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7.1 Modified Jutten-Hérault Algorithms for Blind Separation of

Sources 274
7.1.1 Recurrent Neural Network 274
7.1.2 Statistical Independence 274
7.1.3 Self-normalization 277
7.1.4 Feed-forward Neural Network and Associated

Learning Algorithms 278
7.1.5 Multilayer Neural Networks 282

7.2 Iterative Matrix Inversion Approach to Derivation of Family
of Robust ICA Algorithms 285
7.2.1 Derivation of Robust ICA Algorithm Using

Generalized Natural Gradient Approach 288
7.2.2 Practical Implementation of the Algorithms 289
7.2.3 Special Forms of the Flexible Robust Algorithm 291
7.2.4 Decorrelation Algorithm 291
7.2.5 Natural Gradient Algorithms 291
7.2.6 Generalized EASI Algorithm 291
7.2.7 Non-linear PCA Algorithm 292
7.2.8 Flexible ICA Algorithm for Unknown Number of

Sources and their Statistics 293
7.3 Computer Simulations 294

Appendix A. Stability Conditions for the Robust ICA
Algorithm (7.50) [332] 300

8 Robust Techniques for BSS and ICA with Noisy Data 305
8.1 Introduction 305
8.2 Bias Removal Techniques for Prewhitening and ICA

Algorithms 306
8.2.1 Bias Removal for Whitening Algorithms 306
8.2.2 Bias Removal for Adaptive ICA Algorithms 307

8.3 Blind Separation of Signals Buried in Additive Convolutive
Reference Noise 310
8.3.1 Learning Algorithms for Noise Cancellation 311

8.4 Cumulants Based Adaptive ICA Algorithms 314



xii CONTENTS

8.4.1 Cumulants Based Cost Functions 314
8.4.2 Family of Equivariant Algorithms Employing the

Higher Order Cumulants 315
8.4.3 Possible Extensions 317
8.4.4 Cumulants for Complex Valued Signals 318
8.4.5 Blind Separation with More Sensors than Sources 318

8.5 Robust Extraction of Arbitrary Group of Source Signals 320
8.5.1 Blind Extraction of Sparse Sources with Largest

Positive Kurtosis Using Prewhitening and Semi-
Orthogonality Constraint 320

8.5.2 Blind Extraction of an Arbitrary Group of Sources
without Prewhitening 323

8.6 Recurrent Neural Network Approach for Noise Cancellation 325
8.6.1 Basic Concept and Algorithm Derivation 325
8.6.2 Simultaneous Estimation of a Mixing Matrix and

Noise Reduction 328
8.6.2.1 Regularization 329

8.6.3 Robust Prewhitening and Principal Component
Analysis (PCA) 331

8.6.4 Computer Simulation Experiments for Amari-
Hopfield Network 331

Appendix A. Cumulants in Terms of Moments 333

9 Multichannel Blind Deconvolution: Natural Gradient Approach 335
9.1 SIMO Convolutive Models and Learning Algorithms for

Estimation of Source Signal 336
9.1.1 Equalization Criteria for SIMO Systems 338
9.1.2 SIMO Blind Identification and Equalization via

Robust ICA/BSS 340
9.1.3 Feed-forward Deconvolution Model and Natural

Gradient Learning Algorithm 342
9.1.4 Recurrent Neural Network Model and Hebbian

Learning Algorithm 343
9.2 Multichannel Blind Deconvolution with Constraints Imposed

on FIR Filters 346
9.3 General Models for Multiple-Input Multiple-Output Blind

Deconvolution 349
9.3.1 Fundamental Models and Assumptions 349
9.3.2 Separation-Deconvolution Criteria 351

9.4 Relationships Between BSS/ICA and MBD 354



CONTENTS xiii

9.4.1 Multichannel Blind Deconvolution in the Frequency
Domain 354

9.4.2 Algebraic Equivalence of Various Approaches 355
9.4.3 Convolution as Multiplicative Operator 357
9.4.4 Natural Gradient Learning Rules for Multichannel

Blind Deconvolution (MBD) 358
9.4.5 NG Algorithms for Double Infinite Filters 359
9.4.6 Implementation of Algorithms for Minimum Phase

Non-causal System 360
9.4.6.1 Batch Update Rules 360
9.4.6.2 On-line Update Rule 360
9.4.6.3 Block On-line Update Rule 360

9.5 Natural Gradient Algorithms with Nonholonomic Constraints 362
9.5.1 Equivariant Learning Algorithm for Causal FIR

Filters in the Lie Group Sense 363
9.5.2 Natural Gradient Algorithm for Fully Recurrent

Network 367
9.6 MBD of Non-minimum Phase System Using Filter

Decomposition Approach 368
9.6.1 Information Back-propagation 370
9.6.2 Batch Natural Gradient Learning Algorithm 371

9.7 Computer Simulations Experiments 373
9.7.1 The Natural Gradient Algorithm vs. the Ordinary

Gradient Algorithm 373
9.7.2 Information Back-propagation Example 375
Appendix A. Lie Group and Riemannian Metric on FIR
Manifold 376
A.0.1 Lie Group 377
A.0.2 Riemannian Metric and Natural Gradient in the Lie

Group Sense 379
Appendix B. Properties and Stability Conditions for the
Equivariant Algorithm 381
B.0.1 Proof of Fundamental Properties and Stability

Analysis of Equivariant NG Algorithm (9.126) 381
B.0.2 Stability Analysis of the Learning Algorithm 381

10 Estimating Functions and Superefficiency for
ICA and Deconvolution 383
10.1 Estimating Functions for Standard ICA 384

10.1.1 What is Estimating Function? 384



xiv CONTENTS

10.1.2 Semiparametric Statistical Model 385
10.1.3 Admissible Class of Estimating Functions 386
10.1.4 Stability of Estimating Functions 389
10.1.5 Standardized Estimating Function and Adaptive

Newton Method 392
10.1.6 Analysis of Estimation Error and Superefficiency 393
10.1.7 Adaptive Choice of ϕ Function 395

10.2 Estimating Functions in Noisy Case 396
10.3 Estimating Functions for Temporally Correlated Source

Signals 397
10.3.1 Source Model 397
10.3.2 Likelihood and Score Functions 399
10.3.3 Estimating Functions 400
10.3.4 Simultaneous and Joint Diagonalization of Covariance

Matrices and Estimating Functions 401
10.3.5 Standardized Estimating Function and Newton

Method 404
10.3.6 Asymptotic Errors 407

10.4 Semiparametric Models for Multichannel Blind Deconvolution
407

10.4.1 Notation and Problem Statement 408
10.4.2 Geometrical Structures on FIR Manifold 409
10.4.3 Lie Group 410
10.4.4 Natural Gradient Approach for Multichannel Blind

Deconvolution 410
10.4.5 Efficient Score Matrix Function and its Representation

413
10.5 Estimating Functions for MBD 415

10.5.1 Superefficiency of Batch Estimator 418
Appendix A. Representation of Operator K(z) 419

11 Blind Filtering and Separation Using a State-Space Approach 423
11.1 Problem Formulation and Basic Models 424

11.1.1 Invertibility by State Space Model 427
11.1.2 Controller Canonical Form 428

11.2 Derivation of Basic Learning Algorithms 428
11.2.1 Gradient Descent Algorithms for Estimation of

Output Matrices W = [C,D] 429
11.2.2 Special Case - Multichannel Blind Deconvolution with

Causal FIR Filters 432



CONTENTS xv

11.2.3 Derivation of the Natural Gradient Algorithm for
State Space Model 432

11.3 Estimation of Matrices [A,B] by Information Back–
propagation 434

11.4 State Estimator – The Kalman Filter 437
11.4.1 Kalman Filter 437

11.5 Two–stage Separation Algorithm 439
Appendix A. Derivation of the Cost Function 440

12 Nonlinear State Space Models – Semi-Blind Signal Processing 443
12.1 General Formulation of The Problem 443

12.1.1 Invertibility by State Space Model 447
12.1.2 Internal Representation 447

12.2 Supervised-Unsupervised Learning Approach 448
12.2.1 Nonlinear Autoregressive Moving Average Model 448
12.2.2 Hyper Radial Basis Function Neural Network Model 449
12.2.3 Estimation of Parameters of HRBF Networks Using

Gradient Approach 451

13 Appendix – Mathematical Preliminaries 453
13.1 Matrix Analysis 453

13.1.1 Matrix inverse update rules 453
13.1.2 Some properties of determinant 454
13.1.3 Some properties of the Moore-Penrose pseudo-inverse 454
13.1.4 Matrix Expectations 455
13.1.5 Differentiation of a scalar function with respect to a

vector 456
13.1.6 Matrix differentiation 457
13.1.7 Trace 458
13.1.8 Matrix differentiation of trace of matrices 459
13.1.9 Important Inequalities 460

13.2 Distance measures 462
13.2.1 Geometric distance measures 462
13.2.2 Distances between sets 462
13.2.3 Discrimination measures 463

References 465

14 Glossary of Symbols and Abbreviations 547



xvi CONTENTS

Index 552



List of Figures

1.1 Block diagrams illustrating blind signal processing or blind
identification problem. 3

1.2 (a) Conceptual model of system inverse problem. (b)
Model-reference adaptive inverse control. For the switch in
position 1 the system performs a standard adaptive inverse
by minimizing the norm of error vector e, for switch in
position 2 the system estimates errors blindly. 4

1.3 Block diagram illustrating the basic linear instantaneous
blind source separation (BSS) problem: (a) General block
diagram represented by vectors and matrices, (b) detailed
architecture. In general, the number of sensors can be larger,
equal to or less than the number of sources. The number of
sources is unknown and can change in time [264, 275]. 6

1.4 Basic approaches for blind source separation with some a
priori knowledge. 9

1.5 Illustration of exploiting spectral diversity in BSS. Three
unknown sources and their available mixture and spectrum
of the mixed signal. The sources are extracted by passing the
mixed signal by three bandpass filters (BPF) with suitable
frequency characteristics depicted in the bottom figure. 11

xvii



xviii LIST OF FIGURES

1.6 Illustration of exploiting time-frequency diversity in BSS.
(a) Original unknown source signals and available mixed
signal. (b) Time-frequency representation of the mixed
signal. Due to non-overlapping time-frequency signatures of
the sources by masking and synthesis (inverse transform),
we can extract the desired sources. 12

1.7 Standard model for noise cancellation in a single channel
using a nonlinear adaptive filter or neural network. 13

1.8 Illustration of noise cancellation and blind separation -
deconvolution problem. 14

1.9 Diagram illustrating the single channel convolution and
inverse deconvolution process. 15

1.10 Diagram illustrating standard multichannel blind deconvolution
problem (MBD). 15

1.11 Exemplary models of synaptic weights for the feed-forward
adaptive system (neural network) shown in Fig.1.3 : (a)
Basic FIR filter model, (b) Gamma filter model, (c) Laguerre
filter model. 17

1.12 Block diagram illustrating the sequential blind extraction
of sources or independent components. Synaptic weights
wij can be time-variable coefficients or adaptive filters (see
Fig.1.11). 18

1.13 Conceptual state-space model illustrating general linear
state-space mixing and self-adaptive demixing model for
Dynamic ICA (DICA). Objective of learning algorithms is
estimation of a set of matrices {A,B,C,D,L} [287, 289, 290,
1359, 1360, 1361]. 20

1.14 Block diagram of a simplified nonlinear demixing NARMA
model. For the switch in open position we have feed-forward
MA model and for the switch closed we have a recurrent
ARMA model. 22

1.15 Simplified model of RBF neural network applied for nonlinear
semi-blind single channel equalization of binary sources; if
the switch is in position 1, we have supervised learning, and
unsupervised learning if it is in position 2. 23



LIST OF FIGURES xix

1.16 Exemplary biomedical applications of blind signal processing:
(a) A multi-recording monitoring system for blind
enhancement of sources, cancellation of noise, elimination
of artifacts and detection of evoked potentials, (b) blind
separation of the fetal electrocardiogram (FECG) and
maternal electrocardiogram (MECG) from skin electrode
signals recorded from a pregnant women, (c) blind
enhancement and independent components of multichannel
electromyographic (EMG) signals. 26

1.17 Non-invasive multi-electrodes recording of activation of the
brain using EEG or MEG. 28

1.18 (a) A subset of the 122-MEG channels. (b) Principal and
(c) independent components of the data. (d) Field patterns
corresponding to the first two independent components.
In (e) the superposition of the localizations of the dipole
originating IC1 (black circles, corresponding to the auditory
cortex activation) and IC2 (white circles, corresponding to
the SI cortex activation) onto magnetic resonance images
(MRI) of the subject. The bars illustrate the orientation of
the source net current. Results are obtained in collaboration
with researchers from the Helsinki University of Technology,
Finland [264]. 30

1.19 Conceptual models for removing undesirable components
like noise and artifacts and enhancing multi-sensory (e.g.,
EEG/MEG) data: (a) Using expert decision and hard
switches, (b) using soft switches (adaptive nonlinearities
in time, frequency or time-frequency domain), (c) using
nonlinear adaptive filters and hard switches [286, 1254]. 32

1.20 Adaptive filter configured for line enhancement (switches in
position 1) and for standard noise cancellation (switches in
position 2). 34

1.21 Illustration of the “cocktail party” problem and speech
enhancement. 35

1.22 Wireless communication scenario. 36

1.23 Blind extraction of binary image from superposition of
several images [761]. 37

1.24 Blind separation of text binary images from a single
overlapped image [761]. 38



xx LIST OF FIGURES

1.25 Illustration of image restoration problem: (a) Original
image (unknown), (b) distorted (blurred) available image,
(c) restored image using blind deconvolution approach,
(d) final restored image obtained after smoothing (post-
processing) [329, 330]. 39

2.1 Architecture of the Amari-Hopfield continuous-time (analog)
model of recurrent neural network (a) block diagram, (b)
detailed architecture. 56

2.2 Detailed architecture of the Amari-Hopfield continuous-time
(analog) model of recurrent neural network with regularization. 63

2.3 This figure illustrates the optimization criteria employed in
the total least-squares (TLS), least-squares (LS) and data
least-squares (DLS) estimation procedures for the problem of
finding a straight line approximation to a set of points. The
TLS optimization assumes that the measurements of the x
and y variables are in error, and seeks an estimate such that
the sum of the squared values of the perpendicular distances
of each of the points from the straight line approximation
is minimized. The LS criterion assumes that only the
measurements of the y variable is in error, and therefore
the error associated with each point is parallel to the y axis.
Therefore the LS minimizes the sum of the squared values
of such errors. The DLS criterion assumes that only the
measurements of the x variable is in error. 68

2.4 Straight lines fit for the five points marked by ‘x’ obtained
using the: (a) LS (L2 -norm), (b) TLS, (c) DLS, (d)
L1-norm, (e) L∞ -norm, and (f) combined results. 70

2.5 Straight lines fit for the five points marked by ‘x’ obtained
using the LS, TLS and ETLS methods. 80

3.1 Sequential extraction of principal components. 96

3.2 On-line on chip implementation of fast RLS learning
algorithm for the principal component estimation. 97

4.1 Basic model for blind spatial decorrelation of sensor signals. 130

4.2 Illustration of basic transformation of two sensor signals
with uniform distributions. 131

4.3 Block diagram illustrating the implementation of the learning
algorithm (4.31). 135

4.4 Implementation of the local learning rule (4.48) for the blind
decorrelation. 137



LIST OF FIGURES xxi

4.5 Illustration of processing of signals by using a bank of
bandpass filters: (a) Filtering a vector x of sensor signals by
a bank of sub-band filters, (b) typical frequency characteristics
of bandpass filters. 152

4.6 Comparison of performance of various algorithms as a
function of the signal to noise ratio (SNR) [223, 235]. 162

4.7 Blind identification and estimation of sparse images:
(a) Original sources, (b) mixed available images, (c)
reconstructed images using the proposed algorithm (4.166)-
(4.167). 168

5.1 Block diagrams illustrating: (a) Sequential blind extraction
of sources and independent components, (b) implementation
of extraction and deflation principles. LAE and LAD mean
learning algorithm for extraction and deflation, respectively. 180

5.2 Block diagram illustrating blind LMS algorithm. 184

5.3 Implementation of BLMS and KuicNet algorithms. 187

5.4 Block diagram illustrating the implementation of the
generalized fixed-point learning algorithm developed by
Hyvärinen-Oja [595]. 〈〉 means averaging operator. In the
special case of optimization of standard kurtosis, where
g(y1) = y3

1 and g′(y1) = 3y2
1. 189

5.5 Block diagram illustrating implementation of learning
algorithm for temporally correlated sources. 194

5.6 The neural network structure for one-unit extraction using
a linear predictor. 196

5.7 The cascade neural network structure for multi-unit extraction.198

5.8 The conceptual model of single processing unit for extraction
of sources using adaptive bandpass filter. 202

5.9 Frequency characteristics of 4-th order Butterworth bandpass
filter with adjustable center frequency and fixed bandwidth. 204

5.10 Exemplary computer simulation results for mixture of three
colored Gaussian signals, where sj, x1j, and yj stand for
the j-th source signals, whiten mixed signals, and extracted
signals, respectively. The sources signals were extracted by
employing the learning algorithm (5.73)-(5.74) with L = 5
[1142]. 220



xxii LIST OF FIGURES

5.11 Exemplary computer simulation results for mixture of
natural speech signals and a colored Gaussian noise, where
sj and x1j, stand for the j-th source signal and mixed signal,
respectively. The signals yj was extracted by using the neural
network shown in Fig. 5.7 and associated learning algorithm
(5.91) with q = 1, 5, 12. 221

5.12 Exemplary computer simulation results for mixture of three
non-i.i.d. signals and two i.i.d. random sequences, where sj,
x1j, and yj stand for the j-th source signals, mixed signals,
and extracted signals, respectively. The learning algorithm
(5.81) with L = 10 was employed [1142]. 222

5.13 Exemplary computer simulation results for mixture of three
512 × 512 image signals, where sj and x1j stand for the j-th
original images and mixed images, respectively, and y1 the
image extracted by the extraction processing unit shown in
Fig. 5.6. The learning algorithm (5.91) with q = 1 was
employed [68, 1142]. 223

6.1 Block diagram illustrating standard independent component
analysis (ICA) and blind source separation (BSS) problem. 232

6.2 Block diagram of fully connected recurrent network. 237

6.3 (a) Plot of the generalized Gaussian pdf for various values
of parameter r (with σ2 = 1) and (b) corresponding nonlinear
activation functions. 244

6.4 (a) Plot of generalized Cauchy pdf for various values of
parameter r (with σ2 = 1) and (b) corresponding nonlinear
activation functions. 248

6.5 The plot of kurtosis κ4(r) versus Gaussian exponent r: (a)
for leptokurtic signal; (b) for platykurtic signal [232]. 250

6.6 (a) Architecture of feed-forward neural network. (b)
Architecture of fully connected recurrent neural network. 256

7.1 Block diagrams: (a) Recurrent and (b) feed-forward neural
network for blind source separation. 275

7.2 (a) Neural network model and (b) implementation of the
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Preface

Signal Processing has always played a critical role in science and technology and develop-
ment of new systems like computer tomography, (PET, fMRI, EEG/MEG, optical record-
ings), wireless communications, digital cameras, HDTV, etc. As demand for high quality
and reliability in recording and visualization systems increases, signal processing has an
even more important role to play.

Blind Signal Processing (BSP) is now one of the hottest and emerging areas in Signal
Processing with solid theoretical foundations and many potential applications. In fact, BSP
has become a very important topic of research and development in many areas, especially
biomedical engineering, medical imaging, speech enhancement, remote sensing, communica-
tion systems, exploration seismology, geophysics, econometrics, data mining, etc. The blind
signal processing techniques principally do not use any training data and do not assume
a priori knowledge about parameters of convolutive, filtering and mixing systems. BSP
includes three major areas: Blind Signal Separation and Extraction, Independent Compo-
nent Analysis (ICA), and Blind Multichannel Blind Deconvolution and Equalization which
are the main subjects of the book. Recent research in these areas is a fascinating blend of
heuristic concepts and ideas and rigorous theories and experiments.

Researchers from various fields are interested in different, usually very diverse aspects
of the BSP. For example, neuroscientists and biologists are interested in the development
of biologically plausible neural network models with unsupervised learning. On the other
hand, they need reliable methods and techniques which will be able to extract or separate
useful information from superimposed biomedical source signals corrupted by huge noise
and interferences, for example, by using non-invasive recordings of human brain activities,
(e.g., by using EEG or MEG) in order to understand the brain ability to sense, recognize,

xxix
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store and recall patterns as well as crucial elements of learning: association, abstraction
and generalization. A second group of researchers: engineers and computer scientists, are
fundamentally interested in possibly simple models which can be implemented in hardware
in actual available VLSI technology and in the computational approach, where the aim is to
develop flexible and efficient algorithms for specific practical engineering and scientific ap-
plications. The third group of researchers: mathematicians and physicists, have an interest
in the development of fundamental theory, to understand mechanisms, properties and abili-
ties of developed algorithms and in their generalizations to more complex and sophisticated
models. The interactions among the groups make real progress in this very interdisciplinary
research devoted to BSP and each group benefits from the others.

The theory built up around Blind Signal Processing is at present so extensive and appli-
cations are so numerous that we are, of course, not able to cover all of them. Our selection
and treatment of materials reflects our background and our own research interest and results
in this area during the last 10 years. We prefer to complement other books on the subject of
BSP rather than to compete with them. The book provides wide coverage of adaptive blind
signal processing techniques and algorithms both from the theoretical and practical point of
view. The main objective is to derive and present efficient and simple adaptive algorithms
that work well in practice for real-world data. In fact, most of the algorithms discussed
in the book have been implemented in MATLAB and extensively tested. We attempt to
present concepts, models and algorithms in possibly general or flexible forms to stimulate
the reader to be creative in visualizing new approaches and adopt methods or algorithms
for his/her specific applications.

The book is partly a textbook and partly a monograph. It is a textbook because it
gives a detailed introduction to BSP basic models and algorithms. It is simultaneously a
monograph because it presents several new results and ideas and further developments and
explanation of existing algorithms which are brought together and published in the book
for the first time. Furthermore, the research results previously scattered in many scientific
journals and conference papers worldwide, are methodically collected and presented in the
book in a unified form. As a result of its twofold character the book is likely to be of interest
to graduate and postgraduate students, engineers and scientists working in the field of
biomedical engineering, communication, electronics, computer science, finance, economics,
optimization, geophysics, and neural networks. Furthermore, the book may also be of
interest to researchers working in different areas of science, since a number of results and
concepts have been included which may be advantageous for their further research. One can
read this book through sequentially but it is not necessary since each chapter is essentially
self-contained, with as few cross references as possible. So, browsing is encouraged.
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1
Introduction to Blind Signal

Processing: Problems and
Applications

The fundamental problem of communication is that of reproducing at one point either exactly or
approximately a message selected at another point.

—(Claude Shannon, 1948)

In this book, we describe various approaches, methods and techniques to blind and semi-
blind signal processing, especially principal and independent component analysis, blind
source separation, blind source extraction, multichannel blind deconvolution and equaliza-
tion of source signals when the measured sensor signals are contaminated by additive noise.
An emphasis is given to an information-theoretical unifying approach, adaptive filtering
models and the development of simple and efficient associated on-line adaptive nonlinear
learning algorithms.

We derive, review and extend the existing adaptive algorithms for blind and semi-blind
signal processing with a special emphasis on robust algorithms with equivariant properties in
order to considerably reduce the bias caused by measurement noise, interferences and other
parasitic effects. Moreover, novel adaptive systems and associated learning algorithms are
presented for estimation of source signals and reduction of influence of noise. We discuss the
optimal choice of nonlinear activation functions for various signals and noise distributions,
e.g., Gaussian, Laplacian and uniformly-distributed noise assuming a generalized Gaussian
distributed and other models. Extensive computer simulations have confirmed the useful-
ness and superior performance of the developed algorithms. Some of the research results
presented in this book are new and are presented here for the first time.

1



2 INTRODUCTION TO BLIND SIGNAL PROCESSING: PROBLEMS AND APPLICATIONS

1.1 PROBLEM FORMULATIONS – AN OVERVIEW

1.1.1 Generalized Blind Signal Processing Problem

A fairly general blind signal processing (BSP) problem can be formulated as follows. We
observe records of sensor signals x(t) = [x1(t), x2(t), . . . , xm(t)]T from a MIMO (multiple-
input/multiple-output) nonlinear dynamical system1. The objective is to find an inverse
system, termed a reconstruction system, neural network or an adaptive inverse system, if it
exists and is stable, in order to estimate the primary source signals s(t) = [s1(t), s2(t), . . . ,
sn(t)]T . This estimation is performed on the basis of the output signals y(t) = [y1(t),
y2(t), . . . , yn(t)]T and sensor signals as well as some a priori knowledge of the mixing
system. Preferably, the inverse system should be adaptive in such a way that it has some
tracking capability in nonstationary environments (see Fig.1.1). Instead of estimating the
source signals directly, it is sometimes more convenient to identify an unknown mixing and
filtering dynamical system first (e.g., when the inverse system does not exist or the number
of observations is less than the number of source signals) and then estimate source signals
implicitly by exploiting some a priori information about the system and applying a suitable
optimization procedure.

In many cases, source signals are simultaneously linearly filtered and mixed. The aim is
to process these observations in such a way that the original source signals are extracted
by the adaptive system. The problems of separating and estimating the original source
waveforms from the sensor array, without knowing the transmission channel characteristics
and the sources can be expressed briefly as a number of related problems: Independent
Components Analysis (ICA), Blind Source Separation (BSS), Blind Signal Extraction (BSE)
or Multichannel Blind Deconvolution (MBD) [31].

Roughly speaking, they can be formulated as the problems of separating or estimating the
waveforms of the original sources from an array of sensors or transducers without knowing
the characteristics of the transmission channels.

There appears to be something magical about blind signal processing; we are estimating
the original source signals without knowing the parameters of mixing and/or filtering pro-
cesses. It is difficult to imagine that one can estimate this at all. In fact, without some a
priori knowledge, it is not possible to uniquely estimate the original source signals. However,
one can usually estimate them up to certain indeterminacies. In mathematical terms these
indeterminacies and ambiguities can be expressed as arbitrary scaling, permutation and
delay of estimated source signals. These indeterminacies preserve, however, the waveforms
of original sources. Although these indeterminacies seem to be rather severe limitations,
but in a great number of applications these limitations are not essential, since the most
relevant information about the source signals is contained in the waveforms of the source
signals and not in their amplitudes or order in which they are arranged in the output of
the system. For some dynamical models, however, there is no guarantee that the estimated
or extracted signals have exactly the same waveforms as the source signals, and then the

1In the special case a system can be a single-input single-output (SISO) or single-input/multiple-output
(SIMO).
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Fig. 1.1 Block diagrams illustrating blind signal processing or blind identification problem.

requirements must be sometimes further relaxed to the extent that the extracted waveforms
are distorted (filtered or convolved) versions of the primary source signals [175, 1277] (see
Fig.1.1).

We would like to emphasize the essential difference between the standard inverse iden-
tification problem and the blind or semi-blind signal processing task. In a basic linear
identification or inverse system problem we have access to the input (source) signals (see
Fig.1.2 (a)). Our objective is to estimate a delayed (or more generally smoothed or filtered)
version of the inverse system of a linear dynamical system (plant) by minimizing the mean
square error between the delayed (or model-reference) source signals and the output signals.
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Fig. 1.2 (a) Conceptual model of system inverse problem. (b) Model-reference adaptive inverse
control. For the switch in position 1 the system performs a standard adaptive inverse by minimizing
the norm of error vector e, for switch in position 2 the system estimates errors blindly.

In BSP problems we do not have access to source signals (which are usually assumed to
be statistically independent), so we attempt, for example, to design an appropriate non-
linear filter that estimates desired signals as illustrated in the case of a inverse system in
Fig.1.2 (a). Similarly, in the basic adaptive inverse control problem [1286], we attempt
to estimate a form of adaptive controller whose transfer function is the inverse (in some
sense) of that of the plant itself. The objective of such an adaptive system is to make the
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plant to directly follow the input signals (commands). A vector of error signals defined as
the difference between the plant outputs and the reference inputs are used by an adaptive
learning algorithm to adjust parameters of the linear controller. Usually, it is desirable that
the plant outputs do not track the input source (command) signals themselves but rather
track a delayed or smoothed (filtered) version of the input signals represented in Fig.1.2 (b)
by transfer function M(z). It should be noted that in the general case the global system
consisting of the cascade of the controller and the plant after convergence should model a
dynamical response of the reference model M(z) (see Fig.1.2 (b)) [1286].

1.1.2 Instantaneous Blind Source Separation and Independent Component Analysis

In blind signal processing problems, the mixing and filtering processes of the unknown
input sources sj(k) (j = 1, 2, ..., n) may have different mathematical or physical models,
depending on specific applications.

In the simplest case, m mixed signals xi(k) (i = 1, 2, . . . ,m) are linear combinations of
n (typically m ≥ n) unknown mutually statistically independent, zero-mean source signals
sj(k), and are noise-contaminated (see Fig.1.3). This can be written as

xi(k) =
n∑

j=1

hij sj(k) + νi(k), (i = 1, 2, ..., m) (1.1)

or in the matrix notation
x(k) = Hs(k) + ν(k), (1.2)

where x(k) = [x1(k), x2(k), . . . , xm(k)]T is a vector of sensor signals, s(k) = [s1(k),
s2(k),. . . , sn(k)]T is a vector of sources, ν(k) = [ν1(k), ν2(k), . . . , νm(k)]T is a vector of
additive noise, and H is an unknown full rank m × n mixing matrix. In other words, it
is assumed that the signals received by an array of sensors (e.g., microphones, antennas,
transducers) are weighted sums (linear mixtures) of primary sources. These sources are
typically time-varying, zero-mean, mutually statistically independent and totally unknown
as is the case of arrays of sensors for communications or speech signals.

In general, it is assumed that the number of source signals n is unknown unless stated
otherwise. It is assumed that only the sensor vector x(k) is available and it is necessary
to design a feed-forward or recurrent neural network and an associated adaptive learning
algorithm that enables estimation of sources, identification of the mixing matrix H and/or
separating matrix W with good tracking abilities (see Fig.1.3).

The above problems are often referred to as BSS (blind source separation) and/or ICA
(independent component analysis): the BSS of a random vector x = [x1, x2, . . . , xm]T is
obtained by finding an n×m, full rank, linear transformation (separating) matrix W such
that the output signal vector y = [y1, y2, . . . , yn]T , defined by y = Wx, contains compo-
nents that are as independent as possible, as measured by an information-theoretic cost
function such as the Kullback-Leibler divergence or other criteria like sparseness, smooth-
ness or linear predictability. In other words, it is required to adapt the weights wij of the
n × m matrix W of the linear system y(k) = Wx(k) (often referred to as a single-layer
feed-forward neural network) to combine the observations xi(k) to generate estimates of the
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problem: (a) General block diagram represented by vectors and matrices, (b) detailed architecture.
In general, the number of sensors can be larger, equal to or less than the number of sources. The
number of sources is unknown and can change in time [264, 275].
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source signals

ŝj(k) = yj(k) =
m∑

i=1

wji xi(k), (j = 1, 2, . . . , n). (1.3)

The optimal weights correspond to the statistical independence of the output signals yj(k)
(see Fig.1.3).

Remark 1.1 In this book, unless otherwise mentioned, we assume that the source signals
(and consequently output signals) are zero-mean. Non zero-mean source can be modelled by
zero-mean source with an additional constant source. This constant source can be usually
detected but its amplitude cannot be recovered without some a priori knowledge.

There are several definitions of ICA. In this book, depending on the problem, we use different
definitions given below.

Definition 1.1 (Temporal ICA) The ICA of a noisy random vector x(k) ∈ IRm is ob-
tained by finding an n ×m, (with m ≥ n), a full rank separating matrix W such that the
output signal vector y(k) = [y1(k), y2(k), . . . , yn(k)]T defined by

y(k) = Wx(k), (1.4)

contains the estimated source components s(k) ∈ IRn that are as independent as possible,
evaluated by an information-theoretic cost function such as the minimum Kullback-Leibler
divergence.

Definition 1.2 For a random noisy vector x(k) defined by

x(k) = Hs(k) + ν(k), (1.5)

where H is an (m × n) mixing matrix, s(k) = [s1(k), s2(k), . . . , sn(k)]T is a source vector
of statistically independent signals, and ν(k) = [ν1(k), ν2(k), . . . , νm(k)]T is a vector of
uncorrelated noise terms, ICA is obtained by estimating both the mixing matrix H and the
independent components s(k) = [s1(k), s2(k), . . . , sn(k)]T .

Definition 1.3 ICA task is formulated as estimation of all the source signals and their
numbers and/or identification of a mixing matrix Ĥ or its pseudo-inverse separating matrix
W = Ĥ+ assuming only the statistical independence of the primary sources and linear
independence of columns of H.

The mixing (ICA) model can be represented in a batch form as

X = HS, (1.6)

where X = [x(1),x(2), . . . ,x(N)]T ∈ IRm×N and S = [s(1), s(2), . . . , s(N)]T ∈ IRn×N . In
many applications, especially where the number of ICs is large and they have sparse (or
other specific) distributions, it is more convenient to use the following equivalent form:

XT = ST HT . (1.7)
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By taking the transpose, we simply interchange the roles of the mixing matrix H =
[h1,h2, . . . ,hn] and the ICs S = [s(1), s(2), . . . , s(N)]T , thus the vectors of the matrix
HT can be considered as independent components and the matrix ST as the mixing matrix
and vice-versa. In the standard temporal ICA model, it is usually assumed that ICs s(k) are
time signals and the mixing matrix H is a fixed matrix without imposing any constraints
on its elements. In the spatio-temporal ICA, the distinction between ICs and the mixing
matrix is completely abolished [1105, 595]. In other words, the same or similar assump-
tions are made on the ICs and the mixing matrix. In contrast to the conventional ICA the
spatio-temporal ICA maximizes the degree of independence over time and space.

Definition 1.4 (Spatio-temporal ICA) The spatio-temporal ICA of random matrix XT

= ST HT is obtained by estimating both the unknown matrices S and H in such a way that
rows of S and columns of H be as independent as possible and both S and H consist of
the same or very similar statistical properties (e.g., the Laplacian distribution or sparse
representation).

The real-world sensor data often build up complex nonlinear structures, so applying ICA
to global data may lead to poor results. Instead, applying ICA for all available data, we
can preprocess this data by grouping it into clusters or sub-bands with specific features
and then apply ICA individually to each cluster or sub-band separately. The preprocessing
stage of suitable grouping or clustering of data is responsible for an overall coarse nonlinear
representation of the data, while the linear ICA models of individual clusters are used for
describing local features of the data.

Definition 1.5 (Local ICA) In the local ICA raw available sensor data are suitably pre-
processed, for example, by transforming (filtering) them through a bank of bandpass filters,
applying wavelets transform, joint time-frequency analysis, by grouping them into clusters
in space, or in the frequency or in the time-frequency domain, and then applying linear ICA
to each cluster (sub-band) locally. More generally, an optimal local ICA can be implemented
as the result of mutual interaction of two processes: A suitable clustering process and the
ICA process to each cluster.

In many blind signal separation problems, one may want to estimate only one or several
desired components with particular statistical features or properties, but discard the rest of
uninteresting sources and noises. For such problems, we can define Blind Signal Extraction
(BSE) (see Chapter 5 for more detail and algorithms).

Definition 1.6 (Blind Signal Extraction) BSE is formulated as a problem of estima-
tion of one source or a selected number of the sources with particular desired properties or
characteristics, sequentially one by one or estimation of a specific group of sources. Equiv-
alently the problem is formulated as an identification of the corresponding vector(s) ĥj of
the mixing matrix Ĥ and/or their pseudo-inverses wj which are rows of the separating ma-
trix W = Ĥ+, assuming only the statistical independence of its primary sources and linear
independence of columns of H.

Remark 1.2 It is worth emphasizing that in the literature the terms of BSS/BES and ICA
are often confused or interchanged, although they refer to the same or similar models and are
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Fig. 1.4 Basic approaches for blind source separation with some a priori knowledge.

solved with the same or similar algorithms under the assumption that the primary sources
are mutually independent. However, in the general case, especially for real-world problems,
the objective for the ICA and the BSS are somewhat different. In fact, the objective of
BSS is to estimate the original source signals even if they are not completely mutually
statistically independent, while the objective of ICA is to determine such transformation
which assures that the output signals are as independent as possible. It should be noted that
ICA methods use higher-order statistics (HOS) in many cases, while BSS methods are apt to
use only second order statistics (SOS). The second order methods assume that sources have
some temporal structure, while the higher order methods assume their mutual independence.
Another difference is that the higher-order statistics methods can not be applied to Gaussian
signals while second order methods do not have such constraints. In fact, BSS methods do
not really replace ICA and vice versa, since each approach is based on different assumptions
and often different objectives.

Although many different source separation algorithms are available, their principles can
be summarized by the following four approaches (see Fig.1.4):

• The most popular approach exploits as the cost function some measure of signals
independence, non-Gaussianity or sparseness. When original sources are assumed to
be statistically independent without a temporal structure, the higher-order statistics
(HOS) are essential (implicitly or explicitly) to solve the BSS problem. In such case,
the method does not allow more than one Gaussian source (see Chapters 5 and 6 for
more detail).



10 INTRODUCTION TO BLIND SIGNAL PROCESSING: PROBLEMS AND APPLICATIONS

• If sources have temporal structures, then each source has non-vanishing temporal cor-
relation, less restrictive conditions than statistical independence can be used, namely,
the second-order statistics (SOS) is sufficient to estimate the mixing matrix and
sources. Along this line, several methods have been developed [1160, 1156, 854, 92].
Note that these SOS methods do not allow the separation of sources with identical
power spectra shapes or i.i.d. (independent and identically distributed) sources (see
Chapter 4).

• The third approach exploits nonstationarity (NS) properties and second order statis-
tics (SOS). Mainly, we are interested in the second-order nonstationarity in the sense
that source variances vary in time. The nonstationarity was first taken into account
by Matsuoka et al. [832] and it was shown that a simple decorrelation technique is able
to perform the BSS task. In contrast to other approaches, the nonstationarity infor-
mation based methods allow the separation of colored Gaussian sources with identical
power spectra shapes. However, they do not allow the separation of sources with
identical nonstationarity properties. There are some recent works on nonstationary
source separation [223, 224, 968] (see Chapters 4, 6 and 8 for overview and).

• The fourth approach exploits the various diversities2 of signals, typically, time, fre-
quency, (spectral or “time coherence”) and/or time-frequency diversities, or more
generally, joint space-time-frequency (STF) diversity.

Remark 1.3 In fact, the space-time-frequency diversities concepts are widely used in wire-
less communications systems. Signals can be separated easily if they do not overlap in either
the time-, the frequency- or the time-frequency domain (see Fig.1.5 and Fig.1.6). When sig-
nals do not overlap in the time-domain then one signal stops (is silent) before another one
begins. Such signals are easily separated when a receiver is accessible only while the signal
of interest is sent. This multiple access method is called TDMA (Time Division Multiple
Access). If two or more signals do not overlap in the frequency domain, then they can be
separated with bandpass filters as is illustrated in Fig.1.5. The method based on this prin-
ciple is called FDMA (Frequency Division Multiple Access). Both TDMA and FDMA are
used in many modern digital communication systems [479]. Of course, if the source power
spectra overlap, the spectral diversity is not sufficient to extract sources, therefore, we need
to exploit another kind of diversities. If the source signals have different time-frequency
diversity and time-frequency signatures of the sources do not (completely) overlap then still
they can be extracted from one (or more) sensor signal by masking individual source signals
or interference in time-frequency domain and then syntheses from time-frequency domain
as illustrated in Fig.1.6. However, in such the cases some a priory information about source
signals is necessary and separation is not completely blind but only semi-blind.

More sophisticated or advanced approaches use combinations or integration of all the above
mentioned approaches: HOS, SOS, NS and STF (Space-Time-Frequency) diversity, in order
to separate or extract sources with various statistical properties and to reduce the influence
of noise and undesirable interferences. Methods that exploit either the temporal structure

2By diversities we mean usually different characteristics or features of the signals.
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Fig. 1.5 Illustration of exploiting spectral diversity in BSS. Three unknown sources and their available
mixture and spectrum of the mixed signal. The sources are extracted by passing the mixed signal by
three bandpass filters (BPF) with suitable frequency characteristics depicted in the bottom figure.

of sources (mainly second-order correlations) and/or the nonstationarity of sources, lead to
the second-order BSS methods. In contrast to BSS methods based on HOS, all the second-
order statistics based methods do not have to infer the probability distributions of sources
or nonlinear activation functions.

1.1.3 Independent Component Analysis for Noisy Data

As the estimation of a separating (unmixing) matrix W and a mixing matrix Ĥ in the
presence of noise is rather difficult; the majority of past research efforts have been devoted
to only the noiseless case, where ν(k) = 0. One of the objectives of this book is to present
promising novel approaches and associated algorithms that are more robust with respect to
noise and/or that can reduce the noise in the estimated output vector y(k). Usually, it is
assumed that the source signals and additive noise components are statistically independent.
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Fig. 1.6 Illustration of exploiting time-frequency diversity in BSS. (a) Original unknown source sig-
nals and available mixed signal. (b) Time-frequency representation of the mixed signal. Due to
non-overlapping time-frequency signatures of the sources by masking and synthesis (inverse trans-
form), we can extract the desired sources.

In some models described in this book, it is assumed that sources of additive noise
are incorporated as though they were unknown source signals. In other words, the effect
of incident noise fields impinging on several sensors may be considered to be equivalent
to additional sources, and thus are subject to the same separation process as the desired
signals. Of course, there may be more than one noise source. However, for the separation
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Fig. 1.7 Standard model for noise cancellation in a single channel using a nonlinear adaptive filter
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of noise sources, at most one noise source may have a Gaussian distribution, and all other
sources must have non-Gaussian distributions. It may well be that one is not interested in
separation of the noise sources.

In general, the problem of noise cancellation is difficult and even impossible to treat be-
cause we have (m + n) unknown source signals (n sources and m noise signals, see Fig.1.8).
Various signal processing methods have been developed for noise cancelling [1236, 1237,
1234] and with some modifications they can be applied to noise cancellation in BSS. In
many practical situations, we can measure or model the environmental noise. Such noise is
termed reference noise (denoted by νR in Fig.1.7). For example, in the acoustic “cocktail
party” problem, we can measure or record the environmental noise by using an isolated
microphone. In a similar way, noise in biomedical applications can be measured by appro-
priately placed auxiliary sensors (or electrodes). The noise νR(k) may influence each sensor
in some unknown manner due to environmental effects; hence, such effects as delays, rever-
berations, echo, nonlinear distortions etc. may occur. It may be assumed that the reference
noise is processed by some unknown dynamical system before reaching the sensors. In a
simple case, a convolutive model of noise is assumed where the reference noise is processed
by some FIR filters (see Fig.1.8). In this case, two learning processes are performed simulta-
neously: An un-supervised learning procedure performing blind separation and a supervised
learning algorithm performing noise reduction [267]. This approach has been successfully
applied to the elimination of noise under the assumption that the reference noise is available
[267, 671].
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Fig. 1.8 Illustration of noise cancellation and blind separation - deconvolution problem.

In a traditional linear Finite Impulse Response (FIR) adaptive noise cancellation filter,
the noise is estimated as a weighted sum of delayed samples of the reference interference.
However, the linear adaptive noise cancellation systems mentioned above may not achieve
an acceptable level of cancellation of noise in many real world situations when interference
signals are related to the measured reference signals in a complex dynamic and nonlinear
way.

In many applications, especially in biomedical signal processing, the sensor signals are
corrupted by various interference and noise sources. Efficient interference and noise cancel-
lation usually require nonlinear adaptive processing of the observed signals. In this book we
describe various neural network models and associated on-line adaptive learning algorithms
for noise and interference cancellation. In particular, we propose to use the Hyper Radial
Basis Function Network (HRBFN) with all of its parameters being fully adaptive. More-
over, we examine Amari-Hopfield recurrent neural networks [260]. We study the problem
from the perspective of optimal signal estimation and nonlinear adaptive systems. Our
mathematical analysis and computer simulations demonstrate that such neural networks
can be quite effective and useful in removing of interference and noise. In particular, it will
be shown that the Amari-Hopfield recurrent neural network (see Chapter 8) can be more
effective than feed-forward networks for certain noise distributions, where the data exhibit
a long memory structure (temporal correlation).

1.1.4 Multichannel Blind Deconvolution and Separation

A single channel convolution and deconvolution process is illustrated in Fig.1.9.
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Fig. 1.10 Diagram illustrating standard multichannel blind deconvolution problem (MBD).

A multichannel blind deconvolution problem can be considered as a natural extension or
generalization of the instantaneous blind separation problem (see Fig.1.10). In the multidi-
mensional blind deconvolution problem, an m-dimensional vector of received discrete-time
signals x(k) = [x1(k), x2(k), . . . , xm(k)]T at time k is assumed to be produced from an
n-dimensional vector of source signals s(k) = [s1(k), s2(k), . . . , sn(k)]T , m ≥ n, by using a
stable mixture model [39, 31, 253, 612]

x(k) =
∞∑

p=−∞
Hp s(k − p) = Hp ∗ s(k), with

∞∑
p=−∞

‖Hp‖ < ∞, (1.8)

where ∗ denotes the convolution operator and Hp is an (m×n) matrix of mixing coefficients
at time-lag p.
Define

H(z) =
∞∑

p=−∞
Hp z−p (1.9)
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where z−1 denotes the unit time-delay (backward shift) operator (i.e. z−p[si(k)] = si(k−p).
It should be noted that if z is replaced with the complex variable z̃ = exp(−σ + jωT ), then
H(z̃) is the Z-transform of {Hp}, i.e., it is the system matrix transfer function [379, 479].
Using (1.9), (1.8) may be rewritten as

x(k) = [H(z)] s(k). (1.10)

The goal of multichannel deconvolution is to calculate the possibly scaled and time-
delayed (or filtered) versions of the source signals from the received signals by using an
approximate knowledge of the source signal distributions and statistics. Typically, every
source signal si(k) is an i.i.d. (independent and identically-distributed) sequence that is
independent of all the other source sequences.

In order to recover the source signals, we can use the neural network models depicted
in Fig.1.3 (b) and Fig.1.10 but the synaptic weights should be generalized to filters (e.g.,
the FIR or IIR) as is illustrated in Fig.1.11. In this book, many such extensions and
generalizations are described.

Let us consider briefly one example of such a generalization: A standard multichannel
blind deconvolution where each weight [38, 216, 612]

Wji(z, k) =
M∑

p=0

wjip(k) z−p (1.11)

is described by a multichannel finite-duration impulse response (FIR) adaptive filter at
discrete-time k [612, 657].

We will consider a stable feed-forward model that estimates the source signals directly
by using a truncated version of a doubly-infinite multichannel equalizer of the form [612]
(see Fig.1.11 (a))

yj(k) =
m∑

i=1

∞∑
p=−∞

wjip xi(k − p), (j = 1, 2, . . . , n) (1.12)

or in the compact matrix form as

y(k) =
∞∑

p=−∞
Wp(k)x(k − p) = Wp(k) ∗ x(k) = [W(z, k)]x(k), (1.13)

where y(k) = [y1(k), y2(k), . . . , yn(k)]T is an n-dimensional vector of outputs and W(k) =
{Wp(k), −∞ ≤ p ≤ ∞} is a sequence of n×m coefficient matrices used at time k, and the
matrix transfer function is given by

W(z, k) =
∞∑

p=−∞
Wp(k) z−p. (1.14)

The goal of adaptive blind deconvolution or equalization is then to adjust W(z, k) such
that the global system be described as

lim
k→∞

G(z, k) = W(z, k)H(z) = PD(z), (1.15)
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work) shown in Fig.1.3 : (a) Basic FIR filter model, (b) Gamma filter model, (c) Laguerre filter
model.

where P is an n× n permutation matrix, D(z) is an n× n diagonal matrix whose (i, i)-th
entry is ciz

−∆i , ci is a non-zero scalar factor, and ∆i is an integer delay. We assume that
both H(z) and W(z, k) are stable with non-zero eigenvalues on the unit circle |z| = 1. In
addition, the derivatives of quantities with respect to W(z, k) can be understood as a series
of matrices indexed by the lag p of Wp(k) [38, 39, 612].

Fig.1.11 (b) and (c) show alternative neural network models with the weights in the form
of stable constrained infinite impulse response (IIR) filters. In these models, the weights
Wji are generalized to real- or complex-valued Gamma [990, 989] or Laguerre filters (see
Fig.1.11 (b) and (c)) or other structures like state-space models (see Fig.1.13) which may
have some useful properties [31, 1359, 1375]. In all these models, it is assumed that only
the sensor vector x(k) is available and it is necessary to design a feed-forward or recurrent
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Fig. 1.12 Block diagram illustrating the sequential blind extraction of sources or independent com-
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neural network and an associated adaptive learning algorithm that enables estimation of
the source signals.

1.1.5 Blind Extraction of Signals

There are two main approaches to solve the problem of blind separation and deconvolution.
The first approach, which was mentioned briefly in previous sections, is to simultaneously
separate all sources. In the second one, we extract sources sequentially in a blind fashion,
one by one, rather than separating them all simultaneously. In many applications, a large
number of sensors (electrodes, microphones or transducers) are available but only a very few
source signals are subjects of interest. For example, in the EEG or MEG devices, we observe
typically more than 64 sensor signals, but only a few source signals are interesting; the rest
can be considered as interfering noise. In another example, the cocktail party problem, it is
usually essential to extract the voices of specific persons rather than separate all the source
signals available from a large array of microphones. For such applications it is essential to
develop reliable, robust and effective learning algorithms which enable us to extract only a
small number of source signals that are potentially interesting and contain useful information
(see Fig.1.12). This problem is the subject of Chapter 5. The blind signal extraction
approach may have several advantages over simultaneous blind separation/deconvolution,
such as.

• Signals can be extracted in a specified order according to the statistical features of
the source signals, e.g., in the order determined by absolute values of generalized nor-
malized kurtosis. Blind extraction of sources can be considered as a generalization of
PCA (principal components analysis), where decorrelated output signals are extracted
according to the decreasing order of their variances.
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• Only “interesting” signals need to be extracted. For example, if the source signals
are mixed with a large number of Gaussian noise terms, we may extract only specific
signals which possess some desired statistical properties.

• The available learning algorithms for BSE are purely local and biologically plausible.
In fact, the learning algorithms derived below can be considered as extensions or
modifications of the Hebbian/anti-Hebbian learning rule. Typically, they are simpler
than those of instantaneous blind source separation.

In summary, blind signal extraction is a useful approach when our objective is to extract
several source signals with specific statistical properties from a large number of mixtures.
Extraction of a single source is closely related to the problem of blind deconvolution [612,
615, 1067, 1078]. In blind signal extraction (BSE), our objective is to extract the source
signals sequentially, i.e. one by one, rather than to separate all of them simultaneously. This
procedure is called the sequential blind signal extraction in contrast with the simultaneous
blind signal separation (BSS). Sequential blind signal extraction can be performed by using
a cascade neural network similar to the one used for the extraction of principal components.
However, in contrast with PCA, the optimization criteria for BSE are different. A single
processing unit (artificial neuron) is used in the first step to extract one source signal
with specified statistical properties. In the next step, a deflation technique can be used to
eliminate the already extracted signals from the mixtures.

1.1.6 Generalized Multichannel Blind Deconvolution – State Space Models

In the general case, linear dynamical mixing and demixing systems can be described by
state-space models. In fact, any stable mixing dynamical system can be described as (see
Fig.1.13)

ξ(k + 1) = A ξ(k) + B s(k) + N νP (k), (1.16)
x(k) = C ξ(k) + D s(k) + ν(k), (1.17)

where ξ ∈ IRr is the state vector of the system, s(k) ∈ IRn is a vector of unknown input
signals (assumed to be zero-mean, non-Gaussian independent and identically distributed
(i.i.d.) and mutually (spatially) independent), x(k) is an available vector of sensor signals,
νP (k) is the vector of process noise, and the state matrices have dimensions: A ∈ IRr×r is
a state matrix, B ∈ IRr×n an input mixing matrix, C ∈ IRm×r an output mixing matrix,
D ∈ IRm×n an input-output mixing matrix and N ∈ IRr×p is a noise matrix. The transfer
function is an m× n matrix of the form

H(z) = C (z I−A)−1 B + D, (1.18)

where z−1 is a delay operator (i.e., z−1 x(k) = x(k − 1)).
Analogously, we can assume that the demixing model is another linear state-space system

described as (see Fig.1.13)

ξ(k + 1) = A ξ(k) + B x(k) + L νR(k), (1.19)
y(k) = C ξ(k) + D x(k), (1.20)
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Fig. 1.13 Conceptual state-space model illustrating general linear state-space mixing and self-
adaptive demixing model for Dynamic ICA (DICA). Objective of learning algorithms is estimation of
a set of matrices {A,B,C,D,L} [287, 289, 290, 1359, 1360, 1361].

where the unknown state-space matrices, respectively have the dimension: A ∈ IRM×M ,
B ∈ IRM×m, C ∈ IRm×M , D ∈ IRm×m, L ∈ IRM×m, with M ≥ r (i.e., the order of the
demixing system should be at least the same or larger than the order of the mixing system).

It is easy to see that the linear state-space model is an extension of the instantaneous
blind source separation model. In the special case when the matrices A,B,C in the mixing
model and A,B,C in the demixing model are null matrices, the problem is simplified to
the standard ICA problem. In general, the matrices Θ = [A,B,C,D,L] are parameters
to be determined in a learning process on the basis of knowledge of the sequence x(k) and
some a priori knowledge about the system. The transfer function of the demixing model
is W(z) = C (z I − A)−1 B + D. We formulate the dynamical blind separation problem
as a task to recover original source signals from the observations x(k) without a priori
knowledge of the source signals or the state-space matrices [A,B,C,D], by assuming, for
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example, that the sources are mutually independent, zero-mean signals. Other assumptions
like smoothness or linear predictability of sources can also be used. We also usually assume
that the output signals y(k) = [y1(k), y2(k), . . . , ym(k)]T will recover the source signals for
the noiseless case in the following sense

y(k) = [W(z) H(z)] s(k) = [D(z)] P s(k), (1.21)

where P is an m× n generalized permutation matrix which consists of n nonzero elements
and only one nonzero element in each column and D(z) = diag{D11(z), D22, . . . , Dmm(z)} is
a diagonal matrix with transfer functions Dii(z) of shaping filters. In some applications, like
equalization problems, it is required that Dii(z) = λiz

−τi , where λi is a nonzero constant
scaling factor and τi is any positive integer delay (i.e., constant scaling factors and/or pure
delays are only acceptable).

A question arising here is whether matrices [A,B,C,D] exist for the demixing model
shown in Fig.1.13 such that the transfer function W(z) satisfies (1.21). The answer is
affirmative [1356, 1375, 1376]. It will be shown later that if there is a filter W∗(z), which is
the inverse of H(z) in the sense of (1.21), then for the given specific matrices [A,B], there
are matrices [C,D], such that the transfer matrix W(z) satisfies equation (1.21).

Remark 1.4 It should be noted that we assume that D is an m×m square matrix, i.e., the
number of outputs of the system is equal to the number of sensors, although in practice the
number of sources can be less than the number of sensors (m ≥ n). Such a model is justified
by two facts. First of all, the number of sources is generally unknown and may change over
time. Secondly, in practice we have additive noise signals that can be considered as auxiliary
unknown sources; therefore, it is also reasonable to extract these noise signals. In the ideal
noiseless case, the redundant (m−n) output signals yj should decay during adaptive learning
process to zero and then only n outputs will correspond to the recovered sources.

1.1.7 Nonlinear State Space Models – Semi-Blind Signal Processing

The above linear state-space demixing and filtering model is relatively easy to generalize
into a flexible nonlinear model as (see Fig.1.14)

ξ(k) = f [x(k), ξ(k)], (1.22)
y(k) = C(k) ξ(k) + D(k) x(k), (1.23)

where ξ(k) = [ξ1(k), ξ1(k), . . . , ξM (k)]T is the state vector, x(k) = [x1(k), x2(k), . . . , xm(k)]T

is an available vector of sensor signals, f [x(k), ξ(k)] is an M -dimensional vector of nonlin-
ear functions (with x(k) = [xT (k),xT (k), . . . ,xT (k − Lx)]T and ξ(k) = [ξT (k), ξT (k −
1), . . . , ξT (k−Lx)]T ), y(k) = [y1(k), y2(k), . . . , ym(k)]T is the vector of output signals, and
C ∈ IRm×M and D ∈ IRm×m are output matrices. It should be noted that equation (1.22)
describes the nonlinear autoregressive moving average (NARMA) model while the output
model (1.23) is linear. Our objective will be to estimate the output matrices C and D,
as well as to identify the NARMA model by using a neural network on the basis of sensor
signals x(k) and source (desired) signals s(k) (which are available for short-time windows).
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Fig. 1.14 Block diagram of a simplified nonlinear demixing NARMA model. For the switch in open
position we have feed-forward MA model and for the switch closed we have a recurrent ARMA model.

In order to solve this challenging and difficult problem, we attempt to apply a semi-blind
approach, i.e., we combine both supervised and un-supervised learning algorithms. Such an
approach is justified in many practical applications. For example, for MEG or EEG, we can
use a phantom of the human head with known artificial source excitations located in specific
places inside of the phantom. Similarly, for the cocktail party problem, we can record for
short-time windows original test speech sources. These short-time window training sources
enable us to determine, on the basis of a supervised algorithm, a suitable nonlinear demixing
model and associated nonlinear basis functions of the neural network and their parameters.

However, we assume that the mixing system is a slowly time-varying system for which
some parameters fluctuate slightly over time, mainly due to the change in localization of
source signals in space. Furthermore, we assume that training sources are available only for
short-time slots. During the time windows in which the training signals are not available,
we can apply an unsupervised learning algorithm which performs a fine adjustment of the
output matrices C and D (by keeping the nonlinear model fixed). In this way, we will be
able to estimate continuously in time the source signals. An exemplary implementation of
the nonlinear state-space model using the radial basis function (RBF) neural network is
shown in Figure 1.15 (see Chapter 12 for detail).

1.1.8 Why State Space Demixing Models?

There are several essential reasons why the state-space models provide a useful and powerful
approach in blind signal processing:

• The mixing and filtering processes of unknown input sources sj(k), (j = 1, 2, ..., n)
may have different mathematical or physical models, depending on specific applica-
tions. The state-space demixing model is a flexible and universal linear model which
describes a wide class of stable dynamical systems including standard multichannel
deconvolution models with finite impulse response (FIR) filters, Gamma filters or
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Fig. 1.15 Simplified model of RBF neural network applied for nonlinear semi-blind single channel
equalization of binary sources; if the switch is in position 1, we have supervised learning, and unsu-
pervised learning if it is in position 2.

more general models: AR (autoregressive), MA (moving average) and ARMA (au-
toregressive moving average) models as special cases.

• Moreover, such a dynamical demixing model enables us to generate many canonical
realizations of the same dynamical system by using equivalent transformations.

• It is easy to note that the linear state-space model is an extension of the instantaneous
mixture blind source separation model.

• State-space models have two subsystems: A linear, memoryless output layer and a
dynamical linear or nonlinear recurrent network, which can be identified or updated
using different approaches [289, 290, 291, 1365].

1.2 POTENTIAL APPLICATIONS OF BLIND AND SEMI-BLIND SIGNAL

PROCESSING

The problems of independent component analysis (ICA), blind separation and multichan-
nel deconvolution of source signals have received wide attention in various fields such as
biomedical signal analysis and processing (EEG, MEG, ECG), geophysical data process-
ing, data mining, speech enhancement, image recognition and wireless communications
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[31, 39, 456, 1089]. In such applications a number of observations of sensor signals or data
that are filtered superpositions of separate signals from different independent sources are
available, and the objective is to process the observations in such a way that the outputs
correspond to the separate primary source signals.

Acoustic applications include the situations where signals from several microphones in
a sound field that is produced by several speakers (the so-called cocktail-party problem)
and the signals from several acoustic transducers in an underwater sound field from the
engine noises of several ships (sonar problem). Radio and wireless communication examples
include the observations corresponding to outputs of antenna array elements in response to
several transmitters, and the observations may also include the effects of the mutual cou-
plings of the elements. Other radio communication examples include the use of polarization
multiplexing in microwave links; the maintenance of the orthogonality of the polarization
cannot be perfect and there is still interference between the separate transmissions. Radar
examples include the superposition of signals from different target modulating mechanisms
as observed by multiple receivers whose elements are sensitive to different polarizations.

Let us consider some exemplary promising biomedical applications in more detail.

1.2.1 Biomedical Signal Processing

A great challenge in biomedical engineering is to non-invasive asses the physiological changes
occurring in different internal organs of the human body (Figure 1.16 (a)). These variations
can be modelled and measured often as biomedical source signals that indicators of the
function or malfunction of various physiological systems. To extract the relevant information
for diagnosis and therapy, expert knowledge in medicine and engineering is also required.

Biomedical source signals are usually weak, nonstationary signals and distorted by noise
and interferences. Moreover, they are usually mutually superimposed. Besides classical
signal analysis tools (like adaptive supervised filtering, parametric or non-parametric spec-
tral estimation, time-frequency analysis, and higher-order statistics) intelligent blind signal
processing techniques (IBSP) can be used for preprocessing, noise and artifact reduction,
enhancement, detection and estimation of biomedical signals by taking into account their
spatio-temporal correlation and mutual statistical dependence.

One successful and promising application domain of blind signal processing includes
those biomedical signals acquired with multi-electrode devices: Electrocardiography (ECG),
electromyography (EMG), electroencephalography (EEG) and magnetoencephalography
(MEG).

Exemplary applications in biomedical problems include the following:

• Fetal electrocardiogram (ECG) extraction, i.e., removing/filtering maternal electro-
cardiogram signals and noise from fetal electrocardiogram signals.

• Enhancement of low-level ECG components.

• Separation of transplanted heart signals from residual original heart signals.

• Separation of heart sounds from gastrointestinal acoustic phenomena (bowel-sounds).
Bowel sounds can be measured in a non-invasive way by using microphones or ac-
celerometers positioned on the skin.
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• Reduction or blind separation of heart sounds from lung sounds using multichannel
blind deconvolution.

• Cancellation of artifacts and noise from electroencephalographic and magnetoen-
cephalographic recordings.

• Enhancement evoked potentials (EP) and categorize detected brain signals. (The
brain potentials evoked by sensory stimulations such as visual, acoustic or somatosen-
sory are generally called evoked potentials).

• Detection and estimation of sleep-spindles. (Sleep-spindles are specific phenomena
of electroencephalograms (ECG) appearing during sleep; they are characterized by a
group of oscillation in the range 11.5-15 Hz).

• Decomposition of brain sources as independent components and then localizing them
in time and space.

Let us consider in more detail, some exemplary promising biomedical applications.

1.2.2 Blind Separation of Electrocardiographic Signals of Fetus and Mother

The mechanical action of the heart muscles is stimulated by an electrical depolarization and
repolarization signals. These quasi-periodical signals project potential differences to the skin
level which can be measured and visualized as functions of time using electrocardiogram
(ECG). Like for adults, it would also be possible to measure the electrical activity of a fetal
heart [726, 728]. The characteristics of a fetal electrocardiogram (FECG) can be very useful
for determining if a fetus is developing or being delivered properly. These characteristics
include an elevated heart rate that indicates fetal stress, cardiac arrythmia and ST segment
depression which may indicate acidosis.

It is a non-trivial task to obtain an accurate and reliable FECG in a non-invasive fashion
by using several electrodes. Problems develop due to the facts, that the electrocardiogram
(ECG) also contains a maternal electrocardiogram (MECG) which can be from one-half to
one-thousandth the magnitude of the MECG. Moreover, the FECG will occasionally overlap
the MECG and make it normally impossible to detect. Along with the MECG, extensive
electromyographic (EMG) noise also interferes with the FECG and it can completely mask
the FECG. The separation of fetal and maternal electrocardiograms from skin electrodes
located on a pregnant woman’s body may be modelled as a Blind Signal Processing problem
(see Figure 1.16). The recordings pick up a mixture of FECG, MECG contributions, and
other interferences, such as maternal electromyogram (MEMG), power supply interference,
thermal noise from the electrodes and other electronic equipment. In fact, BSP techniques
can be successfully applied to efficiently solve this problem and the first results are very
promising [230, 232, 883]. Ordinary filtering and signal processing techniques have great
difficulties with this problem [1286].
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Fig. 1.16 Exemplary biomedical applications of blind signal processing: (a) A multi-recording mon-
itoring system for blind enhancement of sources, cancellation of noise, elimination of artifacts and
detection of evoked potentials, (b) blind separation of the fetal electrocardiogram (FECG) and ma-
ternal electrocardiogram (MECG) from skin electrode signals recorded from a pregnant women, (c)
blind enhancement and independent components of multichannel electromyographic (EMG) signals.
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1.2.3 Enhancement and Decomposition of EMG Signals

The movement and positioning of limbs are controlled by electrical signals travelling back
and forth between the central nervous system and the muscles. Electromyography is a
technique of recording of the electrical signals in the muscle (muscle action potentials).
Electromyographic (EMG) signals recorded by a multi-electrode system provide important
information about the brain motor system and the diagnosis of neuromuscular disorders
that affect the brain, spinal cord, nerves or muscles. EMG signals, which are recorded
simultaneously by several electrodes at low and moderate force levels can be composed of
motor unit action potentials (MUAPs) generated by different motor units. The motor unit
is the smallest functional unit of the muscle that can be voluntary activated: It consists of a
group of muscle fibers all innervated from the same motor neuron. In other words, MUAP
consists of the spatial and temporal summation of all single fiber potentials innervated
by the same motor neuron. The MUAP waveforms give information about the structural
organization of the motor units [1389].

Blind signal processing techniques can be used for the enhancement of EMG signals. A
more challenging problem is to apply BSS for decomposition of EMG signals into indepen-
dent components and MUAPs. Such blind or semi-blind processing may enable to easily
cluster MUAPs into groups of similar waveforms, providing important information about
the brain motor system and for the assessment of neuromuscular pathology.

1.2.4 EEG and Data MEG Processing

Applications of BSP show special promises in the areas of non-invasive human brain imaging
techniques to delineate the neural processes that underlie human cognition and sensoro-
motoric functions.

To understand human neurophysiology, we rely on several types of non-invasive neu-
roimaging techniques. These techniques include electroencephalography (EEG), magne-
toencephalography (MEG), anatomical magnetic resonance imaging (MRI) and functional
MRI (fMRI). While each of these techniques is useful, there is no single technique that
provides both the spatial and temporal resolution necessary to make inferences about the
intracranial brain sources of activity.

Very recently, several research groups have demonstrated that the techniques and meth-
ods of blind source separation (BSS) are related to those currently used in electromagnetic
source localization (ESL) [840]. This framework provides a methodology by which several
different types of information can be combined to aid in making inferences about a problem.
Neural activity in the cerebral cortex generates small electric currents which create poten-
tial differences on the surface of the scalp (detected by EEG) as well as very small magnetic
fields which can be detected using SQUIDs (SuperConducting QUantum Interference De-
vices). The greatest benefit of MEG is that it provides information that is complementary to
EEG. In addition, the magnetic fields (unlike the electric currents) are not distorted by the
intervening biological mass. Under certain circumstances, this allows precise localization of
the neural currents responsible for the measured magnetic field.

We begin with a description of the situation for EEG or MEG recordings. We here
give a very brief introduction of EEG and MEG [1250, 1251]. When a region of neural
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Fig. 1.17 Non-invasive multi-electrodes recording of activation of the brain using EEG or MEG.

tissue (consisting of about 100,000 neurons) is synchronously active, detectable extracellular
electric currents and magnetic fields are generated. These regions of activity can be modelled
as “current dipoles” because they generate a dipolar electric current field in the surrounding
volume of the head. These extracellular currents flow throughout the volume of the head
and create potential differences on the surface of the head that can be detected with surface
electrodes in a procedure called electroencephalography (EEG). One can also place super-
conducting coils above the head and detect the magnetic fields generated by the activity in
a procedure called magnetoencephalography (MEG).

If one knows the positions and orientations of the sources in the brain, one can calculate
the patterns of electric potentials or magnetic fields on the surface of the head. This is
called the forward problem. If otherwise one has only the patterns of electric potential or
magnetic fields then one needs to calculate the locations and orientations of the sources.
This is called the inverse problem. Inverse problems are notoriously more difficult to solve
than forward problems. In this case, given only the electric potentials and magnetic fields on
the surface there is no unique solution to the problem. The only hope is that there is some
additional information available that can be used to constrain the infinite set of possible
solutions to a single unique solution. This is where intelligent blind signal processing will
be used.

The idea is that one must use all the available information to solve the problem. We will
demonstrate this by focusing on an inverse problem, where we have information delivered
from one or several devices, say EEG and/or MEG.

In Figure 1.17, we depicted three neural sources, represented in this case by equivalent
current dipoles, in the cortical gray matter of the brain. The electrodes on the surface
of the head detect the potential differences due to the extracellular currents generated by
these active sources. The arrows merely demonstrate that each electrode detects some of
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the current flow from each neural source. The currents do not flow directly from the sources
to the electrodes, but instead they flow throughout the volume of the entire head.

Determining which regions of the brain are active, given EEG/MEG measurements on
the scalp level is an important problem. An accurate and reliable solution to such a problem
can give information about the higher brain functions and patient-specific cortical activity.
However, estimating the location and distribution of electric current sources within the
brain from EEG/MEG recording is an ill-posed problem, because there is no unique solution
and the solution does not depend continuously on data. The ill-posedness of the problem
and distortion of sensor signals by large noise sources makes finding a correct solution a
challenging analytic and computational problem.

The ICA approach and blind signal extraction methods are promising techniques for the
extraction of useful signals from the EEG/MEG recorded raw data. The EEG/MEG data
can be first decomposed into useful signal and noise subspaces using standard techniques like
local and robust PCA, SVD and nonlinear adaptive filtering. Next, we apply ICA algorithms
to decompose the observed signals (signal subspace) into independent components. The ICA
approach enables us to project each independent component (independent “brain source”)
onto an activation map at the skull level. For each activation map, we can perform next
an EEG/MEG source localization procedure, looking only for a single dipole (or 2 dipole)
per map. By localizing multiple dipoles independently, we can dramatically reduce the
complexity of the computation and increase the likelihood of efficiently converging to the
correct and reliable solution.

Figure 1.18 illustrates an example of a promising application of blind source separation
and independent component analysis (ICA) algorithms for localization of the brain source
signals activated after the auditory and somatosensory stimulus applied simultaneously. In
the MEG experiments performed in collaboration with the Helsinki University of Technol-
ogy, Finland, the stimulus presented to the subject was produced with a sub-woofer, and
the acoustic energy was transmitted to the shielded-room via a plastic tube with a balloon
on the end [264]. The subject had his hands in contact with the balloon and sensed the
vibration. In addition, the sound produced by the sub-woofer was listened to by the subject,
constituting the auditory stimulation. Using ICA, we successfully extracted auditory and
somatosensory evoked fields (AEF and SEF, respectively) and localized the corresponding
brain sources [264] (see Figure 1.18).

1.2.5 Application of ICA/BSS for Noise and Interference Cancellation in

Multi-sensory Biomedical Signals

The nervous systems of humans and animals must encode and process sensory information
within the context of noise and interference, and the signals which are encoded (the images,
sounds, etc.) have very specific statistical properties. One of the challenging tasks is how to
reliably detect, enhance and localize very weak, nonstationary brain source signals corrupted
by noise (e.g., evoked and event related potentials EP/ERP) by using EEG/MEG data.

Independent Component Analysis (ICA) and related methods like Adaptive Factor Anal-
ysis (AFA) are promising approaches for elimination of artifacts and noise from EEG/MEG
data [259, 631]. In fact, for these applications, ICA/BSS techniques have been success-
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Fig. 1.18 (a) A subset of the 122-MEG channels. (b) Principal and (c) independent components
of the data. (d) Field patterns corresponding to the first two independent components. In (e) the
superposition of the localizations of the dipole originating IC1 (black circles, corresponding to the
auditory cortex activation) and IC2 (white circles, corresponding to the SI cortex activation) onto
magnetic resonance images (MRI) of the subject. The bars illustrate the orientation of the source
net current. Results are obtained in collaboration with researchers from the Helsinki University of
Technology, Finland [264].

fully applied to remove efficiently artifacts and noise including background brain activity,
electrical activity of the heart, eye-blink and other muscle activity, and environmental noise.

However, most of the methods require manual detection, classification of interference
components and the estimation of the cross-correlation between independent components
and the reference signals corresponding to specific artifacts [595, 811, 812, 1250, 1251].

One of the important problem is how to automatically detect, extract and eliminate noise
and artifacts. Another related problem is how to classify independent “brain sources” and
artifacts. The automatic on-line elimination of artifacts and other interference sources is
especially important for extended recordings, e.g., EEG/MEG recording during sleep.

Evoked potentials (EPs) of the brain are meaningful for clinical diagnosis and they are
important factors in understanding higher order mechanisms in the brain. The EPs are
usually embedded within the ongoing EEG/MEG with a signal to noise ratio (SNR) less
than 0 dB, making them very difficult to extract by using only a single trial. The traditional
method of EPs extraction uses ensemble averaging to improve the SNR. This often requires
hundreds or even thousands of trials to obtain a usable noiseless waveform. Therefore, it
is important to develop novel techniques that can rapidly improve the SNR and reduce
the number of trials required to a minimum. Traditional signal processing techniques,
such as Wiener filtering, adaptive noise cancellation, latency-corrected averaging [553] and
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invertible wavelet transform filtering, have recently been proposed for SNR improvements
and ensemble reduction. However, these methods require a priori knowledge pertaining
to the nature of the signal [537, 1138]. Since EP signals are known to be nonstationary,
sparse and changing their characteristics from trial to trial, it is essential to develop novel
algorithms for enhancement of single trial EEG/MEG noisy data.

The formulation of the problem can be given in the following form: Denote by x(k) =
[x1(k), x2(k), ..., xm(k)]T the observed m-dimensional vector of noisy signals that must be
“cleaned” from the noise and interferences. Here we have two types of noise. The first is
so called “inner” noise generated by some primary sources that cannot be observed directly
but contained in the observations. They are mixtures of useful signals and random noise
signals or other undesirable sources. The second type of noise is the sensor additive noise
(observation errors) at the output of the measurement system. This noise is not directly
measurable, either. Formally, we can write that an observed n-dimensional vector of sensor
signals x(k) is a mixture of source signals plus observation errors

x(k) = Hs(k) + ν(k), (1.24)

where k = 0, 1, 2, ... is a discrete-time index; H is a full rank (m×n) mixing matrix; s(k) =
[s1(k), s2(k), ..., sn(k)]T is an n-dimensional vector of sources containing useful signals and
ν(k) is an m-dimensional vector of additive white noise. We also assume that some useful
sources are not necessarily statistically independent. Therefore, we cannot achieve perfect
separation of primary sources by using any ICA procedure. However, our purpose here
is not the separation of the sources but the removal of independent or uncorrelated noisy
sources.

Let us emphasize that the problem consists of cancellation of the noise sources and
reduction of observation errors based only on information about observed vector x(k).

A conceptual model for elimination of noise and other undesirable components from
multi-sensory data is depicted in Figure 1.19. Firstly, ICA is performed using any robust
(with respect to Gaussian noise) algorithm [25], [31], [260, 261], [854] by a linear transfor-
mation of sensory data as y(k) = Wx(k), where the vector y(k) represents independent
components. However, robust ICA methods allow us only to obtain an unbiased estimate
of the unmixing matrix W. Furthermore, due to memoryless structure such methods by
definition, cannot remove the additive noise. Noise removal can be performed using optional
nonlinear adaptive filtering and nonlinear noise shaping (see Figure 1.20). In the next stage,
we classify independent signals ŷj(k) and then remove noise and undesirable components
by switching corresponding switches “off”.

The projection of interesting or useful independent components (e.g., independent acti-
vation maps) ỹj(k) back onto the sensors (electrodes) can be done by the transformation
x̂(k) = W+ỹ(k), where W+ is the pseudo-inverse of the unmixing matrix W. In the typical
case, where the number of independent components is equal to the number of sensors, we
have W+ = W−1.

The standard adaptive noise and interference cancellation systems may be subdivided
into the following classes [553, 555]:

1. Noise cancellation (see Figure 1.20). This term is normally referred to the case, when
we have both the primary signal yj(k) = ŷj(k) + nj(k) contaminated with noise and
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Fig. 1.19 Conceptual models for removing undesirable components like noise and artifacts and
enhancing multi-sensory (e.g., EEG/MEG) data: (a) Using expert decision and hard switches, (b)
using soft switches (adaptive nonlinearities in time, frequency or time-frequency domain), (c) using
nonlinear adaptive filters and hard switches [286, 1254].
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reference noise nj(k), which is correlated with the noise nj(k) but is independent of
the primary signal ŷj(k). By feeding the reference signal to the linear adaptive filter
we are able to estimate or reconstruct the noise, then subtract it from the primary
signal and thereby enhance the signal to noise ratio.

2. Deconvolution-reverberation and echo cancelling. This kind of interference cancelling
is often referred to as echo cancelling, because it enables the removal of reverberations
and echo from a single observed signal. A delayed version of the primary input signal
is fed to the linear adaptive filter thus enabling the filter to reconstruct and remove
reverberation from the primary signal. The deconvolver may also be used to cancel
periodic interference components in the primary input such as power line interference,
etc. The adaptive filter is able to extrapolate the periodic interference and subtract
this component from the undelayed primary input (see Figure 1.20). This approach
normally provides superior performance compared to standard notch or comb filtering
techniques.

3. Line enhancement. In this case the objective is to estimate or extract a periodic or
quasi periodic signal buried in noise. The adaptive filter is receiving the same input
as the deconvolver, however, instead of subtracting the extrapolated periodic signal
from the input, it outputs directly the enhanced signal (see Fig.1.20).

4. Adaptive bandpass filtering. Often we may take advantage of some a priori knowledge
regarding the bandwidth of the signal we wish to denoise. By bandpass filtering of
the signal, we eliminate a part of the frequency range where the useful signal is weak
and the noise is comparatively strong, thus enhancing the overall signal to noise ratio.

In a traditional linear Finite Impulse Response (FIR) adaptive noise cancellation filter, the
noise is estimated as a weighted sum of the delayed samples of reference interference. How-
ever, for many real world problems (when interference signals are related to the measured
reference signals in a complex dynamic and nonlinear way) the linear adaptive noise can-
cellation systems mentioned above may not achieve acceptable levels of noise cancellation.
Optimum interference and noise cancellation usually requires nonlinear adaptive processing
of the recorded and measured on-line signals [264, 267].

A common technique for noise reduction is to split the signal in two or more bands. The
high-pass bands are subjected to a threshold nonlinearity that suppresses low amplitude
values while retaining high amplitude values (see Fig.1.20) [556, 552]. In addition to de-
noising and artifacts removal, ICA/BSS techniques can be used to decompose of EEG/MEG
data into separate components, each representing physiologically distinct process or brain
source. The main idea here is to apply localization and imaging methods to each of these
components in turn. The decomposition is usually based on the underlying assumption
of statistical independence between the activation of different cell assemblies involved. An
alternative criterion for decomposition is temporal predictability or smoothness of compo-
nents. These approaches lead to interesting and exciting new ways of investigating and
analyzing brain data and developing new hypotheses how the neural assemblies communi-
cate and process information. This is actually a very extensive and potentially promising
research area, however these approaches still remain to be validated at least experimentally.
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Fig. 1.20 Adaptive filter configured for line enhancement (switches in position 1) and for standard
noise cancellation (switches in position 2).

1.2.6 Cocktail Party Problem

In the EEG/MEG brain source separation algorithms, we make the fundamental assumption
that the recorded signals from an instantaneous mixture, meaning that all of the signals are
time-aligned so that they enter the sensors simultaneously without any delays.

Consider now an application to speech separation in which the sounds are recorded in a
typical room using an array of microphones (see Fig.1.21). Each microphone will receive a
direct copy of the sound source (at some propagation delay based on the location of both
the sources and the microphone) as well as several reflected and modified (attenuated and
delayed) copies of the sound sources (as the sound waves bounce off walls and objects in
the room).

The distortions of the recorded signals are dependent upon the reverberation and ab-
sorption characteristics of the room, as well as the objects within the room, and can be
modelled as an impulse response in a linear system. The impulse response provides a model
of all the possible paths that the sound sources take to arrive at the microphones.

To find a specific original sound source that was recorded with the microphones in the
conference room, we must cancel out, or deconvolve, the rooms impulse response to the
original sound source. Since we have no prior knowledge of what this room impulse response
is, we call this process as the multichannel blind deconvolution or cocktail party problem.

In the “cocktail party problem” our objective is to design intelligent adaptive systems
and associated learning algorithms that have similar abilities to humans to focus attention
on one conversation among the many that would be occurring concurrently in a hypothetical
cocktail party.

The “cocktail party” problem can be described as the ability to focus one’s listening
attention on a single talker among a cacophony of conversations and background noise;
it has long been recognized as an interesting and challenging problem. Also known as
the “cocktail party effect” or more technically, “multichannel blind deconvolution”, this
problem of separating a set of mixtures of convolved (filtered) signals, detected by an
array of microphones, into their original source signals is performed extremely well by the
human brain, and over the years attempts have been made to capture this function by using
assemblies of abstracted neurons or adaptive processing units.
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mixing

sensors

Fig. 1.21 Illustration of the “cocktail party” problem and speech enhancement.

Humans are able to concentrate on listening to one voice in the midst of other conver-
sations and noise, but not all the mechanisms for this process are completely understood.
This specialized listening ability may be because of characteristics of the human speech
production system, auditory system, or high-level perceptual and language processing.

1.2.7 Digital Communication Systems

Blind and semi-blind signal processing models and algorithms also arise in a wide vari-
ety of digital communications applications, for example, digital radio with diversity, dually
polarized radio channels, high speed digital subscriber lines, multi-track digital magnetic
recording, multiuser/multi-access communications systems, multi-sensor sonar/radar sys-
tems, to mention just a few. BSP algorithms are promising tools for a unified and optimal
design of MIMO equalizers/filters/combiners for suppression of intersymbol interference
(ISI), cochannel and adjacent channel interferences (CCI and ACI) and multi-access inter-
ferences (MAI). The state-of-the-art in this area incorporates complete knowledge of the
MIMO transfer functions which is unrealistic for practical communication systems. The op-
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Fig. 1.22 Wireless communication scenario.

erating environment may consist of dispersive media involving multipath propagation and
frequency-selective fading, the characteristics of which are unknown at the receiver. The
blind signal processing methods may result in more effective and computationally efficient
algorithms for a broad class of digital communication systems such as high-speed digital sub-
scriber lines, multi-track digital magnetic recording and multiuser wireless communications
[991, 1085, 1086, 1192, 1199].

In Fig.1.22, we have an illustration of multiple signal propagation in a wireless com-
munication scenario; a number of users broadcast digitally modulated signals si, s2, . . . , sn

towards a base station in a multi-path propagation environment. In other words, via multi-
ple paths digital signals are received at an antenna array from many users. The transmitted
signals interact with various objects in the physical region before reaching the antenna array
or the base station. Each path follows a different direction, with some unknown propaga-
tion delay and attenuation. This phenomenon of receiving a superposition of many delayed
signals is called multi-path fading.

Moreover, in some cellular networks, there is another additional source of distortion,
so called co-channel interferences. This interference may be caused by multiple users that
share the same frequency and time slot. The level of interference depends on the prop-
agation environment, mobile location and mobile transmission power. Each transmitted
signal is susceptible to multiple interference, multi-user interference and additive noise. In
addition, the channel may be time-varying due to user mobility. Advanced blind signal
processing algorithms are required to extract desired signals from the interference noise.
Even more challenging signal processing problem is the blind joint space-time separation
and equalization of transmitted signals, i.e. to estimate source signals and their channels
in the presence of other co-channel signals and noise without the use of a training set.
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Fig. 1.23 Blind extraction of binary image from superposition of several images [761].

1.2.7.1 Why Blind? Blind signal processing techniques are promising because they require
neither prior knowledge of the array response geometry nor any training signals in order to
equalize the channels. Moreover, they are usually robust under severe multi-path fading en-
vironments. In situations where prior spatial knowledge or a set of short training sequences
is available, the prior information can be incorporated in the semi-blind techniques applied.

There are several reasons to apply blind signal processing techniques [1085, 1132, 1133,
1134], such as

• Training examples for interference are often not available.

• In rapid time-varying channels, training may not be efficient.

• Capacity of the system can be increased by eliminating or reducing training sets.

• Multi-path fading during the training period may lead to poor source or channel
estimations.

• Training in distributed systems requires synchronization and/or sending a training
set each time a new link is to be set up and this may not be feasible in a multi-user
scenario.

1.2.8 Image Restoration and Understanding

Image restoration involves the removal or minimization of degradation (blur, clutter, noise,
interferences etc.) in an image using a priori knowledge about the degradation phenomena.
Blind restoration is the process of estimating both the true image and the blur from the
degraded image characteristics, using only partial information about degradation sources
and the imaging system.

Scientists and engineers are actively seeking to overcome the degradation of image quality
caused by optical recording devices, the effects of atmospheric turbulence and other image
degradation processes.
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Fig. 1.24 Blind separation of text binary images from a single overlapped image [761].

In many applications, for example, an image with specific properties is corrupted or super-
imposed with other images and it is necessary to extract or enhance the target image. This
is illustrated in Figure 1.23. In some applications, it is necessary to extract or separate all
superimposed images as is illustrated in Figure 1.24. In many instances, the degraded obser-
vation g(x, y) can be modelled as the two-dimensional convolution of the true image f(x, y)
and the point-spread function (also called the blurring function) h(x, y) of a linear shift-
invariant system plus some additive noise n(x, y). That is, g(x, y) = f(x, y)∗h(x, y)+n(x, y).
In many situations, the point-spread function h(x, y) is known explicitly. The goal of the
general blind deconvolution problem is to recover convolved signals, when only a noisy
version of their convolution is available along with some or no partial information about
either signal. In practice, all blind deconvolution algorithms require some partial informa-
tion to be known and some conditions to be satisfied. Our main interest concerns image
enhancement, where the degradation involves a convolution process. Blind deconvolution
is a technique that permits recovery of the target object from a set of “blurred” images in
the presence of a poorly determined or unknown point spread function (PSF). Regular lin-
ear and non-linear deconvolution techniques require a known PSF. In many situations, the
point-spread function is known explicitly prior to the image restoration process. In these
cases, the recovery of the image is known as the classical linear image restoration problem.
This problem has been thoroughly studied and a long list of restoration methods for this
situation includes numerous well-known techniques, a few examples of which are as inverse
filtering, Wiener filtering, subspace filtering and least-squares filtering. However, there are
numerous situations in which the point-spread function is not explicitly known, and the
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(a) (b)

(c) (d)

Fig. 1.25 Illustration of image restoration problem: (a) Original image (unknown), (b) distorted
(blurred) available image, (c) restored image using blind deconvolution approach, (d) final restored
image obtained after smoothing (post-processing) [329, 330].

true image must be identified directly from the observed image g(x, y) by using partial or
no information about the true image and the point-spread function. In these cases, we have
the more difficult problem of blind deconvolution of images. For the “blind” case a set of
multiple images (data cube) of the same target object is preferable, each having dissimilar
PSF’s. The blind deconvolution algorithm would be then able to restore not only the target
object but also the PSFs. A good estimate of the PSF is helpful for quicker convergence
but not necessary.

The algorithmic way of processing and analyzing digital images have developed powerful
means to interpret specific kinds of images, but failed to provide general image understand-
ing methods that work on all kinds of images. This is mostly due to the fact that every
image can be interpreted in many ways, as long as we do not know anything about what we
expect to be in it. Thus, we need to build models about the expected contents of images
in order to be able to “understand” them. There are many successful applications of image
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processing; but they are almost always fragile in the sense that it is difficult to adapt them
to slightly different forms of imagery or to slightly different circumstances. The aim of the
Image Understanding is to address this fundamental problem by providing a set of image
processing competences within an architecture that can observe the performance of each
process, reflect on them, and choose to use/reject certain processes.

Obviously, there is a wide gap between the nature of images and descriptions. It is
the bridging of this gap that has kept researchers very busy over the last two decades in
the fields of Artificial Intelligence, Scene Analysis, Image Analysis, Image Processing, and
Computer Vision. Nowadays we summarize these fields as “Image Understanding” research.

In order to make the link between image data and domain descriptions, an intermediate
level of description is introduced. It generally contains geometric information. Processing
usually starts with some image processing, where noise and distortion are reduced and
certain important aspects of the imagery are emphasized. Then, events are extracted from
the images that characterize the information needed for description. Typically, these events
are such as blobs, edges, lines, corners, regions. They are stored at the intermediate level
of abstraction. These are referred to in the literature as “features”. Such descriptions are
free of domain information - they are not specifically objects or entities of the domain of
understanding, but they contain spatial and other information. It is the spatial/geometric
(and other) information that can be analyzed in terms of the domain in order to interpret
the images.

Image understanding is one of the most important and difficult tasks on the way towards
what is known as artificial intelligence (AI). There is no working system yet which comes
close to the capabilities of the human visual system. Some reasons are:

• Biological systems cannot be easily imitated.

• Specialized problem solving methods can hardly be generalized.

• The computational power needed for real-time digital image analysis exceeds the ca-
pacity of even the best workstation.

BSP, especially ICA/PCA, are promising approaches to Image Understanding. One of
the ideas of a transform based image/signal description is to expand a signal by using a set of
transform basis functions. A well-suited signal description allows us to extract characteristic
signal properties which can be used for a variety of signal processing tasks, such as signal
estimation, signal compression, or signal analysis. The suitability of an image transform in
this context is connected to the efficiency of the transform in representing a given image,
i.e. how many coefficients does a transform need to represent the image. The measure
for efficiency is the sparseness of the transform coefficients, represented by the decay of
the ordered coefficients from a given transform. The local singularities are characterized
by location, orientation, and spatial extension. Finding a suitable signal transform for the
description of linear singularities is the key for an analysis of the underlying information on
natural images.

The question arises: How to efficiently describe images which contain a linear or nonlinear
mixture of very different signal components. The application of classical signal transforms
(such as Fourier or wavelet transform) to such images is limited since there is no single
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dominant signal component that can be efficiently estimated with one transform. The idea
of ICA or related decomposition approaches is to decompose the image to basic independent
components and to start with a large set of independent components. For the image de-
scription, only those components that contribute to a sparse description are used. We want
to have a small (sparse) number of large coefficients that condense the image information.
The reason for desiring a sparse representation is that under certain assumptions it will also
reduce statistical dependencies among units: This provides a more efficient representation
of the image structure.

