of the connection we present between reciprocal
figure and singularity type-II of a PPM. For additional insights and a
complete proof of Maxwell’s reciprocal figure theory we refer the reader
to (Crapo and Whiteley, 1993).

3. Singularity Analysis Method and Examples

When using the singularity analysis method presented in this paper
one should apply the following three main steps on a given PPM:

STEP 1: Construct an MLG for the specific PPM.

STEP 2: Construct a reciprocal graph based on the obtained MLG.

STEP 3: Find the configurations of the manipulator in which the reciprocal
graph is connected. In these configurations the manipulator is in
type-II singularity.

As mentioned earlier, we conduct our investigation on fully parallel
planar manipulators which consist of three limbs, each containing one
actuated joint and two unactuated (passive) joints. Even though the
examples provided in this paper are of identical limb manipulators,
the method can be applied to different types of PPMs. We use the
conventional notation of PPMs by using R to describe revolute joints and
P to describe prismatic (linear) joints. Actuated joints are marked with
an underline. When the three limbs of the PPM are identical the
manipulator is marked by a preceding ‘3’ (for example: 3-RRR).

3.1 Constructing the MLG of PPMs

Given a PPM we represent its kinematic structure in a graphical
representation which mainly represents the line of action of each of the
limbs of the PPM. This graphical representation is then used as a planar
graph with Maxwell’s reciprocal figure theory. In order to construct the
Mechanism’s Line of action Graph (MLG) we identify the reciprocal
screw for each of the limbs of the PPM (as described in Section 2.1).
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The three limbs of a PPM can be connected to the end-effector either
by revolute joints or by prismatic joints. This difference will affect the
construction of the MLG. To begin an MLG construction of a PPM
connected with revolute joints (Fig. 2a), the three vertices of the end-
effector should be marked (Fig. 2b). From each of the end-effector’s
vertices an edge corresponding to the line of action of the limb is
constructed. Figure 2c illustrates the three reciprocal screws corres-
ponding to the line of action of each limb (marked as dotted
arrows). Even though the length of the edge corresponding to the line of
action is not essential for this method, we draw the length of the edge
equal to the length of the link closest to the end-effector (Fig. 2d).
Finally, the three ground vertices of the line of actions’ edges are to be
connected (Fig. 2e). The ground vertices are located at the distal end of
the line of action’s edge with respect to the end-effector.

The MLG 1is changed depending on the configuration of the
manipulator. In most PPMs, the ground vertices in the MLG are not
static (as in the case of the 3-RRR in Fig. 2). This does not affect our
results because we are only analyzing the instantaneous kinematics of
the manipulator’s end-effector. A similar step by step construction of an

MLG of a 3-RPR is shown in Fig. 3.

j>bj> /)*A

Figure 2. Example of the construction of the MLG for a 3-RRR manipulator.

b
Figure 3. Constructing the MLG for a 3-RPR manipulator.

The main difference between the two MLGs in Fig. 2e and Fig. 3e is
the line of action of each limb. In Fig. 3 the reciprocal screws that
correspond to the lines of action of the limbs pass through the center of
the passive revolute joints of the limb (first and third joints). In Fig. 2 the
lines of action pass through the second and third joints which are the
passive ones.

In the case of a limb connected to the end-effector by prismatic joints
(Fig. 4a), the construction of the MLG should begin from the ground
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vertices. First the three ground vertices are constructed. From each of
the ground vertices an edge corresponding to the line of action of the limb
is constructed (Fig. 4b). Three vertices are constructed on each of the
edges corresponding to the line of action at a constant, arbitrary unit
distance from the ground vertex (Fig. 4c). Connecting these three vertices
and the three ground vertices finalizes the construction of the MLG (Fig.
4d).

An example of a degenerate case of a PPMs end-effector, in which the
three distal joints create a line, is shown in Fig. 5a. To construct an MLG
for this special case the end-effector should still be thought of as a
triangle in a degenerate configuration (Fig. 5b).

>
A
a o

R feo

b c d
Figure 4.  Example of the construction of the MLG for a 3-RPP manipulator.

Figure 5. Construction the MLG for a 3-RPR manipulator with degenerate end-
effector.

It is important to note that for now it is not feasible when using this
method to represent the line of action of a limb consisting of two passive
prismatic joint in an MLG (i.e. a pure torque out of the plane).