One of the specific goals of research is to understand the coding strategies used by the hu-
man visual system for accomplishing tasks such as object recognition and scene analysis. In
a task such as face recognition, much of the important information may be contained in the
high-order relationships among the image pixels. ICA and related decomposition/separation
techniques are able to recover signal components out of signal mixtures. Moreover, ICA/BSS
image decomposition allows us to efficiently represent signal components in images. It also
allows us to determine the “interesting” signal components in images (see Fig.1.19). There-
fore, ICA image decomposition is a promising tool for image analysis, reconstruction, and
classification, as well as for feature detection and image indexing. Statistically independent
basis images (e.g., for the faces) that can be viewed as a set of independent (facial) fea-
tures. These ICA basis images are spatially localized, unlike the PCA basis vectors. The
representation consists of the coefficients for the linear combinations of basis images that
comprised each image. Theories of sensory coding based on the idea of maximizing infor-
mation transmission while eliminating statistical redundancy from the raw sensory signal
have been successful in explaining several properties of neural responses in the visual system
including the population of receptive fields in the visual cortex.

The long-term goal of the Image Understanding research is to develop computational
theories and techniques for use in artificial vision systems for which the performance matches
or exceeds that of humans, by analyzing sequence of images in space, time and frequency
domains.





2
Solving a System of Linear

Algebraic Equations and
Related Problems

A problem well stated is a problem half solved.
—(C.F. Kettering)

A problem adequately stated is a problem well on it’s way to being solved.
—(R. Buckminster Fuller)

In modern signal and image processing fields like biomedical engineering, computer to-
mography (image reconstruction from projections), automatic control, robotics, speech
and communication, linear parametric estimation, models such as auto-regressive moving-
average (ARMA) and linear prediction (LP) have been extensively utilized. In fact, such
models can be mathematically described by an overdetermined system of linear algebraic
equations. Such systems of equations are often contaminated by noise or errors, thus the
problem of finding an optimal and robust with respect noise solution arises if some a priori
information about the error is available. On the other hand, wide classes of extrapolation,
reconstruction, estimation, approximation, interpolation and inverse problems can be con-
verted to minimum norm problems of solving underdetermined systems of linear equations.
Generally speaking, in signal processing applications, the overdetermined system of lin-
ear equations describes filtering, enhancement, deconvolution and identification problems,
while the underdetermined case describes inverse and extrapolation problems. This chapter
provides a tutorial to the problem of solving large overdetermined and underdetermined sys-
tems of linear equations, especially when there is an uncertainty in parameter values and/or
the systems are contaminated by noise. A special emphasis is placed in on-line fast adap-
tive and iterative algorithms for arbitrary noise statistics. This chapter also gives several
illustrative examples that demonstrate the characteristics of the developed algorithms.

43



44 SOLVING A SYSTEM OF ALGEBRAIC EQUATIONS AND RELATED PROBLEMS

2.1 FORMULATION OF THE PROBLEM FOR SYSTEMS OF LINEAR

EQUATIONS

Let us assume that we want to solve a large set of linear algebraic equations written in
scalar form as

n∑

j=1

hij sj = xi, (i = 1, 2, ...,m) (2.1)

or in the matrix form

Hs = x. (2.2)

Here, s is the n-dimensional unknown vector, x is the m-dimensional sensor or measurement
vector and H = [hij ] is the m × n real, typically a full column rank matrix with known
elements.1 Note that the number of equations is generally not restricted to m = n; it can
be less than, equal to or greater than the number of variables, i.e., the components of s.
If m < n, then the system of equations is called underdetermined, and if m > n, then the
system of equations is called overdetermined. Of course, such a system of equations may
have a unique solution s∗, an infinite number of solutions or no exact solution may exist.
In practice, for linear estimation problems, a system of linear (overdetermined) equations
is formulated in a more general form as

Hs = x− e = xtrue, (2.3)

where H = [hij ] ∈ IRm×n is the matrix model, x ∈ IRm is the vector of observations or mea-
surements, e ∈ IRm is the vector of unknown noise or measurement errors2, xtrue ∈ IRm is
the vector of true but unknown values and s ∈ IRn is the vector of the system parameters or
sources to be estimated or computed. From a practical point of view, it is usually desirable
to find a (minimal norm) solution s∗, if a solution exists, or to find an approximate solution
which comes as close as possible to the original one, subject to a suitable optimality crite-
rion if no exact solution exists. The problem can be formulated as an optimization problem:

Find a vector s ∈ IRn that minimizes the scalar objective (cost) function

Jp(s) = ‖x−Hs‖p = ‖e(s)‖p, p ≥ 1, (2.4)

where the residual error vector e for a given vector s

e(s) = [e1(s), e2(s), ..., em(s)]T (2.5)

has the components

ei(s) = xi − hT
i s = xi −

n∑

j=1

hij sj , (i = 1, 2, ..., m) (2.6)

1In contrast to other chapters in this book, we assume here that matrix H is known a priori or can be
estimated. In the next chapters, we will explain how such a matrix can be identified or estimated.
2In some applications a priori knowledge of the statistical nature of the error (noise) is available. Typically,
it is assumed that noise is zero-mean and has a Gaussian distribution.
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and ‖e‖p is the p-norm of the vector e. The p-norm solution s∗ satisfies the equation

Hs∗ + e(s∗) = x. (2.7)

Thus, s∗ minimizes the p-norm of the residual vector e(s) = x −Hs with respect to the
vector s, i.e., the following relation holds:

‖x−Hs∗‖p ≤ ‖x−Hs‖p ∀s ∈ IRn. (2.8)

For the optimization problem (2.4), there are three special cases which are important in
practice:

(a) For p = 1, the problem is referred to as the 1-norm or least absolute deviation (LAD)
problem.

(b) For p = 2, the problem is called the 2-norm or linear least-squares (LS) problem.

(c) For p = ∞, the problem is referred to as the Chebyshev (infinity - norm) or minimax
problem.

A proper choice of the norm depends on the specific applications and the distribution
of the errors within the data x. If the error distributions have sharply defined transitions
(such as the uniform distribution), then the Chebyshev (infinity) norm may be the most
suitable choice. For the Laplacian error distribution one can use the 1-norm. For the normal
distribution of the errors, the best choice would be the 2-norm. It should be noted that,
in the special case of zero noise and the matrix H is square and nonsingular, ‖e(s∗)‖p = 0
and all the three special cases (p = 1, 2,∞) mentioned above are equivalent, i.e., they
provide the same unique solution as s∗ = H−1 x. However, in general, for the noisy case for
all the three problems above, the solutions are different. Moreover, both the 1-norm and
infinity-norm solutions are not necessarily unique [282].

In some applications, for m ≤ n, a more general optimization problem is considered in
which the minimization of the p-norm of the residual error vector e(s) = x−Hs is subject
to the linear constraints given by

cT
i s = ui, (i = 1, 2, . . . , l), (2.9)

cT
i s ≥ ui, (i = l + 1, . . . , k),

aj ≤ sj ≤ bj , (j = 1, 2, . . . , n),

where ci = [ci1, ci2, . . . , cin]T , ui, aj and bj are the given constraint parameters.

2.2 LEAST-SQUARES PROBLEMS

2.2.1 Basic Features of the Least-Squares Solution

The linear least-squares (LS) problem is a special case of the nonlinear least-squares problem
(NLS) which is probably the most fundamental operation in signal processors. It is basic
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to Fourier analysis, deconvolution, correlation, optimum parameter estimation in Gaussian
noise, linear prediction and many other signal processing methods (cf. next chapters).
The linear least-squares problem associated with the problem (2.4) can be formulated as
follows:
Find the vector s ∈ IRn that minimizes the cost (energy) function

J(s) =
1
2
‖x−Hs‖22 =

1
2

(x−Hs)T (x−Hs) (2.10)

=
1
2
eT e =

1
2

m∑

i=1

e2
i ,

where

ei(s) = xi − hT
i s = xi −

n∑

j=1

hij sj . (2.11)

The cost function achieves the global minimum when its gradient equals zero:

∇J(s) = HT (x−Hs) = 0. (2.12)

Hence, s∗ = (HT H)−1 HT x.

Remark 2.1 The cost function J(s) has an interesting statistical interpretation. When the
noise vector e is drawn from the Gaussian distribution with zero-mean and unity variance,
the cost function J(s) is proportional to the negative of the logarithm of the likelihood.
Hence, minimizing J(s) is equivalent to maximizing the log likelihood.

The solutions of the LS problem can be grouped into three categories:

(i) H ∈ IRn×n, rank[H] = n = m (determined case): a unique solution

s∗ = H−1 x exists with J(s∗) = 0, (2.13)

(ii) H ∈ IRm×n, rank[H] = n < m (overdetermined case): an exact solution of the problem
(2.2) generally does not exist, but the least-squares error solution can be expressed
uniquely as

s∗ = (HT H)−1 HT x = H+ x, (2.14)

with
J(s∗) =

1
2
xT (I−HH+)x ≥ 0, (2.15)

where H+ is the Moore-Penrose pseudo-inverse,

(iii) H ∈ IRm×n, rank[H] = m < n (underdetermined case): the solution of the problem
(2.2) is not unique, but the LS problem can give the minimum 2-norm ‖s‖22 unique
solution [689]:

s∗ = HT (HHT )−1 x = H+ x, (2.16)
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with
J(s∗) = 0 (2.17)

and thereby the resulting value of the norm leads to

‖s∗‖22 = xT (HHT )−1 x. (2.18)

Remark 2.2 We can straightforwardly derive formula (2.16) by formulating the Lagrange
function as

L(s,λ) =
1
2
sT s + λT (x−Hs), (2.19)

where λ = [λ1, λ2, . . . , λn]T is the vector of Lagrangian multipliers. For the optimal solution,
the gradient of the Lagrange function becomes zero

∇sL(s, λ) = s∗ −HT λ∗ = 0. (2.20)

Hence, we have λ∗ = (HHT )−1Hs∗ and s∗ = HT λ∗ = HT (HHT )−1x = H+x.
It should be noted that generalized (the Moore-Penrose) pseudo-inverse matrix for the

underdetermined case is H+ = HT (HHT )−1, (n ≥ m), while for the overdetermined case
is H+ = (HT H)−1HT , (m ≥ n).

In the general case, when rank (H) < min(m,n), i.e., matrix H may be rank deficient,
we seek the minimum norm solution s∗, which minimizes both ‖s‖2 and ‖x−Hs‖2.

Assuming that the matrix H is not ill-conditioned, we can use (2.14) in a straightforward
manner to find the parameters of the least-squares solution. For ill-conditioned problems,
direct inversion of the matrix HT H may cause the noise to be amplified to a degree which
is unacceptable in practice. In such cases, more robust solutions to the estimation problem
need to be found.

2.2.2 Weighted Least-Squares and Best Linear Unbiased Estimation

In some applications (for m > n), it is reasonable to satisfy some of the more important
equations at the expense of the others, i.e., it is required that some of the equations in (2.1)
are nearly satisfied while “larger” errors are acceptable in the remaining equations. In such
a case, a more general weighted least-squares problem can be formulated:

Minimize the cost function

J(s) =
1
2
(x−Hs)T Σe (x−Hs) =

1
2
‖Σ1/2

e e‖22, (2.21)

where Σe is an m×m positive definite (typically diagonal) matrix which reflects a weighted
error.

Remark 2.3 The cost function (2.21) corresponds to a negative likelihood when the zero-
mean error vector e is drawn from the Gaussian distribution with covariance matrix Σ−1

e .
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In the case that the matrix Σe is diagonal, i.e., Σe = diag(σ2
1e, σ

2
2e, . . . , σ

2
me), the 2-norm

1
2‖Σ1/2

e e‖22 = 1
2

∑m
i=1 σ2

iee
2
i will be minimized instead of 1

2‖e‖22. Using such a transformation,
it is easy to show that the optimal weighted least-squares solution has the form3

s∗ = sWLS = (HT Σe H)−1 HT Σe x (2.22)

and its minimum LS error is

J(s∗) = xT
[
Σe −Σe H (HT Σe H)−1 HT Σe

]
x. (2.23)

It turns out that an optimal and natural choice for the weighting matrix Σe is the
inverse of the covariance matrix of the noise under the assumptions that the noise is zero-
mean with the positive definite covariance matrix Ree and H is deterministic.4 Assuming
that Σe = R−1

ee is known or can be estimated, we obtain so called BLUE (the Best Linear
Unbiased Estimator)

s∗ = sBLUE = (HT R−1
ee H)−1 HT R−1

ee x, (2.24)

which also minimizes the mean-square error.
The matrix R−1

ee emphasizes (amplifies) the contributions of the precise measurements
and suppresses the contributions of the imprecise or noisy measurements. The above results
can be summarized in the form of the following well known Gauss-Markov Theorem [689]:

Theorem 2.1 Gauss-Markov Estimator If a system is described by the set of linear
equations

x = Hs + e, (2.25)

where H is a known m×n matrix, s is an n×1 vector of parameters to be estimated, and e
is an m× 1 arbitrary distributed noise vector with zero-mean and known covariance matrix
Ree = E{eeT }, then the BLUE of s is

sBLUE = (HT R−1
ee H)−1 HT R−1

ee x, (2.26)

where sBLUE = [ŝ1, ŝ2, . . . , ŝn]T and the minimum variance of ŝj is written as

var(ŝj) = E{ŝ2
j} =

[
HT R−1

ee H
]
jj

. (2.27)

If the noise has the same variance, i.e., Ree = σ2
e Im, the BLUE reduces to the standard

Least-Squares formula

sLS = (HT H)−1 HT x. (2.28)

3Matrix HT ΣeH in (2.22) must be nonsingular for its inverse to exist.
4In some applications, the matrix H is varying in time.
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2.2.3 Basic Network Structure-Least-Squares Criteria

To formulate the above problems (2.1)-(2.3) in terms of artificial neural networks (ANNs),
the key step is to construct an appropriate computational cost (energy) function J(s) such
that the lowest energy state corresponds to the optimal solution s∗ [282]. The derivations of
the energy function enable us to transform the minimization problem into a set of differential
or difference equations, on the basis of which we design ANN architectures with appropriate
connection weights (synaptic strengths) and input excitations [282].

There are many ways to connect neuron-like computing units (cells) into large-scaled
neural networks. These different patterns of connections between the cells are called ar-
chitectures or circuit structures. The purpose of this section is to review known circuit
structures and to propose some new configurations with improved performance and/or with
a reduced set of such computing units. Using a general gradient approach for minimization
of the energy function, the problem formulated by Eq. (2.10) can be mapped to a set of
differential equations (an initial value problem) written in the matrix form as

ds
dt

= −µ∇J(s) = µHT (x−Hs) = µHT e, (2.29)

where µ = [µij ] is an n×n positive definite matrix which is often chosen to be a diagonal one.
The specific choice of the coefficients µij must ensure both the stability of the differential
equations and an appropriate convergence speed to the stationary solution (equilibrium)
state. It is straightforward to prove that the system of differential Eqs. (2.29) is stable (i.e.,
it always has an asymptotically stable solution) since

dJ

dt
=

n∑

j=1

∂J(s)
∂sj

dsj

dt
= − (∇J(s))T

µ∇J(s) ≤ 0 (2.30)

under the condition that the matrix µ is positive definite, and in the absence of round-off
errors in the full rank matrix H.

2.2.4 Iterative Parallel Algorithms for Large and Sparse Systems

The system of differential equations (2.29) can be easily and directly converted to the
parallel iterative algorithm as [282]

s(k + 1) = s(k) + η(k)HT [x−Hs(k)], (2.31)

where η is a symmetric positive definite matrix with upper bounded eigenvalues to ensure
the stability of the algorithm. In the special case, for η(k) = ηk I the algorithm is sometimes
called the Landweber algorithm, which is known to converge to a LS solution of Hs = x,
whenever the learning rate ηk is chosen so that I−ηkHT H is nonnegative definite. In other
words, the learning rate ηk should satisfy the constraint 0 < ηk ≤ 1/λmax, where λmax

is the maximum eigenvalue of HT H. Generally, the algorithm converges faster if the ηk

is near the upper limit. In order to apply the algorithm efficiently, we must first estimate
the largest eigenvalue of HT H, to determine the upper limit. By suitably rescaling the
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system of linear equations, we can accelerate the convergence and relatively easy estimate
the upper limit. For example, let H be an m× n matrix normalized so that the Euclidean
norm of each row is unity. Furthermore, let rj be the number of non-zero entries in the
j-th column of H and rmax be maximum of the {rj}. Then, the maximum eigenvalue of
the matrix HT H does not exceed rmax [122]. This property allows us to take ηk = 1/rmax,
which, for very sparse matrices H, can considerably accelerate the convergence rate.

A further increase of convergence speed can be obtained by applying the block iterative or
ordered subset version of the algorithm [122, 170]. We obtain the block iterative algorithms
by partitioning the set {i = 1, 2, . . . , m} into (not necessary disjoint) subsets St, t =
1, 2, . . . , T , for T ≥ 1. At each iteration we select the current block and then we use only
those data xi with i in the current block. The use of blocks tends to increase the upper
bounds of the learning rate and thereby increase the convergence speed.

The block iterative algorithm, called the BI-ART [170] (block iterative- algebraic recon-
struction technique) can be written as

s(k + 1) = s(k) + ηk

∑

i∈St

xi − hT
i s(k)

hT
i hi

hi, (2.32)

In each iterative step the sum is taken only over the subset St.
In extreme case for T = 1, we obtain the Kaczmarz algorithm [170, 282] (also called as

the row-action-projection method) which iterates through the set of equations in a periodic
fashion, and can be written as

s(k + 1) = s(k) + ηk
xi − hT

i s(k)
hT

i hi
hi, i = k modulo (m + 1) (2.33)

where, 0 < ηk < 2 and at each iteration, we use only one row of H and a corresponding
component of x successively. In other words, the index i is taken modulo (m + 1), i.e., the
equations are processed in a cyclical order.

The Kaczmarz algorithm5, developed in 1937, has relatively low computational complex-
ity and converges fast to an exact solution if the system of equations is consistent without
having to explicitly invert the matrix HT H or HHT . This is important from a practical
point of view, especially when H has a large number of rows. For inconsistent systems, the
algorithm may fail to converge for the fixed learning rate and it can generate limit cycles,
i.e., the solution fluctuates in the vicinity of the least-squares solution as has been shown
by Amari [19] and Tanabe [122]. To remove this drawback, we can gradually reduce the
learning rate ηk to zero [19].

A more elegant way, which does not easily generalize to other algorithms, is simply
apply Kaczmarz algorithm twice. The procedure is sometimes called DART (double ART)
[122]. Let us assume that for any x the inconsistent system of equations satisfies after the

5The Kaczmarz algorithm has been rediscovered over the years in many applications, for example, as
the Widrow-Hoff NLMS (normalized least-mean-square) algorithm for adaptive array processing or the
ART (algebraic reconstruction technique) in the field of medical image reconstruction in computerized
tomography.
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convergence of the equation Hs∗ + e∗ = x. The minimal error vector e∗ is the orthogonal
projection of x onto the null space of the matrix transformation HT . Therefore, if HT e∗ = 0
then s∗ is a minimizer of ‖x−Hs‖2. The DART procedure is summarized as follows: first,
we apply the Kaczmarz algorithm to the He = 0, with initial conditions e(0) = x. After
the convergence the optimal error e∗, will be the member of the null space closest to x. In
the second step, we apply the Kaczmarz algorithm to the consistent system of the linear
equations Hs = x− e∗ = Hs∗.

For sparse matrices, a significant acceleration of the convergence speed without the use
of blocks can also be achieved by the overrelaxation.

In general, the iterative algorithm takes the form

s(k + 1) = s(k) + η(k)DHT (x−Hs(k)), (2.34)

where η(k) is a diagonal matrix with the learning rates and D is a diagonal and positive
definite matrix ensuring the normalization of actual errors xi−hT

i s(k). The diagonal matrix
D can take different forms depending on the data structure and applications. Typically, for
large, sparse and unstructured problems it can take the form [170]

D = diag
{

1
‖h1‖2r

,
1

‖h2‖2r
, . . . ,

1
‖hm‖2r

}
, (2.35)

where hT
i is the i-th row of H and ‖hi‖2r denotes a weighted norm of the vector hi. For

a large and sparse matrix the norm is usually defined as ‖hi‖2r =
∑n

j=1 rjh
2
ij , where rj is

the number of the non-zero elements hij of the column j of H. In such a case, the above
iterative formula, which is called as the CAV (Component Averaging) algorithm [170], can
be written in a vector form as

s(k + 1) = s(k) + η(k)
m∑

i=1

xi − hT
i s(k)∑n

j=1 rj h2
ij

hi (2.36)

with 0 < η̄(k) < 2.

2.2.5 Iterative Algorithms with Non-negativity Constraints

In many applications, some constraints may be imposed to obtain valid solutions of the
system of linear equations Hs = x. For example, in the reconstruction of medical images in
computer tomography, it is convenient to transform an arbitrary system of linear equations
to equivalent systems in which both the matrix H and vector x have only nonnegative
entries.

Remark 2.4 There is no loss of generality in considering here only the systems of linear
equations in which all the entries of matrix H ∈ IRn×m are nonnegative. Such transfor-
mation can be done as follows [122]: Suppose that Hs = x is an arbitrary (real) system
of linear equation with the full-rank matrix H. After rescaling of some equations, if nec-
essary, we may assume that all xi are non-negative and that for each j the column sum∑m

i=1 hij is non-zero. Now, we can redefine H and s as follows: h̃kj = hkj/
∑m

i=1 hij and
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s̃j = sj(
∑

i hij). After such transformation, the new matrix H̃ has column sums equal to
one and the vector x = H̃ s̃ is unchanged. Due to the fact that sums of all columns are
unity, we have

∑n
j=1 s̃j = s+ =

∑m
i=1 xi = x+. We can always find such positive coefficient

β in that the matrix defined as B = H̃ + β1 has all the nonnegative entries, where 1 is an
m× n matrix of which entries are all unity. Hence, we have B s̃ = H̃ s̃ + (β s+)1, where 1
is the vector of which entries are all one. Thus the new system of the equations to solve is
B s̃ = x + (β x+)1 = x̄.

We often made a further assumption that the column-sums of the matrix B are all
unity. To achieve this, we make one additional renormalization: replace bkj with h̄kj =
bkj/(

∑m
i=1 bij and s̃j with s̄j = s̃j

∑m
i=1 bij. Note that the vector Bs̃ is identical to H̄ s̄ and

the new matrix H̄ is nonnegative and has column sums equal to one.

Let us consider the problem of solving of a system of linear equations H̄ s = x̄ with
nonnegative elements h̄ij and x̄i and the constraints s ≥ 0 (i.e., sj ≥ 0, ∀j) [122, 878].
Without loss of generality, we assume that such system is normalized in a way that

H̄T 1 = 1, (2.37)

where 1 is the vector of all ones. This indicates that all the columns of H̄ are normalized
to have their 1-norm equals unity.

To solve the problem, we can apply the standard LS criterion: minimize J(s) = ‖x̄−H̄ s‖2
subject to the constraints s ≥ 0 or alternatively by applying the Shannon entropy type
penalty term as J(s) = ‖x̄− H̄ s‖2 + α

∑n
j=1 sj log sj with sj ≥ 0.

Non-negativity can alternatively be enforced by choosing the Kullback-Leibler distance or
maximum likelihood functional [122, 878]. The use of the maximum likelihood functional
is justified by the assumption of Poisson noise, which is a typical case in medical image
reconstruction [878].

To find a solution, we minimize the Kullback-Leibler distance defined as

KL(x̄ || H̄ s) =
M∑

i=1

KL(x̄i, h̄T
i s)

=
m∑

i=1

x̄i log
x̄i

h̄T
i s

+ h̄T s− x̄i, (2.38)

subject to s ≥ 0, where KL(a, b) = a log(a/b) + b− a, KL(0, b) = b and Kl(a, 0) = +∞ for
positive scalars a and b, log denotes the natural logarithm and, by definition, 0 log 0 = 0.
It is straightforward to check that the above cost function can be simplified to a likelihood
function [878]

J(s) =
m∑

i=1

[
h̄T

i s− x̄i log(h̄T
i s)

]
(2.39)

subject to s ≥ 0.
The above constrained optimization problem can be easily transformed into an uncon-

strained minimization problem by introducing a simple parametrization s = exp(u), that
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is, sj = exp(uj), ∀j. With this parameterizations and taking into account that H̄T 1 = 1,
we are able to evaluate the gradient of the cost function as follows [878]

∇uJ(s) = Ds ∇sJ(s) = Ds H̄T D−1
H̄s

(H̄ s− x̄)

= Ds H̄T (1−D−1
H̄s

x̄) = s−Ds H̄T D−1
H̄s

x̄, (2.40)

where Ds = diag{s} = diag{s1, s2, . . . , sn} and DH̄s = diag{H̄ s} =diag{h̄T
1 s, h̄T

2 s,. . . , h̄T
ns}.

Hence , by setting the gradient to zero, we obtain the fixed point algorithm, which is alter-
natively called as the EMML (expectation maximization maximum likelihood) algorithm
[122, 878]

s(k + 1) = Ds(k) H̄T D−1
H̄s

(k) x̄ (2.41)

where Ds(k) = diag{s(k)} and D−1
H̄s

(k) = diag{H̄ s(k)}. The EMML algorithm can be
written in scalar form as

sj(k + 1) = sj(k)
m∑

i=1

h̄ij
x̄i

h̄T
i s(k)

, (j = 1, 2, . . . , n). (2.42)

If we had not normalized H so as to have the columns of H̄ sum to one, the EMML algorithm
would have had the iterative step

sj(k + 1) =
sj(k)∑m

i hij

m∑

i=1

hij
xi

hT
i s(k)

, (j = 1, 2, . . . , n). (2.43)

The closely related to the EMML algorithm is the SMART (Simultaneous Multiplicative
Algebraic Reconstruction Technique) developed and analyzed by Byrne [122]:

sj(k + 1) = sj(k) exp

(
m∑

i=1

h̄ij log(
x̄i

h̄T
i s̄(k)

)

)

= sj(k)
m∏

i=1

(
x̄i

h̄T
i s(k)

)h̄ij

, (j = 1, 2, . . . , n) (2.44)

which can be considered as the minimization of the Kullback-Leibler distance

KL(H̄ s||x) =
M∑

i=1

KL(h̄T
i s, x̄i), (2.45)

over the nonnegative orthant.
In the consistent case (that is, when there is a vector s ≥ 0 which satisfies x̄ = H̄ s), the

both SMART and EMML algorithms converge to the nonnegative solution that minimizes
KL(s||s(0)). When there are no such nonnegative vectors, the SMART converges to the
unique nonnegative minimizer of the cost function KL(H̄ s||x̄) for which KL(s||s(0)) is
minimized, while the EMML converges to the to the unique minimizer of KL(x̄||H̄ s). It is
interesting to note that in the case when entries of the initial vector s(0) are all equal, the
SMART converges to the solution for which the Shannon entropy JS = −∑n

i=1 sj log sj , is
maximized [122].
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2.2.6 Robust Circuit Structure by Using the Interactively Reweighted Least-Squares

Criteria

Although the ordinary (standard) least-squares (2-norm) criterion discussed in the previ-
ous section is optimal for a Gaussian error distribution, it nevertheless, provides very poor
estimates of the vector s∗ in the presence of large errors (called outliers) or spiky noise.6

In order to mitigate the influence of outliers (i.e., to provide a more reliable and robust
estimate of the unknown vector s), we can employ the iteratively reweighted least-squares
criterion (also called as the robust least-squares criterion). According to this criterion, we
wish to solve the following minimization problem:

Find the vector s ∈ IRn that minimizes the energy function

Jρ(s) =
m∑

i=1

ρ[ei(s)], (2.46)

where ρ[e] is a given (usually convex) function called as the weighting or loss function and
its derivative Ψ(e) = dρ(e)/de is called as the influence function.7 Typical robust loss
functions and corresponding influence functions are summarized in Table 2.1.

Remark 2.5 From the statistical point of view this corresponds to the negative of the log
likelihood, when the noise vector e has a distribution expressed by the pdf

p(e) = c

m∏

i=1

exp(−ρ(ei)). (2.47)

Note that by taking ρ(ei) = e2
i /2, we obtain the ordinary linear least-squares problem

considered in the previous section.8 However, in order to reduce the influence of the outliers,
other weighting functions should be chosen. One of the most popular weighting (loss)
functions is the logistic function [282]

ρL[e] = β2 log(cosh(e/β)), (2.48)

where β is a problem dependent parameter, which is called the cut-off parameter. The iter-
atively reweighted least-squares problem given by Eq. (2.46), often used in robust statistics,
is usually solved numerically by repeatedly solving a weighted least-squares problem. We
will attack this problem by mapping the minimization problem (2.46) into a system of dif-
ferential equations. For simplicity, in our further considerations, let us assume that the
weighting function is the logistic function given by Eq. (2.48). Applying the gradient

6 For simplicity, we ensure that all the errors are confined to the observation (sensor) vector x.
7It is important to note that the energy function so defined is convex if the loss functions are convex.
Therefore the problem of convergence to a local minimum does not arise.
8The ordinary least-squares error criterion equally weights all the modelling errors and may produce a
biased parameters estimation, if the observed data are contaminated by impulsive noise or large isolated
errors.
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Table 2.1 Basic robust loss functions ρ(e) and corresponding influence functions Ψ(e) = dρ(e)/de.

Name Loss Function ρ(e) Influence Functions Ψ(e)

Logistic ρL =
1

β
log (cosh (βe)) ΨL = tanh (βe)

Huber ρH =

8<:e2/2, for |e| ≤ β;

β|e| − β2

2
, otherwise

ΨH =

(
e, for |e| ≤ β;

βsign(e), otherwise

Lp ρLp = 1
p |e|p ΨLp = |e|p−1sign(e)

Cauchy ρC = σ2

2 log

�
1 +

� e

σ

�2
�

ΨC = e

1 +
� e

σ

�2

Geman,
McCulre

ρG = 1
2

e2

σ2 + e2 ΨG = σ2e
(σ2 + e2)2

Welsh ρW = σ2

2

�
1− exp

�
−
� e

σ

�2
��

ΨW = e exp

�
−
� e

σ

�2
�

Fair ρF = σ2

� |e|
σ − log(1 +

|e|
σ

)

�
ΨF = e

1 +
|e|
σ

L1 − L2 ρL12 = 2(
p

1 + e2/2− 1) ΨL12 = ep
1 + e2/2

Talvar ρTa =

(
e2/2, for |e| ≤ β;

β2/2, otherwise
ΨTa =

(
e, for |e| < β;

0, otherwise

Hampel ρHa =

8>>><>>>:
β2

π (1− cos (πe/β)), for |e| ≤ β;

2β2

π
, otherwise

ΨHa =

(
β sin (πe/β),

0
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Fig. 2.1 Architecture of the Amari-Hopfield continuous-time (analog) model of recurrent neural net-
work (a) block diagram, (b) detailed architecture.

approach for the minimization of the energy function (2.46), we obtain

dsj

dt
= µj

(
m∑

i=1

hij Ψi

[
xi −

n∑
p=1

hip sp

])
(j = 1, 2, . . . , n), (2.49)

with sj(0) = s
(0)
j ,
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where Ψi[ei] is the sigmoidal activation function described as

Ψi[ei] =
∂ρL[ei(s)]

∂ei
= β tanh(ei/β). (2.50)

The above system of differential equations can be rewritten in the compact matrix form

ds
dt

= µHT Ψ(x−Hs) = µHT Ψ(e), (2.51)

where µ = diag{µ1, µ2, . . . , µn}. The above system of differential equations can be imple-
mented by a flexible Amari-Hopfield neural network shown in Fig.2.1 [282].

Note that the above system of equations has a form similar to that given by Eqs. (2.29)
and that they can be easily implemented by a similar network architecture under the as-
sumption that in the first (sensor) layer of neurons the sigmoidal nonlinearities are incorpo-
rated. The use of the sigmoidal nonlinearities in the first layer of neurons is essential, since
they enable us to compress large residuals ei(s), that is, to prevent their absolute values
from being greater than the prescribed cut-off parameter β. Therefore, we are able to obtain
a more robust solution which is less sensitive to large errors (outliers) (in comparison with
the ordinary least-squares implementation).

2.2.7 Tikhonov Regularization and SVD

The noise in the measurements xi, in combination with the ill-conditioning of matrix H,
means that the exact solution of the standard LS problem (2.10) usually deviates strongly
from the noise-free solution and therefore is often worthless. To alleviate the problem, we
can apply regularization. The Russian mathematician Tikhonov was probably the first who
studied the concepts of regularization [282]. The idea behind this technique is to define a
criterion to select an approximate solution from a set of admissible solutions. The basic
feature of the regularization is a compromise between fidelity to data and fidelity to some
a priori information about the solution. In other words, the regularization method imposes
a weak smoothness constraint on the set of possible solutions.

According to the regularization theory, the regularized energy function (i.e., the function
to be minimized) is the weighted sum of two (or even more) terms:

J(s, α) = Jd(s) + α Js(s), (2.52)

where Jd is the data energy and Js is the smoothness constraint (also called stabilizer
energy) [282].

Remark 2.6 This formulation has the following Bayesian statistical interpretation. Let us
assume that the true signal s has the prior distribution

ω(s) = exp{−αJs(s)}. (2.53)

Then the joint distribution of s and x can be written as

p(x, s) = c exp{−Jd(s)− αJs(s)}. (2.54)
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Hence, the criterion of maximizing the posteriori distribution p(s |x) of the source signals
s given x is equivalent to minimizing J(s, α).

For our linear least-squares problem (cf. Eq. (2.10)), a regularized solution can simply be
defined as the solution of the following problem:

s(α) = arg min
s∈IRn

J(s, α), (2.55)

where

J(s, α) =
1
2

(‖x−Hs‖22 + α ‖s‖22
)
, (2.56)

with α > 0.

Thus, in this case, the smoothness constraint energy is the squared 2-norm of the vector s.
Here, the regularization parameter α controls the “smoothness” of the regularized solution.9

Applying the standard gradient descent approach to the cost function (2.56), we obtain
a system of differential equations with leaky integrators [282]

ds
dt

= µ
[
HT (x−Hs)− α s

]
. (2.57)

It should be noted that the minimization of the energy function J(s, α) (2.56), with respect
to s, is equivalent to the solution of the normal equation

(HT H + α I)s = HT x. (2.58)

It can be shown that the condition number of the realized matrix H̃ = HT H + α I is given
by

cond(H̃) =
σ2

max + α

σ2
min + α

, (2.59)

where σmax and σmin are respectively the maximum and the minimum singular values of
the matrix HT H. Thus, the condition number of the regularized matrix H̃ = HT H + α I
can be much lower than that of the matrix HT H (i.e., H̃ for α = 0). For example, for the
setting σmax = 1, σmin = 0.1 and α = 0.1, the condition number is improved by a factor of
10 (from 100 down to 10).

The solution of Eq. (2.58) can be interpreted by the use of the singular value decom-
position (SVD) theory. Assume that the m × n, matrix H, with rank n (m ≥ n) has the
following SVD:

H = UΣVT =
n∑

i=1

σiuivT
i , (2.60)

where both U = [u1,u2, . . . ,um] ∈ IRm×m and V = [v1,v2, . . . ,vn] ∈ IRn×n are or-
thogonal matrices and Σ is a pseudo-diagonal m by n matrix whose top n rows contain

9Choosing the regularization parameter α for an ill-posed problem is an art based on good heuristic and a
priori knowledge of the noise in the observations.
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diag{σ1, σ2, . . . , σn} (with ordered diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σn) and whose bottom
(m − n) rows are all zero. It can be shown that if {ui} and {vi} are the columns of U
and V, respectively, then the minimum norm least-squares Tikhonov regularized solution
to Eq. (2.58) can be approximated by

s∗(α) =
n∑

i=1

σ2
i

σ2
i + α

uT
i x
σi

vi =
n∑

i=1

βi

σi + α/σi
vi, (2.61)

where βi = uT
i x and α > 0 is the regularization parameter. It is interesting to note that,

if the singular values σi of the matrix H are much larger than the regularization parameter
α, then the regularization has little effect on the final (optimal) solution. However, if one
of the singular values σi is much smaller than α, the corresponding term in Eq. (2.61) can
be expressed as

βi vi

σi + α/σi

∼= σi

α
βi vi (σi ¿ α). (2.62)

Note that this term approaches zero as σi tends to zero. This demonstrates the required
continuity in the solution of a real physical system. Note also that such continuity of the
solution cannot be achieved if α = 0. We then see that the role of the regularization
parameter α is to damp or filter the terms in the sum corresponding to the singular values
σi smaller than α. Hence, in any practical application, α will always satisfy σn ≤ α < σi,
where σi corresponds to significant gap in the singular values spectrum [282, 923].

In contrast to the Tikhonov regularized solution (2.61), the true solution for the noise
free problem is

strue =
n∑

i=1

βi − εi

σi
vi, (2.63)

where εi = uT
i e represents the unknown noise components. The goal of the optimal regu-

larization is to produce a solution as close as possible to the true solution. In other words,
the near to optimal value of the regularized parameter can be obtained by minimizing the
distance J̃(α) = ‖s∗(α) − strue‖2, which after some mathematical operation leads to the
following algebraic equation [923]:

f(α) =
n∑

i=1

α(uT
i x)2

(σ2
i + α)3

− (uT
nx)2

(σ2
n + α)2

− σ̂2
e

n−1∑

i=1

1
(σ2

i + α)2
, (2.64)

where σ̂2
e is the estimated variance of noise. As has been shown by O’Leary, finding the

zero of such function gives an approximation of the Tikhonov regularization parameter α
close to its optimal value [923].

An alternative method for the regularization of (2.10) is the truncated SVD approach,
in which we discard the smallest singular values simply by truncating the sum in Eq. (2.61)
at some r < n.

In practice, it appears that instead of keeping ‖s‖22 small as in Eq. (2.57), it is often
more effective to keep ‖Ls‖22 small, where L is suitably chosen matrix (typically, L = I).
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We now state a generalized regularized least-squares solution, which corresponds to the
minimum of the cost function

min
s∈IRn

{
1
2

(‖Σe(x−Hs)‖22 + α ‖L(s− s̄∗)‖22
)}

, (2.65)

where s̄∗ is the expected mean value of the estimated vector ŝ (typically it is assumed
that s̄∗ = 0), both Σe and LT L are positive definite weighting matrices. The matrix L
is the regularization matrix, which is the identity matrix or a discrete approximation to
some derivative operator. Typical examples of such L are: the 1st derivative approximation
L1 ∈ IR(n−1)×n and the 2nd derivative approximation L2 ∈ IR(n−2)×n given by

L1 =




1 −1 0
1 −1

...
. . . . . .

0 1 −1


 , L2 =




−1 2 −1 0
−1 2 −1

. . . . . . . . .
0 −1 2 −1


 . (2.66)

It is straightforward to show that the regularized solution (called the generalized Tikhonov
regularized solution) can be written in the form

ŝα =
(
HT ΣeH + αLT L

)−1 (
HT Σex + αWs̄∗

)
. (2.67)

Such regularization has a close relationship with the Bayesian approach, where we use prior
information in addition to the available data for the solution of the problem. In fact, it
can be shown that if the errors e are jointly Gaussian with zero-mean, the elements of
vector s are jointly Gaussian random variables with mean s̄∗ and the covariance matrix
Rss = E{s(k)sT (k)} (where s(k) is k-th observation of the vector s), then the solution

ŝα = (HT R−1
ee H + R−1

ss )−1(HT R−1
ee x + R−1

ss s̄∗) (2.68)

minimizes the Bayesian mean square estimation criterion E{‖s− ŝ‖2}. It should be noted
that the above formula simplifies to the ordinary BLUE (Gauss-Markov minimum variance)
estimate:

ŝBLUE = (HT R−1
ee H)−1HT R−1

ee x (2.69)

by setting R−1
ss = 0. This setting corresponds to an “infinite” variance of the parameters,

that is, there is no assumption on the properties of the parameters.
In fact, for such case (Σe = R−1

ee ), the minimization problem (2.65) is equivalent to the
solution of the normal equation

(HT R−1
ee H + αLT L) s = HT R−1

ee x, (2.70)

which corresponds to the maximum a posteriori (MAP) estimates [595].
In the subspace regularization approach, we combine two approaches: subspace method

(SVD) and the Tikhonov regularization by setting R−1
ss = αHT (I −HSHT

S )H, where HS
contains the n first principal eigenvectors of the data covariance matrix Rxx = E{xxT } =
UΣUT associated with the n largest singular values [682].
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Similarly, we select in the cost function (2.65) L = (I−HSHT
S )1/2H in order to keep the

second term ‖Ls‖ small for all expectable s̄∗. Since

LT L = HT (I−HSHT
S )H, (2.71)

the desired subspace regularized solution can be written in the form

ŝα =
[
HT R−1

ee H + αHT (I−HSHT
S )H

]−1
HT R−1

ee x. (2.72)

The above approach is closely related to the Bayesian estimation. In this approach, the
second-order statistics of the set of the observations is used to form a priori information
model for the regularization [682].

2.3 LEAST ABSOLUTE DEVIATION (1-NORM) SOLUTION OF SYSTEMS OF

LINEAR EQUATIONS

The use of the minimum 1-norm or least absolute deviation (LAD) can often provide a
useful alternative to the minimum 2-norm (least-squares) or the infinity- (Chebyshev) norm
solution of a system of linear and nonlinear equations, especially in signal processing appli-
cations [282]. These applications span the areas of deconvolution, state space estimation,
inversion and parameter estimation. The (LAD) solutions of systems of linear algebraic
equations have certain properties not shared by the ordinary least-squares solutions, such
as:

(1) The minimum 1-norm solution of an overdetermined system of linear equations always
exists though the 1-norm solution is not necessarily unique in contrast to the minimum
2-norm solution, where the solution is always unique when the matrix H has a full
rank.

(2) The minimum 1-norm solutions are robust to outliers, that it, the solution is resistant
(insensitive) to some large changes in the data. It is an extremely useful property
when the data are known to be contaminated by occasional “wild points” (outliers)
or spiky noise.

(3) For fitting a number of data points by a constant, the 1-norm estimate can be inter-
preted as the median while the interpretation of the 2-norm estimate is the mean.

(4) The minimum 1-norm solutions are in general sparse, in the sense that they have a
small number of non-zero components in the underdetermined case (see Section 2.5).

(5) Minimum 1-norm problems are equivalent to linear programming problems and vice
versa. Linear programming problems may also be formulated as the minimum 1-norm
problems, while linear least-squares problems can be considered as a special case of
the quadratic programming problem [282].
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2.3.1 Neural Network Architectures Using a Smooth Approximation and

Regularization

The most straightforward approach for solving the problem of the least absolute value
problem is to approximate the absolute value functions |ei(s)| (i = 1, 2, ...,m) by smooth
differentiable functions, for example

Jρ(s) =
m∑

i=1

ρ[ei(s)], (2.73)

where

ρ[ei(s)] =
1
γ

log(cosh(γei(s))), (2.74)

with γ À 1. To ensure a good approximation, the coefficient γ must be sufficiently large
(although its actual value is not critical). Applying the gradient approach, we obtain the
associated system of differential equations

dsj

dt
= µj

m∑

i=1

hij Ψi[ei(s)], (2.75)

where

Ψi[ei(s)] =
∂ρ[ei(s)]
∂ei(s)

= tanh(γei(s)), (2.76)

ei(s) = xi −
n∑

j=1

hij sj , µj =
1
τj

> 0.

It should be noted that, for a large value of the gain parameter γ (typically γ > 50),
the sigmoidal activation function Ψi[ei(s)] quite good approximates the sign (hard-limiter)
function and such a network is able to find a solution which approaches the minimum 1-
norm solution as γ →∞. On the other hand, for small values of γ (typically 0.1 < γ < 1)
the activation function is almost linear over a wide range and the network is able to solve
approximately the least-squares (a minimum 2-norm) problem.

In fact, by controlling the gain parameter γ (i.e., by changing its value over a wide range,
say over the range 0.1 < γ < 1000) the network is able to solve a system of linear equations
in the minimum p-norm sense with 1 < p < 2.10 However, in order to achieve the exact
1-norm solution, it is necessary that the gain γ approaches infinity. Unfortunately, a large
value of the parameter γ is difficult to control, and this is inconvenient from a practical
implementation point of view, since an infinite gain is in fact often responsible for various
parasitic effects, such as parasitic oscillations which can decrease the final accuracy. To

10Strictly speaking, the activation function for the p-norm problem is given as Ψi[ei(s)] =
|ei(s)|p−1 sign[ei(s)] (1 ≤ p ≤ ∞).
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Fig. 2.2 Detailed architecture of the Amari-Hopfield continuous-time (analog) model of recurrent
neural network with regularization.

avoid this problem (especially the ill-conditioned problems), we have developed a modified
cost function with regularization [282]

J(s, α) =
m∑

i=1

(ρ[ei(s)] + αj ϑi(sj)) , (2.77)

where ϑ(s) is convex function, typically ϑ(s) = s2. The minimization of the above energy
function leads to the set of differential equations

dsj

dt
= µj

[
m∑

i=1

hij Ψi(ei)− αi ϕ(sj)

]
, (2.78)

ei(t) = xi(t)−
n∑

j=1

hij sj(t),

where ϕi(sj) = dϑj/dsj . On the basis of the above system of differential equations, we can
easily realize an appropriate neural network called the Amari-Hopfield network illustrated
in Fig.2.2. Such a network will force the residuals ei(s) with the smallest absolute values
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to tends to zero, while other residuals with large values (corresponding to outliers) will be
inhibited (suppressed). The algorithm given by Eqs. (2.78) makes it possible to obtain an
approximate minimum 1-norm solution, even when the gain parameter γ has a relatively
low value (typically γ > 80) [282].

2.3.2 Neural Network Model for LAD Problem Exploiting Inhibition Principles

Inhibition plays an important role of self-regulatory control in biologically plausible neural
networks and also in many artificial neural networks (ANN), mainly in various decision-
making and selection tasks [282]. The extremal form of inhibition is the Winner-Take-All
(WTA) function. In general, the function of an inhibition sub-network is to suppress some
signals (e.g., the strongest signals) while allowing other signals to be transmitted for further
processing. Our goal in this section is to employ this mechanism explicitly for solving the
LAD problem [282].

For an overdetermined linear system of equations (cf. Eq. (2.3)), in general, it is impos-
sible to satisfy all the m equations exactly, but there may exist a point s∗ in the n-space
satisfying at least the n equations if the matrix H is of full rank. This can be formulated
by the following Theorem [282]:

Theorem 2.2 There exists a minimizer sLAD ∈ IRn of the energy function J1(s) = ‖e‖1 =∑m
i=1 |ei(s)| (with e = x−Hs and m > n) for which the residuals ei(s∗) = 0 for at least n

values of i, say i1, i2, . . . , in, where n denotes the rank of matrix H.

From this theorem, it follows that the minimum 1-norm solution sLAD of the overdetermined
m × n system interpolates at least n points of the m (with m > n) observed or measured
data points, assuming H is of full rank. We can say that the minimum 1-norm solution is
the median solution. On the other hand, the ordinary minimum 2-norm LS solution is the
mean solution, since it tries to satisfy most of the equations in the set, but this solution will
usually not solve exactly any of these equations. However, in the special case that the matrix
H is nonsingular (for m = n ), all the n equations are exactly solved with residuals equal
to zero. From this analysis, it follows that by using the ordinary least-squares technique,
we can solve the LAD problem iteratively in two stages. In the first stage, we compute all
the residuals ei(sLS) (i = 1, 2, . . . , m) and select, from the m set of equations only the n
equations corresponding to the n residuals which are the smallest in absolute value, the rest
of equations are ignored (or inhibited). In the second stage, we use the reduced number of
determined equation to estimate the vector sLAD. The algorithm is summarized as follows:

Algorithm Outline: LAD Solution Using Multi-stage LS Procedure

Step 1. Compute the LS solution as

sLS = (HHT )−1 HT x (2.79)

and on the basis of residual vector e(s) = x−HsLS select the reduced set of equations
corresponding to the modulus of the smallest residuals. After eliminating the (m−n)
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equations, we obtain the reduced set of determined equations in the form

Hr s = xr,

where Hr is a nonsingular n × n reduced matrix and xr ∈ IRn is a reduced sensor
vector.

Step 2. Compute the LAD solution as

sLAD = H−1
r xr. (2.80)

Example 2.1 Let us consider the following ill-conditioned LAD problem:

Minimize J(s,H) = ‖x−Hs‖1,

where

HT =




1.1 4.0 7.0 −3.1 5.5
2.0 5.1 8.0 −4.0 6.9
3.1 6.0 8.9 −5.0 8.1




and x = [−2 1.1 4.2 − 0.5 2.1]T .
In the first step, we can obtain the LS (2-norm) solution and corresponding vector of the

residuals as

s2 = (HT H)−1 HT x = [1.6673 1.4370 − 2.1198]T ,

e2 = x−Hs2 = [0.1368 − 0.1795 − 0.1015 − 0.1821 0.1844]T .

Since the residuals corresponding to the fourth and fifth row have the largest amplitude,
we can remove them and compute the optimal LAD solution as

s1 = H−1
r xr = [2 1 − 2]T , (2.81)

where xr = [−2 1.1 4.2]T and

Hr =




1.1 2 3.1
4 5.1 6
7 8 8.9


 .

Let us consider now a more difficult example with some ambiguities.

Example 2.2 Let us consider the following LAD problem:
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Minimize J(s) = ‖x−Hs‖1,

where

HT =
[

1 1 1 1 1
1 2 3 4 5

]

and x = [1 1 2 3 3]T .
It is impossible to explicitly find the LAD solution in one step. In the first step, we can

obtain the LS (2-norm) solution and the error vector (residuals) as

s2 = (HT H)−1 HT x = [0.2 0.6]T ,

e2 = x−Hs2 = [0.2 − 0.4 0 0.4 − 0.2]T .

Since the residuals corresponding to the second or fourth rows have the same largest am-
plitude, we can remove only the second and the fourth row. Then, the optimal solution is
computed as

s1 = (HT
r Hr)−1 HT

r xr = [0.5 0.5]T , (2.82)

where xr = [1 2 3]T and

Hr =




1 1
1 3
1 5


 .

The above simple algorithm can easily be implemented on-line by the Amari-Hopfield
neural network shown in Fig.2.2, with the adaptive activation functions Ψi(ei) (taking one
of two forms: ei or 0). In the first phase of the computation, all the activation functions are
Ψi(ei) = ei, thus both the LS estimation sLS and corresponding residuals e(s) = x−HsLS

are simultaneously estimated automatically by the neural network.
In the second phase of the computation, the inhibition control circuit (not explicitly

shown on Fig.2.2) selects the (m− n) largest modulus of the residuals ep(sLS) from the set
of all the m residuals ei(sLS) and inhibits the corresponding (m − n) hidden neurons by
switching their activation functions to Ψp(ep) = 0, allowing the smallest n residuals to be
further processed in the network. In this way, in the second phase of the computation, only
n equations are selected for which the residuals are minimized to zero, while the rest of the
equations are simply discarded.

The inhibition control subnetwork can be realized on the basis of the Winner-Take-All
principle. Firstly, the circuit selects the largest signal |ep(sLS)| which is immediately inhib-
ited and the corresponding switch is opened. Then, the procedure is sequentially repeated
for (n−m) times for the rest of the signals |ei(s)|.

While both the LS and LAD formulation of the estimation problem and their solution
are commonly employed in practice, it is worthy to mention of not only their usefulness, but
also their limitations [282]. These techniques are able to provide unbiased estimates of the
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coefficient vector in an ergodic environment, only when the entries of matrix H are known
precisely. In other words, an implicit assumption employed in the LS and LAD estimation
procedures and many of their variations is that there is negligible noise or contained in the
data matrix H. In other words, we attributed till now all the uncertainty about the system
parameters to the noise contained in the sensor signals x.

2.4 TOTAL LEAST-SQUARES AND DATA LEAST-SQUARES PROBLEMS

2.4.1 Problems Formulation

In the previous sections of this chapter, we have considered the case where only vector x
is contaminated by the error and the matrix H is known precisely. The total least-squares
approach is suitable for solving estimation problems that can be formulated as a system
of over-determined linear equations of the form Hs ≈ x, in which both the entries of data
matrix H and the sensor vector x are contaminated by noise, i.e., we have the system of
linear equations

(Htrue + N) s ≈ xtrue + n = x (2.83)

where the true data (the data matrix Htrue and the measurement vector xtrue) are unknown.
In contrast to the TLS, in the LS problems it is assumed that the data matrix Htrue is
known precisely, i.e., the noise matrix N ∈ IRm×n is zero or negligibly small and only the
measurement vector x is contaminated by the unknown noise n, while, in the data least
squares (DLS) problem, it is assumed that noise n is zero or negligibly small and only the
noise contained in the matrix N exists. In TLS problem, it is assumed that the noise has
zero-mean with a Gaussian distribution.

In many signal processing applications the TLS problem is reformulated as an approxi-
mate linear regression problem of the form

xi ≈ hT
i s; (i = 1, 2, . . . , m) (2.84)

where hT
i = [hi1, hi2, . . . , hin] is the i-th row of H.

The TLS solution that eliminates the effects of certain types of noise in the signals can be
shown to be related to a lower-rank approximation of the augmented matrix H̄ = [x H].
Based on this result, we show how the unknown vector s can be estimated from noisy data.
This section is concerned with the estimation algorithms that are designed to alleviate the
effects of noise present in both the input and the sensor signals. We will show that the
total least-squares estimation procedure can produce unbiased estimates in the presence of
certain types of noise disturbances in the signals. This procedure will then be extended to
the case of arbitrary noise distribution. There is a large class of problems requiring on-line
estimation of the signals and the parameters of the underlying systems.

2.4.1.1 A Historical Overview of the TLS Problem The total least-squares (TLS) method
was independently derived in several areas of science, and is known to statisticians as the
orthogonal regression or the error-in-variables problem. The error-in-variables problem
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Fig. 2.3 This figure illustrates the optimization criteria employed in the total least-squares (TLS),
least-squares (LS) and data least-squares (DLS) estimation procedures for the problem of finding a
straight line approximation to a set of points. The TLS optimization assumes that the measurements
of the x and y variables are in error, and seeks an estimate such that the sum of the squared values of
the perpendicular distances of each of the points from the straight line approximation is minimized.
The LS criterion assumes that only the measurements of the y variable is in error, and therefore the
error associated with each point is parallel to the y axis. Therefore the LS minimizes the sum of
the squared values of such errors. The DLS criterion assumes that only the measurements of the x
variable is in error.

has a long history in statistical literature. Pearson in 1901 [581] solved the two-variable
model fitting problem that may be formulated as follows: given a set of points (xk, yk) for
k = 1, 2 . . . , m, we wish to find the optimal straight line

y = mx + c (2.85)

that minimizes the sum of the squared values of the perpendicular distances between the
points in the set and the straight line. Figure 2.3 describes this problem graphically. Pearson
solved this problem and expressed the modelling errors associated with the points in terms of
the mean, standard deviation and correlation coefficients of the data. In the classical least-
squares problem, we wish to find the values of slope and intercept (m, c) which minimizes
the sum of the squared distances between yk and its predicted values. In other words, the
LS solution results from minimizing the sum of the squared values of the vertical distances
between the line and the measurements yk. It assumes that the variables xk are error free
and all the noise is contained in yk. The Data Least-Squares (DLS) algorithms are another
class of estimation techniques based on the assumption that points yk are error-free and all
the noise is contained only in the measurements xk. Therefore, the DLS algorithm attempts
to minimize the sum of the squared distances between the line and the measurements xk

along the horizontal axis. For example, the DLS solution is useful in equalization problems
that involve certain types of deconvolution models. Unlike both the LS and DLS approaches,
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the TLS algorithms assume that both xk and yk are contaminated by noise. Consequently,
we can consider the standard LS and DLS algorithms as special cases of the extended TLS
technique.

Example 2.3 Let us determine the optimal line y = mx+c by the ordinary LS, TLS, DLS
algorithm and also the solution to the minimum 1-norm and infinity-norm problem, for the
data points:

(xk, yk) = (1, 2), (2, 1.5), (3, 3), (4, 2.5), (5, 3.5)

This problem is equivalent to solving the system of linear equations with respect to s:
Hs ≈ x or equivalently to minimize ‖x − Hs‖, where x =

[
2 1.5 3 2.5 3.5

]T ,
s = [m c]T and data (input) matrix

HT =
[

1 2 3 4 5
1 1 1 1 1

]
.

Fig.2.4 illustrates solutions of this problem using different criteria.

The problem of fitting a straight line to a noisy data set has been generalized to that of
fitting a hyper-plane to noisy, higher-dimensional data [581, 582].

In the field of numerical analysis, the total least-squares problem was first introduced
by Golub and Van Loan in 1980 [501], studied extensively and refined by Van Huffel,
Vandevalle, Lemmerling et. al. [581, 582], Hansen and O’Leary, and many other researchers
[581, 582].

There are many applications that require on-line adaptive computation of the parameters
s for the system model. Adaptive algorithms that employ the TLS formulation and their
extensions have been developed and analyzed by Amari and Kawanabe, Mathews, Cichocki,
Unbehauen, Xu, Oja, Douglas along with many others [41, 581, 582, 282, 827, 1309, 293,
294].

2.4.2 Total Least-Squares Estimation

The TLS solution explicitly recognizes that both the input matrix H and the sensor vector
x may be contaminated by noise. Let Htrue = H − N represent the noise-free input
matrix, and let xtrue = x − n represent the noise-free desired response vector. Here,
we do not consider any possible relationships that might exist among the elements of H.
Such constraints may be incorporated into the TLS formulation, but this will result in a
considerable increase in the complexity of the solution. The TLS procedure attempts to
estimate both the noise matrix N and the noise vector n to satisfy an exact solution of the
system of linear equations:

(H−N) sTLS = (x− n) . (2.86)
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Fig. 2.4 Straight lines fit for the five points marked by ‘x’ obtained using the: (a) LS (L2 -norm),
(b) TLS, (c) DLS, (d) L1-norm, (e) L∞ -norm, and (f) combined results.

Generally, there may be many choices of N and n that satisfy (2.86). Among all such
choices, we select N and n such that11

‖ [
n N

] ‖2F=
m∑

i=1

n2
i +

m∑

i=1

n∑

j=1

n2
ij (2.87)

11We have assumed, that the signals are real-valued. The extension to complex-valued data is straightfor-
ward.
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is minimized, where nij is the (i, j)-th element of N and ni is the i-th element of n. To
solve the above problem, we rewrite (2.86) as

(
H− [

n N
]) [ −1

sTLS

]
= 0, (2.88)

where H = [x, H]. In the above equation, 0 is an m-dimensional vector filled with all zeros.
In general, because of the noise, the augmented input matrix H is full rank. If we assume
that m > n + 1, the rank of H is (n + 1).

The problem of finding n and N can be recast as that of finding the smallest perturbation
of the augmented input matrix H that results in a rank-n matrix.

Let us expand the matrix H using the singular value decomposition as

H =
[

x H
]

=
n+1∑

i=1

σiuivT
i , (2.89)

where σi’s are the singular values of H, arranged in the descending order of magnitude, ui’s
and vi’s are respectively the left singular vectors containing m elements each, and the right
singular vectors containing (n + 1) elements each. We assume that we have selected the
singular vectors such that they have unit length, and that the sets {ui; i = 1, 2, . . . , n+1}
and {vi ; i = 1, 2, . . . , n+1} contain orthogonal elements so that uT

i uj = 0 and vT
i vj = 0

for i 6= j. It is well-known that the rank-n approximation of H introducing the least amount
of perturbation to its entries is given by [581]

Ĥ =
n∑

i=1

σiuivT
i . (2.90)

Moreover, the error matrix [ n N ] is given by

[
n N

]
= σn+1un+1vT

n+1. (2.91)

Taking into account (2.88) and (2.90), we can write

Ĥ
[ −1

sTLS

]
=

[
n∑

i=1

σiuivT
i

] [ −1
sTLS

]
= 0. (2.92)

Since vn+1 is orthogonal to the rest of the vectors: v1, v2, . . ., vn, the TLS solution for the
coefficient vector given by

[ −1
sTLS

]
= − vn+1

vn+1,1
, (2.93)

(where vn+1,1 is the first non-zero entry of the right singular vector vn+1) satisfies (2.92).
Thus, the total least-squares solution is described by the right singular vector corresponding
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to the smallest singular value of the augmented input matrix H. An efficient approach to
computing this singular vector is to find the vector v that minimizes the cost function12

J(v) =
vT H

T
Hv

‖ v ‖22
, (2.94)

and then to normalize the resulting vector so that
[ −1

sTLS

]
= − vopt

vopt,1
, (2.95)

where vopt denotes the solution to the optimization problem in (2.94), and vopt,1 is the first
entry of vopt. Simple calculations will show that the vector v minimizing J(v) is identical to
the (n + 1)-th right singular vector of H, and choosing v = vn+1 will provide the minimum
value of J(v) given by

J(vopt) = σ2
n+1. (2.96)

It is also straightforward to show that the optimum choice for v corresponds to the eigen-
vector corresponding to the smallest eigenvalue of the matrix H

T
H. Thus, a numerical

method based on SVD or minor component analysis (MCA) for finding the TLS estimate
of the coefficients can be applied. The above derivation assumes that the smallest singular
value of the augmented data matrix H is unique. If this is not the case, the TLS problem
has an infinite number of solutions. To uniquely define sTLS in such situations, usually a
solution is chosen for which ‖ sTLS ‖2 is the smallest among all the possibilities.

When the noise in the entries of the augmented data matrix H belongs to independent
and identically distributed (i.i.d.) Gaussian processes with zero-mean, it can be shown
that the TLS solution obtained by minimizing the cost function in (2.94) is the maximum
likelihood estimate of the coefficient vector. When the noise sequences satisfy the i.i.d.
condition, the standard TLS estimate is unbiased. In other words, we obtain an unbiased
estimate if both the noise variance of the vector x (sensor signals) and the data matrix H
are the same, i.e., (σ2

n = σ2
N ).

Consequently, even though the standard total least-squares approach described above
results in unbiased estimates of the parameters of the system model, it does not necessarily
provide a good estimate of the signals of interest. In order to obtain better estimates of
the parameters, one may use an augmented data matrix H with the number of columns
n′ >> n+1 (where (n+1) is the minimum number of columns needed by the TLS approach)
and then approximate this matrix with a rank-n matrix. The noise matrix estimated using
such an approximation has a rank larger than one, and therefore it is considered that the
estimate is a better one than that provided by the standard TLS algorithm described above.

12Scaling the coefficient vector by a scalar multiplier does not change the cost function. Consequently, we
can also formulate this problem equivalently as that of minimizing

J(v) = vT H
T
Hv

subject to ‖ v ‖22= 1.
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2.4.3 Adaptive Generalized Total Least-Squares

The standard (ordinary) TLS is a method which gives an improved unbiased estimator only
when both the noise (errors) in the data matrix H and the sensor vector x are i.i.d. and
exhibit the same variance. However, in practice, the data matrix H and the observation
vector x represent different physical quantities and are therefore usually subject to different
noise or error levels. The generalized TLS (GTLS) problem deals with the case where the
data errors ∆hij = nij are i.i.d. with zero-mean and variance σ2

N (i.e., RNN = σ2
NIn) and

where the observation (sensor) vector components ∆xi = ni are also i.i.d. with zero-mean
and variance σ2

n 6= σ2
N .

There are many situations in which the parameters of the underlying system in the
estimation problem are time-varying, while the input signals are corrupted by uncorrelated
noise. Even in the situations in which the characteristics of the operating environment
do not vary over time, either adaptive or iterative solutions are often sought, because the
singular value decomposition-based solutions tend to be computationally expensive and such
methods usually do not exploit the special structures or sparseness of the system model
to reduce the computational complexity. In this section, we discuss how the traditional
adaptive filtering algorithms such as the least-mean-square (LMS) algorithm can be modified
to account for the presence of the additive i.i.d. noise in both the sensor signals and the
mixing (data) matrix.

Solving the generalized TLS problem consists in finding the vector s which minimizes
[582, 294]

γ ‖∆H‖2F + (1− γ) ‖∆x‖2F , where
1− γ

γ
= β =

σ2
n

σ2
N

. (2.97)

and ∆H and ∆x refer to perturbations of the matrix H and sensor vector x, respectively.
By changing the parameter γ in the range [0, 1], we obtain the special cases: the standard
LS, TLS and DLS problems. The parameter γ = 0 (β = ∞) yields the standard LS
formulation since in this case σ2

N = 0, whereas γ = 0.5 gives the standard TLS formulation
since σ2

N = σ2
n, and finally γ = 1 (β = 0) results in the DLS formulation with σ2

n = 0.
Let us first consider the standard mean square error cost function formulated as

J̃(s) = E{eT (k)e(k)}, (2.98)

where the error vector e is defined as

e(k) = x−Hs(k) = (xtrue + n)− (Htrue + N) s(k), (2.99)

where Htrue and xtrue are unknown true parameters. The cost function (2.98) can be
evaluated as follows

J̃(s) = E{(xtrue −Htrue s)T (xtrue −Htrue s)}+ σ2
n + sT RNN s

= E{(xtrue −Htrue s)T (xtrue −Htrue s)}+ σ2
N (β + sT s) (2.100)

on the assumption that noise components are uncorrelated i.i.d. and RNN = σ2
NIn.
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It is obvious that minimizing the cost function J̃(s) with respect to the vector s will yield
a biased solution, since the noise components are the functions of s. To avoid this problem,
we can use the modified mean square error cost function formulated as the generalized TLS
problem which can be further reformulated as the following optimization problem [282, 294]:

Minimize the cost function

J(s) =
1
2

E{eT (k)e(k)}
β + sT s

=
1
2

E{(xtrue −Htrue s(k))T (xtrue −Htrue s(k))}
β + sT s

+ σ2
N . (2.101)

The above cost function removes the effect of the noise, assuming that the power ratio of
the noise components β = σ2

n/σ2
N is known, since the last term in (2.101) is independent of

s.
To derive the iterative adaptive algorithm, we represent the cost function as

J(s) =
m∑

i=1

Ji(s), (2.102)

where

Ji(s) = E{ε2(k)} =
1
2

E{e2
i (k)}

β + sT s

and ei = xi − hT
i s (hT

i denotes the i-th row of H).
Then the instantaneous gradient components can be evaluated as

dε2

ds
=

ei(k) hi

β + sT s
− e2

i (k) s
[β + sT s]2

. (2.103)

Hence, the iterative discrete-time algorithm exploiting the gradient descent approach can
be written as

s(k + 1) = s(k) + η(k) ẽi(k) [hi + ẽi(k) s(k)], i = k modulo (m + 1), (2.104)

where

ẽi(k) =
ei(k)

β + sT (k) s(k)
=

xi − hT
i s(k)

β + sT (k) s(k)
. (2.105)

Since the term (β + sT (k) s(k))−1 is always positive, it can therefore, be absorbed by the
positive learning rate, thus the algorithm can be represented in a simplified form as

s(k + 1) = s(k) + η(k) ei(k) [hi + ẽi(k) s(k)], i = k modulo (m + 1) (2.106)

Remark 2.7 It should be noted that the index i is taken modulo (m + 1), i.e., the rows hi

of matrix H and elements xi of vector x are selected and processed in a cyclical order. In



TOTAL LEAST-SQUARES AND DATA LEAST-SQUARES PROBLEMS 75

other words, after the first m iterations, for the (m + 1)th iteration, we revert back to the
first row of H and the first component of x. We continue with the (m + 2)-nd iteration
using the second row of H and second component of x, and so on, repeating the cycle every
m iterations. Moreover, it is interesting to note that the above algorithm simplifies to the
standard LMS algorithm when β = ∞, while it becomes the standard DLS algorithm for
β = 0.

Using the concept of component averaging (say, for block of all indices i in one iteration
cycle) and by applying self-normalization like in the Kaczmarz or NLMS algorithms, we
can easily derive a novel GTLS iterative formula for the sparse matrix H as

s(k + 1) = s(k) + η(k)
m∑

i=1

xi − hT
i s(k)∑n

j=1 rjh2
ij

[
hi +

xi − hT
i s(k)

β + sT (k) s(k)
s(k)

]
, (2.107)

where 0 < η(k) < 2 is the normalized learning rate (relaxation parameter) and rj is the
number of non-zero elements hij of the column j.

2.4.4 Extended TLS for Correlated Noise Statistics

We noted earlier that the TLS solution is unbiased when the noise in H belongs to an i.i.d.
process. When the noise is i.i.d. Gaussian-distributed this is also the maximum likelihood
solution. Unfortunately, when the noise is correlated in turn, the estimates are no longer
guaranteed to be unbiased. In such a case a modification is needed to make the TLS
approach useful, especially when the input signal is corrupted by non-i.i.d. noise sequences.
For the purpose of the derivation, we will assume that the noise samples are Gaussian
distributed with zero-mean. If the noise is non-Gaussian, the procedure described here will
still result in unbiased estimates of the system model parameters. However, these estimates
will no longer satisfy the maximum likelihood property. Let the statistical expectation of
the product of the augmented input matrix H with its own transpose be given by [827]

E
{
H

T
H

}
= RHH + R̄NN, (2.108)

where

RHH = E
{

[xtrue Htrue]
T [xtrue Htrue]

}
(2.109)

and

R̄NN = E
{

[n N]T [n N]
}

(2.110)

respectively represent the autocorrelation matrices of the unbiased by noise signal compo-
nent and the zero-mean noise component. We have assumed that the two components are
uncorrelated with each other. Let H̃ denote the transformation of the augmented input
matrix given by

H̃ = H R̄−1/2
NN . (2.111)
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The (scaled) autocorrelation matrix of H̃ is then

E
{
H̃T H̃

}
= R̄−1/2

NN RHH R̄−1/2
NN + I. (2.112)

Thus, the transformed input matrix is corrupted by a noise process that is i.i.d. Gaussian
with zero-mean. Therefore, the maximum likelihood estimate s̃ETLS of the coefficient vector
for the transformed input matrix is given by the solution of the optimization problem

min
s̃

J(s̃) =
s̃T H̃T H̃ s̃

s̃T s̃
. (2.113)

Obviously, this solution is unbiased. Let ŝETLS denote the coefficient vector for H, obtained
by appropriately transforming the optimal solution s̃ETLS of (2.113). Since

H̃ s̃ETLS = H R̄−1/2
NN s̃ETLS, (2.114)

we conclude that ŝETLS, which is the optimal solution for the correlated noise problem, is
related to s̃ETLS through the transformation

ŝETLS = R̄−1/2
NN s̃ETLS. (2.115)

The entries for the augmented regression vector [xi hT
i ]T are obtained by an appropriate

scaling of ŝETLS and given as

[ −1
sETLS

]
= − ŝETLS

ŝETLS,1

, (2.116)

where ŝETLS,1 is the first non-zero element of ŝETLS. Since scaling the solution vector does
not change the cost function, after substituting (2.115) and (2.116) in (2.113), we can state
the optimization problem for the extended TLS approach as [827]

min
s

J(s) =

[ −1
s

]T

H
T
H

[ −1
s

]

[ −1
s

]T

R̄NN

[ −1
s

] . (2.117)

The solution to the above optimization problem is given by the generalized eigenvector13

corresponding to the smallest generalized eigenvalue of the matrix pencil (H
T
H, R̄NN).

13Given two square matrices G and H, the generalized eigenvector of the matrix pencil (G,H) is a vector v
that satisfies the equality Gv = λHv, where the constant λ is known as a generalized eigenvalue. Assuming
that the inverse of the matrix H exists, the generalized eigenvectors of the matrix pencil (G,H) are the
eigenvectors of H−1G.
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2.4.4.1 Choice of R̄NN in Some Practical Situations The coefficient estimate obtained by
solving the optimization problem of (2.117) can be shown to be unbiased for any noise cor-
relation matrix R̄NN. However, we need to have a priori knowledge of the noise correlation
matrix in order to implement the procedure. Fortunately, we need to use only a scaled
version of the noise correlation matrix, since the minimization of the cost function

J(s) =

[ −1
s

]T

H
T
H

[ −1
s

]

[ −1
s

]T

cR̄NN

[
1
−s

] , (2.118)

where c is a scalar positive constant, gives the same solution as the optimization problem
in (2.117). There are many situations in which we can provide an estimate of such scaled
noise correlation matrices. Some of these situations are:

• Uncorrelated Noise in the Input Signals: In many estimation problems, the matrix H
or equivalently each of its column vector hi is corrupted by the additive i.i.d. noise
with variance σ2

N , and the vector of sensor signals x is contaminated by independent
noise with variance σ2

n. In such cases, we can use

cR̄NN = diag{β, 1, 1, . . . , 1}, (2.119)

where β = σ2
n/σ2

N is the ratio of the variance of the noise sequences associated with
xi and hi.

• Data Least-Squares (DLS) problem: In a variety of the estimation problems that
belong to this class, the sensor signal xi contains no noise and the noise in hi can be
reliably modelled as i.i.d. An appropriate choice of cR̄NN in this case can be

cR̄NN = diag{0, 1, 1, . . . , 1}. (2.120)

• Least-Squares (LS) Problems: In this situation, we assume that the regression vector
hi is noise-free and that only xi is corrupted by noise. Then, choosing

cR̄NN = diag{1, 0, 0, . . . , 0} (2.121)

results in the standard least-squares problem formulation.

2.4.5 Adaptive Extended Total Least-Squares

In this section, we discuss a more general case when the noise components can be mutually
correlated and the covariance matrix of the noise is known or can be estimated, but when
the noise is independent of vector s(k).

In this derivation, we consider the most general situation considered in section 2.4.4 [827].
Recall from (2.117) that the extended TLS solution minimizes the cost function

J(s) =

[ −1
s

]T

H
T
H

[ −1
s

]

[ −1
s

]T

R̄NN

[ −1
s

] . (2.122)
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The ETLS adaptive filter attempts to vary its coefficients at each iteration in a way that it
reduces an instantaneous version of the above cost function defined as

J(s(k)) =

[ −1
s(k)

]T [
xi

hi

] [
xi hT

i

] [ −1
s(k)

]

[ −1
s(k)

]T

R̄NN(k)
[ −1

s(k)

] , (2.123)

by shifting the coefficients along the direction that is opposite to that of the gradient of
J(s(k)) with respect to the current coefficient values. We will use a discrete-time index k
for the noise correlation matrix to indicate that the noise statistics may vary over time.
We will also assume that the noise correlation matrix R̄NN(k) is available to the user at all
times.

Let us decompose R̄NN(k) as

R̄NN(k) =
[

rnn(k) (rnN(k))T

rnN(k) RNN(k)

]
, (2.124)

where rnn(k) is a scalar corresponding to the autocorrelation of the noise in the sensor signal,
rnN(k) is the vector containing the cross-correlation of the noise components in xi and hi,
and RNN(k) denotes the autocorrelation matrix of the noise components in the regression
vector hi. Recently in [827] Mathews and Cichocki have shown directly calculating the
gradient of J(s(k)) with respect to the coefficient vector is given by

∂J(s(k))
∂s(k)

= −2
(
ei(k)hi + e2

i (k) (−rnN(k) + RNN(k)s(k))
)
, (2.125)

where ei(k) is a normalized version of the estimation error defined as

ei(k) =
ei(k)[ −1

s(k)

]T

R̄NN(k)
[ −1

s(k)

] . (2.126)

Thus, the on-line version of the ETLS learning formula can be compactly written as

s(k + 1) = s(k) + η ei(k) (hi + ei(k) (−rnN(k) + RNN(k)s(k))) (2.127)

In the special case of stationary, white noise in matrix H, and in the sensor signals, the
above ETLS adaptive algorithm simplifies to the GTLS algorithm.

The superiority of the extended TLS approach can be clearly seen for the correlated
noise. However, it is worth to note that the ETLS estimates make use of perfect knowledge
of the noise correlation matrices [827].

2.4.6 An Illustrative Example - Fitting a Straight Line to a Set of Points

Example 2.4 Consider the problem of estimating the slope and the intercept of a straight
line that fits the points (1, 2.0), (2, 1.5), (3, 3.0), (4, 2.5), (5, 3.5). The augmented data
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matrix for this problem is given by

H =




2.0 1 1
1.5 2 1
3.0 3 1
2.5 4 1
3.5 5 1




.

The entries in the third column of this matrix are all fixed to ones because the y-intercept
of the line does not depend on the independent variable. The estimated autocorrelation
matrix of the data matrix H is given by

R̂HH = H
T
H =




33.75 41.50 12.50
41.50 55.00 15.00
12.50 15.00 5.00


 .

The least-squares estimate of the slope and the intercept may be found as
[

mLS

cLS

]
=

[
55.00 15.00
15.00 5.00

]−1 [
41.50
12.50

]
=

[
0.40
1.30

]
.

The total least-squares solution assumes that there is noise in all the entries of the matrix H,
and the solution is obtained from the eigenvector corresponding to the smallest eigenvalue
of R̂HH. This estimate can be calculated as

[
mTLS

cTLS

]
=

[
0.2660
1.7958

]
.

A drawback of the above solution is that we have assumed that the last column of H is
in error, even though this column can be exactly specified in our problem. Consequently,
here we can utilize the extended TLS approach to estimate the parameters. Let us assume
that the noise in the first two columns of the data matrix H are uncorrelated with each
other. Then, a scaled autocorrelation matrix for the noise is given by diag{1, 1, 0}. The
extended TLS solution for the slope and intercept of the straight line is specified by the
generalized eigenvector corresponding to the smallest generalized eigenvalue of the matrix
pencil

(
R̂HH ,diag{1, 1, 0}

)
, and is given by

[
mETLS

cETLS

]
=

[
0.4332
1.2003

]
.

Figure 2.5 shows the plots of the straight lines estimated using the three approaches: LS,
TLS and ETLS.

2.5 SPARSE SIGNAL REPRESENTATION AND MINIMUM FUEL

CONSUMPTION PROBLEM

In the previous sections, we have considered the problems of solving overdetermined systems
of linear equations. The problem of the underdetermined systems of linear equations can
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Fig. 2.5 Straight lines fit for the five points marked by ‘x’ obtained using the LS, TLS and ETLS
methods.

be usually formulated as the following constrained optimization problem:

Minimize

Jp(s) = ‖s‖p (2.128)

subject to the constraint
Hs = x,

where H ∈ IRm×n (with m < n). For the standard 2-norm, the problem is usually called
as the minimum energy solution whereas for the infinity-norm, it is called as the minimum
amplitude solution. For p = 1, the problem provides a sparse representation of the vector
s and therefore is called as the minimum fuel solution. The term sparse representation or
solution usually refers to a solution with (m− n) or more zero entries in the vector s.

The minimum fuel problem is closely related to overcomplete signal representation and
the best basis selection (matching pursuit) problems [704, 1002]. In the overcomplete signal
representation problem, we search for an efficient overcomplete dictionary to represent the
signal. To solve the problem, a given signal is decomposed into a number of optimal
basis components which can be found from an overcomplete basis dictionary via some
optimization algorithms, such as matching pursuit and basis pursuit. The problem of basis
selection, i.e., choosing a proper subset of vectors from the given dictionary naturally arises
in the overcomplete representation of signals. In other words, in the problem of the best
basis selection, it is necessary to identify or select a few columns hi of matrix H that best
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represent the sensor vector x. This corresponds to finding a solution to (2.128) for p ≤ 1
with a few non-zero entries [511, 704, 1001, 1002].

The above problems arise in many applications like electro-magnetic and biomagentic
inverse problem, time-frequency representation, neural and speech coding, spectral estima-
tion, direction of arrival estimation and failure diagnosis [511, 1002].

Finding an optimal (smallest) basis set of vectors is NP hard and requires a combinatorial
search [1002]. For example, if we were interested in selecting r vectors hi that best represent
sensor data x, this would require searching over n!/(n−r)!r! possible ways in which the basis
set can be chosen as the best solution. This search cost is prohibitive for large value of n,
causing a search for the optimal solution by applying combinatoric approaches non-feasible
[1001, 1002].

The main objective of this section is to present several efficient and robust algorithms
which enable us to find the suboptimal solutions for the minimum fuel problem and its
generalizations, especially when the data are corrupted by noise.

2.5.1 Approximate Solution of Minimum Fuel Problem Using Iterative LS Approach

Intuitively, in order to find the minimum fuel solution, i.e., possibly a sparse representation,
of the vector s, we must optimally select some columns of the matrix H. Alternatively, using
a neural network representation, we should impose some ‘competition’ between the columns
of matrix H to represent optimally and sparsely the data vector x. Due to this competition,
certain columns will get emphasized, while others will be de-emphasized. In the end, at
most m columns will survive to represent x, while the rest or at least (n−m) will be ignored
or neglected, thereby providing a sparse solution.

The minimum energy (2-norm) solution is usually a rough approximation of the 1-norm
solution. However, in contrast to the 1-norm solution, the minimum 2-norm solution will
not provide a sparse representation. It rather has the tendency to spread the energy among
a large number of entries of s, instead by putting all the energy (concentrating it) into just
a few entries. The minimum energy problem can be easily solved explicitly using

s2 = H+ x,

where H+ = HT (HHT )−1 denotes the Moore-Penrose generalized pseudo-inverse. The
solution has a number of computational advantages, but does not provide a desirable sparse
solution. Exploiting these properties and features, we propose the following approximative
multiple (at least two) stage algorithm based on the iterative minimum energy solution:

Algorithm Outline: Approximate Procedure for Sparse Solution

Step 1. Estimate the minimum 2-norm solution of the problem (2.128) as

s2∗ = HT (HHT )−1 x = H+ x, (2.129)

where H+ ∈ IRn×m is the Moore-Penrose pseudo-inverse matrix of H. On the basis of
vector s2∗, we remove certain columns of the matrix H corresponding to the smallest
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modulus of components of the vector s2∗. Then set these components of the vector
s2∗ are set to zero as a partial solution of the minimum 1-norm problem.

Step 2. Estimate the remaining components of the vector s1:

s1r = HT
r (Hr HT

r )−1x = H+
r x, (2.130)

where Hr ∈ IRm×r (with r ≥ m) is the reduced matrix obtained by removing from
the matrix H certain columns corresponding to the smallest amplitude and s1r ∈ IRr.

Step 3. Repeat Step 1 and 2 until at least (n −m) or the specified number of columns from
the original matrix H are removed.

The algorithm will be illustrated by a simple example.

Example 2.5 Let us consider the following minimum fuel problem:

Minimize ‖s‖1 subject to the constraint Hs = x,

where

H =




2 3 −1 10 21 44 −9 1 −1
1 2 2 8 15 35 8 −3 1
3 1 1 6 16 53 −7 2 2




and x = [118 77 129]T .
It is impossible to find the minimum fuel solution in one step. In the first step, we obtain

the minimum energy (2-norm) solution as

s2 = HT (HHT )−1 x (2.131)
= [0.131 0.086 − 0.104 0.302 0.795 2.022 − 0.9373 0.222 0.037]T .

Since the components s1, s2, s3, s4, s8 and s9 have the smallest absolute values, we set them
to zero and remove the corresponding columns (i.e., [1, 2, 3, 4, 8, 9]) of the matrix H which
yields its reduced version:

Hr =




21 44 −9
15 35 8
16 53 −7


 .

In the second step, we compute the remaining components of the vector s1 as

s1r = H−1
r x = [1 2 − 1]T .

Thus, the minimum 1-norm solution finally takes the sparse form as:

s1∗ = [0 0 0 0 1 2 − 1 0 0]T .
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In many signal processing applications, the sensor vector is available at a number of time
instants, as in the multiple measurements or recordings, thus the system of linear equations
Hs(t) = x(t), (t = 1, 2 . . . , N) can be written in a compact aggregated matrix form as

HS = X, (2.132)

where S = [s(1), s(2), . . . , s(N)] and X = [x(1),x(2), . . . ,x(N)].
Our objective is to find a sparse representation of the matrix S. However, we require

the individual columns of S involved not only have a sparse structure but also share the
structure and have a common sparsity profile, that is, possibly a small number of rows
sj = [sj(1), sj(2), . . . , sj(N)] (j = 1, 2, . . . , n) of the matrix S have non-zero entries. In such
a case, we can extend or modify the proposed algorithm as follows:

Algorithm Outline: Extended Algorithm for Sparse Solution

Step 1. Estimate the minimum 2-norm solution of the problem (2.132) as

S2∗ = HT (HHT )−1 X = H+ X, (2.133)

where H+ ∈ IRn×m is the Moore-Penrose pseudo-inverse of H and S2∗ ∈ IRn×N is the
matrix of estimated sources sj(k).
Then, we remove certain columns of the matrix H corresponding to the smallest
value of norm14 ‖sj‖ of the row vectors sj = [sj(1), sj(2), . . . , sj(N)] of the matrix
S2∗. Next, certain components of these row vectors are set to zero if they are below
some threshold value as a partial solution to the minimum fuel problem. In this stage,
we can remove (n−m) (or less) columns of H.

Step 2. Estimate the remaining components of the matrix S:

S1r = H+
r X = HT

r (HrHT
r )−1 X, (2.134)

where S1r ∈ IRr×N is a required partial solution and Hr is the reduced version of the
matrix H (with removed certain columns of H corresponding to the smallest norms
of row vectors of the matrix S2∗).

Step 3 Repeat the Step 2 and 3 until at least (n − m) or the required number of columns
from the original matrix H are removed.

2.5.2 FOCUSS Algorithms

An alternative algorithm for the minimum fuel problem, called as FOCUSS (FOCal Under-
determined System Solver) has been proposed by Gorodnitsky and Rao [511] and extended

14The choice of norm ‖sj‖ depends on the noise distribution, e.g., for Gaussian noise the optimal is 2-norm,
and for Laplacian (impulsive noise) the 1-norm, whereas for uniform distributed noise infinity-norm is the
best choice.
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and generalized by Kreutz-Delgado and Rao [704, 1001, 1002].
Let us consider the following constrained optimization problem [704, 1001, 1002]:

minimize Jρ(s) =
∑n

j=1 ρ|sj |

subject to Hs = x,

where the cost function Jρ(s) (often called as the diversity measure) can take various
forms [1002]:

1. The generalized p-norm diversity measures

Jp(s) = sign(p)
n∑

j=1

|sj |p, (2.135)

where p ≤ 1 and is selected by user.

2. The Gaussian entropy diversity measure

JG(s) = HG(s) =
n∑

j=1

log |sj |2. (2.136)

3. The Shannon entropy diversity measure

JS(s) = HS(s) = −
n∑

j=1

s̃j log |s̃j |, (2.137)

where the components s̃j can take different forms, e.g. s̃j = |sj |, s̃j = |sj |/‖s‖2,
s̃j = |sj |/‖s‖1 or s̃j = sj for sj ≥ 0.

4. Renyi entropy diversity measure

JR(s) = HR(s) =
1

1− p
log

n∑

j=1

(s̃j)p, (2.138)

where s̃j = sj/‖s‖1 and p 6= 1.

It should be noted that, for p = 1, we obtain the formulation of the standard minimum
fuel problem in which at least (n − m) components are zero. Choosing above diversity
measures, we can obtain a more sparse solution than for the minimum 1-norm solution
(corresponding to p = 1) (i.e., more than (n−m) entries in the vector s are zero). Moreover,
the solution can be much robust with respect to the additive noise. The general diversity
measures based on the negative norm or Gaussian, Shannon and Renyi entropies ensure
that a relatively large number of entries sj tend to be very small, albeit usually non-zero
amplitudes. In such cases, we use a small threshold below which the entries are set to be
zero.
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To minimize the generalized p norm diversity measure Jp(s) in (2.135), subject to the
equality constraint Hs = x, we define the Lagrangian L(s, λ) as

L(s, λ) = Jp(s) + λ (x−Hs), (2.139)

where λ ∈ IRn is the vector of the Lagrange multipliers [704, 1001, 1002].
The stationary points of the Lagrangian function above can be evaluated as follows

∇sL(s∗λ∗) = ∇sJp(s)−HT λ∗ = 0, (2.140)
∇λ L(s∗λ∗) = x−Hs∗ = 0, (2.141)

where the gradient of the p norm can be expressed as

∇sJp(s) = |p| D−1
|s| (s) s (2.142)

and D|s|(s) ∈ IRn×n is a diagonal matrix with the entries dj = |sj |2−p. Solving the above
equations by simple mathematical operations, we obtain

λ∗ = |p| (
HD|s|(s∗)HT

)−1
x, (2.143)

s∗ = |p|−1 D|s|(s∗)HT λ∗

= D|s|(s∗)HT
(
HD|s|(s∗)HT

)−1
x. (2.144)

The equation (2.144) is not in a convenient form for computation since the desired vector
s∗ is implicitly in the right side of the equation. However, it suggests that an iterative
algorithm for estimation of the optimal vector s∗ is given as

s(k + 1) = D|s|(k)HT
(
HD|s|(k)HT

)−1
x, (2.145)

where D|s|(k) = diag{|s1(k)|2−p, |s1(k)|2−p, . . . , |sn(k)|2−p}. The above algorithm, called
as the generalized Focuss algorithm can be expressed in a more compact form [511]:

s(k + 1) = D̃|s|(k)
(
HD̃|s|(k)

)+

x, (2.146)

where the superscript (·)+ denotes the Moore-Penrose pseudo-inverse and D̃|s|(k) = D1/2
|s| (k) =

diag{|s1|1− p
2 (k), |s2|1− p

2 (k), . . . , |sn|1− p
2 (k)}. It should be noted that the matrix D|s| exists

for all s and even for a negative p. For p = 2, the matrix D|s| = I and the Focuss algorithm
simplifies to the standard LS or the minimum 2-norm solution s∗ = HT (HHT )−1 x. For
another special case p = 0, the diagonal matrix D̃|s| = diag{|s1|, |s2|, . . . , |sn|}. In order
to derive rigorously the algorithm for p = 0, we should instead of (2.135) use the Gaussian
entropy (2.136) for which the gradient can be expressed as

∇sJG(s) = 2D−1
G s, (2.147)

where DG(s) = diag{|s1|2, |s2|2, . . . , |sn|2}.
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For noisy data, we can use a more robust regularized Focuss algorithm in the form:

s(k + 1) = D|s|(k)HT
(
HD|s|(k)HT + α(k) I

)−1
x, (2.148)

where α(k) ≥ 0 is the Tikhonov regularization parameter depending on the noise level
[704, 1002].

Finally, it is worthy of mention that in order to solve the minimum fuel problem as in
(2.132) for the case of the multiple sensor vectors, we can formulate the following general-
ized constrained optimization problem [704, 1002]:

Minimize

Jp(S) = sign(p)
n∑

j=1

(‖sj‖2)p, p ≤ 1, (2.149)

subject to the constraints H S = X,

where sj = [sj(1), sj(2), . . . , sj(N)]T and ‖sj‖2 = (
∑N

l=1 |sj(l)|2)1/2.
Similarly to the previous case, we can derive the Focuss algorithm for the multiple sensor

vectors as

S(k + 1) = D‖s‖(k)HT
(
HD‖s‖(k)HT

)−1
X, (2.150)

where D‖s‖(k) = diag{d1(k), d2(k), . . . , dn(k)} with dj(k) = ‖sj‖2−p(k). The algorithm can
be considered as the natural generalization of the Focuss algorithm (2.145). and initialized
by using the minimum Frobenius norm solution [1001, 1002]. Alternatively for noisy data,
we can use the Tikhonov regularization technique, the truncated SVD or a modified L-curve
approach for noisy data [704, 1001, 1002].



3
Principal/Minor Component

Analysis and Related
Problems

I want to get the structural problems out of the way first, so I can get to what matters more.
—(John McPhee)

3.1 INTRODUCTION

Neural networks with unsupervised learning algorithms organize themselves in such a way
that they can detect or extract useful features, regularities, correlations of data or signals or
separate or decorrelate some signals with little or no prior knowledge of the desired results.1

Normalized (constrained) Hebbian and anti-Hebbian learning rules are simple variants of
basic unsupervised learning algorithms in particular, learning algorithms for principal com-
ponent analysis (PCA), singular value decomposition (SVD) and minor component analysis
(MCA) belong to this class of unsupervised rules [357, 910, 1207].

PCA is perhaps one of the oldest and the best-known techniques in multivariate analysis
and data mining. It was introduced by Pearson, who used it in a biological context and
next developed by Hotelling in works done on psychometry. PCA was also developed
independently by Karhunen in the context of probability theory and was subsequently
generalized by Loeve [357]. Recently, many efficient and powerful adaptive algorithms have
been developed for PCA, SVD and MCA and their extensions [20, 910, 917, 64, 281]. The
main objective of this chapter is a derivation and overview of the most important algorithms.

1It is generally believed that the shape of the receptive fields in the visual cortex is determined by some
form of unsupervised learning.
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3.2 BASIC PROPERTIES OF PCA

3.2.1 Eigenvalue Decomposition

The purpose of principal component analysis (PCA) is to derive a relatively small number
of decorrelated linear combinations (principal components) of a set of random zero-mean
variables while retaining as much of the information from the original variables as possible.

Among the objectives of Principal Components Analysis are the following.

1. dimensionality reduction;

2. determination of linear combinations of variables;

3. feature selection: the choosing of the most useful variables;

4. visualization of multidimensional data;

5. identification of underlying variables;

6. identification of groups of objects or of outliers.

PCA has been widely studied and used in pattern recognition and signal processing. In
fact it is important in many engineering and scientific disciplines, e.g., in data compression,
feature extraction, noise filtering, signal restoration and classification [357]. PCA is used
widely in data mining as a data reduction technique. In image processing and computer
vision PCA representations have been used for solving problems such as face and object
recognition, tracking, detection, background modelling, parameterizing shape, appearance
and motion [1207, 712].

Often the principal components (PCs) (i.e., directions on which the input data have the
largest variances) are regarded as important, while those components with the smallest
variances called minor components (MCs) are regarded as unimportant or associated with
noise. However, in some applications, the MCs are of the same importance as the PCs, for
example, in curve and surface fitting or total least squares (TLS) problems [1309, 282].

Generally speaking, PCA is related and motivated by the following two problems:

1. Given random vectors x(k) ∈ IRm, with finite second order moments and zero mean,
find the reduced n-dimensional (n < m) linear subspace that minimizes the expected
distance of x from the subspace. This problem arises in the area of data compression
where the task is to represent all the data with a reduced number of parameters while
assuring as low as possible distortion generated by the projection.

2. Given random vectors x(k) ∈ IRm, find the n-dimensional linear subspace that cap-
tures most of the variance of the data x. This problem is related to feature extraction,
where the objective is to reduce the dimension of the data while retaining most of its
information content.

It turns out that both the problems have the same optimal solution (in the sense of least-
squares error) which is based on the second order statistics, in particular, on the eigen



BASIC PROPERTIES OF PCA 89

structure of the data covariance matrix2. PCA can be converted to the eigenvalue problem
of the covariance matrix of x and it is essentially equivalent to Karhunen-Loeve transform
used in image and signal processing. In other words, PCA is a technique for computation
of the eigenvectors and eigenvalues for the estimated covariance matrix3

R̂xx = E{x(k)xT (k)} = VΛVT ∈ IRm×m, (3.1)

where Λ = diag {λ1, λ2, ..., λm} is a diagonal matrix containing the m eigenvalues and V
= [v1,v2, . . . ,vm] ∈ IRm×m is the corresponding orthogonal or unitary matrix consisting of
the unit length eigenvectors referred to as principal eigenvectors.

The Karhunen-Loeve-transform determines a linear transformation of an input vector x
as

yP = VT
S x, (3.2)

where
x = [x1(k), x2(k), . . . , xm(k)]T is a zero-mean input vector, yP = [y1(k), y2(k), . . . , yn(k)]T

is the output vector called the vector of principal components (PCs), and VS = [v1,v2,
. . . ,vn]T ∈ IRm×n is the set of signal subspace eigenvectors, with the orthonormal vectors
vi = [vi1, vi2, . . . , vim]T , (i.e., (vT

i vj = δij) for j ≤ i, (δij is the Kronecker delta). The
vectors vi (i = 1, 2, . . . , n) are eigenvectors of the covariance matrix, while the variances
of the PCs yi are the corresponding principal eigenvalues. On the other hand, the (m− n)
minor components are given by

yM = VT
N x, (3.3)

where VN = [vm,vm−1, . . . ,vm−n+1] consists of the (m − n) eigenvectors associated with
the smallest eigenvalues.

Therefore, the basic problem we try to solve is the standard eigenvalue problem which
can be formulated by the equations

Rxxvi = λivi, (i = 1, 2, . . . , n) (3.4)

where vi are the eigenvectors, λi are the corresponding eigenvalues and Rxx = E{xxT }
is the covariance matrix of zero-mean signal x(k) and E is the expectation operator. Note
that Eq.(3.4) can be written in matrix form VT Rxx V = Λ, where Λ is the diagonal matrix
of the eigenvalues of the covariance matrix Rxx.

In the standard numerical approach for extracting the principal components, first the co-
variance matrix Rxx = E{xxT } is computed and then its eigenvectors and (corresponding)
associated eigenvalues are determined by one of the known numerical algorithms. However,
if the input data vectors have a large dimension (say 1000 elements), then the covariance
matrix Rxx is very large (106 entries) and it may be difficult to compute the required
eigenvectors.

2If signals are zero mean the covariance and correlation matrices become the same.
3The covariance matrix is the correlation matrix of the vector with the mean removed. Since, we consider
the zero-mean signals the both matrices are equivalent.
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The neural network approach and adaptive learning algorithms enable us to find the
eigenvectors and the associated eigenvalues directly from the input vectors x(k) without a
need to compute or estimate the very large covariance matrix Rxx. Such an approach will
be especially useful for nonstationary input data, i.e., in the cases of tracking slow changes
of correlations in the input data (signals) or in updating eigenvectors with new samples.
Computing the sample covariance matrix itself is very costly. Furthermore, the direct
diagonalization of matrix or eigenvalue decomposition can be extremely costly since this
operation is of complexity O(m3). Most of the adaptive algorithms presented in this chapter
do not require computing the sample covariance matrix and they have low complexity.

3.2.2 Estimation of Sample Covariance Matrices

In practice, the ideal covariance matrix Rxx is not available. We only have an estimate
R̂xx of Rxx called the sample covariance matrix based on a block of finite number samples:

R̂xx =
1
N

N∑

k=1

x (k) xT (k) . (3.5)

We assume that the covariance matrix does not change (or change very slowly) over the
length of the block. Alternatively, we can use the Moving Average (MA) approach to
estimate on-line the sampling covariance matrix as follows:

R̂(k)
xx = (1− η0) R̂(k−1)

xx + η0 x(k)xT (k) (3.6)

where η0 > 0 is a learning rate (and (1− η0) is a forgetting factor) to be chosen according
to the stationarity of the signal (typically 0.01 ≤ η0 ≤ 0.1).

Alternatively, in real time applications, the sample covariance matrix can be recursively
updated as

R̂N =
1
N

k∑

l=k−N+1

x (l)xT (l) =
1
N

[
k−1∑

l=k−N+1

x (l)xT (l) + x (k)xT (k)

]

=
N − 1

N
R̂N−1 +

1
N

x (k)xT (k) , (3.7)

where R̂N denotes the estimated covariance matrix at k-th data instant so that

R̂N−1 =
1

N − 1

k−1∑

l=k−N+1

x (l)xT (l) .

The recursive update can be formulated in more general form as

R̂N = α R̂N−1 +4R̂, (3.8)

where α is a parameter in the range (0, 1] and 4R̂ is a symmetric matrix of rank much less
than that of R̂N−1. While working with stationary signals, we usually use rank-1 update
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with α = (N − 1)/N and4R̂ = (1/N)x (k)xT (k), where x(k) is the data vector at k-th in-
stant. On the other hand, in the nonstationary case, rank-1 updating is carried out by choos-
ing 0 < α ¿ 1 and 4R̂ = x (k) xT (k). Alternatively, in the nonstationary case, we can
use the rank-2 update with α = 1 and 4R̂ = x (k) xT (k)− x (k −N + 1) xT (k −N + 1),
where N is the sliding window length over which the covariance matrix is computed. The
term R̂N−1 may be thought of as a prediction of R based on N − 1 observations and
x (k) xT (k) may be thought of as an instantaneous estimate of R.

3.2.3 Signal and Noise Subspaces - AIC and MDL Criteria for their Estimation

A very important problem arising in many application areas is determination of the di-
mension of the signal and the noise subspace. To solve this problem, we usually exploit
a fundamental property of PCA: It projects the input data x(k) from their original m-
dimensional space onto the n-dimensional output subspace y(k) (typically, with n ¿ m),
thus performing a dimensionality reduction which retains most of the intrinsic information
in the input data vectors. In other words, the principal components yi(k) = vT

i x(k) are
estimated in such a way that, for n ¿ m, although the dimensionality of data is strongly
reduced, the most relevant information must be retained in the sense that the original input
data x can be reconstructed from the output data (signals) y by using the transformation
x̂ = VS y, that minimizes a suitable cost function. A commonly used criterion is the
minimization of least mean squared error ‖x−VT

S VS x‖2.
PCA enables us to divide observed (measured), sensor signals: x(k) = xs(k) + ν(k) into

two subspaces: the signal subspace corresponding to principal components associated with
the largest eigenvalues called principal eigenvalues: λ1, λ2, ..., λn, (m > n) and associated
eigenvectors Vs = [v1,v2, . . . ,vn] called the principal eigenvectors and the noise subspace
corresponding to the minor components associated with the eigenvalues λn+1, ..., λm. The
subspace spanned by the n first eigenvectors vi can be considered as an approximation of
the noiseless signal subspace. One important advantage of this approach is that it enables
not only a reduction in the noise level, but also allows us to estimate the number of sources
on the basis of distribution of eigenvalues. However, a problem arising from this approach,
is how to correctly set or estimate the threshold which divides eigenvalues into the two
subspaces, especially when the noise is large (i.e., the SNR is low).

Let us assume that we model the vector x(k) ∈ IRm as

x(k) = Hs(k) + ν(k), (3.9)

where H ∈ IRm×n is a full column rank mixing matrix with m > n, s(k) ∈ IRn is a vector of
zero-mean Gaussian sources with the nonsingular covariance matrix Rs s = E{s(k)sT (k)}
and ν(k) ∈ IRm is a vector of Gaussian zero-mean i.i.d. noise modelled by the covariance
matrix Rνν = σ2

νIm, furthermore, random vectors {s(k)} and {ν(k)} are uncorrelated
[773].

Remark 3.1 The model given by Eq. (3.9) is often referred as the probabilistic PCA, and
have been introduced in machine learning context [1017, 1148]. Moreover, such model can
be also considered as a special form of Factor Analysis (FA) with isotropic noise [1148].
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For the model (3.9) and under the above assumptions the covariance matrix of x(k) can be
written as

Rxx = E{x(k)xT (k)} = HRs s HT + σ2
νIm

= [VS ,VN ]
[

ΛS 0
0 ΛN

]
[VS ,VN ]T

= VSΛSVT
S + VNΛNVT

N , (3.10)

where HRs s HT = VSΛ̂SVT
S is a rank-n matrix, VS ∈ IRm×n contains the eigenvectors

associated with n principal (signal+noise subspace) eigenvalues of ΛS = diag{λ1 ≥ λ2 · · · ≥
λn} in descending order. Similarly, the matrix VN ∈ IRm×(m−n) contains the (m−n) (noise)
eigenvectors that correspond to noise eigenvalues ΛN = diag{λn+1, . . . , λm} = σ2

νIm−n.
This means that, theoretically, the (m− n) smallest eigenvalues of Rxx are equal to σ2

ν , so
we can determine in theory the dimension of the signal subspace from the multiplicity of the
smallest eigenvalues under assumption that variance of noise is relative low and we perfect
estimate the covariance matrix. However, in practice, we estimate the sampled covariance
matrix from limited number of samples and the smallest eigenvalues are usually different,
so the determination of the dimension of the signal subspace is usually not easy task.

Instead of setting the threshold between the signal and noise eigenvalues by using some
heuristic procedure or a rule of thumb, we can use one of two well-known information
theoretic criteria, namely, Akaike’s information criterion (AIC) or the minimum description
length (MDL) criterion [671, 1266].

Akaike’s information theoretic criterion (AIC) selects the model that minimizes the cost
function [773]

AIC = −2 log(p(x(1),x(2), . . . , x(N)|Θ̂)) + 2n, (3.11)

where p(x(1),x(2), . . . , x(N)|Θ̂) is a parameterized family of probability density, Θ̂ is the
maximum likelihood estimator of a parameter vector Θ, and n is the number of free adjusted
parameters.

The minimum description length (MDL) criterion selects the model that instead mini-
mizes

MDL = − log(p(x(1),x(2), . . . , x(N)|Θ̂)) +
1
2
n log N. (3.12)

Assuming that the observed vectors {x(k)}N
k=1 are zero-mean, i.i.d. Gaussian random vec-

tors it can be shown [1266] that the dimension of the signal subspace can be estimated by
taking the value of n ∈ {1, 2, . . . , m} for which

AIC(n) = −2N(m− n) log %(n) + 2n(2m− n), (3.13)

MDL(n) = −N(m− n) log %(n) + 0.5n(2m− n) log N (3.14)

is minimized. Here, N is the number of the data vectors x(k) used in estimating the data
covariance matrix Rxx, and

%(n) =
(λn+1λn+2 · · ·λm)

1
m−n

1
m−n (λn+1 + λn+2 + · · ·+ λm)

(3.15)
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is the ratio of the geometric mean of the (m−n) smallest PCA eigenvalues to their arithmetic
mean. The estimate n̂ of the number of terms (sources) is chosen so that it minimizes either
the AIC or MDL criterion.

Both criteria provide rough estimates (of the number of sources) that are rather very
sensitive to variations in the SNR and the number of available data samples [773]. Another
problem with the AIC and MDL criteria given above is that they have been derived by
assuming that the data vectors x(k) have a Gaussian distribution [1266]. This is done
for mathematical tractability, by making it possible to derive closed form expressions. The
Gaussianity assumption does not usually hold exactly in the BSS and other signal processing
applications. Therefore, while the MDL and AIC criteria yield suboptimal estimates only,
they still provide useful formulas that can be used for model order estimation.

Instead of setting the threshold between the signal and noise eigenvalues, one might even
suppose that the MDL and AIC criteria cannot be used in the BSS problem, because
there we assume that the source signals si(k) are non-Gaussian. However, it should be
noted that the components of the data vectors x(k) = Hs(k) + ν(k) are mixtures of the
sources, and therefore often have distributions that are not so far from the Gaussian one.
In practical experiments, the MDL and AIC criteria have quite often performed very well
in estimating the number n of the sources in the BSS problem [671]. We have found two
practical requirements for their successful use. Firstly, the number of the mixtures must be
larger than the number of the sources. If the number of sources is equal to the number of
sensors, both criteria inevitably underestimate n by one. The second requirement is that
there must be at least a small amount of noise. This also guarantees that the eigenvalues
λn+1, λn+2, . . . , λm, corresponding to noise, are nonzero. It is obvious that zero eigenvalues
cause numerical difficulties in formulas (3.13) and (3.14).

3.2.4 Basic Properties of PCA

It is easy to obtain the following properties for principal components (PCs) yi = vT
i x :

1. The factor y1(k) = vT
1 x(k) is the first principal component of x(k) if the variance of

y1(k) is maximally large under constraint that the norm of vector v1 is constant [910].
Then the weight vector v1 maximizes the following criterion

J1(v1) = E{y2
1} = E{vT

1 Rxx v1}, (3.16)

subject to the constraint ‖v1‖2 = 1. The criterion can be extended for n principal
components (with n any number between 1 and m) as

Jn(v1,v2, . . . ,vn) = E{
n∑

i=1

y2
i } = E{

n∑

i=1

(vT
i x)2} =

n∑

i=1

vT
i Rxx vi, (3.17)

subject to the constraints vT
i vj = δij .

2. The PCs have zero mean values

E{yi} = 0, ∀i. (3.18)
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3. Different PCs are mutually uncorrelated

E{yiyj} = δijλj , (i, j = 1, 2, . . . , n). (3.19)

4. The variance of the i-th PC is equal to the i-th eigenvalue of the covariance matrix
Rxx

var{yi} = σ2
yi

= E{y2
i } = E{(vT

i x)2} = vT
i Rxxvi = λi. (3.20)

5. The PCs are hierarchically organized with respect to decreasing values of their vari-
ances

σ2
y1

> σ2
y2

> · · · > σ2
yn

, (3.21)

i.e., λ1 > λ2 > · · · > λn.

6. Best approximation property: for the mean-square error of approximation

x̂ =
n∑

i=1

yivi =
n∑

i=1

vivT
i x, n < m, (3.22)

we have

E{‖x− x̂‖2} = E{‖
m∑

i=n+1

yivi‖2} =
m∑

i=n+1

E{|yi|2} =
m∑

i=n+1

λi. (3.23)

Taking into account that λ1 > λ2 > · · · > λn it is obvious that an approximation
with these eigenvectors v1,v2, . . . ,vn, corresponding to the largest eigenvalues, leads
to the minimal mean square error.

3.3 EXTRACTION OF PRINCIPAL COMPONENTS USING OPTIMAL

COMPRESSION–RECONSTRUCTION PRINCIPLE

One of the simplest and intuitively understandable approach to the derivation of adaptive
algorithms for PCA is based on self-association (called also self-supervising or replicator
principle) [20, 281, 282]. According to this approach, we first compress the data vector
x(k) to one variable y1(k) = vT

1 x(k) and next we attempt to reconstruct the original data
from y1(k) by using the transformation x̂(k) = v1y1(k). Let us assume, that we would
like to extract principal components (PCs) sequentially by employing the concept of self-
supervising principle (replicator) and a cascade (hierarchical) neural network architecture
[281, 277, 282].
Let us consider a single linear neuron (see Fig.3.1)

y1(k) = vT
1 x =

m∑
p=1

v1pxp(k), (3.24)
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which extracts the first principal component, with λ1 = E{y2
1}. Strictly speaking, the factor

y1 is called the first principal component of x, if the variance of y1 is maximally large under
constraint that the principal vector v1 has unit length.

The vector v1 = [v11, v12, . . . , v1m]T should be determined in such a way that the re-
construction vector x̂ = v1y1 will reproduce (reconstruct) the input training vectors x(k)
as correctly as possible, according to a suitable optimization criterion. In general, the loss
(cost) function is expressed as

J1(v1) = E{‖x− v1vT
1 x‖2} ∼=

N∑

k=1

γN−k‖x(k)− v1vT
1 x(k)‖2, (3.25)

where γ is the forgetting factor. As a special case, we can consider the simplified (instan-
taneous) version of the cost function which can be written as

J̃1(v1)
4
=

1
2
||e1||22 =

m∑
p=1

e2
1p, (3.26)

with
e1

4
= x− v1y1, y1

4
= vT

1 x.

The formulation of the computational cost function J1(v1) is a key step in our approach,
because this enables us to transform the minimization problem into a set of differential or
difference equations, which then determines the adaptive learning algorithm [281, 282].

The minimization of the cost function (3.26), according to the standard gradient descent
approach [281] for vector v1, leads to the following set of differential equations:

dv1p

dt
= −µ1

∂J1(v1)
∂v1p

= µ1

[
y1(t)e1p(t) + xp(t)

m∑

h=1

v1h(t)e1h(t)

]
, (p = 1, 2, . . . ,m) (3.27)

which can be written in matrix form as

dv1

dt
= µ1[y1e1 + xvT

1 e1], (3.28)

for any v1(0) 6= 0, µ1 > 0.
The above learning rule can be further simplified as

dv1

dt
= µ1y1e1 = µ1y1[x− v1y1], (3.29)

since the second term in Equation (3.28), which can be written as xvT
1 e1 = xvT

1 (x−v1y1) =
x(1− vT

1 v1)y1, tends quickly to zero as vT
1 v1 tends to 1 with t →∞ and can therefore be

neglected. This feature has also been confirmed by extensive computer simulations.
It is interesting to note that the discrete-time realization of the learning rule:

v1(k + 1) = v1(k) + η1(k) y1(k)[x(k)− v1(k) y1(k)], (k = 0, 1, 2, . . .) (3.30)

which is in the form known as the Oja algorithm [910].
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Fig. 3.1 Sequential extraction of principal components.

Remark 3.2 It is not well known, that the first paper which shows that a normalized Heb-
bian learning performs PCA was [20]:

ṽ1(k + 1) = v1(k) + η1(k) y1(k)x(k), (3.31)

v1(k + 1) =
ṽ1(k + 1)
‖ ṽ1(k + 1)‖ . (3.32)

If the normalization step is combined together with the Hebbian rule, we obtain the learning
algorithm (3.30).

The above learning rule can be easily extended for an arbitrary number of PCs using the
self-supervising principle and the cascade hierarchical neural network shown in Fig.3.1.

In what follows, we will discuss a deflation approach for sequential extraction of principal
components, corresponding to real-valued zero-mean signals without any need to estimate
the large covariance matrix. We will extract principal components sequentially as long as
the eigenvalues λi are larger than some suitably chosen threshold. We assume that minor
components for i > n correspond to additive noise.

The learning algorithm for the extraction of the second PC corresponding to the second
largest eigenvalue λ2 = E{y2

2} works in a way similar to the extraction of the first principal
component. However, we apply the extraction process not directly to the input data x1(k) =
x(k) but to the residual error

e1(k)
4
= x2(k) = x1(k)− x̂1(k) = x1(k)− v1y1(k)

and y2(k)
4
= vT

2 e1(k) (not y2(k) = vT
2 x(k) as usually is assumed). It can be easily shown

that the learning rule for the i− th PC can be written in the general form as follows

vi(k + 1) = vi(k) + ηi(k) yi(k)xi+1(k), (3.33)

where
ei = xi+1

4
= xi − viyi, yi

4
= vT

i xi, x1(k)
4
= x(k).
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Fig. 3.2 On-line on chip implementation of fast RLS learning algorithm for the principal component
estimation.

The extracted output signals yi(k) after applying the above learning procedure will be de-
correlated with decreasing values of the variances λi = E{y2

i }, (i = 1, 2, ..., n).

In the accelerated version of the above algorithm, key roles are played by the learning
rates ηi(k) ≥ 0 and the forgetting factor γ. If the learning rate is too large, the algo-
rithm is unstable. Otherwise, if it is a fixed or an exponentially decreasing parameter, the
convergence speed of the algorithm may be very slow [281, 277, 282].

In order to increase convergence speed, we can minimize the cost function (3.25) by em-
ploying the recursive least-squares (RLS) or Kalman filtering approach for optimal updating
of the learning rate ηi [281, 357, 1318] (see Fig. 3.2):

x1(k) = x(k), η−1
i (0) = 2 max{‖xi(k)‖2} = 2xi,max, (3.34)

vi(0) = xi,max/‖xi,max‖, (i = 1, 2, . . . , n), (3.35)
yi(k) = vT

i (k)xi(k), (3.36)

vi(k + 1) = vi(k) +
yi(k)

η−1
i (k)

[xi(k)− yi(k)vi(k)], (3.37)

η−1
i (k + 1) = γη−1

i (k) + |yi(k)|2, (3.38)
xi+1(k) = xi(k)− yi(k)vi∗, (3.39)
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where γ is the forgetting factor (typically, 0.9 ≤ γ ≤ 0.99) and vi∗ means vector vi(k) after
achieving convergence.

The above fast algorithm can be generalized for Principal Subspace Analysis (PSA) and
nonlinear PCA.

3.4 BASIC COST FUNCTIONS AND ADAPTIVE ALGORITHMS FOR PCA

3.4.1 The Rayleigh Quotient – Basic Properties

Most of the adaptive algorithms for PCA and MCA (minor component analysis) can be
defined directly or indirectly by using the Rayleigh quotient (RQ) of the specific covariance
matrix as the cost function.

The Rayleigh quotient r(v) is defined for v 6= 0, as

r(v) = r(v,Rxx) =
vT Rxxv

vT v
, (3.40)

where Rxx = E{xxT }. The Rayleigh quotient has the following important properties:

1. Stationarity and critical points:

λ1 = max r(v,Rxx) (3.41)
λm = min r(v,Rxx), (3.42)

where λ1 and λm denote the largest and smallest eigenvalues of the covariance matrix Rxx.
More generally, the critical points and critical values of r(v,Rxx) are the eigenvectors

and eigenvalues of Rxx. Let the eigenvalues of the covariance matrix be ordered as

λ1 > λ2 > · · · > λm. (3.43)

2. Homogeneity:

r(αv, β Rxx) = β r(v,Rxx) ∀α 6= 0, β 6= 0. (3.44)

3. Translation invariance:

r(v,Rxx − αI) = r(v,Rxx)− α. (3.45)

4. Minimal residual:

‖ (Rxx − r(v,Rxx)I)v‖ 6 ‖(Rxx − αI)v‖ (3.46)
∀v 6= 0 and any scalar coefficient α. (3.47)

5. Orthogonality:

v ⊥ (Rxx − r(v,Rxx)I)v. (3.48)
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6. The Hessian matrix of the Rayleigh quotient is:

Hr(v,Rxx) =
[
∂2r(v,Rxx)

∂vi∂vj

]
=

2
‖v‖22

(Rxx − r(v) I)
(
I− 4

‖v‖22
vvT

)
. (3.49)

For the eigenvalues λ1, λ2, . . . , λm and the corresponding eigenvectors v1,v2, . . . ,vm, the
Hessian can be expressed as [293]

Hr(vi) = 2 (Rxx − λiI) (3.50)

Hr(vi)vj =
{

0, i = j
2 (λj − λi)vj , i 6= j

(3.51)

detHr(vi) = det[Rxx − λiI] = 0 (3.52)
i.e., Hr is singular for any eigenvector vi. (3.53)

The Hessian matrix Hr has the same eigenvectors as Rxx but with different eigenvalues.

Remark 3.3 It should be noted that it is not practical to use the Newton or quasi Newton
method for minimization of the Rayleigh quotient, since the Hessian matrix Hr is singular
at the extremum points and so the inverse matrix does not exist.

3.4.2 Basic Cost Functions for Computing Principal and Minor Components

The maximum and minimum eigenvalues of the covariance matrix Rxx = E{xxT } can be
found as the extrema of the Rayleigh quotient, so the following basic cost can be used

J2(v) = r(v) =
vT Rxxv

vT v
, v ∈ IRm ‖v‖2 6= 0. (3.54)

To find these extrema, we can compute the gradient as

∇vr(v) =
∂r(v)
∂v

= 2
Rxxv(vT v)− v(vT Rxxv)

(vT v)2
, (3.55)

from which it follows that the stationary points corresponding to ∇vr(v) = 0 satisfy

Rxxv =
vT Rxxv

vT v
v. (3.56)

This equation can be easily satisfied if v is a unit length eigenvector of Rxx with corre-
sponding eigenvalue λ = vT Rxxv. Obviously, the minimum will correspond to the minimal
eigenvalue of Rxx and the maximum of r(v) corresponds to the maximum eigenvalue. In
the general case, the zeros of ∇vr(v) correspond to the eigenvectors of Rxx, which can be
assumed to have unit length.

The above unconstrained optimization problem can also be formulated as a constrained
one:
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Maximize J̃3(v) = vT Rxxv

subject to the constraints vT v = 1.

The Lagrangian for this constrained problem is

J3(v, λ) = vT Rxxv + λ(1− vT v), (3.57)

where λ ∈ IR is a scalar Lagrange multiplier. A necessary and sufficient condition for a
stationary point corresponding to an eigenvalue of Rxx is

∇vJ3(v, λ) = 0 and ∇λJ3(v, λ) = 0 (3.58)

and corresponds to

Rxxv = vλ, vT v = 1. (3.59)

Alternatively, instead of the Lagrangian, we can employ the penalty method and formu-
late the following cost function

J4(v) = vT Rxxv − α(1− vT v)2, (3.60)

where α is a positive penalty coefficient.
Alternative class of objective functions, based on an information-theoretic criterion has

been recently proposed as4 [1, 3]

J5(v) = log
vT Rxxv

vT v
(3.61)

and

J6(v) = log(vT Rxxv)− vT v. (3.62)

Another important and relative simple cost function for PCA, that is not based on the
Raleigh quotient is:

J7((v, c) = E{‖x− v c‖}, (3.63)

where c is a scalar [357].
Various cost functions used for derivation of PCA algorithms are summarized in Table

3.1.
It is interesting to note that minimization of the above cost functions lead to adaptive

algorithms written in the general form:

v1(k + 1) = v1(k) + η1(k)F
[
v1(k),R(k)

xx

]
, (3.64)

where the function F can take various forms (see Table 3.2). The covariance matrix can be
estimated on-line as

R(k)
xx = (1− η0)R(k−1)

xx + η0 x(k)xT (k), (3.65)

where η0 is the learning rate.

4It is worth to mention, that any nonlinear monotonic transformation of the Raleigh quotient (e.g.,
log(r(v))) will have the same minimum as the standard cost function for PCA.
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Table 3.1 Basic cost functions which maximization leads to adaptive PCA algorithms.

1. J1(v) = −E{‖x− vvT x‖2} ∼= −PN
k=1 γN−k‖x(k)− vvT x(k)‖2

2. J2(v) = (vT Rxxv)/(vT v)

3. J3(v) = vT Rxxv + λ(vT v − 1)

4. J4(v) = vT Rxxv − α(vT v − 1)2

5. J5(v) = log(vT Rxxv)/(vT v)

6. J6(v) = log(vT Rxxv)− vT v

7. J7(v) = E{‖x− v c‖}

3.4.3 Fast PCA Algorithm Based on the Power Method

Alternative fast algorithms for PCA can easily be derived by using the power method and
properties of the Rayleigh quotient [1003]. Assuming that the principal eigenvector v1 has
unit length, i.e., vT

1 v1 = 1, we can estimate it using the following iterations

v1(l + 1) =
Rxxv1(l)

vT
1 (l)Rxxv1(l)

. (3.66)

Taking into account that y
(l)
1 (k) = vT

1 (l)x(k) and R̂xx = 〈x(k)xT (k)〉, we can finally use
the following simplified formula

v1(l + 1) =
∑N

k=1 y
(l)
1 (k)x(k)

∑N
k=1[y

(l)
1 (k)]2

(3.67)

or more generally, for a number of higher PCs, we use the deflation approach as

vi(l + 1) =
∑N

k=1 y
(l)
i (k)xi(k)

∑N
k=1[y

(l)
i (k)]2

, (i = 1, 2, . . . , n) (3.68)

where y
(l)
i (k) = vT

i (l)xi(k). After convergence of the vector vi(l) to vi∗, we perform the
deflation as: xi+1 = xi − vi∗yi, x1 = x.
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Table 3.2 Basic adaptive learning algorithms for principal component analysis (PCA).

No. Learning Algorithm Notes, References

1. ṽ1(k + 1) = v1(k) + η1v
T
1 (k)x(k)x(k) Amari (1978) [20]

v1(k + 1) = ṽ1(k + 1)/‖ṽ1(k + 1)‖2

2. ∆v1 = η1[Rxxv1 − v1v
T
1 Rxxv1] Oja (1982) [918]

∼= η1[y1x− |y1|2v1]

3. ∆v1 = η1[Rxxv1(v
T
1 v1)− v1v

T
1 Rxxv1] Chen, Amari (1998) [189]

∼= η1[y1xvT
1 v1 − y2

1v1]

4. ∆v1 = η1[y1x− ‖v1‖2v1] Yuille et al. (1994) [1341]

5. ∆v1 = (
Rxxv1

vT
1 Rxxv1

− v1) Roweis (1998) [1017]

∼=
PN

k=1 y1(k)x(k)PN
k=1 y2

1(k)
− v1

Tipping, Bishop (1999) [1148]

6. ∆v1 = η1g(vT
1 v1)[Rxxv1 − v1(v

T
1 Rxxv1/v

T
1 v1)] Luo et al. (1996),

g(vT
1 v1) = 1 or vT

1 v1 or (vT
1 v1)

−1 Chatterje (1999) [177]

7. ∆v1 = η1[Rxxv1 − v1v
T
1 Rxxv1 − v1(1− vT

1 v1)] Abed-Meraim, Douglas,

∼= η1[y1x− |y1|2v1 − v1(1− vT
1 v1)] Hua, Chatterje (1999) [178]

8. ∆v1 = η1[2Rxxv1 − v1v
T
1 Rxxv1 −Rxxv1v

T
1 v1)] Abed-Meraim, Douglas, [3, 413]

∼= η1[2y1x− |y1|2v1 − y1v
T
1 v1x)] Hua (1999) [578]

9. ∆v1 = η1y1Ψ1(x− y1v1) Robust Algorithm,

Cichocki - Unbehauen (1993) [281]

10. yi(k) = vT
i (k)xi(k) Fast RLS Algorithm, Cichocki,

η−1
i (k) = γη−1

i (k − 1) + |yi(k)|2 Kasprzak, Skarbek [281, 269]

vi(k + 1) =
yi(k)

η−1
i (k)

[xi(k)− yi(k)vi(k)] Yang (1995) [1318]

xi+1(k + 1) = xi(k)− yi(k)vi∗

x1(k) = x(k), η−1
i (0) = σ2

yi = E{|yi|2}
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The above fast PCA algorithm can be rigorously derived in a slightly modified form by
minimizing the cost function:

J1(v, y(l)) =
N∑

k=1

‖x(k)− y(l)v‖22 (3.69)

=
N∑

k=1

‖x(k)‖22 + ‖v |22
N∑

k=1

[y(l)(k)]2 − 2vT
N∑

k=1

y(l)(k)x(k),

subject to the constraint ‖v‖ = 1. The above cost function achieves equilibrium when the
gradient of J2 is zero, i.e., at

v∗ =
∑N

k=1 y∗(k)x(k)∑N
k=1 y2∗(k)

. (3.70)

This suggests the following iteration formula [1017, 1148]:

v(l + 1) =
∑N

k=1 y(l)(k)x(k)

‖∑N
k=1 y(l)(k)x(k)‖2

. (3.71)

Outline of the fast PCA algorithm:

1. Initialization: set v1(0) 6= 0 for l = 0

2. Set y
(l)
1 (k) = vT

1 (l)x(k), (k = 1, 2, . . . , N)

3. Compute

v1(l + 1) =
∑N

k=1 y
(l)
1 (k)x(k)

‖∑N
k=1 y

(l)
1 (k)x(k)‖2

4. Stop if
(

1− J1(v
(l+1)
1 )

J1(v
(l)
1 )

)
is less than a certain small threshold ε. Otherwise, let l := l+1

and go to step 2.

It should be noted that the convergence rate of the power algorithm depends on a ra-
tio λ2/λmax, where λ2 is the second largest eigenvalue of Rxx. This ratio is generally
smaller than one, allowing adequate convergence of the algorithm. However, if the eigen-
value λ1 = λmax has one or more other eigenvalues of Rxx close by, in other words, when
λ1 belongs to a cluster of eigenvalues then the ratio can be very close to one, causing very
slow convergence and in consequence the estimated eigenvector v may be inaccurate. For
multiple eigenvalues the power method fails to converge.
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3.4.4 Inverse Power Iteration Method

The drawback of the power method can be partially overcome by applying the power method
to the matrix Txx = (Rxx − σI)−1 instead of Rxx, where σ is positive coefficient, called
shift, specified by the user. This method converges to the eigenvector corresponding to the
eigenvalue λj closest to σ rather λmax. The method is called inverse power iteration and
can formulated as the following algorithm:

vT (l + 1) =
TxxvT (l)

‖TxxvT (l)‖2 =
z(l)

‖z(l)‖2
, (3.72)

where z(l) = [Rxx − σI]−1v(l). The stop criteria can be easily established as: ‖z(l) −
λT (l)v(l)‖2 ≤ ε, where λT = vT (l)z(l) and ε is a small threshold. After convergence
vj = vT /λT and λj = σ + 1/λT .

The inverse power method converges if vT (0) is not perpendicular to vj . The convergence
rate is |(λj−σ)/(λi−σ)|, where λi is an eigenvalue of Rxx such that |λi−σ|−1 is the second
largest eigenvalue of Txx = (Rxx − σ I)−1 in magnitude. The algorithm is particularly
effective when we have a good approximation to an eigenvalue for which we want compute
the eigenvector. By choosing σ very close to a desired eigenvalue, the algorithm can converge
very quickly [62]. One advantage of the inverse power method is its ability to converge to
any desired eigenvalue closest to σ. Another efficient and fast algorithms for the eigenvalue
problems the reader can find in the excellent book [62].

3.5 ROBUST PCA

The learning algorithms discussed in the previous sections (e.g., (3.27), (3.28)) are optimal
only for a Gaussian distribution of the input data and they are rather very sensitive to
impulsive noise or outliers.

Remark 3.4 It is well known that standard PCA is optimal in the sense of Mean Square
Error (MSE). However, the estimation based on MSE is rather sensitive to non Gaussian
noise or outliers, so it is not a robust estimator. It is interesting to note that choosing the
1-norm (or more generally robust criteria) instead of the 2-norm cost function (3.69)), we
may obtain a more robust estimation of components when signals are corrupted by noise or
outliers.

Many approaches can be taken to increase the robustness of PCA with respect to noise and
outliers. Firstly, outlying measurements can be eliminated from the data; secondly outliers
can be suppressed or modified by replacing them with more appropriate values; and finally,
more robust criteria can be applied.

In order to derive more robust algorithms, we can formulate a cost function as:

J1ρ(v1)
4
= ρ(e1) =

m∑
p=1

ρp(e1p), (3.73)



ROBUST PCA 105

where

ρ(e1)
4
=

m∑
p=1

ρp(e1p)

and ρi(e1i) are real, typically convex, functions known in statistics as “robust loss functions”.
In order to reduce the influence of outliers many different robust loss functions ρ(e) have
been proposed. Here, we give only four examples (see Table 2.1) [281]:

1. The absolute value function (i.e., 1-norm criterion)

ρA(e) = |e| (3.74)

2. Huber’s function

ρH(e) =
{

e2/2 for |e| ≤ β,
β|e| − β2/2 for |e| > β,

(3.75)

3. Talvar’s function

ρT (e) =
{

e2/2 for |e| ≤ β,
β2/2 for |e| > β,

(3.76)

4. The logistic function

ρL(e) = β2 log(cosh(e/β)), (3.77)

where β > 0 is a problem dependent parameter, called the cut-off parameter (typically
1 ≤ β ≤ 3). Typical robust loss (cost) functions and their influence (activation) functions
defined by

Ψp(ep)
4
=

∂ρp

∂ep
(3.78)

are collected in Table 2.1.
Generally speaking, a suitable choice of the loss function depends on the distribution

of the input vector x(t). Applying a standard gradient descent approach to the energy
function (3.73) after some mathematical manipulations, we obtain a learning algorithm
(generalization of Equation (3.27)).

dv1p

dt
= µ1

[
y1Ψp(e1p) + xp

m∑

h=1

v1hΨh(e1h)

]
, (3.79)

where µ1(t) > 0 and

Ψp(e1p)
4
=

∂ρp(e1)
∂e1p

.
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The above learning algorithm can be written in matrix form as

dv1

dt
= µ1

[
y1Ψ(e1) + xvT

1 Ψ(e1)
]
, (3.80)

where

Ψ(e1)
4
= [Ψ1(e11), Ψ2(e12), . . . , Ψn(e1m)]T .

The simplified (approximated) version of the above learning rule takes the form

dv1

dt
= µ1y1Ψ(e1) = µ1y1Ψ[x− v1y1], (3.81)

with µ1 > 0.
By using the self-supervising principle and a cascade hierarchical neural network the

above learning rules (3.79), (3.80) and (3.81) can easily be extended to obtain a number of
(higher) PCs. In other words, the learning algorithm for the extraction of the second PC
(y2) corresponding to the second largest eigenvalue λ2 = E{y2y

∗
2}, is performed in a similar

way as the first component, but we apply the extraction process not directly to the input
data x but to the available errors

x̃1
4
= e1 = x− x̂ = (x− v1y1), (3.82)

and

y2
4
= vT

2 e1. (3.83)

In general, the sequence of the cost functions can be formulated as

Jρ(vi)
4
= ρ(ei) =

m∑
p=1

ρp(eip), (i = 1, 2, . . . , n) (3.84)

where ei = ei−1 − viyi, yi = vT
i ei−1, with e0(t)

4
= x(t). The minimization of these cost

functions by the gradient descent technique leads to an adaptive learning algorithm

dvi

dt
= µi

[
yiΨ(ei) + ei−1vT

i Ψ(ei)
]
, (3.85)

for any vi(0) 6= 0, (i = 1, 2, . . . , n), where

µi(t) > 0,

Ψ(ei) = [Ψ1(ei1), Ψ2(ei2), . . . , Ψm(eim)]T ,

Ψp(eip) =
∂ρp(eip)

∂eip
, (e.g., Ψp(eip) = tanh(eip/β)),

e0(t) = x(t).
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Usually, the second term in Equation (3.85) is relatively small and can be neglected5, thus
yielding a simplified version of the learning algorithm for extraction of the first m PCs:

dvi(t)
dt

= µi(t) yi(t)Ψ[ei(t)], (3.86)

or in a discrete-time form as

vi(k + 1) = vi(k) + ηi(k)yi(k)Ψ[ei(k)] (3.87)

with vi(0) 6= 0, ηi(k) > 0.

3.6 ADAPTIVE LEARNING ALGORITHMS FOR SEQUENTIAL MINOR

COMPONENTS EXTRACTION

In contrast to principal components which are directions in which the data have the largest
variances the minor components are directions in which the data have the smallest variances.
In other words, the minor component analysis (MCA) is the eigenvalue decomposition
(EVD) problem of finding the smallest eigenvalues and corresponding eigenvectors.

One would expect that algorithms similar to PCA could be applied, however a simple
change of sign of the learning rate causes most of the algorithms to be numerically unsta-
ble. Therefore, special stabilizing terms are usually introduced to provide stability for the
algorithms. For example, the Amari/Oja learning rule for PCA can be modified for MCA
as follows

v(k + 1) = v(k)− η(k)[y(k)x(k)− y2(k)v(k) + (vT (k)v(k)− 1)v(k)], (3.88)

where v is the eigenvector corresponding to the smallest eigenvalue λmin = E{y2} =
E{(vT x)2} < 1. It should be noted that the auxiliary penalty term (vT v − 1)v is added
ensuring stability of the algorithm by forcing vector v to tend towards unit length (‖v‖ = 1).

A wide class of MCA algorithms can be derived from the unconstrained minimization
problem

min
v∈IRm

r(v)/2 with r(v) =
vT Rxxv

vT v
. (3.89)

Applying the gradient descent approach directly, we obtain a system of nonlinear ordinary
differential equations (ODE)

dv
dt

= −µ∇vr(v) = −µ
∂r(v)
∂v

= −µ

[
RxxvvT v − v(vT Rxxv)

(vT v)2

]
, (3.90)

where µ(t) > 0 is a learning rate.

5In fact the second term can be omitted if the actual error ei is small compared with excitation input vector
ei−1.
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An important property of the above flow is its isonormal property, i.e., the norm of the
vector v(t) is constant over time. This is easy to prove due to

d‖v‖2
dt

= 2vT dv
dt

= 0, (3.91)

with initial conditions ‖v(0)‖ 6= 0. Hence, v(t) is constant over time with

‖v(t)‖ = ‖v(0)‖, ∀t > 0. (3.92)

Without loss of generality, we can assume that ‖v(0)‖ = 1. This means that the state
vector of the above nonlinear system (3.91) evolves on a sphere with unit radius. In fact,
the term vT v can be neglected or formally absorbed by a positive learning rate µ̃(t), that
is,

dv
dt

= −µ̃

(
Rxxv − v

vT Rxxv
vT v

)
. (3.93)

The flow is isonormal and it will converge to the eigenvector corresponding to the minimal
eigenvalue of the covariance matrix Rxx. This flow can also be interpreted as a special case
of Brockett’s double bracket flow [113, 114].

On the basis of equation (3.93), several extensions or modifications have been proposed
in the literature, which can be written in the general form as follows:

dv
dt

= −µ(t) g(vT v)
(
Rxxv − vT Rxxv

vT v
v
)

(3.94)

or equivalently

dv
dt

= −µ(t)
g(vT v)
vT v

[
RxxvvT v − (vT Rxxv)v

]
, (3.95)

where g(vT v) can take various forms, e.g., (vT v),1, (vT v)−1.
The discrete-time algorithms can be written in their simplest forms as:

v(k + 1) = v(k)− η(k)

[
R(k)

xxv(k)− vT (k)R(k)
xxv(k)

vT (k)v(k)
v(k)

]
(3.96)

and its on-line version

v(k + 1) = v(k)− η(k)g(‖v2(k)‖)
[
y(k)x(k)− y2(k)

vT (k)v(k)
v(k)

]
, (3.97)

where y(k) = vT x(k).
Unfortunately, due to numerical approximation the above discrete-time algorithms are

unstable (i.e., they can diverge after a large number of iterations unless the normalization
to unit length is performed every few iterations). To prevent this instability, the learning
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Table 3.3 Basic adaptive learning algorithms for minor component analysis (MCA).

No. Learning Algorithm Notes, References

1. v̄n(k + 1) = vn(k)− ηn(k)yn(k)[x(k)− yn(k)vn(k)] Oja (1992) [910]

vn(k + 1) = v̄n(k + 1)/‖v̄n(k + 1)‖
or

∆vn(k) = −ηn(k)
�
yn(k)x(k)− y2

n(k)x(k)+

+vn(k)(vT
n (k)vn(k)− 1)

�
2. ∆vn(k) = −ηn(k)g(vT

nvn)

�
yn(k)x(k)− y2

1(k)

‖v̂n(k)‖22
vn(k)

�
Oja (1991) [910],

where Luo et al. (1997),

g(vT v) = 1 or vT
n vn or (vT

n vn)−1 Cirrincione (1998) [293]

3. ∆vn(k) = −ηn(k)

�
yn(k)x(k)− y2

1(k)

‖vn(k)‖42
vn(k)

�
Xu (1994) [1309, 1310]

4. ∆vn(k) = −ηn(k)yn(k)
�‖vn‖22x(k)− yn(k)vn(k)

�
Chen, Amari, Lin [189]

(1998)

5. ∆vn(k) = −ηn(k)yn(k)
�‖vn‖42x(k)− yn(k)vn(k)

�
Douglas, Kung, [413]

Amari (1998) [189]

6. ∆vn(k) = −ηn(k) [yn(k)x(k) + log (‖vn(k)‖p)vn(k)]

7. ∆vn(k) = −ηn(k) [yn(k)x(k) + (d− ‖v1(k)‖p)vn(k)] Zhang-Leung (1997)

where d > λmax

8. ∆vn(k) = −ηn(k) [vn(k)− yn(k)x(k)‖vn‖p]

9. yi(k) = vT
i (k)xi(k) Sakai and Shimizu

η−1
i (k) = γη−1

i (k − 1) + |yi(k − 1)|2, η−1
i (0) = E{|yi|2} (1997) [1029]

v̄i(k + 1) = vi(k)− yi(k)

η−1
i (k)

[xi(k)− yi(k)vi(k)]

vi := vi −
Pi+1

j=n(vT
i vj)vj , vi = v̄i/‖v̄i)‖2

xi−1(k) = xi(k) + γnyi(k)vi∗, xn = x(k)

for i = m, m− 1, . . . , m− n + 1
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rate η(k) must decay exponentially to zero or we need to orthonormalize the vector v(k)
after every few iterations by formally taking:

v(k) :=
v(k)
‖v(k)‖ . (3.98)

After extraction of the first minor component, in order to extract the next minor component,
instead of eliminating the vector v = vn from the sampled covariance matrix, we attempt
to make it the greatest principal component of the new covariance matrix defined as

R(2)
xx = R(1)

xx + γnvnvT
n , (3.99)

where R(1)
xx = E{xxT } =

∑n
i=1 λivivT

i and γn is a fixed constant larger that λ1.
All the above algorithms for MCA are rather slow and their convergence speed strongly

depends on the learning rate η(k).
Recently, Sakai and Shimizu extended and modified a fast PCA RLS algorithm (3.34) -

(3.39) for MCA [1029] (see also ([281]):

yi(k) = vT
i (k)yi(k), (3.100)

vi(k + 1) = vi(k)− yi(k)
η−1

i (k)
[xi(k)− yi(k)vi(k)], (3.101)

η−1
i (k + 1) = γη−1

i (k) + |yi(k)|2, (3.102)

vi := vi −
i+1∑

j=m

(vT
i vj)vj , vi(k) = vi(k)

(
vT

i (k)vi(k)
)−1/2

(3.103)

xi−1(k) = xi + γmyi(k)vi(k) (3.104)
xn(k) = x(k), i = m,m− 1, . . . , (3.105)

where γm > λ1.
The main difference between this algorithm and the RLS PCA algorithm (3.34) - (3.39)
lies in changing the sign of the learning rate, the orthonormalization of vector vi(k) in each
iteration step and different deflation procedure, which shifts the already extracted minor
components to the principal components.

3.7 UNIFIED PARALLEL ALGORITHMS FOR ESTIMATING PRINCIPAL

COMPONENTS, MINOR COMPONENTS AND THEIR SUBSPACES

In the previous sections, we have presented simple fast local algorithms which enable us to
extract principal and minor components sequentially one by one. In this section, we will
present a more general and unified approach which allows us to estimate principal and minor
components in parallel. Moreover, the discussed algorithms can also be used for principal
subspace analysis (PSA) and minor subspace analysis (MSA). When we have interest only
in the subspace spanned by the n largest or smallest eigenvectors, we do not need to identify
the respective eigenvectors vi, but any set of ṽi’s, which span the same subspace as vi’s, are
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sufficient. Indeed, when there are multiplicity in the eigenvalues, say λ1 = λ2, we cannot
obtain v1 and v2 uniquely, but obtain the subspace spanned by v1 and v2. Such a problem
is called the principal subspace or minor subspace extraction.

All these problems (PCA, PSA, MCA and MSA) are very similar, including sequential
extraction (n = 1) as a special case. Therefore, it is desirable to obtain a general unified
principle applicable to all of these problems and obtain algorithms in a unified way. The
principle should elucidate the structure of the PCA and MCA problems, and not only
explain most algorithms proposed so far, but give unified algorithms.

3.7.1 Cost Function for Parallel Processing

We first explain the idea intuitively. Let {λ1, . . . , λm} and {d1, · · · , dm} be two sets of
m positive numbers, where d1 > · · · > dm > 0. Consider the problem to maximize (or
minimize) the sum

S =
m∑

i=1

λi′di (3.106)

by rearranging the order of {λ1, . . . , λm} as {λ1′ , . . . , λm′}, where {1′, . . . ,m′} is a permu-
tation of {1, 2, . . . , m}. It is easy to see that S is maximized when {λi′} is arranged in a
decreasing order (that is, λ1′ > · · · > λm′) and is minimized when λ1′ < · · · < λm′ .

Brockett generalized this idea to a matrix calculation [113, 114]. Let V = [v1, . . . ,vm]
be an orthogonal matrix whose columns satisfy

vT
i vj = δij

(
VT V = Im

)
. (3.107)

Let us put

J(V) = tr
(
DVT RxxV

)
= tr

(
VDVT Rxx

)
(3.108)

where D = diag (d1, . . . , dm). When V consists of m eigenvectors of Rxx, V = [v1′ , . . . ,vm′ ],

VT RxxV = diag (λ1′ , . . . , λm′) (3.109)

and Eq. (3.108) reduces to J(V) =
∑

diλi′ . When V is a general orthogonal matrix,
VT RxxV is not a diagonal matrix. However, the following proposition holds.

Proposition 3.1 The cost function J(V) is maximized when

V = [v1, . . . ,vm] (3.110)

and minimized when

V = [vm, . . . ,v1] (3.111)

provided the eigenvalues satisfy λ1 > · · · > λm. J(V) has no local minima nor local maxima
except for the global ones.
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Now consider the case where d1 > · · · > dn > dn+1 = · · · = dm = 0. In such a case,

VDVT = [v1, . . . ,vn,vn+1, . . . ,vm]




d1

. . .
dn

0




[v1, . . . ,vn,vn+1, . . . ,vm]T

= [v1, . . . ,vn]




d1

. . .
dn


 [v1, . . . ,vn]T , (3.112)

so that the last (m−n) columns of V automatically vanish. Let us use n arbitrary mutually
orthogonal unit vectors w1, . . . ,wm and put

W = [w1, . . . ,wn] . (3.113)

We have
J(W) = tr

(
DWT RxxW

)
= tr

(
WDWT Rxx

)
, (3.114)

which plays the same role as J(V). It is immediate visible that J(W) is maximized (mini-
mized) when W consists of the eigenvectors of n largest (smallest) eigenvalues, and there are
no local maxima nor minima except for the true solution. So this cost function is applicable
for both PCA and MCA as well as PSA and MSA.

When n = 1, J(w) reduces to

J(w) = wT Rxxw (3.115)

under the condition that d1 = 1, wT w = 1. Hence, this is equivalent to the Rayleigh
quotient or its constrained version.

When d1 = d2 = · · · = dn = d, J(W) is maximized (minimized) when W is composed by
the eigenvectors of the n largest (smallest) eigenvalues. There are no other local maxima nor
minima, but only the subspace, not the exact eigenvectors, can be extracted by maximizing
(minimizing) this cost function.

3.7.2 Gradient of J(W)

The matrix W ∈ IRn×m satisfies
WT W = In. (3.116)

The set of such matrices is called the Stiefel manifold Om,n. We calculate the gradient of
J(W) in Om,n. Let dW be a small change of W, and the corresponding change in J(W)
is dJ = J(W + dW)− J(W). We have

dJ = tr
(
dW D WT Rxx

)
+ tr

(
W D dWT Rxx

)
. (3.117)

From (3.116), we have
dWT W + WT dW = 0 (3.118)
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Hence, from

dJ =
∂J

∂W
· dW, (3.119)

where A ·B is
∑

i,j aijbij = tr(ABT ) and the gradient is a matrix given by

∂J

∂W
= −WDWT RxxW + RxxWDWT W

= −WDWT RxxW + RxxWD. (3.120)

The gradient method for obtaining the principal components is written as

∆WP = η
(
RxxWP D−WP DWT

P RxxWP

)
(3.121)

and, for the minor components,

∆WM = −η
(
RxxWMD−WMDWT

MRxxWM

)
, (3.122)

where WP = VS = [w1, . . . ,wn] and WM = VN = [wm, . . . ,wn+1].
Let us consider the special case with n = 1. By putting d1 = 1, Eq. (3.121) reduces to

∆w = η
(
Rxxw −wwT Rxxw

)
, (3.123)

which is the well-known algorithm. Its on-line version is

∆w = η
(
yx− y2w

)
, (3.124)

where we replaced the covariance matrix Rxx by its instantaneous version xT x, and y =
wT x. This is the classic algorithm found by Amari (1978) and by Oja (1982) in which the
constraint term imposing wT w = 1 is treated separately [20, 910, 914, 1].

When n = m, this is the algorithm given by Brockett, while Xu derived it for n < m
[114, 1309, 1310]. If we put d1 = · · · = dn = 1, we obtain the subspace algorithm.

How does the algorithm (3.122) for extracting minor components work? It is obtained
from the same cost function, but it uses minimization instead of maximization. Hence,
the MCA algorithm changes the sign of the gradient. However, computer simulations show
that it does not work. We have shown that J(W) has only one maximum and only one
minimum, so that this looks strange. This was a puzzle for many years and it is interesting
to know the reason. This is related with the stability of the algorithms. We need a more
detailed stability analysis to elucidate the structure. Table 3.4 summarizes several parallel
algorithms for the PCA and PSA while Table 3.5 summarizes algorithms for the MSA/MCA.

3.7.3 Stability Analysis

It is easier to replace a finite time difference equation by its continuous time version for
analyzing the stability. The continuous time versions of (3.121) and (3.122) are

dW(t)
dt

= µ
(
RxxWD−WDWT RxxW

)
, (3.125)

dW(t)
dt

= −µ
(
RxxWD−WDWT RxxW

)
, (3.126)
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Table 3.4 Parallel adaptive algorithms for PSA/PCA.

No. Learning algorithm Notes, References

1. ∆W = η[xyH −WyyH ] Oja-Karhunen (1985) [914]

2. ∆W = η[RxxWD−WDWHRxxWD] Brockett (1991) [114]

∼= η[xyHD−WDyyHD]

3. ∆W = η(RxxWWH −WWHRxx)W Chen, Amari (1998) [189]

∼= η[xyHWHW −WyyH ]

4. ∆W = η(RxxWDWH −WDWHRxx)W Chen, Amari (2001) [188]

For diagonal matrix D with positive-valued strictly decreasing entries the Brockett and

Chen-Amari algorithms perform parallel adaptive PCA [114, 188, 189].

where we omitted suffices P and M .
We assume here that W is a general n ×m matrix, not necessarily belonging to Om,n,

and we put
U(t) = WT (t)W(t). (3.127)

We can prove that U(t) is invariant under the gradient dynamics (3.125) and (3.126), that
is

d

dt
U(t) = 0 (3.128)

when W(t) changes under the dynamics of (3.125) or (3.126). This is easily proved by the
direct calculations,

d

dt
U(t) =

dWT

dt
W + WT dW

dt

= µ (I−WT W)(DWT RxxW + WT RxxWD) = 0 (3.129)

with the initial condition: U(0) = WT (0)W(0) = I. Therefore, when W(0) at time t = 0
belongs to the Stiefel manifold Om,n it holds, U(0) = I, and hence U(t) = I for any t,
implying that W(t) always belongs to Om,n. Since any global extremum gives the true
solution of n principal or minor components, the dynamical equation (3.121) or (3.122)
should converge to the true solution, provided W (t) always belong to Om,n.

If computer simulations show that (3.122) does not work for minor components extrac-
tion, the dynamics (3.122) defined in Om,n is stable in Om,n but is unstable when it is
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extended to the entire space of IRm×n. In other words, if W(t) deviates to W(t) + dW
outside Om,n due to noise or numerical rounding-off, the deviation grows and W(t) escapes
from Om,n.

To show the above scenario, let δW be a small deviation of W ∈ Om,n in any direction.
It is known that the deviation is in general decomposed into the three terms

δW = WδS + WδG + NδB, (3.130)

where δS is a n × n skew symmetric matrix, δG is a n × n symmetric matrix, δB is a
(m−n)×n matrix, and N is a m× (m−n) matrix whose (m−n) columns are orthogonal
to the columns of W . The current W consists of n orthonormal vectors {w1, . . . ,wn}
which define the n-dimensional subspace. The first term WδS represents a change of wi

to wi + δwi, keeping the subspace spanned by wi’s invariant although its orthonormal
basis vectors change. The third term NδB alters wi from the subspace, so that it alters
the directions of the subspace spanned by W but still staying in Om,n. The second term
WδG destroys the orthonormality of W, so that it represents changes of W in the direction
orthogonal to Om,n. Hence this term is 0, when the dynamics is restricted only to inside of
Om,n.

When W(t) deviates to W(t) + δW(t), how such change δW(t) develops through dy-
namics. The dynamics of δW(t) is given by the variational equation

d

dt
δ W(t) = ±µ δ (RxxWD−WDWT RxxW)

= ±µ, (Rxxδ WD− δ WDWT RxxW −WDδ WT RxxW). (3.131)

We analyze the variational equation in the neighborhood of the true solution, where the
variation δW is not only inside Om,n but also in the orthogonal directions.

The results are summarized as follows (see Chen and Amari, 2001; Chen et al. 1998)
[188, 189].

1. The variational equations are stable at the true solution with respect to changes δS
and δB inside Om,n, when all d′is are different and all λ′i s are different.

2. When some d′is are equal, or some λ′is are equal, the variational equations are stable
with respect to δB but only neutrally stable with respect to δS.

3. The variational equation is stable at the true solution concerning changes in δG for
principle component extraction (3.125), but is unstable for minor component extrac-
tion (3.126).

Result 1. shows that the gradient dynamics (3.125) and (3.126) are successful for obtaining the
principal and minor components, respectively, in parallel, provided W(t) is exactly
controlled to belong to On,m.

Result 2. shows that the algorithms are successful for extracting principal and minor subspaces,
under the same condition when some di’s or λi’s are equal.

Result 3. shows that algorithm (3.125) is successful for extraction principal components, but
algorithm (3.126) fails for extracting minor components because of the instability in
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Table 3.5 Adaptive parallel MSA/MCA algorithms for complex valued data.

No. Learning rule Notes, References

1. ∆W = −η(RxxWWH −WWHRxx)W = Chen, Amari,

∼= −η[xyHWHW −WyyH ] Lin (1998) [189]

2. ∆W = −η(RxxWDWH −WDWHRxx)W+ Chen, Amari

+W(D−WHDW) (2001) [188]

3. ∆W = −η [RxxWWHWWHW −WWHRxxW] = Douglas, Kung,

∼= −η [xyH WH WWH W −WyyH ] Amari (1998) [413]

4. y(k) = WH(k)x(k) Orthogonal Algorithm [1]

x̂(k) = W(k)y(k) Abed-Meraim et al. (2000)

e(k) = x(k)− x̂(k)

α(k) = (1 + η2 ‖e(k)‖2‖y(k)‖2)−1/2

β(k) = (α(k)− 1)/‖y(k)‖2

ē(k) = −β(k) x̂(k)/η + α(k) e(k)

(∆W(k) = −η ē(k)yH(k))

or

u(k) = ē(k) /‖ē(k)‖
z(k) = WH(k)u(k)

∆W(k) = −2u(k) zH(k)

For D = I the Chen-Amari algorithm perform MSA [188, 189], however, for matrix D with

positive strictly decreasing entries the algorithm performs stable MCA.

the directions orthogonal to On,m. Such deviations caused by noises or numerical
rounding-off, so that the W (t) should be adjusted in each step to satisfy (3.116).

3.7.4 Unified Stable Algorithms

In order to overcome the instability of minor components extraction, Chen et al. (1998)
added a term which forces W(t) to return to Om,n [189]. The algorithms of principal and
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minor components extraction differ only in the signs:

dW
dt

= µ
(
RxxWDWT W −WDWT RxxW

)
(3.132)

for PCA,
dW
dt

= −µ
(
RxxWDWT W −WDWT RxxW

)
(3.133)

for MCA. Here,

WT (t)W(t) = In (3.134)

is not necessarily guaranteed in the course of dynamics, although we choose the initial value
to satisfy WT (0)W(0) = In. When (3.116) holds, (3.132) is the same as Xu’s algorithm
[1309, 1310]. But it cannot be applied to MCA by changing the sign, while (3.133) works
well for MCA.

However, the dynamics of (3.132) and (3.133) are neutrally stable with respect to changes
in WδG. Douglas et al. performed detailed numerical simulations, and show that the
discretized version of the algorithm does not work when Rxx is replaced by x(t)xT (t)
[412, 413, 414]. They proposed to strengthen the term to return to Om,n.

Taking this into account, Chen and Amari proposed the following algorithms [188]

dW
dt

= µ [(RxxWDWT W −WDWT RxxW) + W(D−WDWT )] (3.135)

for PCA, and

dW
dt

= −µ [(RxxWDWT W −WDWT RxxW) + W(D−WDWT )] (3.136)

for MCA.
It is interesting to show that almost all algorithms proposed so far are induced by mod-

ifying the penalty term. See discussion in Chen and Amari for details [188].

Remark 3.5 Let λ0 be an upper bound of all λi that is a constant larger than λ1. When
we know a bound λ0, we can define

R̄xx = λ0 I−Rxx. (3.137)

Then, the eigenvalues of R̄xx are λ0 − λ1, λ0 − λ2, . . . , λ0 − λm. Hence, by performing
PCA on R̄xx, we can easily obtain the minor components and their eigenvectors. This was
pointed out by Chen, Amari and Murata [190].

It is well known that the principal components of R−1
xx correspond to the minor compo-

nents of Rxx. Hence any PCA algorithm can be used for MCA if we can calculate R−1
xx,

but this needs an extra cost of matrix inversion.
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3.8 SINGULAR VALUE DECOMPOSITION IN RELATION TO PCA AND

FUNDAMENTAL MATRIX SUBSPACES

The singular value decomposition (SVD) is a tool of both practical and theoretical im-
portance in signal processing and identification problems. The SVD of real valued matrix
X = [x(1),x(2), . . . ,x(N)] ∈ IRm×N (m ≥ n) is given by

X = UΣVT , (3.138)

where U ∈ IRm×m and V ∈ IRN×N are orthogonal matrices and Σ ∈ IRm×N is a pseudo-
diagonal matrix whose top n rows contain ΣS = diag{σ1, . . . , σn} (with non-negative diag-
onal entries ordered from the largest to the smallest one) and whose bottom (m− n) rows
are zero. Note that only n singular values σi are non zero and for the full rank matrix X,
n = m.

For noiseless data, we can use the following decomposition

X = [US ,UN ]
[

ΣS 0
0 0

]
[VS ,VN ]T , (3.139)

where US = [u1, . . . ,un] ∈ IRm×n, ΣS = diag{σ1, . . . , σn} and UN = [un+1, . . . ,um].
The set of matrices {US ,ΣS ,VS} represents this signal subspace and the set of matrices
{UN ,ΣN ,VN } represents null subspace or, in practice for noisy data, the noise subspace.
The n columns of U corresponding to these non-zero singular values that span the column
space of X and they are called the left singular vectors. Similarly, the n columns of V are
called the right singular vectors and they span the row space of X. Using these terms, the
SVD of X can be written in more compact size:

X = US ΣS VT
S =

n∑

i=1

σiuivT
i . (3.140)

and we also have

Xvi = σiui,

XT ui = σivi. (3.141)

Perturbation theory of the SVD is partially based on the link between the SVD and the
PCA and eigenvalue decomposition. It is obvious that from the SVD of matrix X = UΣVT

with rank n ≤ m ≤ N , we have

XXT = UΣ2
1U

T , (3.142)
XT X = VΣ2

2 VT , (3.143)

where Σ1 = diag{σ1, . . . , σm} and Σ2 = diag{σ1, . . . , σN} . This means that the singular
values of X are the positive square roots of the eigenvalues of XXT and the eigenvectors
U of XXT are the left singular vectors of X. Note that if m < N , the matrix XT X will
contain at least N −m additional eigenvalues that are not included as singular values of X.
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As we discussed earlier, an estimate R̂xx of the covariance matrix corresponding to a set of
observed vectors x(k) ∈ IRm may be computed as R̂xx = (1/N)

∑N
k=1 x(k)xT (k). An alter-

nate and equivalent way of computing R̂xx is to form a data matrix X = [x(1),x(2),. . . ,x(N)]
∈ IRm×N and represent the estimated covariance matrix by

R̂xx =
1
N

XXT . (3.144)

Hence, the eigenvectors of the sample covariance matrix R̂xx are the left singular vectors
U of X and the singular values σi of X are the positive square roots of eigenvalues of R̂xx.

From this discussion it follows that all the algorithms discussed in this chapter for PCA
and MCA can be applied (after some simple tricks) to the SVD of arbitrary matrix X =
[x(1),x(2), . . . ,x(N)] without any need to directly compute or estimate the covariance
matrix. The opposite is also true; the PCA or EVD of the covariance matrix R̂xx can be
performed via the SVD numerical algorithms. However, for large matrices X, the SVD
algorithms become usually more costly, than the relatively efficient and fast PCA adaptive
algorithms although several reliable, and efficient numerical algorithms for the SVD exists
[311].

Now suppose that the data matrix X is perturbed by some noise matrix N , such that
X̃ = X + N . The entries of N are generated by an uncorrelated, zero mean, white noise
process with variance σ2

N so that the covariance matrix of noise is given by E{NN T /N} =
σ2
N Im. Under these conditions, we have [1223]

E{X̃X̃T /N} = E{XXT /N}+ σ2
N Im, (3.145)

so that for large p, the SVD of the noisy matrix X̃ is approximated by

X̃ ≈ U(Σ2
1 + Nσ2

N Im)1/2ṼT (3.146)

for some orthogonal matrix Ṽ. This expression shows that, for large N and small noise
variance σ2

N , the subspace spanned by the left singular vectors and singular values of the
perturbed covariance matrix E{XXT /N} is relatively insensitive to the added perturbations
in the entries of the matrix X. Therefore, the SVD is a robust and numerically reliable
approach. Moreover, the singular values of X̃ increase by an amount approximately equal
to σN

√
N while the left singular vectors remain the same as for a noiseless matrix X.

Furthermore, the matrix X̃ is now a full rank one and its (m− n) smallest singular values
are no longer zero, but now equal to σN

√
N . In theory, we can recover the noiseless matrix

XXT by subtracting the term Nσ2
N Im from Σ1. However, it is impossible to recover matrix

V or X because the length of the columns of V is equal to N and hence these vectors do
not participate in the averaging effect of increasing N [1223].

3.9 MULTISTAGE PCA FOR BLIND SOURCE SEPARATION OF COLORED

SOURCES

It is easy to show that, under some mild conditions, we can perform blind separation of
source signals with a temporal structure using two-stage or multistage PCA.
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Let us consider the instantaneous mixing model:

x(k) = Hs(k) + ν(k), (3.147)

where x(k) ∈ IRm is an available vector of sensor signals, H ∈ IRm×n is an unknown full
rank mixing matrix, with m ≥ n, s(k) ∈ IRn is the vector of colored sources signals and
ν(k) ∈ IRm is a vector of independent white noise signals.

In the first stage, we perform the standard PCA for the vector x(k), by formally making
eigenvalue decomposition of the covariance matrix [357]:

Rxx = VΛVT . (3.148)

On the basis of dominant (largest) eigenvalues, we perform the spatial whitening procedure

x(k) = Qx(k) = Λ−1/2
S VT

S x(k), (3.149)

where ΛS = diag{λ1, λ2, . . . , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn and VS = [v1,v2, . . . ,vn] ∈
IRn×m.

In the second stage, we can perform PCA for a new vector of signals defined by [357,
223, 224]

x̃(k) = x(k) + x(k − p), (3.150)

where p is an arbitrary time delay (typically, p = 1). It is interesting to note that the
covariance matrix of the vector x̃(k) can be easily expressed as

Rex ex = Rex(0) = E{x̃(k) x̃T (k)} = 2Rx(0) + Rx(p) + RT
x (p), (3.151)

where

Rx x = Rx(0) = E{x(k)xT (k)} = ARss AT = I (3.152)

under the assumption that A = QH is orthogonal and Rss = I and

Rx(p) = E{x(k)xT (k − p)} = ARs(p)AT . (3.153)

Hence, we obtain the matrix decomposition

Rex ex = AD(p)AT = Vex Λex VTex , (3.154)

where the D(p) is a diagonal matrix expressed as

D(p) = 2 I + Rs(p) + RT
s (p),

with diagonal elements dii(p) = 2(1+E{si(k) si(k−p)}. If the diagonal elements are distinct
(i.e., E{si(k) si(k − p)} 6= E{sj(k) sj(k − p)}, ∀i 6= j), then the eigenvalue decomposition
is unique up to the permutation and sign of the eigenvectors and the mixing matrix can be
estimated as H = Q+ Vex and the source signals can be estimated as

ŝ(k) = VTex x(k) = VTex Qx(k). (3.155)
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If some of the eigenvalues of the diagonal matrix Λex are very close to each other the
performance of separation can be poor. In such the cases, we can try to repeat the last step
for different time delays until all eigenvalues are distinct.

The above described procedure belongs to a wide class of second order statistics (SOS)
techniques [1159, 92, 357, 223, 224]. More advanced and improved algorithms for BSS of
colored sources with different auto-correlation functions based on SOS and spatio-temporal
blind decorrelation will be described in the Chapter 4.

It should be noted that the above PCA algorithm can perform only BSS of colored sources
with different temporal structure or equivalently with different power spectra. In order to
perform ICA, we can apply rather nonlinear PCA which can performed by minimizing the
following cost function [595]

J(W) = E{‖x−Wg(WT x)‖2} (3.156)

or equivalently

J(w1,w2, . . . ,wn) = E{‖x−
n∑

i=1

wi gi(yi)‖2}

=
n∑

i=1

E{[yi − gi(yi)]2}, (3.157)

where x = Qx = Wy, y = WT x, wi is i-th vector of the orthogonal matrix W, yi(k) =
wT

i x(k) and gi(yi) are suitably chosen nonlinear functions, e.g., gi(yi) = yi + sign(yi)y2
i or

gi(yi) = tanh(βyi).
There are at least several algorithms that can perform efficiently minimization of the

above cost function in order to estimate the separating matrix W. The modified recursive
least squares (RLS) method leads to the following algorithm [595]

q(k) = g[y(k)] = g[WT (k)x(k)], (3.158)
e(k) = x(k)−W(k)q(k), (3.159)

m(k) =
P(k)q(k)

γ + qT (k)P(k)q(k)
, (3.160)

P(k + 1) =
1
γ

Tri [P(k)−m(k)qT (k)PT (k)], (3.161)

W(k + 1) = W(k) + e(k)mT (k), (3.162)

with nonzero initial conditions, typically W(0) = P(0) = In; where x = Qx, γ is the for-
getting factor and Tri means that only the upper triangular part of the matrix is computed
and its transpose is copied to the lower triangular part, ensuring that the resulting matrix
is symmetric.
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Alternatively, it is possible to estimate the vectors wi(k) in a sequential manner using
algorithm similar to (3.34)-(3.39) as

x1(k) = x(k), η−1
i (0) = 2 max{‖xi(k)‖22} = 2 ‖xi,max‖2, (3.163)

wi(0) = xi,max/‖xi,max‖, (3.164)
qi(k) = gi[yi(k)] = gi[wT

i (k)xi(k)], (3.165)

wi(k + 1) = wi(k) +
qi(k)

η−1
i (k)

[xi(k)− qi(k)wi(k)], (3.166)

η−1
i (k + 1) = γ η−1

i (k) + |qi(k)|2, (3.167)
xi+1(k) = xi(k)− yi(k)vi∗, (3.168)

Appendix A. Basic Neural Networks Algorithms for Real and Complex-Valued PCA

Many researchers have modified Amari and Oja’s algorithms to extract the true PCs for
real-valued data or signals [910], [443]. The main purpose of this Appendix is to review
and summarize some of those algorithms closely related to the subspace rule and then
to generalize them for complex-valued signals. We will restrict our considerations to four
popular learning algorithms6 namely:

1. Sanger’s Generalized Hebbian Algorithm (GHA)

dV
dt

= µ
[
xyT −V UT (yyT )

]
, (A.1)

where UT (·) means the Upper Triangular operation, i.e., it sets the lower diagonal
elements of its matrix argument to zero. Sanger’s GHA learning algorithm can be
written in a scalar form as [1036]

dvip

dt
= µi yi

[
xp −

i∑

k=1

vkpyk

]
, (A.2)

where µi > 0, (i = 1, 2, . . . , n; p = 1, 2, . . . , m).

2. The stochastic Gradient Ascent (SGA) proposed by Oja [910] can be formulated
as

dvip

dt
= µi yi

[
xp − vipyi − α

i−1∑

k=1

vkpyk

]
, (A.3)

where α > 1 typically α = 2.

6All these algorithms have been developed only for real-valued data.
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3. The Weighted Subspace Algorithm (WSA) proposed by Oja, Ogawa and Wangvi-
wattana [919, 910]

dV
dt

= µ
[
xyT −VyyT Θ

]
, (A.4)

where Θ = diag[θ1, θ2, . . . , θn] with θi < θi+1, i.e., Θ is a diagonal matrix with positive
and strictly decreasing entries.

In a scalar form, the WSA learning rule can take the form [919]

dvip

dt
= µi yi

[
xp − θi

n∑

k=1

vkpyp

]
, (A.5)

where (i = 1, 2, . . . , n; p = 1, 2, . . . , m), µi > 0, 0 < θ1 < θ2 < · · · < θn.

4. Brockett’s Algorithm [113, 114] for extracting principal components can be writ-
ten as

dV
dt

= µ
[
xyT D−VDyyT D

]
, (A.6)

where D is a diagonal matrix with positive and strictly decreasing entries, i.e.,

D = diag[d1, d2, . . . , dn], with d1 > d2 > · · · > dn > 0.

The Brockett’s Algorithm can also be written in a scalar form as

dvip

dt
= µ̂i yi

[
xp −

n∑

k=1

αkivkpyk

]
, (A.7)

where

αki =





dk

di
< 1 for k < i,

1 for k = i,
dk

di
> 1 for k > i,

and µ̂i = µi di > 0.

It is interesting to note that the above four learning algorithms can be written in the
“generalized form” given by Equation (A.7). For example, in the case of the GHA algorithm
the coefficients, αki in (A.7) can be defined by

αki =
{

0 if k ≤ i,
1 if k > i.

(A.8)

Analogously, for the WSA algorithm, we have αki = θi, for any k.
The above algorithms can be extended or generalized for the extraction of the PCs of

complex-valued signals. For example, we can derive the Brockett’s algorithm for complex-
valued signals as follows [114].
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Table A.1 Fast implementations of PSA algorithms for complex-valued signals and matrices.

No. Learning rule Notes, References

1. ∆W(k) = ē(k)zH(k) PAST Algorithm

z(k) =
1

α
Q(k − 1)y(k) Yang (1995) [1318]

y(k) = WH(k − 1)x(k)

γ(k) = [1 + yH(k)z(k)]−1

ē(k) = γ(k)[x̄(k)−W(k − 1)y(k)]

Q(k) =
1

α
Q(k − 1)− γ(k)z(k)zH(k)

2. ∆W(k) = ee(k)zH(k) OPAST Algorithm

β(k) =
1

‖z(k)‖22

 
1p

1 + ‖ē(k)‖22‖z(k)‖22
− 1

!
Abed-Meraim, Chkeif,

ee(k) = β(k)W(k − 1)z(k) +
�
1 + β(k) ‖z̄(k)‖22

�
ē(k) and Hua (2000) [1]

Let us consider a three layer self-supervising linear neural network with matrix transfor-
mations: ỹ = DVH x, x̂ = V ỹ where V ∈ Cm×n is the feed-forward matrix of complex-
valued synaptic weights vip and D is a real-valued diagonal matrix with strictly decreasing
entries providing a scaling (or inducing asymmetry) for outputs ỹ. For such a network, we
can formulate a standard cost function as

Jc =
1
2

∥∥eR
∥∥2

2
+

1
2

∥∥eI
∥∥2

2
, (A.9)

where e
4
= eR + jeI = x − x̂ = (I − VDVH)x. Using the back-propagation gradient

descent method the minimization of the above cost function leads to a general learning rule

dV
dt

= µ [eyH D + xeH VD]

= µ [xyH D−VDyyH D]. (A.10)

Assuming again that the second term in Eq. (A.10) is small and can be neglected, we obtain
a generalized form of Brockett’s algorithm for complex-valued signals as

dV
dt

= µ [xyHD−VDyyH D], (A.11)

with V(0) 6= 0. In a scalar form the above algorithm becomes

dvip

dt
= µ̂i yi

[
x∗p −

n∑

k=1

y∗kvkpαki

]
, (i = 1, 2, . . . , n; p = 1, 2, . . . , m, n ≤ m) (A.12)
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where
αki = dk/di, µ̂i = µidi > 0

(i.e., the parameter di is absorbed by the learning rate µ̂i(t) > 0), and d1 ≥ d2 ≥ · · · ≥ dn.
In the special case of αki = 1 (∀k, i), (A.12) simplifies to the subspace learning algorithm.

Appendix B. Hierarchical Neural Network for Complex-valued PCA

Assume that the process x(k) ∈ Cm comprises a zero-mean sequence whose covariance
matrix is defined as Rxx = E{xxH} and we wish to estimate (extract) on-line its complex-
valued eigenvectors vi and corresponding PCs [281, 277, 282]. Employing a self-supervising
principle and hierarchical neural network architecture, we shall extract the PCs sequentially.
Let us temporarily assume that we want to extract only the first7 PC (y1) by a linear single
neuron

y1 = vT
1 x =

m∑
p=1

v1p xp(t). (B.1)

The vector v1 should be determined in such a way, that the reconstructed vector

x̂ = v∗1y1, (B.2)

will reproduce the input vector x(t) as well as possible, according to a suitable optimization
criterion.

For this purpose let us define a complex-valued instantaneous error vector as

e1(t) = [e11(t), e12(t), . . . , e1m(t)]T

4
= x(t)− x̂(t) = x(t)− v∗1y1(t)
=

(
I− v1vH

1

)
x(t) = eR

1 (t) + jeI
1(t), (B.3)

where I is the identity matrix, eR
1 is the real part and eI

1 is the imaginary part of the error
vector e1(t) and j =

√−1.
In order to find the optimal value of the vector v1, we can define a standard 2-norm cost

function

E1(v1) =
1
2

[∥∥eR
1

∥∥2

2
+

∥∥eI
1

∥∥2

2

]

=
1
2

[
m∑

p=1

(eR
1p)

2 +
m∑

p=1

(eI
1p)

2

]
(B.4)

where eR
1p is the pth element of eR

1 etc.

7The first PC y1 corresponds to the largest eigenvalue λ1 = E{y1y∗1} = E{|y1|2} of the covariance matrix
Rxx = E{xxH}, y1 = vT

1 x, where (·)∗ denotes complex conjugate and (·)H means the complex conjugate
transpose or Hermitian operation.
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The minimization of the cost function (B.4), according to the standard gradient descent
approach for the real and imaginary parts of vector v1 = vR

1 + jvI
1, leads to the following

set of differential equations:

dvR
1p

dt
= −µ1

∂E1(v1)
∂vR

1p

= µ1

{
(
eR
1py

R
1 +eI

1py
I
1

)
+xR

p

m∑

h=1

(
eR
1hvR

1h−eI
1hvI

1h

)
+xI

p

m∑

h=1

(
eR
1hvI

1h+eI
1hvR

1h

)
}

,

(B.5)
dvI

1p

dt
= −µ1

∂E1(v1)
∂vI

1p

= µ1

{
(
eR
1py

I
1−eI

1py
R
1

)
+xR

p

m∑

h=1

(
eR
1hvI

1h+eI
1hvR

1h

)−xI
p

m∑

h=1

(
eR
1hvR

1h−eI
1hvI

1h

)
}

,

(B.6)

where µ1(t) > 0 is the learning rate and y1
4
= yR

1 + jyI
1 , e1p

4
= eR

1p + jeI
1p, (p = 1, 2, . . . , m).

Combining the above equations (B.5) and (B.6) and taking into account that v1p
4
= vR

1p +
jvI

1p, we obtain the learning algorithm

dv1p(t)
dt

= µ1(t)

[
y1(t)e∗1p(t) + x∗p(t)

m∑

h=1

v1h(t)e1h(t)

]
, (p = 1, 2, . . . ,m) (B.7)

which can be written in matrix form as

dv1

dt
= µ1 [y1e∗1 + x∗vT

1 e1], (B.8)

for any v1(0) 6= 0, µ1(t) > 0.
The above learning rule can be further simplified to

dv1

dt
= µ1 y1e∗1

= µ1 y1[x− v∗1y1]∗

= µ1 y1[x∗ − v1y
∗
1 ]

= µ1 vT
1 x[I− v1vH

1 ]x∗, (B.9)

since the second term in Equation (B.8), which can be written as

x∗vT
1 e1 = x∗vT

1 (x− v∗1y1) = x∗(1− vH
1 v1)y1, (B.10)

tends quickly to zero as vH
1 v1 tends to 1 with t →∞; it can therefore be neglected.

It is interesting to note that the discrete-time realization of the learning algorithm:

v1(k + 1) = v1(k) + η1(k) y1(k)[x∗(k)− v1(k)y∗1(k)], (k = 0, 1, 2, . . .) (B.11)
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is known as the Oja learning rule for complex-valued data.

Robust PCA for Complex-valued Data
In order to derive a robust algorithm for PCA, we can formulate a cost function as:

J1ρ(v1)
4
= ρ(eR

1 ) + ρ(eI
1) =

m∑
p=1

ρp(eR
1p) +

m∑
p=1

ρp(eI
1p), (B.12)

where ρi(e
R,I
1i ) are real, typically convex, functions known in statistics as the “robust loss

functions”. In order to reduce the influence of outliers many different robust loss functions
ρ(e) have been proposed [281, 277, 282]. Generally speaking, a suitable choice of the loss
function depends on the distribution of the input vector x(t). Applying a standard gradi-
ent descent approach to the energy function (B.12), we obtain (after some mathematical
manipulations) a learning rule (generalization of Eq. (B.7)).

dv1p

dt
= µ1

[
y1Ψ∗p(e1p) + x∗p

m∑

h=1

v1hΨh(e1h)

]
, (B.13)

where µ1(t) > 0 and

Ψp(e1p)
4
=

∂ρp(eR
1 )

∂eR
1p

+ j
∂ρp(eI

1)
∂eI

1p

= ΨR
p + jΨI

p,

e1p = eR
1p + jeI

1p,

e∗1p = eR
1p − jeI

1p,

Ψ∗p(e1p) = ΨR
p (e1p)− jΨI

p(e1p).

The above learning algorithm can be written in compact matrix form as

dv1

dt
= µ1

[
y1Ψ∗(e1) + x∗vT

1 Ψ(e1)
]
, (B.14)

where

Ψ(e1)
4
= [Ψ1(e11), Ψ2(e12), . . . , Ψn(e1m)]T ,

Ψ∗(e1)
4
= [Ψ∗1(e11), Ψ∗2(e12), . . . , Ψ∗n(e1m)]T .

Usually, the second term in Equation (B.14) is small or tends quickly to zero and can be
neglected. Thus, the simplified (approximated) version of the algorithm takes the form

dv1

dt
= µ1 y1Ψ∗(e1) = µ1 y1Ψ[x∗ − v1y

∗
1 ], (B.15)

with µ1 > 0.
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The above learning algorithms (B.13, B.14) and (B.15) can be easily extended for the
higher PCs by using the self-supervising principle and a cascade hierarchical neural network.
In other words, the procedure for the extraction of the second PC (y2) corresponding to the
second largest eigenvalue λ2 = E{y2y

∗
2} is performed in the same way as that of the first

component, but instead of carrying out the extraction process directly from the input data,
we extract the available errors

x̃1
4
= e1 = x− x̂ = (x− v∗1y1), (B.16)

and

y2
4
= vT

2 e1. (B.17)

In general, the sequence of the cost functions can be formulated as

Jiρ(vi)
4
= ρ(eR

i ) + ρ(eI
i ) =

m∑
p=1

ρp(eR
ip) +

m∑
p=1

ρp(eI
ip), (i = 1, 2, . . . , n) (B.18)

where ei = eR
i + jeI

i , ei = ei−1 − v∗i yi, yi = vT
i ei−1, with e0(t)

4
= x(t). Using the standard

gradient descent technique to minimize this cost function, we obtain the adaptive learning
algorithm:

dvi

dt
= µi

[
yiΨ∗(ei) + e∗i−1v

T
i Ψ(ei)

]
, (B.19)

for any vi(0) 6= 0, (i = 1, 2, . . . , n), where

µi(t) > 0,

Ψ(ei) = [Ψ1(ei1), Ψ2(ei2), . . . , Ψm(eim)]T ,

Ψp(eip) =
∂ρp(eR

ip)
∂eR

ip

+ j
∂ρp(eI

ip)
∂eI

ip

,

(e.g., Ψp(eip) = tanh(eR
ip/β) + j tanh(eI

ip/β)),
e0(t) = x(t).

Usually the second term in Equation (B.19) is relatively small and can be neglected8,
yielding a simplified version of the learning algorithm for extraction of the first m PCs:

dvi(t)
dt

= µi(t) yi(t)Ψ∗[ei(t)], (B.20)

or in the discrete-time form as

vi(k + 1) = vi(k) + ηi(k) yi(k)Ψ∗[ei(k)] (B.21)

with vi(0) 6= 0, ηi(k) > 0.

8In fact the second term can be omitted if the actual error ei is small compared with excitation input vector
ei−1.



4
Blind Decorrelation and

Second Order Statistics for
Robust Blind Identification

There are very few human beings who receive the truth, complete and staggering, by instant
illumination. Most of them acquire it fragment by fragment, on a small scale, by successive
developments, cellularly, like a laborious mosaic.

—(Anais Nin; 1903-1977)

Temporal, spatial and spatio-temporal decorrelations play important roles in signal pro-
cessing. These techniques are based only on second-order statistics (SOS). They are the
basis for modern subspace methods of spectrum analysis and array processing and often
used in a preprocessing stage in order to improve convergence properties of adaptive sys-
tems, to eliminate redundancy or to reduce noise. Spatial decorrelation or prewhitening
is often considered as a necessary (but not sufficient) condition for the stronger stochastic
independence criteria. After prewhitening, the BSS or ICA tasks usually become somewhat
easier and well-posed (less ill-conditioned), because the subsequent separating (unmixing)
system is described by an orthogonal matrix for real-valued signals and a unitary matrix for
complex-valued signals and weights. Furthermore, spatio-temporal and time-delayed decor-
relation can be used to identify the mixing matrix and perform blind source separation of
colored sources. In this chapter, we will discuss and analyze a number of efficient and robust
adaptive and batch algorithms for spatial whitening, orthogonalization, spatio-temporal and
time-delayed blind decorrelation. Moreover, we discuss several promising robust algorithms
for blind identification and blind source separation of nonstationary and/or colored sources.
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4.1 SPATIAL DECORRELATION - WHITENING TRANSFORMS

4.1.1 Batch Approach

Some adaptive algorithms for blind separation require prewhitening (called also sphering or
normalized spatial decorrelation) of mixed (sensor) signals. A random, zero-mean vector y
is said to be white if its covariance matrix is the identity matrix, i.e., Ryy = E{yyT } = In

or E{yiyj} = δij , where δij is the Kronecker delta. In whitening, the sensor vectors x(k)
are pre-processed using the following transformation (see Fig. 4.1):

y(k) = Wx(k). (4.1)

s( )k y( )kx( )k

W( )kH

Fig. 4.1 Basic model for blind spatial decorrelation of sensor signals.