3.2 Constructing a Reciprocal Graph of the PPM’s
MLG

Figure 6 presents a step by step construction of the reciprocal figure of
the 3-RPR. We use a dynamic geometry program that enables us to
construct the reciprocal figure for a given configuration so that when the
mechanism is moved, the reciprocal figure will change correspondingly.
We note that these constructions can be drawn using a simple ruler and
a compass (most likely the tools that the late Maxwell originally used),
but for every different configuration, a new reciprocal graph should be
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drawn. The MLG that was constructed for the 3-RPR PPM in Fig. 3, is
given in Fig. 6a. To start the construction of the reciprocal figure an
arbitrary inner polygon in the MLG is picked (polygon (1,2,3,4)). An
initial vertex is drawn and the four perpendicular lines corresponding to
the polygon’s edges are constructed (Fig. 6b). Then another vertex
is drawn on line (4) since its corresponding edge is shared by the top
two inner polygons in the MLG. Next, the three perpendicular lines
corresponding to the remaining edges of the top right polygon in the
MLG (edges 5, 6, and 7) are constructed (Fig. 6¢). The reciprocal graph
should eventually consist of edges and not infinite lines. In order to
correctly trim the lines we have constructed we need to determine the
intersections that are actually vertices that correspond to closed polygons
in the MLG. The intersections that join lines correspond to edges of the
closed polygons that have not yet been addressed need to be marked, 1.e.
the bottom polygon, the center triangle and the outer triangle. In Fig. 6d
the three vertices are marked (3/7, 1/5, 6/2). For example the 1/5 ver-
tex corresponds to the 1,4,3,2 polygon, and so forth. To finalize the cons-
truction of the reciprocal figure, edges 8 and 9 (from the bottom polygon)
should be added to the bottom vertex of the reciprocal figure, perpendi-
cular to their corresponding edges (Fig. 6e). Note that these two edges
(8, 9) are not connected to their correct vertices (vertices p and q).
This means that the reciprocal figure cannot be constructed for this
particular configuration. Therefore, the specific configuration of the PPM
(Fig. 3a) for which this MLG was constructed (Fig. 3e), is not a type-II
singularity. We note that the order in which we construct the reciprocal
figure may change the resulting edges that are not connected; however,
this does not change the overall existence of the reciprocal figure. The
construction of the reciprocal figure for the 3-RRR manipulator is done in
a similar way since the MLGs are similar.

The construction of the degenerate end-effector (Fig. 5) can also be
constructed in a similar way, while keeping in mind that the three joints
(in this case on a line) are actually a degenerate triangle. In this case
three of the edges of the reciprocal figure will always be parallel to each
other and will always coincide at infinity.

Figure 6. Construction of the reciprocal figure for a 3-RPR PPM.
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3.3 The Singularity/Self Stress Connection

Once the MLG of a PPM and a reciprocal figure are constructed, one
can use them for the singularity analysis of PPMs. Maxwell’s theory
(section 2.2) presents a connection between the existence of a reciprocal
figure and self stress in a framework. We will now analyze a self-stressed
MLG (Fig. 7) in order to demonstrate the connection between self-stress
and singularity. Based on the definition of self stress framework, when a
bar-joint framework is in self stress, the sum of the forces of the bars
connected to a joint is equal to zero. Three equations corresponding to the
sum of forces in the three vertices 1,2,3 can be written as:

Sum of forces in vertex 1: a+d+f=0, 2)
Sum of forces in vertex 2: b-d+e=0, 3
Sum of forces in vertex 3: c-e-f=0. (4)

These three equations are vector summations. We arbitrarily assign the
direction of the forces and consistently add the forces. Therefore, some of
the forces in Eq. 2-4 are negated. Summing Eq. 2, 3, and 4:
a+b+c=0 5)

Figure 7.  “Singular” (self stress) configuration of MLG.

Equation 5 confirms a linear dependency of the three forces a, b, and c.
These three forces are the forces corresponding to the lines of action of
the three limbs. The meaning of this dependency is that these three
limbs cannot generate instantaneous work (virtual work (Hunt, 1978)) on
the end-effector while it is moving in an instantaneous twist deformation
resulting from an external wrench applied on it. Therefore, self stress in
a framework is equivalent to a type-II singularity of a PPM. It is now
evident that the existence of a reciprocal figure indicates a self stress
framework, and in a similar way indicates a singular configuration in a
mechanism.

3.4 Locating the Singular Configurations

To find the configurations where there exists a reciprocal figure to a
particular PPM, and therefore it is in a singular configuration, one
should move the manipulator by changing its joint parameters while
tracking for configurations in which the reciprocal figure is visually
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connected, e.g. in Fig. 6e, vertices p and q merge with p’ and ¢
respectively. Figure 8 shows examples of PPM configurations in which
the reciprocal figure is connected and the manipulator is in a singular
configuration.

- BB

Figure 8. Two examples of singular configurations and the connected reciprocal
figures (3-RPR left, 3-RRR right).

So far the search for a singular configuration was carried out by
changing the joint parameters of the manipulator and checking for the
existence of a connected reciprocal figure. If the analysis is constructed
the other way around, so that a connected reciprocal figure is first
constructed and only then an MLG is constructed to be reciprocal to it,
we can trace the loci of the singular configurations of the manipulator by
changing the reciprocal figure while keeping it connected (Fig. 9 left).
Note that the construction of the reciprocal figure in this case is based on
mechanical constraints of the PPM, e.g. the fixed shape of the end-
effector. Moreover, the singular configuration’s loci are traced relative to
a constant orientation of the PPM in order to enable us to plot the loci as
a 2-D graph. We refer the readers to (Sefrioui and Gosselin, 1995) to
examine the consistency of the results.

More examples, including JAVA applets of this method, can be found
at: www.cs.cmu.edu/~adegani/graphical/.
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Figure 9.  (Left) Singularity loci of 3-RPR in two different constant orientations

of the end-effector. (Right) A loci plot from six different orientations of the end-
effector (0,5, 10, 15, 20, and 25 degrees).
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4. Conclusion and Future Work

The graphical method which is presented and implemented in this paper
results in comparable outcomes to those obtained by other approaches
(e.g. Sefrioui and Gosselin, 1995), yet avoids some of the complexities in-
volved in analytic derivations. It is worth mentioning that the method we
present can be potentially applied to non-identical limb manipulators and
to other types of mechanisms as well. The method makes use of reciprocal
screws to represent the lines of action of PPMs’ limbs in a Mechanism’s
Line of action Graph (MLG), an insightful graphical representation of the
mechanism. Maxwell’s theory of reciprocal figure and self stress is then
applied to create a dual figure of the MLG. Analyzing this dual (reciprocal)
figure provides us with the singular configurations of the PPM and with
the loci of singular configurations of the manipulator.

We are currently facing the challenge of expanding this graphical
method to the analysis of three-dimensional manipulators. We hope to be
able to use our relatively simple method to find the singular configura-
tions of complex three-dimensional manipulators, such as a 6-DOF
Gough-Stewart platform. One possible way to achieve this goal is to
project the spatial lines of action of the limbs on one or more planes
(Karger, 2004). We believe a self-stress analysis of these projected graphs,
similar to the one done on PPM, will offer insight into the singular confi-
guration of these non-planar manipulators.
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Abstract  Direct kinematic singularities constrain the internal robot workspace
and the proximity to them must be detected online as fast as possible
for non deterministic trajectories. Direct singularity proximity for the
Hexa parallel robot is measured by means of three measure indexes with
two different physical bases. In this paper a new index based on Grass-
mann geometry to measure the singularity closeness is introduced. This
method and methods based on constraint minimization are applied and
validated in the Hexa robot. From the results we observe, for instance,
that the new index requires less time than the constraint minimization
methods but requires a better knowledge of the robot structure.

Keywords: Parallel Manipulator Singularities, Grassmann Geometry, Constrained
Minimization

1. Introduction

A measure of the direct singularity closeness for parallel manipulators
is required aiming at a safe operation space. For parallel robots as the
Hexa robot (Fig. 3d), workspace is limited by direct kinematic singu-
larities as well as by inverse kinematic singularities. Direct kinematic
singularities allow the end effector to gain unconstrained movements.
Its identification has been studied from different perspectives. The van-
ishing of the Jacobian determinant has been used for particular parallel
robots. However it is a product of factors and thus it suffers from the fact
that close to a singularity, where a factor shrinks to zero, other factors
may be big enough and the determinant does not indicate the singularity
closeness. Additionally, the physical meaning of the determinant is not
clear.