Here y(k) denotes the whitened vector, and W is an n ×m whitening matrix. If m >
n, where n is known in advance, W simultaneously reduces the dimension of the data
vectors from m to n. In whitening, the matrix W is chosen so that the covariance matrix
E{y(k)y(k)T } becomes the unit matrix In. Thus the components of the whitened vectors
y(k) are mutually uncorrelated and they have unit variance, i.e.,

Ryy = E
{
yyT

}
= E

{
WxxT WT

}
= WRxxWT = In. (4.2)

Fig. 4.2 illustrates three basic transformations of sensor signals: prewhitening, PCA and
ICA.

Generally, the sensor signals are mutually correlated, i.e., the covariance matrix Rxx =
E

{
xxT

}
is a full (not diagonal) matrix. It should be noted that the matrix W ∈ IRn×m

is not unique, since by multiplying an arbitrary orthogonal matrix to the estimated matrix
W from the left, property (4.2) is preserved.

Since the covariance matrix of sensor signals x(k) is usually symmetric positive definite,
it can be decomposed as follows

Rxx = VxΛxVT
x = VxΛ1/2

x Λ1/2
x VT

x , (4.3)

where Vx is an orthogonal matrix and Λx = diag {λ1, λ2, . . . , λn} is a diagonal matrix
with positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Hence, under the condition that the
covariance matrix is positive definite1, the required decorrelation matrix W (called also a

1If the covariance matrix is semi-positive definite, we can take only positive eigenvalues and associated
eigenvectors.
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Fig. 4.2 Illustration of basic transformation of two sensor signals with uniform distributions.

whitening matrix or Mahalanobis transform) can be computed as follows

W = Λ−1/2
x VT

x = diag
{

1√
λ1

,
1√
λ2

, . . . ,
1√
λn

}
VT

x (4.4)

or

W = UΛ−1/2
x VT

x , (4.5)

where U is an arbitrary orthogonal matrix. This can be easily verified by substituting (4.4)
or (4.5) into (4.2):

Ryy = E
{
yyT

}
= Λ−1/2

x VT
xVxΛVT

xVxΛ−1/2
x = In, (4.6)

or
Ryy = UΛ−1/2

x VT
xVxΛxVT

xVxΛ−1/2
x UT = In. (4.7)

Alternatively, we can apply the Cholesky decomposition

Rxx = LLT , (4.8)
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where L is a lower triangular matrix. The whitening (decorrelation) matrix in this case is

W = UL−1, (4.9)

where U is an arbitrary orthogonal matrix, since

Ryy = E
{
yyT

}
= WRxxWT = UL−1LLT

(
L−1

)T
UT = In. (4.10)

In the special case when x(k) = ν(k) is colored Gaussian noise with Rνν = E
{
ννT

} 6=
σ2

ν In, the whitening transform converts it into a white noise (i.i.d.) process.

4.1.2 Optimization Criteria for Adaptive Blind Spatial Decorrelation

In the previous section, we have described some simple numerical or batch methods to
estimate decorrelation matrix W. Now, we consider optimization criteria that enable us to
derive adaptive algorithms. Let us consider a mixing system

x(k) = Hs(k) (4.11)

and a decorrelation system as depicted on Fig. 4.1

y(k) = Wx(k), (4.12)

where matrices H and W are n by n nonsingular matrices. Our objective is to find a simple
adaptive algorithm for estimation of decorrelation matrix W such that the covariance matrix
of the output signals will be a diagonal matrix, i.e.,

Ryy = E
{
yyT

}
= Λ, (4.13)

where Λ = diag {λ1, . . . , λn} is a diagonal matrix, typically, Λ = In. It should be noted
that the output signals will be mutually uncorrelated if all the cross-correlations are zero:

rij = E {yiyj} = 0, for all i 6= j, (4.14)

with non-zero autocorrelations

rii = E
{
y2

i

}
= λi > 0. (4.15)

The natural minimization criterion can be formulated as the p-norm

Jp (W) =
1
p

n∑

i=1

n∑
j=1
j 6=i

|rij |p , (4.16)

subject to the constraints rii 6= 0, ∀i, typically, rii = 1, ∀i.
The following cases are especially interesting:
1-norm (Absolute value criterion),
2-norm (Frobenius norm),
∞-norm (Chebyshev norm).

The problem arises how to derive adaptive algorithms based on these criteria. The present
chapter studies only the Frobenius norm.
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4.1.3 Derivation of Equivariant Adaptive Algorithms for Blind Spatial Decorrelation

Relatively easily, we can derive an adaptive learning algorithm using the following criterion:
Minimize the global cost function:

J2 (W) =
1
4

n∑

i=1

n∑

j=1

(E {yiyj} − λiδij)
2 =

1
4

∥∥E
{
yyT

}−Λ
∥∥2

F
, (4.17)

where ‖A‖F denotes the Frobenius norm of matrix A. In order to derive an adaptive learning
algorithm, we use the following transformation:

Ryy = E
{
yyT

}
= E

{
WxxT WT

}
= E

{
WHssT (WH)T

}

= GRss GT = GGT , (4.18)

where G = WH is the global transformation matrix from s to y, and we have assumed
without loss of generality that Rs s = E

{
s sT

}
= In. The optimization criterion can be

written in the form:

J2 (W) =
1
4

∥∥GGT −Λ
∥∥2

F
=

1
4
tr[

(
GGT −Λ

) (
GGT −Λ

)
]. (4.19)

Applying the standard gradient descent approach and the chain rule, we have

dgij

dt
= −µ

∂J2(W)
∂gij

= −µ

n∑

k=1

n∑
p=1

∂J2

∂rkp

∂rkp

∂gij
, (4.20)

where we use continuous-time version of the learning rule. Taking into account that Ryy =
GGT , we obtain

dgij

dt
=

µ

2

[
n∑

k=1

λk
∂rkk

∂gij
−

n∑

k=1

n∑
p=1

rkp
∂rkp

∂gij

]

=
µ

2

[
2λi gij −

n∑

k=1

rik gkj −
n∑

p=1

rpi gpj

]
. (4.21)

The above formula can be simplified by taking into account that the output covariance
matrix Ryy is symmetric, i.e. rij = rji, as

dgij

dt
= µ

[
λi gij −

n∑

k=1

rik gkj

]
(i, j = 1, 2, . . . , n) (4.22)

or in more compact matrix form

dG
dt

= µ (Λ−Ryy)G = µ
(
Λ−GGT

)
G. (4.23)
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Taking into account that G = WH and assuming that H is only very slowly varying in
time, i.e., dH/dt ≈ 0, we have

dW
dt

H = µ (Λ−Ryy)WH. (4.24)

Hence
dW
dt

= µ (Λ−Ryy)W. (4.25)

Using the simple Euler formula, the corresponding discrete-time algorithm can be written
as

W(l + 1) = W(l) + ηl

[
Λ−R(l)

yy

]
W(l). (4.26)

The covariance matrix Ryy can be estimated as follows:

R̂(l)
yy =

〈
yyT

〉
=

1
N

N−1∑

k=0

y(l)(k) [y(l)(k)]T , (4.27)

where y(l)(k) = W(l)x(k).
Alternatively, we can apply the moving average (MA) approach to estimate matrix W

on-line as

W(k + 1) = W(k) + η(k)
[
Λ− R̂(k)

yy

]
W(k)

= W(k) + η(k)
[
Λ−W(k)R̂(k)

xxWT (k)
]
W(k), (4.28)

where 0 < η(k) ≤ 0.5 and

R̂(k)
yy = (1− η0) R̂(k−1)

yy + η0 y(k)yT (k), (4.29)

where η0 ∈ (0, 1] is a fixed step size (learning rate). For on-line learning, the covariance
matrix can be very roughly estimated simply by neglecting the expectation operator as

R̂yy
∼= y(k)yT (k), (4.30)

thus the discrete-time, on-line algorithm (4.26) simplifies as

∆W(k) = W(k + 1)−W(k) = η(k)
[
Λ− y(k)yT (k)

]
W(k). (4.31)

Functional diagram illustrating implementation of the discrete-time on-line learning algo-
rithm (4.31) is shown in Fig. 4.3.

It is interesting to note that a similar algorithm can be derived by using an information-
theoretic criterion (see Chapter 6 for more detail)

J(W) = −1
2

[
log

(
det

(
WWT

))−
n∑

i=1

E
{
|yi|2

}]
, (4.32)
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Fig. 4.3 Block diagram illustrating the implementation of the learning algorithm (4.31).

where W ∈ IRn×m with m ≥ n. The first term of the cost function prevents the decor-
relation matrix W from becoming not a full rank and all the outputs from decaying to
zero, and the second term assures that the output signals will be mutually uncorrelated by
minimizing the global energy of these signals. The gradient components of the cost function
can be computed as follows

∂ log detWWT

∂W
= 2

(
WWT

)−1
W (4.33)

and
∂E

{
|yi|2

}

∂wij
=

∂E
{
|yi|2

}

∂yi

∂yi

∂wij
= 2 〈yixj〉 (i, j = 1, 2, . . . , n) (4.34)

or equivalently

∂
n∑

i=1

E
{
|yi|2

}

∂W
= 2

〈
yxT

〉
. (4.35)

Hence, applying the standard gradient descent approach, we obtain the learning algorithm
expressed in matrix form as

dW
dt

= −µ

[
∂J

∂W

]
= µ

[
(WWT )−1W − 〈

yxT
〉]

. (4.36)

In order to avoid matrix inversion, we can apply the Atick-Redlich formula [51]:

dW
dt

= −µW
[

∂J

∂W

]T

W = µ
(
I− 〈

yyT
〉)

W. (4.37)
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Alternatively, we can use Amari’s natural gradient (NG) formula to obtain the same final
algorithm [25] (see Appendix A and Chapter 6 for the theoretical explanation)

dW
dt

= −µ
∂J

∂W
WT W = µ

(
I− 〈

yyT
〉)

W. (4.38)

The corresponding discrete-time on-line algorithm can be written as:

W(k + 1) = W(k) + η(k)
[
I− y(k)yT (k)

]
W(k). (4.39)

Remark 4.1 It is interesting to note that the above algorithms (4.38) and (4.39) converge
when global matrix G = WH becomes a matrix satisfying relations

GGT = GT G = In (4.40)

or G−1 = GT , so the matrix G is orthogonal. Indeed, multiplying equation (4.39) by the
mixing matrix H from the right hand side, we get:

W(k + 1)H
df
=G(k + 1) = G(k) + η(k)

[
I−G(k)

〈
s(k) sT (k)

〉
GT (k)

]
G(k). (4.41)

Assuming, without loss of generality, that the autocorrelation matrix Rss =
〈
s(k) sT (k)

〉
is the identity matrix, it is evident that a learning algorithm, employing the rule (4.41),
reaches an equilibrium when the matrix G(k) becomes orthogonal, i.e., G−1 = GT .

Moreover, the above algorithm posses the so-called “equivariant property” such that its
average performance does not depend on the eigenvalues of the covariance matrix Rxx.

The algorithm (4.38) can be expressed in terms of the entries of a nonsingular mixing
matrix H = [hij ] ∈ IRn×n. Assuming that WH = In, we have

dH
dt

= −H
dW
dt

H. (4.42)

Hence, we obtain a local biologically plausible (normalized Hebbian) algorithm

dH
dt

= −µH
[
I− 〈

yyT
〉]

= µ
[〈

xyT
〉−H

]
(4.43)

or in scalar form

dhij

dt
= µ [〈xi yj〉 − hij ] (i, j = 1, 2, . . . , n). (4.44)

4.1.4 Simple Local Learning Rule

The learning rules discussed in the previous section can be considerably simplified, if we
can assume that the decorrelation matrix W is symmetric positive definite one.2 To this

2It is always possible to decorrelate vector x by using a symmetric positive definite matrix W by taking
U = V in (4.5).
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end, we can use a stable simple gradient formula

dW
dt

= −µ
∂J

∂W
WT/2W1/2 = −µ

∂J

∂W
WT = µ

[
Λ− 〈

yyT
〉]

(4.45)

or equivalently
dW
dt

= −µW
∂J

∂W
= µ

[
Λ− 〈

yyT
〉]

. (4.46)

It should be noted that W(t) will be symmetric positive definite if W(0) is positive definite
(typically W(0) = I), since R̂yy =

〈
yyT

〉
is also symmetric in each iteration step.

The above formula can be written in scalar form as

dwij

dt
= µ (δij λi − 〈yiyj〉) (i, j = 1, 2, . . . , n). (4.47)

The discrete-time, on-line, local learning algorithm can be written as

W(k + 1) = W(k) + η(k) (Λ− y(k)yT (k)) (4.48)

or in scalar form (see Fig. 4.4) as

wij(k + 1) = wij(k) + η(k) [δij λi − yi(k)yj(k)] (i, j = 1, 2, . . . , n). (4.49)

imw

´S S

S
+

+

+

)(kxi

)(kxm

)(kx j
i jw

1iw

1-z
++

+
_

)(kwij

)(kyi

)(ky j
)(kh

il

Fig. 4.4 Implementation of the local learning rule (4.48) for the blind decorrelation.

In addition to the merit that the algorithm (4.48) is much simpler to implement than
(4.39), the local signal requirements of the algorithm in (4.48) make it ideal for hardware
and VLSI implementations. However, the performances of (4.39) and (4.48) are not the
same, and convergence speed of the local algorithm is usually much slower. In order to
improve convergence properties a multi-layer neural network can be employed as it has
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been shown in [266, 268, 398] and described in detail in the next chapters. Furthermore,
the learning rate should be suitably chosen. A theoretical performance comparison of these
two algorithms is discussed in [398].

The update in (4.48) has an interesting property that it converges also for a suitable
sequence of negative step sizes η(k) provided W(0) is a negative semi-definite matrix. To
see this result, multiply both sides of (4.48) by (−1). By defining W̃(k) = −W(k), ỹ(k) =
−y(k) = W̃(k)x(k), and η̃(k) = −η(k),

W̃(k + 1) = W̃(k) + η̃(k) (Λ− ỹ(k)ỹT (k)). (4.50)

This algorithm is algebraically-equivalent to that in (4.48), and thus the coefficient ma-
trix W̃(k) tends towards the solution obtained by −W(k) in the original algorithm. The
convergence conditions on η̃(k) are the same as those for −η(k) in the original algorithm.

Summarizing, the local learning rule can be formulated in a more general form as

W(k + 1) = W(k)± η(k)
(
Λ− 〈

y(k)yT (k)
〉)

, (4.51)

where η(k) > 0 is the learning step, W(0) is a symmetric positive definite matrix and Λ is
a diagonal positive definite matrix (typically, identity matrix).

4.1.5 Gram-Schmidt Orthogonalization

The above adaptive algorithms for spatial decorrelation (whitening) are highly redundant
in the sense that each processing unit is connected to all inputs so that the decorrelating
matrix W is generally a full one. The blind decorrelation can be also performed by imposing
some constraints on matrix W, e.g., it can be a lower triangular matrix with unit entries
on the main diagonal. Let us consider the following simple cost function

J(W) =
1
2

n∑

i=1

E{y2
i }, (4.52)

with the constraint that the decorrelation matrix is a lower triangular matrix.
Applying the standard gradient descent method leads to a simple adaptive algorithm

called Gram-Schmidt orthogonalization

yi(k) = xi(k) +
∑

j≤i−1

wij(k)xj(k), (4.53)

wij(k + 1) = wij(k)− η(k) 〈yi(k)xj(k)〉 , j ≤ i− 1, i ≥ 2, (4.54)

with y1(k) = x1(k) and w11 = 1. It should be noted that this set of weight vectors is not
unique.

Alternatively, we can use the batch Gram-Schmidt orthogonalization as follows:

w1 = e1, (4.55)

wi = ei −
i−1∑

j=1

αij wj , (i = 2, . . . , n) (4.56)
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where ei = [0, . . . 1, . . . , 0]T is the unit vector with 1 in the i-th place and

αij =
eT

i Rxx wj

wT
j Rxx wj

, (j = 1, 2, . . . , i− 1; i = 1, 2, . . . , n). (4.57)

One advantage of the Gram-Schmidt orthogonalization algorithm over the eigenvalue de-
composition approach is its lower computational complexity.

4.1.6 Blind Separation of Decorrelated Sources Versus Spatial Decorrelation

All the prewhitening rules can be used in the context of neural separating algorithms. The
algorithm which iteratively applies either the rule (4.39) or (4.51) achieves the equilibrium
point when the output signal covariance matrix becomes

Ryy = E{yyT } = E{WxxT WT } = WE{xxT }WT = WRxxWT = In. (4.58)

Hence, assuming that W is a symmetric matrix, we get the equilibrium point at

W∗ = R− 1
2

xx = VxΛ−1/2
x VT

x , (4.59)

where Vx is the orthogonal matrix and Λx is the diagonal matrix obtained by the eigen-
value decomposition of the covariance matrix: Rxx = VxΛxVT

x . This means that the
output signals yi(k) will be mutually orthogonal with unit variances. In general, spatial
decorrelation is not sufficient to perform instantaneous blind source separation from linear
mixtures.

Remark 4.2 It is interesting to note that for a special case when a mixing matrix H
is nonsingular and symmetric, blind spatial decorrelation (whitening) algorithms with a
symmetric whitening matrix W perform directly blind signal separation, since Rxx = H2

under weak assumption that Rss = I (i.e., the sources are spatially uncorrelated and unit
variance) and hence

W∗ = Ĥ−1 = R̂−1/2
xx = VxΛ−1/2

x VT
x . (4.60)

4.1.7 Bias Removal for Noisy Data

It should be noted that when the sensor signals x(k) are noisy such that x(k) = x̂(k)+ν(k)
and x̂(k) = Hs(k), and ŷ(k) = W(k) x̂(k) are noiseless estimates of the sensor and output
vectors, respectively, it is easy to show that the additive noise ν(k) within x(k) introduces
a bias in the estimated decorrelation matrix W. The covariance matrix of the output can
be evaluated as

Ryy = E{y(k)yT (k)} = W Rx̂x̂ WT + WRνν WT , (4.61)

where Rx̂x̂ = E{x̂(k) x̂T (k)} and Rνν = E{ν(k)νT (k)}.
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Assuming that the sample covariance matrix of the noise can be estimated (e.g., R̂νν =
σ̂2

ν I), modified adaptive learning algorithms (cf. (4.51) and (4.39)) employing bias removal
can take the following forms:

∆W(k) = η(k)[I− R̂(k)
yy + W(k) R̂νν WT (k)] (4.62)

and

∆W(k) = η(k)[I− R̂(k)
yy + W(k) R̂νν WT (k)]W(k). (4.63)

where R̂(k)
yy = (1− η0) R̂

(k−1)
yy + η0 y(k)yT (k).

The stochastic gradient version of the on-line global algorithm (4.39) for Rνν = σ2
ν I is

∆W(k) = η(k)[I− y(k)yT (k) + σ2
ν W(k)WT (k)]W(k). (4.64)

4.1.8 Robust Prewhitening - Batch Algorithm

For data corrupted by the noise, instead of the adaptive unbiased algorithms discussed in the
previous section, we can attempt to apply the batch procedure called robust prewhitening
based on the subspace approach. Using the subspace technique, we can relatively easily
estimate the variance of noise and number of sources in the simplest case when the covariance
matrix of the noise can be modelled as Rνν = σ2

ν Im and the variance of noise is relatively
small (that is, the SNR is relatively high above some threshold).

Algorithm Outline: Robust Prewhitening for m > n

1. Compute the sample covariance matrix: R̂xx = HR̂ss HT + σ̂2
ν Im = HHT + σ̂2

ν Im,
which holds asymptotically under assumption of independent sources with the unit
variances and uncorrelated white noise.

2. Compute the eigenvalue decomposition:

R̂xx = VxΛxVT
x = [VS ,VN ]

[
ΛS 0
0 ΛN

]
[VS ,VN ]T

= VSΛSVT
S + VNΛNVT

N , (4.65)

where VS ∈ IRm×n contains the eigenvectors associated with n principal eigenvalues
of ΛS = diag{λ1 ≥ λ2 · · · ≥ λn} in descending order. Similarly, the matrix VN ∈
IRm×(m−n) contains the (m−n) noise eigenvectors that correspond to noise eigenvalues
ΛN = diag{λn+1 ≥ · · · ≥ λm}, with λn > λn+1. Usually, is required that λn >>
λn+1.

3. Estimate σ̂2
ν by computing the mean value of (m−n) minor eigenvalues and the rank

of the matrix H. This can be done on the basis of distribution of eigenvalues by
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detecting the gap between them or applying the AIC or MDL criteria (see Chapter 3
for detail).

4. Define the whitening matrix3

W = Λ̂
−1/2

S VT
S = (ΛS − σ̂2

ν In)−1/2 VT
S

= diag

{
1√

(λ1 − σ̂2
ν)

, . . . ,
1√

(λn − σ̂2
ν)

}
VT
S (4.66)

and the prewhitened sensor vector: y = Wx.

Remark 4.3 It should be noted that for noisy data (x(k) = Hs(k) + ν(k)) the above
described whitening transform (y(k) = Wx(k) = WHs(k) + W ν(k)) can amplify the
noise rather than suppressing it, especially when m = n and/or the mixing matrix H is
ill-conditioned. For the ill-conditioned H the some eigenvalues λn, λn−1, . . . are very small.
The enhancement of noise will be different in different channels depending on distribution
of the eigenvalues. In such cases, to alleviate the problem, we can apply the regularization
approach discussed in Chapter 2, by using instead of (4.66) the following formula for m ≥ n:

W = diag

{√
λ1

λ2
1 + σ̂2

ν

, . . . ,

√
λn

λ2
n + σ̂2

ν

}
VT
S , (4.67)

where σ̂2
ν is estimated variance of the noise.

For Gaussian noise instead of the standard covariance matrix Rxx, we can employ fourth-
order matrix cumulants which are insensitive to an arbitrary Gaussian noise [889].

4.2 SECOND ORDER STATISTICS BLIND IDENTIFICATION BASED ON EVD

AND GEVD

4.2.1 Mixing Model

In this section we will discuss the basic methods that jointly exploit the second order
statistics (correlation matrices for different time delays) and temporal structure of sources.
We show how the problem of blind identification of mixing matrix can be converted to
standard eigenvalue decomposition (EVD), generalized eigenvalue decomposition (GEVD)
and simultaneous diagonalization (SD) problems.

We consider the case where sources may have arbitrary distributions but non-vanishing
temporal correlations. More precisely, let us consider the simple mixing model where the

3Such operation is called sometimes “quasi-whitening”, because it performs whitening not on the basis of
noisy sensor signals but rather on the estimated noise free data.
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m-dimensional observation (sensor) vector x(k) ∈ IRm is assumed to be generated by

x(k) = Hs(k) + ν(k), (4.68)

where H ∈ IRm×n is an unknown full column rank mixing matrix, s(k) is the n-dimensional
source vector (which is also unknown and m ≥ n), and ν(k) is the additive noise vector
that is assumed to be statistically independent of s(k).

The task of blind identification or equivalently blind source separation (BSS) is to esti-
mate the mixing matrix H or its pseudo inverse separating (unmixing) matrix W = H+ in
order to estimate original source signals s(k), given only a finite number of observation data
{x(k)}, k = 1, . . . , N . Recall that two indeterminacies cannot be resolved in BSS without
some a priori knowledge: Scaling and permutation ambiguities. Thus, if the estimate of the
mixing matrix, Ĥ satisfies G = WH = Ĥ+ H = PD, where G is the global transformation
which combines the mixing and separating system, P is some permutation matrix and D
is some nonsingular scaling diagonal matrix, then (Ĥ, ŝ) and (H, s) are said to be related
by a waveform-preserving relation [1160]. A key factor in the BSS is the assumption about
statistical properties of the sources like statistical independence among sources. That is the
reason why the BSS is often confused with the independent component analysis (ICA). In
this chapter, we exploit some weaker conditions for separation of sources assuming that they
have temporal structures with different autocorrelation functions or equivalently different
power spectra and/or they are nonstationary with time varying variances. Methods that
exploit either the temporal structure of sources (mainly the second-order correlations) or
the nonstationarity of sources, lead to the second-order statistics (SOS) based BSS meth-
ods. In contrast to the higher-order statistics (HOS) based BSS methods, all the SOS based
methods do not have to infer the probability distributions of sources or nonlinear activation
functions [234, 236].

In this and the next section, we describe several batch methods that exploit the spatio-
temporal decorrelation to estimate (or identify) the mixing matrix in the presence of spa-
tially correlated but temporally white noise (which is not necessarily Gaussian). Moreover,
we show that for a suitable set of time-delayed correlations of the observation data, we can
find a robust (with respect of additive noise) estimate of the separating matrix H. Through-
out this and next sections the following assumptions are made unless other is stated:

(AS1) The mixing matrix H is of full column rank.

(AS2) Sources are spatially uncorrelated with different autocorrelation functions but are
temporally correlated (colored) stochastic signals with zero-mean.

(AS3) Sources are stationary signals and/or second-order nonstationary signals in the sense
that their variances are time varying.

(AS4) Additive noises {νi(k)} are independent of source signals and they can be spatially
correlated but temporally white, i.e.,

E{ν(k)νT (k − p)} = δp0Rν (p), (4.69)

where δp0 is the Kronecker symbol and Rν is an arbitrary m×m matrix.
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4.2.2 Basic Principles: Simultaneous Diagonalization and Eigenvalue Decomposition

Taking into account the above assumptions, it is straightforward to check that the correla-
tion matrices of the vector x(k) of sensor signals satisfy

Rx(0) = E{x(k)xT (k)} = HRs(0)HT + Rν (0), (4.70)
Rx(p) = E{x(k)xT (k − p)} = HRs(p)HT , (4.71)

for some non-zero time lag p. It follows from the assumption (AS2) that both Rs(0) =
E{s(k)sT (k)} and Rs(p) = E{s(k)sT (k − p)} are non-zero distinct diagonal matrices.

In the case of overdetermined mixtures (more sensors than sources) when the covariance
matrix of the noise has the special form Rνν = Rν (0) = E{ν(k)νT (k)} = σ2

νIm, the noise
variance σ2

ν can be estimated for relatively high SNR (signal to noise ratio) from the least
singular value of Rx(0) (or the average of minor (m− n) singular values of Rx(0)) and the
unbiased covariance matrix Rx(0) can be estimated as

R̄x(0) = Rx(0)− σ2
ν Im = HRs(0)HT . (4.72)

In order to estimate the mixing matrix H up to its re-scaled and permuted version, we
can perform simultaneous diagonalization of two covariance matrices: R̂x(0) and R̂x(p),
according to (4.71) and (4.72).

For the sake of simplicity, the simultaneous diagonalization will be explained first, in the
case when the number of sensor is equal to the number of sources (m = n). It4 can be
performed in two steps: orthogonalization followed by an unitary transformation as shown
below

(1) First, the covariance matrix ̂̄Rx(0) = (1/N)
∑N

k=1(x(k)xT (k)) − σ̂2
ν In is estimated

and its EVD is performed as ̂̄Rx(0) = Vx Λx VT
x . Then the standard whitening is

realized by a linear transformation:

x(k) = Qx(k) = Λ− 1
2

x VT
x x(k), (4.73)

where Q = Λ− 1
2

x VT
x . Hence, we have

R̂x(0) =
1
N

N∑

k=1

x(k)xT (k) = QR̂x(0)QT = In, (4.74)

R̂x(p) =
1
N

N∑

k=1

x(k)xT (k − p) = QR̂x(p)QT . (4.75)

(2) Second, an orthogonal transformation is applied to diagonalize the matrix R̂x(p). The
eigenvalue decomposition of R̂x(p) has the form

R̂x(p) = VxΛxVT
x . (4.76)

4In the simultaneous diagonalization, the task is to diagonalize simultaneously only two matrices. In contrast
in the joint diagonalization problem, we attempt diagonalize (approximately) arbitrary number of matrices.
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Simultaneously, on the basis of (4.71) and (4.75), we obtain

R̂x(p) = QR̂x(p)QT = QHR̂s(p)HT QT . (4.77)

Hence, if the diagonal matrix Λx has distinct eigenvalues then the mixing matrix can
be estimated uniquely (up to sign and permutation matrices) (see Theorem 4.1 as
given below)

Ĥ = Q−1Vx = Vx Λ1/2
x Vx. (4.78)

The simultaneous diagonalization of two symmetric matrices can be carried out with-
out going through the two-step procedure, by converting the problem to the generalized
eigenvalue decomposition (GEVD) [1159, 223]. In fact, the problem can be easily converted
to the standard eigenvalue problem which can be formulated for the nonsingular mixing
matrix H as (see Eqs. (4.71)-(4.72)):

R̂−1
x (0)R̂x(p) = (HT )−1R−1

s (0)Rs(p)HT = VΛV−1, (4.79)

or equivalently the generalized eigenvalue problem:

R̂x(p)V = R̂x(0)VΛ (4.80)

on the condition that Λ = R−1
s (0)Rs(p) has distinct eigenvalues. Then, the mixing matrix

H can be estimated on the basis of eigenvectors of the GEVD (4.80) as

Ĥ = (VT )−1 = V−T , (4.81)

up to arbitrary scaling and permutation of columns.
These basic results can be explained and summarized by the following Theorem [1159,

223].

Theorem 4.1 Let Λ1, Λ2, D1, D2 ∈ IRn×n be diagonal matrices with non-zero diagonal
entries and additionally matrices Λ1 and D1 are positive definite. Suppose that G ∈ IRn×n

satisfies the following decompositions:

D1 = GΛ1 GT , (4.82)
D2 = GΛ2 GT . (4.83)

Then the matrix G is the generalized permutation matrix5 if D−1
1 D2 and Λ−1

1 Λ2 have
distinct diagonal entries.

Proof. From (4.82), there exists an orthogonal matrix U such that
(
GΛ

1
2
1

)
=

(
D

1
2
1

)
U. (4.84)

5The generalized permutation matrix is defined as G = PD, where P is a standard permutation matrix
and D is any nonsingular diagonal matrix.
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Hence,

G = D
1
2
1 UΛ− 1

2
1 . (4.85)

Substitute (4.85) into (4.83) to obtain

D−1
1 D2 = UΛ−1

1 Λ2UT . (4.86)

Since the right-hand side of (4.86) is the eigen-decomposition of the matrix D−1
1 D2, the

diagonal elements of D−1
1 D2 and Λ−1

1 Λ2 are the same. From the assumption that the
diagonal elements of D−1

1 D2 are distinct, the orthogonal matrix U must have the form
U = PSg, where P is a permutation matrix and Sg is a diagonal matrix whose diagonal
elements are either +1 or −1. Hence, we have

G = D
1
2
1 PSgΛ

− 1
2

1

= PPT D
1
2
1 PSgΛ

− 1
2

1

= PD0, (4.87)

where D0 is a diagonal matrix expressed as

D0 = PT D
1
2
1 PSgΛ

− 1
2

1 . (4.88)

Remark 4.4 For successful source separation, we may choose any time delay p for which
R̂−1

x (0)R̂x(p) has non-zero distinct eigenvalues. We have found, by extensive experiments,
that for typical real world signals a good choice is usually p = 1. It is also possible to choose
a linear combination

∑
i αiR̂x(i) instead of R̂x(p).

It is also important to note, that instead of using the generalized eigenvalue decomposi-
tion, we can use the standard eigenvalue decomposition (EVD) or equivalently the singular
value decomposition (SVD) in a two stage procedure described in detail below [1159].

Algorithm Outline: Two-stage EVD/SVD for more sensors than sources

1. Estimate the correlation matrix of sensor signals as

R̂x(0) =
1
N

N∑

k=1

x(k)xT (k). (4.89)

2. Compute the EVD (or equivalently SVD) of R̂x(0) as (see section 4.1.8)

R̂x(0) = Ux Σx VT
x = VxΛxVT

x

= VSΛSVT
S + VNΛNVT

N , (4.90)

where VS = [v1,v2, . . . ,vn] ∈ IRm×n contains the eigenvectors associated with n prin-
cipal eigenvalues of ΛS = diag{λ1 ≥ λ2 · · · ≥ λn} in descending order. Similarly, ma-
trix VN ∈ IRm×(m−n) contains the (m−n) noise eigenvectors that correspond to noise
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eigenvalues ΛN = diag{λn+1 ≥ · · · ≥ λm}, with λn > λn+1. It should be noted that
the eigenvalues have usually typical relationship λ1 ≥ λ2 ≥ · · ·λn > λn+1 ≈ · · · ≈ λm,
m > n. This means that the last (m − n) non-significant (minor) eigenvalues corre-
spond to noise subspace and the first significant (principal) eigenvalues correspond
to signal plus noise subspace. Estimate the number of sources n from the number of
most significant singular values.

3. Estimate also the variance σ2
ν of the white noise as the mean value of the (m − n)

least significant eigen (or singular) values.

4. Perform a robust (with respect to the white noise) prewhitening transformation as

x(k) = Λ̂
−1/2

S VT
S x(k) = Qx(k), (4.91)

where Λ̂S = diag{(λ1 − σ̂2
ν), λ2 − σ̂2

ν), . . . , (λn − σ̂2
ν)}).

5. Estimate the covariance matrix of the vector x(k) for specific time delay p 6= 0 (typi-
cally, p = 1 gives best results) and perform the SVD of the covariance matrix:

R̂x(p) =
1
N

N∑

k=1

x(k)xT (k − p) = Ux Σx VT
x . (4.92)

6. Check whether for the specific time delay p all singular values of the diagonal matrix
Σx are distinct. If not, repeat step 4 for a different time delay p.

If the singular values are distinct and sufficiently far away from each other then we
can estimate successfully the mixing matrix as

Ĥ = Q+ Ux = VS Λ̂
1/2

S Ux (4.93)

and if necessary noisy source signals6 as

y(k) = ŝ(k) = UT
x x(k) = UT

x Λ̂
−1/2

S VT
S x(k). (4.94)

It should be noted that if both covariance matrices R̂x(0) and R̂x(p) are symmetric positive
definite then Ux = Vx and Ux = Vx, respectively and the SVD and PCA/EVD techniques
are equivalent.

The above procedure is a modified and optimized version of the algorithm called the
AMUSE (Algorithm for Multiple Unknown Signals Extraction) [1159, 854]. Usually, for
single sample time delay p = 1 the above algorithm successfully separates colored sources

6The estimated sources will be recovered without cross-talking due to unbiased estimation of the unmixing
matrix. However, they will be corrupted by additive noise since the noise is projected from the sensor
signals by the linear transformation (4.94). In order to remove noise, we need to apply methods described
in Chapters 1 and 8.
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with different power spectra shapes. This means that in such a case the eigenvalues of the
time-delayed covariance matrix are distinct. The main disadvantage of this algorithm is
that its accuracy is strongly deteriorates in the presence of additive noise.

The AMUSE algorithm for BSS of colored sources can be naturally extended to the
ICA of independent non Gaussian source signals if instead of the standard time-delayed
covariance matrices Rx(p), we use the contracted quadricovariance matrices defined as

Cx (E) = Cx {xT (k)E x(k)x(k)xT (k)}
= E{xT (k)Ex(k)x(k)xT (k)} −Rx(0)E Rx(0)

− tr(ERx(0))Rx(0)−Rx(0)ET Rx(0), (4.95)

where Rx(0) = E{x(k)xT (k)} 7 and E ∈ IRn×n is some freely chosen matrix called eigen-
matrix (typically, E = In or E = eq eT

q , where eq are vectors of some unitary matrix)
[136, 137].

It can be easily shown that such matrix has the following eigenvalue decomposition
(EVD):

Cx (E) = UΛE UT , (4.96)

with ΛE = diag{λ1uT
1 Eu1, . . . , λnuT

nEun}, λi = κ4(si) = E{s4
i }− 3E2{s2

i } is the kurtosis
of zero-mean i-th source and ui is the i-th column of the orthogonal eigenvector matrix
U. Hence, if the EVD of Cx (E) = UΛE UT = ÂCs(E) ÂT is unique in the sense that
all eigenvalues of ΛE are distinct, we can estimate the mixing matrix Â = QH = U. In
the special case for E = In these conditions are satisfied if the source signals have different
values of kurtosis. The above procedure is called FOBI (Fourth-Order Blind Identification)
[136, 137, 883, 595].

Remark 4.5 The main advantage of the use of fourth order quadricovariance matrices is
their theoretical insensitivity to an arbitrary Gaussian noise. Furthermore, the HOS-based
techniques enable us to identify the mixing system when sources are i.i.d. and mutually
independent. However, it should be emphasized that the standard time-delayed covariance
matrices can be estimated accurately with far fewer data samples than their higher order
counterparts. In such cases, when the number of available samples is relatively low, work-
ing with SOS-based instead of HOS-based techniques is advantageous, especially in a time-
varying environment.

The above algorithms based on the time-delayed covariance matrices and symmetric
EVD/SVD and GEVD are probably the simplest batch algorithms for blind identification
and blind separation of sources with temporal structure. However, their robustness with
respect to noise and performance can be poor, especially when additive noise is large or we
not able to estimate precisely the covariance matrix of the noise. In order to alleviate the
problem, we can use the two covariance matrices: R̂x(p1) and R̂x(p2) for non-zero time
delays (p1 6= p2 6= 0). Since the noise vector was assumed to be temporally white, the

7For the prewhitened data we have Rx(0) = In.
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covariance matrices R̂x(p1) and R̂x(p2) are not affected by the noise vector, i.e.,

R̂x(p1) = HR̂s(p1)HT ,

R̂x(p2) = HR̂s(p2)HT

for any time delay different from zero. Thus, it is possible to obtain a robust estimate of the
unmixing matrix, regardless of probability distributions and spatial structure of the noise
vector [223, 224]. However, to perform GEVD or EVD with robust prewhitening one of the
matrices Rx(p1) or Rx(p2) must be positive definite which is not guaranteed for any time
delay. So a new problem arises, how to select an optimal time delays, such that at least
one of the covariance matrices is symmetric positive definite. Furthermore, the described
algorithms exploit only two different correlation matrices of the observation vector, so their
performance is degraded if some eigenvalues of Rs(p) are close to each other. In order to
avoid these drawbacks, we should use rather a larger set of time-delayed correlation matrices
for various time lags as explained in the next sections of this chapter.

4.3 IMPROVED SOS BLIND IDENTIFICATION ALGORITHMS BASED ON

SYMMETRIC EVD/SVD

There is a current trend in ICA/BSS to investigate the “average eigen-structure” of a large
set of data matrices which are functions of available data (typically, covariance or cumulant
matrices for different time delays). In other words, the objective is to extract reliable
information (like for example, estimation of sources and/or the mixing matrix) from the
eigen-structure of a possibly large set of data matrices [160]. However, since in practice only
a finite number of samples of signals corrupted by noise is available, the data matrices do not
exactly share the same eigen-structure. Furthermore, it should be noted that determining
the eigen-structure on the basis of one or even two data matrices leads usually to poor
or unsatisfactory results because such matrices, based usually on arbitrary choice, may
have some degenerate eigenvalues and they usually discard information contained in other
data matrices. Therefore, from a statistical point of view, in order to provide robustness
and accuracy it is necessary to consider the average eigen-structure by taking into account
simultaneously a possibly large set of data matrices [158, 159, 160, 1222]. In this and the
next section, we will describe several approaches that exploit average eigen-structure in
order to estimate reliable sources and mixing matrix.

4.3.1 Robust Orthogonalization of Mixing Matrices for Colored Sources

Let us consider the standard mixing model:

x(k) = Hs(k) + ν(k), (4.97)

where x(k) ∈ IRm is the available vector of sensor signals, H ∈ IRm×n is the full column
rank mixing matrix and s(k) ∈ IRn is the vector of temporally correlated sources.
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We formulate the robust orthogonalization problem as follows: Find a linear transforma-
tion x(k) = Qx(k) ∈ IRn such that the global mixing matrix, defined as A = QH ∈ IRn×n,
will be orthogonal and unbiased by the additive white noise ν(k).

Such robust orthogonalization is an important pre-processing step in a variety of BSS
methods. It ensures that the global mixing matrix is orthogonal. The conventional whiten-
ing exploits the zero time-lag covariance matrix Rxx = Rx(0) = E{x(k)xT (k)}, so that
the effect of the additive white noise can not be removed if the covariance matrix of the
noise can not be precisely estimated, especially in the case when the number of sensors is
equal to the number of sources.

The idea of the robust orthogonalization is to search for such a linear combination of
several (typically, from 5 to 50) symmetric time-delayed covariance matrices, i.e.,

Rx(α) =
K∑

i=1

αi R̃x(pi), (4.98)

that matrix Rx is positive definite and moreover, it is not sensitive to the additive white
noise [1156]. A proper choice of coefficients {αi} induces that the matrix Rx will be sym-
metric positive definite. It should be noted, that matrices R̃x(pi) = [Rx(pi) + RT

x (pi)]/2
are symmetric but not necessarily positive definite, especially for a large time delay pi.

The practical implementation of the algorithm for data corrupted by white noise, is given
below [1156, 90, 236].

Algorithm Outline: Robust Orthogonalization

1. Estimate a set of time-delayed covariance matrices of sensor signals for preselected
time delays (p1, p2, . . . , pK) and construct an m×mK matrix R = [R̃x(p1) · · · R̃x(pK)],
where R̃x(pi) = (

〈
x(k)xT (k − p)

〉
+

〈
x(k − p)xT (k)

〉
)/2.

Then compute the singular value decomposition (SVD) of R, i.e.,

R = UΣVT , (4.99)

where U = [Us,Uν ] ∈ IRm×m (with Us = [u1, . . .un] ∈ IRm×n) and V ∈ IRmK×mK

are orthogonal matrices, and Σ is an m ×mK matrix whose left n columns contain
diag{σ1, σ2, . . . , σn} (with non increasing singular values) and whose right (mK − n)
columns are zero. The number of unknown sources n can be detected by inspecting
the singular values as explained in the previous section under the assumption that
the noise covariance matrix is modelled as Rν = σ2

νIm and the variance of noise is
relative low, i.e., σ2

ν ¿ σ2
n.

2. For i = 1, 2, . . . , K, compute

Ri = UT
s R̃x(pi)Us. (4.100)

3. Choose any non-zero initial vector of parameters α = [α1, α2, . . . , αK ]T .
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4. Compute

R =
K∑

i=1

αi Ri. (4.101)

5. Compute the EVD decomposition of R and check if R is positive definite or not. If
R is positive definite, go to Step 7. Otherwise, go to Step 6.

6. Choose an eigenvector u corresponding to the smallest eigenvalue8 of R and update
α via replacing α by α + δ, where

δ =

[
uT R1u · · ·uT RKu

]T

‖[uT R1u · · ·uT RKu]‖ . (4.102)

Go to step 4.

7. Compute symmetric positive definite matrix

Rx(α∗) =
K∑

i=1

αi R̃x(pi), (4.103)

and perform SVD or symmetric EVD of Rx,

Rx(α∗) = [US ,UN ]
[

ΣS 0
0 ΣN

]
[VS ,VN ]T , (4.104)

where (α∗) is the set of parameters αi after the algorithm achieves convergence, i.e.,
positive definiteness of the matrix R, US contains the eigenvectors associated with n
principal singular values of ΣS = diag{σ1, σ2, . . . , σn}.

8. The robust orthogonalization transformation is performed by

x(k) = Qx(k), (4.105)

where Q = Σ− 1
2

S UT
S .

Some remarks and comments are now in order:

• The robust orthogonalization algorithm converges globally for any non-zero initial
condition of α under assumption that all sources have different autocorrelation func-
tions which are linearly independent or equivalently they have distinct power spectra.
Moreover, it converges in a finite number of steps [1156].

8If the smallest eigenvalues has some multiplicity, take any vector u corresponding to the smallest eigenvalue.
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• In the ideal noiseless case, the last (m−n) singular values of Rx(α) are equal to zero,
thus ΣN = 0.

• In the case of m = n (equal numbers of sources and sensors), step 1 and 2 are not
necessary. Simply, we let Ri = R̃x(pi) = (Rx(pi) + RT

x (pi))/2.

• For m > n the linear transformation x(k) = Qx(k) besides orthogonalization enables
us to estimate the number of sources, i.e., the orthogonalization matrix reduces the
array of sensor signals to an n-dimensional vector, thus the number of sources can be
estimated, under conditions that the SNR is relative high.

• By defining a new mixing matrix as A = QHD1/2, where D =
∑L

i=1 αi R̃s(pi) is
a diagonal (scaling) matrix with positive entries, it is straightforward to show that
AAT = In, thus the matrix A is orthogonal. This orthogonality condition is necessary
for performing separation of signals using the symmetric EVD or Joint Diagonaliza-
tion approaches. It should be noted that in contrast to the standard prewhitening
procedure for our robust orthogonalization generally E{xxT } = Dx 6= In. We have
x = A s̃+Qn, where s̃ = D−1/2 s, but due to the scaling indeterminacy of the sources,
we may write in the sequel that x = As + ν̃ (ν̃ = Qν). The diagonal elements of
D are positive, due to the positive definiteness of Rx(α) [458].

Several extensions and improvements of the above presented robust orthogonalization
algorithm are possible, especially, if the noise is not completely white (i.e., the noise has
white and colored components) and/or the number of available samples is relatively small.

First of all, instead of the simple shift (time delay) operator, we can use generalized
delay operators or more generally suitably designed filters. In other words, instead of the
standard time-delayed sampled covariance matrices R̂x(pi) =

〈
x(k)xT (k − pi)

〉
, we can use

the generalized sampled covariance matrices of the form

R̂x ex(Bi) =
1
N

N∑

k=1

x(k)x̃T
Bi

(k), (i = 1, 2, . . . ,K) (4.106)

where vector x̃Bi(k) = Bi(z)[x(k)] =
∑

p bipx(k − p) is a filtered version of the vector x(k)
and Bi(z) denotes transfer function of a suitably designed filter or generalized time-delay
operator9. It should be noted that in general any set of FIR (finite impulse response) or
stable IIR (infinite impulse response) filter may be used in the preprocessing stage. However,
we propose to use banks of bandpass filters possibly with overlapping band-passes covering
a bandwidth of all source signals but with different central frequencies as is illustrated by
Fig. 4.5. For example, we can use simple second-order IIR bandpass filters with transfer
characteristics

Bi(z) = z−qi(1− ri)
(ωciz

−1/(ri + r2
i ))− 1

1− ωciz−1 + r2
i z−2

, (4.107)

9In the simplest case Bi(z) = z−i. Generalized delay operator of the first-order has the following form

B1(z) = α+βz−1

1+γz−1 , where α, β and γ are suitably chosen coefficients.



152 BLIND DECORRELATION AND SOS FOR ROBUST BLIND IDENTIFICATION

(a) (b)

BP1

)(kx

M
/

m

/

m

/

m

/

m

BP
K

BP2

)(~
k

KB
x

)(~
2

k
B

x

)(~
1

k
B

x

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized frequency,  f
A

m
pl

itu
de

Fig. 4.5 Illustration of processing of signals by using a bank of bandpass filters: (a) Filtering a vector
x of sensor signals by a bank of sub-band filters, (b) typical frequency characteristics of bandpass
filters.

where ωci(k) = 2ri cos(2πfcik) with the center frequency fci and the parameter ri related
to the frequency bandwidth by relationship Bwi = (1−ri)/2. The suitably designed bank of
bandpass filters enables us to remove efficiently wide-band noise, which is out of the band-
width of the source signals.10 If the bandwidth of source signals is known approximately,
we can use only K = n bandpass filters with bandwidths consistent with the bandwidth of
the sources.
In order to ensure the symmetry of the generalized covariance matrices, we will use the
matrices defined as: R̃x ex(Bi) = (E{x(k) x̃T

Bi
(k)}+ E{x̃Bi(k)xT (k)})/2, where the vectors

x̃Bi(k) = [x̃1(k), . . . , x̃m(k)]T represent sub-band filtered versions of the vector x(k).
For nonstationary source signals and stationary noise and/or interference, we can adopt

an alternative approach, based on the concept of the differential correlation matrices, defined
as [225]

δRx(Ti, Tj , pl) = Rx(Ti, pl)−Rx(Tj , pl), (4.108)

where Ti and Tj are two not overlapping time windows of the same size and Rx(Ti, pl)
denotes the time-delayed correlation matrix for the time window Ti. It should be noted
that such defined differential time-delayed correlation matrices are insensitive to stationary
signals. In order to perform robust orthogonalization for nonstationary sources, we divide
the sensor data x(k) into K non-overlapping blocks (time windows Ti) and estimate the set
of differential matrices δR̃x(Ti, Tj , pl) for i = 1, . . . , K, j > i and l = 1, . . . ,M (typically,
M = 5 and K = 10 and the number of samples in each block is 100).

10It is important that bandpass of the filters possibly match bandwidths corresponding to the highest energy
of the individual sources.
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In the next step, we formulate the composite differential matrix defined as

δRx(α) =
∑

ijl

αijl δR̃x(Ti, Tj , pl) (i = 1, 2, . . . , K; j > i; l = 1, 2, . . . , M) (4.109)

and using the approach described above, we can estimate the set of coefficients αijl for
which the matrix δRx(α) is positive definite. In the last step, we perform the symmetric
EVD of the positive definite matrix δRx(α∗) and compute the orthogonalization matrix Q
(cf. Eqs. (4.101)-(4.105)).

For sensor signals corrupted by any Gaussian noise, instead of the time-delayed covariance
matrices, we can use the fourth order quadricovariance matrices defined as:

Cx(p,Eq) = Cx {(xT (k − p)Eq x(k − p)) x(k)xT (k)}
= E{(xT (k − p)Eq x(k − p)) x(k)xT (k)} −Rx(p)Eq RT

x (p)
− tr(Eq Rx(0))Rx(0)−Rx(p)ET

q RT
x (p), (4.110)

where Rx(0) = E{x(k)xT (k)} = E{x(k − p)xT (k − p)}, Rx(p) = E{x(k)xT (k − p)} and
Eq ∈ IRn×n is any matrix, typically, Eq = I or Eq = uquT

q , where up is the p-th vector
of some orthogonal matrix U. 11 Our objective is to find such a set of matrices Eq and
time-delay p that the quadricovariance matrix (4.110) (or linear combination of several such
matrices) is positive definite.

4.3.2 Improved Algorithm Based on GEVD

On basis of robust matrix orthogonalization, we can develop several improved and extended
algorithms based on the EVD/SVD or GEVD. In this section, we will discuss an improved
algorithm based on GEVD or the matrix pencil proposed by Choi et al. [223, 235].

The set of all matrices of the form R1−λR2 (with some parameter λ) is said to be a matrix
pencil. Frequently, we encounter the case where R1 is symmetric and R2 is symmetric and
positive definite. Pencils of this variety are referred to as symmetric definite pencils [501].

Theorem 4.2 If R1−λR2 is a symmetric definite pencil (i.e. both matrices are symmetric
and R2 is positive definite), then there exists a nonsingular matrix V = [v1, . . . ,vn] which
performs simultaneous diagonalization of R1 and R2:

VT R1V = D1, (4.111)
VT R2V = D2, (4.112)

if the diagonal matrix D1 D−1
2 has distinct entries. Moreover, the problem can be converted

to the GEVD: R1 V = R2 VΛ, where Λ = diag{λ1, λ2, . . . , λn} = D1 D−1
2 (or equivalently

R1vi = λiR2vi for i = 1, . . . , n), if all eigenvalues λi = di(R1)
di(R2)

are distinct.

11 The matrix U can be estimated by the EVD of the simplified contracted quadricovariance matrix for p = 0
and Eq = I as Cx(0, I) = Cx {(xT (k)x(k)) x(k)xT (k)} = E{(xT (k)x(k)) x(k)xT (k)} − 2Rx(0)Rx(0)−
tr(Rx(0))Rx(0) = UΛI UT .
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It is apparent from Theorem 4.2 that R1 should be symmetric and R2 should be sym-
metric and positive definite so that the generalized eigenvector V can be a valid solution
(in the sense that Ĥ = (VT )−1) on the condition that all the generalized eigenvalues λi

are distinct. Unfortunately, for some time delays the covariance matrices Rx(p1) = R1 and
Rx(p2) = R2 cannot be positive definite. Moreover, due to some noise and numerical error
they cannot be symmetric. Thus, we might have a numerical problem in the calculation of
the generalized eigenvectors, which can be complex-valued in such cases [235, 236].

Remark 4.6 In fact, the positiveness of matrix R2 = Rx is not absolutely necessary. If
R1 and R2 are symmetric and R2 is not positive definite, then we can try to construct a
positive definite matrix R3 = β1R1 + β2R2 for some choice of real coefficients β1, β2, and
next to solve equivalent generalized symmetric eigen problem R1 V = R3 VΛ in the sense
that the eigenvectors of the pencils R1−λR2 and R1−λR3 are identical. The eigenvalues
λi of R1 − λR2 and the eigenvalues λ̃i of R1 − λR3 are related by λi = β2 λ̃i/(1− β1 λ̃i).

Let us consider two time-delayed covariance matrices Rx(p1) and Rx(p2) for non-zero time
lags p1 and p2. For the requirement of symmetry, we replace Rx(p1) and Rx(p2) by R̃x(p1)
and R̃x(p2) that are defined by

R̃x(p1) =
1
2

{
Rx(p1) + RT

x (p1)
}

, (4.113)

R̃x(p2) =
1
2

{
Rx(p2) + RT

x (p2)
}

. (4.114)

Then the pencil R̃x(p1) − λR̃x(p2) is a symmetric pencil. In general, the matrix R̃x(p2)
is not positive definite. Therefore, instead of R̃x(p2) for a single time delay, we consider a
linear combination of several time-delayed covariance matrices:

Rx(α) =
K∑

i=1

αi R̃x(pi). (4.115)

The set of coefficients {αi} is chosen in such a way that the matrix Rx(α) is positive
definite, as described in the previous section. Hence, the pencil Rx(p1)−λRx(α) is a sym-
metric definite pencil and its generalized eigenvectors are calculated without any numerical
problem.

This method referred to as Improved GEVD (Matrix Pencil) Method is summarized below
[223, 235].

Algorithm Outline: Improved GEVD (Matrix Pencil) Algorithm

1. Compute R1 = R̃x(p1) for some time lag p1 6= 0 (typically, p = 1) and calculate
a symmetric positive definite matrix R2 = Rx(α) =

∑K
i=1 αi R̃x ex(pi) by using the

robust orthogonalization method (employing a time-delay operator, bank of bandpass
filters or differential correlation matrices).
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2. Find the generalized eigenvector matrix V for the generalized eigen value decomposi-
tion (GEVD)

R̃x(p1)V = Rx(α)VΛ. (4.116)

3. The mixing matrix is given by Ĥ = (VT )−1 on the condition that all eigenvalues are
real and distinct.

4.3.3 Improved Two-stage Symmetric EVD/SVD Algorithm

Instead of the GEVD approach, we can use the standard symmetric EVD or SVD in a
two-stage (or more) procedure. Let us assume, that the sensor signals are corrupted by the
additive white noise and the number of sources is generally unknown (with the number of
sensors larger or equal to the number of sources).

Using a set of covariance matrices and the robust orthogonalization described above, we
can implement the following algorithm.

Algorithm Outline: Robust EVD/SVD Algorithm

1. Perform a robust orthogonalization transformation x(k) = Qx(k) using one of the
method described in previous section, such that the global mixing matrix A = QH
is orthogonal.

2. Compute the linear combination of a set of the time-delayed covariance matrices of the
vector x(k) for a set of time delays pi 6= 0 (or alternatively using a bank of bandpass
filters)

Rx(β) =
M∑

i=1

βi R̃x(pi), (4.117)

where a set of coefficients βi can be randomly chosen.

3. Perform SVD (or equivalently EVD) as

Rx(β) = UxΣxUT
x (4.118)

and check whether for the specific set of parameters βi and pi all singular values of
the diagonal matrix Σx are distinct. If not, repeat step 2 and 3 for different set of
parameters. If the singular values are distinct and sufficiently far away from each
other then, we can estimate (unbiased by white noise) the mixing matrix as

Ĥ = Q+ Ux (4.119)

and/or if necessary-estimate (noisy) colored source signals as

y(k) = ŝ(k) = UT
x x(k) = UT

x Qx(k). (4.120)
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4.3.4 Blind Separation and Identification Using Bank of Bandpass Filters and Robust

Orthogonalization

Instead of using the linear combination of a set of covariance matrices for various time delays,
we can use a single generalized covariance matrix R̃x ex = (E{x(k) x̃(k)T }+E{x̃(k) xT (k)})/2,
where the vector x̃(k) = [x̃1(k), . . . , x̃n(k)]T represents a filtered version of the vector x.
More precisely, each signal x̃j(k) = B(z)xj(k) =

∑
p bpxj(k − p) is a sub-bandpass filtered

version of signal xj . It should be noted that all filters have identical transfer function B(z)
for each channel and each source signal should have a frequency range located, at least par-
tially, in the bandwidth of the filters. Detailed implementation of the algorithm are given
below.

Algorithm Outline: Robust SVD with Bank of Band-Pass Filters

1. Perform the robust orthogonalization transformation (x(k) = Qx(k)), for example,
by computing the SVD of a symmetric positive definite matrix

Rx ex(α) =
K∑

i=1

αi R̃x ex(Bi) = US ΣS VT
S , (4.121)

such that the global mixing matrix (A = QH ∈ IRn×n) is orthogonal.

2. Generate the vector x̃(k) = [x̃1(k), . . . , x̃n(k)]T , defined as x̃(k) = B(z)x(k) =∑L
p=1 bpx(k − p), by passing the signals xj(k) through the bandpass filter B(z). Es-

timate next the symmetric generalized covariance matrix defined as

R̃x ex =
1
2
(E{x(k) x̃(k)T }+ E{x̃(k) xT (k)}). (4.122)

3. Perform the SVD (or equivalently the EVD) of the symmetric covariance matrix R̃x ex
R̃x ex = UxΣxUT

x (4.123)

and check whether for a specific set of parameters of the filter (B(z) =
∑L

p=1 bpz
−1)

all singular values of the diagonal matrix Σx are distinct. If not, repeat step 2 and
3 for the different set of parameters of filters. If the singular values are distinct and
sufficiently far away from each other then, we can estimate (unbiased by the noise)
the mixing matrix as

Ĥ = Q+ Ux = US (ΣS)1/2 Ux (4.124)

and/or the noisy source signals as

y(k) = ŝ(k) = UT
x x(k) = UT

x (ΣS)−1/2 UT
Sx(k). (4.125)
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4.4 JOINT DIAGONALIZATION - ROBUST SOBI ALGORITHMS

In the previous section, we have implemented the average eigen-structure by taking linear
combination of several covariance matrices and applying the standard EVD or SVD. The
alternative approach to the EVD/SVD is to apply the approximate joint diagonalization
procedure [105, 158, 160, 571, 441, 1389]. The objective of this procedure is to find the
orthogonal matrix U which diagonalizes a set of matrices [120, 870, 1389]:

Mi = UDiUT + εi, (i = 1, 2, . . . , L) (4.126)

where Mi ∈ IRn×n are data matrices (for example, time-delayed covariance and/or cumulant
matrices), the Di are diagonal and real, and εi represent additive errors or noise matrix (as
small as possible). If L > 2 matrices Mi are available, the problem becomes overdetermined
and in general case we can not find an exact diagonalizing matrix U with εi = 0, ∀i.

A natural and common criterion for Joint Approximative Diagonalization (JAD) is the
least-squares (LS) approach which can be formulated as minimization of a general cost
function [1222, 1267]:

J(U,Di) =
L∑

i=1

‖Mi −UDiUT ‖2F . (4.127)

It should be noted that the minimization proceeds not only over the orthogonal matrix
U, but also over the set of diagonal matrices Di, since they are also unknown. Thus the
problem can be solved by, so called, Alternating Least Squares (ALS) technique. In the ALS
technique, we alternatively minimize over one component set, keeping the other component
set fixed. In particular, assume that at the k-th iteration, we have an estimate Uk. The
next step is to minimize J(Uk,Di) with respect to Di [1222].

It can be shown that the problem of estimating of the orthogonal matrix U can be
converted to the problem of minimization of the following cost function [1267]

J̃(U) = −
L∑

i=1

n∑

j=1

|uT
j Miuj |2

= −
L∑

i=1

‖diag{UT MiU}‖2, (4.128)

where ‖diag(·)‖ denotes here the norm of the vector built from the diagonal of the matrix.
The above criterion can be formulated in a slightly different form as

J̄(U) =
L∑

i=1

off{UT MiU}, (4.129)

where
off{M} =

∑

i6=j

|mij |2.
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In order to improve convergence of the optimization procedure, we can attempt to find
a good (close to optimum) initial estimate of U by applying the eigenvalue decomposition
for two selected data matrices as

MpM−1
q = U0ΛpΛ−1

q U−1
0 . (4.130)

It is known from our previous discussion that such initialization is possible if the inverse of
matrix Mq exists and the eigenvalues Λpq = ΛpΛ−1

q are real and distinct. However, due
to noise and numerical errors the eigenvalues Λpq may become complex-valued. We have
shown earlier that if either Mp or Mq is positive definite, then eigenvalues of Λpq are real.
Thus, to avoid the problem, we can search among all the data matrices {Mi} for a matrix
that is a symmetric positive definite one and then we use this matrix in our initialization
step [1222].

The above criteria assume that the matrix U is orthogonal and sensor data are pre-
processed using robust whitening or orthogonalization procedure.

Recently, Pham proposed a different criterion for a set of symmetric positive definite
matrices {Mi}, which does not require any prewhitening and the diagonalizing matrix
W is simultaneously a separating matrix [966]. Using the Hadamard inequality detM ≤
det(diag M) for a symmetric positive definite matrix M, with equality if and only if M is
the diagonal, he proposed the cost function

J(W) =
L∑

i=1

γi

[
log det diag{WMiWT } − log det(WMiWT )

]
, (4.131)

where γi are positive weighting coefficients and diag{·} denotes the diagonal matrix with
the same diagonal as its argument. The one advantage of such cost function is that its mini-
mization leads to estimation of the separating matrix directly without the orthogonalization
or prewhitening. In practice, we usually want to avoid this prewhitening since it deteriorates
the performance of the whole process, since the bias or error in preprocessing stage cannot
be corrected in the following separation (rotation) stage. However, the drawback of this
approach is that it requires the set of data matrices to be symmetric and positive definite,
so we need to find linear combinations of the data matrices that are positive definite what
increases the computational complexity.

An important advantage of the Joint Approximate Diagonalization (JAD) is that several
numerically efficient algorithms exist for its computation, including Jacobi techniques (one
sided and two sided), Alternating Least Squares (ALS), PARAFAC (Parallel Factor Anal-
ysis) and subspace fitting techniques employing the efficient Gauss-Newton optimization
[158, 1222, 1267].

The matrices Mi can take different forms. In one of the simplest cases, for colored sources
with distinct power spectra (or equivalently different autocorrelation functions), we can use
the time-delayed covariance matrices, i.e.,

Mi = Rx(pi) = E{x(k)xT (k − pi)}. (4.132)

In such a case, we obtain the second order blind identification (SOBI) algorithm developed
first by Belouchrani et al. [92, 88]. It should be noted, that for prewhitened sensor signals
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or orthogonalized mixing matrix A = QH, we have

Rx(pi) = QRx(pi)QT = ARs(pi)AT = UDi UT , (i = 1, 2, . . . L). (4.133)

Thus, the orthogonal mixing matrix can be estimated as Â = QĤ = U up to irrelevant
scaling and permutation of columns on the condition that at least one diagonal matrix Di(pi)
has distinct diagonal entries. The source signals can be estimated as ŝ(k) = UT Qx(k) and
the mixing matrix is estimated as Ĥ = Q+ UT . It should be noted, that it is rather difficult
to determine a priori a single time lag p for which the diagonal matrix D(p) has distinct
diagonal elements. The JAD reduces the probability of un-identifiability of a mixing matrix
caused by an unfortunate choice of time lag p. The Robust Second Order Blind Identification
(RSOBI) algorithm can be summarized as follows [90].

Algorithm Outline: Robust SOBI Algorithm

1. Perform robust orthogonalization x(k) = Qx(k), according to the algorithm described
in section 4.3.1.

2. Estimate the set of covariance matrices:

R̂x(pi) = (1/N)
N∑

k=1

x(k)xT (k − pi) = QR̂x(pi)QT (4.134)

for a preselected set of time lags (p1, p2, . . . , pL) or bandpass filters Bi.

3. Perform the JAD: Rx(pi) = UDiUT , ∀i, that is, estimate the orthogonal matrix U
using one of the available numerical algorithms [160, 304, 306, 441, 571, 1222, 1267].

4. Estimate the source signals as

ŝ(k) = UT Qx(k) (4.135)

and the mixing matrix as
Ĥ = Q+ U. (4.136)

Remark 4.7 It should be noted that the sampled covariance matrices R̂x ex =
〈
x(k)x̃

T

Bi
(k)

〉
,

with x̃
T

Bi
(k) = Bi(z)[x(k)], employing the bandpass filters Bi(z), can be very ill-conditioned,

especially, if the used filters have very narrow band-passes. Therefore, the joint diagonaliza-
tion may do not work properly for such covariance matrices or the separation performance
can be poor. To avoid this problem, we can jointly diagonalize the following composite data
sampled matrices

Rex(q) =
M∑

i=1

R̃x ex(Biq) =
1
2

M∑

i=1

(〈
x(k)x̃

T

Biq
(k)

〉
+

〈
x̃Biq (k)xT (k)

〉)
, (4.137)

where x̃Biq (k) = [Biq(z)]x(k) = [z−qBi(z)]x(k), (q = 1, 2, . . . , L).
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4.4.1 Modified SOBI Algorithm for Nonstationary Sources: SONS Algorithm

In this section, we describe a very flexible and efficient algorithm developed by Choi and
Cichocki referred to as SONS (Second-Order Nonstationary Source separation) [223, 224,
235, 225]. The method jointly exploits the nonstationarity and the temporal structure of
the sources under assumption that additive noise is white or the undesirable interference
and noise are stationary signals.

The main idea of the SONS algorithm is to exploit the nonstationarity of signals by
partitioning the prewhitened sensor data into non-overlapping blocks (time windows Ti),
for which we estimate time-delayed covariance matrices. We consider the case where source
signals have time varying variances, they have non-vanishing temporal correlations and
undesirable additive noise is white or stationary. It follows from the assumptions (AS1)-
(AS4) given in section 4.2, that we have

Rx(Ti, pl) = ARs(Ti, pl)AT , ∀i, l (4.138)

and

δRx(Ti, Tj , pl) = AδRs(Ti, Tj , pl)AT , ∀i, l, j > i, (4.139)

where A ∈ IRn×n is an orthogonal mixing matrix, pl are time lags, the index Ti denotes the
i-th time window and the discrete-time differential correlation matrix is defined as [225]

δRx(Ti, Tj , pl) = δRx(Ti, pl)− δRx(Tj , pl), (i 6= j). (4.140)

Algorithm Outline: SONS Algorithm with Robust Orthogonalization [224]

1. The robust orthogonalization method (described in section 4.3.1) is applied to obtain
the whitened vector x(k) = Qx(k). In the robust orthogonalization step, we use the
all available data points.

2. Divide the spatial whitened sensor data {x(k)} into L non-overlapping blocks (time
windows Ti) and estimate the set of covariance matrices R̃x(Ti, pl) for i = 1, . . . , L
and l = 1, . . . ,M . In other words, at each time-windowed data frame, we compute
M different time-delayed covariance matrices of x(k) (typically, good performance
is obtained for M = 1, L = 20 and the number of samples in each block is within
10− 200).

3. Find an orthogonal matrix U for all {Rx(Ti, pl)} using the joint approximate diago-
nalization method in [160], which satisfies

UT Rx(Ti, pl)U = Di,l, (4.141)

where {Di,l} is a set of diagonal matrices.

4 The mixing matrix is computed as Ĥ = Q+ U.
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Remark 4.8 Instead of the sampled covariance matrices Rx(Ti, pl), with i = 1, 2, . . . , L
and pl = 1, 2, . . . , M , we can attempt to jointly diagonalize the sampled differential correla-
tion matrices δRx(Ti, Tj , pl), with j > i and pl = 0, 1, . . . , M − 1. However, such matrices
can be very ill-conditioned. To improve the conditioning, we can diagonalize the following
composite sampled matrices rather than the previous one:

Rx(pl) =
L∑

i=1

∑

j>i

δRx(Ti, Tj , pl), (pl = 0, 1, . . . , M − 1). (4.142)

4.4.2 Computer Simulation Experiments

Computer simulations show that the SONS algorithm is very robust with respect to the
temporally white noise, regardless of the probability distributions of noises. In fact the
SONS is a generalization of the SOBI [86, 90] to the case of nonstationary sources. The
SONS algorithm is applicable to the case of nonstationary sources including nonstationary
i.i.d. and/or temporally correlated (colored) sources while the SOBI algorithm is able to
separate or extract only colored sources. In fact, through numerical experiments, we have
confirmed the robustness with respect to noise and useful behavior of the SONS algorithm, in
a variety of cases: (1) the case where several nonstationary Gaussian sources exist and each
Gaussian source has no temporal correlation; (2) the case where additive noises are spatially
correlated but temporally white Gaussian processes; (3) the case where measurement noises
have white uniform distribution.

In order to measure the performance of algorithms, we use the performance index (PI)
defined by

PI =
1

n(n− 1)

n∑

i=1

{(
n∑

k=1

|gik|
maxj |gij | − 1

)
+

(
n∑

k=1

|gki|
maxj |gji| − 1

)}
, (4.143)

where gij is the (i, j)-element of the global system matrix G = WH and maxj gij repre-
sents the maximum value among the elements in the ith row vector of G, maxj gji does
the maximum value among the elements in the ith column vector of G. When the perfect
separation is achieved, the performance index is zero. In practice, the value of performance
index around 10−2 gives quite a good performance. Figure 4.6 shows typical performance
of the several algorithms discussed in this chapter. At high SNR, all tested algorithms
worked very well. At low SNR, one can observe that the RSOBI with robust orthogonal-
ization outperforms the standard SOBI with standard whitening. The SONS gives better
performance than the RSOBI algorithm in most ranges of SNR. In the range between 0
and 6 dB, the SONS is worse than the RSOBI. The advantage of SONS over RSOBI with
robust orthogonalization lies in the fact that the first method works even for the case of
nonstationary sources with identical spectra shape, whereas the latter does not.
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Fig. 4.6 Comparison of performance of various algorithms as a function of the signal to noise ratio
(SNR) [223, 235].

4.4.3 Possible Extensions of Joint Approximate Diagonalization Technique

In order to improve performance and/or to extend the JAD approach to various kinds of
source signals several extensions and generalizations have been proposed [1222, 1334, 1336,
1337].

For example, instead of standard covariance matrices R̂x(pi) = (1/N)
∑N

k=1 x(k)xT (k−
pi), we can use the generalized covariance matrices of the form

Mi = R̂x ex(Bi) =
1
N

N∑

k=1

x(k)x̃
T

Bi
(k), (4.144)

where vector x̃Bi(k) = Bi(z)[x(k)] =
∑

p bipx(k − p) is a filtered version of the vector x(k)
and Bi(z) denotes transfer function of a filter or generalized time-delay operator.

Choosing the entries of the covariance matrix Rx ex(pl) = [rij(pl)]n×n as

rij(pl) =
1
N

N∑

k=1

xi(k)x∗j (k − pl), (4.145)
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leads to the extended SOBI algorithm for complex-valued signals.
Other choices for the entries rij of Rx (pl, α) can be

rij(pl, α) =
1
N

N∑

k=1

xi(k)x∗j (k − pl) exp(−2πjαk), (4.146)

which leads to an algorithm in which sources with different cyclostationarity12 properties
can be separated [1336, 1337].

The choice

rij(k, f) =
L∑

m,l=−L

φ(m, l) xi(k + m + l)x∗j (k + m− l) exp(−4πjfk), (4.147)

for various k- time and f - frequency indices and specific smoothing kernel φ(m, l), leads to
time-frequency JAD algorithm proposed by Belouchrani and Amin [87, 88].

Instead of covariance or generalized covariance matrices, we can employ higher order
statistics (HOS), i.e., cumulant matrices. For example, by performing the joint approximate
diagonalization for fourth-order n×n cumulant matrices Mij = Cx(i, j), ∀i, j = 1, 2, . . . , n;
whose (m, l)-th element is given by [158, 160, 1267, 1389]

cml(i, j) = cum{xi(k), x∗j (k), xm(k), x∗l (k)}, (4.148)

we obtain the JADE (Joint Approximate Diagonalization of Eigen-matrices) algorithm for
ICA (see Appendix C and Chapter 8 for more detail).

4.4.4 Comparison of the Joint Approximate Diagonalization and Symmetric

Eigenvalue Decomposition Approaches

Although the JAD approach usually gives a better performance, especially for noisy data
with low SNR, the symmetric EVD approach has several important advantages that are
worth mentioning.

• Both approaches: The EVD and JAD are batch processing algorithms in the sense
that the entire data set or block of data are collected and processed at once. How-
ever, the EVD approach needs to perform only one average diagonalization, instead
of performing many joint diagonalizations of data matrices simultaneously, thus the
symmetric EVD has generally less numerical complexity than the JAD algorithms.

• The EVD controls explicitly whether a separation of the sources is performed success-
fully by monitoring eigenvalues, which must be distinct.

• Recently, several efficient algorithms have been developed for the EVD with high
convergence speed (even cubic convergence) like power method, PCA RLS algorithm
and conjugate gradient on Stiefel manifold [1017].

12A signal x(k) is said to be cyclostationary if its correlation function is cyclic, say with period q, i.e., the
following relation holds E{x(k) x∗(k + p)} = E{x(k + q) x∗(k + p + q)}, for all k, p.
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4.5 CANCELLATION OF CORRELATION

4.5.1 Standard Estimation of Mixing Matrix and Noise Covariance Matrix

The concept of spatial decorrelation called also correlation cancelling plays an important
role in signal processing [925]. Consider two zero-mean vector signals x(k) ∈ IRm and
s(k) ∈ IRn related by a linear transformation

x(k) = Hs(k) + e(k), (4.149)

where H ∈ IRm×n is an unknown full column rank mixing matrix and e(k) ∈ IRm is a vector
of zero-mean error, interference or noise depending on application. Generally, vectors s(k),
x(k) are correlated, i.e., Rxs = E

{
x sT

} 6= 0 but the error or noise e is uncorrelated with
s. Hence, our objective is to find the matrix H such that the new pair of vectors e = x−Hs
and s are no longer correlated with each other, i.e.,:

Res = E
{
e sT

}
= E

{
(x−Hs) sT

}
= 0. (4.150)

The cross-correlation matrix can be written as

Res = E
{
x sT −HssT

}
= Rxs −HRss. (4.151)

Hence the optimal mixing matrix for cancelling correlation can be expressed as

Hopt = Rxs R−1
ss = E

{
x sT

} (
E

{
s sT

})−1
. (4.152)

It should be noted that the same result is obtained by minimizing the mean square error
cost function:

J(e) =
1
2
E{eT e} = E{(x−Hs)T (x−Hs)}

=
1
2

(
E{xT x} − E{sT HT x} − E{xT Hs}+ E{sT HT Hs}) . (4.153)

By computing the gradient of the cost function J(e) with respect to H, we obtain

∂J(e)
∂H

= −E{x sT }+ HE{s sT }. (4.154)

Hence, applying the standard gradient descent approach, we obtain an on-line adaptive
algorithm for the estimation of the mixing matrix

∆Ĥ(k) = −η
∂J(e)

∂Ĥ
= η

(
Rxs − Ĥ(k)Rss

)
. (4.155)

Assuming that the optimum matrix Hopt is achieved when the gradient is zero, we have

Hopt = Rxs R−1
ss , (4.156)
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where the minimum value for the error (or noise) covariance matrix can be estimated as

Ree = E{eeT } = Rxx −Rxs R−1
ss Rsx (4.157)

assuming that noise is spatially colored but independent of sources signals. In the simplest
case, when noise is spatially white the covariance matrix of the noise takes the form: Ree =
σ2

eI, where the variance of noise can be estimated for relative high SNR as

σ̂2
e = minimum eigenvalue of Rxx

or alternatively

σ̂2
e = mean of (m− n) minor eigenvalues of Rxx ∈ IRm×m, m > n.

In the case, when the noise covariance matrix is known or it can be estimated, we can
obtain by a simple manipulation of Eqs. (4.156)-(4.157) an alternative formula (for m ≥ n)

Ĥ = (Rxx −Ree) R+
sx, (4.158)

where R+
sx is the Moore-Penrose pseudo-inverse matrix of Rsx. Hence, neglecting the noise

covariance matrix Ree, we obtain the Wiener filter equation:

ŝ = RsxR+
xx x, (4.159)

which minimize the mean square error E{‖s − ŝ‖2}. The fundamental problem in this
method is to obtain an estimator for the cross-covariance matrix Rsx when the vector s is
not available.

4.5.2 Blind Identification of Mixing Matrix Using the Concept of Cancellation of

Correlation

In blind separation scenario, both the mixing matrix H and the source signals s are un-
known. In such case, we need to formulate a modified estimation function in the form (see
Chapter 10 and [27] for more detail)

F(H, s) = R̃ẽs̃ = E{ẽ s̃T }, (4.160)

where ẽ(k) = x̃(k) − Ĥ s̃ and x̃ = [x̃1, x̃2, . . . , x̃m]T and s̃ = [s̃1, s̃2, . . . , s̃n]T are filtered
versions of sensor signals x(k) and estimated sources s(k) respectively. More precisely, all
the sensor signals and also the estimated source signals are filtered by using filters with an
identical transfer function B(z) =

∑L
p=1 bp z−1, that is,

x̃j(k) =
L∑

p=1

bpxj(k − p), (j = 1, 2, . . . ,m) (4.161)
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and

s̃i(k) =
L∑

p=1

bp ŝi(k − p), (i = 1, 2, . . . , n). (4.162)

The choice of the filter B(z) depends on the statistics of sources and additive noise (for more
detail see the next chapter). Generally, the approach presented in this section is useful when
source signals are colored, i.e., they have temporal structure.

It is straightforward to check that the above function satisfies the basic properties of
estimation function [27].

From (4.160) we can obtain the formula for estimation of the mixing matrix

Ĥ = R̂x̃ s̃ R̂−1
s̃ s̃ . (4.163)

Let us consider first the case, when the number of sensors is larger than the number of
sources (m > n) and the sources are colored, that is, they have temporal structure and the
covariance matrix Ree of the additive zero-mean and uncorrelated noise is known or can be
estimated. In such a case, we can propose to use the following algorithm which is robust
with respect to the noise.

Algorithm Outline: BLUE Algorithm for Blind Identification and Source Sep-
aration

1. Make arbitrary non-zero initialization of the mixing matrix Ĥ and estimate the sources
using the BLUE formula (see in Chapter 2 Eq. (2.24))

ŝ(k) = (ĤT R̂−1
ee Ĥ)−1 ĤT R̂−1

ee x(k), (4.164)

where R̂ee is the estimated covariance matrix of the noise uncorrelated with the
sources.

2. Compute the mixing matrix Ĥ on the basis of estimated sources in Step 1 as

Ĥ = R̂x̃ s̃ R̂−1
s̃ s̃ , (4.165)

where R̂x̃ s̃ = 1
N

∑N
k=1 x̃(k)s̃T (k) and R̂s̃ s̃ = 1

N

∑N
k=1 s̃(k)s̃T (k).

3. Repeat alternatively Step 1 and 2, until convergence is achieved.

Remark 4.9 The above two-phase procedure is similar to the expectation maximization
(EM) scheme: (i) Freeze the entries of the mixing matrix H and learn new statistics (i.e., the
actual vector of the estimated source signal; (ii) freeze the covariance and cross-correlation
matrices and learn the entries of the mixing matrix, then go back to (i) and repeat. Hence, in
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phase (i) our algorithm estimates source signal, whereas in phase (ii) it learns the statistics
of the sources and estimate the mixing matrix.

Let us consider now a more challenging task when the number of sensors is less than the
number of sources (m < n). Assuming that all sources have sparse representation, we can
apply the robust Focuss algorithm discussed in Chapter 2. The idea is similar to the above
procedure: First, after initialization, we estimate a sparse representation of sources, then
an estimate of the mixing matrix, Ĥ = R̂x̃ s̃R̂−1

s̃ s̃ , which consequently produces a new esti-
mate of the sparse source vector ŝ(k) obtained, for example, by using the Focuss algorithm.
Iterations are conducted until the algorithm converges.

Alternatively, we can use the following adaptive algorithm.

Algorithm Outline: Focuss Adaptive Algorithm for Blind Identification and Es-
timation of Sparse Sources

1. After initialization, we estimate sparse source signals using the Focuss algorithm as

ŝl+1(k) = D|s|(l) ĤT
k

(
Ĥk D|s|(l) ĤT

k + αl I
)−1

x(k), ∀k, l = 1, 2, . . . , (4.166)

where D|s|(l) = diag{|ŝ1l|, |ŝ2l|, . . . , |ŝnl|}, ŝjl denotes estimation of ŝj(k) in j-th in-
ternal iteration, and αl is a suitably chosen regularization parameter [1001].

2. Estimate iteratively the mixing matrix H as

Ĥk+1 = Ĥk − ηk

[
ĤkR̂s̃ s̃ − R̂x̃ s̃ − γk Ĥk

]
, (4.167)

where γk = tr[ĤT
k (ĤkR̂s̃ s̃−R̂x̃ s̃)] is a forgetting factor which ensures that the Frobe-

nius norm of the matrix Ĥ is kept approximately constant during the iteration process
(see Appendix B for proof). Such constraints on entries of the mixing matrix prevent
the trivial solution Ĥ = 0 and ensure the stability of the algorithm.

Repeat alternatively the Step 1 and 2, until convergence is achieved.

Example 4.1 Figure 4.7 illustrates the performance of the blind identification and estima-
tion of sparse images in the case when the number of observations is less than the number of
sources. Three sparse images shown in Fig. 4.7 (a) are mixed by full row rank ill-conditioned
mixing matrix H ∈ IR2×3. In this way, we obtained two superimposed images shown in Fig.
4.7 (b). Using the algorithm (4.166)-(4.167), we reconstructed approximately the original
images as shown in Fig. 4.7 (c) on the basis of only the superimposed (overlapped) images.
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(a)

(b)

(c)

Fig. 4.7 Blind identification and estimation of sparse images: (a) Original sources, (b) mixed available
images, (c) reconstructed images using the proposed algorithm (4.166)-(4.167).

Appendix A. Stability of the Amari’s Natural Gradient and the Atick-Redlich Formula

Theorem A.3 Consider a dynamical system, described by the following differential equa-
tion

dW
dt

= −µ
∂J(W)

∂W
WT W, (A.1)
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where J(W) is a lower bounded differentiable function and µ ∈ IRn×n is a symmetric posi-
tive definite matrix of learning rates. Then J(W) is a Lyapunov function for the dynamical
system (A.1).

Proof. [460] Denote by wij , µij and bij , (i, j = 1, ..., n) the elements of the matrices W, µ

and B = ∂J(W)
∂W WT respectively. We calculate:

dJ

dt
=

n∑

i,j=1

∂J

∂wij

dwij

dt

= −
n∑

i,j=1

∂J

∂wij

n∑

l=1

µil

n∑
r=1

n∑

k=1

∂J

∂wlk
wrkwrj

= −
n∑

i,r=1

bir

n∑

l=1

µilblr

= −
n∑

r=1

bT
r µbr ≤ 0, (A.2)

where br denotes the r-th column vector of B. It is easy to see that zero is achieved if
and only if br = 0 for every r = 1, ..., n, i.e., when dW/dt = 0. This means, according
to the Lyapunov theorem, that the continuous trajectory of the natural gradient algorithm
converges to a stationary point. In the special case, we can use a scalar learning rate by
putting: µ = µ0I, µ0 > 0.

In contrast to the NG, for the gradient formula proposed by Atick and Redlich (see Eq.
4.37) [51], we can formulate more restrictive conditions for stability [460]:

Theorem A.4 Consider a dynamical system, described by the following differential equa-
tion

dW
dt

= −µW
[
∂J(W)

∂W

]T

W, (A.3)

where J(W) is a lower bounded, differentiable cost function and µ > 0 is a learning rate.
Suppose that the matrix B = ∂J

∂WWT is a symmetric matrix, then J(W) is a Lyapunov
function for the dynamical system (A.3).
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Proof. Denote by wij and bij , (i, j = 1, ..., n) the elements of the matrices W and B
respectively. We calculate:

dJ

dt
=

n∑

i,j=1

∂J

∂wij

dwij

dt

= −µ

n∑

i,j=1

∂J

∂wij

n∑
r=1

n∑

k=1

wki
∂J

∂wrk
wrj

= −µ

n∑

i,r=1

bribir

= −µ
n∑

i,r=1

b2
ir ≤ 0 (A.4)

as zero is achieved if and only if dW/dt = 0.
Using a nonholonomic basis dX = dWW−1, (A.1) and (A.3) become respectively

dX
dt

= −µ
∂J

∂W
WT (A.5)

and
dX
dt

= −µW
[

∂J

∂W

]T

. (A.6)

Putting B = ∂J
∂WWT , we have B = ∂J

∂X , we obtain

dJ(W(t))
dt

= −µ tr(BT B) = −µ

n∑

i,j=1

b2
ij ≤ 0, (A.7)

as equality is achieved if and only if ∂J/∂W = 0 (assuming that W is nonsingular).
Analogously, for (A.6), we obtain

dJ(W(t))
dt

= −µ tr(BB) = −µ

n∑

i,j=1

bijbji. (A.8)

The equation (A.7) shows that J is a Lyapunov function. The trace in (A.8) is not always
positive. Let us decompose B as

B = BS + BA,

where BS is a symmetric matrix and BA is an antisymmetric matrix, respectively. Then,
we have

tr(BB) =
n∑

i,j=1

bijbji = ‖BS‖2 − ‖BA‖2. (A.9)

This gives a sufficient condition for convergence of the Atick-Redlich algorithm, that is,
‖BS‖F > ‖BA‖F for any W (the matrices B, BS ,BA depend on W).
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Appendix B. Gradient Descent Learning Algorithms with Invariant Frobenius Norm of

the Separating Matrix

In order to ensure the convergence of some learning algorithms and to provide their practical
implementations it is necessary to restrict the values of synaptic weights to a bounded
subset. Such bound can be, for example, imposed by a gradient descent learning system by
keeping the norm of the matrix of the synaptic weights bounded or fixed (invariant) during
the learning process. In this appendix, we present two theorems which propose how to solve
this problem.

Theorem B.5 The modified natural gradient descent learning algorithm with a forgetting
factor described as

dW
d t

= −µ

[
∂J(W)

∂W
WT (t)W(t)− γ(t)W(t)

]
, (B.1)

where J(W) is the cost function, ∇WJ = ∂J(W)
∂W denotes its gradient with respect to the

nonsingular matrix W ∈ IRn×n, µ > 0 is the learning rate and

γ(t) = tr
(
WT (t)

∂J(W)
∂W

WT (t)W(t)
)

(B.2)

is a forgetting factor, ensures that the Frobenius norm of the matrix W(t) is

‖W(t)‖F = 1, ∀t
if ‖W(0)‖ = 1.

Proof. Let us assume that ‖W(0)‖2F = tr{WT (0)W(0)} = 1. Then, it is sufficient to show
that

d tr(WT (t)W(t))
dt

= 0. (B.3)

Evaluating

d tr(WT (t)W(t))
d t

= tr
(

dWT

dt
W + WT dW

dt

)

= −η tr
(
WT W∇T

WJ W − γ WT W + WT ∇WJ WT W − γ WT W
)

= −2 η γ(t)
(
1− tr(WT (t)W(t))

)
. (B.4)

it is seen, that d tr(WT (t)W(t))/dt = 0 only holds if ‖W(0)‖2F = tr{WT (0)W(0)} =
1. ¤

Theorem B.6 The learning rule

dW
d t

= µ(t) [F(y)− γ(t)In] W(t), (B.5)
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where γ(t) = tr
(
F (y)W(t)WT (t)

)
stabilizes the Frobenius norm of W(t) to be fixed ∀t.

Proof. It is straightforward to check that

d tr(WWT )
dt

= 2 µ(t) tr(F(y)WWT )
[
1− tr(WT W)

]
. (B.6)

Hence, if the initial matrix W(0) has the unit Frobenius norm, the norm of W(t) is preserved
to be one for any t > 0. ¤

In a similar way, we can prove easily the following Theorems:

Theorem B.7 The stochastic gradient descent learning algorithm

dW
d t

= −µ

[
∂J(W)

∂W
− γ(t)W(t)

]
, (B.7)

where J(W) is the cost function, ∇WJ(W) = ∂J(W)
∂W denotes its gradient with respect to

the nonsingular matrix W ∈ IRn×n, µ > 0 is the learning rate and

γ(t) = tr
(
WT (t)

∂J(W)
∂W

)
(B.8)

is a forgetting factor, ensures that the Frobenius norm of the matrix W(t) is

‖W(t)‖F = 1, ∀t
if ‖W(0)‖ = 1.

Theorem B.8 The modified Atick-Redlich descent learning algorithm with forgetting factor

dW
d t

= −µ

[
W(t)

[
∂J(W)

∂W

]T

W(t)− γ(t)W(t)

]
, (B.9)

where J(W) is the differentiable cost function, ∇WJ = ∂J(W)
∂W denotes its gradient with

respect to the nonsingular matrix W ∈ IRn×n, µ > 0 is the learning rate and

γ(t) = tr

(
WT (t)W(t)

[
∂J(W)

∂W

]T

W(t)

)
(B.10)

is a forgetting factor, ensures that the Frobenius norm of the matrix W(t) is invariant and
equal to one

‖W(t)‖F = 1, ∀t
if ‖W(0)‖F = 1.

Theorem B.9 The natural gradient dynamic systems on the Stiefel manifolds:

dW
d t

= −µ

[
∂J(W)

∂W
−W(t)

[
∂J(W)

∂W

]T

W(t)

]
, (B.11)
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and

dA
d t

= −µ

[
∂J(W)

∂A
−A(t)

[
∂J(A)

∂A

]T

A(t)

]
, (B.12)

with µ > 0 satisfy during the learning process the semi-orthogonality constraints:

W(t)WT (t) = Ip, ∀t if W(0)WT (0) = Ip, W ∈ IRp×n, p ≤ n (B.13)

and

AT (t)A(t) = In, ∀t if AT (0)A(0) = In, A ∈ IRm×n, n ≤ m, (B.14)

respectively.