Qualitative conditions, based on Grassmann geometry, are proposed
to detect singularities of triangular simplified symmetric manipulators
[Merlet, 2000]. Quantitative approaches use a numerical measure to
determine how close a robot position is to a singularity. Different mea-
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sures have been used for this task, e.g. the natural frequency measure
[Voglewede and Ebert-Uphoff, 2004], the power and the stiffness inspired
measure [Pottmann et al., 1998] based on a constraint minimization
method as well as the condition number [Xu et al., 1994] based on
matrix algebra.

In this paper a new method for quantitative measures of the direct
singularity closeness based on Grassmann geometry is presented. This
new method as well as the minimization based methods are applied to
the Hexa robot and the results are analyzed.

The six DOF Hexa robot is composed by six limbs connecting the
basis to the end effector, see Fig. 3d. Each limb contains an active
rotative joint A; (for i = 1,--- ,6). Its axes are fixed to the basis plane,
a passive universal joint B; and a passive spherical joint C; connected to
the end effector, so that all C; joints define the end effector plane. The
cranks and the passive links are connected at B;. The six limbs of the
Hexa robot are arranged in three pairs of two active joints with collinear
rotational axes. The pairs of active joints are axisymmetrical, i.e. 120°
between each pair.

2. Parallel Manipulator Singularities

In spatial parallel manipulators the relationship between actuator co-
ordinates g and end effector Cartesian coordinates z can be stated as a
function f(gq,x) = 0, where 0 is the 6-dimensional null vector. Therefore
the differential kinematic relation may be determined as

Jqq' - Jac$t = 0; Jqq = Jac$t (1)

where §$, is the end effector velocity twist in ray order and, J,, J,; and
J=J; 1J, are the direct, inverse and standard Jacobian matrices, re-
spectively.

The rows of the direct kinematic matrix J, may correspond to the
normalized screw of wrenches, in axis order acting upon the end effec-
tor through the passive link, i.e. the distal link of each limb [David-
son and Hunt, 2004]. Therefore, a static relation may be stated as

~

JI'r = |:$7-17 e ,$r6} 7 = §,, where §, is the result wrench acting upon

the end effector in axis order, 7 = [ry,- - - , 7¢] are the input wrench mag-
nitudes and the columns of J! are the normalized screws (axial order)
of wrenches acting on the end effector.

Singular configurations appear if either J, or J; drops rank. If J, is
singular, a direct singularity is encountered and the end effector gains
one or more uncontrollable degrees of freedom (DOF), on other hand if
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J, drops rank it looses at least one DOF. The direct singularity occurs
in the workspace and is the main aim of this paper.

The new method as well as the minimization based methods are in-
troduced and applied to the Hexa robot.

3. Constraint Minimization

The constraint minimization method determines closeness to singu-
larity through an optimization problem that results in a corresponding
generalized eigenvalue problem. Using this methodology it is possible
to describe the instantaneous behavior of the end effector near singular-
ities for parallel manipulators in general [Voglewede and Ebert-Uphoff,
2004, Hesselbach et al., 2005]. In this approach, an objective function
F($;) to be optimized is subject to move on a constraint h. This is
formulated mathematically as:

[ min/max F($;) = $] JTSJS;
M(X) = { subject to h=$/T$ —c=0 (2)

where S (positive semidefinite) and 7' (positive definite) are n x n sym-
metric matrix and c is some positive constant, e.g. ¢ = 1. The solution
of Eq. (2) gives the closeness measure to a singularity M (X) at a par-
ticular position and orientation X of the manipulator. The proposed
constrained optimization problem is found with the application of a La-
grange multiplier A. The local extrema of the Lagrangian (($,\) =
F($:) — Ah($:) are determined by its derivation. For a nontrivial solu-
tion to exist, the minimization (or maximization) of Lagrangian yields
det(JTSJ — AT) = 0, which is called the corresponding general eigen-
value problem. The smallest eigenvalue s, will be the minimum value
of the objective function F($;), and so it can be utilized as a measure
value.

In general, this minimization problem was formulated based on an
arbitrary quantity for S and T [Voglewede and Ebert-Uphoff, 2004].
Taking J = J,, S = Iswe and T = diag[000111], then /Ay, is associ-
ated to the minimum power [~ W] of the system, which indicates the
manipulator singularity closeness.

Another possible way is to choose S as the stiffness matrix of the
actuators K 4. and 7' as the mass matrix of the manipulator Mgg (or for
simplicity the end effector mass matrix, i.e. neglecting the limb masses).
Therefore, v/Apin is associated to the w natural frequency [~ Hz| of the
system (MppX — w?Kpp = 0), indicating the singularity closeness.

Both methods are applied in the Hexa robot (Fig. 3d) for its singu-
larity approximation measure. The measure behaviors of the minimum
power of the system through a singularity (Fig. 1a) is showed in Fig. 1b,
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here the end effector twists #° around the $,,,;, (the end effector twist
which requires minimum power in this singularity). The singularity oc-
curs when v/A,;n = 0, but a singular range exists due to clearance and
compliance of the system, where the end effector is still unconstrained.
The singular range bound is experimentally identified as 0.029 ~ W and
upon it the manipulator stiffness is warranted into the whole workspace.

power method
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Figure 1. a) Grassmann variety V5a on the Hexa; b) Power based index; c¢) Grass-
man variety V5b; d) Grassman V5b based index.

The same behavior is obtained through the frequency method. It is
important to notice that both methods detect all the singularities with
a unique index.

4. Grassmann Geometry

A new index to determine closeness to singularities is obtained based
on Grassmann geometry. Grassmann (1809-1877) studied the vari-
eties of lines, i.e. the sets of linear dependent lines to n given indepen-
dent lines, and characterized them geometrically according to their rank
(1,---,6) [Hesselbach et al., 2005]. A singular configuration of the ma-
nipulator may be associated with a linear dependent set of lines, also
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called line based singularities. In general, the reciprocal wrenches $,
(Fig. 1a) to the passive twists of each manipulator leg are associated
to lines in the direction of the forces acting upon the end effector, also
called Pliicker vectors. Linear dependence among these lines represents
a direct singularity. These wrenches compose the J, matrix (Sec. 2).

Using the Grassmann geometry we recognize that the Hexa robot may
be associated to several varieties. Some singularities of the Hexa robot
as well as correspondent varieties are shown in Figs. la, 1c and 2. In
the Hexa configurations of Fig. 2a, two wrenches are collinear and so $,1
and $,9 represent a Grassmann variety 1 (for short V1). Figure 2b shows
that four wrenches ($,1, $,2, $,3 and $,¢) are on a flat pencil V2b. Given
that the Hexa robot has six wrenches acting upon the end effector, the
configuration in Fig. 2a may be associated to V5a and the configuration
in Fig. 2b to V4d. In Fig. 2¢ all wrenches are parallel to each other and
they form a bundle of lines V3b. In Fig. 2d all wrenches lie in a plane
with different intersection points and represent a V3d. In Fig. la all
wrenches belong to a linear complex Vba, and Fig. 1c shows an example
where all wrenches are meeting one given line V5b. Each unconstrained
DOF of the end effector is represented by one $,,;, in the Figs. 1la, lc
and 2.

Figure 2. Grassmann variety on the Hexa robot: a) V1; b) V2b; ¢) V3b; d) V3d.

Considering the workspace of the Hexa robot which is limited by the
actuated joint angles, the possible Grassmann varieties may be reduced
to two: Vba and V5b. Thus only singularities of Fig. 1a and 1c may



244 C. Bier, A. Campos and J. Hesselbach

occur. With the help of the Grassmann geometry all possible singular
configurations on the Hexa robot are known. Aiming at quantify the
closeness to the singularities of Fig. 1a and Fig. 1c, a measure algorithm
is presented in the sequence.

A complex is generated by five skew symmetric lines (e.g. wrench
axes). Let 7 be a plane tangent to the complex that contains a point
of the line BgCy (correspondent to the sixth wrench). The distance
between a certain point of this line and 7 gives a closeness measure to
that singularity. It is possible to build a 4 x4 skew symmetric matrix G so
that BI'G C; = 0 where B; and C; (Fig. 1c) are in projective coordinates.
This linear system has six unknowns and five equations. For simplicity
and without loss of validity one unknown is set to 1. A pencil of lines of
the complex that contains Bg defines w. Mathematically, if a projective
point X, = [z y z 1]T # Bg is an element of m, then BIG X, = 0.
Considering the vector U = [uy,--- ,u4]” = Bg G, the affine component
of plane is uiz + uoy + ugz + ug = 0. The distance between Cg and 7w
may be interpreted as a measure for the line BgCy of the complex:

us
2 2 2
Vui + uj + uj

If all the lengths B;C; are the same and no other variety occurs,
d(Cg, ) is a distance measure of the manipulator to a singularity Vba.