Appendix C. JADE Algorithm

The JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm can be consid-
ered as a natural extension or generalization of the SOBI and FOBI algorithms [158, 160,
1267, 1389].

In the JADE, in contrast to the FOBI algorithm, we jointly diagonalize the set of n2 (or
less) of the contracted quadricovariance matrices defined as:

Mpq (Epq) = Cx {(xT (k)Epq x(k)) x(k)xT (k)} = E{(xT (k)Epq x(k)) x(k)xT (k)}
−Rx(0)Epq Rx(0)− tr(Epq Rx(0))Rx(0)−Rx(0)ET

pq Rx(0)
(C.1)

for all 1 ≤ p, q ≤ n, where Rx(0) = E{x(k) xT (k)} and Epq ∈ IRn×n is the set of matrices
called eigen-matrices. It has been shown that the eigen-matrices Epq should satisfy the
following conditions:

Cx (Epq) = λpq Epq, tr(Epq ET
kl) = δ(p, q, k, l), (1 ≤ p, q ≤ n) (C.2)

where δ(p, q, k, l) = 1 for p = q = k = l, and 0 otherwise. Each Epq is the eigen-matrix and
the real scalar λpq is the corresponding eigenvalue. Only n non-zero eigenvalues λpq exist
[158].

There are several techniques to select the eigen-matrices Epq that satisfy the above
relations. In the ideal case, we can choose Epq = ep eT

q , where ep denotes the n-dimensional
vector with 1 at the pth position and 0 elsewhere. However, this method creates rather the
large number of n2 matrices and the problem cannot be computationally feasible for more
than n > 40. We can reduce the number of matrices to n(n+1)/2 by selecting the following
matrices [889]:

Epq =





epeT
q , for p = k,

(epeT
q + eqeT

p )/
√

2, for p < q,

0, for p > q.

(C.3)
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If still the number of matrices is too large, we can reduce it by selecting only L matrices
Cx (Epq) with the largest squared sums of their diagonal elements. The number L is selected
by a user depending on required performance and computation speed (typically, L ≥ n).

An alternative approach is to generate only the n (where n is the number of sources)
quadricovariance matrices Cx (Ep), by estimating the eigen-matrices Ep = ûpûT

p (for
p = 1, 2, . . . , n), where up is the p-th column of the orthogonal matrix Û which estimates
diagonalizing matrix. The exact diagonalizing matrix is of course not known in advance, but
we can roughly estimate it by the EVD of the special quadricovariance matrix for E = In

as

Cx (I) = E{xT (k)x(k)x(k)xT (k)} − 2Rx(0)Rx − tr(Rx(0))Rx(0)

= ÛΛI ÛT , (C.4)

where ΛI = diag{κ4(s1), κ4(s2), . . . , κ4(sn)}.
It is easy to check, that Ep = upuT

p satisfies the conditions (C.2). We have, in fact,

Cx (Ep) = Cx (upuT
p ) = U diag{λ1uT

1 upuT
p u1, . . . , λnuT

nupuT
p un}UT

= Udiag{0, . . . , 0, λp, 0, . . . , 0}UT = λpupuT
p = λp Ep. (C.5)

It is also straightforward to verify, that tr(Ep Eq) = δp,q and Cx (upuT
q ) = 0 for p 6= q. This

means, that we can reduce considerably the number of a set of diagonalized quadricovariance
matrices to n, what makes the JADE algorithm computationally attractive [158, 889].

Algorithm Outline: Robust and Efficient JADE Algorithm

1. Apply the robust prewhitening or orthogonalization method (described in section
4.3.1 and section 4.1.8) to obtain the whitened (pre-processed) vector x(k) = Qx(k).
Preferably, for the data corrupted by Gaussian noise use the set of quadricovariance
matrices.

2. Perform the EVD of the sampled contracted quadricovariance matrix

Cx (I) =
1
N

N∑

k=1

[xT (k)x(k) x(k)xT (k)]} − 2 R̂x(0)R̂x(0)− tr(R̂x(0)) R̂x(0)

= ÛΛI ÛT , (C.6)

where R̂x(0) = 1
N

∑N
k=1[x(k)xT (k)]} and Û = [û1, û2, . . . ,un].

3. Estimate the n sampled contracted quadricovariance matrices:

Cx (Ep) =
1
N

N∑

k=1

[xT (k)Epx(k) x(k)xT (k)]− R̂x(0)Ep R̂x(0)

− tr(Ep R̂x(0)) R̂x(0)− R̂x ET
p R̂x (C.7)
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for Ep = ûpûT
p , p = 1, 2, . . . , n.

4. Find an orthogonal joint diagonalizing orthogonal matrix U for all n matrices {Cx (Ep)}
using one of the available joint approximate diagonalization numerical methods.

5. Estimate the mixing matrix as Ĥ = Q+Â = Q+ U.





5
Sequential Blind Signal

Extraction
A large brain, like large government, may not be able to do simple things in a simple way.

—(Donald O. Hebb)

The problem of blind signal extraction (BSE) has received wide attention in various
fields such as biomedical signal analysis and processing (EEG, MEG, fMRI), geophysical
data processing, data mining, wireless communications, speech and image recognition and
enhancement.

In this chapter, we will discuss a large family of unconstrained optimization criteria,
from which we derive learning algorithms that can extract a single source signal from a
linear mixture of source signals. One can repeat this process to extract the original source
signals one by one. To prevent the newly extracted source signal from being extracted
again in the next processing unit, we employ another unconstrained optimization criterion
that uses information about this signal. From this criterion, we then derive a learning rule
that deflates from the mixture of the newly extracted signal. By virtue of blind extraction
and deflation processing, the described cascade neural network can cope with a practical
case where the number of mixed signals is equal to or larger than the unknown number
of sources. We prove that the proposed criteria both for blind extraction and deflation
processing have no spurious equilibria. In addition, the proposed criteria, in most cases, do
not require whitening of mixed signals. Using computer simulation experiments, we also
demonstrate the validity and performance of the developed learning algorithms. In this
chapter, we adopt the neural network approach. There are three main objectives of this
chapter:

1. To present simple neural networks (processing units) and propose unconstrained ex-
traction and deflation criteria that do not require either a priori knowledge of source
signals or the whitening of mixed signals. These criteria lead to simple, efficient,

177



178 SEQUENTIAL BLIND SIGNAL EXTRACTION

purely local and biologically plausible learning rules (e.g., Hebbian/anti-Hebbian type
learning algorithms).

2. To prove that the proposed criteria have no spurious equilibria. In other words, the
most learning rules discussed in this chapter always reach desired solutions, regardless
of initial conditions (see appendixes for proof).

3. To demonstrate with computer simulations the validity and high performance for
practical use of the presented neural networks and associated learning algorithms.

We will use two different models and approaches. The first approach is based on higher
order statistics (HOS) which assume that sources are mutually statistically independent
and they are non-Gaussian (expect at most one) and as criteria of independence, we will
use some measures of non-Gaussianity. The second approach based on the second order
statistics (SOS) assumes that source signals have some temporal structure, i.e., the sources
are colored with different autocorrelation functions or equivalently different shape spectra.
Special emphasis will be given to blind source extraction (BSE) in the case when sensor
signals are corrupted by additive noise.

5.1 INTRODUCTION AND PROBLEM FORMULATION

The mixing and filtering processes of the unknown input sources sj(t) (j = 1, 2, ..., n) may
have different mathematical or physical models, depending on the specific applications. In
this chapter, we will focus mainly on the simplest cases when m mixed signals xi(t) are
linear combinations of n (typically m ≥ n) unknown, zero mean source signals sj(t) that
either statistically independent and/or they have different temporal structures. They are
written as

xi(t) =
n∑

j=1

hij sj(t) (i = 1, 2, . . . ,m) (5.1)

or in the matrix notation
x(t) = Hs(t), (5.2)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is a sensor vector, s(t) = [s1(t), s2(t), . . . , sn(t)]T

is a vector of source signals assumed to be zero mean and statistically independent, and
H is an unknown full column rank m × n mixing matrix. It is assumed that only the
sensor vector x(t) is available to use and it is desired to develop algorithms that enable
estimation of primary sources and/or identification of the mixing matrix H with some
intrinsic ambiguities such as arbitrary permutations and scaling factors (see Chapter 1 for
more detail).

There are two principal approaches to solve this problem. The first approach discussed
in the previous and next chapters is to separate all sources simultaneously. In the second
approach, we extract sources one by one sequentially rather than separating them all si-
multaneously. In many applications, a large number of sensors (electrodes, microphones
or transducers) are available but only a very few source signals are the subject of interest.
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For example, in EEG or MEG, we observe typically more than 64 sensor signals and only
a few source signals are considered interesting, the rest are considered to be interfering
noise. Another example is the cocktail party problem; it is usually applied to extract voices
of specific persons rather than separate all the available source signals from an array of
microphones. For such applications, it is essential to develop reliable, robust and effective
learning algorithms which enable us to extract only the small number of source signals that
are potentially interesting and contain useful information.

Before we begin to explain the derivation of learning algorithms for blind source ex-
traction (BSE), let us recall some of the advantages of this approach. The blind signal
extraction approach may have the following advantages over simultaneous blind separation
[254, 279]:

1. Signals can be extracted in a specified order according to the stochastic features of
the source signals, (e.g., in the order determined by absolute values of generalized nor-
malized kurtosis, some measures of sparseness, non-Gaussianity, smoothness or linear
predictability.) The blind extraction can be considered as a generalization of PCA
(principal components analysis), where decorrelated output signals (principal compo-
nents) are extracted according to the decreasing order of their variances. Analogously,
independent components can be ordered according for example to the decreasing ab-
solute value of normalized kurtosis which is a measure of non-Gaussianity or according
to any higher order normalized moment or cumulant.

2. The approach is very flexible, because many different criteria based on HOS and SOS
can be applied for extraction wide spectrum of sources, like i.i.d. sources, colored
Gaussian, sparse sources, nonstationary sources, smooth sources with relative high
measure of predictability, etc. In fact in each stage of extraction, we can use various
criteria and corresponding algorithms depending on requirement to extract sources
with specific features.

3. Only “interesting” signals need to be extracted. For example, if the source signals
are mixed with a large number of noise sources or interferences, we may extract only
signals with some desired stochastic properties.

In EEG/MEG signal processing is often desired to extract so called evoked potentials
with non-symmetric distributions from symmetric distributed noises and interferences.

4. The learning algorithms developed for BSE are local and biologically plausible. In
fact, the learning algorithms derived in this chapter can be considered as extensions or
modifications of the Hebbian/anti-Hebbian learning rule. Typically, they are simpler
than algorithms for simultaneous blind source separation.

In summary, blind signal extraction is a useful approach when it is desired to extract
several source signals with specific stochastic properties from a large number of mixtures.
Extraction of a single source is closely related to the problem of blind deconvolution dis-
cussed in chapters 9 through 12 [552, 616, 612, 1080].

On the other hand, the sequential blind extraction approach may give poorer performance
in comparison to the simultaneous blind separation approach discussed in the following



180 SEQUENTIAL BLIND SIGNAL EXTRACTION

(a)

11

~
w

12

~
w

å

S

S

S

S

S

S

S

1
y

12
x

m
x

1 m
w

1

12
w

11
w11

x

2
y+

_

++

+

+

+

+

_

_

_

+

+

+

+

+

_

_

32
x

m
x

3

31
x

m
w

2

22
w

21
w

m
w

1

~

21

~
w

m
w

2

~

22

~
w

22
x

m
x

2

21
x

(b)

+_

åH Q
s(k)

w1

LAE LAD

w1

~
x(k) x1(k)

y (k)1

x2(k)

Mixing
Optional

Prewhitening
Extraction Deflation

Fig. 5.1 Block diagrams illustrating: (a) Sequential blind extraction of sources and independent
components, (b) implementation of extraction and deflation principles. LAE and LAD mean learning
algorithm for extraction and deflation, respectively.

chapters for some ill-conditioned problems due to accumulation of error during deflation
procedures. Furthermore, some of the blind extraction approaches need some preprocessing
of sensor data, such as prewhitening or matrix orthogonalization.

5.2 LEARNING ALGORITHMS BASED ON KURTOSIS AS COST FUNCTION

Sequential blind source extraction (BSE) can be performed by using a cascade neural net-
work similar to the one used for the extraction of principal components (see Fig. 5.1).
However, in contrast to PCA, the optimization criteria for BSE are different. For the prin-
cipal component extraction, we have applied the optimization criterion that ensures the
best possible reconstruction of vector x(k) after its compression using a single processing
unit.
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In order to extract independent source signals, we use different criteria, e.g., maximization
of the absolute value of normalized kurtosis which is a measure of the deviation of the
extracted source signal from Gaussianity.

5.2.1 A Cascade Neural Network for Blind Extraction of Non-Gaussian Sources with

Learning Rule Based on Normalized Kurtosis

A single processing unit (artificial neuron) is used in the first step to extract one independent
source signal with the specified stochastic properties. In the next step, a deflation technique
is used in order to eliminate the already extracted signals from the mixtures.

Let us assume that the sensor signals are prewhitened (sphered), for example, by using
the standard PCA technique. Then, the transformed sensor signals satisfy the condition

E{x1xT
1 } = In, (5.3)

where x1 = x = Qx and a new global n × n mixing matrix A = QH is orthogonal, that
is, AAT = AT A = In. Hence the ideal n × n separating matrix is W∗ = A−1 = AT for
m = n.

Let us consider a single processing unit, as shown in Fig. 5.1 described by

y1 = wT
1 x1 =

m∑

i=1

w1ix1i. (5.4)

The unit successfully extracts a zero-mean source signal, say the jth signal, if w1(∞) = w1∗
satisfying the relation wT

1∗A = eT
j , where ej denotes the jth column of an n×n nonsingular

diagonal matrix.
As a cost function for minimization, we may employ [279, 1144]

J1(w1) = −1
4
|κ4(y1)| = −β

4
κ4(y1) , (5.5)

where κ4(y1) is the normalized kurtosis defined for zero-mean signals by

κ4(y1) =
E{|y1|4}
E2{|y1|2}

− 3 (5.6)

and parameter β determines the sign of the kurtosis of the extracted signal, i.e.,

β =





−1, for extraction of a source signal
with negative kurtosis,

+1, for extraction of a source signal
with positive kurtosis.

(5.7)

We do not employ any further constraints (like normalization of output signal to unit
variance), since we used the normalized kurtosis. We will show in Appendix A that such
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a cost function has no spurious equilibria if sources are mutually independent and they
do not have Gaussian distribution (see Appendix A). In other words, we will prove that
the cost function (5.5) does not have local minima corresponding to spurious (undesired)
equilibria of the dynamics. Each local minimum corresponds to one extracted source signal.
Therefore, successful extraction of a source signal from the mixture is always guaranteed,
regardless of initial conditions. In addition, use of the normalized criteria makes it possible
to eliminate any constraints that were required for the normalized criteria in [347, 595].

Remark 5.1 Intuitively the use of kurtosis as the cost function can be justified as follows:
According to Central Limit Theorem (a classical result in probability theory), the distribu-
tion of a sum of independent random variables tends towards a Gaussian distribution (under
certain mild conditions). This means that a sum of several variables typically has a dis-
tribution that is closer to Gaussian than any of the original random variables. Therefore,
roughly speaking, our objective is to find such vector w1 that maximizes the non-Gaussianity
of the output variable y1 = wT

1 x. On the other hand, it should be noted that the absolute
value of the normalized kurtosis may be considered as one of the simplest measures of non-
Gaussianity of the extracted signal y1. Furthermore, the kurtosis measures the flatness
or peakedness of a distribution of signals. A distribution with negative kurtosis is called
sub-Gaussian, platykurtic or short-tailed (e.g., uniform). A distribution with positive kur-
tosis is referred to as super-Gaussian, leptokurtic or long-tailed (e.g., Laplacian), and a
zero-kurtosis distribution is named mesokurtic (e.g., Gaussian).

Applying the standard gradient descent approach to minimize the cost function (5.5), we
have

dw1

dt
= −µ1

∂J1(w1)
∂w1

= µ1 β
m4(y1)
m3

2(y1)

[
m2

(
y1

)

m4

(
y1

)E{y3
1x1} − E{y1x1}

]
, (5.8)

where µ1 > 0. It should be noted that the term E{|y|4}/E3{|y|2} = m4(y1)/m3
2(y1) is

always positive, so it can be absorbed by the learning rate µ1 as µ̃1 = m4(y1)
m3

2(y1)
µ1 > 0.

The moments mq(y1) = E{y1(t)q}, for q = 2 and 4, can be estimated on-line using the
following moving averaging (MA) formula

dm̂q(y1(t))
dt

= µ0

[
yq
1(t)− m̂q

(
y1(t)

)]
, (q = 2, 4). (5.9)

Now applying the stochastic approximation technique, we obtain an on-line learning formula
[251, 253]:

dw1

dt
= µ1(t)ϕ(y1(t))x1(t), (5.10)

where µ1(t) > 0 is a learning rate and

ϕ(y1) = β
m̂4(y1)
m̂3

2(y1)

[
m̂2(y1)
m̂4(y1)

y3
1 − y1

]
(5.11)
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is a nonlinear adaptive activation function. Since the positive term m̂4(y1)/m̂2(y1) can be
absorbed by the learning rate, we can also use the following approximation of nonlinear
activation function:

ϕ1(y1) = β

[
m̂2(y1)
m̂4(y1)

y3
1 − y1

]
(5.12)

or

ϕ2(y1) = β

[
1

m̂4(y1)
y3
1 −

1
m2(y1)

y1

]
. (5.13)

In general, the nonlinear activation function is not fixed but changes its shape during the
learning process according to the statistics of the extracted signals [251, 279].

Remark 5.2 It should be noted that in our approach, we use the normalized kurtosis. More-
over, for spiky signals with positive kurtosis (super-Gaussian signals), the nonlinear activa-
tion function closely approximates a sigmoidal function, which is not only robust, but also
biologically plausible.

In the special case, applying a simple approximation for the derivative using the Euler
approximation, we obtain the discrete-time learning rule [254, 279]:

w1(k + 1) = w1(k) + η1(k) ϕ1(y1(k))x1(k), (5.14)

where x1 is the vector of sensor signals and the nonlinear activation function ϕ1 is evaluated
by (5.12).

The higher-order moments m2 and m4 and the sign of the kurtosis κ4(y1) can be esti-
mated on-line by using the following averaging formula

m̂q(k) = (1− η0) m̂q(k − 1) + η0 |y1(k)|q, (5.15)

with η0 ∈ (0, 1] and m̂q(k) ∼= E{|y1(k)|q}, q = 2, 4. The above cost function is similar to
that already proposed by Shalvi and Weinstein [1067, 1069, 1204] and in an extended form
by Inouye [612, 613] and Comon [307] for blind deconvolution problems [552]. However,
instead of the standard kurtosis (E{y4

1} − 3E2{y2
1}), we employ a normalized one which

eliminates any constraint on the variance of the output signals and therefore considerably
simplifies the optimization procedure. Furthermore, the normalized kurtosis is more robust
in respect to outliers and spiky noise.

In some applications like communications, source signals are typically sub-Gaussian, so
they have negative kurtosis. In such cases, the nonlinear function can be simplified as

ϕ1[y1] = (y1 − αy3
1) = (y1 − f(y1)), (5.16)

where α = E{|y|2}/E{|y|4}, f(y) = y3 and β = sign(κ4{y1}) = −1.
The presented algorithms can be considered as the Blind Least Mean Square (BLMS)

algorithm with a “blind” error signal equal to e1(k) = y1(k)− f [y1(k)]. It should be noted
that the BLMS learning algorithm resembles a standard LMS algorithm where the error is
represented by e1(k) (see Fig. 5.2). In fact, many techniques and approaches known from
the standard adaptive signal processing can be adopted to improve the performance of the
BLMS algorithm.
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Fig. 5.2 Block diagram illustrating blind LMS algorithm.

5.2.2 Algorithms Based on Optimization of Generalized Kurtosis

The above adaptive learning algorithm can easily be generalized by minimizing the following
cost function

Jpq[w1] = −1
p
|κp,q{y1}| = −β

p
κp,q{y1}, (5.17)

where κp,q{y1} is the generalized normalized kurtosis (or Gray’s variable norm) [516, 721],
defined as

κp,q{y1} =
E{|y1|p}

Eq{|y1|p/q} − cpq, (5.18)

where cpq is a positive constant, such that, for the Gaussian distribution κp,q = 0 and p, q
are chosen suitably positive (typically, q = 2 and p = 1, 3, 4, 6). In the special case for p = 4,
q = 2 and cpq = 3, the generalized kurtosis reduces to the standard normalized kurtosis.

Applying the standard gradient descent approach to minimize the cost function (5.17),
we have

dw1

dt
= −µpq

∂Jpq(w1)
∂w1

= µ̃pq β

[
E{|y1|p/q}
E{|y1|p} E{sign(y1)|y1|p−1x1} − E{sign(y1)|y1|p/q−1x1}

]
, (5.19)

where µpq > 0 and µ̃pq = E{|y1|p}
Eq+1{|y1|p/q}µpq > 0 are the learning rate.

Applying the stochastic approximation technique, we obtain an on-line learning formula

∆w1(k) = w1(k + 1)−w1(k) = η̃pq(k) ϕ1(y1(k))x1(k), (5.20)
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where ϕ1[y1(k)] has the general form

ϕ1[y1] = sign(y1)
(
|y1|p/q−1 − E{|y1|p/q}

E{|y1|p} |y1|p−1

)
(5.21)

assuming for simplicity that all the source signals are sub-Gaussian with negative kurtosis.
In the special case, for sub-Gaussian signals, where p = 1 and q = 1/2, we obtain the
modified Sato algorithm with nonlinearity [1040, 1041, 1173, 944]

ϕ1[y1] = y1 − E{|y1|2}
E{|y1|} sign(y1). (5.22)

More generally, for the sub-Gaussian signals, the choice of q = 1/2 produces the class of Go-
dard or constant modulus algorithms (CMA) (5.14) with the adaptive nonlinear activation
function [945, 721, 276, 275, 38, 405]

ϕ1[y1] = (|y1|p − γp) y1|y1|p−2, (5.23)

where

γp =
E{|ŝ1(k)|2p}
E{|ŝ1(k)|p} = const (5.24)

assuming that the statistics of the estimated source signal ŝ1 are known. However, in
general, when the statistics of the source signals are not known (or cannot be estimated) the
parameter Rp(ŝ1(k)) is not fixed but can be adapted during the learning process depending
on the higher-order moments of the absolute values of the estimated output signal y(k).
In this case, the higher-order moments of the form mr(k) = E{|y(k)|r} appearing in the
nonlinearities, can be estimated on-line by using the moving average (MA) procedure.

It is interesting that the above algorithms easily can be extended to complex-valued
signals by noting that in such a case, y1(k) = xH

1 (k)w1(k) (where superscript H means
the complex conjugate transpose or Hermitian operation) and is replaced sign[y1(k)] by
y1(k)/|y1(k)|. For example, the constant modulus algorithm (CMA) for p = 4, q = 2, for
complex-valued coefficients and signals, takes the form:

w1(k + 1) = w1(k)± η(k)
[
y1(k)− E{|y1|2}

E{|y1|4}y1(k)|y1(k)|2
]
x∗1(k), (5.25)

where x∗1 is the vector of the complex conjugate sensor signals, where the plus sign is for
sub-Gaussian while the minus sign for super-Gaussian signals. The above algorithms can be
considered as the BLMS (Blind Least Mean Square) algorithm with the “blind” error signal
equal to y1(k)− m̂2(|y1(k)|)

m̂4(|y1(k)|)y1(k)|y1(k)|2. Many powerful and efficient techniques developed
for standard LMS can be also applied to the above algorithms (see Fig. 5.2).

It should be noted that, in general, the activation function can be not a fixed one but
is instead adaptive during the learning process. This observation was first made by several
researchers [34, 227, 229]. Adapting the nonlinearities are important in the multichannel
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case, since the signals may consist of the mixture of several sources with different distribu-
tions. The optimal choice for the values of p and q depends on the statistics of the input
signals, implying a trade-off between the tracking ability and the estimation accuracy of
the algorithm [721]. Such methods also have a natural extension to multichannel blind
deconvolution problems [231, 226, 944].

Remark 5.3 It should be noted that the above method does not need prewhitening. How-
ever, for ill-conditioned problems (when a mixing matrix is ill-conditioned and/or source
signals have different amplitude or variance), we can apply preprocessing (prewhitening) in
the form of x1 = Qx, where the decorrelation matrix Q ∈ IRn×m ensures that the auto-
correlation matrix Rx1x1 = E{x1xT

1 } = In. Prewhitening can simultaneously reduce the
dimensional redundancy of the signals from m to n, if we select Q ∈ IRn×m. It should
be noted that after the decorrelation process, the new unknown mixing matrix defined as
A = QH, is an orthogonal matrix satisfying the relation AT A = In, i.e., aT

i aj = δij,
where ai is the i-th vector of the global mixing matrix A (see Fig. 5.1 (b)).

5.2.3 KuicNet Learning Algorithm

The KuicNet learning algorithm developed by Kung and Douglas has been derived from
the same cost function (normalized kurtosis) but under the constraint that vector w1 has
unit length, i.e., ||w1||2 = 1 [415]. Taking into account that

E{y2
1} = E{wT

1 x1xT
1 w1} = wT

1 Rx1x1w1 = wT
1 w1 = 1, (5.26)

the cost function can be reformulated as

J1(w1) = −β

4
E{y4

1}
||w1||4 . (5.27)

Applying the standard stochastic gradient approach, we obtain a simple learning rule

w1(k + 1) = w1(k) + η β
(
y3
1(k)x1(k)− y4

1(k)w1(k)
)
, (5.28)

where η > 0 is the learning rate and β = sign(κ4(y1)).
It should be noted that the above KuicNet learning rule has a self-normalizing property,

such that the unit length of the weight vector w1 (||w1(k)|| ≈ 1) is approximately main-
tained. However, when the extracted source signal y1(k) has a negative value of kurtosis
the above algorithm is unstable (due to accumulation of error in iterative process) and the
vector w1 must periodically be renormalized to the unit length as follows

w+
1 (k + 1) = w1(k) + η β

[
y3
1 x1 − y4

1 w1

]
, (5.29)

where w1(k + 1) = w+
1 (k + 1)/||w+

1 (k + 1)||.
Alternatively, we can use the ordered rotation KuicNet learning rule proposed recently

by S. Douglas and S. Y. Kung [415]

w1(k + 1) = w1(k) + η y3
1(k) [x1(k)− y1(k)w1(k)] for β > 0, (5.30)

w1(k + 1) = w1(k)− η y3
1

[||w1||4x1(k)− y1(k)w1(k)
]

for β < 0. (5.31)

Implementations of BLMS and KuicNet algorithms are shown in Fig. 5.3 (a) and (b).
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Fig. 5.3 Implementation of BLMS and KuicNet algorithms.

5.2.4 Fixed-point Algorithms

Hyvärinen and Oja proposed a family of batch learning rules, called fixed-point or fast
ICA algorithms for a hierarchical neural network that extracts the source signals from their
mixtures in a sequential fashion. In the hierarchical neural network, the output of the jth
extraction processing unit is described as yj = wT

j x1, where wj = [wj1, wj2, . . . , wjn]T .
Contrary to the cascade neural network, the input vector for each processing unit of the
hierarchical neural network is the same x1 = Qx vector from the prewhitened sensor signals.

Let us consider as the cost function the standard kurtosis for a zero mean signal y1

J (w1, y1) = κ4(y(w1)) =
1
4

[
E{y4

1} − 3E2{y2
1}

]
, (5.32)

where y1 = wT
1 x1 is the output of a single processing unit.
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In order to find the optimal value of vector w1, we apply the following iteration rule
[595, 461]:

w1(l + 1) =
∇w1κ4(w1(l))
||∇w1κ4(w1(l))|| , (5.33)

where ∇w1κ4(w1) = ∂κ4(w1)/∂w1. Equivalently, we can apply the following formula:

w+
1 (l + 1) = ∇w1κ4(w1(l)),

w1(l + 1) =
w+

1 (l + 1)
||w+

1 (l + 1)|| , (5.34)

which enforces that the vector w1 has unit length in each iteration step. The gradient of
the cost function can be evaluated as

∇w1κ4(w1) =
∂κ4(w1)

∂w1
= E{y3

1x1} − 3E{y2
1}E{y1x1}. (5.35)

Assuming that the sensor signals are prewhitened and the covariance matrix Rx = E{x1xT
1 } =

I and the vector w1 is normalized to unit length, (i.e., E{y2
1} = 1), we obtain

∇w1κ4(w1) = E{y3
1x1} − 3E{y2

1}E{x1xT
1 w}

= E{y3
1x1} − 3w1. (5.36)

Thus the fixed point algorithm in its standard form can be written as

w+
1 (l + 1) =

〈
y3
1x1

〉− 3w1(l), y1 = wT
1 (l)x1,

w1(l + 1) =
w+

1 (l + 1)
||w+

1 (l + 1)|| . (5.37)

In a similar way, we can derive the modified fixed point algorithm for generalized normalized
kurtosis

κp,q{y1} =
1
p

(
E{|y1|p}

Eq{|y1(k)|p/q} − cpq

)
, (5.38)

where cpq is a positive constant, such that for the Gaussian distribution κp,q = 0.
It is straightforward to check that the gradient of the generalized normalized kurtosis

with respect to vector w1, can be expressed by

∂κp,q

∂w1
=

E{sign(y1)|y1|p−1x1}Eq{|y1|p/q} − E{|y1|p}Eq−1{|y1|p/q}E{sign(y1)|y1|p/q−1x1}
E2q{|y1|p/q} .

Thus the new algorithm can take the form

w1(l + 1) =
∇w1κp,q(w1(l))
||∇w1κp,q(w1(l))|| , (5.39)
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Fig. 5.4 Block diagram illustrating the implementation of the generalized fixed-point learning al-
gorithm developed by Hyvärinen-Oja [595]. 〈〉 means averaging operator. In the special case of
optimization of standard kurtosis, where g(y1) = y3

1 and g′(y1) = 3y2
1 .

where

∇w1κp,q(w1(l)) =
E{|y1|p}

Eq+1{|y1|p/q}E{sign(y1)|y1|p−1x1} − E{sign(y1)|y1|p/q−1x1}, (5.40)

with y1 = wT
1 (l)x1. In the special case, for p = 4, q = 2, cpq = 3, and prewhitened sensor

data the above algorithm can be simplified to a form similar to the learning rule given by
Eq. (5.37) as

w+
1 (l + 1) =

〈
y3
1x1

〉

〈y4
1〉

−w1(l), y1 = wT
1 (l)x1, (5.41)

w1(l + 1) =
w+

1 (l + 1)
||w+

1 (l + 1)|| . (5.42)

The above algorithm is more robust to outliers and spiky noise than algorithm (5.37).
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Let us consider an alternative derivation of the fixed point algorithm (5.37) in a slightly
more general form. For this purpose, we formulate the following constrained optimization
problem:

maximize J (w1) = E{G(y1)},

subject to the constraint E{y2
1} = ||w1||2 = 1,

where G(y) is a suitably chosen convex function (typically G(y) = log cosh(αy)/α).
For signals with spiky noise, we can use more robust functions (see Chapter 2 and Table
2.1).

Assume now that the sensor data are prewhitened (i.e., E{x1xT
1 } = I). According to

the Kuhn-Tucker conditions, the maxima of J (w1) = E{G(y1)} (under the constraint
E{|wT

1 x1|2} = ||w1||2 = 1) are obtained at points w1 satisfying

∇E{G(y1)} − λ∇E{|wT
1 x1|2} = 0, (5.43)

where λ is Lagrange multiplier. After a simple mathematical manipulation, we obtain

F (w1) = E{x1g(y1)} − λw1 = 0, (5.44)

where g(y) = dG(y)/dy. The Newton method can be used to efficiently solve Eq. (5.44).
For this purpose the Jacobian matrix of ∇E{G(y1)} = E{x1g(y1)} is evaluated as follows:

∇2E{G(y1)} = E{x1 xT
1 g′(y1)} ≈ E{x1 xT

1 }E{g′(y1)}. (5.45)

Taking into account that the approximate Jacobian matrix

J = (E{g′(y1)} − λ) I (5.46)

is a diagonal matrix (and thus is easy to invert), we obtain the following approximate
Newton iteration:

w+
1 = w1 − J−1F (w1)

= w1 − E{x1g(y1)} − λw1

E{g′(y1)} − λ
, (5.47)

w1 =
w+

1

||w+
1 ||

.

Finally, by multiplying of both sides of the above equation by the factor (−E{g′(y1)}+ λ),
the algorithm is simplified to the so called fast-ICA algorithm as

w+
1 = E{x1g(y1)} − E{g′(y1)}w1, (5.48)

w1 =
w+

1

||w+
1 ||

,
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where g′(y1) = dg(y1)/dy1. Fig. 5.4 illustrates the implementation of the fast ICA batch
learning algorithm for the extraction of the first source. In order to extract the subsequent
source signals, we can apply deflation technique as described in the next section.

In theory, the Hyvärinen-Oja neural network (as shown in [595]) provides a typically
successful extraction of non-Gaussian source signals. However, in practice, due to the use
of fixed nonlinearities and high sensitivity to accumulated errors of Gram-Schmidt-like or-
thogonalization (or decorrelation) used in the deflation procedure, the quality of extracted
signals from the Hyvärinen-Oja neural network may increasingly degrade at subsequent
extraction units. In the next section, we present a simple and robust cascade (sequen-
tial) extraction deflation procedure which avoids accumulation of error during the deflation
procedure.

5.2.5 Sequential Extraction and Deflation Procedure

We now describe the simple and efficient deflation procedure. Figures 5.1 (a) and (b) il-
lustrate the extraction and deflation process. The cascade neural network employs two
different types of processing units, alternately connected with each other in a cascade fash-
ion, one type for blind extraction and the other for deflation. The j-th extraction processing
unit extracts a source signal from inputs that are linear mixture of the remaining source
signals yet to be extracted. The jth deflation processing unit then deflates (removes) the
newly extracted source signal from the mixtures and feeds the resulting outputs to the next
(j + 1)-th extraction processing unit.

After the successful extraction of the first source signal y1(k) ≈ si(k)
(
i ∈ 1, n

)
, we

can apply the deflation procedure which removes the previously extracted signals from the
mixtures. This procedure may be recursively applied to extract sequentially the all source
signals. This means, that we require an on-line linear transformation given by (see Fig.5.1)
[279]

xj+1(k) = xj(k)− w̃jyj(k), (j = 1, 2, . . . , ) (5.49)

where w̃j can be optimally estimated by the minimization of the cost (energy) function

Jj(w̃j) = E{ρ(xj+1)} =
1
2
E{

m∑
p=1

x2
j+1,p}, (5.50)

where E{ρ(xj+1)} is the objective function and yj(k) = wT
j xj(k). Intuitively speaking,

such cost (objective) function can be considered as an energy function whose minimum is
achieved when the extracted source signal yj is eliminated from the mixture of sources.
Note that w̃j is different from wj . Minimization of the cost function (5.50) leads to the
simple local type LMS learning rule [279, 278, 1144]

w̃j(k + 1) = w̃j(k) + η̃j(k) yj(k)xj+1(k), (j = 1, 2, . . . , n) (5.51)

where (as we will show later) w̃j is an estimation of j-th column ĥj of the identified mixing
matrix Ĥ, yj = wT

j xj is the j-th extracted signal, by using the following learning rule,
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similar to (5.21)

wj(k + 1) = wj(k) + ηj(k)ϕj [yj(k)]xj(k), (5.52)

ϕj(yj) =
yj

|yj |2
(
|yj |p/q − E{|yj |p/q}

E{|yj |p} |yj |p
)

. (5.53)

The procedure can be continued until all the estimated source signals are recovered, that
is, until the amplitude of each signal xj+1 reaches a preassigned threshold. This procedure
means that there is no requirement to know the number of source signals in advance, but
it is assumed that the number is constant and the mixing system is stationary (e.g., the
sources do not “change” during the convergence of the algorithm). It can easily be proved
that this deflation optimization procedure has no spurious (undesired) minima and, after
the convergence, the algorithm (5.51) estimates one column of the mixing matrix H with
scaling and permutation indeterminacy.

Alternatively, instead of an adaptive on-line algorithm, we can use a very simple and
efficient batch one-step formula. Minimization of the mean squares cost function

J̃j(w̃j) = E{xT
j+1xj+1} =

E{xT
j xj} − 2w̃T

j E{xjyj}+ w̃T
j w̃jE{y2

j }, (5.54)

with respect to w̃j leads to an alternative batch simple updating equation,

w̃j = ĥj =
E{xjyj}
E{y2

j }
=

E{xjxT
j }wj

E{y2
j }

, (5.55)

where ĥj is, in fact, an estimated column of the mixing matrix H neglecting arbitrary
scaling and permutation of columns ambiguities.

It is important to note that by performing for each processing unit prewhitening or PCA,
the covariance matrices are identity matrices, i.e.,

Rxjxj = E{xjxT
j } = I ∀j (5.56)

and keeping ||wj || = 1 which implies E{y2
j } = 1, we do not need to estimate any of vectors

w̃j in the deflation procedure since

w̃j = âj = wj , (5.57)

where âj is the j-th vector of the estimated orthogonal mixing matrix Â = QĤ with Q
prewhitening matrix.

In Appendixes A and B, we proved that such algorithms converge to a desired solution,
i.e., they can successfully extract the sources that have nonzero kurtosis. More precisely,
we can prove now that the family of extraction criteria discussed in previous sections have
no spurious equilibria and hence successful extraction of a source signal from the mixture
of original source signals can always be achieved, regardless of initial conditions. We then
extend the theoretical results and perform a more general analysis for the jth extraction
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and deflation processing units. In this general analysis, it will be shown that the jth extrac-
tion processing unit can always successfully extract a source signal from a mixture of the
remaining source signals and that the outputs of the jth deflation processing unit produce
a new mixture which does not contain this newly extracted signal. Finally, based on these
analytical results, in Appendix B, we describe implementation techniques for determining
a proper value of β, and we formulate criteria for terminating the extraction and deflation
procedures.

5.3 ADAPTIVE ON LINE ALGORITHMS FOR BLIND SIGNAL EXTRACTION OF

TEMPORALLY CORRELATED SOURCES

In previous sections, we discussed algorithms based on the assumptions that “interesting”
sources are independent and non-Gaussian. In this and next sections, we relax these condi-
tions and assume that sources are colored, i.e., they have different temporal structures but
they can have arbitrary distributions including Gaussian. In this section, we will derive a
family of on-line adaptive learning algorithms for sequential blind extraction of arbitrarily
distributed but generally not i.i.d. (independent and identically distributed) sources from
their linear mixture. The algorithms discussed in this section are computationally simple
and efficient, and they exploit only the second order statistics. Thus, in contrast to the
algorithms described in previous sections of this chapter for blind extraction, they do not
assume non-zero kurtosis for the sources, thus signals with low or even zero kurtosis (colored
Gaussian) can be successfully extracted. Specifically, some biomedical source signals are
characterized by extremely low values of normalized kurtosis and due to nonstationarities,
their distribution may change in time. In fact, the algorithms discussed in previous sections
use some nonlinear activation functions whose optimal forms depend on statistics of source
signals. However, such statistics are usually unknown. Moreover, such algorithms may
have poor performance and relatively slow convergence speeds for small absolute values of
normalized kurtosis.

Our main objective in this section is to derive an alternative class of algorithms which
would be able to estimate colored source signals sequentially, one-by-one, assuming that they
are arbitrarily distributed but generally but they have different auto-correlation functions,
i.e., E {si (k − p) si (k)} 6= E {sj (k − p) sj (k)} for some time delays.

Let us assume that temporally correlated source signals are modelled by autoregressive
processes (AR) as

sj(k) = s̃j(k) +
L∑

p=1

ãjpsj(k − p)

= s̃j(k) + Aj(z)sj(k), (5.58)

where Aj(z) =
∑L

p=1 ãjp z−p, z−ps(k) = s(k − p) and s̃j(k) are i.i.d. unknown innovative
processes. In practice, the AR model can be extended to more general models like the
Auto Regressive Moving Average (ARMA) model or the Hidden Markov Model (HMM)
[27, 52, 595].
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Fig. 5.5 Block diagram illustrating implementation of learning algorithm for temporally correlated
sources.

For ill-conditioned problems (when a mixing matrix is ill-conditioned and/or source sig-
nals have different amplitude), we can apply optional preprocessing (prewhitening) to the
sensor signals x in the form of

x1 = Qx,

where Q ∈ IRn×m is the decorrelation matrix ensuring that the correlation matrix Rx1x1

= E{x1xT
1 } = In is the identity matrix (see Chapters 4 and 8 for more detail and robust

algorithms with respect to noise).
To model the temporal structures of source signals, we consider a linear neural network

cascaded with an adaptive filter with transfer function B1(z) (which estimates one of Aj(z))
as illustrated on Fig. 5.5, where the input-output relations of the network and the filter are
described, respectively, as follows:

yj(k) = wj(k)T x1(k) =
n∑

i=1

wjix1i(k) (5.59)

and

εj(k) = [1−Bj(z)] yj(k), (j = 1, 2, . . . , n) (5.60)

where Bj(z) is the transfer function of a suitably chosen filter.
Depending on specific applications and requirements, the filters Bj(z) can take different

forms to extract the source signals with specific stochastic properties, for example:

• The filter Bj(z) can be a simple Finite Impulse Response (FIR) filter which performs
a linear prediction of the output signal yj(k). (See more details in the next sections).



ON LINE ALGORITHMS FOR BLIND SIGNAL EXTRACTION OF TEMPORALLY CORRELATED SOURCES 195

• As a special case, we can use the simplest first order FIR filter (with single unit
delay) with one step prediction, i.e., only the first order predictor can be applied in
the simplest case.

• We can also employ Infinite Impulse Response (IIR) or FIR band pass filters or banks
of band pass filters in order to extract source signals with specific properties, i.e., with
specific frequency bandwidth.

• Furthermore, the concept can be generalized by employing a nonlinear predictor in-
stead of a simple linear predictor. For example, a multilayer perceptron (MLP) or
radial basis function (RBF) network can be used as a nonlinear predictor. In the
simplest case, a nonlinear predictor can be described as

εj(k) =

[
yj(k)− ϕ

(
L∑

p=0

bpyj(k − p)

)]
, (5.61)

where ϕ(y) is a suitably chosen adaptive or fixed nonlinear function [27, 282]. By
employing a suitable design nonlinear predictor, we can extend the class of extracted
signals, e.g., it may be possible to extract close to white independent and/or colored
signals with similar spectra shapes.

5.3.1 On Line Algorithms for Blind Extraction Using Linear Predictor

Let us assume for simplicity, that we want to extract only one source signal, say sj(k), from
the available sensor vector x(k). For this purpose, we employ the single processing unit
described above as (see Fig. 5.6):

y1 (k) = wT
1 x (k) =

m∑

i=1

w1ixi (k) , (5.62)

ε1 (k) = y1 (k)−
L∑

p=1

b1py1 (k − p)

= wT
1 x (k)− bT

1 ȳ1(k), (5.63)

where w1 = [w11, w12, . . . , w1m]T , ȳ1(k) = [y1 (k − 1) , y1(k − 2), . . . , y1 (k − L)]T ,

b1 = [b11, b12, . . . , b1L]T and B1 (z) =
L∑

p=1
b1pz

−p is a transfer function of the corresponding

FIR filter. It should be noted that the FIR filter can have a sparse representation, in
particular, only one single processing unit, say with delay p and b1p 6= 0 can be used instead
of L parameters. The processing unit has two outputs: y1(k) which estimates the extracted
source signals, and ε1 (k), which represents a prediction error or innovation, after passing
the output signal y1(k) through FIR filter.

Our objective is to estimate the optimal values of vectors w1 and b1, in such a way that
the processing unit successfully extracts one of the sources. This is achieved if the global
vector defined as g1 = AT w1 =

(
wT

1 A
)T = cjej contains only one nonzero element, say in
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Fig. 5.6 The neural network structure for one-unit extraction using a linear predictor.

the j-th row, such that y1 (k) = cjsj , where cj is an arbitrary nonzero scaling factor. For
this purpose, we reformulate the problem as a minimization of the cost function

J (w1,b1) = E
{
ε2
1

}
. (5.64)

The main motivation of applying such a cost function is the assumption that primary
sources signals (signals of interest) have temporal structures and can be modelled, e.g., by
the autoregressive model [34, 67, 68, 274, 954].

According to the AR model of the source signals, the filter output can be represented as
ε1(k) = y1(k)− ỹ1(k), where ỹ1(k) =

∑L
p=1 b1py1(k − p) is defined as an error or estimator

of the innovation source s̃j(k). The mean square error E{ε2
1(k)} achieves a minimum

c2
1E{s̃2

j (k)}, where c1 is a positive scaling constant, if and only if y1 = ±c1sj for any
j ∈ {1, 2, . . . , m} or y1 = 0 holds (see Appendix C). To prevent the latter trivial case,
we need a constraint to bound E{y2

1(k)} to, say, 1. We can formulate this constrained
optimization criterion as

minimize J1

(
w1,b1

)
=

1
2
E{ε2

1}+
β1

4
(1− E{y2

1})2, (5.65)

where β1 > 0 is the constant penalty factor. The standard stochastic gradient descent
method leads to an on-line learning algorithm for vector w1 and coefficients of the FIR
adaptive filter b1p, respectively,

∆w1(k) = w1(k + 1)−w1(k) = −η1

∂J1

(
w1,b1

)

∂w1

= −η1(k) [〈ε1(k)x̃1(k)〉 − γ(k)w(k)] , (5.66)

where γ(k) = −β1[1− σ̂2
y1

(k)] is a forgetting factor and

∆b1p(k) = bip(k + 1)− bip(k) = −η̃1

∂J1

(
w1,b1

)

∂b1p

= η̃1(k) 〈ε1(k)y1(k − p)〉 , (5.67)
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where x̃1(k) = x1(k)−∑L
p=1 b1px1(k − p) and η1 as well as η̃1 are learning rates.

The variance of output signal σ2
y1

= E{y1(k)2} can be estimated on-line by using the
standard moving averaging formula

σ̂2
y1

(k) = (1− η0) σ̂2
y1

(k − 1) + η0 y2
1(k). (5.68)

In this model, we are exploiting the temporal structure of signals rather than the statisti-
cal independence [278, 1104]. Intuitively speaking, the source signals sj have less complexity
than mixed sensor signals xj . In other words, the degree of temporal predictability of any
source signal is higher than (or equal to) that of any of the mixture. For example, the
waveforms of mixture of two sine waves with different frequencies are more complex or
less predictable than either of the original sine waves. This means that applying the stan-
dard linear predictor and by minimizing the least mean error E{ε2}, which is measure of
predictability, we can separate or extract signals with different temporal structures. More
precisely, by minimizing the error, we maximize a measure of temporal predictability for
each recovered signal [278, 274, 68].

It is interesting to note that there is some analogy between the measure of temporal
predictability and the measure of non-Gaussianity. The central limit theorem ensures that
the probability density function (pdf) of any mixture is closer to the Gaussian distribution
than (or equal to) any of its component source signals. As some measure of non Gaussianity
or statistical independence, we have used in the previous section the absolute value of the
kurtosis and the generalized kurtosis. However, it should be noted, that these two measures:
temporal linear predictability and non-Gaussianity based on kurtosis may lead to different
results. Temporal predictability forces the extracted signal to be smooth and possibly to
be of low complexity while the non-Gaussianity measure forces the extracted signals to be
independent as possible and have sparse representation for sources with positive kurtosis.

In Appendix C, we formulate and prove sufficient conditions in order to successfully
extract source signals using the cost function E{ε2

1} subject to some constraints.

5.3.2 Neural Network for Multi-unit Blind Extraction

For extraction of multiple source signals, we present a neural network architecture (see Fig.
5.7) that connects, in a cascade fashion, extraction processing units and other processing
units of different types for deflation as described in [279, 1144]. In this cascade architecture,
a jth deflation processing unit deflates (eliminates) the newly extracted source signal yj ,
yielded by the jth extraction processing unit, from the mixtures xj =

[
xj1, xj2, . . . , xjm

]T

and feeds the resulting new mixtures as outputs xj+1, to the next (j + 1)th extraction
processing unit which then extracts another source signal. It can be analytically shown
by the following linear transformation that the resulting outputs xj+1 of the jth deflation
processing unit do not include the already extracted signals {y1, . . . , yj} [1144]

xj+1(k) def= xj(k)− w̃j(k)yj(k), (5.69)

which minimizes the loss function

Ĵj(w̃j) =
1
2
E{x2

j+1}, (5.70)
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Fig. 5.7 The cascade neural network structure for multi-unit extraction.

where w̃j =
[
w̃j1, w̃j2, . . . , w̃jm

]T and xj =
[
xj1, xj2, . . . , xjm

]T . In (5.69), yj = wT
j xj is

the output of the jth extraction processing unit whose weights wj =
[
wj1, wj2, . . . , wjm

]T

are updated according to the learning rule in (5.73).
For w̃j , we obtain the following updating rule by applying the stochastic gradient descent

method to (5.70)

∆w̃j(k) = −η̃j
∂Ĵj(w̃j)

∂w̃j
= η̂j(k) yj(k)xj+1(k), (5.71)

where η̂j(k) > 0 is a learning rate.
Applying the standard stochastic gradient descent method to a generalized criterion of

(5.65) for the jth extraction processing unit, i.e.,

Jj

(
wj ,bj

)
=

1
2
E{ε2

j}+
βj

4
(1− E{y2

j })2, (5.72)

we obtain the following adaptive on-line learning algorithms for vectors wj (j = 1, 2, . . . , n)
and coefficients of the FIR adaptive filters bjp, respectively,

∆wj(k) = −ηj(k) εj(k) x̃j(k) + ηj(k) βj {1−m2(yj(k))} yj(k)xj(k) (5.73)

and
∆bjp(k) = −η̃j(k) εj(k) yj(k − p), (5.74)

where

εj(k) = yj(k)−
L∑

p=1

bjpyj(k − p) = [1−Bj(z)] yj(k),
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x̃j(k) = xj(k)−
L∑

p=1

bjpxj(k − p) = [1−Bj(z)]xj(k),

∆m2(yj(k)) = η̄j(k)
[
y2

j (k)−m2

(
yj(k)

)]
,

βj > 0 is a penalty factor, and ηj(k), η̃j(k), η̄j(k) are learning rates [278].

5.4 BATCH ALGORITHMS FOR BLIND EXTRACTION OF TEMPORALLY

CORRELATED SOURCES

The objective of this section is to derive alternative batch algorithms for extraction of col-
ored sources with different autocorrelation functions. Let us consider the processing unit
shown in Fig. 5.6 with the following constrained minimization problem:

Minimize the cost function

J (w1,b1) = E
{
ε2
1

}
(5.75)

subject to the constraint ||w1|| = 1,

where ε1(k) = y1(k) − ỹ1(k), y1 = wT
1 x1, x1 = x, ỹ1(k) = bT

1 ȳ1(k) =
∑L

p=1 b1py1 (k − p)
and ȳ1 = [y1(k − 1), y2(k), . . . , y1(k − L)]T .

The cost function can be evaluated as follows:

E
{
ε2
1

}
= wT

1 R̂x1x1w1 − 2wT
1 R̂x1ȳ1b1 + bT

1 R̂ȳ1ȳ1b1, (5.76)

where R̂x1x1 ≈ E{x1xT
1 }, R̂x1ȳ1 ≈ E{x1ȳT

1 } and R̂ȳ1ȳ1 ≈ E{ȳ1ȳT
1 }, are the estimators

of the true values of correlation and cross-correlation matrices: Rx1x1 ,Rx1ȳ1 ,Rȳ1ȳ1 , re-
spectively. In order to estimate vectors w1 and b1, we evaluate the gradients of the cost
function and equalize them to zero as follows:

∂J1 (w1,b1)
∂w1

= 2R̂x1x1w1 − 2R̂x1ȳ1b1 = 0, (5.77)

∂J1 (w1,b1)
∂b1

= 2R̂ȳ1ȳ1b1 − 2R̂ȳ1x1w1 = 0. (5.78)

Solving the above matrix equations, we obtain an iterative algorithm

w+
1 = R̂−1

x1x1
R̂x1ȳ1b1, w1 =

w+
1

||w+
1 ||

, (5.79)

b1 = R̂−1
ȳ1ȳ1

R̂ȳ1x1w1 = R̂−1
ȳ1 ȳ1

R̂ȳ1 y1 , (5.80)

where the matrices R̂ȳ1 ȳ1 and R̂ȳ1 y1 are estimated on the basis of the parameters w1

obtained in the previous iteration step.
In order to avoid the trivial solution w1 = 0, we normalize the vector w1 to unit length in
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each iteration step as w1(l +1) = w+
1 (l +1)/

∥∥w+
1 (l + 1)

∥∥ (which ensures that E{y2
1} = 1).

Remark 5.4 It should be emphasized here that in our derivation R̂ȳ1 ȳ1 and R̂ȳ1 y1 are
assumed to be independent of the actually evaluated vector w1(l + 1), i.e., they are esti-
mated based on w1(l) in the previous iteration step. This two-phase procedure is similar to
the expectation maximization (EM) scheme: (i) Freeze the correlation and cross-correlation
matrices and learn the parameters of the processing unit (w1,b1); (ii) freeze w1 and b1

and learn new statistics (i.e., matrices R̂ȳ1 y1 and Rȳ1 ȳ1) of the estimated source signal,
then go back to (i) and repeat. Hence, in phase (i) our algorithm extracts a source signal,
whereas in phase (ii) it learns the statistics of the source.

The above algorithm can be considerably simplified. It should be noted, that in order
to avoid the inversion of the autocorrelation matrix Rx1x1 in each iteration step, we can
apply as a preprocessing the standard prewhitening or standard PCA and next normalize
the sensor signals to unit variance. In such cases, R̂x1x1 = In and the algorithm is simplified
to [68]

w+
1 = R̂x1ȳ1b1 = R̂x1ey1 , w1 =

w+
1

||w+
1 ||

, (5.81)

where R̂x1 ey1 = 1
N

N∑
k=1

x1 (k) ỹ1 (k).

It is interesting to note that the algorithm can be formulated in an equivalent form as

w1(l + 1) =
〈x1(k)ỹ1(k)〉
〈y2

1(k)〉 . (5.82)

In order to reduce bias caused by white additive noise, we can modify the formula (5.82) as

w1(l + 1) =
〈x1(k)ỹ1(k)〉
〈y1(k)ỹ1(k)〉 . (5.83)

The formulas (5.81) and (5.82) extend up our basic simplified learning batch algorithm. A
length of the FIR filter should be chosen sufficiently large but a value of L from 5 to 10
was enough in our experiments. However, as shown by our extensive computer simulations,
in practice it is sufficient to use only a single delay unit with a suitably chosen delay q if
some a priori information about source signals is available. The suitable choice of the single
delay q depends on the autocorrelation function of the extracted source [67, 68, 274, 278].

Remark 5.5 From (5.81)-(5.82) it follows that our algorithm is similar to the power
method for finding the eigenvector w1 associated with the maximal eigenvalue of the matrix
Rx1(b1) = E{∑L

p=1 b1px1(k)xT
1 (k − p)}. This observation suggests that it is not needed

to minimize the cost function with respect to parameters {b1p} but it is enough to choose
the arbitrary set of them for which the largest eigenvalue is unique. More generally, if all
eigenvalues of the generalized covariance matrix Rx1(b1) are distinct, then we can extract
all sources simultaneously by estimating principal eigenvectors of Rx1(b1) (see Chapter 4
for more details).
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5.4.1 Blind Extraction Using a First Order Linear Predictor

The algorithms derived in the previous section can be further simplified, if we assume that
the linear predictor has only one single time delay z−q. In such a case the cost function can
be simplified as follows [68]

J (w1, b1q) = E{ε2
1} = wT

1 E[x1 xT
1 ]w1 − 2b1q E{y1q wT

1 x1}+ b2
1q E{y2

1q}, (5.84)

where y1q = y1(k − q) = wT
1 x(k − q). This cost function achieves a minimum when its

gradient reaches zero with respect to w1 and b1q. Thus, taking into account that y1 = wT
1 x1,

we find

∂J (w1, b1q)
∂w1

= 2E{x1xT
1 }w1 − 2b1q E{y1qx1}+ 2b2

1q E{x1(k − q)xT
1 (k − q)}w1 = 0,

(5.85)
∂J (w1, b1q)

∂b1q
= −2E{y1qy1}+ 2b1q E{y2

1q} = 0. (5.86)

Solving the above system of equations, we obtain

w1 = [E{x1(k)xT
1 (k)}+ b2

1qE{x1(k − q)xT
1 (k − q)}]−1E{y1(k − q)x1(k)}b1q, (5.87)

with b1q = E{y1(k − q)y1(k)}/E{y2
1(k − q)}.

This equation yields the following updating rule,

w+
1 = E{x1xT

1 }−1E{y1(k − q)x1(k)} b1q

1 + b2
1q

. (5.88)

In order to avoid the trivial solution w1 = 0, we normalize the vector to unit length at each
iteration step as w1 = w+

1 /||w+
1 ||. With this, the term b1q/(1 + b2

1q) can be disregarded.
Moreover, without losing generality, we can assume that the sensor data are prewhitened,
thus E[x1xT

1 ] = I. With this, (5.88) leads to a very simple learning rule,

w+
1 (l + 1) = 〈x1(k)y1(k − q)〉 =

1
N

N∑

k=1

x1(k)y1(k − q), (5.89)

w1(l + 1) =
w+

1 (l + 1)
||w+

1 (l + 1)|| , (5.90)

where y1(k) = wT
1 (l)x1(k), x1(k) = Qx(k) and y1q = y1(k − q) = wT

1 (l)x1(k − q). The
above algorithm can be formulated in the following simplified form (as shown by Barros
and Cichocki in [68]):

w1(l + 1) =
〈x1(k) y1(k − q)〉

〈y2
1(k)〉 . (5.91)
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Fig. 5.8 The conceptual model of single processing unit for extraction of sources using adaptive
bandpass filter.

Remark 5.6 It is interesting to note that minimization of the cost function

J (w) =
1
2
E{ε2} =

1
2
E{(y(k)− bq y(k − q))2} (5.92)

is equivalent to maximization of

wT Rx1(q)w (5.93)

subject to the constraint ||w|| = 1, where Rx1(q) = E{x1(k)xT
1 (k − q)}.

In fact, the algorithm (5.90)-(5.91) is the well known power method for finding the eigenvec-
tor corresponding to the maximal eigenvalue of the covariance matrix Rx1(q). This means
that the problem is equivalent to PCA or the eigenvalue problem of finding an eigenvector w
corresponding to the largest eigenvalue of the covariance matrix Rx1(q), thus any efficient
algorithm for estimation extremum eigenvalue and associated eigenvector can be employed.
The problem has a solution if this largest eigenvalue is distinct from the other eigenvalues.
If the largest eigenvalue is multiple, we must choose another time delay or employ the linear
predictor with many delays.
It can easily be shown that if all the eigenvalues or covariance matrix Rx1(q) are distinct
then for the prewhitened data x1 by applying eigenvalue decomposition as

Rx1(q) = E{x1(k)xT
1 (k − q)} = A Rs(q) AT = V Λ VT , (5.94)

we can estimate the global orthogonal mixing matrix Â = QĤ = V or equivalently the
separating matrix as W = VT (see Chapters 3 and 4 for more details).

5.4.2 Blind Extraction of Sources Using Bank of Adaptive Bandpass Filters

For noisy data instead of linear predictor, we can use a bandpass filter (or in a parallel way
several processing units with a bank of bandpass filters) with fixed or adjustable center fre-
quency and a bandpass bandwidth. The approach is illustrated in Fig. 5.8. By minimizing



BATCH ALGORITHMS FOR BLIND EXTRACTION OF TEMPORALLY CORRELATED SOURCES 203

the cost function

J (wj) = E{ε2
j} (5.95)

subject to constraint ‖wj‖2 = 1, we obtain the on-line learning rule (see Section 5.3.1 for
more details)

∆wj(k) = −η1(k) [〈εj(k)x̃1(k)〉 − γj(k)w1(k)] (5.96)

where γj(k) = −βj [1− σ̂2
yj

(k)] is a forgetting factor, x̃1(k) = x1(k)−Bj(z)x1(k) and Bj(z)
means transfer function of the bandpass filters.

Analogously to the procedure presented in previous section, for prewhitened sensor sig-
nals, we can derive simple batch algorithm as

wj(l + 1) =
〈x1(k)ỹj(k)〉〈

y2
j (k)

〉 (5.97)

or alternatively

w+
j (l + 1) = 〈x1(k)ỹj(k)〉 =

1
N

N∑

k=1

x1(k)ỹj(k), (5.98)

wj(l + 1) =
w+

j (l + 1)

||w+
j (l + 1)|| , (5.99)

where yj(k) = wT
j (l)x1(k), ỹj(k) = Bj(z)yj(k) = x̃T

1 (k)wj(l). The above algorithms
extract successfully sources if the covariance matrix Rx1x̃1 = E{x1x̃1} has unique maximum
eigenvalue.
The proposed algorithm (5.98)-(5.99) is insensitive to white noise and any noise which is out
off the bandwidth of the bandpass filter. Moreover, the processing unit is able to extract
the filtered from noise version of a source signal if it is narrow band signal.

As one of the simplest bandpass filters we can use the second order IIR filter with transfer
function (4.107) discussed in Chapter 4. Alternative realization of bandpass filter with easy
adjustable central frequency and bandwidth is the 4-th order Butterworth filter with the
transfer function:

B(z) =
b0 + b2z

−2 + b4z
−4

1 + a1ωcz−1(a2ω2
c + a′2)z−2 + a3ωcz−3 + a4z−4

(5.100)

where

b0 = b4 = 1/(d2 + 20.5d + 1), b2 = −2b0,

b1 = b3 = −4b0, a1 = −2d(2d + 20.5)b0,

a2 = 4d2b0, a′2 = 2(d2 − 1)b0,

a3 = 2d(−2d + 20.5)b0, a4 = (d2 − 20.5d + 1)b0, d = cotan(πBw),
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Fig. 5.9 Frequency characteristics of 4-th order Butterworth bandpass filter with adjustable center
frequency and fixed bandwidth.

and

ωc =
cos(πf1 + f2)

cos(πBw)
< 1, (5.101)

where f1 and f2 are normalized lower and higher cutoff frequencies and Bw is normalized
bandwidth. It should be noted that for fixed (constant) bandwidth Bw, ωc is an only
center frequency fc dependent parameter. It is worthwhile mentioning that the stability
constraints on B(z) are provided if

|ωc| < 1 and d > 0. (5.102)

It should be noted that the second order bandpass filter (4.107) provides unity gain only
at center frequency fc alone and makes rather large distortions for source signal which
are usually not pure sinusoids with some frequency variability. Therefore, by choosing a
very narrow bandwidth, this filter can be applied for tracking and enhancement of single
sinusoid in white noise. In contrast the forth-order Butterworth filter has a flat characteristic
around central frequency and enable enhance arbitrary narrow-band source signal with low
distortion (see Fig. 5.9. By changing or adjusting the center frequency and bandwidth of
the band pass filter, we can extract different narrow band sources using the some processing
unit. We can also extract sources simultaneously by employing several processing units with
bandpass filters with different bandwidths and center frequencies.

By maximizing the output power of the band pass filter, we can adjust automatically the
center frequency to extract narrow-band sources located in specific bandwidth. The filter
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output is given by

ỹ(k) = b0s(k) + b2s(k − 2) + b4s(k − 4)− a1ωc(k)ỹ(k − 1)
− (a2ω

2
c (k) + a′2)ỹ(k − 2)a3ωc(k)ỹ(k − 3)− a4ỹ(k − 4). (5.103)

In order to find optimal value of parameter ωc(k) for specific bandwidth, we can maximize
cost function E{ỹ2(k)} using gradient ascent procedure obtaining simple learning rule for
estimating automatically the optimal center frequency for specific bandwidth

ωc(k + 1) = ωc(k) + η(k)ỹ(k)α(k), (5.104)

where η(k) = η/r(k), r(k) = (1− η0) r(k − 1) + η0 α2(k) and

α(k) =
∂ỹ(k)
∂ωc(k)

= −a1ỹ(k − 1)− 2a2ωc(k)ỹ(k − 2)− a3ỹ(k − 3)− a1ωc(k)α(k − 1)

− (a′2 + a2ωc(k)2)α(k − 2)− a3ωc(k)α(k − 3)− a4α(k − 4). (5.105)

Summarizing, the method presented in this section has several essential advantages:

• The method does not need to apply deflation procedure. One processing unit can
extract all desired narrow-band sources sequentially one-by-one by adjusting the cen-
ter frequency and bandwidth of the bandpass filter. Parallel extraction of arbitrary
group of sources is also possible by employing several bandpass filters with different
characteristics.

• The algorithms are computationally very simple and efficient.

• The proposed algorithms are robust to additive noise, both white and narrow band
colored noise. In contrast to other methods the covariance matrix of the noise does
not need to be estimated or modelled.

5.4.3 Blind Extraction of Desired Sources Correlated with Reference Signals

In many applications it is desired to extract independent components or separate sources
with specific stochastic properties or features, but ignore other “uninteresting” sources and
noises. Such extraction is possible if some a priori information about original sources is
available.

For example, if a bandwidth of a desired narrow-band source signal is known, then we
can apply a bandpass filter with the same specific bandwidth (passband) to extract desired
source (see Section 5.4.2 and learning rules (5.96)-(5.99)).

If a source signal is periodic or quasi periodic and its frequency fq is known or can be
estimated, then we can apply the learning rules (5.89) - (5.91) with time delay q = 1/fq.

In many applications, like biomedical applications (e.g., fMRI) some reference signal is
explicitly available which corresponds to stimulus. In such cases, it is usually desired to
extract an independent source which is correlated as high as possible with the reference
signal r(k − ∆), where ∆ is suitable chosen time delay. For this purpose, we can add to
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cost functions discussed above auxiliary penalty term E{r2(k−∆)y2(k)}. For example, we
can use the following cost function (see Section 5.3 and 5.4)

J(w) =
1
2

E{ε2}+
β

4
(c− E{y2(k)r2(k −∆)})2, (5.106)

where ε(k) = y(k) −∑L
p=1 bpy(k − p), y(k) = wT x1(k), β ≥ 1 is a penalty factor and c is

suitably chosen positive constant (typically c = 1).

The minimization the cost function according to the standard gradient descent method
leads to learning rule for vector w as

∆w(l) = w(l + 1)−w(l) = −η
∂J(w)

∂w
= −η(l)

[〈ε(k)x̃1(k)〉 − γ(l)
〈
y(k) r2(k −∆)x1(k)

〉]
, (5.107)

where
γ(l) = β [c− 〈

y2(k)r2(k −∆)
〉
]

is a forgetting factor and x̃1(k) = x(k)−∑L
p=1 bpx(k − p).

5.5 STATISTICAL APPROACH TO SEQUENTIAL EXTRACTION OF

INDEPENDENT SOURCES

5.5.1 Log Likelihood and Cost Function

Let us consider the problem of extracting one source from the statistical point of view. Let
x = x1 = Qx be vector of prewhitened sensor signals x = Hs , i.e,,

x1 = As =
n∑

j=1

sj aj , (5.108)

where A = QH and a1, a2, . . . ,an are the column vectors of the orthogonal mixing matrix
A. Let the probability density function of s be

q(s) =
n∏

j=1

qj (sj) , (5.109)

where qj (sj) is that of sj .
We assume without loss of generality that source signals are independent and they have

unit variance, i.e., E{s2
j} = 1. Then, A is an n×n orthogonal matrix, satisfying aT

i aj = δij .
We extract only one source signal by

y1 = wT x1. (5.110)
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To this end, we formulate the problem in such a way that all the source signals are extracted
by w1,w2, . . . ,wn, although we have interest only in a single source,

yj = wT
j x1, (j = 1, 2, . . . , n). (5.111)

or
y = Wx1, (5.112)

where the true sources are extracted when

W = AT (5.113)

or wj = aj (neglecting irrelevant scaling and permutation of columns of matrix).
Because of s = Wx1 and det |W| = 1, the probability density function of x1 is given by

p (x1;W) = det |W|q (Wx1) = q (Wx1)

=
m∏

j=1

qj

(
wT

j x1

)
. (5.114)

Hence, the log likelihood
ρ (x1;W) = log p (x1;W) (5.115)

is decomposed as

ρ (x1;W) =
n∑

j=1

log qj

(
wT

j x1

)
=

m∑

j=1

ρj (x1;wj) , (5.116)

where each term depends only on one wj . In order to extract one independent source signal,
say y1 = wT

1 x1, the maximum likelihood method searches for w1 that maximizes the log
likelihood.

The problem is hence formulated as follows1:

minimize J (w) = −E{log(q1(y)} (5.117)
subject to ||w||2 = 1. (5.118)

This is similar formulation to the extended fixed point algorithm [595].
The Lagrange function can be formulated as

L(w, λ) = −E{log(q1(y)}+ λ(‖w‖2 − 1). (5.119)

Using the Lagrange’s Theorem, we obtain the condition at the equilibrium point w = w∗

∇wL(w, λ) = −∂E{log(q1(y)}
∂w

+ 2λw = 0 (5.120)

1For simplicity, in further considerations in this section, we omit indexes, i.e, y1 = y, x1 = x and w1 = w.
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or

E{ϕ(y)x}+ 2λw = 0, (5.121)

where

ϕ(y) = −dρ1 (x1,w)
dy

= −d log q1(y)
dy

. (5.122)

By multiplying Eq. (5.121) by wT and taking into account that ‖w‖2 = 1, we obtain

λ = −1
2

E{ϕ(y)y} (5.123)

and

E{ϕ(y)x} = E{ϕ(y)y}w. (5.124)

Hence, we can obtain a new simple batch fixed point algorithm

w(l + 1) =
E{ϕ(wT (l)x) x}
E{ϕ(wT (l)x) y} . (5.125)

5.5.2 Learning Dynamics

Furthermore, the similar analysis is applicable to all the gradient methods where various
cost functions J (w) are introduced from different considerations (see Table 5.1).

Applying the standard gradient descent method to the Lagrange function (5.119), we
obtain the batch learning rule:

∆w(l) = w(l + 1)−w(l) = −η
∂L(w, λ)

∂w
= −η [E{ϕ(y)x} − E{ϕ(y) y}w(l)] , (5.126)

where expectation terms can be estimated as follows:

E{ϕ(y)x} ≈ (1/N)
N∑

k=1

ϕ[wT (l)x(k)]x(k)

and

E{ϕ(y)y} ≈ (1/N)
N∑

k=1

ϕ[wT (l)x(k)][wT (l)x(k)]

and learning rate is bounded [328]

0 < η <
2

E{ϕ′(y)− yϕ(y)} . (5.127)
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Hence applying the stochastic approximation, we obtain a simple on-line learning rule:

∆w(k) = −η(k) [ϕ(y(k))x(k)− y(k)ϕ(y(k))w(k)] . (5.128)

However, when the step-size η is not so small, we need to normalize w+∆w at each iteration
step.

The present method is designed to extract the source signal whose probability distribution
is q1 (s1). A problem is that we do not know the exact source distribution q1 (s1). However,
even when we misfit q1 (s1), or even when we use an arbitrary function ϕ(y), the true w is
an equilibrium of the dynamics (5.128). This is because the right-hand side of (5.128) gives
an estimating function of w, which will be explained in Chapter 10.

5.5.3 Equilibrium of Dynamics

We show here directly that w1 = w, or more generally any wi = ai, is an equilibrium of
the dynamics, whatever ϕ is. Then, the equilibrium of (5.128) satisfies

E{ϕ(y)x− yϕ(y)w} = 0. (5.129)

Because of x =
∑

sjwj and

y = wT x = wT
(∑

sjwj

)

=
∑

gjsj = gT s, (5.130)

by putting
βj(g) = E{sjϕ

(∑
gisi

)
}, (5.131)

we have

E{ϕ(y)x} =
∑

βjwj , (5.132)

E{yϕ(y)w} =
(∑

gjβj

)(∑
giwi

)
. (5.133)

Hence, any equilibrium w should satisfy

β(g) =
(∑

gjβj

)
g, (5.134)

which implies
β = cg (5.135)

for some constant c. It is straightforward to see that g = ej = [0, . . . , 0, 1, 0, . . . , 0]T satisfies
this condition. That is, g = (wT A)T = ej is an equilibrium.

Alternatively, we can show this feature by reformulating the optimization problem (5.117)
as

minimize J (g) = −E{log(q1(y)} (5.136)
subject to ||g||2 = 1, (5.137)
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in terms of the global vector defined as g = AT w and taking into account that y = wT x =
wT As = gT s. The Lagrange function can be formulated as

L(g, λ) = −E{log(q1(gT s)}+ λ(‖g‖2 − 1), (5.138)

with λ = (1/2)E{ϕ(y)y}. Using the Lagrange’s Theorem, we obtain

E{ϕ(gT s) s} = E{ϕ(y) y}g. (5.139)

It is straightforward to see that the above equation is satisfied for g = ej = [0, . . . , 0, 1, 0, . . . , 0]
if y = sj .

By choosing the nonlinear activation functions ϕ(y) adequately, the algorithm can extract
the source whose probability distribution is close to the one that gives ϕ(y). However,
there may exist local minima. There are two special functions ϕ which guarantee the global
convergence. One is derived from the 4th order cumulant (kurtosis) [348, 349]. The tensorial
property of cumulants guarantees this, as we have proved in Appendix A. The other is the
one derived from the minimization of entropy or the negative log likelihood.

J(w) = −E{log qi

(
wT x

)}. (5.140)

This was proved by Cruces et al. by using the entropy inequality [329]. They further gave
another interpretation of the log likelihood [328, 329]. Let q(y) = q1

(
wT

1 x1

)
and qG(y) be

the standard Gaussian distribution. Then,

K [q(y) || qG(y)] = Eq(y)

{
log

q(y)
qG(y)

}

= E{log q(y)}+
1
2

log(2πe) (5.141)

is the Kullback-Leibler divergence from q(y) to the Gaussian qG(y). Hence, this is a mea-
sure of the non-Gaussianity of q(y). The minimization of the negative log likelihood is
exactly the same as maximization of non-Gaussianity. Gaussianity is increased by mixing
signals because of the central limit theorem. Hence, the entropy increases and higher-order
cumulants decrease at the same time.

Remark 5.7 When we do not know approximately the pdf of the estimated sources signal
q(y), we can use an adaptive method of estimating q(y). We can use a parametric form
q(y;Θ) of the density function, and modify set of parameters Θ at each step by (see Chapter
6 for more detail)

∆Θ = ηΘ
∂ log q (y;Θ)

∂Θ
. (5.142)

5.5.4 Stability of Learning Dynamics and Newton’s Method

Now we give the stability analysis when the activation function ϕ(y) is adequately chosen.
This leads to Newton’s method automatically. The continuous-time averaged version of
learning dynamics is much easier to analyze, so that we use the continuous-time version of
(5.128) given by

dw
dt

= −µ f(x,w), (5.143)



STATISTICAL APPROACH TO SEQUENTIAL EXTRACTION OF INDEPENDENT SOURCES 211

where

f(x,w) = E{ϕ(y)x− yϕ(y)w}, (5.144)
y = wT x. (5.145)

The variational equation, which shows how a small deviation δw develops in the time course
of the dynamics, is

d

dt
δw(t) = −µ

∂f(x,w)T

∂w
δw. (5.146)

The stability of the algorithm is determined by the eigenvalues of the Hessian matrix

K(w) =
∂f(x,w)

∂w
(5.147)

at the equilibrium w = a1.
For λ = E{yϕ(y)}, we have

K(w) = E{w
(

∂λ

∂w

)T

+
(
λI− ϕ′(y)xxT

)}. (5.148)

At the equilibrium w = a1, we have

E{ϕ′(y)xxT } = E{ϕ′ (s1)
n∑

j=1

s2
j aj aT

j }

= E{ϕ′ (s1) s2
1}a1 aT

1 + E{ϕ′ (s1)}
(
I− a1aT

1

)
, (5.149)

because of E{s2
j},

∑m
j=2 aj aT

j = I− a1 aT
1 . Hence, the variational equation at w = a1,

d

dt
δw = µK (a1) δw, (5.150)

can be written as
d

dt
δw = δc1a1 + c2δw. (5.151)

The first term of the right-hand side is in the direction of the solution w = a1, so that
it enlarges or shrinks the magnitude of w, but it is ineffective because of ||w||2 = 1. The
change in the direction orthogonal to a1 is given by the second term

d

dt
δw = −χ δ w, (5.152)

where
χ = E{ϕ′ (s1)} − E{s1ϕ (s1)}. (5.153)

When ϕ is given by (5.122),

E{s1ϕ (s1)} =
∫
−s

d

ds
q1(s)ds =

∫
q1(s)ds = 1. (5.154)
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On the other hand,

E{ϕ′(s1)} = E{− d2

ds2
log q1(s)} = G (5.155)

is the Fisher information of the distribution of the source signal s1. Since s1 is normalized,
we easily have

G ≥ ∞, (5.156)

where the equality holds when q1(s) is Gaussian. Hence, the stability of the dynamics is
proved when ϕ is derived from q1(s).

For an arbitrary chosen ϕ, the stability condition is given by

E{s1ϕ (s1)} < E{ϕ′ (s1)}. (5.157)

The above analysis shows that

K (a1) = cI + c1a1aT
1 . (5.158)

Hence, its inverse has a similar form

K−1 (a1) = c̃I + c̃1a1aT
1 . (5.159)

Newton’s algorithm corresponding to (5.128) is given by

∆w = −η K−1(w)
∂f(w)

∂w
. (5.160)

However, by multiplying K−1(w) to (5.128), we have exactly the same form of the up-dating
equation. Hence, the dynamics of a single source extraction (5.128) is by itself equivalent
to Newton’s method 2, proving its efficiency.

5.6 STATISTICAL APPROACH TO TEMPORALLY CORRELATED SOURCES

The temporally correlated but spatially independent source signals s(1), s(2), . . . , s(N) are
statistically modelled as follows. For an estimated source signal, say y1(k) = ŝ1(k) = ŝ(k)
that is the first component of ŝ(k), we assume an AR model

ŝ(k) = ε(k) +
L∑

p=1

bpŝ(k − p). (5.161)

or
[1−B(z)] ŝ(k) = ε(k). (5.162)

Here, B(z) =
∑L

p=1 bpz
−p, ε(k), k = 1, 2, . . ., are a sequence of independent signals called

innovation, and let q(ε) be its probability density function. Then, for a large number of

2Assuming, that we are sufficiently close to the equilibrium w = h1.
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samples N , the joint probability density of s(1), s(2), . . . , s(N) is the same as the probability
density of the corresponding ε(1), ε(2), . . . , ε(N). Hence, it is written as

p {s(1), s(2), . . . , s(N);b} =
N∏

k=1

q (ε(k))

=
N∏

k=1

q ([1−B(z)] ŝ(k)) , (5.163)

where b = [b1, b2, . . . bL]T . The observed signals, when they are prewhitened are given by

x1(k) = As(k) = QHs(k) =
n∑

j=1

sj(k)aj . (5.164)

We recover the source signal by

y(k) = ŝ(k) = Wx1(k), (5.165)

where W = AT is the true solution. We use the sequential method of extracting one by
one as

y1(k) = wT
1 x1(k). (5.166)

The total log likelihood of the observed signal sequence x1(1), . . . ,x1(N) is decomposed as

log p {x1(1),x1(2), . . . ,x1(N);W, B1, . . . , Bn}
=

∑

j,k

log qj

{
wT

j (1−Bj)x1(k)
}

(5.167)

as before. Hence, for the maximum likelihood method, the cost function is

J (w,b) = − log q
{
wT x̃(k)

}
(5.168)

under the constraint ||w||2 = 1, where

x̃(k) = [1−B(z)]x1(k) = 1−
L∑

p=1

bp x1(k − p). (5.169)

The on-line gradient learning algorithm is derived by

∆w(k) = −η
∂J (w,b)

∂w
= −η [ϕ[ε(k)]x̃(k)− γw(k)] , (5.170)

where

γ = β(
〈
y2

〉− 1) (5.171)
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is the forgetting factor (see Section 5.3.1),

ϕ(ε) = − d

dε
log q(ε), (5.172)

is nonlinear activation function, and

ε(k) = [1−B(z)]wT x1(k) = [1−B(z)] y(k),

is the innovation signal. When the innovation ε is Gaussian, we have a linear activation
function,

ϕ(ε) = ε. (5.173)

The linear ϕ works well in the case of temporally correlated sources, but a nonlinear ϕ may
be more robust.

Since the temporal structure of the source signals are not exactly known, we use an
adaptive method to decide B(z). The update rule of the filter is derived from the likelihood
as

∆bp = −η̃
∂J (w,b)

∂bp
(5.174)

= η̃ ϕ [ε(k)] y(k − p). (5.175)

The true solution w = a1 and B(z) = B1(z) is an equilibrium of dynamics (5.170)
and (5.175) whatever ϕ is chosen. We can prove this in the same way as we did in the
previous section. The stability analysis can also be done similarly, giving the same stability
condition where y is replaced by ỹ. The sequential update rule (5.170) is automatically
Newton’s method (assuming that we are sufficiently close to equilibrium w = a1).

5.7 ON-LINE SEQUENTIAL EXTRACTION OF CONVOLVED AND MIXED

SOURCES

The criteria and algorithms discussed in the previous sections for blind signal extraction
from instantaneous mixture can be relatively easily extended or generalized to the problem
of extraction of convolved and mixed independent sources. In this section, we illustrate this
by a simple extension of the standard Godard-type blind equalization algorithm that is able
to extract multiple source signals from their unknown convolutive mixtures [219, 220, 221].

5.7.1 Formulation of the Problem

In multichannel blind deconvolution, an m dimensional vector of received signals x(k) =
[x1(k), x2(k), . . . , xm(k)]T is assumed to be generated from an n dimensional vector of spa-
tially independent, temporally i.i.d. unknown source signals s(k) = [s1(k), s2(k), . . . , sn(k)]T

using the multi-variate linear time invariant filters, i.e.,

x(k) =
∞∑

p=−∞
Hp s(k − p) = [H(z)] s(k) (5.176)
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or equivalently in scalar form

xi(k) =
∞∑

p=−∞

n∑

j=1

hijp sj(k − p), (i = 1, 2, . . . , m) (5.177)

where H(z) =
∑∞

p=−∞Hpz
−p is an unknown (m × n) polynomial matrix with m ≥ n,

and z−p is the delay operator such that z−ps(k) = s(k − p). A task of multichannel
deconvolution is to recover the source signals s(k) from the received signals x(k), up to a
scaled, permuted, and delayed version of the source signals, i.e., the estimates of sources,
y(k) = ŝ(k) = PΛD(z) s(k), where P ∈ IRn×n is a permutation matrix, Λ ∈ IRn×n is
a nonsingular scaling diagonal matrix, and D(z) is a diagonal matrix whose ith diagonal
element is given by z−di .

5.7.2 Extraction of Single i.i.d. Source Signal

Let us consider an FIR equalizer whose first processing unit with output y1(k) is described
by

y1(k) =
m∑

i=1

∑
p

w1i p xi(k − p), (5.178)

where {w1i p} are the FIR equalizer coefficients and {xi(k)} is the ith sensor output.
A single source can be extracted by the minimization of the Godard criterion which is

described by [219, 379]

J1 =
1
4
E{[|y1(k)|2 − γ2]2}, (5.179)

where γ is some positive constant, typically γ = 1. For the constant modulus (CM) signals
γ can be chosen as γ2 = E{|ŷ1|4}/E{|ŷ1|2}. Using the stochastic gradient descent method,
one can derive the updating rule for the FIR equalizer coefficients w1i p in the form of

w1i p(k + 1) = w1i p(k)− η1(k)
∂J1

∂w1i p

≈ w1i p(k) + η1(k)ϕ1(y1(k)) x∗i (k − p), (5.180)

where the complex conjugate variables are denoted by superscript ∗, η1(k) > 0 is the
learning rate, and the nonlinear activation function ϕ1(y1(k)) is given by

ϕ1(y1) = γ2 y1 − y1|y1|2. (5.181)

A similar activation function can be obtained by using the normalized kurtosis or the
generalized normalized kurtosis as optimization criteria. Table 5.1 shows typical criteria for
blind source extraction and blind equalization.

For a doubly-infinite FIR channel, the only existing minima of (5.179) correspond to the
points where a single source is extracted, provided that the source signal is sub-Gaussian
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Table 5.1 Cost functions for sequential blind source extraction one by one, y = wT x. (Some criteria
require prewhitening of sensor data, i.e., Rxx = I or AAT = I).

No. Cost function J(y,w) Remarks

1. −E{log p(y)} Entropy
s.t. ||w|| = 1

2. − 1
4
|E{|y|4} − 3E2{|y2|}| Kurtosis

s.t. ||w|| = 1

3. −Pβ αβ |C1+β(y)| Sum of cumulants

s.t. ‖w‖ = 1, αβ ≥ 0

4. −|(E{|y|p}/Ep/q{|y|q})− cpq| Generalized normalized kurtosis

5. −Cum{y(k), y(k), y(k − p), y(k − p)} = Self cumulant with time delay
= −(E{y2(k)y2(k − p)} − E{y2(k)}E{y2(k − p)}
−2E2{y(k)y(k − p)})
s.t. ||w|| = 1

6. E{ε2} Linear predictor
s.t. ||w|| = 1,

where ε(k) = y(k)−PL
p=1 bpy(k − p),

particularly b1 = 1 and bp = 0 for p 6= 1

7. E{Ψ(y(k))}, Constant modulus criteria

e.g., Ψ[y(k)] = 1
2β

(|y|β − γβ)2

γβ = E{|ŷ|2β}/E{|ŷ|β}

(negative kurtosis)3 [1200, 1201] whenever the equalizer is doubly-infinite. For a finite order
FIR channel, there also exists a finite order FIR equalizer under some mild conditions on
the FIR channel [226, 231, 1200, 1201] (in this case, the number of sensors should be greater
than the number of sources) and using (5.179) one can extract a single source successfully.

3 For super-Gaussian signals (positive kurtosis), the updating rule is derived from the maximization of
(5.179) instead of minimization.
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The algorithm in this case can written in the vector form as

w1i(k + 1) = w1i(k)± η1(k)ϕ(y1(k)) x̄∗i (k), (5.182)

where w1i = [w1i0, w1i1, . . . , w1iM ]T , x̄∗i (k) = [x∗i (k), x∗i (k − 1), . . . , x∗i (k −M)]T and the ±
sign is chosen opposite to the sign of the source kurtosis.

It should be noted that applying the extended Godard criterion (5.179) several times,
the same sources might be extracted at different outputs even if start for different initial
conditions. To avoid this problem, Inouye [612], Papadias and Paulraj [944, 945] introduced
auxiliary constraints and extra processing which spatio-temporally decorrelate the extracted
signals. This leads to a relatively complicated iterative algorithm and it requires to know
in advance the number of source signals.

5.7.3 Extraction of Multiple i.i.d. Sources

We discuss now an on-line approach to extract multiple source signals one by one using
the cascaded connections of modules which consist of equalization units (a processing unit
extracting a single source) and deflation units (a processing unit eliminating the contribution
of the already extracted signal from mixtures) [219].

Without loss of generality, we can assume that the first extracted signal y1(k) corresponds
to the 1st source signal s1(k), i.e., y1(k) = c1s1(k−d1). The deflation unit coefficients {w̃1i p}
are updated to minimize the energy (cost) function given by

ρ =
1
2
E{

m∑

i=1

|x2i(k)|2}, (5.183)

where

x2i(k) = xi(k)−
∑

p

w̃1i p(k)y1(k − p). (5.184)

Applying the stochastic gradient descent method, the updating rule for {w̃1i p} is given by

w̃1i p(k + 1) = w̃1i p(k)− η1 x2i(k) y∗1(k − p). (5.185)

In order to show that the learning algorithm (5.185) is able to eliminate the contribution
of the first extracted signal y1(k) which is given by

y1(k) = c1s1(k − d1), (5.186)

from the observation x(k), we investigate the stationary points of the averaged version of
(5.185). If the learning algorithm (5.185) approaches steady state, we have

E{x2i(k)y∗1(k − p)} = E{xi(k)y∗1(k − p)} − w̃1i p(k)E{|y1(k − p)|2} = 0. (5.187)

Then, w̃1i p(k) is given by

w̃1i p(k) =
E{xi(k)y∗1(k − p)}
E{|y1(k − p)|2} , (i = 1, 2, . . . , m). (5.188)
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Using the fact that y1(k) is the first extracted source signal and assuming that the all source
signals are i.i.d., we have [219]

E{xi(k)y∗1(k − p)} = E{
∑

q

m∑

j=1

hijqsj(k − q)c1s
∗
1(k − p− d1)} = c1hi1,p+d1σ

2
s1

, (5.189)

where σ2
s1

= E{|s1(k)|2}. Using the result (5.189), the w̃1i p(k) defined in (5.188) becomes

w̃1i p(k) =
hi1,p+d1

c1
, (i = 1, 2, . . . ,m). (5.190)

Thus, after deflation processing is done, the input to the equalization unit in the next
module {x1i(k)} is

x2i(k) = xi(k)−
∑

p

hi1,p+d1

c1
c1s1(k − p− d1)

= xi(k)−
∑

q

hi1,qs1(k − q). (5.191)

Therefore, we can see that the deflation algorithm given in (5.185) can eliminate the contri-
bution due to the first source signal s1(k) from the received signals {xi(k)}. The deflated
mixture x1i(k) is fed into the next module in order to extract the 2nd source signal, and
generates the mixture by eliminating the contribution of the 2nd extracted signal. By con-
tinuing this procedure until the output of the module converges to a small value pre-specified
(which means all source signals are extracted), we can successfully extract all source signals
[219, 220]. We should emphasize that any other blind equalization algorithm instead of
Godard algorithm, can be applied to the presented here approach. Note that a similar de-
flation approach to multichannel blind deconvolution has been introduced by Inouye [612]
and Tugnait [1200, 1201]. In [1201], batch-type deflation processing using the equation
(5.188) was applied to cancel the contribution due to the already extracted signals.

5.7.4 Extraction of Colored Sources from Convolutive Mixture

The procedure described in the previous section allows us to extract i.i.d. sources. Moreover,
to extract several unknown sources, we need to apply rather computationally involved
deflation procedure.

Using the concepts presented in section 5.4, we easily extend derived algorithms for
extraction of multiple colored sources form their multichannel convolutive mixture by em-
ploying suitable designed linear predictors (LP’s) or bank of bandpass filters (BPF’s).

For example, using the concept of bank of bandpass filters (cf. Eqs. (5.79)-(5.83) and
(5.97)- (5.99)) we can use the following novel iterative algorithm:

wji(l + 1) = R̂−1
xixi

〈ỹj(k)x̄∗i (k)〉〈
yj(k)y∗j (k)

〉 , (5.192)
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where

yj(k) =
m∑

i=1

M∑
p=1

wji p xi(k − p), (5.193)

ỹj(k) = [Bj(z)] yj(k), (5.194)

wji = [wji0, wji1, . . . , wjiM ]T and x̄∗i (k) = [x∗i (k), x∗i (k − 1), . . . , x∗i (k −M)]T .
The advantage of the proposed approach is that, we can avoid the deflation procedure

by using the bandpass filters with different frequency characteristics. Furthermore, the
algorithm allows us to extract colored sources with different shape spectra.

5.8 COMPUTER SIMULATIONS: ILLUSTRATIVE EXAMPLES

We now illustrate the performance of selected algorithms presented in this chapter. In each
example presented in this section, source signals are mixed with a mixing matrix H whose
elements are randomly selected in the range [-1, 1]. All weights are initialized with random
values in the range [-0.1, 0.1].

To show qualitatively the performance of the presented algorithms, we use a performance
index which is defined at the ith extraction processing unit by

PIi =
1
m

( m∑

j=1

ĝ2
ij

ĝ2
ij∗

− 1
)
,

where
ĝi = wT

i H̄i = [ĝi1, ĝi2, . . . , ĝim],

ĝij∗ = max{ĝij} for j = 1, 2, . . . , m,

H̄i = (I− ŵi−1wT
i−1)H̄i−1,

and

H̄1 =
{

QH, when mixed signals are whitened
H, are not whiten.

The smaller the value of PIi, the better the quality of the extracted source signal at the
ith extraction processing unit, as compared to the original source signal.

5.8.1 Extraction of Colored Gaussian Signals

Example 5.1 Three colored Gaussian signals are used here. Each colored Gaussian signal
is generated by passing Gaussian sequences with variance 1 through an FIR filter of length
20 whose elements were randomly chosen between -1 and 14. The normalized kurtosis of

4Colored Gaussian signals used in subsequent examples are also generated in the same fashion.
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Fig. 5.10 Exemplary computer simulation results for mixture of three colored Gaussian signals,
where sj , x1j , and yj stand for the j-th source signals, whiten mixed signals, and extracted signals,
respectively. The sources signals were extracted by employing the learning algorithm (5.73)-(5.74)
with L = 5 [1142].

the resulting signals s1, s2, and s3 are close to zero, i.e., 0.02, -0.02, and -0.06, respectively.
These signals are mixed with the randomly chosen mixing matrix

H =




0.82 −0.90 −0.62
−0.54 −0.84 0.69
−0.52 0.28 −0.65


 .

In order to extract the source signals, we applied the algorithm (5.73) - (5.74) with L = 5
and the learning rates η = 0.005. Fig. 5.10 shows, from top to bottom, the original source
signals s = [s1, s2, s3]T , the whitened mixed signals x1 = [x11, x12, x13]T , and the extracted
signals y = [y1, y2, y3]T . The performance indexes are PI1 = 0.00002, PI2 = 0.00006, and
PI3 = 0.00011. Visual comparison of the original source signals and the extracted signals
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Fig. 5.11 Exemplary computer simulation results for mixture of natural speech signals and a colored
Gaussian noise, where sj and x1j , stand for the j-th source signal and mixed signal, respectively. The
signals yj was extracted by using the neural network shown in Fig. 5.7 and associated learning
algorithm (5.91) with q = 1, 5, 12.

(with y1 = −s1, y2 = s3, and y3 = −s2), together with the performance indexes, confirms
the validity of the proposed algorithms.

5.8.2 Extraction of Natural Speech Signals from Colored Gaussian Signals

Example 5.2 Two natural speech signals5, i.e., an English word /hello/ (s1 with normal-
ized kurtosis = 3.44) and a Japanese word /moshimoshi/ (s3 with normalized kurtosis =
6.13), and a colored Gaussian signal (s2 with normalized kurtosis = −0.003) are mixed by
the same mixing matrix as that used in the above example. The original source signals and

5It is known that speech signals have temporal structures.
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Fig. 5.12 Exemplary computer simulation results for mixture of three non-i.i.d. signals and two i.i.d.
random sequences, where sj , x1j , and yj stand for the j-th source signals, mixed signals, and extracted
signals, respectively. The learning algorithm (5.81) with L = 10 was employed [1142].

the whitened mixed signals are shown in the top and middle rows of Fig. 5.11, respectively.
In order to extract the source signals, we applied the batch algorithm (5.82) with L = 10.
The extracted signals are shown in the bottom row of Fig. 5.11 which reveals that the
recovered signals (with y1 = s2, y2 = −s3, and y3 = −s1) are very close to the original
sources. The performance indexes are PI1 = 0.0037, PI2 = 0.0045, and PI3 = 0.0042.

5.8.3 Extraction of Colored and White Sources

Example 5.3 For this example, three non-i.i.d. signals, i.e., a sub-Gaussian signal s2,
a colored Gaussian signal s3, and a super-Gaussian signal s4, are mixed with two i.i.d.
sequences, one being a uniform random noise s1, and the other being a Gaussian random
noise s5. The normalized kurtosis of s1, s2, s3, s4, and s5 are −1.22,−2.00,−0.04, 0.41,
and 0.07, respectively. These signals are mixed with the randomly generated mixing matrix
H. Our aim here is to show an interesting property of the algorithm (5.81), which is able
to extract only colored sources. Specifically, from mixtures of non-i.i.d. signals (or signals
with temporal structures) and i.i.d. signals, only non-i.i.d. signals can be extracted from
the mixtures using the second order statistics (SOS) algorithms.
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s1 s2 s3

x11 x12 x13 x14 x15

y1

Fig. 5.13 Exemplary computer simulation results for mixture of three 512 × 512 image signals,
where sj and x1j stand for the j-th original images and mixed images, respectively, and y1 the image
extracted by the extraction processing unit shown in Fig. 5.6. The learning algorithm (5.91) with
q = 1 was employed [68, 1142].

Fig. 5.12 shows, from top to bottom, the original source signals s = [s1, s2, s3, s4, s5]T ,
the whitened mixed signals x1 = [x11, x12, x13, x14, x15]T , and the estimated source signals
from the first three extraction processing units, y = [y1, y2, y3]T . The performance indexes
are PI1 = 0.0030, PI2 = 0.0001, and PI3 = 0.0077. Both the performance indexes as well
as a visual comparison between the original source signals and the extracted signals (with
y1 = −s2, y2 = −s4, and y3 = −s3) confirm the validity of the aforementioned conjecture.

5.8.4 Extraction of Natural Image Signal from Interferences

Example 5.4 In this section, we further test performance of the SOS algorithms using
image signals for a case where the number of sensors is greater than the number of sources.
Three 512×512 images are used, with a natural image used for s2. This image has tem-
poral correlations when scanned in one dimension. The other two images are interferences
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artificially generated from Gaussian i.i.d. noises s1 and binary i.i.d. sequences s3. The
normalized kurtosis of images s1, s2, and s3 are 0.02, 0.31 and -2.00, respectively. These
image signals are mixed with the randomly chosen non-square mixing matrix

H =




−0.97 −0.16 0.68
0.49 0.69 −0.96
−0.11 0.05 0.36
0.87 −0.59 −0.24
−0.07 0.34 0.66




.

Fig. 5.13 shows, from top to bottom, the original images s = [s1, s2, s3]T , the mixed images
x1 = [x11, x12, x13, x14, x15]T , and the extracted signal at the first processing unit y1 using
the learning algorithm (5.91) with q = 1. The performance index at the first processing unit
is 0.00004. As can be seen from Fig. 5.13, this unit has successfully extracted the natural
image.

5.9 CONCLUDING REMARKS

In this chapter we have presented rather a large number of various algorithms for blind
source extraction (BSE). The reader faced with the problem of the BSE or BSS/ICA is
justified in being puzzled as to which algorithm to use. Unfortunately, there is no a general
valid answer. The right choice may very well depend on the nature and statistical prop-
erties of sources and the area of specific applications. If the sources signals are mutually
independent i.i.d. signals the methods based on the HOS, especially, the maximization of
the absolute value of kurtosis may give the best results. However, such approach fails to
extract sources with small value of kurtosis or colored Gaussian signals. For extraction of
colored sources, especially smooth signals with high degree of predictability the best perfor-
mance can be obtained by using the SOS approach, especially based on linear predictor and
eigenvalue decomposition using, for example, power method or any other efficient method
for estimation of eigenvectors. The SOS methods fail to extract white or i.i.d. sources.
Unsymmetrical distributed sources can be extracted by employing skewness instead of kur-
tosis. For extraction of very sparse sources, we should use rather higher order cumulants
or generalized kurtosis with p = 6. Also cumulants criteria are useful for independent sig-
nals corrupted by arbitrary Gaussian noise. For colored sensor signals buried in the white
arbitrary distributed noise the SOS robust algorithm with respect to the noise should be
used. If we have mixture of different kind of sources (i.i.d. and colored) the best results
may be achieved by combination of several algorithms in the sense that in each stage we
use different algorithm depending what kind of source signal is desired to extract.
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Appendix A. Global Convergence of Algorithms for Blind Source Extraction Based on

Kurtosis

Assuming that source signals sj are independent, the following property holds [349]

κ4(y1) = κ4(gT
1 s) =

m∑

j=1

κ4(sj)g4
1j , (A.1)

where g1j is the jth element of the row vector gT
1 = wT

1 A. Next, let us assume throughout
this section without loss of generality that every source signal has unit variance (or unit
second order cumulant), i.e.,

κ2(sj) = σ2(sj) = E{s2
j} = 1, ∀j. (A.2)

This assumption is always feasible because the source signals have zero-mean and differences
in the variance (power) can be absorbed in the mixing matrix A.

Lemma A.1 Consider the optimization problem [461]:

Maximize

J(v) =
n∑

j=1

djv
2
j = vT Dv, ‖v‖ = c > 0 (A.3)

where D is a diagonal matrix: D = diag{d1, ..., dn}. Assume that there exists only one
index j0 such that dj0 = max1≤j≤n dj. Then every local maxima is global and the point
of global maximum is exactly the vector ±cej0 , where ej0 = (0, ...0, 1, 0, ..., 0), (1 is in the
j0−th place).

Proof. Applying the Lagrange multipliers theorem for a point of a local maximum
v∗ = (v1∗, ..., vn∗), we write:

djvj∗ − λvj∗ = 0, (j = 1, 2, . . . , n) (A.4)

where λ is a Lagrange multiplier.
Multiplying (A.4) by vj∗ and summing, we obtain:

Jmax = λc2,

where Jmax means the value of J at the local maximum. Hence

λ =
Jmax

c2
. (A.5)

From (A.4), we obtain

vj∗(dj − Jmax

c2
) = 0,



226 SEQUENTIAL BLIND SIGNAL EXTRACTION

whence either vj∗ = 0, or Jmax = djc
2 for every j = 1, ..., n. Therefore, if v∗ is a global

maximum, then v∗ = ±cej0 .
We shall prove that every local maximum is global.
According to the second order optimality condition, a point v∗ is a local maximum if

cT∇2
vL(v∗)c < 0 ∀c ∈ K(v∗) = {c : cT v∗ = 0}, c 6= 0,

where

L(v) =
n∑

j=1

djv
2
j − λ(‖v‖2 − c2)

is the Lagrange function.
In our case, we obtain

cT∇2
vL(v∗)c =

n∑

j=1

(dj − λ)c2
j ; (A.6)

K(±cej) = {c : cj = 0}.
We conclude that the quadratic form (A.6) is negatively definite at v∗ for c ∈ K(v∗) if and
only if λ = dj0 and v∗ = ±cej0 . ¤

In a similar way, we can prove the following Lemma [461].

Lemma A.2 Consider the optimization problem:

Minimize (maximize)
n∑

j=1

κjv
p
j

subject to ||v|| = c > 0, where p > 2 is even.

Denote I+ = {j ∈ {1, 2, . . . , n} : κj > 0}, I− = {j ∈ {1, 2, . . . , n} : κj < 0} and ej =
(0, ..., 0, 1, 0, ..., 0), (1 is the j−th place). Assume that I+ 6= ∅ and I− 6= ∅.

Then the points of local minimum are exactly the vectors v±j∗ = ±cej , j ∈ I− and the
points of local maximum are exactly the vectors v±j∗ = ±cej , j ∈ I+.

Using the Lemma (A.2), we are able to formulate and prove the following Theorem [461].

Theorem A.1 Let w1 be a local minimum of the cost function given by (5.5). Then the
output signal y1 = wT

1 x recover one of the source signals, y1 converges to one of the desired
solutions, i.e., ±cs1∗ if and only if βκ4(s1∗) > 0, where y1 = wT

1 x1, x1 = As, gT
1 = wT

1 A,
where A is full column rank and s1∗ ∈ {s1, s2, . . . , sm}.

Proof. According to the property in (A.1), the minimization of (5.5) is equivalent to
maximization of

J1(g1) =
β

4

∑n
j=1 κ4(sj)g4

1j

(
∑n

j=1 m2(sj)g2
1j)2

. (A.7)
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Because of the assumption in (A.2), the criterion J̃1(g1) in (A.7) reduces to

J̃1(g1) = β
1
4

∑n
j=1 κ4(sj)g4

1j

‖ g1 ‖4 . (A.8)

Maximization of (A.8) is equivalent to the constraint maximization problem:
Maximize

∑n
j=1 βκ4(sj)g4

1j under constraint ‖g1‖ = 1. Applying the Lemma A.2 we
finish the proof.

¤

Appendix B. Analysis of Extraction and Deflation Procedure

At the jth extraction and deflation processing units, we assume without loss of generality
that elements sj in s are permuted such that the first j − 1 elements are the source signals
that were previously extracted. We further assume that the column vectors hi in the mixing
matrix H are also permuted accordingly.

Theorem B.2 Under notations of section 5.2.5 and assuming E{s2
j} = 1, ∀j, we have

xi(k) =
n∑

r=j+1

hr sr(k), (B.1)

where x0(k) = x(k), i.e., xi = HDi s, where Di = diag{di1, di2, . . . , din}, with dij = 0 for
j ≤ i and dij = 1 for j > i.

Proof. We shall prove the Theorem by induction. For j = 0, the conclusion (B.1) is true.
Assume that (B.1) is true for some j. Using the Theorem A.1, we obtain yj = ±sj+1 and
for j + 1, we obtain:

xj+1(k) = xj(k)− w̃jyj(k) =
n∑

r=j+1

hrsr(k)− E{xjyj}yj(k)

=
n∑

r=j+1

hrsr(k)−E{
n∑

r=j+1

hrsr(k)sj+1(k)}sj+1(k) =
n∑

r=j+2

hrsr(k).(B.2)

¤

Next, we discuss two implementation issues: The first issue is how to choose or estimate
on-line a proper value of β, and the second issue is when to terminate the extraction and
deflation procedures if it is necessary to extract all non-Gaussian signals.

Use of Analytical Results for Implementation
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Implementation Issue 1

One of the main assumptions used both in the Theorem A.1 and the Theorem B.2 is
that at the jth extraction and deflation processing units (j = 1, 2, . . . ), there exists an
index r ≤ j such that βκ4(sr) > 0. Let Sj denote the set of indices of the remaining,
non-extracted source signals at the jth extraction processing unit. At the jth extraction
processing unit, there are two possible cases where this assumption is violated, i.e.,

• Case I: β is set to -1 when κ4(sr) > 0, ∀r ∈ Sj , or

• Case II: β is set to +1 when κ4(sr) < 0, ∀r ∈ Sj .

Let us denote gj = [gj1, gj2, . . . , gjn]T = (wT
j HDj)T . Applying the property (A.1), we

have

κ4(yj) =
n∑

r=j

κ4(sr)g4
jr. (B.3)

Based on this feature, we can prevent the above two cases by fixing β to 1 (or -1). Let
κ̃4

(
yj(k)

)
denote the estimated value of normalized 4th-order cumulant. At the jth ex-

traction processing unit, if the condition β κ̃4

(
yj(k)

)
> 0 holds for k = T̃j , where T̃j is a

specified time period, this means that κ4(sr) > 0 (or < 0), ∀r ∈ Sj . We then stop and
restart the extraction process at the jth extraction processing unit with β being flipped
to -1 (or 1). Alternatively, we can estimate the sign of κ4(yj) on-line during the learning
process, as done in [278, 279, 1143, 1144]. Another approach is to maximize absolute value
of the normalized kurtosis.

Implementation Issue 2

Here we discuss a terminating condition for the extraction and deflation procedures.
We need to consider this issue because, we employ the assumption that the number of
source signals is not known in advance and is less than or equal to the number of sensor
signals, i.e., n ≤ m. According to Theorem B.2, at the (j = n)th deflation processing unit,
xn+1 = HDn s = [0, 0, . . . , 0]T . As a result, in practice, due to error and/or additive noise,
we can terminate the extraction and deflation procedures when the amplitudes of all entries
of the vector xj+1 = xj − w̃jyj are below a small given threshold or all the elements of the
vector xj+1 are Gaussian signals, i.e., they have zero kurtosis.

Appendix C. Conditions for Extraction of Sources Using Linear Predictor Approach

The theoretical results for the learning model used the linear predictor can be summarized
in the form of the following Theorem.

Theorem C.3 Consider the minimization problem:
Minimize

J(w,b) = E{ε2}, (C.1)
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where ε(k) = y(k)−∑L
p=1 bpy(k − p).

Assume that the following conditions are satisfied
1) E{s2

j} = 1 for j = 1, 2, . . . , n.
2) Rs(p, q) = E{s(k−p) s(k−q)T } = E{sp sT

q } are diagonal matrices for p, q = 0, 1, ..., L
such that J attains its global minimum with respect to w and the matrix

Rs(b) = 2
L∑

p=1

bp Rs(p)−
L∑

p,q=1

bp bq Rs(p, q)− In

is diagonal with unique maximal diagonal element for any coefficients bp.
Then g∗ = HT w∗ has the form g∗ = ±c∗ej, where ej = (0, ..., 1, ..., 0), with 1 in the j-th
place, for some index j ∈ {1, ..., n} and some scalar c∗.

The above Theorem says that the cost function in (5.65) has no spurious minima. As a
result, it is guaranteed that a desired solution can always be reached independent of initial
conditions or, in other words, a source signal having unique temporal structures can always
be extracted from the mixtures.

Proof. Let J given by Eq: (C.1) attain its minimum at the point w∗ (such a point
exists, since the cost function is quadratic).

Under the assumptions of the Theorem and taking into account that y = wT x and
x = Hs, we obtain

J(w,b) = E{y2} − 2
L∑

p=1

bp wT E{xxT
p }w +

L∑
p,q=1

bp bq wT E{xp xT
q }w.

Since E{y2} = E{wT xxT w} = E{wT HssT HT w} = gT g = ‖g‖2 the cost function can
be expressed as

J(w,b) = gT g − 2
L∑

p=1

bp gT Rs(p)g +
L∑

p,q=1

bp bq gT Rs(p, q)g,

where the global vector g = HT w.
Thus the problem converts to the following one:
Maximize gT Rg, subject to gT g = c.
Applying Lemma A.1, we finish the proof. ¤





6
Natural Gradient Approach to

Independent Component
Analysis

Two roads diverged in a wood, and I... took the one less travelled by, and that has made all the
difference.

—Robert Frost “The Road Not Taken”

In this chapter, fundamental signal processing and information theoretic approaches are
presented together with learning algorithms for the problem of adaptive blind source sepa-
ration (BSS) and Independent Component Analysis (ICA). We discuss recent developments
of adaptive learning algorithms based on the natural gradient approach in the general lin-
ear, orthogonal and Stiefel manifolds. Mutual information, Kullback-Leibler divergence,
and several promising schemes are discussed and reviewed in this chapter, especially for
signals with various unknown distributions and unknown number of sources. Emphasis is
given to an information-theoretical and information-geometrical unifying approach, adap-
tive filtering models and associated on-line adaptive nonlinear learning algorithms. We
discuss the optimal choice of nonlinear activation functions for various distributions, e.g.,
Gaussian, Laplacian, impulsive and uniformly-distributed signals based on a generalized-
Gaussian-distributed model. Furthermore, family of efficient and flexible algorithms that
exploit nonstationarity of signals are also derived.

231
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Fig. 6.1 Block diagram illustrating standard independent component analysis (ICA) and blind source
separation (BSS) problem.

6.1 BASIC NATURAL GRADIENT ALGORITHMS

Let us consider the simple mixing system illustrated in Fig. 6.1 and described in a vector-
matrix form as

x(k) = Hs(k) + ν(k), (6.1)

where x(k) = [x1(k), . . . , xm(k)]T is a noisy sensor vector, s(k) = [s1(k), . . . , sn(k)]T is a
source signal vector, ν(k) = [ν1(k), . . . , νm(k)]T is the noise vector, and H is an unknown
full rank m× n mixing matrix. It is assumed that only the sensor vector x(k) is available.
The objective is to design a feed-forward or recurrent neural network and an associated
adaptive learning algorithm that enables estimation of sources and/or identification of the
mixing matrix H and/or separating matrix W with good tracking abilities for time variable
systems.

The present section is devoted to the analysis of learning algorithms for a typical but
simple instantaneous blind source separation problem. Here, we assume that the number
of source signals is known and is equal to the number of sensors (with m = n), so that
both H and W are nonsingular n×n matrices. The source signals si(k) are assumed to be
mutually independent with zero-mean (E{si(k)} = 0). We also assume that additive noise
terms ν(k) are negligible or reduced to be at negligible levels by the preprocessing stated
in the previous chapters. The following section gives a prototype of mathematical analysis.
We will then relax most of these constraints in later sections.

6.1.1 Kullback–Leibler Divergence - Relative Entropy as Measure of Stochastic

Independence

In order to obtain a good estimate y = Wx of the source signals s, we introduce an objective
or loss function ρ(y,W) in terms of the estimated y and W. Its expected value, called risk
function

R(W) = E{ρ(y,W)}, (6.2)
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represents measure of mutual independence of output signals y(k). In other words, the
risk function R(W) should be minimized when the components of y become independent,
that is, when W is a rescaled permutation of H−1. To achieve this minimization, we
use the Kullback-Leibler divergence as a measure of independence. Let py(y;W) be the
probability density function of the random variable y = Wx = WHs and q(y) denotes
another probability density function of y, in which all the yi are statistically independent.
In this case, q(y) can be decomposed into a product form as

q(y) =
n∏

i=1

qi(yi). (6.3)

This independent distribution is called the reference function and is arbitrary for the mo-
ment. We will use the Kullback-Leibler divergence between the distribution py(y;W) of y
obtained by the actual value of W and the reference distribution q(y) as

R(W) = E{ρ(y,W)} = Kpq(W) = K [py(y;W)‖q(y)]

=
∫

py(y;W) log
py(y;W)

q(y)
dy. (6.4)

The Kullback-Leibler divergence is a natural measure of deviation for two probability dis-
tributions. Hence, R(W) = Kpq(W) shows how far the distribution py(y;W) is from the
reference distribution.

When q(y) is equal to the true distribution ps(s) of source signals, then py(y,W) =
ps(y) when W = H−1, because y = WHs = s in this case. Hence, Kpq is a good cost
function. However, even when q(y) is not equal to ps, W = H−1 is still a critical point of
R(W) = Kpq(y,W). This important property follows from information geometric relations
between pdfs described by the Pythagorean Theorem [555].

It is interesting to note that most learning algorithms proposed from heuristic considera-
tions can be explained in terms of the above cost function. It is remarkable that the entropy
maximization [79, 1322], independent components analysis (ICA) [305, 33, 34], nonlinear
PCA [917, 595], and the maximum likelihood approach [149, 869, 1322, 969] are formulated
in the above framework, where the only difference arises in the choices of the reference
function q(y). If we choose the true distribution of the sources as q, we have the maximum
likelihood approach. Note that the true distribution is unknown, in general, so that we
need to estimate q(y). If we choose the marginalized independent distribution of py(y;W),
this leads to ICA [33, 34, 305]. The entropy maximization uses nonlinear transformations
zi = gi(yi) to maximize the joint entropy of z. This is easily shown to be equivalent to
choosing [79]

qi(yi) =
d

dyi
gi(yi). (6.5)

The Kullback-Leibler divergence always takes nonnegative values, achieving zero if and only
if py(y) and q(y) are the same distribution. It is invariant with respect to the invertible
(monotonic) nonlinear transformations of variables (yi), including amplitude scaling and
permutation in which the variables yi are rescaled and rearranged. For the independent
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components analysis problem, we assume that q(y) is the product of the distribution of
independent variables yi. It can be the product of the marginal pdfs of y, in particular,

q(y) = p̃(y) =
n∏

i=1

pi(yi), (6.6)

where pi(yi) are the marginal probability density functions of yi (i = 1, 2, . . . , n). The
marginal pdf is defined by

pi(yi) =

∞∫

−∞
py(y)dy̌i, (6.7)

where the integration is taken over y̌i = [y1, . . . , yi−1 yi+1, . . . , yn]T left after removing
variable yi from y.

The natural measure of independence can be formulated as

Kpq = E{ρ(y,W)} =

∞∫

−∞
py(y) log

py(y)
n∏

i=1

qi(yi)

dy, (6.8)

where ρ(y,W) = log(py(y)/q(y)). The Kullback-Leibler divergence can be expressed in
terms of mutual information as

Kpq = −H(y)−
n∑

i=1

∞∫

−∞
py(y) log qi(yi)dy, (6.9)

where the differential entropy of the output signals y = Wx is defined by

H(y) = −
∞∫

−∞
py(y) log py(y)dy. (6.10)

When qi(yi) = p̃i(yi), taking into account that dy = dy̌idyi the second terms in Eq.(6.9)
can be expressed by the marginal entropies as

∞∫

−∞
py(y) log p̃i(yi)dy =

∞∫

−∞
log p̃i(yi)

∞∫

−∞
py(y)dy̌idyi

=

∞∫

−∞
p̃i(yi) log p̃i(yi)dyi = E{log (p̃i(yi))} = −Hi(yi). (6.11)

Hence, the Kullback-Leibler divergence can be expressed by the difference between H(y)
and the marginal entropies Hi(yi) as

Kpq = E{ρ(y,W)} = −H(y) +
n∑

i=1

Hi(yi). (6.12)
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Assuming y = Wx, the differential entropy can be expressed by

H(y) = H(x) + log | det(W)|, (6.13)

where H(x) = −
∞∫
−∞

px(x) log px(x)dx is independent of matrix W. For general q, we obtain

a simple cost (risk) function in the same way,

R = Kpq = E{ρ(y,W)} = −H(x)− log | det(W)| −
n∑

i=1

E{log(qi(yi))}. (6.14)

It should be noted that term H(x) can be omitted since it is independent of the demixing
matrix W.

6.1.2 Derivation of Natural Gradient Basic Learning Rules

Since our target is to minimize the expectation of the loss function ρ(y,W) in (6.14), a
simple idea is to use the ordinary stochastic gradient descent on-line learning algorithm
given by

∆W(k) = W(k + 1)−W(k) = −η(k)
∂ρ [y(k),W]

∂W
, (6.15)

where η(k) is a learning rate depending on k and ∂ρ/∂W is the n × n gradient matrix
whose entries are ∂ρ/∂wij . We can calculate the gradient matrix ∂ρ/∂W by component-
wise differentiation. By a simple differential matrix calculus, we obtain

∆W(k) = η(k)
[
W−T (k)− f [y(k)]xT (k)

]
, (6.16)

where W−T is the transpose of the inverse of W and f(y) = [f1(y1), f2(y2), . . . , fn(yn)]T is
the column vector whose i-th component is (see Table 6.1)

fi(yi) = −d log qi(yi)
dyi

= −dqi(yi)/dyi

qi(yi)
= −q′i(yi)

qi(yi)
, (6.17)

where qi(yi) are approximate (typically parametric) models of the pdf of source signals
{si}. The gradient −∂ρ/∂W represents the steepest decreasing direction of function ρ
when the parameter space is Euclidean. In the present case, the parameter space consists
of all the nonsingular n× n matrices W. This is a multiplicative group where the identity
matrix In is the unit. Moreover, it is a manifold so that it forms a Lie group. Amari et al.
[33, 28, 29, 34] exploited this fact to introduce a natural Riemannian metric to the space
of W. They showed that the true steepest descent direction in the Riemannian space of
parameters W is not ∂ρ/∂W but

− ∂ρ(y;W)
∂W

WT W =
[
I− f(y)yT

]
W. (6.18)
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Hence, the learning algorithm takes the form [33, 34]

∆W(k) = −η(k)
∂ρ(y,W)

∂W
WT W = η(k)

[
I− f [y(k)]yT (k)

]
W(k). (6.19)

This type of learning rule was first introduced in [285, 284, 283] and further developed and
analyzed in [28, 29, 33, 34]. This is essentially the same as the relative gradient intro-
duced independently by Cardoso and Laheld [155]. The equivariant property [155] holds
in this learning rule, because the underlying Riemannian metric is based on the Lie group
structure. Amari [25] showed that the natural gradient learning has a number of desirable
properties including the Fisher efficiency.

Alternatively, in order to calculate the gradient of ρ(y,W) expressed by (6.14), we use
the total differential dρ of ρ when W is changed from W to W + dW [29, 34]. In the
component form,

d ρ = ρ(y,W + dW)− ρ(y,W) =
∑

i,j

∂ρ

∂wij
dwij , (6.20)

where the coefficients ∂ρ/∂wij represent the gradient of ρ. Simple algebraic and differential
calculus yields

d ρ = − tr(dWW−1) + fT (y) dy, (6.21)

where tr is the trace of a matrix and f(y) is a column vector whose components are fi(yi) =
−q′i(yi)/qi(yi). From y = Wx, we have

dy = dWx = dWW−1y. (6.22)

Hence, we denote
dX = dWW−1, (6.23)

whose components dxij are linear combinations of dwij . The differentials {dxij} form a
basis of the tangent space of nonsingular matrices W, since they are linear combinations
of the basis {dwij}. It should be noted that dX = dWW−1 is a non-integrable differential
form, so that we do not have a matrix function X(W) which gives (6.23). Nevertheless,
the nonholonomic basis dX has a definite geometrical meaning and is very useful. It is
effective to analyze the differential in terms of dX, since the natural Riemannian gradient
[33, 34] is automatically implemented by it and the equivariant properties investigated in
[155] automatically hold in this basis. It is easy to rewrite the results in terms of dW by
using (6.23). The gradient dρ in (6.21) is expressed by the differential form

d ρ = −tr(dX) + fT (y) dXy. (6.24)

This leads to the stochastic gradient learning algorithm:

∆X(k) = −η(k)
d ρ

dX
= η(k)

[
I− f(y(k))yT (k)

]
(6.25)
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Fig. 6.2 Block diagram of fully connected recurrent network.

in terms of ∆X(k) = ∆W(k)W−1(k), or

W(k + 1) = W(k) + η(k)
[
I− f(y(k))yT (k)

]
W(k) (6.26)

in terms of W(k).
Applying the natural gradient (NG) rule (6.18), to the risk function (6.14), we obtain

the batch algorithm

∆W = −η
∂Kpq

∂W
WT W = η

[
I− 〈

f(y)yT
〉]

W, (6.27)

which can be easily converted to on-line algorithms by omitting the average (expectation)
operation.

Remark 6.1 We can easily derive similar algorithms for a fully recurrent neural network
described by y(k) = x(k) − Ŵy(k) (see Fig. 6.2). Assuming that the demixing matrix W
(giving y(k) = Wx(k)) is nonsingular, we have simple relations: Ŵ = W−1 − I and

dW
dt

W−1 = −W
dW−1

dt
.

Hence, we obtain a learning rule first developed by Cichocki and Unbehauen [283]

∆Ŵ(k) = −η(k)
[
Ŵ(k) + I

] [
I− 〈

f [y(k)]yT (k)
〉]

(6.28)

or equivalently

∆Ĥ(k) = −η(k)Ĥ(k)
[
I− 〈

f [y(k)]yT (k)
〉]

, (6.29)

where Ĥ(k) = W−1(k) = Ŵ(k) + I is an estimating matrix of the unknown mixing matrix
H (up to permutations and scale factors).

6.2 GENERALIZATIONS OF BASIC NATURAL GRADIENT ALGORITHM

6.2.1 Nonholonomic Learning Rules

Now, we may present some modifications and extensions of the basic natural gradient learn-
ing equation (6.19).
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In order to resolve the indeterminacy of scales, the basic NG learning algorithms impose
some constraints on the magnitudes of the recovered signals, e.g., E{fi(yi)yi} = 1. However,
when the source signals are non-stationary and their average magnitudes change rapidly,
the constraints force a rapid change in the magnitude of the separating matrix. This is
the case with most applications (speech, sounds, biomedical signals, etc.). It is known
that this causes numerical instability in some cases. In order to resolve this difficulty, we
introduce so-called nonholonomic constraints in the NG learning algorithm in this section
[30]. This is motivated by the geometrical consideration that the directions of change in the
separating matrix W should be orthogonal to the equivalence class of separating matrices
due to the scaling indeterminacy. These constraints are proven to be nonholonomic, so
that the proposed algorithm is able to adapt to rapid and/or intermittent changes in the
magnitudes of the source signals. The proposed algorithm works well even when the number
of sources is overestimated, whereas the existent algorithms do not (assuming the sensor
noise is negligibly small), because they amplify the null components not included in the
sources.

Let us consider the NG learning algorithm (referred to as the nonholonomic NG algo-
rithm)

∆W(k) = η(k)
[
Λ(k)− f [y(k)] yT (k)

]
W(k), (6.30)

where Λ = diag{λ1, λ2, . . . , λn} is the diagonal positive definite matrix. Amari et al. [34]
demonstrated that, when the magnitudes of source signals rapidly change over time or when
some of them become zero for a while, the learning algorithm with entries λii = f(yi)yi

works very well. Such constraints are nonholonomic constraints in the learning algorithm.
Another modification is to use the learning algorithm of the form [276, 283, 285]

∆W(k) = η(k)
[
Λ(k)− y(k) gT [y(k)]

]
W(k). (6.31)

This is the modified gradient [51, 276], which is the dual to the natural gradient descent
(see Appendix B),

∆W(k) = −η(k)W(k)
[
∂Kpq(W)

∂W

]T

W(k)

= η(k)
[
I− 〈

y(k)gT [y(k)]
〉]

W(k). (6.32)

Here, the nonlinearity gi(yi) is the inverse of (dual to) the function fi(yi) = −{log q(yi)}′.
The dynamics and the behavior of the nonholonomic learning algorithms are analyzed in
[34] (see Appendix D).

More generally, Amari et al. have proposed the following learning rule [25, 29, 34]

∆W(k) = η(k)
[
Λ(k)− α

〈
f [y(k)]yT (k)

〉
+ β

〈
y(k) gT [y(k)]

〉]
W(k), (6.33)

where Λ is a diagonal matrix configured to eliminate the diagonal entries in the bracket
of the right-hand side, and α and β are adequate parameters to be adaptively determined.
This guarantees the best performance, that is the most efficient online estimation, provided
constants α and β are adequately determined. See [29] for details of α and β.
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6.2.2 Natural Riemannian Gradient in Orthogonality Constraint

Let us assume that the observation vector x(k) = QHs(k) = As(k) has already been
whitened by preprocessing and source signals are normalized, i.e.,

Rxx = E{x(k)xT (k)} = Im, (6.34)
Rs s = E{s(k) sT (k)} = In. (6.35)

When m = n, from (6.34) and (6.35), we have

AAT = In, (6.36)

where the mixing matrix A = QH ∈ IRn×n is orthogonal. In such a case, we may consider
only orthogonal matrices W (such that W−1 = WT ) for recovering the original signals by
y = Wx. The nonholonomic basis is written as

dX = dWW−1 = dWWT , (6.37)

and it is skew-symmetric,

dX = −dXT , (6.38)

which is easily shown from

0 = dI = d(WWT ) = dWWT + WdWT = dX + dXT . (6.39)

This implies that the gradient

∂ρ

∂X
=

∂ρ

∂W
WT (6.40)

is also skew-symmetric. Hence, we have

∂ρ

∂X
WT = f(y)yT − y fT (y). (6.41)

The natural gradient learning algorithm for separating matrix W ∈ IRn×n in the case
where data are prewhitened, is given by

W(k + 1) = W(k)− η(k)∇̃ρ(y,W)

= W(k)− η(k)
∂ρ

∂X
W. (6.42)

It should be noted that the matrix W is (approximately)1 orthogonal in each iteration step,
so x = WT y and the above algorithm reduces to the following form

W(k + 1) = W(k)− η(k)
[
f(y(k))yT (k)− y(k) fT (y(k))

]
W(k). (6.43)

1The matrix is precisely orthogonal for the continuous time version algorithm if W(0) is orthogonal; How-
ever, for the discrete-time algorithm it is only approximately orthogonal on the condition that the learning
rate η(k) is a sufficiently small positive value, and the second term η2(k)O can be neglected.
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In practice, due to the skew-symmetry of the term f(y(k))yT (k)−y(k)fT (y(k)), decorrela-
tion (or whitening) processing can be performed simultaneously together with separation.
By taking this into account, the algorithm becomes the EASI algorithm proposed Cardoso
and Laheld [155]

∆W(k) = η(k)
[
I− y(k)yT (k)− f(y(k))yT (k) + y(k)fT (y(k))

]
W(k). (6.44)

The algorithms aforementioned belong to the class of on-line learning algorithms that are
based on stochastic approximation. We can also consider the batch versions of the algo-
rithms by estimating time average instead of instantaneous realization. For example, the
batch version of the algorithm (6.44) is given by

∆W(k) = η(k)
[
I− 〈

y(k)yT (k)
〉− 〈

f(y(k))yT (k)
〉

+
〈
y(k)fT (y(k))

〉]
W(k), (6.45)

where 〈·〉 denotes the time average operation.

Remark 6.2 In the case of m > n, we may use W ∈ IRn×m, where all the n rows of W
are mutually orthogonal m-dimensional vectors, so that

WWT = In (6.46)

is satisfied. The set of such matrices is called the Stiefel manifold. The natural Riemannian
gradient in the Stiefel manifold was calculated by Amari [34] as (see also Edelman, Arias
and Smith [418])

∇̃ρ(y,W) = ∇ρ(y,W)−W [∇ρ(y,W)]T W. (6.47)

Using this formula, the natural gradient of the loss function ρ(y,W) is given by

∇̃ρ(y,W) = f(y)xT − y fT (y)W, (6.48)

and we have

∆W = −η ∇̃ρ(y,W). (6.49)

6.2.2.1 Local Stability Analysis The stability conditions for the algorithm (6.27) and the
algorithm (6.44) were given by Amari et al. [29] and by Cardoso and Laheld [155], respec-
tively. In this section, we focus on the algorithm (6.44) which employs the natural gradient
in the Stiefel manifold.

Since the algorithm (6.44) was derived from the gradient d ρ = fT (y)dWx, we need to
calculate its Hessian d2ρ to check the stability of stationary points. Amari et al. have shown
that the calculation of Hessian d2ρ is relatively easy if the modified differential coefficient
matrix dX = dWW−1 is employed [29]. Noting that the modified differential coefficient
matrix dX is skew-symmetric in the orthogonality constraint, we calculate the Hessian d2ρ.
By using the fact that dX is skew-symmetric, dρ can be written as

dρ = fT (y)dy = fT (y)dXy

=
∑

i,j

fi(yi)dxijyj =
∑

i>j

{fi(yi)yj − fj(yj)yi} dxij . (6.50)
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Then the Hessian d2ρ is calculated as

d2ρ =
∑

i>j

∑

k

{
f ′i(yi)dxikykyj − f ′j(yj)dxjkykyi

+fi(yi)dxjkyk − fj(yj)dxikyk } dxij . (6.51)

Taking into account the normalization constraint (E{y2
i } = 1) and the skew-symmetry,

dxij = −dxji, the expected Hessian at W = A−1 (at desirable solution) is given by

E{d2l} =
∑

i>j

[
E {f ′i(yi)}+ E

{
f ′j(yj)

}− E {fi(yi)yi} − E {fj(yj)yj}
]
dx2

ij , (6.52)

where f ′i(yi) denotes the derivative of fi(yi) with respect to yi. From (6.52), the stability
conditions are given by

χi + χj > 0, (6.53)

where

χi = E {f ′i(yi)} − E {fi(yi)yi} . (6.54)

The stability condition given in (6.53) coincides with that in [147], but we arrived at this
result in the framework of the natural gradient in the Stiefel manifold. For each yi, the
condition

χi > 0 (6.55)

is a sufficient condition for stability.
Amari and Cardoso [28] studied this problem from the point of view of semi-parametric

statistical models of information geometry [40, 41]. They treat a general form of learning
equations,

∆W(k) = η(k)F [y(k),W(k)]W(k) (6.56)

for an arbitrary smooth nonlinear matrix function F = [fij ] ∈ IRn×n. The results shows
that (1) the diagonal entries fii of F can be arbitrary, and (2) general admissible (efficient)
forms of F are spanned by f(y)yT . This implies that another form y fT (y) is also a good
candidate of the learning equation, because it is a linear combination of the former. They
have shown that

F[y,W] = Λ− α f(y)yT − β y fT (y), (6.57)

where α and β are suitably chosen coefficients, is the general form of an admissible learning
function, where the diagonal entries of F have arbitrarily assigned nonnegative values.
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6.3 NATURAL GRADIENT ALGORITHMS FOR BLIND EXTRACTION OF

ARBITRARY GROUP OF SOURCES

6.3.1 Stiefel Manifolds Approach

Consider the case where we do not want to extract one single source at a time but to extract
simultaneously a specified number of sources, say e, where 1 ≤ e ≤ n, with m ≥ n. (The
number of sensors m is greater or equal to the number of sources n and the number of sources
is generally unknown [25]). Let us also assume that the sensor signals are prewhitened, for
example, by using the PCA technique described previously. Then, the transformed sensor
signals satisfy the condition

Rx x = E{x xT } = In, (6.58)

where x = x1 = Qx and new global n × n mixing matrix A = QH is orthogonal, that
is, AAT = AT A = In. Hence, the ideal n × n separating matrix is W∗ = A−1 = AT for
e = n.

In order to solve this problem, we can formulate the appropriate cost function expressed
by the Kullback-Leibler divergence

Kpq = K(p(y,We)||q(y)) =
∫

p(y,We) log
p(y,We)

q(y)
dy, (6.59)

where q(y) =
∏e

i=1 qi(yi) represents an adequate independent probability distribution of
the output signals. Hence, the cost function takes the form:

ρ(y,We) = −
e∑

i=1

log qi(yi) (6.60)

subject to constraints WeWT
e = Ie or equivalently wiwT

j = δij , where We ∈ IRe×n is a
demixing (separating) matrix, with e ≤ n, and wi is the i-th row vector of matrix We.

These constraints follow from the simple fact that the mixing matrix A = QH is a square
orthogonal matrix and the demixing matrix We should satisfy the following relationship
after successful extraction of p sources (ignoring scaling and permutation for simplicity):

WeA = [Ie,0n−e]. (6.61)

We say that the matrix We satisfying the above condition forms a Stiefel manifold since its
rows are mutually orthogonal (wiwj = δij). In order to satisfy the constraints during the
learning process, we employ the following natural gradient formula (Amari 1998) [25]

∆We(k) = We(k + 1)−We(k) = −η

[
∂ρ(y,We)

∂We
−We

(
∂ρ(y,We)

∂We

)T

We

]
. (6.62)

It can be shown that the separating matrix We satisfies the relation We(k)WT
e (k) = Ie in

each iteration step on the condition that We(0)WT
e (0) = Ie.
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Applying the natural gradient formula (6.62), we obtain a learning rule:

We(k + 1) = We(k)− η(k)
[
f [y(k)]xT (k)− y(k) fT [y(k)]We(k)

]
, (6.63)

with initial We(0) satisfying the condition We(0)WT
e (0) = Ie.

It is worth to note, that for e = n, the separating matrix We = W is orthogonal and
our learning rule simplifies to the well-known algorithm proposed by Cardoso and Laheld
in [155]:

W(k + 1) = W(k)− η(k)
[
f [y(k)]yT (k)− y(k)fT [y(k)]

]
W(k) (6.64)

since x = Qx = QHs = W−1 y = WT y. The above algorithm can be extended by
performing simultaneously prewhitening and blind separation [155]:

∆W(k) = η(k)
[
In − y(k)yT (k)− f [y(k)]yT (k) + y(k) fT [y(k)]

]
W(k). (6.65)

Remark 6.3 It can be shown that the separating matrix We(k) ∈ IRe×n satisfies approx-
imately (for sufficiently small value of learning rate η(k)) the relation We(k)WT

e (k) = Ie

in each iteration step k on the condition that We(0)WT
e (0) = Ie since the above learning

rule satisfies approximately the relation:

∆We(k)WT
e (k) + We(k)∆WT

e (k) = 0. (6.66)

6.4 GENERALIZED GAUSSIAN DISTRIBUTION MODEL FOR ICA – PRACTICAL

IMPLEMENTATION OF THE ALGORITHMS

Optimal nonlinear function fi(yi) is given by (6.17). However, it requires the knowledge of
the probability distributions of sources that are not usually available to us. A variety of
hypothesized density model has been used (see Table 6.1). For example, for super-Gaussian
source signals, the hyperbolic-Cauchy distribution model leads to the nonlinear function
given by

fi(yi) = tanh(γiyi), (6.67)

typically, with γi = 1/σ2
yi

. For sub-Gaussian source signals, cubic nonlinear function fi(yi) =
y3

i has been a favorite choice. For mixtures of sub- and super-Gaussian source signals,
according to the estimated kurtosis of the extracted signals, nonlinear function can be
selected from two different choices [399]. Several approaches [491, 276, 488] are already
available. In this section, we present an adaptive nonlinear function derived using the
generalized Gaussian density model [276, 275, 232]. It will be shown that the nonlinear
function is self-adaptive and controlled by the Gaussian exponent.

Let us assume that the source signals have the generalized Gaussian distribution of the
form [276, 275, 232]:

qi(yi) =
ri

2σiΓ(1/ri)
exp

(
− 1

ri

∣∣∣∣
yi

σi

∣∣∣∣
ri

)
, (6.68)
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Fig. 6.3 (a) Plot of the generalized Gaussian pdf for various values of parameter r (with σ2 = 1)
and (b) corresponding nonlinear activation functions.

where ri > 0 is a variable parameter, Γ(r) =
∫∞
0

yr−1 exp(−y)dy is the gamma function
and σr

i = E{|yi|r} is a generalized measure of variance known as the dispersion of the
distribution. The parameter ri can change from zero, through 1 (Laplace distribution) and
ri = 2 (standard Gaussian distribution), to ri going to infinity (for uniform distribution)
(see Fig. 6.3 (a), (b)).

The optimal normalized nonlinear activation functions2 can be expressed in such cases
as:

fi(yi) = −d log(qi(yi))
dyi

= |yi|ri−1sign(yi), ri ≥ 1. (6.69)

Taking into account that sign(y) = y/|y|, we obtain (see Fig. 6.3 (b))

fi(yi) =
yi

|yi|2−ri
. (6.70)

In the special case of spiky or impulsive signals, the parameters ri can take the values
between zero and one. In such a case, we can use the slightly modified activation functions

fi(yi) =
yi

[|yi|2−ri + ε]
, 0 < ri < 1, (6.71)

2For adaptive algorithms with nonholonomic constraints it is recommended to use a rescaled activation

function of the form f̂i(yi) = (|yi|ri−1 sign(yi))/|σyi |ri , where σyi =
q

E{y2
i } is the estimated deviation of

output signal yi.
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where ε is a very small positive parameter (typically 10−4), which avoids the singularity of
the function when yi = 0. Alternatively, we can take the moving average of the instanta-
neous values of the nonlinear function as

fi(yi) =
yi

〈|yi|2−ri〉 =
yi(k)

σ̂
(2−ri)
i (k)

, 0 ≤ ri < ∞, (6.72)

with estimation of m̂2−ri
= σ̂

(2−ri)
i by the moving average as

σ̂
(2−ri)
i (k + 1) = (1− η0)σ̂

(2−ri)
i (k) + η0|yi(k)|2−ri . (6.73)

Such an activation function can be considered as a “linear” time variable function modu-
lated in time by the fluctuating estimated moment m2−ri

= σ̂
(2−ri)
i .

The parameters ri can be fixed if some a priori knowledge about the statistics of the
source signals is available or obtained through learning. The stochastic gradient-based rule
for adjusting parameter ri(k) takes the form

∆ri(k) = −ηi(k)
∂ρ

∂ri
= ηi(k)

∂ log(qi(yi))
∂ri

(6.74)

∼= ηi(k)
0.1ri(k) + |yi(k)|ri(k)(1− log(|yi(k)|ri(k))

r2
i (k)

. (6.75)

It is interesting to note that, in the special case of spiky signals for ri = 0, we obtain as
the optimal function a “linear” time-variable function proposed by Matsuoka et al. [832] as

fi(yi) =
yi

〈|yi|2〉 =
yi(k)
σ̂2

i (k)
, (6.76)

Analogously, for ri = 1 (Laplace distribution), we obtain

fi(yi) =
yi

〈|yi|〉 =
yi(k)
σ̂i(k)

, (6.77)

and for large ri À 1, say ri = 10 (approximately uniform distribution)

fi(yi) = yi(k)
〈|yi(k)|8〉 = yi(k)σ̂8

i (k), (6.78)

Remark 6.4 It should be noted that such an activation function satisfies the conditions

〈fi(yi)yi〉 = 1, ∀i (6.79)

independently of the non-zero variance of the output signals. Hence, the normalization of
scales of the output signals in the learning algorithm is automatically taken into account
(cf. nonholonomic constraints [34]).
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Table 6.1 Typical pdf q(y) and corresponding normalized activation functions f(y) = −d log q(y)/dy.

Name Density Function q(y) Activation Function f(y)

Gaussian 1√
2πσ

exp

�
−|y|

2

2σ2

�
y
σ2

Laplace 1
2σ exp

�
−|y|

σ

�
sign(y)

σ

Cauchy 1
πσ

1
1 + (y/σ)2

2y
σ2 + y2

Hyperbolic

cosine

1
π cosh (y/σ2)

tanh (y/σ2)

Unimodal
exp (−2σ−2y)

(1 + exp (−2σ−2y))2
tanh (y/σ2)

Triangular

1
σ (1− |y|/σ)

|y| < σ

sign(y)
σ(1− |y|/σ)

Generalized r
2σΓ(1/r)

exp (−1

r
| y
σ
|r) |y|r−1

σr sign(y)
Gaussian r ≥ 1

Robust r
2σΓ(1/r)

exp (−|ρ(y)

σ
|r)

Generalized ρ(y) − robust function
|ρ(y)|r−1

σr

∂ρ

∂y

Gaussian r ≥ 1
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More generally, for the mixture of sub- and super-Gaussian signals distorted by impulsive
noise (with large outliers), using this model and Amari’s natural gradient approach, we may
use a learning algorithm of the form

∆W(k) = ηF(y)W(k), (6.80)

with diagonal matrix Λ(k) = diag{f(y(k))gT (y(k))} and the elements of matrix F(y)
defined by

fij =
{−fi(yi)yj , for γij < 1
−yifj(yj), otherwise, (6.81)

where γij = σ2
i σ2

j E{f ′i(yi)}E{f ′j(yj)} and fi(yi) = yi/(|yi|2−ri + ε) with ri between zero
and one (see Appendix C).

Alternatively, after some simplifications, we can use the learning rule (6.80) with diagonal
matrix Λ(k) = diag{f(y(k))gT (y(k))} and with robust adaptive time-variable activation
functions with respect to outliers [276, 275]

fi(yi) =

{ yi

σ̂2−ri
i

for κ4(yi) > δ0,

yi otherwise,
(6.82)

gi(yi) =

{
yi for κ4(yi) > −δ0

yi

σ̂2−ri
i

otherwise, (6.83)

where κ4(yi) = E{y4
i }/E2{y2

i }− 3 is the normalized value of kurtosis and δ0 ≥ 0 is a small
threshold. The learning algorithm (6.80), with (6.82)–(6.83) monitors and estimates the
statistics of each output signal, depending on the sign or value of its normalized kurtosis
(which is a measure of distance from the Gaussianity). It then automatically selects (or
switches) suitable nonlinear activation functions, such that successful (stable) separation of
all the non-Gaussian source signals is possible. In this approach, the activation functions
are adaptive time-varying nonlinearities.

Similar methods can be applied for other parameterized distributions. For example, for
the generalized Cauchy distribution defined in terms of three parameters ri > 0, vi > 0 and
σ2

i (see Fig. 6.4 (a) and (b))

qi(yi) =
B(ri, vi)(

1 + 1
vi

[
yi

A(ri)

]ri
)vi+1/ri

, (6.84)

with A(ri) = [σ2
i Γ(1/ri)/Γ(3/ri)]1/2 and B(ri, vi) = riv

−1/ri

i Γ(ri+1/ri)/2A(ri)Γ(vi)Γ(1/ri),
we have the following activation function (see Fig. 6.4)

fi(yi) =
(viri + 1)

(vi|A(ri)|ri + |yi|ri)
|yi|ri−1sign(yi). (6.85)

Similarly, for the generalized Rayleigh distribution, one obtains fi(yi) = |yi|ri−2yi for
complex-valued signals and coefficients.
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Fig. 6.4 (a) Plot of generalized Cauchy pdf for various values of parameter r (with σ2 = 1) and (b)
corresponding nonlinear activation functions.

6.4.1 The Moments of the Generalized Gaussian Distribution

In order to fully understand the generalized Gaussian distribution, it is useful to look at its
moments (especially the 2nd and 4th moments which give the kurtosis). The n-th moment
of the generalized Gaussian distribution is given by

mn =
∫ ∞

−∞
ynp(y; r)dy. (6.86)

If n is odd, the integrand is the product of an even function and an odd function over the
whole real line, which integrates to zero. In particular, this implies that the mean of the
distribution given in (6.68) is zero and it is symmetric about its mean (which means its
skewness is zero).

The even moments, on the other hand, completely characterize the distribution. In
computing these moments, we use the following integral formula [232]

∫ ∞

0

yν−1e−µya

dy =
1
a
µ−

1
ν Γ

(ν

a

)
. (6.87)

The 2nd moment of the generalized Gaussian distribution is determined by

m2 =
∫ ∞

−∞
y2p(y; r)dy

= 2
∫ ∞

0

y2 r

2σΓ
(

1
r

)e−|
y
σ |rdy. (6.88)
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We are integrating only over the positive values of y, we can remove the absolute value in
the exponent. Thus

m2 =
r

σΓ
(

1
r

)
∫ ∞

0

y2e−( y
σ )r

dy. (6.89)

Making the substitution z = y
σ (dy = σdz), we find

m2 =
rσ2

Γ
(

1
r

)
∫ ∞

0

z2e−zr

dz. (6.90)

Invoking the integral formula (6.87), we have

m2 = σ2 Γ
(

3
r

)

Γ
(

1
r

) . (6.91)

In a similar way, we can find the 4th moment given by

m4 = σ4 Γ
(

5
r

)

Γ
(

1
r

) . (6.92)

In general, the (2k)-th moment is given by

m2k = σ2k Γ
(

2k+1
r

)

Γ
(

1
r

) . (6.93)

6.4.2 Kurtosis and Gaussian Exponent

The kurtosis is a dimensionless quantity. It measures the relative peakedness or flatness of
a distribution. A distribution with positive kurtosis is termed leptokurtic (super-Gaussian).
A distribution with negative kurtosis is termed platykurtic (sub-Gaussian). The normalized
kurtosis of a distribution is defined in terms of the 2nd- and 4th-order moments as

κ(y) =
m4

m2
2

− 3, (6.94)

where the constant term −3 makes the value zero for standard normal distribution.
For a generalized Gaussian distribution, the kurtosis can be expressed in terms of the

Gaussian exponent, given by

κ4 =
Γ

(
5
r

)
Γ

(
1
r

)

Γ2
(

3
r

) − 3. (6.95)

The plot of kurtosis κ4 versus the Gaussian exponent r for leptokurtic (sub-Gaussian) and
platykurtic (super-Gaussian) signals are shown in Figure 6.5.
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Fig. 6.5 The plot of kurtosis κ4(r) versus Gaussian exponent r: (a) for leptokurtic signal; (b) for
platykurtic signal [232].

6.4.3 The Flexible ICA Algorithm

From the parameterized generalized Gaussian density model, the nonlinear function in the
algorithm (6.44) is given by [232, 276, 275]

fi(yi) = −d log qi(yi)
dyi

= |yi|ri−1 sign(yi), (6.96)

where sign(yi) is the sign function of yi.
Note that for ri = 1, fi(yi) in (6.96) becomes a sign function (which can also be derived

from the Laplacian density model for sources). The sign nonlinear function is favorable
for the separation of speech signals since natural speeches is often modelled as Laplacian
distribution. Note also that for ri = 4, fi(yi) in (6.96) becomes a cubic function, which is
known to be a good choice for the sub-Gaussian sources.

In order to select a proper value of the Gaussian exponent ri, we estimate the kurtosis
of the output signal yi and select the corresponding ri from the relationship in Figure 6.5.
The kurtosis of yi, κi can be estimated via the following iterative algorithm:

κ
(k)
i =

m
(k)
4i

[m(k)
2i ]2

− 3, (6.97)

where

m
(k)
4i = (1− η0)m

(k−1)
4i + η0|yi(k)|4, (6.98)

m
(k)
2i = (1− η0)m

(k−1)
2i + η0|yi(k)|2, (6.99)

and η0 is a small constant, say, 0.01.
In the general case, the estimated kurtosis of the demixing filter output does not exactly

match the kurtosis of the original source. However, it provides an idea whether the estimated
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source is a sub-Gaussian signal or super-Gaussian signal. Moreover, it was shown [149, 25]
that the performance of source separation is not degraded even if the hypothesized density
does not match the true density. From these reasons, we suggest a practical method where
only several different forms of nonlinear functions are used [232].

The kurtosis of platykurtic source does not change much as the Gaussian exponent varies
(see Figure 6.5 (b)), so we use ri = 4 if the estimated kurtosis of yi is negative. The cubic
nonlinearity for the sub-Gaussian source is also involved with the kurtosis minimization
method [155]. For the leptokurtic source, one can see the kurtosis varies much according to
the Gaussian exponent (see Figure 6.5 (a)). Thus we suggest several different values of ri,
in contrast to the case of sub-Gaussian source. From our experience, two or three different
values of the Gaussian exponent are enough to handle various super-Gaussian sources.

Several different nonlinear functions were suggested in the flexible ICA algorithm [232].
Here, we discuss the stability of stationary points of the algorithm (6.44) for three different
cases: (1) ri = 4 for κi < 0; (2) ri = 1; (3) ri = .8 for κi > 0 [232].

Case 1: ri = 4 - sub-Gaussian distributions.

The choice of ri = 4 was suggested for the sub-Gaussian source (κi < 0). The choice of
ri = 4 results in the cubic nonlinear function, i.e., fi(yi) = |yi|2yi. With this selection, one
can easily see that the left-hand side of (6.55) is the kurtosis of yi multiplied by −1. Since
yi is sub-Gaussian, the condition (6.55) is satisfied.

Case 2: ri = 1 - Laplacian distribution.

With the choice of ri = 1, the generalized Gaussian density (6.68) becomes Laplacian
density, i.e.,

qi(yi) =
1

2σi
e
−| yi

σi
|
. (6.100)

The choice of ri = 1 leads to the sign function (hard limiter), i.e.,

fi(yi) = sign(yi) =
yi

|yi| . (6.101)

In order to calculate the derivative of the sign function, we model it as the sum of two unit
step functions, i.e.,

sign(yi) = u(yi)− u(−yi), (6.102)

where u(yi) is the unit step function. Then, we can calculate the derivative, f ′i(yi)

f ′i(yi) = 2δ(yi), (6.103)

where δ means Dirac’s delta. We compute E{f ′i(yi)}

E{f ′i(yi)} =
∫ ∞

−∞
2δ(yi)

1
2σi

e
−| yi

σi
|
dyi =

1
σi

. (6.104)
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We also compute E{fi(yi)yi}
E{fi(yi)yi} = E{|yi|} = σi. (6.105)

The normalized constraint, E{y2
i } = 1 gives

E{y2
i } = 2σ2

i = 1. (6.106)

Then, we have σi =
√

1
2 . Note that χi is given by

χi =
1− σ2

i

σi
. (6.107)

Since λi =
√

1
2 , χi is positive for κi > 0.

Case 3: ri < 1 - sparse distribution.

For highly peaky sources κi >> 1), it might be desirable to choose the value of ri less than
1. This gives a non-increasing nonlinear function. With this choice, the nonlinear function
is singular around the origin. Thus in practical application, for yi ∈ [−ε, ε] where ε is a very
small positive number, the corresponding nonlinear function is restricted to have constant
values.

The variance of yi for the generalized Gaussian distribution is given by [232]

E{y2
i } = σ2

i

Γ
(

3
ri

)

Γ
(

1
ri

) . (6.108)

From the normalization constraint, E{y2
i } = 1, σi has the following value,

σi =

√√√√√
Γ

(
1
ri

)

Γ
(

3
ri

) . (6.109)

Besides the region for yi ∈ [−ε, ε], we can compute E{f ′i(yi)} and E{fi(yi)yi} given by

E{f ′i(yi)} =
∫ ∞

−∞
(ri − 2)|yi|(ri−2) ri

2σiΓ
(

1
ri

)e
− |yi|ri

σ
ri
i dyi

=
(ri − 2)σri−2

i

Γ
(

1
ri

) Γ
(

ri − 1
ri

)
,

E{fi(yi)yi} =
∫ ∞

−∞
yi|yi|(ri−1) sign(yi)

ri

2σiΓ
(

1
ri

)e
− |yi|ri

σ
ri
i dyi

=
riσ

ri+1
i

Γ
(

1
ri

) 1
ri

Γ
(

ri + 1
ri

)
. (6.110)
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Note that the gamma function Γ(x) has many singular points especially for x < 0. Thus
special care is required with the choice of ri < 1. For instance, the choice of ri = 0.5 does
not satisfy the condition (6.55) since Γ(−1) = ∞. For the case of ri = 0.8, one can easily
see that the stability condition (6.55) is satisfied.

Summarizing, in this section we derived and analyzed unsupervised adaptive on-line and
micro batch algorithms for blind separation of sources (BSS), especially when the source
signals are nonstationary and they have spiky (impulsive) behavior. The algorithms are
applicable to mixtures of an unknown number of independent source signals with unknown
statistics [276, 275]. Nonlinear activation functions are rigorously derived by assuming
that the sources are modelled by generalized Gaussian distributions. As a special case, we
derived and justified the time variable “linear” activation function

f(yi) =
yi(k)
〈y2

i 〉
=

yi(k)
σ̂2

yi

(6.111)

proposed by Matsuoka et al. [832] for the blind separation of nonstationary signals. Apply-
ing the moving average estimation to the output variance σ̂2

i =
〈
y2

i

〉
, we may use the same

concept even for stationary signals since the estimation of variance continuously fluctuates
in time. Extensive computer simulations have confirmed that the proposed algorithms are
able to separate spiky and non-stationary sources (such as biomedical signals, especially
magnetoencephalographic (MEG) signals) [276, 275, 127, 631, 34].

6.4.4 Pearson Model

The Generalized Gaussian and Cauchy pdf models discussed in the previous section be-
long to symmetric distribution families and the natural gradient algorithm based on these
models may fail to perform successfully separation of independent sources with a strongly
asymmetric (skewed) distributions or non Gaussian sources with close to zero kurtosis.

Wide class of distributions both symmetric and asymmetric can be modelled by Pearson
system described by the differential equation [684]

q′(y) =
(y − a) q(y)

b0 + b1 y + b2 y2
, (6.112)

where a, b0, b1 and b2 are the parameters depending on distribution of estimated sources.
The optimal activation function according to Eq. (refoptimfunfy) for the Pearson system
can be expressed as

f(y) = −q′(y)
q(y)

=
a− y

b0 + b1 y + b2 y2
. (6.113)

Many widely used distributions, including beta, gamma, normal and Student’s t distribution
are special forms of the Pearson model. The parameters a, b0, b1 and b2 can be estimated
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directly by the method of moments [684] as

a = b1 = −m3(m4 + 3m2
2)

d
, (6.114)

b0 = −m2(4m2m4 − 3m2
3)

d
, (6.115)

b2 = − (2m2m4 − 3m2
3 − 6m3

2)
d

, (6.116)

where d = 10m2m4 − 18m3
2 − 12m2

3 and m2,m3,m4 denote the second, third and fourth
order sample moments of y. The advantage of using the Person system is that it enables
efficiently to separate sources with unsymmetrical distributions.

6.5 NATURAL GRADIENT ALGORITHMS FOR NON-STATIONARY SOURCES

In many applications, e.g., speech or biomedical applications, signals are non-stationary.
The objective of this section is to derive natural gradient learning algorithms for non-
stationary sources (in the sense that their variances are time varying).

The key assumption in source separation lies in the statistical independence of sources.
When sources are mutually independent and are also temporally i.i.d. non-Gaussian signals,
it is necessary to use higher-order statistics to achieve source separation. In such a case,
source separation is related to independent component analysis (ICA), where the goal is
to decompose multivariate data into a linear sum of non-orthogonal basis vectors with
basis coefficients being statistically independent. When sources are nonstationary only
the second-order statistics is sufficient for blind source separation. Methods based on this
observation include algorithms described in Chapter 4. The nonstationarity of source was
first exploited by Matsuoka et al. in the context of blind source separation [832].

6.5.1 Model Assumptions

Throughout this section, as in [832], the following assumptions are made:

AS1 The mixing matrix H has a full column rank.

AS2 Source signals {si(k)} are statistically independent with zero-mean. This implies
that the covariance matrix of source signal vector, Rss = E{s(k)sT (k)} is a diagonal
matrix, i.e.,

Rss = diag{σ2
s1

(k), σ2
s2

(k), . . . , σ2
sn

(k)}, (6.117)

where σ2
si

(k) = E{s2
i (k)} means variance of the source signal si.

AS3 The ratio σ̂2
si

(k)/σ̂2
sj

(k) (i, j = 1, . . . , n and i 6= j) are not constant with time3.

3The variance of a signal yi(k) is usually estimated by taking the moving average (MA) as σ̂2
yi

(k) =

(1− η0)σ̂2
yi

(k − 1) + η0y2
i (k).
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We have to point out that the first two assumptions (AS1, AS2) are common in most
existing approaches to source separation, however, the third assumption (AS3) is essential
for algorithms presented in this section. In fact, the third assumption allows us to separate
mixtures by using only the second-order statistics.

6.5.2 Second Order Statistics Cost Function

A standard cost function for ICA is based on mutual information which requires the knowl-
edge of underlying distributions of sources. Since probability distributions of the sources
are not known in advance, most ICA algorithms rely on hypothesized distributions. Higher-
order statistics should be incorporated either explicitly or implicitly.

To eliminate all cross-correlations E{yi(k)yj(k)}, the following cost function was pro-
posed by Matsuoka et al. in [832]

J (W, k) =
1
2

(
n∑

i=1

log(σ̂2
yi

(k))− log det R̂(k)
yy

)
, (6.118)

where σ̂2
yi

(k) =
〈
y2

i (k)
〉

is on-line estimated time-variable variance, det(·) denotes the de-

terminant of a matrix and R̂(k)
yy =

〈
y(k)yT (k)

〉
. The covariance matrix R(k)

yy is usually
estimated on-line as R̂(k)

yy = (1 − η0)R̂
(k−1)
yy + η0y(k)yT (k). The cost function given in

(6.118) is a non-negative function which reaches minima if and only if E{yi(k)yj(k)} = 0,
for i, j = 1, . . . , n, i 6= j. This is a direct consequence of the Hadamard’s inequality (applied
for the on-line estimation of the time variable covariance matrix R̂(k)

yy ) which is summarized
below [234].

Theorem 6.1 (Hadamard’s Inequality) Suppose R = [rij ] is a non-negative definite
symmetric n× n matrix. Then,

det(R) ≤
n∏

i=1

rii, (6.119)

with equality if and only if rij = 0, for i 6= j.

6.5.3 Derivation of NG Learning Algorithms

Feed-forward Network

We consider a simple feed-forward network as shown in Figure 6.6 (a) for source separa-
tion task. The output of the network, y(k) is given by

y(k) = Wx(k) (6.120)

We calculate the total differential dJ(W),

dJ(W) = J(W + dW)− J(W)

=
1
2
d

{
n∑

i=1

log
〈
y2

i (k)
〉
}
− 1

2
d

{
log det

〈
y(k)yT (k)

〉}
, (6.121)
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Fig. 6.6 (a) Architecture of feed-forward neural network. (b) Architecture of fully connected recurrent
neural network.

due to the change dW.

The second term in (6.121) can be evaluated as

d
{
log det

〈
y(k)yT (k)

〉}
= d

{
log det(WR̂xxWT )

}

= 2d
{

log det (W)−1
}

+ d
{

log det R̂xx

}

= 2tr{dWW−1}+ d
{

log det R̂xx

}
, (6.122)

where tr{·} denotes the trace. Note that the term R̂xx does not depend on the weight
matrix W, so it can be eliminated.

Define a modified differential matrix dX, under assumption that the separating matrix
W ∈ IRn×n (with m = n) is nonsingular, as

dX = dWW−1. (6.123)

Then,

d
{
log det

〈
y(k)yT (k)

〉}
= 2tr{dX}. (6.124)
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Similarly, we can evaluate the first term of (6.121) as

d

{
n∑

i=1

log
〈
y2

i (k)
〉
}

=
n∑

i=1

2 〈yi(k)dyi(k)〉
〈y2

i (k)〉
= 2E{yT (k)Λ−1(k)dy(k)}
= 2E{yT (k)Λ−1(k)dXy(k)}, (6.125)

where Λ(k) is a diagonal matrix whose i-th diagonal element is λi = σ̂2
yi

=
〈
y2

i (k)
〉
.

In terms of dX, we have

dJ(W)
dX

= E
{
Λ−1(k)y(k)yT (k)

}− I. (6.126)

Taking into account that ∆W(k) = ∆X(k)W(k) and applying the stochastic gradient
descent method, we obtain the on-line learning algorithm:

∆W(k) = −η(k)
dJ(W)

dX
W(k)

= η(k)
[
I−Λ−1(k)y(k)yT (k)

]
W(k) (6.127)

or equivalently

W(k + 1) = W(k) + η̃(k)
[
Λ(k)− y(k)yT (k)

]
W(k), (6.128)

where η̃(k) = η(k)Λ−1(k).
It should be noted that the algorithm (6.128) derived above can be viewed as a special

form of the natural gradient ICA algorithms derived in the previous sections.
We can reformulate the algorithm (6.128) using the moving average approach as

W(k + 1) = W(k) + η̃(k)
[
Λ(k)− R̂(k)

yy

]
W(k), (6.129)

where Λ is the diagonal matrix whose i-th diagonal element is λi ≈ E{y2
i } that can be

on-line estimated by

λi(k) = (1− η0)λi(k − 1) + η0y
2
i (k), (6.130)

and

R̂(k)
yy = (1− η0)R̂(k−1)

yy + η0y(k)yT (k). (6.131)

The algorithm (6.129) leads to a special form of nonholonomic ICA algorithm described in
the previous sections with variable step sizes η̃(k) = η(k)Λ−1(k) for nonstationary sources
[30, 234].

It should be noted that the learning algorithms presented in this section are always locally
stable and do not depend on the probability distribution of sources [234].
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Remark 6.5 In order to successfully separate nonstationary sources the learning rate 0 <
η0 ≤ 1 should be suitably chosen to ensure variability of estimated variance of the output
signals (typical value η0 = 0.1).

Fully-connected Recurrent Network

Let us consider now a fully-connected recurrent network as shown in Figure 6.6 (with
m = n) for source separation task. The output of the network, y(k) is given by

y(k) = x(k)− Ŵy(k)

= (I + Ŵ)−1x(k) (6.132)

under the assumption that the matrix (I + Ŵ) is nonsingular.
Similarly to the feed-forward model, we can directly derive the learning algorithm for Ŵ

that has the form [234]

∆Ŵ(k) = −η̃(k)
[
I + Ŵ(k)

] [
Λ(k)− R̂(k)

yy

]
. (6.133)

Appendix A. Derivation of Local Stability Conditions for NG ICA Algorithm (6.19)

By stability conditions, we mean here conditions for which a learning algorithm converges to
a suitable equilibrium point corresponding to the correct separation of independent sources.
In this section, we consider only local stability conditions.

The learning equation (6.19) is a stochastic difference equation depending on random
inputs y(k). To analyze its behavior, we consider the ensemble average of the equation (see
Eq.(6.27)) which is the approximation of the following differential equation (with continuous
time t),

dW
dt

= µ(t)E
{
I− f(y(t))yT (t)

}
W(t), (A.1)

We will find that the true separating solution W with which yi and yj are independent is
an equilibrium solution of the averaged equation, because, when yi and yj are independent,
the off-diagonal term of the equilibrium is

E{fi(yi)yj} = 0, i 6= j. (A.2)

This condition is satisfied when yi and yj are independent. The diagonal term is

E{fi(yi)yi} = 1, (A.3)

which determines the scaling of the recovered signals.
The stability of the equilibrium is analyzed by the variational equation

d

dt
δW(t) = η(t)

∂E
{
I− f [y(t)] yT (t)

}

∂W
δW(t), (A.4)
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which shows the dynamic behavior of small perturbations δW(t) in the neighborhood of
the true solution W and (∂/∂W)δW implies

∑
(∂/∂wij)δwij in the component form. In

order to show stability of the algorithm, we need to check the eigenvalues of the expectation
of the extended Hessian matrix

− E

{
∂2ρ(y,W)
∂W∂WT

WT W
}

(A.5)

at the equilibrium point W∗. When all the real parts of the eigenvalues of the above
quantity are negative, the solution is stable. We present the analysis in terms of differential
calculus.

In order to establish stability conditions, we need to evaluate all the eigenvalues of the
operator. This can be done in terms of dX, as follows. Since I − f(y)yT is derived from
the gradient of ρ, we shall calculate its second order differential which is the quadratic form
(Hessian)

d2l =
∑ ∂2ρ(y,W)

∂wij∂wkl
dwijdwkl

in terms of dX. The equilibrium is stable if and only if the expectation of the above
quadratic form is positive definite. We calculate the second total differential, which is the
quadratic form of the Hessian of ρ, as [29]

d2l = yT dXT f ′(y) dy + fT (y) dXdy

= yT dXT f ′(y)dXy + f(yT ) dXdXy, (A.6)

where f ′(y) is the diagonal matrix whose diagonal elements are f ′(yi). The expectation of
the first term is

E{yT dXT f ′(y) dXy} =
∑

E{yidxjif
′
j(yj)dxjkyk}

=
∑

j 6=i

E{(yi)2}E{f ′j(yj)}(dxji)2 +
∑

i

E{(yi)2f ′i(yi)}(dxii)2

=
∑

j 6=i

σ2
i κj(dxji)2 +

∑

i

mi(dxii)2,

where mi = E{y2
i f ′i(yi)}, κi = E{f ′i (yi)}, σ2

i = E{|yi|2}, yi is the source signal extracted
at the i-th output, and f ′i(y) = dfi(yi)/dyi. Here, the expectation is taken at W = H−1

where yi’s are independent.
Similarly,

E{f(y)T dXdXy} =
∑

E{fi(yi)dxijdxjkyk}
=

∑
E{yifi(yi)}dxijdxji =

∑

i,j

dxijdxji, (A.7)

because of E{yifi(yi)} = 1 (the normalization condition). Hence,

E{d2l} =
∑

j 6=i

{σ2
i κj(dxji)2 + dxijdxji}+

∑

i

(mi + 1)(dxii)2. (A.8)
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For a pair (i, j), i 6= j, the summand in the first term is rewritten as

kij = σ2
i κj(dxji)2 + σ2

j κi(dxij)2 + 2dxijdxji. (A.9)

This kij (i 6= j) is the quadratic form in (dxij , dxji), and

E{d2l} =
∑

i6=j

kij +
∑

(mi + 1)(dxii)2. (A.10)

The matrix (kij) is positive definite, if and only if the following stability conditions hold:

mi + 1 > 0, (A.11)
κi > 0, (A.12)
γij = σ2

i σ2
j κiκj > 1, for all 1 ≤ i < j ≤ m. (A.13)

In other words, the true solution is a stable equilibrium of the on-line learning algorithm
for assumed pdf model q(y) and corresponding activation functions f(y), when the above
conditions are satisfied. It is easy to show that the conditions are satisfied when q(y) is
equal to the true source distribution ps(s) or close to it.

Appendix B. Derivation of the Learning Rule (6.32) and Stability Conditions for ICA

In order to derive the learning algorithm (6.32), we follow the notation: [29, 51, 276]

dX ≡ dWW−1 (B.1)

and
dρ(y,W) = − tr(dX) + gT (y)dXy. (B.2)

The standard stochastic gradient method for X leads to the natural gradient learning algo-
rithm for updating W. Let us apply a different update rule as follows

∆X = −η

(
∂ρ

∂X

)T

= η
[
I− ygT (y)

]
. (B.3)

On the other hand, we have

∂ρ(y,W)
∂X

=
∂ρ(y,W)

∂W
WT . (B.4)

Hence,

∆W = −ηW
[
∂ρ(y,W)

∂W

]T

W (B.5)

or explicitly
∆W(k) = η(k)

[
I− y(k)gT [y(k)]

]
W(k). (B.6)
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It should be noted that in general the update rule does not lead to a gradient descent
algorithm. However, we will show now that if the function gi(yi) satisfies the following
conditions [1358, 1359, 1361]

E{gi(yi)yi} ≈ 〈gi(yi)yi〉 > 0, (i = 1, 2, . . . , n) (B.7)

the learning algorithm (B.6) is a stochastic gradient descent learning algorithm with the
cost function ρ(y,W), which means that the algorithm is convergent to one of the local
minima of the cost function. It should be noted that all the odd functions gi(yi) satisfy the
above conditions.

From (B.2), we have
∂ρ(y,W)

∂xij
= −δij + yigj(yj). (B.8)

We consider the decrease of the objective function during one step of learning

∆ρ(y,W) = ρ(y,W + ∆W)− ρ(y,W)

=<
∂ρ(y,W)

∂X
, ∆XT > +O(|∆X|2)

= −η
∑

ij

∂ρ

∂xij

∂ρ

∂xji
+ O(|∆X|2)

= −η




n∑

i=1

(1− yigi(yi))2 +
∑

i 6=j

yigj(yj)yjgi(yi)


 + O(|∆X|2).

If 〈yigi(yi)〉 > 0, then

<
∂ρ

∂X
,

∂ρ

∂X
>= tr

(
∂ρ

∂X
,

∂ρ

∂XT

)
> 0. (B.9)

This means that if the learning rate η is small enough, then the cost function is decreasing
during the learning process till the system achieves a minimum during the learning proce-
dure.
Stability conditions. In order to analyze the stability condition of a separating solution,
we take a variation with respect to W of the continuous-time learning algorithm as

dδW
dt

= −ηδE{y(t)gT [y(t)]}W
= −ηE{δygT (y) + yg′(yT )δyT )}W. (B.10)

Substituting dW = dXW and dy = dXy, we obtain

dδX
dt

= −ηE{dXygT (y) + yg′(yT )(yT dXT )}
= −η

(
dX + E{yg′(yT )(yTdXT)}) . (B.11)
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Since the output signals yi are mutually independent, we have at the equilibrium point

E{gi(yi)yiyj} = 0, for i 6= j. (B.12)

The components of Eq.(B.11) can be written as

dδxii

dt
= −η

(
1 + E{g′i(yi)y2

i }
)
δxii, (i = 1, 2, . . . n) (B.13)

and for i 6= j
dδxij

dt
= −η

(
δxij + E{y2

i }E{g′j(yj)}δxji

)
, (B.14)

dδxji

dt
= −η

(
δxji + E{y2

j }E{g′i(yi)}δxji

)
. (B.15)

It is easy to write now the stability conditions in an explicit form:

1 + E{y2
i g′i(yi)} > 0, (i = 1, 2, . . . , n) (B.16)

and
γij = E{y2

i }E{y2
j }E{g′i(yi)}E{g′j(yj)} < 1, (i 6= j). (B.17)

From the above stability conditions, we see that one important advantage of the learning
rule (6.32) is that this algorithm is still stable in contrast to algorithm (6.19) even when
some of the source signals become silent (decay to zero).

It is easily observed that the above stability conditions for learning algorithm (6.32) are
mutually complementary to the one for Amari’s natural gradient learning algorithm (6.19).

Appendix C. Stability of Generalized Adaptive Learning Algorithm

Lets us consider the learning algorithm proposed by Amari et al. [29]

∆W = ηF(y,W)W, (C.1)

with entries of matrix F defined by

fii(y,W) = δi − yifi(yi), (i = 1, 2, . . . , n). (C.2)

and

fij(y,W) =
{ −fi(yi)yj , if γij > 1,
−yifj(yj), if γij ≤ 1,

(C.3)

where δi are given positive constants and γij = σ2
i σ2

j κiκj . The separating solution satisfies
the system of nonlinear algebraic equations

E{F(y,W)} = 0. (C.4)
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In order to establish the stability conditions, we write the above learning algorithm in the
continuous-time form as

dW
dt

= ηE{F(y,W)}W. (C.5)

Taking the variation of W at an equilibrium point, we have

dδW
dt

= ηE{δF(y,W)}W. (C.6)

Hence, for γij > 1, i 6= j, we have

dδxij

dt
= − (

E{f ′i(yi)}σ2
j δxij + δxji

)
(C.7)

and
dδxji

dt
= − (

δxij + E{f ′i(yi)}σ2
j δxij

)
. (C.8)

Similarly, if γij < 1, then the variations δxij and δxji satisfy the conditions derived in
Appendix D. The above results can be summarized in the form of the following Theorem
[29]:

Theorem C.2 Suppose that 〈fi(yi)yi〉 > 0, γij = σ2
i σ2

j κiκj 6= 1 (for i 6= j), mi +1 > 0 and
κi = E{f ′i(yi)} > 0 (i = 1, 2, . . . , n), then the separating solution by employing the learning
algorithm (C.1) is stable.

The form of the nonlinear functions F depends on parameters γij = σ2
i σ2

j κiκj , which
cannot be explicitly determined, but we can evaluate parameters γij dynamically during
the learning process.

The learning algorithm (C.1) possess two important properties as the natural gradient
learning algorithm (6.19) does. One is the equivariant property. The other one is the non-
singularity of the learning matrix W(t), which can be observed from the following derivation
[1322, 1355, 1358]. We define

< X,Y >= tr(XT Y) (C.9)

and calculate

d det(W(t))
dt

= <
∂ det(W)

∂W
,
dW
dt

>

= < det(W)W−T , ηF(y,W)W >

= η tr(F(y,W) det(W))

= η

n∑

i=1

[λi − yigi(yi)] det(W). (C.10)

Then the determinant det(W(t)) is expressed by

det(W(t)) = det(W(0)) exp

(
η

∫ t

0

n∑

i=1

(λi − gi(yi)yi)dτ

)
. (C.11)

This means that, if W(0) is nonsingular then W(t) keeps the non-singularity invariantly.
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Appendix D. Dynamic Properties and Stability of Nonholonomic NG Algorithms

Non-Holonomicity and Orthogonality
In order to make the scaling indeterminacies clearer, we introduce an equivalence relation

in the n2 -dimensional space of nonsingular matrices Gl(n) = {W}. We define that W and
ΛW are equivalent,

W ∼ ΛW, (D.1)

where Λ is an arbitrary nonsingular diagonal matrix. Given W, its equivalence class

CW = {W′| W′ = ΛW} (D.2)

is an n-dimensional subspace of Gl(n) consisting of all the matrices equivalent to W. There-
fore, a learning algorithm need not search for the non-identifiable W = H−1 but searches
for the equivalence class CW that contains the true W = H−1 except for permutations.

The space Gl(n) = {W′} is partitioned into equivalence classes CW, where any W′

belonging to the same CW is regarded as an equivalent demixing matrix. Let dWC be a
direction tangent to CW, that is, both W + dWC and W belong to the same equivalence
class CW.

The learning equation determines ∆W(k) depending on the current y and W. When
∆W(k) includes components belonging to the tangent directions to CW, such components
are ineffective because they drive W within the equivalent class. Therefore, it is better
to design a learning rule such that its trajectories ∆W(k) are always orthogonal to the
equivalence classes. Since CW are n-dimensional subspaces, if we could find a family of
n2 − n dimensional subspaces Q’s such that CW and Q are orthogonal, we could impose
the constraints that the learning trajectories would belong to Q. Therefore, one interest-
ing question arises: Are there a family of (n2 − n)-dimensional sub-manifolds Q that are
orthogonal to the equivalence classes CW ? The answer is no. We can prove now that there
does not exist a sub-manifold that is orthogonal to the families of sub-manifolds CW ’s.

Theorem D.3 The direction dW is orthogonal to CW, if and only if

dxii = 0, (i = 1, 2, . . . , n) (D.3)

where dX = dWW−1.

Proof. Since the equivalent class CW consists of matrices ΛW, Λ is regarded as a coor-
dinate system in CW. A small deviation of W in CW is written as

dWC = dΛW, (D.4)

where dΛ is diag(dλ1, . . . , dλn). The tangent space of CW is spanned by them. The inner
product of dW and dWC is given by

< dW, dWC >W = < dWW−1, dWCW−1 >I

= < dX, dΛ >I=
∑

i,j

dxijdλij

=
∑

dxiidλii. (D.5)
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Therefore, dW is orthogonal to CW when and only when dW satisfies dxii = 0 for all i.
We next show that dX is not integrable, that is, there are no matrix functions G(W)

such that
dX = tr(

∂G

∂W
dWT ), (D.6)

where
tr(

∂G

∂W
dWT ) =

∑

i,j

∂G

∂wij
dwij . (D.7)

If such G exists, X = G(W) defines another coordinate system in Gl(n). Even when such
G does not exist, dX is well-defined and it forms a basis in the tangent space of Gl(n) at
W. Such a basis is called a nonholonomic basis (Schouten, 1954; Frankel, 1997).

Theorem D.4 The basis defined by dX = dWW−1 is nonholonomic.

Proof. Let us assume that there exists a function G(W) such that

dX = dG(W) = dWW−1. (D.8)

We now consider another small deviation from W to W + δW. We then have

δdX = δdG = dWδ(W−1). (D.9)

We have

δ(W−1) = (W + δW)−1 −W−1

' −W−1δWW−1. (D.10)

Hence,
δdX = −dWW−1δWW−1. (D.11)

Since matrices are in general non-commutative, we have

δdX 6= dδX. (D.12)

This shows that there does not exist such matrix X because dδG = δdG always holds when
a matrix G exists.

Our constraints
dxii = 0, (i = 1, 2, . . . , n) (D.13)

restrict the possible directions of ∆W, and define (n2 − n)-dimensional movable directions
at each point W of Gl(n). These directions are orthogonal to CW. However, by the same
reasoning, there does not exist functions gi(W) such that

dxii = dgi(W) =
∑

j,k

∂gi(W)
∂wjk

dwjk. (D.14)

This implies that there exist no subspaces defined by gi(W) = 0.
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Such constraints are said to be nonholonomic. The learning equation (D.1) defines a
learning dynamics with nonholonomic constraints. At each point W, ∆W is constrained in
(n2−n) directions. However, the trajectories are not constrained in any (n2−n)-dimensional
subspace, and they can reach any points in Gl(n).

This property is important when the amplitudes of si(t) change over time. If the con-
straints are

E{hi(yi)} = 0, (D.15)

for example,
E{y2

i − 1} = 0, (D.16)

when E
[
s2

i

]
suddenly become 10 times smaller, the ordinary learning dynamics makes the

i-th row of W become 10 times larger in order to compensate for this change and keep
E

[
y2

i

]
= 1. Therefore, even when W converges to the true CW, large fluctuations emerge

from the ineffective movements caused by changes in amplitude of si. This sometimes causes
numerical instability. On the other hand, our nonholonomic dynamics is always orthogonal
to CW so that such ineffective fluctuations are suppressed. This is confirmed by computer
simulations a few of which are presented in this chapter.

There is a lot of research on nonholonomic dynamics [30]. Classical analytical dynamics
uses nonholonomic bases to analyze the spinning gyro (Whittaker, 1940). It was also used
in relativity. G. Kron (1952) used the nonholonomic constraints to present a general theory
of electro-mechanical dynamics of generators and motors. Nonholonomic properties play
a fundamental role in continuum mechanics of distributed dislocations (see, e.g., Amari,
1962). An excellent explanation is found in Brockett (1993), where the controllability of
nonlinear dynamical systems is shown by using the related Lie algebra. Recently, robotics
researchers have been eager to analyze dynamics with nonholonomic constraints (Suzuki
and Nakamura 1995) [30].

Remark D.6 Theorem D.4 shows that the orthogonal natural gradient descent algorithm
evolves along a trajectory path which doesn’t include redundant (useless) components in the
directions of CW . Therefore, it seems likely that the orthogonal algorithm can be more ef-
ficient than other algorithms as has been confirmed by preliminary computer simulations.

Stability Analysis

In this section, we discuss the local stability of the nonholonomic orthogonal natural
gradient descent algorithm defined by

∆W(k) = η(k)F(y(k))W(k), (D.17)

with fii = 0 and fij = −fi(yi) yj , if i 6= j, in the vicinity of the desired equilibrium sub-
manifold CW. Similar to a theorem established in our previous publications (Amari et al.
1997), we formulate the following Theorem:

Theorem D.5 When the following inequalities hold

γij > δi δj , (i, j = 1, 2, . . . , n) (D.18)
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where γij = κiκjσ
2
i σ2

j and δi = E{yifi(yi)}, then the desired W = PΛH−1 is a stable
equilibrium, where Λ is a diagonal matrix and P is any permutation matrix.
If

γij < δi δj , (i, j = 1, 2, . . . , n) (D.19)

then replacing fij = fi(yi)yj by

fij = yifj(yj), i 6= j (D.20)

it is guaranteed that W = PΛH−1 is stable.