Singularity of V5b occurs if all six wrench axes B;C; intersect one line
L. This line crosses two wrenches in the points C. These points must
belong to legs whose drive axes are collinear and L must be parallel
to these drive axes. The maximal distance between L and all the six
wrenches is a measure to a singularity V5b of the Hexa robot.

This algorithm is applied in order to measure the closeness of the Hexa
robot to a singularity V5b as shown in Fig. 1c. The resulting distance
measure to the singularity is presented in Fig. 1d, where it linearly falls
down to zero in the singularity. Similarly to the minimization method,
a singular range is observed under the limit of 55 mm.

d(CG, 7T) = U1067x + U2067y + 1)30672 +vg4 =05v; =

5. Conclusion

The Grassmann approach as well as the power and frequency meth-
ods are experimentally validated in the Hexa robot and investigated for
online singularity detection. All three methods allow a safe monitoring
of such positions and present some properties are described next.

The experiment presented in Figs. 3a and 3b shows the end effector
movement (manually drived) from a rigid position, through a singularity
V5b and twice singularity Vba, to a rigid position. Figure 3a compares
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both Grassmann algorithms with the power method and shows that a
Grassmann algorithm V5a does not detect a singularity of V5b and vice
versa. A combined Grassmann index, the lower of the both algorithms,
may be used due to that both present the same limit range of 55mm,
which is a general property. Comparing the combined Grassmann index
with the power and the frequency method in Fig. 3b, it can be observed
that all three methods have an equivalent behavior. It is important to
notice that a scale factor is required due to the different physical base
of each method. Additionally, it allows the use of a unique singularity
limit value.

: ] 120 —— 1900 x power [~W]
b o— — — combined Grassmann [mm|
A -- 38000 x frequency [~Hz]
¥ 1 100 f
% AL » Y cineularity F ineulari
K3} _EE Z singularity singularity
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z lsg z ‘
g 857 EC A
EN 25§ )
=} g2 2 40
‘@ SEé ‘B
2858
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a) b) time [s]
TR Beceeecerrerie s s o mane s Peaonnn
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Figure 3. a) and b) Comparison of the singularity closeness indexes; ¢) Computa-
tional time; d) Hexa robot of Collaborative Research Center 562.

For the online application of an approach, the computing time is a
decisive factor. For the same trajectory of example Fig. 3a, a comput-
ing time comparison is presented in Fig. 3c. The combined Grassmann
algorithm is notably faster than the minimization methods. Addition-
ally, in the frequency approach has been observed that using only the end
effector instead of the whole manipulator mass matrix Mgg, the compu-
tation time decreases without any loss of measure accuracy. Therefore,
it seems plausible to only use a simplified model of Mgg.
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Properties as computational time, number of measured indexes, phys-
ical index meaning, method complexity and implementation costs must
to be considered to choose a suitable approach for a particular applica-
tion. The frequency method is general and can be applied to any type of
parallel manipulator. The drawback of this approach is its complexity
and that non-kinematic quantities (mass and stiffness) are introduced to
the measure. On the other hand the power approach does not present
this drawback and is not so complex. However, it can not detect fi-
nite and infinite (pure translation) unconstrained screw movements of
the end effector with the same index. Both minimization approach in-
dexes have a physical meaning in particular conditions (e.g. only unitary
wrenches acting upon the end effector), and generally they are only asso-
ciated to this physical meaning. The Grassmann approach offers a fast
and simple method to detect the singularities closeness with a geomet-
rical meaning index. The main weakness is that more than one index
is required if the robot presents more than one singular variety. It can-
not taken for granted that the measure index can be always combined
aiming at automatic singularity avoidance strategies.