Proof. Let W = H−1 and (dW)i denote the i-th row of dW, and (W−1)j be the j-th
column of W−1. Then taking into account that dxij = fi(yi)yj and dxii = 0, we evaluate
the second differentials in the Hessian matrix as follows,

d2xij = E{d(fi(yi)yj)} (D.21)
= E{f ′i(yi)yjdyi}+ E{fi(yi)dyj}
= E{f ′i(yi)yj(dW)i(W−1s)}+ E{f ′i(yi)(dW)j(W−1s)}
= E{f ′i(yi)yj(dW)i(W−1)j}+ E{fi(yi)yi(dW)j(W−1)i}
= −E{f ′i(si)s2

j}dxij − E{fi(si)si}dxji.

Hence,

d2xij = −E{f ′i(si)s2
j}dxij − E{fi(si)si}dxji, (D.22)

d2xji = −E{fj(sj)sj}dxij − E{f ′j(sj)s2
i }dxji, (D.23)

d2xii = 0. (D.24)

From the above, we see that the equilibrium point W = PΛH−1 is stable.

Appendix E. Summary of Stability Conditions

We summarize the stability conditions of the learning rule

dW
dt

= η F(y)W, (E.1)

where off-diagonal entries of the matrix F are expressed as

fij = −fi(yi) y(i), i 6= j, (E.2)

and the diagonal entries of F can take the following forms

fii = 1− yi f(yi), (E.3)
fii = 1− y2

i , (E.4)
fii = 0. (E.5)
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The ordinary algorithm is (E.3), while (E.4) forces the power of the recovered signals to
be equal to 1, and (E.5) is nonholonomic constraint so that the scale is infinite.

Theorem E.6 The stability of condition for the ordinary case (E.3):

1 + mi > 0, κi > 0, γij > 1. (E.6)

Theorem E.7 The stability criterion for the case (E.4), where the recovered signals are
normalized (we assume δi = E{yi fi(yi)} > 0):

κi > 0, κiκj > δi δj . (E.7)

Theorem E.8 The stability condition for the nonholonomic case (E.2c):

κi > 0, γij > δiδj . (E.8)

Remark E.7 If fi(yi) is derived from a probability distribution q(yi),

fi(yi) = − log q(yi)
dyi

, (E.9)

δi = E {yifi(yi)} = 1 (E.10)

holds. However, the scale of yi is indefinite in the nonholonomic case, so that the probability
distribution of δiyi is different from that of yi. Hence, δi depends on which point in CW

W converges.

Remark E.8 Let CW be the class containing the true W = H−1. δi is a function defined
in the class. Hence, it is possible that the stability condition γij > δi δj holds in some part
of CW but does not in some other part.

Appendix F. Natural Gradient for Non-square Separating Matrix

Let us consider the case where the number of measurements (sensors) is larger than the
number of sources, (m > n). The recovered signals are given by

y = Wx = W(Hs + ν), (F.1)

where W ∈ IRn×m.
The set IRn×m does not form a Lie group, although we show a trial to introduce a Lie

group structure in the next Appendix G. Here, we introduce an inner product in the space
IRn×m, and the related natural gradient. Let δW = (δwij) be a small deviation of W.
The magnitude of δW is given by the inner product < δW, δW >W, which introduces a
Riemannian matrix in IRn×m. It is natural to define it by

< δW, δW >W= tr
(
δWRxx δWT Rss

)
, (F.2)

where
Rxx = E{xxT } = HHT + Rνν , (F.3)
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and Rs s = E{s sT } = In is taken account of.
Let ρ(W) be a loss function of W. The natural gradient ∇̃ρ is given from the equation

dρ = tr (∇ρ dW) =< ∇̃ρ, dW > . (F.4)

Assuming that Rxx is not singular due to nonzero noise, we have

∇̃ρ = ∇ρR+
xx. (F.5)

When the covariance matrix Rνν = σ2Im is negligibly small then Rxx is singular. But we
have

lim
σ2→0

R−1
xx = R+

xx, (F.6)

where R+
xx is generalized inverse. Taking into account that

R+
xx =

(
HHT

)+
= WT W, (F.7)

we can express the relationship between natural gradient and standard gradient as follows

∇̃ρ = ∇ρWT W. (F.8)

Appendix G. Lie Groups and Natural Gradient for General Case

In many cases, the number of the source signals is changing and it is unknown. Therefore,
the mixing matrix H is not square and not invertible. Recently Amari (1999) [26] extended
the natural gradient approach to the over and under-complete cases (i.e., the cases when
the number of sensors is larger or less than the number of sources) on the condition that
the sensor signals are prewhitened.

In this Appendix, we introduce Lie Group structures on the manifold of the under-
complete mixture matrices, and endorse Riemannian metric on the manifolds based on the
property of the Lie groups (see Zhang et al. for more detail [1355, 1368, 1370]). Then, we
derive the natural gradient on the manifold using the isometry of the Riemannian metric.

Denote by Gl(n,m) = {W ∈ IRn×m|rank(W) = min(n,m)}, the set of the n × m
matrices of full rank. Assume that m > n. For W ∈ Gl(n,m), there exists a permutation
matrix PQ ∈ IRm×m such that

WPQ = [W1,W2], (G.1)

where W1 ∈ IRn×n is nonsingular. Since the permutation of components is acceptable in
the blind separation case, for simplicity, we assume that the square matrix consisting of
the first n columns of W is always nonsingular. Therefore, every W ∈ Gl(n,m) can be
decomposed into the following form W = [W1 W2], where W1 ∈ IRn×n is nonsingular.
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G.0.1 Lie Group Gl(n, m)

The Lie group has played a crucial role in deriving the natural gradient in the manifold
Gl(n,m), whose element W ∈ IRn×m is a non-square full column rank matrix.

The natural gradient induced by the Lie group, proposed by Zhang et al. [1368] can be
written in general form as

∇̃ρ(y,W) = ∇ρ(y,W)WT W +∇ρ(y,W)NI , (G.2)

where

NI = PT
Q

(
0 0
0 Im−n

)
PQ, (G.3)

with PQ ∈ IRm×m is any permutation matrix. The result indicates that the natural gradient
for under-complete mixture (m > n) is not unique, which depends on the permutation
matrix PQ.

Assume that m > n. For W ∈ Gl(n,m), there exists a permutation matrix PQ ∈ IRm×m

such that

W = [W1,W2]PQ, (G.4)

where W1 ∈ IRn×n is nonsingular matrix. Two basic operations for the Lie group are
defined as follows,

X ~ Y = [X1Y1,X1Y2 + X2]PQ, (G.5)
X† = [X−1

1 ,−X−1
1 X2]PQ, (G.6)

where X = [X1,X2]PQ and Y = [Y1,Y2]PQ are in Gl(n,m), ~ is the multiplication
operator of two matrices in Gl(n,m) and † is the inverse operator on Gl(n,m). The identity
is defined by E = [In,0]PQ.

Lie Group has a favorite property that it admits an invariant Riemannian metric. Let TW

be the tangent space of Gl(n,m), X and Y ∈ TW be the tangent vectors. The Riemannian
metric can easily been induced by following the inner product

< X,Y >W=< X ~ W†,Y ~ W† >E . (G.7)

The inner product at E is naturally defined by

< X,Y >E= tr(XYT ). (G.8)

From definition, for W = [W1,W2]PQ ∈ Gl(n,m), we have

W† = [W−1
1 ,−W−1

1 W2]PQ (G.9)

and

X ~ W† = [X1W−1
1 ,−X1W−1

1 W2 + X2]PQ, (G.10)
Y ~ W† = [Y1W−1

1 ,−Y1W−1
1 W2 + Y2]PQ, (G.11)
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then, we have

< X,Y >W= tr
(
[X1W−1

1 ,−X1W−1
1 W2 + X2][Y1W−1

1 ,−Y1W−1
1 W2 + Y2]T

)
.(G.12)

For a function ρ(y,W) defined on the manifold Gl(n,m), the natural gradient ∇̃ρ(y,W) is
the contravariant form of ∇ρ(y,W) denoting the steepest direction of the function ρ(y,W)
as measured by the Riemannian metric of Gl(n, m), which is defined by

< X, ∇̃ρ(y,W) >W=< X,∇ρ(y,W) >E, (G.13)

for any X ∈ Gl(n, m). Using definition (G.12), and comparing both sides of (G.13), we
have

∇̃ρ(y,W) = ∇ρ(y,W)WT W +∇ρ(y,W)NI , (G.14)

where

NI = PT
Q

(
0 0
0 Im−n

)
PQ. (G.15)

G.0.2 Derivation of Natural Learning Algorithm for m > n

Assume that q(y,W), qi(yi,W) are the joint probability density function of y and its
marginal pdf’s of yi, (i = 1, 2, . . . , m) respectively. In order to separate independent sources
by demixing model, we formulate the blind deconvolution problem into an optimization
problem. Our target is to make the components of y as mutually independent as possible.
To this end, we employ the Kullback-Leibler divergence as a risk function

ρ(y,W) = −H(y,W) +
n∑

i=1

H(yi,W), (G.16)

where

H(y,W) = −
∫

q(y,W) log q(y,W)dy,

H(yi,W) = −
∫

qi(yi,W) log qi(yi,W)dyi.

The loss function ρ(y,W) is a nonnegative functional, which measures the mutual indepen-
dence of the output signals yi(k). The output signals y are mutually independent if and
only if ρ(y,W) = 0. We apply the stochastic gradient descent method to obtain a learning
algorithm. In order to obtain an efficient on-line learning algorithm, we simplify the risk
function into the following loss function ρ(y,W) for the undercomplete mixture, i.e., m > n

ρ(y,W) = − log(| det(WET )|)−
n∑

i=1

log qi(yi(k),W), (G.17)



272 NATURAL GRADIENT APPROACH TO INDEPENDENT COMPONENT ANALYSIS

where E is the identity element of Lie group Gl(n,m), and det(WET ) is the determinant of
matrix WET . In the following discussion, we use the following decomposition (see Zhang
et al. for more detail [1370])

W = [W1,W2]PQ, W1 ∈ IRn×n, (G.18)

x = PQ

[
x1

x2

]
, x1 ∈ IRn, (G.19)

then we have WET = W1.
For the gradient of ρ(y,W) with respect to W, we calculate the total differential

dρ(y,W) of ρ(y,W), when we take a differential dW on W

dρ(y,W) = ρ(y,W + dW)− ρ(y,W). (G.20)

Following the derivation for the natural gradient learning algorithm [34], we have

dρ(y,W) = − tr(dW1W−1
1 ) + fT (y) dy, (G.21)

where tr is the trace of a matrix and f(y) is a vector of nonlinear activation functions

fi(yi) = −d log qi(yi)
dyi

= −q′i(yi)
qi(yi)

. (G.22)

From (G.21), we can easily obtain the standard gradient of ρ with respect to W [1355,
1368, 1370]

dρ(y,W)
dW1

= −W−T
1 + f(y)xT

1 , (G.23)

dρ(y,W)
dW2

= f(y)xT
2 . (G.24)

Therefore, the natural gradient learning algorithm (G.2) on Gl(n,m) can be implemented
as follows

∆W = −η∇̃ρ(y,W) = η
[
(In − f(y)yT )W − f(y)xT NI

)
, (G.25)

where y ∈ IRn, x ∈ IRm, W ∈ IRn×m with m ≥ n and

NI = PT
Q

(
0 0
0 Im−n

)
PQ,

with arbitrary permutation matrix PQ ∈ IRm×m.



7
Locally Adaptive Algorithms

for ICA and their
Implementations

Nothing is invented and perfected at the same time.
—Latin Proverb

In the previous chapter, we have rigorously derived a family of equivariant algorithms
for ICA/BSS using Amari’s natural gradient approach. In this chapter, the original Jutten-
Hérault (J-H) algorithm [655, 312, 657] is introduced, and several more or less heuristically
derived extensions and modifications for independent component analysis are presented. In
particular, we focus on simple locally adaptive Hebbian/anti-Hebbian learning algorithms
and their implementation using multilayer neural networks are proposed.

The main purpose of this chapter is to describe and overview models and to present a
family of practical and efficient associated adaptive or locally adaptive learning algorithms
which have special advantages of efficiency and/or simplicity and straightforward imple-
mentations. Some of the described algorithms have special advantages in the cases of noisy,
badly scaled or ill-conditioned signals. The proposed algorithms are extended for the case
when the number of sources and their statistics are unknown. Finally, problem of an op-
timal choice of nonlinear activation function and general local stability conditions are also
discussed.

273
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7.1 MODIFIED JUTTEN-HÉRAULT ALGORITHMS FOR BLIND SEPARATION OF

SOURCES

7.1.1 Recurrent Neural Network

In this section, we consider a recurrent neural network and an associated locally adaptive
learning rule, first developed by Jutten and Hérault [655, 312, 657, 653]. We focus only on
linearly mixed sensor signals, i.e.,

xi(t) =
n∑

j=1

hij sj(t), (i = 1, 2, . . . , n), (7.1)

where hij are unknown mixing parameters, sj(t) are unknown, zero-mean, independent
sources and xi(t) are observed sensor signals.

Jutten and Hérault proposed a recurrent neural network shown in Fig. 7.1 (a), described
by the matrix equations

y(t) = x(t)− Ŵ(t)y(t), (7.2)
x(t) = Hs(t). (7.3)

Hence
y(t) = [I + Ŵ(t)]−1x(t), (7.4)

where

Ŵ =




0 ŵ12 . . . ŵ1n

ŵ21 0 . . . ŵ2n

...
...

. . .
...

ŵn1 ŵn2 . . . 0


 .

It is required to adapt the synaptic weights ŵij (with ŵii = 0) of a linear system (often
referred to as a single-layer recurrent neural network) to combine the observations xi(t)
to form optimal estimates of the source signals ŝj(t) = yj(t) = xj −

∑n
i=1 ŵji yi(t). The

optimal weights correspond to the statistical independence of the output signals yj(t). Of
course, the linear superposition is the simplest case of a combination of signals; other cases
discussed in the next chapters include filtering and convolution operations.

7.1.2 Statistical Independence

It is assumed that no a priori information about the primary sources si(t) is available except
that they are mutually independent. Independence of random variables is a more general
concept than decorrelation. Roughly speaking, we say that random variables yi and yj are
statistically independent if knowledge of the values of yi tells nothing about the values of
yj .

Mathematically, the independence of yi and yj can be expressed by the relationship

p(yi, yj) = p(yi)p(yj), (7.5)
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Fig. 7.1 Block diagrams: (a) Recurrent and (b) feed-forward neural network for blind source sepa-
ration.

where p(y) denotes the probability density function (pdf) of the random variable y. In other
words, signals are independent if their joint pdf can be factorized.

If independent signals are zero-mean, then the generalized covariance matrix of f(yi) and
g(yj), where f(y) and g(y) are different, odd nonlinear activation functions (e.g., f(y) = y3

and g(y) = tanh(y)) is a non-singular diagonal matrix

Rf g = E{f(y)gT (y)} − E{f(y)}E{gT (y)} =


E{f(y1)g(y1)} − E{f(y1)}E{g(y1)} 0
. . .

0 E{f(yn)g(yn)} − E{f(yn)}E{g(yn)}


 ,

(7.6)

i.e., the covariances E{f(yi)g(yj)} − E{f(yi)}E{g(yj)} are all zero and all variances
E{f(yi)g(yi)} −E{f(yi)}E{g(yi)} are non-zero. It should be noted that for odd f()̇ and
g()̇, if the probability density function of each zero-mean source signal is even, then the
terms of the form E{f(yi)}E{g(yi)} equal zero. The true general condition for statistical
independence of signals is vanishing of high-order cross-cumulants [257].

On the basis of the criterion for independence, Jutten and Hérault proposed a simple
heuristic adaptive learning rule (see Fig. 7.2) given by

dŵij(t)
dt

= µ(t)f(yi(t))g(yj(t)), (7.7)

where f(y) and g(y) are different odd activation functions (for example f(y) = y3, g(y) =
tanh(10y) for sub-Gaussian sources and f(y) = tanh(10y), g(y) = y3 for super-Gaussian
sources, although a wide variety of functions can be used). The Jutten-Hérault learning
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Fig. 7.2 (a) Neural network model and (b) implementation of the Jutten-Hérault basic continuous-
time algorithm for two channels.
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algorithm can be written in a compact matrix form as

d Ŵ(t)
dt

= µ(t)f [y(t)]gT [y(t)], (7.8)

where

f(y) = [f(y1), f(y2), . . . , f(yn)]T ,

g(y) = [g(y1), g(y2), . . . , g(yn)]T ,

provided that E{f(y)} = 0 or E{g(y)} = 0. To satisfy these conditions for arbitrary
distributed sources (especially non-symmetric distributed signals around their means), we
usually select nonlinearities as follows:

fi(yi) = ϕi(yi) and gi(yi) = yi (7.9)

or

fi(yi) = yi and gi(yi) = ϕ(yi), (7.10)

where ϕi(yi) are suitably designed nonlinear functions.
Note that in the Jutten-Hérault algorithm, the synaptic weights ŵii = 0 (i = 1, 2, . . . , n),

i.e., the neural network in Fig. 7.1 (a) has no self-feedback loops. The Jutten-Hérault
algorithm is very simple, however, has failed in a number of cases, e.g., for weak signals or
ill-conditioned mixing matrix.

7.1.3 Self-normalization

Eq. (7.6) provides a practical criterion for the independence of the output signals. While
this simple criterion has been proven to be effective in many cases, it is often very ill-
conditioned for certain classes of signals, especially for badly scaled signals. To alleviate this
problem, we propose an auxiliary condition that requires that the variances E{f(yi)g(yi)}
take specific values λi (typically they are all equal to unity). This means that output
signals yi(t) should be adaptively scaled so that all the generalized variances are normalized
as E{f(yi)g(yi)} = λi (typically λi = 1). It can be shown by computer simulations that
this auxiliary condition leads to considerable improvement in the performance of a neural
network without any increase of the computational complexity of the learning algorithm.

Initially, we modified the Jutten-Hérault algorithm by incorporating a fully recurrent
neural network in which every neuron is connected to all neurons, including itself (i.e., it
contains self-loops with ŵii 6= 0). This network (see Fig. 7.1 (a)) is described by the set of
equations

yi(t) = xi(t)−
n∑

j=1

ŵij(t) yj(t). (7.11)

Starting from the independence and self-normalization criteria discussed above, it is
straightforward to derive the associated on-line local learning algorithm as

dŵii(t)
dt

= µ(t) [λi − f [yi(t)]g[yi(t)]] (7.12)
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and
dŵij(t)

dt
= µ(t)f [yi(t)]g[yj(t)], for i 6= j, (7.13)

which can be written in a compact matrix form as

d Ŵ(t)
dt

= µ(t)
[
Λ− f [y(t)]gT [y(t)]

]
, (7.14)

where Λ = diag{λ1, λ2, . . . , λn}.
The main justification for employing weights ŵii is to provide self-normalization of the

generalized variances of the output signals. Such self-normalization improves the perfor-
mance of the network, especially if the signals are badly scaled, i.e., if the mixing matrix H
is nearly singular.

The idea behind algorithm (7.14) is the following. Suppose, we take the expectation
of both sides of Eq. (7.14). If the entries of the matrix Ŵ(t) approach constants and if
ŵij are smooth functions of time, the left side of the equation approaches zero. Hence
the matrix [E{f [y(t)]gT [y(t)]} − Λ] tends to zero. This means that the system achieves
separation if, E{f(yi)g(yj)} = E{f(yi)}E{g(yj)} = 0, i.e., the output signals are mutually
independent, provided E{f(yi)} = 0 or E{g(yi)} = 0) and E{f(yi)g(yi)} = λi represent
the self-normalization conditions. In practice, the expected values are not available and
according to the stochastic approximation procedure, they are replaced by instantaneous
or time-averaged values.

The learning algorithm (7.12)–(7.14) is very simple and relatively efficient for well-posed
problems. However, the network shown in Fig. 7.1 (a) and the associated learning algo-
rithms have several disadvantages; they require the inversion of a matrix (Eq. (7.4)) at
every iteration, which is computationally ill-conditioned and time consuming. In addition,
for the algorithm to work the number of outputs must be equal to the number of sensors
and the number of sources.

7.1.4 Feed-forward Neural Network and Associated Learning Algorithms

To avoid the drawbacks mentioned above, let us consider a single-layer feed-forward neural
network shown in Fig. 7.1 (b). It is required to find the weights wji to optimally estimate
the source signals as

ŝj = yj(t) =
n∑

i=1

wjixi(t), (j = 1, 2, . . . , n). (7.15)

Note the system shown in Fig. 7.1 (b) is described by the matrix equations

x(t) = Hs(t) (7.16)

and
y(t) = Wx(t) = WHs(t), (7.17)

where H = [hij ]n×n ∈ IRn×n is an unknown mixture matrix, W = [wji]n×n ∈ IRn×n is
a matrix of the adaptive synaptic weights, s(t) = [s1(t), s2(t), . . . , sn(t)]T is an unknown
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vector of the independent sources, x(t) = [x1(t), x2(t), . . . , xn(t)]T is the vector of the
observable (available) sensor signals and y(t) = [y1(t), y2(t), . . . , yn(t)]T is the vector of
desired output signals, which must be mutually independent.

The optimal value of the synaptic weights corresponds to statistical independence of
the output signals yj(t) (j = 1, 2, . . . , n). It should be noted that the source separation is
achieved as soon as the composite matrix G(t) = W(t)H has exactly one non-zero element
in every row and every column. Such a matrix G(t) is called a generalized permutation
matrix.

The feed-forward network of Fig. 7.1 (b) is equivalent to the recurrent network of Fig.
7.1 (a), if the following relation holds

W(t) = [I + Ŵ(t)]−1 (7.18)

or equivalently
Ŵ(t) = W−1(t)− I, (7.19)

which requires that the matrices Ŵ(t) + I and W(t) are nonsingular for every time instant
t. Differentiating Eq. (7.19) gives

d Ŵ
dt

=
d

dt
(W−1 − I) = −W−1 d W

dt
W−1 (7.20)

and hence, we have

W−1 d W
dt

W−1 = µ(t)
[
Λ− f [y(t)]gT [y(t)]

]
(7.21)

and therefore
d W
dt

= µ(t)W(t)
[
Λ− f [y(t)]gT [y(t)]

]
W(t), (7.22)

with non-zero initial conditions, typically W(0) = I.
Eq. (7.22) constitutes an equivalent learning algorithm for the feed-forward network

which has the same convergence properties as the algorithm given by Eq. (7.14). Unfortu-
nately, the resulting adaptive learning algorithm, (7.22) is relatively more complex.

A careful insight into Eq. (7.22) motivated us to propose a few heuristic modifications,
that we found experimentally to have advantages in implementation with respect to com-
putational efficiency and robustness. The first of these modifications came by noting that
the right hand side factors W(t) in Eq. (7.22) have no influence on the equilibrium point
but only change the trajectory and thus the key part of the right hand side of Eq. (7.22)
is −µ(t)[f [y(t)]gT [y(t)] − Λ]. In fact, the equilibrium point depends only on the term
[f [y(t)]gT [y(t)] − Λ], i.e., the equilibrium point is achieved if the expected value of this
term is equal to zero. Thus, the algorithm, Eq. (7.22), can be considerably simplified by
replacing the terms W(t) by identity matrix, giving

d W(t)
dt

= µ(t)
[
Λ− f [y(t)]gT [y(t)]

]
, (7.23)
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which can be written in a simple scalar form as

d wij(t)
dt

= µ(t) [δijλi − f [yi(t)]g[yi(t)]] , (7.24)

where δij is the Kronecker delta.
We found that this algorithm successfully separates the sources for rather moderately

ill-conditioned problems (if the ratio of the energies of the signals is not larger than 1:10),
leading to the same equilibrium point with fewer computations and with a less complex net-
work. A functional block diagram illustrating the implementation of the simplified learning
algorithm (Eq. (7.24)) is shown in Fig. 7.3 (see also Fig. 7.4 for detailed implementation).
It is interesting to note that the algorithm in Eq. (7.24) for the feed-forward network is
identical in form (up to the sign factor) to the algorithm (7.12)–(7.14) for the recurrent
network.
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Fig. 7.3 Block diagram of the continuous-time locally adaptive learning algorithm (7.23).

For ill-conditioned problems, we can use the equivariant algorithm. One modification of
such algorithm can be obtained intuitively from the algorithm (Eq. 7.22) by assuming that
µ(t) is not a scalar learning rate but a learning matrix defined as µ0(t)W−1(t), where µ0(t)
is a scalar. Replacing µ(t) in Eq. (7.22) by µ0(t)W−1, we obtain a learning algorithm for
feed-forward system with updating rule given by

d W(t)
dt

= µ0(t)
[
Λ− f [y(t)]gT [y(t)]

]
W(t), (7.25)
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Fig. 7.4 Detailed analog circuit illustrating implementation of the locally adaptive learning algorithm
(7.24).
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which can be written in a scalar form as

d wij(t)
dt

= µ0(t)

[
δijλi − f [yi(t)]

m∑
p=1

wpj(t) g[yp(t)]

]
. (7.26)

The corresponding discrete-time algorithm can take the following form

wij(k + 1) = wij(k) + η(k)

[
δijλi − f [yi(k)]

m∑
p=1

wpj(k) g[yp(k)]

]
. (7.27)

Fig. 7.5 (a) and (b) shows a block diagram illustrating the improved learning algorithm of
Eq. (7.25).

In the special case, for

g(y) = f(y)− y and Λ = 0, (7.28)

we have

∆W = η f(y)
[
yT − fT (y)

]
W. (7.29)

Assuming further that the signals are pre-whitened, so that WT W = I, we obtain the
nonlinear PCA rule developed by Oja and Karhunen [916] as:

∆W = η f(y)
[
xT

1 − fT (y)W
]
, (7.30)

which need a pre-whitening of sensor signals (x1 = Qx).
Assuming that the constraint WT W = I is satisfied during the learning process, we can

easily prove that the above algorithm reduces approximately to the learning rule proposed
by Cardoso and Laheld [155] as:

∆W = −η
[
f(y)yT − y fT (y)

]
W. (7.31)

Connections of the nonlinear PCA rule (7.30) with other blind separation approaches are
studied in [671].

7.1.5 Multilayer Neural Networks

In order to improve the flexibility and efficiency of BSS/ICA schemes, we can use multistage
sequential or multilayer neural networks. Fig. 7.6 shows various possible configurations of
multilayer neural networks.

In this way, we can improve dramatically flexibility and performance of blind separation
or extraction by applying different algorithms or different activation functions in each layer.
Furthermore, this allows us to combine SOS and HOS statistics algorithms to extract at
various layers various sources with different statistics properties. The layers should work
rather sequentially, one by one, i.e., after achieving convergence in the first layer the second
layer will start to work, and so on.
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Fig. 7.6 Various configurations of multilayer neural networks for blind source separation: (a) Feed-
forward model, (b) recurrent model, (c) hybrid model (LA means learning algorithm).

In general, synaptic weights in each layer can be updated, by employing any suitable
algorithm described in this book. Especially, the following simple local learning rule can be
applied

d W(p)(t)
dt

= µ(t)
[
Λ(p) −

〈
fp[y(p)(t)]gT

p [y(p)(t)]
〉]

, (p = 1, 2, . . . ,K) (7.32)

which can be written in a compact scalar form as

d w
(p)
ij (t)
dt

= µ(t)
[
δijλ

(p)
i −

〈
fp[y

(p)
i (t)]gp[y

(p)
i (t)]

〉]
, (7.33)

where Λ(p) is a nonsingular diagonal matrix (typically Λ(p) = I), and 〈〉 denotes the statis-
tical averaging operator.
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The associated discrete-time locally adaptive learning rule takes the form

W(p)(k + 1) = W(p)(k) + η(p)(k)
[
Λ(p) −

〈
fp[y(p)(k)]gT

p [y(p)(k)]
〉]

, (p = 1, 2, . . . , K)
(7.34)

or in a scalar form as

w
(p)
ij (k + 1) = w

(p)
ij (k) + η(p)(k)

[
δijλ

(p)
i −

〈
fp[y

(p)
i (k)]gp[y

(p)
i (k)]

〉]
. (7.35)

Remark 7.1 It is interesting to note that the same adaptive learning algorithm (7.35)
can be used both for feed-forward and recurrent neural sub-models with either a positive or
negative learning rates η(p) (see Chapter 4 for more explanation).

Extensive computer simulations have shown that this algorithm provides relatively good
performance that was not possible to obtain using only a single stage (layer), especially for
very ill-conditioned problems (e.g., if the signals are badly scaled or the mixing matrix H
is extremely ill-conditioned). Moreover, due to its extremely low complexity in comparison
to other algorithms it is suitable for hardware VLSI implementations.

Of course, we are not satisfied with the present pragmatic but rather heuristic or intu-
itive engineering approaches presented till now in this chapter, but the value (simplicity,
biological plausibility and good performance) of the presented algorithms justifies their pre-
sentation ahead of an adequate theory. In the next section, we will present more rigorous
derivation of several of these algorithms with some tips about their practical implementa-
tions.

7.2 ITERATIVE MATRIX INVERSION APPROACH TO DERIVATION OF FAMILY

OF ROBUST ICA ALGORITHMS

In this section, we discuss some interesting properties of the considered algorithms, and
present also an alternative derivation of the robust ICA algorithm proposed by Cruces et
al. [321, 332]. Only time-discrete learning algorithms are considered. The learning algo-
rithm (7.25) can be derived using the basic concepts of the diagonalization of a generalized
covariance matrix:

Rf g(W) = E{f(y)gT (y)}. (7.36)

Without loss of generality, we assume that this generalized covariance matrix is equal to
the identity matrix at the optimum separation point W∗, i.e.,

Rf g(W∗) = I. (7.37)

This diagonalization can also be viewed as an implicit matrix inversion, since, if we define a
new non-linear function of the outputs h(y) = W−1f(y) and a new generalized covariance
matrix

Rhg(W) = E{h(y)gT (y)} = W−1Rf g(W), (7.38)
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the diagonalization of (7.37) is equivalent to the following inversion

Rf g(W∗) = I ⇒ W∗ = R−1
hg(W∗). (7.39)

The implicit matrix inversion (7.39) cannot be carried out directly, since we do not know
h(y) and g(y) at the optimum separating matrix W∗. Instead, we perform this in an
iterative fashion. Let W(l) be the separating system at the l-th iteration step. If we
assume that R̂(l)

hg = R̂hg(W(l)), it is more convenient to estimate explicitly the mixing
matrix Ĥ(l) = W−1(l) rather than the separating matrix W(l), by minimizing the following
time-varying cost function

Φ(Ĥ(l + 1)) = ‖R̂(l)
hg − Ĥ(l)‖2F , (7.40)

where ‖ · ‖F denotes the Frobenius norm of a matrix. This optimization problem is similar
to those used in the Bussgang technique for blind deconvolution (see [552] for more detail)
or similar to EM (expectation maximization).

It is important to note, the “back and forth” nature of the proposed approach: The
estimate W(l + 1) resulting from the minimization of (7.40) is then used to estimate a new
covariance matrix and construct the modified or updated cost function Φ(Ĥ(l + 2)) whose
minimization yields to Ĥ(l + 2) and so on.

The primary advantage of the cost function Φ(Ĥ(l + 1)) is that it is quadratic with
respect to Ĥ(l) = W−1(l) and can hence be efficiently minimized using the following quasi-
Newton method [321]

Ĥ(l + 1) = Ĥ(l) + η (R̂(l)
hg − Ĥ(l)). (7.41)

We can rewrite the above formula as

Ĥ(l + 1) = (1− η) Ĥ(l) + η R̂(l)
hg (7.42)

= Ĥ(l)
(
I− η (I− R̂(l)

f g)
)

. (7.43)

It is interesting to note that, from equation (7.42) the matrix Ĥ(l + 1) = W−1(l + 1) can
be interpreted as an estimate of R̂hg using an exponential window. This complies with our
interpretation of R̂hg as an estimate of the mixing matrix H.

The algorithm (7.43) can be alternatively derived by finding the zeros of the following
nonlinear matrix estimation function

F(Ĥ) = R̂hg − Ĥ = 0. (7.44)

Applying the Newton-Raphson method (see S. Cruces et al. [321, 332] for more detail), we
can find the zeros of F(Ĥ) by the following quasi-Newton recursion

Ĥ(l + 1) = Ĥ(l)− ηF(Ŵ(l))B(l), (7.45)

where B(l) is an approximation to the inverse of the derivative matrix ∂F(bH)

∂ bH that must
satisfy certain conditions described in [693]. Assuming that the previous estimation of
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matrix R̂hg is independent of the mixing matrix, yields

(
∂F(Ĥ(l))

Ĥ(l)

)−1

≈ −I = B(l) (7.46)

which boils down to the same algorithm (7.43).
Let us rewrite the algorithm (7.43) in terms of the separating matrix W(l) rather than

Ĥ = W−1(l). If matrix
(
I − η

(
I− R̂(l)

f g

))
is not singular, the result of inverting (7.43) is

W(l + 1) =
[
I − η(l)

(
I− R̂(l)

f g

)]−1

W(l), (7.47)

where R̂(l)
f g = (1/N)

∑N
k=1 f(y(l)(k))gT (y(l)(k)) and y(l)(k) = W(l)x(k). It should be

noted that the above algorithm is numerically stable, if the learning rate η is sufficiently
small. In other words, the function F(Ĥ) and its derivatives should be continuous. As-
suming that f(·) and g(·) are twice differentiable functions, the only discontinuities occur
at the points where the separation matrix W is singular. Therefore, by constraining the
algorithm to be stable in a closed region that avoids the singularity of the separating matrix
W, discontinuities on the cost function will not occur. The sufficient condition to ensure
numerical stability of the algorithm is [332]

η(l) <
1

‖R̂(l)
f g − I‖p

, (7.48)

where ‖ · ‖p denotes the p-norm of a matrix. When the above constraints are satisfied,

we can prevent the matrix I + η
(
R̂(l)

f g − I
)

from being singular which guarantees its
invertibility. As a consequence of (7.48), we can express the inverse in (7.47) as an infinite
series and make the following approximation [501]

(
I − η(l)

(
I− R̂(l)

f g

))−1

=
∞∑

i=0

(
η(l)

(
I− R̂(l)

f g

))i

≈ I + η(l)
(
I− R̂(l)

f g

)
. (7.49)

Finally, substituting (7.49) into (7.47), we obtain the following simplified robust learning
algorithm

W(l + 1) = W(l) + η(l)
(
I− R̂(l)

f g

)
W(l). (7.50)

It is interesting to note that this algorithm can be rewritten as

W(l + 1) = W(l) + η(l)
[
I−W(l)R̂(l)

hg

]
W(l), (7.51)
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which is an iterative version of the quasi-Newton algorithm for the inversion of R̂(l)
hg (see

[321] for more detail on matrix inversion based iterative algorithms). In addition, the
algorithm (7.50) is also the batch version of the family of adaptive algorithms proposed by
Cichocki et al. in [285, 283, 276]. These algorithms exhibit the equivariant property in the
absence of noise.

To summarize, we presented the derivation of a family of dual robust adaptive algorithms
[332]:

for estimating the mixing matrix

Ĥ(k + 1) = Ĥ(k)
[
I− η(k) (I− R̂(k)

f g )
]
, (7.52)

Ĥ(k + 1) = Ĥ(k)
[
I + η(k) (I− R̂(k)

f g )
]−1

(7.53)

and for estimating the separating matrix

W(k + 1) =
[
I + η(k) (I− R̂(k)

f g )
]

W(k), (7.54)

W(k + 1) =
[
I− η(k) (I− R̂(k)

f g )
]−1

W(k), (7.55)

where
R̂(k)

f g = (1− η0)R̂
(k−1)
f g + η0f(y(k))gT (y(k)).

It should be noted that the algorithms (7.52) and (7.54) have slightly different convergence
speed, since the product W(l + 1)Ĥ(l + 1) is not exactly equal to the identity matrix, even
if we start from the same initial conditions (say W(0) = Ĥ(0) = I). This feature can be
explained by the approximation in (7.49). However, it is straightforward to show that the
following equality holds

‖W(k + 1)Ĥ(k + 1)− I‖p = η2(k) ‖R̂(k)
f g − I‖2p. (7.56)

This means that both algorithms have almost the same convergence properties if η(k) is
small and/or R(k)

f g is very close to the identity matrix. Moreover, assuming that η(k) satisfies
(7.48) we have the following constraint

‖W(k + 1)Ĥ(k + 1)− I‖p < 1. (7.57)

7.2.1 Derivation of Robust ICA Algorithm Using Generalized Natural Gradient

Approach

The family of ICA algorithms discussed in the previous section can be derived in slightly
less general form using the generalized natural gradient formula [461]

∆W = −η
∂J(y,W)

∂W
WT D1(y)W, (7.58)
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where J(y,W) is a suitably selected cost function and D1(y) is a scaling positive definite
diagonal matrix. It should be noted that similarly to the standard natural gradient, the
formula (7.58) ensures stable gradient descent search of a local minimum of the cost func-
tion since the term WT D1(y)W is a symmetric positive definite matrix for nonsingular
separating matrix.

Let us consider an example of the cost function given by

J(y,W) = − log |det(W)| −
n∑

i=1

E{log(qi(yi))}. (7.59)

The gradient of the cost function (7.59) can be expressed as

∂J(y,W)
∂W

= −W−T + E{f(y)xT }, (7.60)

where f(y) = [f1(y1), f2(y2), . . . , fn(yn)]T , with fi(yi) = −d log(qi(yi)/dyi. Hence, applying
the generalized natural gradient formula (7.58), we obtain the known robust learning rule

∆W(l) = η(l)
[
Λ(l)− 〈

f(y)gT (y)
〉]

W(l), (7.61)

where Λ = D1(y) and g(y) = yT D1(y) = [g1(y1), g2(y2), . . . , gn(yn)]T .
In a special case, for symmetric pdf distributions of sources and odd activations functions

fi(yi) and
D1 = diag{〈|y1|p〉 , 〈|y2|p〉 , . . . , 〈|yn|p〉},

we obtain the median learning rule for p = −1

∆W(l) = η(l)
[
Λ(l)− 〈

f(y)[sign(y)]T
〉]

W(l), (7.62)

where sign(y) = [sign(y1), sign(y2), . . . sign(yn)]T . Simulation results show that such a me-
dian learning rule with the sign activation function is robust to additive noise.

7.2.2 Practical Implementation of the Algorithms

The generalized covariance matrix R̂(l)
f g employed in the robust learning algorithms (7.43)

and (7.50) can be typically estimated as a statistical average on the basis of available
(incoming) output data. There are two possibilities: On-line adaptations in which the
generalized covariance matrix R̂(l)

f g is replaced by its on-line sample estimate for each discrete
time instant k, i.e.,

R̂(k)
f g ≈ f(y(k))gT (y(k)) (7.63)

and batch adaptations where, if we assume that the stationarity and ergodicity properties
hold on a block of observations of L samples, we can replace the statistical average by the
moving average

R̂(k)
f g = (1− η) R̂(k−1)

f g + η f(y(k))gT (y(k)). (7.64)
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Another important practical issue is the estimation of the learning rate in order to ensure
both numerical stability and possibly high convergence speed. Let us start by considering
the on-line version of the algorithm (7.43) with one sample estimate the covariance matrix

W(k + 1) =
[
I − η

(
I− f(y(k))gT (y(k))

)]−1
W(k). (7.65)

To ensure numerical stability of the algorithm, the constraint η < 1
1+|gT (y)f(y)| must be

satisfied whenever gT (y) f(y) < 0. Let us rewrite (7.65) in terms of η0 = η
1−η as

W(k + 1) = (1 + η0)
[
I + η0 f(y(k))gT (y(k))

]−1
W(k). (7.66)

Applying the Sherman-Morrison inversion formula (see Appendix), we obtain

W(k + 1) = (1 + η0)
(
I − η0

f(y)gT (y)
1 + η0 gT (y)f(y)

)
W(k).

For small values of η0, it is possible to neglect the higher order terms with ηi
0 ≈ 0 for i ≥ 2,

which yields a normalized stochastic version of the algorithm (7.43)

W(k + 1) =
(
I + η0

I− f(y)gT (y)
1 + η0 gT (y)f(y)

)
W(k). (7.67)

It is interesting to note that equation (7.67) can be interpreted as the algorithm (7.50) with
the self-adaptive learning rate

η(k) =
η0

1 + η0 gT (y(k))f(y(k))
. (7.68)

To prevent that the algorithm escapes from the continuous region, where it should be stable,
the variable learning rate should satisfy condition (7.48). One way to ensure this is choosing
η < 1 and setting η < 1

|gT (y)f(y)| whenever gT (y)f(y) < 0.
An alternative way to estimate a simple learning rate that satisfies (7.48) is by employing

the following condition: Impose the constraint η < 1, by replacing the denominator of (7.68)
by its positive upper bound value 1 + η0 |gT (y)f(y)|, i.e.,:

η(k) =
η0

1 + η0 |gT (y(k))f(y(k))| , (7.69)

where 0 < η0 < 1 is a fixed constant. This normalization is similar to that used in the
normalized or posterior LMS [398] and is equivalent to that proposed in [155] for the EASI
algorithm. In practical implementations of the on-line algorithm, we will typically choose
η << 1 since the single sample estimate of R(l)

f g introduce a considerable bias due to noise
into the algorithm.

For the batch adaptation, we can use the following step size which is a generalization of
Eq. (7.69)

η(k) =
η0

1 + η0 ‖R(k)
f g ‖p

, (7.70)
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where 0 < η0 < 1. Note that, when p = 2 and R(k)
f g ≈ f(y(k))gT (y(k)), Eq. (7.70) reduces

to (7.69). Taking into account that ‖R(k)
f g − I‖p ≤ 1 + ‖R(k)

f g ‖p, it is easy to show that the
batch step size (7.70) always satisfies condition (7.48) for any given p-norm. The selection
of the norm in (7.70) depends on practical considerations, i.e., acceptable complexity of
the algorithm. Some norms such as the 1-norm or the ∞-norm are easy to compute and
therefore lead to relatively simple evaluation of step-sizes. On the other hand, the 2-
norm of matrices provides the fastest convergence for a fixed η, but its exact evaluation is
computationally more expensive than using the 1-norm. In practical implementations of
the batch algorithm, we will typically choose η close to unity, since we are interested in an
algorithm that converges as fast as possible.

7.2.3 Special Forms of the Flexible Robust Algorithm

In this section, we show how several well known learning algorithms for BSS discussed
previously can be derived as special cases of the algorithm (7.50). This enables us to
interpret them as quasi-Newton algorithms that iteratively invert a generalized covariance
matrix. We focus here on adaptive, on-line algorithms only, although the extension to batch
algorithms is straightforward.

7.2.4 Decorrelation Algorithm

Choosing f(y) = g(y) = y, Λ = I and the normalized step given by (7.69) the adaptation
rule (7.50) reduces to the decorrelation algorithm proposed by Almeida et al. [18] (see also
[398])

W(k + 1) = W(k) + η0
I− y yT

1 + η0 yT y
W(k). (7.71)

7.2.5 Natural Gradient Algorithms

Selecting g(y) = y and using the normalized learning rate given by (7.69), the algorithm
(7.50) simplifies into

W(k + 1) = W(k) + η0
I− f(y) yT

1 + η0 |yT f(y)|W(k), (7.72)

which is a normalized version of the Natural Gradient algorithm developed rigorously in
Chapter 6 [25, 34, 332].

7.2.6 Generalized EASI Algorithm

The family of EASI algorithms was proposed by Cardoso and Laheld [155] and extended
by Karhunen et. al. in [677, 678]. To derive this algorithm from the learning rule (7.50),
we employ an approach similar to that described in [155]. Let us start decomposing the
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separating stage in two stages, i.e., W = WbWa. The first matrix Wa will be selected to
decorrelate the input, i.e., to diagonalize the symmetric matrix Ry y. This can be done with
algorithm (7.71). On the other hand, the second matrix Wb will be selected to diagonalize
the matrix Rf g. This objective can be achieved using the following on-line version of (7.50)

Wb(k + 1) = Wb(k) + η0
I− f(y) gT (y)

1 + η0 |gT (y)f(y)| Wb(k). (7.73)

However, in order to integrate (7.73) and (7.71) into a single recursion for the overall
separating matrix W, it is necessary both adaptations to be approximately orthogonal (at
a first order in η) [155, 332]. This can be accomplished if we replace I − f(y)gT (y) by
its projection onto the space of skew-symmetric matrices. Thus, the resulting algorithm is
becomes

Wb(k + 1) =
(
I− η0

2
f(y)gT (y)− g(y)fT (y)

1 + η0 |gT (y)f(y)|
)

Wb(k).

Combining (7.71) and (7.73) so that W(k + 1) = Wb(k + 1) Wa(k + 1) and neglecting the
higher order terms with η (which is a valid approximation for η small enough), we arrive at

W(k + 1) =
(
I + η0

I− yyT

1 + η0 |yT y| −
η0

2
f(y)gT (y)− g(y)fT (y)

1 + η0 |gT (y)f(y)|
)

W(k), (7.74)

which is a normalized version of the generalized EASI algorithms proposed by Karhunen
and Pajunen in [677, 155].

7.2.7 Non-linear PCA Algorithm

When the separation matrix W(l) is restricted to be orthogonal, it is possible to relate the
algorithm (7.50) with the non-linear PCA algorithm developed by Oja and Karhunen in
[911, 676]. First, let us redefine the generalized (non-linear) covariance matrix as

R̄(l)
f g =

〈
f(y)gT (y)

〉
+ I,

where f(y) is an odd function and g(y) = f(y)− y. Therefore, the on-line implementation
of the algorithm (7.50) reduces to

W(k + 1) = W(k)− η f(y)gT (y)W(k)
= W(k)− η f(y)

(
fT (y)− yT

)
W(k). (7.75)

Since we are assuming that W(k) is an orthogonal matrix, i.e., WT (k)W(k) = I, we can
rewrite (7.75) as

W(k + 1) = W(k) + η f(y)
(
xT − fT (y)W(k)

)
, (7.76)

which is the non-linear PCA algorithm proposed in [911, 676]. However, it should be noted
that the dynamics of the algorithm (7.50) and the non-linear PCA algorithm are different
in general, since both algorithms do not force the orthogonality of W(k) at each iteration.
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7.2.8 Flexible ICA Algorithm for Unknown Number of Sources and their Statistics

In practice, the number of sources is generally unknown and may change over the time.
Moreover, their statistics are also usually unknown. For the number of sensors larger or
equal to the number of sources there are at least three different approaches to solve this
problem. The first possible approach is to apply PCA or robust orthogonalization based
on SVD (as have been discussed in Chapters 3 and 4) in order to determine the number of
sources and simultaneously to reduce the total mixing matrix to a square n×n nonsingular
matrix. The second efficient approach is based on the extraction of the sources sequentially
one by one using the methods described in Chapter 5 till we extract all desired sources. The
third efficient approach, discussed in this section, is to apply directly the separating network
with the number of outputs equal to the number of sensors, so the separating matrix is a
square nonsingular matrix.

In this case, we propose to use the following flexible algorithm for W ∈ IRm×m with
m ≥ n

∆W(k) = η(k)
[
Λ(k) −R(k)

f g

]
W(k), (7.77)

where

Λ(k) = (1− η0)Λ(k−1) + η0 diag{f(y(k))gT (y(k))}, (7.78)

R(k)
f g = (1− η0)R

(k−1)
f g + η0 f(y(k))gT (y(k)), (7.79)

whereas diag{R} denotes diagonal matrix which is the main diagonal of R. Usually for
the noise-free case when the number of sensors is larger than the number of sources, some
outputs are set automatically to zero if they are below some threshold value. This way, for
the ideal noiseless case the redundant (m−n) output signals yi should decay during adaptive
learning process to zero and then only n outputs will correspond to the recovered sources.
It should be noted that we assume that the matrix W is square matrix, i.e., the number
of outputs of the separating system is equal to the number of sensors, although in practice
the number of sources can be less than the number of sensors (m ≥ n). Such a model is
justified by the fact that the number of sources may change over the time. Furthermore, in
practice, we have additive noise which can be considered as auxiliary unknown sources; so
it is reasonable to extract these noise signals, too.

For small magnitude of the additive noise and m > n the above algorithm may be
unstable in the sense that the Frobenius norm of the separating matrix W(k) slowly tends
to infinity for a large number of iterations. In order to stabilize the algorithm, we can use
the modified algorithm with forgetting factor as:

∆W(k) = η(k)
[
Λ(k) −R(k)

f g − γ(k) Im

]
W(k), (7.80)

where the forgetting factor is expressed as

γ(k) = tr
(
WT (k)(Λ(k) −R(k)

f g )W(k)
)

. (7.81)
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It has been shown in Chapter 4 that such an algorithm stabilizes the Frobenius norm of
W(k) to unity if ‖WT (0)‖F = 1.

Nonlinear functions of vectors f [y(k)] and g[y(k)] should be suitably designed as ex-
plained in the previous chapter. If the measured signals xi(k) contain mixtures of both
sub-Gaussian and super-Gaussian sources, in order to satisfy stability conditions (see Ap-
pendix A), we can use the switching activation functions:

fi(yi) =
{

ϕi(yi) for κ4(yi) > δ
yi otherwise

(7.82)

gi(yi) =
{

yi for κ4(yi) > −δ
ϕ(yi) otherwise (7.83)

κ4(yi) = E{y4
i }/E2{y2

i } − 3 is the normalized value of kurtosis, δ ≥ 0 is a small threshold
and ϕi(yi) are suitably designed nonlinear functions depending on the distribution of source
signals. There are many possible choices of activation functions like ϕi(yi) = tanh(θiyi) or
ϕi(yi) = sign(yi) exp(−θi|yi|), with θi ≥ 0 1. It should be noted that such nonlinearities
provide a degree of robustness to outliers that is not shared by nonlinearities of the form
fi(yi) = sign(yi)|yi|ri−1 (for ri ≥ 3).

The above learning algorithms (7.77)-(7.83) monitor and estimate the statistics of each
output signal and depending on the sign or value of its normalized kurtosis (which is a
measure of the distance from the Gaussianity), automatically select (or switch) suitable
nonlinear activation functions, such that successful (stable) separation of all non-Gaussian
source signals is possible. In this approach, activation functions are chosen to be adaptive
time-varying nonlinearities. For this choice, the parameters θi ≥ 2 can be either fixed in
value or adapted during the learning process [275, 1308].

7.3 COMPUTER SIMULATIONS

The validity and performance of the adaptive learning algorithms presented in this chapter
have been extensively simulated for a large variety of difficult separation problems. Very
good results have been obtained. We shall present here only four illustrative examples. In
all examples, we used f(y) = y3 and g(y) = tanh(y), although we explored many other
functions with similar results. For all of these examples the H–J algorithm, Eq. (7.7) failed
or performed very poorly.

Example 7.1 (Blind separation for an ill-conditioned problem) Two deterministic
and relatively weak signals: Triangular and frequency modulated sine-waves are mixed with
large uniformly distributed noise (see that was large in magnitude Fig. 7.7 (a)):

s1(t) = 1.0× n(t) uniformly distributed noise in the range of magnitude of -1 to 1.
s2(t) = 0.01× triangular (160t) triangular waveform,
s3(t) = 0.1× [sin(800t + 6 cos(90t))]

1Since the activation function ϕi(yi) = sign(yi) exp(−θi|yi|) is not a differentiable function at zero it can
be closely approximated by ϕi(yi) = tanh(βyi) exp(−θi|yi|), with β >> 1.
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Fig. 7.7 Computer simulation results for Example 1: (a) Waveforms of primary sources s1, s2, s2,
(b) sensors signals x1, x2, x3 and (c) estimated sources y1, y2, y3 using the algorithm (7.32).
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The mixing matrix H was chosen to be nearly singular:

H =




1 2 3
1 2.001 3
1 2 3.002


 .

This means that all sensor signals look almost identical. Such a situation may occur when
sensors are located very close to each other.

It was assumed that only the combined sensor signals x1(t), x2(t) and x3(t) were observ-
able. Examples of computer simulation results of using three-layer neural network (see Fig.
7.6 (a)) and associated learning algorithm (7.32) are shown in Fig. 7.7 (a), (b) and (c). The
algorithms (7.32) have found the desired solution after approximately 900 milliseconds (1
millisecond corresponds in this example to two iteration steps). Note that the weak source
signals are not visible from the observed sensor signals, which are all almost identical up to
a sign factor. However, the source signals were completely retrieved by the neural network,
as illustrated in Fig. 7.7 (b), (c). For example, in Fig. 7.7 (c) the shapes of the output
signals are almost the same as the source signals except for the first 900 ms, where the
neural network is learning the weights.

Example 7.2 (Blind separation of badly scaled signals) Five badly scaled signals are
shown in Fig. 7.8 (a):

s1(t) = 10−6 × [sin(350t)][sin(60t)],
s2(t) = 10−5 × triangular (70t) triangular waveform,
s3(t) = 10−4 × [sin(800t)][sin(80t)],
s4(t) = 10−3 × [cos(400t + 4 cos(60t))],
s5(t) = 1.0× n(t) Gaussian noise in the range: -1 to 1.

These signals are mixed together by the 5×5 Hilbert mixing matrix H, which is extremely
ill-conditioned. We employed a single-layer feed-forward neural network with the learning
algorithm (7.25). The separation process after 2000 iterations (time of 500 ms) is shown
in Fig. 7.8 (a), (b). Note that the amplitude ratios of the source signals are 1 : 10 : 102 :
103 : 106. Of course, in this example the very weak and badly scaled signals are absolutely
not visible from the observed sensor signals which all appear identical to the noise signal,
within a scale factor (see Fig. 7.8 (a)). However, the source signals are successfully and
completely retrieved by using the learning algorithm, (7.25), as shown in Fig. 7.8 (c). The
other local algorithms had difficulties in separating such weak and badly scaled signals.

Example 7.3 (Estimation of unknown number of speech signals) In this experiment
we assume that the number of sources is unknown (but their number is not greater than
the number of the sensors). Five natural nonstationary speech signals shown in Fig. 7.9 (a)
are mixed in 7 sensors (microphones) by using an ill-conditioned 7× 5 mixing matrix. It is
assumed that the mixing matrix and the number of the sources are completely unknown,
only sensor signals shown in Fig. 7.9 (b) are available. Recovered signals are shown in Fig.
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Fig. 7.8 Exemplary computer simulation results for Example 2 using the algorithm (7.25). (a)
Waveforms of primary sources, (b) noisy sensor signals and (c) reconstructed source signals.
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Fig. 7.9 Blind separation of speech signals using the algorithm (7.80): (a) Primary source signals,
(b) sensor signals, (c) recovered source signals.

7.9 (c) using the algorithm (7.80) with separating matrix W ∈ IR7×7. The algorithm was
able after 1000 iterations not only successfully to estimate the waveform of original speech
signals but also their number. It should be noted that two output signals quickly decay to
zero.

Example 7.4 (Extraction of Fetal ECG sources) The ECG data of pregnant women
as shown in Fig. 7.10 (a) are the voltage potential recordings during an 8-channel ex-
periment. Only 2.5 seconds of recordings (resampled at 200 Hz) are displayed. In this
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Fig. 7.10 (a) Eight ECG signals are separated into: Four maternal signals, two fetal signals and two
noise signals. (b) Detailed plots of extracted fetal ECG signals. The mixed signals were obtained
from 8 electrodes located on the abdomen of a pregnant woman. The signals are 2.5 seconds long,
sampled at 200 Hz.

experiment, the electrodes were placed on the abdomen and the cervix of the mother. Ab-
dominal signals measured near the fetus are shown in channels 1 to 5. The weak fetal
contributions are contained in x1 to x5, although they are not clearly visible. The ECG raw
data measured through 8 channels are dominated by mother’s ECG (MECG). The flexible
ICA algorithm (7.77) was applied to process the ECG raw data, and the result in shown in
Figure 7.10. The 3rd and 5th independent components (output signals y3, y5) correspond
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to the FECG signal. The 2nd and 7th independent components contain the MECG. The
rest of the extracted signals might contain noise contributions. The weak FECG signal was
well extracted by the ICA algorithm (7.77), whereas the PCA had a difficulty to extract it.

Appendix A. Stability Conditions for the Robust ICA Algorithm (7.50) [332]

In this Appendix, we present the local stability conditions of the algorithm (7.50) derived
in the general form by Cruces et al. [332]. Let us adapt the following short notation
fi = fi(si), f ′i = ∂fi(si)

∂si
, gi = gi(si), g′i = ∂gi(si)

∂si
.

Theorem A.1 Let assume that

1. The vector s = [s1, s2, . . . , sn]T consists of n real and zero-mean sources satisfying the
following scaling conditions

E{figi} = 1. (A.1)

2. The nonlinear functions fi(yi) and gi(yi), ∀i are at least twice differentiable in the
domain of support.

3. The learning rate η is sufficiently small to ensure numerical stability of the algorithm
(7.50).

Then the algorithm (7.50) with a constant step-size which is repeated here for convenience

W(l + 1) = W(l) + η
(
I−R(l)

f g

)
W(l) (A.2)

has an asymptotically stable point at the separation solution if and only if the following
conditions are satisfied

E{f ′isigi}+ E{fisig
′
i} > 0, (A.3)

E{f ′i}E{sjgj}+ E{f ′j}E{sigi} > 0, (A.4)
E{f ′i}E{f ′j}E{sigi}E{sjgj} > E{g′i}E{g′j}E{sifi}E{sjfj} (A.5)

for all i, j|i 6=j = 1, 2, . . . , n.

The above stability conditions can be considered as an extension or generalization of the
stability conditions derived by Amari et al. [29]. From this Theorem, we can obtain the
following Corollary, first presented by Amari in [25].

Corollary 1 If g(y) = y and the sources are properly scaled such that

E{fisi} = 1, ∀i, (A.6)

then the asymptotic stability conditions reduce to

E{f ′is2
i }+ 1 > 0, (A.7)
E{f ′i} > 0, (A.8)

E{f ′i}E{f ′j}E{s2
i }E{s2

j} > 1 (A.9)
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for all i, j|i 6=j = 1, 2, . . . , n.

Note that, when g(y) = y the constraint E{figj} = 0, ∀i 6= j is always true at the
correct equilibrium point since, due to the independence and zero-mean assumptions for
the sources, i.e., E{figj} = E{fi}E{gj} = E{fi}E{yj} = 0, ∀i 6= j. The conditions
(A.7)-(A.9) are obtained directly from (A.3)-(A.5) taking into account (A.6) and the fact
that gi = si and g′i = 1 for all i = 1, 2, . . . , N .

If the sources have even pdfs and the non-linearities are strictly monotonically increasing
odd functions, (A.3)-(A.4) are always satisfied. These assumptions, however, do not guar-
antee that condition (A.5) is satisfied. In this case, the following Corollary shows how to
stabilize the algorithm.

Corollary 2 If f(y) = y then the asymptotic stability conditions reduce to:

E{g′is2
i }+ 1 > 0, (A.10)

E{g′i}E{g′j}E{s2
i }E{s2

j} < 1 (A.11)

for all i, j|i 6=j = 1, 2, . . . , n.

Corollary 3 If

E{f ′i}E{f ′j}E{sigi}E{sjgj} < E{g′i}E{[g′j}E{sifi}E{sjfj} (A.12)

then we can interchange fi = fi(si), with gi = gi(si) what guarantee the asymptotical
stability of the algorithm (7.50).

Proof. If the pdfs of the sources are even and the nonlinearities are strictly odd functions,
then E{f(s)} = 0 and E{g(s)} = 0. On the other hand, when the nonlinearities are
strictly monotonically increasing odd functions, E{f ′isigi} > 0 and E{fisig

′
i} > 0, ∀i and

condition (A.3) is true. For the same reasons, E{f ′i} > 0 and E{sigi} > 0, ∀i and (A.4) is
also true. Finally, condition (A.5), when the equality does not hold, is not critical since it
can be forced by just permuting the order of the functions f(·) and g(·).

These facts have been observed by Sorouchyari in [1097] for the local Jutten-Hérault
algorithm and later by Amari for natural gradient algorithm in [29] (for g(y) = y) and
Zhang for convolutive models [1374]. However, the stability conditions presented in this
chapter are valid for the more general case of two non-linear activation functions and for
the flexible robust algorithm (7.50) [332, 283].

Corollary 4 The algorithm (7.43)

Ĥ(l + 1) = Ĥ(l)
(
I− η (I− R̂(l)

f g)
)

(A.13)

has the same asymptotical stability conditions given by Eq. (A.3)-(A.5) as the algorithm
(7.50).

The intuitive justification of this Corollary is based on the fact demonstrated with equation
(7.56), that both algorithms have almost the same convergence properties and the same
equilibrium points corresponding to true estimation of source signals.
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Proof of Theorem A.1. We will prove now that the conditions (A.3)-(A.5) ensure the
asymptotic stability of the algorithm (7.50) under the assumptions of Theorem A.1 [332].
Let us start multiplying both sides of Eq. (A.2) by the mixing matrix H to express the
algorithm (7.50) in terms of the global transfer matrix G as

G(l + 1) = G(l) + η
(
I−R(l)

f g

)
G(l). (A.14)

Let C(Gs) = f(Gs)gT (Gs)−I. Condition (A.1) is necessary to allow the separation solution
G∗ = I to be an equilibrium point of the algorithm, i.e., E{C(G∗s)} = 0.

The next step is to study the asymptotic stability of the algorithm at this point. For this
purpose, we will study the behavior of the Ordinary Differential Equation (ODE) associated
with the algorithm at the separation solution [96, 97]. Let us define the mean field of the
algorithm as M(G) = E{C(Gs)G} and an arbitrary small matrix perturbation ε of the
global transfer matrix at the separation solution G∗. Then,

M(I + ε) = E{C(s + εs)(I + ε)} = E{C(s + εs)}+O(ε), (A.15)

where O(ε) = E{C(s + ε)ε}.
To find the linear approximation to the mean field in terms of ε, we will replace both

functions f(s + εs) and g(s + εs) by first-order Taylor expansion at G∗ = I as

f(s + εs) = f(s) + f ′(s)εs + o(ε),
g(s + εs) = g(s) + g′(s)εs + o(ε), (A.16)

where o(ε)/||ε|| tends to zero as ‖ε‖ tends to zero and f ′(s) = ∂f(s)
∂s and g′(s) = ∂g(s)

∂s
denote two diagonal matrices since f(·) and g(·) act component-wise. Substituting (A.16)
into (A.15) and having in mind that E{C(G∗s)} = 0, we can express the algorithm’s mean
field as

M(I + ε) = E{f ′(s)εsgT (s)}+ E{f(s)sT εT (g′(s))T }+O(ε) + o(ε). (A.17)

Denoting fi = {f(s)}i, f ′i = {f ′(s)}ii, the terms of the mean field can be written as

Mij(I + ε) =
∑

k

E{f ′iskgj}εik +
∑

k

E{fiskg′j}εjk +O(ε) + o(ε). (A.18)

Taking into account the independence assumptions for the sources at the separation solution,
we obtain

Mii(I + ε) = E{f ′isigi}εii + E{fisig
′
i})εii +

∑
k 6=i E{f ′igi}E{sk}εik

+
∑

k 6=i E{fig
′
i}E{sk}εik +O(ε) + o(ε),

Mij(I + ε) = E{f ′i}E{sjgj}εij + E{f ′isi}E{gj}εii +
∑

k 6=i,j E{f ′i}E{sk}E{gj}
+ E{fisi}E{g′j}εji + E{fi}E{sjg

′
j}εjj

+
∑

k 6=(i,j) E{fi}E{sk}E{g′j}+O(ε) + o(ε).

Using the zero-mean assumption for the sources (E{si} = 0) for all i, we obtain

Mii(I + ε) = E{f ′isigi}εii + E{fisig
′
i})εii +O(ε + o(ε),

Mij(I + ε) = E{f ′i}E{sjgj}εij + E{f ′isi}E{gj}εii

+E{fisi}E{g′j}εji + E{fi}E{sjg
′
j}εjj +O(ε) + o(ε).
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We next vectorize the average Eq. (A.14) and consider the corresponding differential equa-
tion

dΘ
dt

= M(Θ), (A.19)

where Θ = vecG.
Using the above relationships it is found that the gradient of M(Θ) at the separation

takes a simple form: It is a block-diagonal matrix with diagonal block elements of size one
and two [29, 321, 155, 911].

One of the conditions for asymptotic stability is extracted from the 1×1 diagonal blocks

∂Mii(I + ε)
∂εii

ε=0 = E{f ′isigi}+ E{fisig
′
i} > 0. (A.20)

The 2× 2 diagonal blocks are of the form
(

∂Mij(I+ε)
∂εij

∂Mij(I+ε)
∂εji

∂Mji(I+ε)
∂εij

∂Mji(I+ε)
∂εji

)
=

(
E{f ′i}E{sjgj} E{g′j}E{sifi}
E{g′i}E{sjfj} E{f ′j}E{sigi}

)
=

(
a b
c d

)
(A.21)

for all i 6= j. The eigenvalues of this block matrices are the roots of the characteristic
polynomial equation P (λ) = λ2− (a+d)λ+(ad− bc). We check directly that the real parts
of the eigenvalues are positive if a + d > 0 and ad− bc > 0. Then, substituting a, b, c, d into
these expressions, we arrive at the sufficient conditions for the asymptotic stability of the
algorithm (7.50)

E{f ′i}E{sjgj}+ E{f ′j}E{sigi} > 0, (A.22)
E{f ′i}E{[f ′j}E{sigi}E{sjgj} > E{g′i}E{g′j}E{sifi}E{sjfj} (A.23)

for all i 6= j. ¤





8
Robust Techniques for BSS
and ICA with Noisy Data

All progress is based upon a universal innate desire of every organism to live beyond its means.
—(Samuel Butler)

8.1 INTRODUCTION

In this chapter, we focus mainly on approaches to blind separation of sources when the
measured signals are contaminated by large additive noise. We extend existing adaptive
algorithms with equivariant properties in order to considerably reduce the bias caused by
measurement noise for the estimation of mixing and separating matrices. Moreover, we
propose dynamical recurrent neural networks for simultaneous estimation of the unknown
mixing matrix, source signals and reduction of noise in the extracted output signals. The
optimal choice of nonlinear activation functions for various noise distributions assuming a
generalized-Gaussian-distributed noise model is also discussed. Computer simulations of
selected techniques are provided that confirm their usefulness and good performance.

As the estimation of a separating (demixing) matrix W and a mixing matrix Ĥ in the
presence of noise is rather difficult, the majority of past research efforts have been devoted
to the noiseless case or assumed that noises have a negligible effect on the performance of
the algorithms. The objective of this chapter is to present several approaches and learning
algorithms that are more robust with respect to noise than the techniques described in the
previous chapters or that can reduce the noise in the estimated output vector y(k). In this
chapter, we assume that the source signals and additive noise components are statistically
independent.
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In general, the problem of noise cancellation is difficult or is even impossible to treat,
because we have (m + n) unknown source signals (n sources and m noise signals), and
we have usually only m available or measured sensor signals. However, in many practical
situations, we can estimate unbiased separating matrices and also reduce or cancel the
noise if some information about the noise is available. For example, in some situations, the
environmental noise can be measured or modelled.

8.2 BIAS REMOVAL TECHNIQUES FOR PREWHITENING AND ICA

ALGORITHMS

8.2.1 Bias Removal for Whitening Algorithms

Consider at first a simpler problem related to ICA, of the standard decorrelation or prewhiten-
ing algorithm for x(k) given by [18, 398]

W(k + 1) = W(k) + η(k)[I− y(k)yT (k)]W(k) (8.1)

or its averaged version given by

∆W(k) = η(k)
[
I− 〈

y(k)yT (k)
〉]

W(k), (8.2)

where y(k) = W(k)x(k) and 〈·〉 denotes statistical average. When x(k) is noisy such that
x(k) = x̂(k) + ν(k), where x̂(k) and ŷ(k) = W(k) x̂(k) are the noiseless estimates of the
input and output vectors, respectively, it is easy to show that the additive noise ν(k) within
x(k) introduces a bias in the estimated decorrelation matrix W. The covariance matrix of
the output can be evaluated as

R̂y y =
〈
y(k)yT (k)

〉
= WR̂x̂x̂WT + WR̂ννWT , (8.3)

where R̂x̂x̂ =
〈
x̂(k)x̂T (k)

〉
= 1

N

∑N
k=1 x̂(k)x̂T (k) and R̂νν =

〈
ν(k)νT (k)

〉
.

Assuming that the covariance matrix of the noise is known (e.g., R̂νν = σ̂2
νI) or can be

estimated, a proposed modified algorithm employing bias removal is given by

∆W(k) = η(k)
[
I−R(k)

y y + W(k)R̂ννWT (k)
]
W(k). (8.4)

The stochastic gradient version of this algorithm for R̂νν = σ̂2
νI is

∆W(k) = η(k)
[
I− y(k)yT (k) + σ̂2

νW(k)WT (k)
]
W(k). (8.5)

Alternatively, to reduce the influence of white additive noise for colored signals, we can
apply the modified learning rule given by

∆W(k) = η(k)
[
I− 1

2
[
〈
y(k)yT (k − p)

〉
+

〈
y(k − p)yT (k)

〉
]
]
W(k), (8.6)
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where p is a small integer time delay. It should be noted that the above algorithm is
theoretically insensitive to additive white noise. In fact, instead of diagonalizing the zero-
lag covariance matrix Ry y =

〈
y(k)yT (k)

〉
, we diagonalize the time-delayed covariance

matrix

R̃y(p) =
1
2
[
〈
y(k)yT (k − p)

〉
+

〈
y(k − p)yT (k)

〉
] (8.7)

which is insensitive to additive white noise on the condition that noise-free sensor signals
x̂(k) are colored signals and the number of observations is sufficiently large (typically more
than 104 samples).

8.2.2 Bias Removal for Adaptive ICA Algorithms

A technique similar to the one described above can be applied to remove the bias of coeffi-
cients for a class of natural gradient algorithms for ICA [404]. We illustrate the technique
on the basis of the ICA algorithm of the following form (see Chapters 6 and 7 for more
explanation):

∆W(k) = η(k)
[
I−R(k)

f g

]
W(k). (8.8)

Nonlinear functions of vectors f [y(k)] and g[y(k)] should be suitably-designed as explained
in the previous chapters.

Remark 8.1 It should be noted that the algorithm works on the condition that E{fi(yi)} =
0 or E{gi(yi)} = 0. In order to satisfy these conditions for non-symmetric distributed
sources for each index i we use only one nonlinear function and the second one is linear.
In other words, for any i we employ fi(yi) and gi(yi) = yi or fi(yi) = yi and gi(yi).

The above learning algorithm has been shown to possess excellent performance when applied
to noiseless signal mixtures; however, its performance deteriorates with noisy measurements
due to undesirable coefficient biases and the existence of noise in the separated signals. To
estimate the coefficient biases, we determine the Taylor series expansions of the nonlinear-
ities fi(yi) and gj(yj) about the estimated noiseless values ŷi. The generalized covariance
matrix Rf g can be approximately evaluated as [404]

Rf g = E{f [y(k)]g[yT (k)]} ∼= E{f [ŷ(k)]g[ŷT (k)]}+ kfWR̂ννWT kg, (8.9)

where kf and kg are diagonal matrices with entries

kfi = E{dfi(yi(k))/dyi}, kgi = E{dgi(yi(k))/dyi},

respectively. Thus, a modified adaptive learning algorithm with reduced coefficient bias has
the form

∆W(k) = η(k)
[
I−R(k)

f g + kfW(k)R̂ννWT (k)kg

]
W(k), (8.10)
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which can be written in a more compact form as

∆W(k) = η(k)
[
I−R(k)

f g + C ◦W(k)R̂ννWT (k)
]
W(k), (8.11)

where C = [cij ] is an n× n scaling matrix with entries cij = kfikgj and operator ◦ denotes
the Hadamard product.

In the special case when all of the source distributions are identical, fi(yi) = f(yi) ∀i,
gi(yi) = g(yi) ∀i, and R̂νν = σ̂2

νI, the bias correction term simplifies to B = σ̂2
νkfkgWWT .

It is interesting to note that we can almost always select nonlinearities such that the global
scaling coefficient c = kfkg can be close to zero for a wide class of signals. For example,
when f(yi) = |yi|rsign(yi) and g(yi) = tanh(γyi) are chosen, or when f(yi) = tanh(γyi)
and g(yi) = |yi|rsign(yi), the scaling coefficient is equal to c = kfkg = rγE{|yi|r−1(k)}[1−
E{tanh2(γyi(k))}] for r ≥ 1, which is smaller over the range |yi| ≤ 1 than the case when
if g(yi) = yi is chosen. Moreover, we can optimally design the parameters r and γ so
that within a specified range of yi, the absolute value of the scaling coefficient c = kfkg is
minimal.

Another possible solution to mitigate coefficient bias is to employ nonlinearities in the
form f̃(yi) = f(yi) − αiyi and g(yi) = yi with αi ≥ 0. The motivation behind the use
of linear terms −αiyi is to reduce the values of the scaling coefficients as cij = kfi − αi

as well as to reduce the influence of large outliers. Alternatively, the generalized Fahlman
functions given by tanh(γi yi)−αiyi can be used for either fi(yi) or gi(yi), where appropriate
[489, 488].

One disadvantage of these proposed techniques for bias removal is that any equivariant
properties for the resulting algorithm are lost when a bias compensating term is added,
and thus the algorithm may perform poorly or even fail to separate sources if the mixing
matrix is very ill-conditioned. For this reason, it is necessary to design nonlinearities which
correspond as closely as possible to those produced from the true pdf’s of the source signals
while also maximally-reducing the coefficient bias caused by noise.

Example 8.1 We now illustrate the behavior of the bias removal algorithm in (8.10) via
simulation [404]. In this example, a 3× 3 mixing matrix given by

H =




0.6 0.7 0.7
0.9 0.1 0.5
0.1 0.5 0.8


 (8.12)

is employed. Three independent random sources-one uniform-[−1, 1]-distributed and two
binary-{±1}-distributed–were generated, and a matrix equation x(k) = Hs(k)+ν(k) is used
to create x(k), where each ν(k) is a jointly Gaussian random vector with the covariance
R̂νν = σ̂2

νI with σ̂2
ν = 0.01. The condition number of HE{s(k)sT (k)}HT is 51.5. Here,

fi(y) = y3 and gi(y) = tanh(10y) for all 1 ≤ i ≤ 3 and η(k) = 0.001. Twenty trials were run,
in which W(0) were different random orthogonal matrices such that W(0)WT (0) = 0.25I,
and ensemble averages were taken in each case. Figure 8.1 shows the evolution of the
performance factor ζ(k) defined as

ζ(k) =
1
n

n∑

i=1

{(
n∑

k=1

|gik|
maxj |gij | − 1

)
+

(
n∑

k=1

|gki|
maxj |gji| − 1

)}
, (8.13)
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Fig. 8.1 Ensemble-averaged value of the performance index for uncorrelated measurement noise in
the first example: dotted line represents the original algorithm (8.8) with noise, dashed line represents
the bias removal algorithm (8.10) with noise, solid line represents the original algorithm (8.8) without
noise [404].

where n = 3, gij is the (i, j)-element of the global system matrix G = WH and maxj gij

represents the maximum value among the elements in the ith row vector of G, maxj gji

does the maximum value among the elements in the ith column vector of G. The value
of ζ(k) measures the average source signal crosstalk in the output signals {yi(k)} if no
noise is present. As can be seen, the original algorithm yields a biased estimate of W(k),
whereas the bias removal algorithm achieves a crosstalk level that is about 7 dB lower. Also
shown for comparison is the original algorithm with no measurement noise, showing that
the performance of the described algorithm approaches this idealized case for small learning
rates.

Remark 8.2 In the special case of Gaussian additive noise, we can design a very special
form of nonlinearities in such way that entries of the generalized covariance matrix Rf g =
E{y(k)gT (y(k)} are expressed by higher order cross-cumulants that are non sensitive to
Gaussian noise (see Section 8.5 for details)
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8.3 BLIND SEPARATION OF SIGNALS BURIED IN ADDITIVE CONVOLUTIVE

REFERENCE NOISE

We next consider the following problem: How to efficiently separate the sources if additive
colored noise cannot any longer be neglected. This can be stated alternatively as how to
cancel or suppress additive noise. In general, the problem is rather difficult, because we
have (m + n) unknown signals (where m is the number of sensors). Hence the problem is
highly under-determined, and without any a priori information about the mixture model
and/or noise, it is very difficult or even impossible to solve it [1233].

However, in many practical situations, we can measure or model the environmental noise.
In the sequel, we shall refer to such a noise as reference noise νR(k) or a vector of reference
noises (for each individual sensor νRi(k)) (see Fig. 8.2). For example, in the acoustic cocktail
party problem, we can measure such noise during short salience period (when all persons do
not speak) or we can measure and record it on-line, continuously in time, by an additional
isolated microphone. Similarly, one can measure noise in biomedical applications like EEG
or ECG by additional electrodes, placed appropriately.

Due to environmental conditions the noise νR(k) may influence each sensor in some
unknown manner. Parasitic effects such as delays, reverberation, echo, nonlinear distortion
etc. may occur. It may be assumed that the reference noise is processed by some unknown
linear or nonlinear dynamical system before it reaches each sensor (see Fig. 8.2). ARMA,
NARMA or FIR (convolutive) noise models may be considered. In the simplest case, a
convolutive model of noise can be assumed, i.e., the reference noise is processed by some
finite impulse response filters, whose parameters need to be estimated. Hence, the additive
noise in the i–th sensor is modelled as (see Fig.8.2 and Fig. 8.3 (a)) [267, 1233, 1285]

νi(k) =
L∑

p=0

[hipz
−p] νR(k) =

L∑
p=0

hip νR(k − p), (8.14)

where z−1 = e−sT is the unit delay. Such a model is generally regarded as a realistic (real–
world) model in both signal and image processing [1233, 1285]. In this model, we assume
that a known reference noise is added to each sensor (mixture of sources) with different
unknown time delays and various unknown coefficients hip(k) representing attenuation co-
efficients. The unknown mixing and convolutive processes can be described in matrix form
as

x(k) = Hs(k) + h(z) νR(k), (8.15)

where h(z) = [H1(z),H2(z), ..., Hn(z)]T with

Hi(z) = hi0 + hi1z
−1 + ... + hiLz−L. (8.16)

Analogously, the separating and noise deconvolutive process can be described as (see Fig.
8.2)

y(k) = Wx(k)− w̃(z) νR =
= WHs(k) + Wh(z) νR − w̃(z) νR,

(8.17)
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Fig. 8.2 Conceptual block diagram of mixing and demixing systems with noise cancellation. It is
assumed that reference noise is available.

where w̃(z) = [W1(z), ...,Wn(z)]T with

Wi(z) =
M∑

j=0

w̃ijz
−p. (8.18)

We can achieve the best noise reduction by minimizing the generalized energy of all its out-
put signals under some constraints and simultaneously enforce their mutual independence.

8.3.1 Learning Algorithms for Noise Cancellation

In the basic approach, two learning procedures are simultaneously performed: The signals
are separated from their linear mixture by using any algorithm for BSS and the additive
noise is estimated and subtracted by minimizing the output energy of output signals. In
the simplest case, we can formulate the following energy (cost) function

J(w̃) =
1
2

n∑

i=1

E{|yi|2}. (8.19)
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Minimizing the above cost function with respect to coefficients w̃ip, we obtain the standard
LMS (Least Mean Squares) algorithm [1286]

w̃ip(k + 1) = w̃ip(k)− η̃(k)
∂J(w̃)
∂w̃ip

= w̃ip(k) + 〈η̃(k)yi(k)νR(k − p)〉 . (8.20)

The number of time delay units M in the separating/deconvolutive model should be usually
much larger than the corresponding number L in the mixing model (M >> L).

Alternatively, a multistage linear model for noise cancellation is shown in Fig. 8.3 (a).
In such a model, the noise cancellation and source separation are performed sequentially
in two or more stages. We first attempt to cancel the noise contained in the mixtures
and then to separate the sources (see Fig. 8.3 (a)). In order to cancel additive noise and
to develop an adaptive learning algorithm for unknown coefficients hip(k), we can apply
the concept of minimization of the generalized output energy of output signals x̃(k) =
[x̃1(k), x̃2(k), . . . , x̃n(k)]T . In other words, we can formulate the following cost function
(generalized energy)

J(w̃1) =
n∑

i=1

E{ρi(x̃i)}, (8.21)

where ρi(x̃i), (i = 1, 2, . . . , n) are suitably chosen loss function, typically

ρi(x̃i) =
1
γ

log cosh(γx̃i) or ρi(x̃i) =
1
2
|x̃i|2 (8.22)

and

x̃i(k) = xi(k)−
M∑

p=1

w̃1ip νR(k − p), ∀i. (8.23)

Minimization of this cost function according to the standard gradient descent leads to a
simple learning algorithm given by

w̃1ip(k + 1) = w̃1ip(k)− η̃(k)
∂J(w̃1)
∂w̃1ip

≈ w̃1ip(k) + η̃(k) fR[x̃i(k)] νR(k − p), (8.24)

where fR(x̃i(k)) is a suitably chosen nonlinear function

fR(x̃i(k)) =
∂ρi(x̃i)

∂x̃i
. (8.25)

Typically, fR(x̃i) = x̃i or fR(x̃i) = tanh(γx̃i).
In linear Finite Impulse Response (FIR) adaptive noise cancellation models described

above, the noise is estimated as a weighted sum of delayed samples of reference interference.
However, linear adaptive noise cancellation systems may not achieve an acceptable level of
cancellation of noise for some real world problems when interference signals are related to
the measured reference signals in a complex dynamic and nonlinear way.
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Fig. 8.3 Block diagrams illustrating multistage noise cancellation and blind source separation: (a)
Linear model of convolutive noise, (b) more general model of additive noise modelled by nonlinear
dynamical systems (NDS) and adaptive neural networks (NN); LA1 and LA2 denote learning algo-
rithms performing the LMS or back-propagation supervising learning rules whereas LA3 denotes a
learning algorithm for BSS.

In such applications, especially in biomedical signal processing, the optimum interference
and noise cancellation usually requires nonlinear adaptive processing of recorded and mea-
sured on-line signals. In such cases, we can use, instead of linear filters, standard neural
network models and train them by back-propagation algorithms (see Fig. 8.3 (b)) [282, 265].
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8.4 CUMULANTS BASED ADAPTIVE ICA ALGORITHMS

The main objective of this section is to present some ICA algorithms which are expressed
by higher order cumulants. The main advantage of such algorithms is that they are theo-
retically robust to Gaussian noise (white or colored) on the condition that the number of
available samples is sufficiently large to precisely estimate the cumulants. This important
feature follows from the fact that all cumulants of the order higher than 2 are equal to 0
for Gaussian noise. This property can be particularly useful in the analysis of biomedical
signals buried in large Gaussian noise. However, since third-order cumulants are also equal
to zero for any symmetrically distributed process (not only for Gaussian processes), then
fourth-order cumulants are usually used for most applications when some source signals
may have symmetrical distributions.

8.4.1 Cumulants Based Cost Functions

In Chapter 6 as a measure of independence, we have used the Kullback-Leibler divergence
which leads to the cost (risk) function

R(y,W) = −1
2

log(|det(WWT )|)−
n∑

i=1

E{log(pi(yi))} (8.26)

or equivalently

R(y,G) = − log | det(G)| −
n∑

i=1

E{log(pi(yi))}, (8.27)

where G = WH ∈ IRn×n is a nonsingular global mixing-separating matrix. In many
practical applications, however, the pdfs of the sources are not known a priori and in the
derivation of practical algorithms we have to use a set of nonlinearities that in some special
cases may not exactly match the true pdfs of primary sources. In this section, we use an
alternative cost function which is based on cumulants.

Along this chapter, we will use the following notation: Cq(y1) denotes the q-order cumu-
lants of the signal yi and Cp,q(y,y) denotes the cross-cumulant matrix whose elements are
[Cpq(y,y)]ij = Cum(yi, yi, . . . , yi︸ ︷︷ ︸

p

, yj , yj , . . . , yj︸ ︷︷ ︸
q

). (see Appendix A for properties of matrix

cumulants and their relation to higher order moments).
Let us consider a particular case of nonlinearity misadjusting that results from replacing

the pseudo-entropy terms −E{log(pi(yi))} in (8.27) by a function of the cumulants of the
outputs |C1+q(yi)|/(1 + q). In other words, let us consider the following cost function:

J(y,W) = −1
2

log | det(WWT )| − 1
1 + q

n∑

i=1

|C1+q(yi)|. (8.28)

The first term assures that the determinant of the global matrix will not approach zero.
By including this term, we avoid the trivial solution yi = 0 ∀i. The second terms force the
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output signals to be as far as possible from Gaussianity, since the higher order cumulants
are a natural measure of non-Gaussianity and they will vanish for Gaussian signals.
Taking into account definition and properties of the cumulants, it is easy to show that

∂Cum(
1+q︷ ︸︸ ︷

yi, . . . , yi)
∂wkj

= (1 + q)Cum(
q︷ ︸︸ ︷

yi, . . . , yi,
∂yi

∂wkj
)

= (1 + q)δikCum(
q︷ ︸︸ ︷

yi, . . . , yi, xj). (8.29)

Using this result, we obtain [326, 327]

∂
∑n

i=1 |C1+q(yi)|
∂W

= (1 + q)Sq+1(y)Cq,1(y,x), (8.30)

where Sq+1(y) = sign(diag(C1,q(y,y))). In addition, since

∂ log | det(WWT )|
∂W

= 2(WWT )−1W,

we obtain

∂J(y,W)
∂W

= −(WWT )−1W + Sq+1(y)Cq,1(y,x). (8.31)

8.4.2 Family of Equivariant Algorithms Employing the Higher Order Cumulants

In order to improve the convergence and simplify the algorithm, instead of the standard
gradient technique, we can use the Atick-Redlich formula which has the following form:

∆W = −ηW
[
∂J(y,W)

∂W

]T

W = ηW
[
(WWT )−1W − Sq+1(y)Cq,1(y,x)

]T
W. (8.32)

Hence, after some mathematical manipulations, we obtain [326, 327]

∆W(l) = W(l + 1)−W(l) = η(l) [I−C1,q(y,y)Sq+1(y)]W(l). (8.33)

Multiplying both sides of Eq.(8.33) from the right side by the mixing matrix H, we obtain
the following algorithm to update the global matrix G

∆G(l) = η(l) [I−C1,q(y,y)Sq+1(y)]G(l). (8.34)

Taking into account the triangular inequality [321, 327]

‖C1,q(y,y)Sq+1(y)− I‖p ≤ 1 + ‖C1,q(y,y)Sq+1(y)‖p = 1 + ‖C1,q(y,y)‖p, (8.35)

it is sufficient to apply the following constraints to ensure the numerical stability of the
algorithm

η(l) = min
(

2η0

1 + η0 q
,

η0

1 + η0 ‖C1,q(y,y)‖p

)
<

1
1 + ‖C1,q(y,y)‖p

, (8.36)
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where 0 < η0 ≤ 1. It is interesting that for some special cases, the algorithm (8.33)
simplifies to some well known algorithms: For example for q = 1, we obtain the globally
stable algorithm for blind decorrelation proposed first by Almeida and Silva [18]

W(l + 1) = W(l) + η(l)
[
I− 〈

yyT
〉]

W(l). (8.37)

Analogously, for q = 2, we obtain a special form of equivariant algorithm useful if all source
signals have non-symmetric distribution, [283, 321] as

W(l + 1) = W(l) + η(l)
[
I− 〈

ygT (y)
〉]

W(l), (8.38)

where components of vector g(y) have the following nonlinear functions g(yi) = sign(yi)|yi|2.
Such an algorithm is insensitive to any symmetrically distributed noise and interference.

A more general algorithm (which is suitable for both symmetrically and non-symmetrically
distributed sources) can be easily derived for q = 3, as (see the Appendix A for more detail)

W(l + 1) = W(l) + η(l) [I−C1,3(y,y)S4(y)]W(l)
= W(l) + η(l)

[
I− 〈

y gT (y)
〉]

W(l), (8.39)

where C1,3(y,y) =
〈
y(y ◦ y ◦ y)T

〉 − 3
〈
yyT

〉
diag{〈y ◦ y〉} and the diagonal elements of

the matrix S4(y) are defined by

[S4(y)]jj = sign
(
E{y4

j } − 3(E{y2
j })2

)
= sign κ4(yj).

It should be noted that we can write

C1,3(y,y)S4(y) =
〈
y gT (y)

〉
, (8.40)

where entries of the vector g(y) = [g1(y1), g2(y2), . . . , gn(yn)]T have the form

gj(yj) = (y3
j − 3

〈
y2

j

〉
yj) sign(κ(yj)). (8.41)

In other words, the estimated cross-cumulants can be expressed as

C1,3(yi, yj) sign(κ4(yj)) = 〈yigj(yj)〉 =
〈
yi(y3

j − 3σ̂2
yj

yj) sign(κ(yj))
〉

. (8.42)

Such cross-cumulants are insensitive to Gaussian noise. Moreover, the local stability con-
ditions (derived in Chapter 7) are given by:

E{g′is2
i }+ 1 > 0, (8.43)

E{g′i}E{g′j}E{s2
i }E{s2

j} < 1, ∀i 6= j (8.44)

are always satisfied for any sources with non-zero kurtosis if the above nonlinear activation
function is employed in the algorithm (8.41).

The on-line version of the above algorithm can be formulated as

W(k + 1) = W(k) + η(k)
[
I−R(k)

y g

]
W(k), (8.45)
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where

R(k)
y g = (1− η0)R(k−1)

y g + η0 y(k)gT (y(k)), (8.46)

with gj(yj) = (y3
j − 3yj σ̂

2
yj

) sign(κ4(yj)) and σ̂2
yj

(k) = (1− η0) σ̂2
yj

(k − 1) + η0 y2
j (k).

It should be noted that the learning algorithm (8.33) achieves its equilibrium point when
[321, 327]

C1,q(y,y)S1+q(y) = GC1,q(s, s) (G◦q)T S1+q(y) = In, (8.47)

where G◦q denotes the q-th order Hadamard product of the matrix G with itself, i.e.,
G◦q = G ◦ · · · ◦G. Hence, assuming that the primary independent sources are properly
scaled such that Cq,1(s, s) = Sq+1(s) = In, (i.e., they all have the same value and sign of
cumulants C1+q(si)) the above matrix algebraic equation simplifies as

G (G◦q)T = In. (8.48)

The possible solutions of this equation can be expressed as G = P, where P is any permu-
tation matrix.