In this paper, three singularity closeness indexes based on different
physical meanings, are evaluated in the Hexa robot. Each index is able
to detect all the direct singularities into the robot workspace. The prop-
erties of the new Grassmann based index are compared to the odder two
approaches and conclusions are presented.
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STEWART-GOUGH PLATFORMS WITH
SIMPLE SINGULARITY SURFACE
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Abstract  The singularity surface of a parallel manipulator is a very complicated
algebraic surface of high degree in six-dimensional space of all possible
positions of the manipulator (in the six-dimensional group of all space
congruences). In this paper we show that for some classes of manipula-
tors we can visualize the singularity set for any fixed orientation of the
manipulator by a quadric in the space of translations. Some properties
and examples are given.

Keywords: Stewart-Gough platforms, parallel manipulators, Study representation,
singular positions

1. Introduction

The geometry of a parallel manipulator of the type of S.-G. platform
is very complicated, in general it is given by 24 structural parameters —
18 spatial coordinates of 6 points in the base and 18 in the platform, 12
of which can be specialized by using twice the congruence group, which
yields 12 parameters. This means that the description of the motion
leads to complicated equations and in general it is not possible to study
it in closed form.

To describe the singular set is still more complicated — the general
equation of the singular set has about 10° terms and so it gives almost
no information about its properties. To obtain some closed form infor-
mation about singular positions of a parallel manipulator we have to
simplify the problem.

One possibility is to choose a fixed orientation of the platform and for
this orientation describe all singular positions. This can be done, but it
is easy to see that in this case we in general obtain a cubic surface in
E3, as the singularity surface is cubic in translations. Cubic surfaces in
space are still relatively complicated objects to give a good idea about
their shape. Using the general equation of the singular set we can show
that in case of S.-G. platforms with affinely corresponding platform
and base the equation of the singular set becomes only quadratical and
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therefore in this case the singular set for fixed orientation is given by a
quadric, which is much simpler to represent.

If the platform and base are affinely correspondent and planar, we get
much more specialized situation — the singular set factorizes into three
factors — either points of the platform lie on a conic section or the orien-
tation belongs to an algebraic hypersurface in the space of orientations
and the manipulator is singular for all translations or there is a plane of
singular positions (depending on the orientation). This describes the sit-
uation relatively well in both cases. It seems that the described situation
is not the only possibility for which the singular set is quadratical, but
the general solution seems to be difficult for non-planar base or platform.
This means to describe all parallel manipulators for which the singular
set is quadratical in translations. In the planar case the problem is not
difficult to solve, we show one example.

2. Description of the motion of a
Stewart-Gough platform

Let g be a matrix of a space displacement,

-3 )

parametrized by Euler parameters a;; = a;j(xo) and Study parameters
ti = ti(za,Y8),4,7 = 1,2,3,,0 = 0, ...,3 in the usual way, see Botema,
Roth, 1990, Husty, 1991, Husty, Karger, 2000, Karger, 2002.

We shall define the Study representation of the displacement group Dg
of the Euclidean space. We consider the 7-dimensional projective space
P; of the vector space R® with coordinates z, ..., 23, 4o, ..., y3. Points of
P; are determined by non-trivial 8-tuples (xg, x1, x2, 3, Y0, Y1, Y2, y3) of
real numbers, given up to a nonzero multiple. From P; we remove the
subspace given by equations xy = 0,21 = 0,29 = 0,23 = 0, let P} be
the remaining part. Let S be the set in P} which is determined by the
equation

U = zoyo + x1y1 + w2y2 + 23y3 = 0.

S will be called the Study quadric. We have a 1-1 correspondence
between points of S and elements of the group Dg of space displacements.

To simplify computations we can normalize coordinates in S by the
requirement

K=a}+23+23+23=1
Now we shall describe the geometry of the motion of Stewart-Gough
platform. From kinematical point of view we can say that the upper
part of the platform lies in the moving space, the lower part lies in the
fixed space and the motion of the Stewart-Gough platform is generated



Stewart-Gough Platforms with Simple Singularity Surface 249

by telescopic legs which connect six points of the moving space with six
points of the fixed space by spherical joints.

Let us suppose that we have chosen a system {O1, €1, €3, €3}

({Oq, f1, fa, f;;,}) of Cartesian coordinates in the moving (fixed) spaces,
respectively.

Let M = (A, B,C) be a point in the fixed space (lower part of the
platform), m = (a,b, ¢) be a point in the moving space (upper part of the
platform).

Any point m of the moving space can be also expressed by coordinates
(a,b,¢) with respect to the fixed space, where

a =ty +ana+ a2b + aisc,
b =ty + as1a + azeb + assc,
¢ = t3 + azra + azzb + aszc.
The condition for the point m to lie on sphere with center at M and
radius r is ~
(@— A2+ b-B)?+(E-C)*—r?=0.

In this equation we substitute Study parameters and the result is an
equation of degree four in x;, ;. This equation simplifies considerably
if we add 4U? to it. Then the factor K factorizes out and we obtain a
quadratical equation

h=RK +4(y5 + yi + 3 + v3) — 223(Aa + Bb + Co)+

222 (—Aa + Bb+ Cc) + 223(Aa — Bb — Cc) + 223(Aa + Bb — Cc)+
A[zox1(Be — COb) 4+ zor2(Ca — Ac) + xow3(Ab — Ba) — x122(Ab + Ba)—
xla?g(AC + CCL) - xgxg(BC + Cb)+
(zoy1 — yor1)(A — a) + (voy2 — yox2)(B — b) + (2oys — yor3)(C — )+
(@1y2—y122)(C+c) — (21y3—y123) (B+D)+ (22y3 —y223) (A+a)] = 0, (2)
where R = A2 4 B? + C? +a® + b + 2 —r?, Husty, 1991, Husty, Karger,

2000.
Let us suppose that the Stewart-Gough platform is given by six ar-
bitrary points M; = (A;, B;, C;) in the lower part and six points m; =

(ai, b, ¢;) in the upper part of the platform, r; be also given, i =1, ..., 6.
We substitute coordinates of M;, m; in (2) and we obtain 6 equations

hi =0,....hg = 0. (3)

By this way the geometry and kinematics of the platform is fully de-
scribed, Husty, 1991.

We would like to show how we can describe the singular positions
using the Study representation, because the reasoning is natural and
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very simple. Let us suppose that r; are given as functions of time, r; =
r;(t). This generates a motion in the moving space described by a curve
x; = x5(t),y; = yi(t),i = 0,...,3 in P". We express the velocity operator
for this motion. We can suppose that at instant ¢ = ¢y the motion
passes through identity (the frame in the moving space is identical with
the frame in the fixed one),

z1(to) = L,yo(to) = 0,z;(to) = y;(to) = 0,5 = 1,2,3.

The matrix of the motion is a function of the time, g = ¢g(¢) and for
its derivative at t = ty we obtain

0 0 0 0

ey ol 0 —uz  up
g (to) - 2 Vg U3 O —Uy ) (4)
V3 —Uug Ul 0

where u; = x}(tg),vj = y}(tg),j = 1,2,3 and z{(to) = y,(to) = 0 as a

consequence of K = 1,U = 0. The vector (uy, ug, us) yields the rotational

part of the velocity operator, (vy,vs,v3) yields its translational part.
The derivative of (2) at t = tg yields

r(to)r'(to)/2 = u1(Bc—Cb)+uz(Ca—Ac)
+uz(Ab— Ba)+vi(A—a)+ve(B—b)4wv3(C—c). (5)

Application of this procedure to (3) yields a linear mapping ¢ which
transforms velocities (uj,ug,us,v1,ve,v3) of the motion of the upper
part of the platform (end effector) into the linear velocities (1], ..., 74) of
telescopic motions of legs of the manipulator. In practical problems we
more often need the inverse ¢! of this mapping, to express velocities
of the motion from velocities of legs. As we have 6 linear equations
for 6 unknowns, it exists iff the matrix of coefficients of ¢ is regular.
Coefficients are

(Be— Cb,Ca — Ac, Ab — Ba,A—a,B—b,C — ¢), (6)

which are the Pliicker coordinates of the line connecting points m and M.
Positions where ¢ is not invertible are called singular positions of the
parallel manipulator, see Botema, Roth, 1990, Karger, 2001, Karger,
2002, Ma, Angeles, 1992, Merlet, 1992.

3. Singular Set for Special Parallel Manipulators

The singular surface is a very complicated hypersurface in the 6-
dimensional space of all possible configurations of the parallel manip-
ulator. It is of degree 10 in Study parameters and it has about 2000
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terms in general for a given manipulator (with fully given geometry).
To give at least a partial idea how it looks like we shall concentrate at
special cases. We shall preserve translations as free parameters and use
Euler parameters for the or