8.4.3 Possible Extensions

One of the disadvantages of the cost function (8.28) and the associated algorithm (8.33)
is that they cannot be used when the specific (q + 1) order cumulant C1+q(si) is zero or
very close to zero for any of the source signal si. To overcome this limitation, we can use
several matrix cumulants of different orders. In order words, we can attempt to find a set
of indices Ω = {q1, . . . , qNΩ : qi ∈ N+, qi 6= 1} such that the following sum of cumulants∑

q∈Ω |C1+q(yi)| does not vanish for any of the sources. The existence of at least one possible
set Ω is ensured due to the assumption of non-Gaussianity of all the sources. Then, we can
replace the terms C1+q(y)

1+q in (8.28) by using a weighted sum of several cumulants of the
outputs signals whose index q belongs to set Ω, i.e.,

J(y,W) =
∑

q∈Ω

αq
|C1+q(yi)|

1 + q
, (8.49)

where the positive weighting terms αq are chosen such that
∑

q∈Ω αq = 1. With 1 6∈ Ω,
we will assume that the second order statistics information is excluded from this weighted
sum.

Following the same steps as before, it is straightforward to see that the learning algorithm
takes the form [326, 327]:

∆W(l) = η(l)[I−
∑

q∈Ω

αq C1,q(y,y)Sq+1(y)]W(l), (8.50)

with a learning rate satisfying the constraints

η(l) = min

{
2η0

1 + η0

∑
q∈Ω αq q

,
η0

1 + η0 ‖
∑

q∈Ω αq C1,q(y,y)Sq+1(y)‖p

}
, (8.51)

where η0 ≤ 1 and
∑

q∈Ω αq = 1.
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8.4.4 Cumulants for Complex Valued Signals

The extension of the previous algorithms to the case of complex sources and mixtures can
be obtained by replacing the transpose operator (·)T with the Hermitian operator (·)H and
by changing the definition of the cumulants and cross-cumulants.
Whenever (1+ q) is an even number, it is possible to define the self-cumulants for complex-
valued signals as [321, 327]

C1+q(yi) = Cum(yi, . . . , yi︸ ︷︷ ︸
1+q
2

, y∗i , . . . , y∗i︸ ︷︷ ︸
1+q
2

) (8.52)

and the cross-cumulants

C1,q(yi, yj) = Cum(yi, yj , . . . , yj︸ ︷︷ ︸
1+q
2 −1

, y∗j , y∗j , . . . , y∗j︸ ︷︷ ︸
1+q
2

). (8.53)

It is easy to show that the cumulants are always real. With the above mentioned modifica-
tion, by changing only the transpose operator by the Hermitian operator, it is possible to
use the same algorithms for complex-valued signals [112, 327].

8.4.5 Blind Separation with More Sensors than Sources

The derivations of the presented class of robust algorithms (8.33) with respect to the Gaus-
sian noise and its stability study can be performed in terms of the global transfer matrix
G [327]. As long as this matrix remains square and non-singular these derivations in terms
of G still fully apply. This also includes the case where the number of sensors m is greater
than the number of sources (m > n).
Taking the equivariant algorithm (8.34) expressed in terms of G

G(l + 1) = [I + η(l)(I−C1,q(y,y)Sq+1(y))]G(l), (8.54)

we can post-multiply it by the pseudo-inverse of the mixing matrix H+ = (HT H)−1HT to
obtain

W(l + 1)PH = [I + η(l)(I−C1,q(y,y)Sq+1(y))]W(l)PH, (8.55)

where PH = HH+ is the projection matrix onto the space spanned by the columns of H.
Thus the algorithm is defined in terms of the separation matrix W(l + 1)PH instead of
W(l + 1). If we omit1 the projection PH, we obtain the same form of algorithm for the
non-square separating matrix W ∈ IRn×m with m ≥ n as

W(l + 1) = [I + η(l)(I −C1,q(y,y)Sq+1(y))]W(l). (8.56)

1With this omission, we will not affect the signal component of the outputs since WPHH = In implies
WH = In and, therefore, the separation is still performed.
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Table 8.1 Basic cost functions for ICA/BSS algorithms without prewhitening.

No. Cost function J(y,W)

1. − 1
2 log det(WWT )−∑n

i=1 E{log(pi(yi))}

2. − 1
2 log det(WWT )− 1

1+q

∑n
i=1 |C1+q(yi)|

For q = 3, C4(yi) = κ4(yi) = E{y4
i }

E2{y2
i }
− 3

3. − 1
2 log det(WWT )− 1

q

∑n
i=1 E{|yi|q)}

q = 2 for nonstationary sources,

q > 2 for sub-Gaussian sources,

q < 2 for super-Gaussian sources

4. 1
2 [− log det E{yyT }+

∑n
i=1 log E{y2

i }]

Sources are assumed to be nonstationary

Analogously, we can derive a similar algorithm for the estimation of the mixing matrix
H ∈ IRm×n as

Ĥ(l + 1) = Ĥ(l)− η(l)
[
Ĥ(l)−C1,q(x,y)S1+q(y)

]
(8.57)

or equivalently

Ĥ(l + 1) = Ĥ(l)− η(l)Ĥ(l) [I −C1,q(y,y)Sq+1(y)] . (8.58)

The equivariant algorithms presented in this section have several interesting properties
which can be formulated in the form of the following theorems (see S. Cruces et al. for
more details) [321, 326, 327].

Theorem 8.1 The local convergence of the cumulant based equivariant algorithm (8.34) is
isotropic, i.e., it does not depend on the source distribution, as long as their (1 + q)-order
cumulants do not vanish.
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Theorem 8.2 The presence of additive Gaussian noise in the mixture does not change
asymptotically (i.e., for a sufficiently large number of samples) the convergence properties
of the algorithm, i.e., the estimating separating matrix is not biased theoretically by the
additive Gaussian noise.

This property is a consequence of using higher order cumulants instead of nonlinear ac-
tivation functions. It should also be noted that the higher order cumulants of Gaussian
distributed signals are always zero. However, we should point out that, in practice, the
cumulants of the outputs should be estimated from a finite set of data. This theoretical
robustness to Gaussian noise only occurs in the cases where there are sufficient number of
samples (typically more than 5000), which enables reliable estimates of the cumulants.

Tables 8.1 and 8.2 summarize typical cost functions and fundamental equivariant ICA
algorithms presented and analyzed in this and the previous chapters.

8.5 ROBUST EXTRACTION OF GROUP OF SOURCE SIGNALS ON BASIS OF

CUMULANTS COST FUNCTION

The approach discussed in the previous section can be relatively easily extended to the case
when it is desired to extract a certain number of source signals e, with 1 ≤ e ≤ n, defined
by the user [26, 34, 328, 329, 331].

8.5.1 Blind Extraction of Sparse Sources with Largest Positive Kurtosis Using

Prewhitening and Semi-Orthogonality Constraint

Let us assume that source signals are ordered with the decreasing absolute values of their
kurtosis as

|κ4(s1)| ≥ |κ4(s2)| ≥ · · · |κ4(se)| > |κ4(se+1)| ≥ · · · ≥ |κ4(sn)| , (8.59)

with κ4(sj) = E{s4
j} − 3E2{s2

j} 6= 0, then we can formulate the following constrained
optimization problem for extraction of e sources

minimize J(y) = −
e∑

j=1

|κ4(yj)| (8.60)

subject to the constraints WeWT
e = Ie,

where W ∈ IRe×n, ye(k) = Wex(k) under the assumption that the sensor signals x = Qx
are prewhitened or the mixing matrix is orthogonalized in such way that A = QH is
orthogonal. The global minimization of such constrained cost function leads to extraction
of the e sources with largest absolute values of kurtosis.

To derive the learning algorithm, we can apply the natural gradient approach. A par-
ticularly simple and useful method to minimize the proposed cost function under semi-
orthogonality constraints is to use the natural Riemannian gradient descent in the Stiefel



ROBUST EXTRACTION OF ARBITRARY GROUP OF SOURCE SIGNALS 321

Table 8.2 Family of equivariant learning algorithms for ICA for complex-valued signals.

No. Learning Algorithm References

1. ∆W = �
�
Λ− 
f(y)gH(y)

��
W Cichocki, et al. (1993) [285, 283]

Λ is a diagonal matrix with nonnegative elements λii Cruces et al. (1999) [321, 332]

2. ∆W = η
�
Λ− 
f(y)yH

��
W

Amari et al. (1996) [25, 33]
λii =



f(yi(k))y∗i (k)

�
or λii = 1

3. ∆W = η
�
I− 
yyH

�− 
f(y)yH
�

+


y f(yH)

��
W

Cardoso, Laheld

(1996) [155]

4. ∆W = η
�
I− 
yyH

�− 
f(y)yH
�

+


f(y) f(yH)

��
W

Karhunen,

Pajunen (1997) [679]

5. ∆W = η
�


f(y)yH
�− 
y f(yH)

�
WWH

�
W

Douglas (1999) [389]
∆W = −η

�
WWH



f(y)yH

�− 
y f(yH)
��

W

6. W̃ = W + �
�
Λ− 
f(y)yH

��
W, λii =



f(yiy

∗
i

�
Hyvärinen, Oja (1999) [595]

ηii = [λii + 〈f ′(yi)〉]−1; W = W̃(W̃W̃H)−1/2

7. ∆W = η
�
I−Λ−1



yyH

��
W Amari, et al. (1999) [34]

λii(k) =


(yi(k))y∗i (k)

�
Choi et al. (2000) [234]

8. ∆W = η [I−C1,q(y,y)Sq(y)]W

Cruces et al. (1999) [326]
C1,q(yi, yj) = Cum(yi, yj , . . . , yj| {z }

1+q
2 −1

, y∗j , y∗j , . . . , y∗j| {z }
1+q
2

)

9. ∆W = �F[y]W Amari, (1997) [28]

fij =
h
λiiδij − α1i

D
yiy

∗
j

E
− α2i

D
f(yi)y

∗
j

E
+ α3i

D
yif(y∗j )

Ei
L. Zhang et al. (2000) [1357]
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manifold of semi-orthogonal matrix [34] which is given by (see Chapter 6 for more detail)

∆We(l) = −η
[∇We

J −We(∇We
J)T We

]
. (8.61)

In our case this leads to the following gradient algorithm [329]

We(l + 1) = We(l) + η [S4(y)C3,1(y,x)−C1,3(y,y)S4(y)W(l)] , (8.62)

where S4(y) is the diagonal matrix with entries sii = [sign(κ4(yi))]ii (the actual kurtosis
signs of the output signals) and C1,3(y,y) is the fourth order cross-cumulant matrix with
elements [C1,3(y,y)]ij = Cum(yi(k), yj(k), yj(k), yj(k)); analogously the cross-cumulant
matrix is defined by C3,1(y,x) = (C1,3(x,y))T .
For e = n, the algorithm takes the form

W(l + 1) = W(l) + η [S4(y)C3,1(y,y)−C1,3(y,y)S4(y)]W(l). (8.63)

The algorithm (8.62) can be implemented as on-line (moving average) algorithm:

We(k + 1) = We(k) + η(k)
[
R(k)

g x −R(k)
y g W(k)

]
, (8.64)

where

R(k)
g x = (1− η0)R

(k−1)
g x + η0 g(y(k))xT (k), (8.65)

R(k)
y g = (1− η0)R(k−1)

y g + η0 y(k)gT (y(k)), (8.66)

and g(y) = [g(y1), g(y2), . . . , g(ye)]T , with

g(yi) =
(
y3

i − 3yiE{y2
i }

)
sign(κ4(yi)). (8.67)

It is important to note that such a cost function has no spurious minima in the sense
that all local minima correspond to separating equilibria of true sources s1, s2, . . . , sn, with
nonzero kurtosis.

Note that since the mixing matrix is orthogonal and the demixing matrix is semi-
orthogonal the global matrix G = WA ∈ IRe×n is also semi-orthogonal, thus the constraints
WeWT

e = Ie can be replaced equivalently by GGT = Ie or equivalently gT
i gj = δij , ∀i,

where gi is the i-th row of G. Taking into account this fact, the optimization problem
(8.60) can be converted into an equivalent of set of e simultaneous maximization problems:

maximize Ji(gi) = βi κ4(yi) = βi

n∑

j=1

g4
ijκ4(sj), (8.68)

subject to the constraints gT
i gj = δij for i, j = 1, 2, . . . , e, where βi = sign(κ4(yi)).

Since the vectors gi are orthogonal and of unit length, the above cost functions satisfy
the conditions of Lemma A.2, and Theorem A.1 presented in Chapter 5; thus the local
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minimum is achieved if and only if gi = ±ei. Also due to orthogonality constraints the
above cost functions ensure the extraction of e different sources.

In the special case, when all sources {si(k)} have the same kurtosis sign, such that
κ4(si) > 0 or κ4(si) < 0 for all 1 ≤ i ≤ n, we can formulate a somewhat simpler optimization
problem to (8.60) as

minimize J̃(y) = −β

4

e∑

i=1

E{y4
i } subject to WeWT

e = Ie, (8.69)

where β satisfies βκ4[si] > 0, ∀i. This leads to the following simplified batch learning
algorithm proposed by Amari and Cruces [26, 328]:

We(l + 1) = We(l) + η β
[〈

y3xT
〉− 〈

y(y3)T
〉
We(l)

]
, (8.70)

where g(y) = y3 = y ◦ y ◦ y = [y3
1 , y3

2 , . . . , y3
e ]T .

8.5.2 Blind Extraction of an Arbitrary Group of Sources without Prewhitening

In the section 8.4.5, we have shown that mixing matrix H can be estimated using the matrix
cumulants C1,q(y,y) by applying the following learning rule

Ĥ(l + 1) = Ĥ(l)− η(l)
[
Ĥ(l)−C1,q(x,y)S1+q(y)

]
. (8.71)

Cruces et al. note that the above learning form can be written in a more general form as
[331]

Ĥe(l + 1) = Ĥe(l)− η(l)
[
Ĥe(l)−C1,q(x,y)S1+q(y)

]
, (8.72)

where y = We x and Ĥe = [ĥ1, ĥ2, . . . , ĥe] are the first e vectors of the estimating mixing
matrix Ĥ. This means, we can estimate the arbitrary number of the columns of the mixing
matrix without knowledge of other columns, on the condition that the whole separating
matrix can also be estimated.

In order to extract e sources, we can minimize the Mean Square Error (MSE) between the
estimated sources ŝe and the outputs y = We x. This is equivalent to the minimization of
the output power of estimated output signals subject to some signal preserving constrains,
i.e. [331],

min
We

tr{Ry y} subject to We(l)He(l) = Ie. (8.73)

We can solve this constrained minimization problem by means of Lagrange multipliers,
which after some simple mathematical operations yields [331]

y(k) = W(l)x(k) =
[
ĤT

e (l)R+
xx Ĥe(l)

]−1

ĤT
e (l)R+

xx x(k) (8.74)
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Table 8.3 Typical cost functions for blind signal extraction of group of e-sources (1 ≤ e ≤ n) with
prewhitening of sensor signals, i.e., AAT = I.

No. Cost function J(y,W) Remarks

1.
∑e

i=1 h(yi) = −∑e
i=1 E{log pi(yi)} Minimization of entropy

Amari [26, 34]
s.t. WeWT

e = Ie

2. 1
1+q

∑e
i=1 |C1+q(yi)| Maximization of distance

from Gaussianity
s.t. WeWT

e = Ie Cruces et al. [328, 329]

Cumulants C1+q(yi) must not vanish for
the extracted source signals.

For q = 3, C4(yi) = κ4(yi) = E{y4
i } − 3E2{y2

i }

3. − 1
q

∑e
i=1 E{|yi|q} Minimization of generalized

energy [234, 283]
s.t. WeWT

e = Ie

4. 1
2

∑e
i=1 E{log(y2

i )} Maximization of negentropy
Matsuoka et al. [831, 832]

s.t. WeWT
e = Ie Choi et al. [234]

and

Ĥe(l + 1) = Ĥe(l)− η(l)
[
Ĥe(l)−C1,q(x,y)S1+q(y)

]
, (8.75)

where R+
νν ∈ IRm×m (with m ≥ n and 1 ≤ e ≤ n) is the pseudo-inverse of the estimated

covariance matrix of the noise. Then, in order to extract the sources, we only have to
alternatively iterate equations (8.74) and (8.75), which constitute the kernel of the imple-
mentation of the robust BSE algorithm. The algorithm is able to recover an arbitrary
number e < n of sources without prewhitening step. However, this is done at the extra cost
of having to compute the pseudo-inverse of the correlation matrix of the noise. The advan-
tage of this algorithm is that it is insensitive to Gaussian noise on the condition that the
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Table 8.4 BSE algorithm based on cumulants without prewhitening [331].

1. Initialization: e ≤ rank(Rxx), η0 < 1, δ, c, He(0).

Computing: R+
xx, We(0) = (HH

e (0)R+
xxHe(0))−1HH

e (0)R+
xx and y = W(0)x.

2. Estimation of optimal learning rate:

η(l) = min

{
2η0

1 + 3η0
,

η0

1 + η0‖C1,3(y,y)‖c

}

3. Estimation of the column of mixing matrix and extraction of group of
sources:

Ĥe(l + 1) = Ĥe(l)− η(l)(Ĥe(l)−C1,3(x,y)S4(y)),

We(l + 1) = [ĤH
e (l + 1)R+

xx Ĥe(l + 1)]−1ĤH
e (l + 1)R+

xx,

y(k) = We(l + 1)x(k).

4. n = n + 1,
UNTIL (‖C1,3(y,y)S4(y)− Ie‖c < δ) RETURN TO 2.

5. IF deflation
STORE y,
x = (In − Ĥe(l)[Ĥe(l)]+)x,
RETURN TO 1.
ELSE END.

covariance of the noise is known or can be reliably estimated. The practical implementation
of the algorithm for the complex-valued signals using fourth order cumulants is summarized
in Table 8.4 [331].

8.6 RECURRENT NEURAL NETWORK APPROACH FOR NOISE CANCELLATION

8.6.1 Basic Concept and Algorithm Derivation

Assume that we have successfully estimated an unbiased estimate of the separating matrix
W via one of the previously described approaches. Then, we can estimate a mixing matrix
Ĥ = W+ = HPD, where W+ is the pseudo-inverse of W, P is any n × n permutation
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matrix, and D is an n×n non-singular diagonal scaling matrix. We now propose approaches
for cancelling the effects of noise in the estimated source signals.

In order to develop a viable neural network approach for noise cancellation, we define
the error vector

e(t) = x(t)− Ĥ ŷ(t), (8.76)

where e(t) = [e1(t), e2(t), . . . , em(t)]T and ŷ(t) is an estimate of the source s(t). To compute
ŷ(t), consider the minimum entropy (ME) cost function

E{J(e(t))} = −
m∑

i=1

E{log[pi(ei(t))]}, (8.77)

where pi(ei) is the true pdf of the additive noise νi(t). It should be noted that we have
assumed that the noise sources are i.i.d.; thus, stochastic gradient descent of the ME function
yields stochastic independence of the error components as well as the minimization of their
magnitude in an optimal way. The resulting system of differential equations is

dŷ(t)
dt

= µ(t)ĤT Ψ[e(t)], (8.78)

where Ψ[e(t)] = [Ψ1[e1(t)], . . . , Ψm[em(t)]]T with nonlinearities

Ψi(ei) = −∂ log pi(ei)
∂ei

. (8.79)

Remark 8.3 In a more general case functions Ψi(ei) (i = 1, 2, . . . ,m) can be can be im-
plements via nonlinear filters that perform filtering and nonlinear noise shaping in every
channel. For example, we can use the FIR filter of the form

Ψi(ei(k)) = ψi

(
L∑

p=0

bip ei(k − p)

)
, (8.80)

where the parameters of filters {bip} and nonlinearities ψi(ei) are suitably chosen.

A block diagram illustrating the implementation of the above algorithm is shown in Fig.
8.4, where Learning Algorithm denotes an appropriate bias removal learning rule (8.10).

In the proposed algorithm, the optimal choices of nonlinearities Ψi(ei) depend on noise
distributions. Assume that all of the noise signals are drawn from a generalized Gaussian
distributions of the form [516]

pi(ei) =
ri

2σiΓ(1/ri)
exp

(
− 1

ri

∣∣∣∣
ei

σi

∣∣∣∣
ri

)
, (8.81)

where ri > 0 is a variable parameter, Γ(r) =
∫∞
0

ur−1 exp(−u)du is the Gamma function
and σr = E{|e|r} is a generalized measure of the noise variance known as dispersion. Note
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that a unity value of ri yields a Laplacian distribution, ri = 2 yields the standard Gaussian
distribution, and ri →∞ yields a uniform distribution. In general, we can select any value
of ri ≥ 1, in which case the locally-optimal nonlinear activation functions are of the form

Ψi(ei) = −∂ log(pi(ei))
∂ei

=
1

|σi|ri
|ei|ri−1sign(ei), ri ≥ 1. (8.82)

Remark 8.4 For the standard Gaussian noise with known variances σ2
i , i = 1, 2, . . . , m

with m > n the optimal nonlinearities simplify to linear functions of the form Ψi(ei) =
ei/σ2

i ∀i and the Amari-Hopfield neural network realizes on-line implementation of the
BLUE (Best Linear Unbiased Estimator) algorithm for which the numerical form has been
discussed in Chapter 2. On the other hand, for very impulsive (spiky) sources with high
value of kurtosis, the optimal parameter ri typically takes a value between zero and one.
In such cases, we can use the modified activation functions Ψi(ei) = ei/[|σi|ri |ei|2−ri + ε],
where ε is a small positive constant, to avoid the singularity of the function at ei = 0.

If the distribution of noise is not known a priori we can attempt to adapt the value of ri(k)
for each error signal ei(k) according to its estimated distance from Gaussianity. A simple
gradient-based rule for adjusting each parameter ri(k) is

∆ri(k) = −ηi(k)
∂φ

∂ri
= ηi(k)

∂ log(pi(ei))
∂ri

(8.83)

∼= ηi(k)|ei(k)|ri(k) log(|ei(k)|). (8.84)

or

∆ri(k) = −ηi
∂φ

∂ri
= ηi

∂ log(pi(ei))
∂ri

(8.85)

∼= ηi
0.1ri(k) + |ei(k)|ri(k)(1− log(|ei(k)|ri(k))

r2
i (k)

. (8.86)

Similar methods can be applied for other parameterized noise distributions. For example,
when pi(ei) is a generalized Cauchy distribution, then Ψi(ei) = [(vri + 1)/(v|A(ri)|ri +
|ei|ri)]|ei|ri−1 sign(ei). Similarly, for the generalized Rayleigh distribution, one obtains
Ψi(ei) = |ei|ri−2ei for complex-valued signals and coefficients.

It should be noted that the continuous–time algorithm in (8.78) can be easily converted
to a discrete-time algorithm as

ŷ(k + 1) = ŷ(k) + η(k)ĤT (k) Ψ[e(k)]. (8.87)

The proposed system in Fig. 8.5 can be considered as a form of nonlinear post-processing
that effectively reduces the additive noise component in the estimated source signals. In
the next subsection, we propose a more efficient architecture that simultaneously estimates
the mixing matrix H while reducing the amount of noise in the separated sources.
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Fig. 8.4 Analog Amari-Hopfield neural network architecture for estimating the separating matrix
and noise reduction.

8.6.2 Simultaneous Estimation of a Mixing Matrix and Noise Reduction

Let us next consider on-line estimation of the mixing matrix H rather than estimation of
the separating matrix W. Based upon the analysis from previous sections, it is easy to
derive such a learning algorithm. Taking into account that Ĥ = W+ and, for m ≥ n, from
WĤ = WW+ = In, we have a simple relation [283]

dW
dt

Ĥ + W
dĤ
dt

= 0. (8.88)

Hence, we obtain the learning algorithm (see Chapters 6 and 7 for derivation)

dĤ(t)
dt

= −Ĥ
dW
dt

Ĥ = −µ1(t)Ĥ(t)][Λ(t)− f [y(t)]gT [y(t)]], (8.89)

where Λ = diag{λ1, λ2, . . . , λn} is a diagonal positive definite matrix (typically, Λ = In or
Λ = diag{f [y(t)]yT (t)}) and f [y(t)] = [f1(y1), . . . , fn(yn)]T , g(y) = [g1(y1), . . . , gn(yn)]T

are vectors of suitably chosen nonlinear functions. We can replace the output vector y(t)
by an improved estimate ŷ(t) to derive a learning algorithm as

dĤ(t)
dt

= −µ1(t)Ĥ(t)
[
Λ(t)− f [ŷ(t)]gT [ŷ(t)]

]
(8.90)

and
dŷ(t)

dt
= µ(t)ĤT (t) Ψ[e(t)], (8.91)
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Fig. 8.5 Architecture of Amari-Hopfield recurrent neural network for simultaneous noise reduction
and mixing matrix estimation: Conceptual discrete-time model with optional PCA.

or in the discrete-time,

∆Ĥ(k) = Ĥ(k + 1)− Ĥ(k)

= η1(k)Ĥ(k)
[
Λ(k)− f [ŷ(k)]gT [ŷT (k)]

]
(8.92)

and

ŷ(k + 1) = ŷ(k) + η(k)ĤT (k) Ψ[e(k)], (8.93)

where e(k) = x(k) − Ĥ(k)ŝ(k) and x(k) = x̂(k) + ν(k). A functional block diagram
illustrating the implementation of the algorithm using Amari-Hopfield neural network is
shown in Fig. 8.5.

8.6.2.1 Regularization For some systems, the mixing matrix H may be highly ill-conditioned,
and in order to estimate reliable and stable solutions, it is necessary to apply optional
prewhitening (e.g., PCA) and/or regularization methods. For ill-conditioned cases, we can
use the contrast function with a regularization term

Jρ(e) = ρ(x− Ĥŷ) +
α

p
‖L ŷ‖p

p, (8.94)

where e = x−Ĥŷ, α > 0 is a regularization constant chosen to control the size of the solution
and L is a regularization matrix that defines a (semi)norm of the solution. Typically, matrix
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Fig. 8.6 Detailed architecture of the discrete-time Amari-Hopfield recurrent neural network with
regularization.

L is equal to the identity matrix In, and sometimes it represents the first- or second-order
operator. If L is the identity matrix, ρ(e) = 1

2 ||e||22 and p = 2, then the problem reduces to
the least squares problem with the standard Tikhonov regularization term [282]

J2(e) =
1
2
||x− Ĥŷ)||22 +

α

2
‖ŷ‖22. (8.95)

Minimization of the cost function (8.94), with L = In, leads to the learning rule

ŷ(k + 1) = ŷ(k) + η(k)
[
ĤT (k) Ψ(x(k)− Ĥ(k) ŷ(k))− α ϕ̂(ŷ(k))

]
, (8.96)

where Ψ(e) = [Ψ1(e1),Ψ2(e2), . . . , Ψm(em)]T with entries Ψi(ei) = ∂ρ/∂ei and
ϕ̂(ŷ) = [ϕ̂1(ŷ1), ϕ̂2(ŷ2), . . . , ϕ̂n(ŷn)]T with nonlinearities ϕ̂i(ŷi) = |ŷi|p−1sign(ŷi).

By combining this with the learning equation (8.90), we obtain an algorithm for simul-
taneous estimation of the mixing matrix and source signals for ill-conditioned problems.
Figure 8.6 illustrates the detailed architecture of the recurrent Amari-Hopfield neural net-
work according to Eq. (8.96). It can be proved that the above learning algorithm is stable
if nonlinear activation functions ψi(yi) are monotonically increasing odd functions.
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8.6.3 Robust Prewhitening and Principal Component Analysis (PCA)

As an improvement of the above approaches, to reduce the effects of data conditioning or
to reduce the effects of noise when m > n, we can perform either robust prewhitening
or principal component analysis of the measured sensor signals in the preprocessing stage.
This preprocessing step is represented in Fig. 8.5 by the n×m matrix Q. Prewhitening for
noisy data can be performed by using the learning algorithm (8.5) (see Fig. 8.5)

∆Q(t) = η(k)
[
I− 〈

x̃(k) x̃T (k)
〉

+ σ̂2
νQ(k)QT (k)

]
Q(k) (8.97)

where x̃(k) = Qx(k) = Q [Hs(k) + ν(k)]. Alternatively, for a nonsingular covariance
matrix Rxx = E{x(k)xT (k)} = VΛVT with m = n, we can use the following algorithm:

Q =
[
diag

{
λ1

λ2
1 + σ̂2

ν

· · · λn

λ2
n + σ̂2

ν

}]1/2

VT , (8.98)

where σ̂2
ν is estimated variance of the noise and λi are eigenvalues and V = [v1,v2, . . . ,vn]

is an orthogonal matrix of the corresponding eigenvectors of Rxx.

8.6.4 Computer Simulation Experiments for Amari-Hopfield Network

Example 8.2 The performance of the proposed neural network model will be illustrated
by two examples. The three sub-Gaussian source signals shown in Fig. 8.2 have been
mixed using the mixing matrix whose rows are h1 = [0.8 − 0.4 0.9], h2 = [0.7 0.3 0.5],
and h3 = [−0.6 0.8 0.7]. Uncorrelated Gaussian noise signals with variance 1.6 were added
to each of the elements of x(k). The neural network model depicted in Fig. 8.4 with
associated learning rules in (8.92) – (8.93) and nonlinearities f(yi) = yi, g(yi) = tanh(10yi)
and Ψ(ei) = αiei with αi = 1/σ2

νi
, where σ2

νi
is the variance of noise was used to separate

these signals, where Ĥ(0) = I. Shown in Fig.8.2 are the resulting separated signals, in
which the source signals are accurately estimated. The resulting three rows of the combined
system matrix Ĥ−1H after 400 milliseconds (with sampling period 0.0001) are [0.0034 −
0.0240 0.8541], [−0.0671 0.6251 − 0.0142] and [−0.2975 − 0.0061 − 0.0683], respectively,
indicating that separation has been achieved. Note that standard algorithms that assume
noiseless measurements fail to separate such noisy signals.

Example 8.3 In the second illustrative example, the sensor signals were contaminated by
additive impulsive (spiky) noise as shown in Fig. 8.8. The same learning rule was employed
but with nonlinear functions Ψ(ei) = tanh(10ei). The neural network of Fig.8.4 was able
considerably to reduce the influence of the noise in separating signals.
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Fig. 8.7 Exemplary simulation results for the neural network in Fig.8.4 for signals corrupted by the
Gaussian noise. The first three signals are the original sources, the next three signals are the noisy
sensor signals, and the last three signals are the on-line estimated source signals using the learning
rule given in (8.92)-(8.93). The horizontal axis represents time in seconds.
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Fig. 8.8 Exemplary simulation results for the neural network in Fig. 8.4 for impulsive noise. The
first three signals are the mixed sensors signals contaminated by the impulsive (Laplacian) noise, the
next three signals are the source signals estimated using the learning rule (8.8) and the last three
signals are the on-line estimated source signals using the learning rule (8.92)-(8.93).

Appendix A. Cumulants in Terms of Moments

For the cumulant evaluation in terms of the moments of the signals, we can use the following
formula (see [891, 892, 992])

Cum(y1, y2, . . . , yn) =
∑

(p1,2,...,pm)

(−1)m−1(m− 1)! ·

E{
∏

i∈p1

yi}E{
∏

i∈p2

yi} . . . E{
∏

i∈pm

yi} (A.1)

where the sum is extended to all the possible partitions (p1, 2, . . . , pm), m = 1, 2, . . . , n, of
the set of natural numbers (1, 2, . . . , n).

This calculus results in low complexity for lower orders but its complexity rapidly in-
creases for higher orders. In our case, the fact that the cross-cumulants of our interest
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take the form C1,q(y,y) = E{y gT (y)} simplifies this task for real and zero-mean sources,
because many partitions disappear or give rise to the same kind of sets.

We define the moment and cross-moment matrices of the outputs as

Mq(y) = E{y ◦ . . . ◦ y︸ ︷︷ ︸
q

} = E{g(y)},

M1,q(y,y) = E{y(y ◦ . . . ◦ y︸ ︷︷ ︸
q

)T } = E{y gT (y)}, (A.2)

where ◦ denotes the Hadamard product of vectors and g(y) = [g1(y1), g2(y2), . . . , gn(yn)]T =
y ◦ . . . ◦ y︸ ︷︷ ︸

q

= y◦q, with entries gj(yj) = yq
j .

Below are presented the expressions of the cross-cumulant matrices C1,q(y,y) in terms
of the moment matrices for q = 1, 2, . . . , 7.

C1,1(y,y) = M1,1(y,y) = E{yyT },
C1,2(y,y) = M1,2(y,y) = E{y(y ◦ y)T } = E{y [y◦ 2]T },
C1,3(y,y) = M1,3(y,y)− 3M1,1(y,y) diag(M2(y)) = E{y [y◦ 3 − 3 diag(M2(y))y]T },
C1,4 = M1,4 − 4M1,1 diag(M3)− 6M1,2 diag(M2),

C1,5 = M1,5 − 5M1,1 diag(M4)− 10M1,2 diag(M3)− 10M1,3 diag(M2)

+ 30M1,1 diag(M2)2,

C1,6 = M1,6 − 6M1,1 diag(M5)− 15M1,2 diag(M4)− 20M1,3 diag(M3)

− 15M1,4 diag(M2) + 120M11 diag(M2) diag(M3) + 90M1,2 diag(M2)2,

C1,7 = M1,7 − 7M1,1 diag(M6)− 21M1,2 diag(M5)− 35M1,3 diag(M4)

− 35M1,4 diag(M3)− 21M1,5 diag(M2) + 210M1,1 diag(M2) diag(M4)

+ 140M1,1 diag(M3)2 + 420M1,2 diag(M2) diag(M3) + 210M1,3 diag(M2)2

− 630M1,1 diag(M2)3,

where diag(M2(y)) = diag{E{y2
1}, E{y2

2}, . . . , E{y2
n}}.

For the case of complex sources the expressions are much more complicated. As an
example, we can see that for q = 3 the cumulant matrix is

C1,3(y,y) = E{y(y ◦ y∗ ◦ y∗)T } − E{yyT } diag(E{y∗yH})− 2E{yyH} diag(E{yyH})
(A.3)

which can be compared with the real case to note the increase of computational complexity.



9
Multichannel Blind

Deconvolution: Natural
Gradient Approach

The truth is rarely pure, and never simple.
—(Oscar Wilde)

Blind separation/deconvolution of source signals has been a subject under considera-
tion for more than two decades [552, 1040]. There are significant potential applications of
blind separation/deconvolution in various fields, for example, wireless telecommunication
systems, sonar and radar systems, audio and acoustics, image enhancement and biomedical
signal processing (EEG/MEG signals) [801, 111, 379, 479]. In these applications, single
or multiple unknown but independent temporal signals propagate through a mixing and
filtering medium. The blind source separation/deconvolution problem is concerned with re-
covering independent sources from sensor outputs without assuming any a priori knowledge
of the original signals, except certain statistical features [34, 595].

In this chapter, we present using various models and assumptions, relatively simple
and efficient, adaptive and batch algorithms for blind deconvolution and equalization for
single-input/multiple-output (SIMO) and multiple-input/multiple-output (MIMO) dynam-
ical minimum phase and non-minimum phase systems. The basic relationships between
standard ICA/BSS (Independent Component Analysis and Blind Source Separation) and
multichannel blind deconvolution are discussed in detail. They enable us to extend algo-
rithms derived in the previous chapters. In particular, the natural gradient approach for
instantaneous mixture to convolutive dynamical models. We also derive a family of equivari-
ant algorithms and analyze their stability and convergence properties. Furthermore, a Lie
group and Riemannian metric are introduced on the manifold of FIR filters and using the
isometry of the Riemannian metric, the natural gradient on the FIR manifold [1370, 1374]

335
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is described. Based on the minimization of mutual information, we present then a natural
gradient algorithm for the causal minimum phase finite impulse response (FIR) multichan-
nel filter. Using information back-propagation, we also discuss an efficient implementation
of the learning algorithm for the non-causal FIR filters. Computer simulations are presented
to illustrate the validity and good learning performance of the proposed algorithms.

Existing adaptive algorithms for blind deconvolution and equalization can generally be
classified into two categories: The mutual information minimization/entropy maximization
and the cumulant-based algorithms [307, 556, 546, 503, 1203]. The Bussgang algorithms
[479, 96, 83] and the natural gradient algorithm [38, 111, 393] are two typical examples of
the first category. The Bussgang techniques are iterative equalization schemes that employ
stochastic gradient descent procedures to minimize non-convex cost functions depending on
the equalizer output signals. The Bussgang algorithms are simple and easy to implement,
but, they may converge to wrong solutions resulting in poor performance of the equalizer. In
the Cumulant Fitting Procedure (CFP) [1190, 1191, 1201], the channel identification process
directly employs the minimization of higher-order cumulant-based nonlinear cost functions.
The underlying cost functions in the CFP are multi-modal, as in the case of Bussgang
algorithms. The natural gradient approach was developed by Amari et al. to overcome the
drawback of the Bussgang algorithm [38, 39]. It has been shown that the natural gradient
can considerably improve efficiency in blind separation and blind deconvolution [111, 405].
The main objective of this chapter is to review and extend existing adaptive natural gradient
algorithms for various multichannel blind deconvolution models.

9.1 SIMO CONVOLUTIVE MODELS AND LEARNING ALGORITHMS FOR

ESTIMATION OF SOURCE SIGNAL

In many applications it is necessary to reconstruct an unknown single source signal which
is transmitted through several channels with unknown convolutive characteristics. In other
words, only distorted (convolutive or filtered) versions of the source are available at the
outputs of the channels. It is thus necessary to reconstruct the original source and/or
identify the unknown channels with some, usually nonessential, intrinsic ambiguities (such
as arbitrary scaling and time delay). This problem is called the blind equalization of SIMO
(single-input/multiple-output) channels, and it has found numerous applications in digital
communication, cable HDTV, global positioning system, and some biomedical applications
[556, 479, 379].

Typical scenarios are illustrated in Fig.9.1 (a), (b) and (c). For example, in the acoustic
speech reconstruction problem an unknown speech signal recorded by an array of micro-
phones is distorted by reverberation and echo (see Fig.9.1 (a)). Similarly, in neuroscience
(e.g., EEG recordings) a brain source is recorded by several electrodes or sensors which mea-
sure convolutive (distorted, low-pass filtered) versions of the source caused by propagation
effects.

In a wireless communication, scenario, the transmitted signals are received by several
antennas (Fig.9.1 (b)). The transmitted signals interact with various objects in the physical
region before reaching the antenna array. Each path follows a different direction, with some
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Fig. 9.1 Conceptual models of single-input/multiple-output (SIMO) dynamical system: (a) Record-
ing by an array of microphones an unknown acoustic signal distorted by reverberation, (b) array of
antenna receiving distorted version of transmitted signal, (c) illustration of oversampling principle for
two channels.
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unknown propagation delay and attenuation. This phenomenon of receiving a superposition
of many delayed signals is called multi-path fading [479]. Furthermore, since a sensor signal
can be oversampled or fractionally sampled as illustrated in Fig.9.1 (c), and thus it is
possible to obtain several distorted observations of the same source signal [379].

In the blind equalization of SIMO channels (Fig.9.2), it is assumed that the ith sensor
output xi(k) is generated from a linear time-invariant filter as

xi(k) =
M∑

p=0

hip s(k − p) + νi(k),

= [Hi(z)] s(k) + νi(k), (i = 1, 2, . . . ,m) (9.1)

where s(k) is an unknown zero-mean uncorrelated with noise source signal,

Hi(z) =
M∑

p=0

hip z−p

is the transfer function of the ith channel, (z−p is delay operator such that z−ps(k) =
s(k − p)), and νi(k) is an additive noise (typically assumed to be white Gaussian noise).
In this model, we assume that lengths of the channels are equal to or less than M and the
number of channels (equals the number of sensors) is m ≥ 2.

The task of blind equalization of SIMO channels is to design a multiple-input/single-
output (MISO) system (Fig.9.2 (a)), so that its composite output:

y(k) = y1(k) + · · ·+ ym(k), (9.2)

where

yi(k) = [Wi(z)] xi(k) =
L∑

p=0

wip xi(k − p) (9.3)

is possibly a scaled and time-delayed estimate of the original source signal s(k), i.e., y(k) =
g s(k −∆), where g is some scaling factor and ∆ is a time-delay. The term “blind” implies
that the problem should be solved without the knowledge of channels {Hi(z)} and the
source signal s(k).

9.1.1 Equalization Criteria for SIMO Systems

In the blind equalization problem certain conditions about the channels and the source
signal must be satisfied to ensure identifiability [1161]. One fundamental condition is the
channel diversity. By channel diversity, we mean usually different characteristic or modes
of the channels.

Throughout this section, the following assumptions are made:
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AS1: The source signal s(k) is a zero-mean random sequence and temporally uncorre-
lated (white) with finite variance, i.e.,

E{s(k)} = 0,

E{s(k) s(k − p)} = σ2
s(k) δp0, (9.4)

where δp0 is the Kronecker delta equal to 1 if p = 0, and 0 otherwise.

AS2: The channels {Hi(z)} are coprime, that is, that finite impulse response channels
have different zeros.

Under the assumptions (AS1) and (AS2), it has been shown [227] that if the composite
output y(k) = y1(k) + · · ·+ ym(k) (the sum of the output of the equalizer-bank) is a white
signal,1, then the composite output y(k) is a scaled and time-delayed version of the original
source signal s(k). On the basis of this property, causal FIR filter equalizer-bank can be
constructed and the temporal decorrelation-based blind equalization (TDBE) algorithm can
be used [227, 228]. The equalization criterion for the i.i.d. (white) sources is summarized
in the following Theorem [227].

Theorem 9.1 Suppose the assumptions (AS1) and (AS2) are satisfied. Then the composite
output y(k) = y1(k)+· · ·+ym(k) (m ≥ 2) is equal to a scaled and delayed version of original
source signal, i.e., y(k) = g s(k −∆), if all yi(k) satisfy

E{yi(k) yj(k − p)} = 0, ∀ i 6= j, and p 6= 0, (9.5)
E{y2

i (k)} 6= 0, ∀i (i = 1, 2, . . . , m), (9.6)

Proof. Note that the output signal y(k) is determined as y(k) = y1(k) + · · ·+ ym(k). Then
one can easily show that the conditions (9.5) and (9.6) imply that

E{y(k) y(k − p)} = 0, ∀ p 6= 0, (9.7)
E{y2(k)} 6= 0. (9.8)

If the assumption (AS2) is satisfied, then the inverse of {Hi(z}) is also causal and stable.
Thus the global system (combining a channel and an equalizer) is causal and stable, and
this can be represented as an infinite FIR [379]. The composite output y(k) can be written
as

y(k) = [G(z)] s(k) =
∞∑

p=0

gp s(k − p), (9.9)

where G(z) =
∑m

i=1 Wi(z) Hi(z) is the global transfer function. Suppose gd is the leading
non-zero coefficient (i.e., g0 = g1 = · · · = gd−1 = 0). Then (9.9) becomes

y(k) =
∞∑

p=d

gp s(k − p). (9.10)

1The white signal satisfies the relationship E{y(k)y(k + τ)} = 0 for all τ 6= 0.
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Using (9.10) the correlation between y(k) and y(k + q) is given by

E{y(k) y(k + q)} =
∞∑

p=d

gp gp+qE{s2(k − p)}. (9.11)

It follows from (9.7) and E{s2(k− p)} 6= 0, ∀p that gp = 0 for p = d+1, . . . ,∞. Therefore,
the composite output y(k) is equal to gd s(k − d), if the conditions (9.7) and (9.8) are
satisfied. ¤

9.1.2 SIMO Blind Identification and Equalization via Robust ICA/BSS

In this section, we present a simple batch method based on approximate maximum like-
lihood source separation (AMLSS) and the natural gradient approach proposed by Choi
and Cichocki [226]. The blind equalization of SIMO with FIR channels described by Equa-
tion (9.1) can be reformulated as the problem of instantaneous blind source separation or
independent component analysis problem. Eq. (9.1) can be reformulated as follows: An
m-dimensional observation vector x(k) is assumed to be generated from an unknown source
signal s(k) through m different FIR filters, i.e.,

x(k) =
M∑

p=0

h(p) s(k − p) + ν(k), (9.12)

where {h(p)} (h(p) = [h1p, h2p, . . . , hmp]T ) are the impulse responses of channels with
length M and ν(k) is the additive white Gaussian noise that is assumed to be statistically
independent of the source signal s(k).

Stacking N successive samples of the observation vector, i.e.,

X (k) = [xT (k),xT (k − 1), . . . ,xT (k −N + 1)]T ∈ IRN , (9.13)

the model (9.12) can be reformulated as a system of linear algebraic equations

X (k) = HNS(k) + V(k), (9.14)

where

HN =




h(0) h(1) · · · h(M) 0 · · · · · · 0
0 h(0) h(1) · · · h(M) 0 · · · 0
...

...
0 · · · · · · 0 h(0) h(1) · · · h(M)


 , (9.15)

and

S(k) = [s(k), s(k − 1), . . . , s(k −N −M + 1)]T ∈ IRN+M (9.16)
V(k) = [νT (k),νT (k − 1), . . . , νT (k −N + 1)]T ∈ IRNm. (9.17)

Here, we assume that the channels are coprime. Another necessary condition for almost
all batch algorithms for blind equalization is that HN ∈ IRNm×(N+M) be full rank. Full
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rank requires at least more rows than columns, i.e., N ≥ M
m−1 . In the model described by

Eq. (9.14), we can see some similarity with ICA models for instantaneous mixture discussed
in the previous chapters. The main difference is that in blind equalization the matrix HN

has block Toeplitz structure and entries of the vector S(k) are time-delayed versions of the
same signal. However for i.i.d sources we can treat S(k) as a signal vector formed by M +N
“independent” signals although they build up the same sequence at different time-lags. We
also can treat HN as unstructured mixing matrix. Such treatments are justified due to the
assumption that the source signal is i.i.d., and some ambiguities are acceptable. Such an
assumption motivates the use ICA/BSS approach to the blind equalization problem.

In preprocessing stage, we need to first estimate the rank of HN . This can be done
by computing the sampled covariance matrix RX (0) of the observed vector X and the
computing its eigenvalue decomposition. In fact, by taking into account relation

RX (0) = HN HT
N + σ2

ν IN

= [VS ,VN ]
[

ΛS 0
0 ΛN

]
[VS ,VN ]T

= VSΛSVT
S + VNΛNVT

N , (9.18)

which holds under the assumption of i.i.d. source signal and white noise, we can estimate
the rank of HN and variance of the noise σ2

ν .
Our objective is to estimate source signal S(k) and/or identify the “mixing” matrix ĤN

or separating: matrix W = Ĥ+

N , especially for the ill-conditioned channels in the presence of
Gaussian noise. On the basis of methods presented in Chapters 6 and 8, we have developed
the following iterative algorithm [226]:

Algorithm Outline: Robust ICA/BLUE Algorithm for Blind SIMO Equalization

1. Given the current estimate of the mixing matrix, ĤN (k), we estimate the source
vector by using the BLUE (Best Linear Unbiased Estimator)

Ŝ(k) =
[
ĤT

N (k)R̂−1

ννĤN (k)
]−1

ĤT

N (k)R̂−1

ννX (k), (9.19)

where R̂νν is the estimated covariance matrix of noise. If the noise covariance matrix
R̂νν is not available, then we assume that R̂νν = σ̂2

νI and the above formula
simplifies to

Ŝ(k) =
(
ĤT

N (k)ĤN (k)
)−1

ĤT

N (k)X (k). (9.20)

2. Using Ŝ(k) and ĤN (k), we can find the new estimate of the mixing matrix, ĤN (k+1)
by applying the standard NG ICA algorithm (see Chapter 6)

ĤN (k + 1) = ĤN (k)− ηĤN (k)
[
I−R(k)

f g

]
, (9.21)
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where

R(k)
f g = (1− η0)R

(k−1)
f g + η0 f(Ŝ(k))ŜT

(k). (9.22)

Alternatively for large Gaussian noise (see Chapter 8 for theoretical justification)

R(k)
f g = (1− η0)R

(k−1)
f g + η0 Ŝ(k)gT (Ŝ(k), (9.23)

where entries of the vector g have the form gi(Si) = (S3
i − 3SiE{S2

i }) sign(κ4(Si).

These two steps are repeated until ĤN converges.

Compared with other batch algorithms that exploit structural properties of the channels
or data, the ICA approach is rather insensitive to channel order estimation, robust to
ill-conditioned channels and additive Gaussian noise [226, 1008, 1388]. Moreover, it was
confirmed [226] by computer simulation experiments that the natural gradient based BSS
methods could recover the source signal for the blind SIMO equalization successfully, even
when some zeros of channels Hi(z) that are close to each other, whereas second-order
based blind identification methods may fail [379, 1161, 869]. The main disadvantage of the
approach is that the matrix ĤN ∈ IRNm×(N+M) is large if the length M of the filters and/or
the number of samples N are large and we need large memory and extensive computations.
In such a case it would be rather difficult to implement the above algorithm in practice. An
alternative solution is to apply an adaptive on-line algorithm with good convergence rate
and good tracking ability, as discussed in the next section.

9.1.3 Feed-forward Deconvolution Model and Natural Gradient Learning Algorithm

Let us consider the feed-forward model shown in Fig.9.2 (a), described as

y(k) =
m∑

i=1

yi(k), (9.24)

with

yi(k) =
L∑

p=0

wip(k)xi(k − p) = wT
i xi(k), (i = 1, 2, . . . ,m) (9.25)

where wi(k) = [wi0(k), wi1(k), . . . , wiL(k)]T and xi(k) = [xi(k), xi(k − 1), . . . , xi(k − L)]T .
Theorem 9.1 permits to use the following cost functions

Ji(y,wi) = ‖Λi − R̂yi y‖F , (9.26)

where Λi = diag{λi0, . . . , λiL}, R̂yi y =
〈
yi(k)yT (k)

〉
is the cross correlation matrix with

yi(k) = [yi(k), yi(k − 1), . . . , yi(k − L)]T and y(k) = [y(k), y(k − 1), . . . , y(k − L)]T . Ap-
plying the method presented previously (Chapters 4 and 7), we can derive the following
nonholonomic algorithm

∆wi(k) = η(k)
[
Λ(k)

i − 〈
yi(k)yT (k)

〉]
wi(k), (9.27)
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where the entries of the diagonal matrix Λ(k)
i = diag{λi0, λi1, . . . , λiL} are chosen as λip =

〈yi(k − p) y(k − p)〉 with p = 0, 1, . . . , L.
For the sensor signals corrupted by the additive Gaussian noise, instead of cross-correlation

matrix R̂yi y, we can use alternatively the matrix cumulant of the form C1,q(yi,y) (see
Chapter 8). In such a case the algorithm can be generalized to the following form:

∆wi(k) = η(k)
[
Λ(k)

i − 〈
yi(k)gT (y(k))

〉]
wi(k), (9.28)

where g(y) = [g0(y(k)), g1(y(k − 1)), . . . , gL(y(k − L))]T . The nonlinear functions can take
various forms, depending on the distribution of source signal. For example, for q = 1 the
algorithm (9.28) simplifies to the algorithm (9.27) with gp(y(k−p)) = y(k−p); for the q = 3
the nonlinear functions take the form gp(yp) = −(y3

p − 3 yp σ̂2
yp

) κ4(yp) for p = 0, 1, . . . , L.
The learning rule (9.28) can be formulated in a slightly modified form as

∆wi(k) = η(k)
[
Λ(k)

i −R(k)
yi g

]
wi(k), (i = 1, 2, . . . , m) (9.29)

where

Λ(k)
i = (1− η0)Λ

(k−1)
i + η0 diag{yi(k)gT (y(k))}, (9.30)

R(k)
yi g = (1− η0)R(k−1)

yi g + η0 yi(k)gT (y(k)). (9.31)

It is interesting to note that the above algorithm has a form similar to the natural gradient
algorithms derived in Chapters 6 and 8.

9.1.4 Recurrent Neural Network Model and Hebbian Learning Algorithm

According to Theorem 9.1, it is desirable to build a neural network which can perform
a spatio-temporal decorrelation. In this section, we extend Földiák’s idea [443] on anti-
Hebbian learning to the spatio-temporal domain. It has been shown that the anti-Hebbian
learning rule can be used to decorrelate signals in the spatial domain without instability,
provided that the learning rate is small enough [227, 231].

Let us consider a linear feedback (recurrent) neural network with FIR synapses (see
Fig.9.2 (b) and (c)) whose outputs yi(k) are described as

yi(k) = xi(k)−
m∑

j=1

L∑
p=0

ŵij p(k) yj(k − p)

= xi(k)−
m∑

j=1

[Ŵij(z, k)] yj(k) (9.32)

or in the compact matrix form

y(k) = x(k)−
L∑

p=0

Ŵp(k)y(k − p)

= x(k)− [Ŵ(z)]y(k), (9.33)
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Fig. 9.2 Functional diagrams illustrating SIMO blind equalization models: (a) Feed-forward model,
(b) recurrent model, (c) detailed structure of the recurrent model.
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where Ŵp(k) ∈ IRm×m is the synaptic weight matrix whose (i, j)th element is ŵij p(k)
(Ŵ(z, k) =

∑L
p=0 Ŵp(k) z−p, typically, with Ŵ0 = 0). Theoretically, L should approach

infinity, but in practice it can assume a finite number. The synaptic weight wij p(k) repre-
sents the connection strength between yi(k) and yj(k − p).

The neural network should be trained in such a way that the network output signals
are both spatially and temporally uncorrelated. The composite output y(k) =

∑m
i=1 yi(k)

becomes then the scaled and/or delayed estimate of the source signal s(k) according to
Theorem 9.1. We want to minimize the statistical correlations of the entries of the output
vector y(k) in the spatio-temporal domain. To minimize the statistical correlations, we
choose the Kullback-Leibler divergence, , which is an asymmetric measure of the distance
between two probability distributions. It is straightforward to show that we can achieve
spatio-temporal decorrelation of the output signals by the minimization of the following
cost (risk) function

R({Ŵp}) = −
m∑

i=1

E{log qi(yi)}, (9.34)

where qi(yi) are the pdfs of the signals yi. The above cost function can be approximated as

R̂({Ŵp}) = − 1
N

m∑

i=1

N∑

k=1

log qi(yi(k)). (9.35)

In order to derive the spatio-temporal anti-Hebbian learning rule one can try then to min-
imize the instantaneous realization of the sum of marginal entropies of yi(k) in an N -point
time block. This can be viewed as an extension of minimum entropy coding (or factorial
coding) in spatio-temporal domain [877].

Applying the standard gradient descent method, we obtain a simple learning rule

Ŵp(k + 1) = Ŵp(k) + η(k)
〈
f(y(k))yT (k − p)

〉
, (9.36)

where f(y(k)) = [f1(y1(k)), . . . , fm(ym(k))]T with entries

fi(yi(k)) = −∂ log qi(yi(k))
∂yi(k)

. (9.37)

In general, Ŵp(k) is updated in such a way that the higher-order cross-correlation between
y(k) and y(k−p) is minimized. As a special case of this, with hypothesized Gaussian model
for y(k), one can obtain the linear learning rule, i.e., f(y(k)) = y(k).

Note that
〈
f(y(k))yT (k − p)

〉
= 1

N

∑N
k=1 f(y(k))yT (k − p) is the time-average, which

can very roughly be approximated by a single sample. In this way, we obtain the simple
on-line learning rule

Ŵp(k + 1) = Ŵp(k) + η(k)f(y(k))yT (k − p) (9.38)
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or in scalar form

ŵij p(k + 1) = ŵij p(k) + η(k)f(yi(k)) yj(k − p). (9.39)

This is a spatio-temporal anti-Hebbian local learning rule which performs the spatio-temporal
decorrelation [226, 228, 231].

9.2 MULTICHANNEL BLIND DECONVOLUTION WITH CONSTRAINTS

IMPOSED ON FIR FILTERS

In many practical applications (for example in the cocktail party problem) the multichannel
convolutive and deconvolutive models take special forms with some constraints imposed on
synaptic weights (parameters) of convolutive FIR filters. For example, if each individual
sensor is located close to a specific source and far away from other sources, then it is
possible to apply the convolutive model shown in Fig.9.3 (a). To be more specific, in a
typical scenario of the cocktail party problem with two speakers, one microphone can be
located close to one speaker and another one to the second speaker (or loudspeaker). Let
us consider the mixing and convolutive model described by the feed-forward model shown
in Fig.9.3:

xi(k) = si(k) +
L∑

p=0

∑

j 6=i

hij p sj(k − p) = si(k) +
∑

j 6=i

[Hj(z)] sj(k). (9.40)

Alternatively, in some applications, we can employ a stable multichannel autoregressive
model described by the set of equations

xi(k) = si(k)−
L∑

p=0

∑

j 6=i

ĥij p xj(k − p) = si(k)−
∑

j 6=i

[Ĥj(z)] xj(k). (9.41)

In order to estimate original source signals (which can be white or colored signals, like
speech signals) in the feed-forward mixing/convolutive model, we can use the recurrent
deconvolution model as shown in Fig.9.3 (a) or the feed-forward model with post-processing
shown in Fig.9.3 (b). For brevity, we discuss in this section only the derivation of a learning
algorithm for the recurrent deconvolution model of Fig.9.3 (a), described by the set of
equations:

yi(k) = xi(k)−
L∑

p=0

∑

j 6=i

ŵij p yj(k − p) = xi(k)−
∑

j 6=i

[Ŵj(z)] yj(k) (9.42)

or in a compact matrix form as

y(k) = x(k)−
L∑

p=0

Ŵp y(k − p) = (I + Ŵ0)−1

[
x(k)−

L∑
p=1

Ŵp y(k − p)

]
, (9.43)
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Fig. 9.3 Block diagrams illustrating the multichannel blind deconvolution problem: (a) Recurrent
neural network, (b) feed-forward neural network (for simplicity, models for two channels are shown
only).

where all diagonal elements of the synaptic weight matrices Ŵp are zero and Ŵ0 6= 0. In
other words, the model imposes restrictions on some synaptic weights and it does not allow
self-feedback connections [215, 239, 241].

In order to derive the learning algorithm, let us consider the minimization of the following
cost function [239]

J(Ŵ,y) = −
n∑

i=1

E{log(qi(yi)}, (9.44)

where qi(yi) (i = 1, 2, . . . , n) denote the true probability density functions2 of the source
signals. In fact, the minimization of the above cost function provides the minimization of

2In practice, approximate (hypothesized) pdfs of the source signals are used.
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mutual information (see Chapter 6 for more explanation). The differential (infinitesimal
increment) of the cost function can be evaluated as follows

dJ =
〈
fT (y(k)) dy(k)

〉
, (9.45)

where f(y) = [f1(y1), . . . , fn(yn)]T , with fi(yi) = −d log(qi(yi))/dyi and

dy(k) = −(I + Ŵ0)−1

[
dŴ0 y(k) +

L∑
p=1

(dŴp y(k − p) + Ŵp dy(k − p)

]
. (9.46)

Assuming that the small changes of the output signals are affected only by the small vari-
ation of the synaptic weights {ŵij p}, we can approximate Eq. (9.46) by

dy(k) = −(I + Ŵ0)−1
L∑

p=1

dŴp y(k − p). (9.47)

Hence, on the basis of the standard gradient descent method, we obtain the approximate
learning rule

∆Ŵp = −η
d J

dŴp

= η(k)
[
I + Ŵ0

]−T 〈
f(y(k))yT (k − p)

〉
. (9.48)

In order to avoid the inversion of the matrix [I+Ŵ0] in each iteration step and to increase
the convergence speed, we can apply the natural gradient concept by introducing the new
differential, defined as

dXp =
[
I + Ŵ0

]−1

dŴp (9.49)

and

dy(k) = −
L∑

p=1

dXp y(k − p). (9.50)

Hence, we obtain the batch algorithm

∆Ŵp(l) = −η(l)
[
I + Ŵ0(l)

] d J

dXp
= η(l)

[
I + Ŵ0(l)

] 〈
f(y(k))yT (k − p)

〉
. (9.51)

Using the MA (moving average) approach, we obtain the on-line algorithm

Ŵ(k + 1) = Ŵ(k) + η(k) [I + Ŵ0] R̂
(k)
f y (p), (9.52)

where R̂(k)
f y (p) = (1 − η0) R̂

(k−1)
f y (p) + η0 f(y(k))yT (k − p). The above algorithm provides

improved performance and convergence speed over the local algorithm [1236, 1237, 1145,
1146]

∆Ŵp(k) = η(k)
〈
f(y(k))yT (k − p)

〉
. (9.53)
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9.3 GENERAL MODELS FOR MULTIPLE-INPUT MULTIPLE-OUTPUT BLIND

DECONVOLUTION

9.3.1 Fundamental Models and Assumptions

Let us consider a multichannel, linear time-invariant (LTI), discrete-time dynamical system
described in the most general form as

x(k) =
∞∑

p=−∞
Hp s(k − p), (9.54)

where Hp is an m × n-dimensional matrix of mixing coefficients at time-lag p (called the
impulse response at time-lag p) and s(k) is an n-dimensional vector of source signals with
mutually independent components. It should be noted that the causality in time domain is
satisfied only when Hp = 0 for all p < 0 3.

The goal of the multichannel blind deconvolution is to estimate source signals using
sensor signals x(k) only and certain knowledge of the source signal distributions and statis-
tics. In the most general case, we attempt to estimate the sources by employing another
multichannel, LTI, discrete-time, stable dynamical system (Fig. 9.4 (a) and (b)) described
as

y(k) =
∞∑

p=−∞
Wp x(k − p), (9.55)

where y(k) = [y1(k), y2(k), . . . , yn(k)]T is an n-dimensional vector of the outputs and Wp

is an n×m-dimensional coefficient matrix at time lag p. We use the operator form notation

H(z) =
∞∑

p=−∞
Hp z−p, (9.56)

W(z) =
∞∑

p=−∞
Wp z−p. (9.57)

In practical applications, we have to implement the blind deconvolution problem with a
finite impulse response (FIR) multichannel filter with matrix transfer function:

W(z) =
L∑

p=0

Wp z−p, (9.58)

or apply a non-causal (doubly-finite) feed-forward multichannel filter

W(z) =
L∑

p=−K

Wp z−p, (9.59)

3For images or two dimensional signals, where time is replaced by spatial coordinates, there is no problem
with causality if the whole image is available.
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Fig. 9.4 Illustration of the multichannel deconvolution models: (a) Functional block diagram of the
feed-forward model, (b) architecture of feed-forward neural network (each synaptic weight Wij(z, k)
is an FIR or stable IIR filter, (c) architecture of the fully connected recurrent neural network.

where K and L are two given positive integers.
The global transfer function is defined by

G(z) = W(z)H(z). (9.60)

In order to ensure that the mixing system is recoverable, we put the following constraints
on the convolutive/mixing systems.
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1. The filter H(z) is stable, i.e., its impulse response satisfies the absolute summability
condition

∞∑
p=−∞

‖Hp‖22 < ∞, (9.61)

where ‖ · ‖2 denotes the Euclidean norm.
2. The filter matrix transfer function H(z) is a full rank on the unit circle (|z| = 1), that

is, it has no zeros on the unit circle.

9.3.2 Separation-Deconvolution Criteria

The blind deconvolution task is to find a matrix transfer function W(z) such that

G(z) = W(z)H(z) = PΛD(z), (9.62)

where P ∈ IRn×n is a permutation matrix, Λ ∈ IRn×n is a nonsingular diagonal scaling ma-
trix, and a diagonal matrix D(z) = diag{D1(z), . . . , Dn(z)} represents a bank of arbitrary
stable filters with transfer functions Di(z) =

∑
p dipz

−p. In other words, the objective of
multichannel blind deconvolution, in the most general case, is to recover the source vector
s(k) from the observation vector x(k), up to possibly scaled, reordered, and filtered esti-
mates. We can only recover a filtered version of each source signal si(k) because we assume
nothing about the temporal structure of each source. However, if we assume that sources
are i.i.d., then we can relax the conditions to the form:

G(z) = W(z)H(z) = PΛD0(z), (9.63)

where D0(z) = diag{z−∆1 , . . . , z−∆n}. In such a case, the original source signals can be
reconstructed up to arbitrary scaled, reordered, and delayed estimates. In other words, we
can preserve their waveforms exactly.

For some models it is difficult or even impossible to find an exact inverse of the channels in
the sense described above, since no knowledge of the channel and source signals is available
in advance. Hence, instead of finding an inverse decomposition (9.62) or (9.63) in one step,
we often attempt to find a matrix W(z) that satisfies the generalized zero-forcing (ZF)
condition, given by

G(z) = W(z)H(z) = Γ D0(z), (9.64)

where Γ is an n × n is nonsingular memoryless (constant) mixture matrix and D0(z) =
diag{z−∆1 , . . . , z−∆n}.

Let us denote the output signal of the system W(z) by y(k), i.e., y(k) = [W(z)]x(k).
It will be shown that the generalized zero-forcing condition (9.64) is achieved if {yi(k)} are
uncorrelated in the temporal domain as well as in the spatial domain. Suppose that the
system W(z) satisfies the generalized zero-forcing condition (9.64). Then one can easily see
that the signals {yi(k)} are instantaneous mixtures of source signals {si(k)}. Instantaneous
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mixtures can be separated in the second stage by blind source separation or independent
component analysis.

Theorem 9.2 (Zero-Forcing Conditions) Let the channel H(z) satisfy the following as-
sumptions:
(AS1) There are more sensors than sources, i.e., m > n.
(AS2) H(z) is causal and rational.
(AS3) H(z) is full rank for all z.
Furthermore, suppose that source signals {si(k)} are spatially independent and temporally
i.i.d. sequences. Then the generalized zero-forcing condition (9.64) is satisfied, if the fol-
lowing relation holds

E{y(k)yT (q)} = Γ δkq, (9.65)

where Γ ∈ IRn×n is the constant matrix and δkq is the Kronecker delta equal to 1 for k = q,
and 0 otherwise.

Proof. Since both the channel and its inverse are causal and stable, the global system G(z)
is also causal and stable. Then

y(k) =
∞∑

p=0

Gp s(k − p). (9.66)

Suppose that Gd is the leading nonsingular coefficient matrix, i.e., G0 = · · · = Gd−1 = 0.
Then,

y(k) =
∞∑

p=d

Gp s(k − p). (9.67)

Invoking E{y(k)yT (k + q)} = 0 for ∀q 6= 0, we have

∞∑

p=d

GpE{s(k − p) sT (k − p)}GT
p+q = 0, ∀q 6= 0. (9.68)

Since E{s(k − p) sT (k − p)} and Gd are nonsingular matrices, the condition (9.65) implies
that Gp = 0 for i = d + 1, . . . ,∞. Therefore, y(k) = Gd s(k − d) if the condition (9.65) is
satisfied. ¤

From the above criteria and discussion it follows that blind multichannel deconvolution
is a fairly complex process which can be performed in two or even more stages or by neural
systems containing multi-layer structures. Fig.9.5 illustrates typical architectures for two
stage procedures. In the schema shown in Fig.9.5 (a), blind spatio-temporal decorrelation
of sensor signals is performed initially by using a recurrent neural network (see Chapter 4).
The output signals represented by the vector ŷ after convergence should be a linear mixture
of time-delayed version of original sources s(k) satisfying the zero-forcing conditions, i.e.,

ŷ(k) = [(I + Ŵ(z)]−1 x(k) = ΓD0(z) s(k), (9.69)
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Fig. 9.5 Exemplary architectures for two stage multichannel deconvolution.

where Γ ∈ IRm×m is an arbitrary nonsingular constant (memoryless) matrix and D0(z) =
diag{z−∆1 , . . . , z−∆m}. In order to reconstruct original signals (up to arbitrary, permuta-
tion, scaling and time delay) in the second stage, we can apply ICA or BSS for instantaneous
mixture (since the matrix Γ is memoryless).

Fig.9.5 (b) shows an alternative model for blind deconvolution, assuming that colored
sources signals are modelled as

si(k) = [H̃i(z)] s̃i(k) (9.70)

where H̃i(z) describe an unknown AR or ARMA process and s̃i(k) are innovation i.i.d.
signals. Assuming that only sensor signals (x(k) = [H̃(z)] s(k)) are available in the first
stage, we perform multichannel deconvolution in such a way that the outputs yi(k) are
filtered versions of original sources sj(k). In the second stage, we perform SISO or SIMO
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blind equalization using one of the available methods, described in the previous sections of
this chapter.

The multichannel blind deconvolution task will be largely driven by the assumption that
sources are mutually independent. In some cases, however, we make additional assumption
that sources are white signals. In order to separate independent sources by a deconvolution
model, we can reformulate the blind deconvolution problem as an optimization problem, so
that selection of a suitable cost function will be necessary.

9.4 RELATIONSHIPS BETWEEN BSS/ICA AND MBD

The algorithms described in the previous chapters (especially, algorithms for ICA/BSS
described in Chapters 4 and 8) are very efficient. However, a key problem arises as to
extend or generalize these algorithms (and others algorithms for ICA and BSS/BES) for
real-world problems concerned with robust multichannel blind deconvolution/separation
(MBD). In other words, the question arises: Is it possible to establish a direct relationship
between ICA/BSS and MBD and to convert directly a learning algorithm for BSS to an
“equivalent” algorithm for MBD? This problem is the subject of this section. We will
show that the learning algorithms for blind source separation (BSS) can be generalized or
extended to achieve multichannel blind deconvolution (MBD) [38, 39, 401, 405]. We use
relationships between convolution in the time domain and multiplication in the frequency
domain and more generally exploit abstract algebra with their useful and powerful properties
to obtain new results [1025, 406, 407, 556, 721].

9.4.1 Multichannel Blind Deconvolution in the Frequency Domain

The simplest idea of extending the blind source separation and ICA algorithms to multi-
channel blind deconvolution is use the frequency domain techniques. A convolutive mixture
in the time domain corresponds to an instantaneous mixture of complex-valued signals and
parameters in the frequency domain [47, 871, 813]. An n-point windowed DFT (Discrete
Fourier Transform) is used to convert time domain signals yi(k) into frequency domain
complex-valued time-series signals:

Yi(ω, b) =
N−1∑

k=0

e−jωk yi(k) win(k − b∆), (9.71)

for ω = 0,
1
N

2π, . . . ,
N − 1

N
2π, (9.72)

where win denotes a window function and ∆ is the shifting interval of the window. The
number of frequency bins is equal to the frame length N and it corresponds to the length
of FIR filters of the deconvolution system.

By using the Fourier transform, the multichannel deconvolution model is represented by

Y(ω, b) = W(ω)X(ω, b), (9.73)

where Y(ω, b) = [Y1(ω, b), . . . , Yn(ω, b)]T and X(ω, b) = [X1(ω, b), . . . , Xm(ω, b)]T .
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For each frequency bin ω we can apply any ICA algorithm discussed in the previous
chapters in order to obtain matrix W(ω) ∈ IRn×m and n output signals Y(ω, b) which are
estimates of the source signals in the frequency domain. For example, the natural gradient
ICA algorithms can be adopted as

∆W = η
[
Λ− f(Y)YH

]
W, (9.74)

where superscript H denotes the Hermitian conjugate, Λ is diagonal positive definite matrix
(typically, Λ = I or Λ = diag{f(Y)YH}) and f(Y) = [f(Y1), . . . , f(Yn)]T is the vector of
suitably chosen nonlinear functions of complex-valued signals:

Yi = Y
(R)
i + jY

(I)
i = |Yi|jϕi , (9.75)

with ϕi = tan−1(Y (I)
i /Y

(R)
i ).

A good choice of nonlinear function for super-Gaussian source signals is

f(Yi) =
1
σ̂2

i

tanh(γi|Yi|) ejϕi , (9.76)

where σ̂2
i is the estimated variance of signal Yi and γi > 0 is a parameter which controls the

steepness of the nonlinearity. It should be noted that for such a class of nonlinear functions
the diagonal terms in Eq. (9.74) can be expressed as

f(Yi)Y ∗
i =

1
σ2

i

tanh(γi|Yi|) ejϕi |Yi| e−jϕi =
1
σ2

i

tanh(γi|Yi|) |Yi|, (9.77)

which are always real-valued.
The matrix W(ω) converges for each frequency bin ω to an equilibrium point that

satisfies

f(Yi)Y ∗
j = λiδij . (9.78)

After convergence, we can obtain the coefficient of the FIR filters of length L = N by
applying the inverse of DFT to all matrices W(ω).

Unfortunately, the algorithms in the frequency domain are batch or block algorithms
and they are computationally rather extensive algorithms [48, 131, 523, 871, 1078, 1161].
Moreover, they are not responsive to changing environments. In the next sections of this
chapter, we will propose more direct algorithms in the time domain that are computationally
less expensive.

9.4.2 Algebraic Equivalence of Various Approaches

Notational conventions used in this section are as follows. The discrete-time signals and
parameters are assumed to be real-valued. An infinite time series (on both sides of the time
axis) is denoted as x(k) = {. . . , x(k− 1), x(k), x(k + 1), . . .}. A reversed-order time series is
defined as x(−k) = {. . . , x(k + 1), x(k), x(k − 1), . . .}. A multi-variable time series, that is,
a vector time series, is denoted as x(k) = {. . . ,x(k − 1),x(k),x(k + 1), . . .}, where x(k) =
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[x1(k), x2(k), . . . , xm(k)]T . Similarly, an m×n time-domain impulse response is denoted as
H = Hp = {Hp} = {. . . ,Hp−1,Hp,Hp+1, . . .} and its reversed-order is H(−p) = {H−p} =
{. . . ,Hp+1,Hp,Hp−1, . . .}. Equivalently, by using the Z-transform transfer function, we
may write H(z) =

∑∞
p=−∞Hpz

−p, where Hp is a matrix of mixing coefficients at lag p and
H(z−1) =

∑∞
p=−∞Hpz

p [1025].
We aim to recover the original signal s(k) by applying separating/deconvolution filters

characterized by an impulse response W = {Wp} = {. . . ,Wp−1,Wp,Wp+1, . . .}. The
recovered signals can be described as y(k) = W ∗ x(k), where the k-th element of the
resulting series y(k) is computed as y(k) =

∑∞
p=−∞Wp x(k − p), (k = −∞, . . . ,∞). In

the scalar form the i-th output can be expressed as yi(k) =
∑n

j=1

∑∞
p=−∞ wijpxj(k − p).

A global system that describes the convolution-deconvolution process with input s(k)
and output y(k) is

y(k) = G ∗ s(k) = W ∗H ∗ s(k). (9.79)

Notice that H = {Hp}, W = {Wp} and G = {Gp} are double-infinite non-causal linear
filters, which, in implementation applications, are replaced by their truncated finite-duration
impulse response (FIR) versions. An equivalent description in the Z-transform domain is
as follows

Y(z) = W(z)X(z) = W(z)H(z)S(z) = G(z)S(z), (9.80)

where Y(z) =
∑∞

k=−∞ y(k) z−k and W(z) =
∑∞

p=−∞Wp z−p are the Z-transforms of the
time domain infinite series y(k) and W(k), respectively. H(z),G(z),X(z),S(z) are defined
accordingly. If H = {. . . ,0,H0,0, . . .} and W = {. . . ,0,W0,0, . . .}, we obtain a much
simpler task of blind source separation of instantaneous mixture.

Different ways of describing physical phenomena of signal propagation (IIR filter, FIR fil-
ter, DFT, Z-transform, wavelets, other transforms) result in different but equivalent math-
ematical models. In blind deconvolution, the key operation is a linear convolution (FIR
and/or IIR filtering) of time series. The usual notations in the discrete time domain involve
the Z-transform, z−1-delay operator, DFT (discrete Fourier Transform) or convolution (oth-
ers are also possible). Transformations create suitable relationships for the available data
set and algebraic operations [1025].

The basic data set in our case consists of infinite series of elements such as wp, x(k) and
y(k), that is, wp = {. . . , wp−1, wp, wp+1, . . .}, x(k) = {. . . , x(k − 1), x(k), x(k + 1), . . .} and
y(k) = {. . . , y(k − 1), y(k), y(k + 1), . . .}, where p and k are indices. In the case of time-
domain filtering, x(k) and y(k) are time series of samples and k is a discrete time index. The
data can be rearranged to other forms which best suit solving a specific problem, provided
that the new data set with the new operators defined fall in one of the algebraic categories.
In the case of the Z-transform, the data set is formed in polynomials with polynomial
multiplication and addition [721]. In the case of DFT, the data set is transformed into
a complex number series (the frequency domain) with point-by-point multiplication and
addition of complex series. The case of using a time series in its time-domain format y(k)
and a convolution as the multiplicative operator is described next.
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9.4.3 Convolution as Multiplicative Operator

Let us consider the inner product for a complete signal space (Hilbert space). For a finite
energy signal space, the inner product is (for example, for time series x(k) and y(k))4

(x, y) =
∞∑

k=−∞
x(k)y(k). (9.81)

For a finite power signal space, the inner product is

(x, y) = lim
N→∞

1
2N + 1

N∑

k=−N

x(k)y(k). (9.82)

Let the symbols 0 (zero element) and 1 (one element) denote the time series
{. . . , 0, 0, 0, . . .}, {. . . , 0, 1, 0, . . .}, respectively with 1 for k = 0. Let symbols + (additive
operation) denote point-by-point series addition. Let * (multiplicative operation) denote
linear convolution. The convolution of two time series x(k) and y(k) results in a series
u(k) = x(k) ∗ y(k), where the k-th entry (k = −∞, . . . ,∞) of the series u(k) is

u(k) =
∞∑

p=−∞
x(p)y(k − p) =

∞∑
p=−∞

x(k − p)y(p).

For finite power signals, it may be infinite, and a more informative quantity is the average〈
x(k) ∗ y(k)

〉
defined by analogy to (9.82) with the k-th entry equal to

〈
x(k) ∗ y(k)

〉
= lim

N→∞
1

2N + 1

N∑

p=−N

x(p)y(k − p). (9.83)

A set of time series together with the zero element, one element, additive operation,
and convolution operation creates a general algebra that fulfills the standard conditions of
a commutative ring. By adding some assumptions it becomes a field. We define symbol /
(division operator) by x/y = x(k) ∗ y−1(k), y 6= 0. Since y(k) ∗ y−1(k) = 1, a problem may
arise concerning the existence of any bounded inverse element y−1. The problem is easily
solved by a suitable choice of the origin k = 0 of the series y.

All the rules of differential and integral calculus hold since these are linear operations.
For example, expressions for the differentiation of filtering

y(k) = w ∗ x(k) =
∞∑

p=−∞
wpx(k − p) k = −∞, . . . ,∞, (9.84)

is as follows,

∂

∂w
[y(k)] =

∂

∂w
[w ∗ x(k)] = x(−k) (9.85)

4For complex-valued data instead of y(k), we will use the complex conjugate y∗(k).
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The reversed order of the resulting time series is a consequence of the multiplicative operator
definition.

The time series field reduces to the real number field for the special case of the time
series y(k) = {. . . , 0, y, 0, . . .} with only one non-zero entry for k = 0. This is the notation
of a real number y in terms of time series, which is analogous to writing a real number y
by using the complex notation y + j0. The probability density function of a series at the
point y may be described in this way {. . . , 0, fy(y), 0, . . .}. When one of the operands of a
multiplicative operation is of this form, the symbol ∗ will be omitted.

The above single-channel approach easily extends to a multichannel approach. The
resulting algebra is a non-commutative ring with division, exactly as the standard matrix
algebra of the instantaneous BSS case. It is easily seen that all the algebraic properties of
the instantaneous and convolutive mixing models are equivalent [721, 1025, 556].

Remark 9.1 Inevitable ambiguities in blind deconvolution are those of permutation, scaling
and delay. In instantaneous blind source separation, only those of permutation and scaling
are encountered. However, from the algebraic point of view, there is a precise equivalence
between instantaneous and convolutive cases, and the ambiguities should be also equiva-
lent [1025]. The arbitrary time-delay ambiguity arises as consequence of index ordering
k regarded as time instants and due to causality of the convolving filters. However, from
the algebraic point of view, there is no restriction on incorporating the time-delay with the
convolving filter, and regarding its output as non-causal, thus making it time-delayed.

Basic analogies and relationships between instantaneous BSS and MBD (for m=n and
complex-valued signals and parameters) are collected in Table 9.1.

9.4.4 Natural Gradient Learning Rules for Multichannel Blind Deconvolution (MBD)

The natural gradient algorithm [33, 38, 39, 31] can be generalized for MBD as (see also
Table 9.1)

∆W(l) = W(l + 1)−W(l) = −η
∂Kfq

∂W
∗WT

(−p)(l) ∗W(l), (9.86)

where Kfq is the Kullback - Leibler objective function and W(l) is the estimate at time
instant n of the inverse system for recovering the source signals. Alternatively, we can
employ the natural gradient by using the Z-transform as

∆W(z, l) = −η(l)
∂Kfq

∂W(z)
WT (z−1, l)W(z, l). (9.87)

The Atick-Redlich learning rule discussed in Chapter 4 can be generalized as follows

∆W(l) = −η(l)W(l) ∗
[
∂Kfq

∂W

]T

∗W(l) (9.88)

or using the Z-transform

∆W(z, l) = −η(l)W(z, l)
[

∂Kfq

∂W(z)

]T

W(z, l). (9.89)
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9.4.5 NG Algorithms for Double Infinite Filters

Since the convolutive case is of interest here, all the symbols follow from the properties of
time series with the convolution operator ∗. We can derive a family of algorithms by the
minimization of the Kullback-Leibler divergence between the actual distribution py(y) and
the factorizable model distribution qs(y), which leads to the objective function (see Chapter
6)

ρ(W) = −1
2

log | det(W(−p) ∗WT )| −
n∑

i=1

log qi(yi). (9.90)

Applying the natural gradient rule of the form (9.86), we obtain the learning algorithm first
derived rigorously by Amari et al. [38, 39]

u(k) = WT
(−p)(l) ∗ y(k) (9.91)

R(l)
f u =

〈
f [y(k)] ∗ uT (−k)

〉
(9.92)

W(l + 1) = W(l) + η(l)
(
W(l)−R(l)

f u

)
(9.93)

with nonlinearities fi(yi) = −q′i(yi)/qi(yi), where samples of u(k) can be computed as

u(k) =
∞∑

p=−∞
WT

p y(k + p), (k = −∞, . . . ,∞). (9.94)

The averaging operator 〈·〉 is used here in the same sense as in (9.83). Equation (9.92)
defines the multichannel cross-correlation function. The Atick-Redlich gradient rule (9.88)
leads to a learning algorithm

v(k) = WT
(−p)(l) ∗ g[y(k)], (9.95)

R(l)
v g =

〈
y(k) ∗ vT (−k)

〉
(9.96)

W(l + 1) = W(l) + η(l)
(
W(l)−R(l)

v g

)
, (9.97)

where samples of v(k) can be computed as

v(k) =
∞∑

p=−∞
WT

p g[y(k + p)], (k = −∞, . . . ,∞). (9.98)

Detailed learning rules for the calculation of the equalizer output, filtered output, cross-
correlation matrix and separating/deconvolution matrices Wp are given in the next sec-
tion. Nonlinearities gi(yi) are now inverse (dual) functions to the functions fi(yi) =
−q′si

(yi)/qsi(yi). For example, instead of f(yi) = y
1/3
i , we use the cubic function gi(yi) = y3

i ,
or instead fi(yi) = tanh(yi) we use the inverse function gi(yi) = tanh−1(yi) = 1

2 log( 1+yi

1−yi
).
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9.4.6 Implementation of Algorithms for Minimum Phase Non-causal System

9.4.6.1 Batch Update Rules The general formulas (9.91)-(9.94) can be implemented as a
generalized batch learning rule. The batch of training data x(1),x(2), . . . ,x(N) is used,
with zero values assumed for: k < 1 and k > N . A biased covariance estimator is used as

For each k = 1, . . . , N,

y(k) =
L∑

p=−L

Wp(l)x(k − p) (9.99)

v(k) =
L∑

p=−L

WT
p (l)g[y(k + p)] (9.100)

For each p ∈ −L, . . . , L :

R̂(l)
f v(p) =

1
N − p

N∑

k=p+1

f [y(k)]vT (k − p) (9.101)

Wp(l + 1) = Wp(l) + η(l)[Wp(l)− R̂(l)
f v(p)] (9.102)

9.4.6.2 On-line Update Rule Since the filtering operation leading to u(k) is non-causal,
the most recent time instant of u(k) that can be calculated by using samples of x(k) and
y(k) up to time instant k is u(k−L). The generalized covariance matrix is replaced by its
instantaneous value:

y(l) = y(k) =
L∑

p=0

Wp(k)x(k − p) (9.103)

u(l) = u(k − L) =
L∑

p=0

WT
p g[y(k − L + p)] (9.104)

For each p = 0, . . . , L :

R̂(k)
f u(L + p) = f(y(k − L))uT (k − L− p) (9.105)

Wp(k + 1) = Wp(k) + η(k)(Wp(k)− R̂(k)
f u(L + p)) (9.106)

The formulas (9.103-9.106) describe the (l + 1)-th step of the on-line update rule by using
samples up to the k-th sample.

9.4.6.3 Block On-line Update Rule Let us assume that data samples arrive continuously
and are gathered into blocks: {. . . , [x((l−1)N +1), . . . , x(lN)], [x(lN +1), . . . , x((l+1)N)],
. . . }. The processing of the data can be done in the time-domain (or by using the DFT in
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Table 9.1 Relationships between instantaneous blind source separation and multichannel blind
deconvolution for complex-valued signals and parameters.

Multichannel Multichannel
Blind Source Separation Blind Deconvolution Blind Deconvolution

- Time Domain - z-Transform Domain

Mixing-Unmixing Model

x(k) = Hs(k) x(k) = H ∗ s(k) X(z) = H(z)S(z)

y(k) = Wx(k) y(k) = W ∗ x(k) Y(z) = W(z)X(z)

xi(k) =
nP

j=1
hijsj(k) xi(k) =

nP
j=1

hij ∗ sj(k) Xi(z) =
nP

j=1
Hij(z)Sj(z)

yi(k) =
nP

j=1
wij(l)xj(k) y

i
(k) =

nP
j=1

wij(l) ∗ xj(k) Yi(z) =
nP

j=1
Wij(z)Xj(z)

Contrast Functions: φ(y,W) or φ(y,W) or φ(W(z))

− log |det(W)| − log |det(W)| − 1
2πj

H
log | detW(z)|z−1dz

−
nP

i=1
log (qi(yi)) −

nP
i=1

log (qi(yi)) −
nP

i=1
log (q(yi))

Natural Gradient Rules: ∆W(l) or ∆W(l) or ∆W(z)

−η
∂φ
∂W

WH(l)W(l) −η
∂φ
∂W

∗WH
(−p)(l) ∗W(l) −η

∂φ
∂W(z)

WH(z−1)W(z)

−ηW(l)
h

∂φ
∂W

iH
W(l) −ηW(l) ∗

h
∂φ
∂W

iH
∗W(l) −ηW(z)

�
∂φ

∂W(z)

�H

W(z)

Batch Learning Algorithms: ∆W(l) or ∆W(l) or ∆W(z, l)

η
�
W(l)− 
f [y(k)]uH(k)

��
η
h
W(l)−

D
f [y(k)] ∗ uH(−k)

Ei
η
�
W(z, l)− 
Z{f [y(k)]}UH(z−1)

��
where where where

u(k) = WH(l)y(k) u(k) = WH
(−p)(l) ∗ y(k) U(z) = WH(z−1, l)Y(z)

η
�
W(l)− 
y(k)vH(k)

��
η
h
W(l)−

D
y(k) ∗ vH(−k)

Ei
η
�
W(z, l)− 
Y(z)VH(z−1)

��
where where where

v(k) = WH(l)g[y(k)] v(k) = WH
(−p)(l) ∗ g[y(k)] V(z) = WH(z−1, l) Z{g[y(k)]}
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the frequency-domain) as

For each k = (l − 1)N + 1, . . . , lN :

y(l) = y(k) =
L∑

p=0

Wp(l)x(k − p) (9.107)

v(l) = v(k − L) =
L∑

p=0

WT
p g[y(k − L + p)] (9.108)

For each p = 0, . . . , L :

R̂(l)
f u(L + p) =

1
N

lN∑

k=(l−1)N+1

f [y(k − L)]uT (k − L− p)

(9.109)

Wp(l + 1) = Wp(l) + η(l)
[
Wp(l)− R̂(l)

f u(L + p)
]

(9.110)

Summarizing this section, relationships and equivalences between instantaneous blind
source separation (BSS) and multichannel blind deconvolution (MBD) are given in terms
of algebraic properties. These relationships have been developed by using the notion of
the abstract algebra of formal series. The basic input data set consists of a series of time-
ordered sampled data which can be transformed into another set, more suitable for a given
problem. Algebraic operations are suitably modified to preserve algebraic field properties.
The algorithms may be implemented by using on-line data (sampled signals, convolution
operator and Z-transform) or pre-processed data (DFT). The practical implementation of
the algorithms have been discussed in terms of instantaneous mixing and linear convolution.
Using the established analogies and relationships, the learning rules can be automatically
generated.

In the next sections, we derive directly and rigorously some improved algorithms based
on the natural gradient approach.

9.5 NATURAL GRADIENT ALGORITHMS WITH NONHOLONOMIC

CONSTRAINTS

The natural gradient approach described in Chapter 6 can be extended to MBD using an
approximation of an infinite impulse response system by a causal finite impulse response
system. In practical situations, it is reasonable to assume that there are always more
sensors than sources. Throughout this section, we will consider the case where the number
of sensors is strictly greater than the number of sources. The overdetermined restriction is
also one of the sufficient conditions for the existence of a finite length FIR equalizer [1201].
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9.5.1 Equivariant Learning Algorithm for Causal FIR Filters in the Lie Group Sense

In the framework of ICA, it has been shown in Chapter 6 that a nonholonomic constraint
[30] improves the convergence and performance of the natural gradient learning algorithms
for the overdetermined case or for nonstationary source signals. Since the condition m > n
is one of the sufficient conditions for signal-separability for multichannel blind deconvolu-
tion with causal FIR filters, we derive the natural gradient learning algorithm [38, 39] by
incorporating a nonholonomic constraint into the algorithm.

Let us consider a finite length MIMO FIR equalizer (see Fig.9.4(a)) whose m dimensional
output y(k) is described by

y(k) =
L∑

p=0

Wp(l)x(k − p), (9.111)

where Wp(l) is the synaptic weight matrix at the l-th iteration and represents the connection
strength between y(k) and x(k − p). Note that for on-line learning, the index l can be
replaced by the time index k. We define W(z, l) as

W(z, l) =
L∑

p=0

Wp(l)z−p. (9.112)

We consider n observations {xi(k)} and n output signals {yi(k)} over a N -point time block.
Let us define the following vectors:

x = [x1(1), . . . , xn(1), . . . , x1(N), . . . , xn(N)]T ,

y = [y1(1), . . . , yn(1), . . . , y1(N), . . . , yn(N)]T .

The MIMO FIR equalizer should be trained such that the joint probability density of y can
be factorized as follows:

p(y) =
n∏

i=1

N∏

k=1

ri(yi(k)), (9.113)

where {ri(·)} are probability densities of the source signals. As a cost function, we choose
the Kullback-Leibler divergence which is an asymmetric measure of distance between two
different probability distributions. The risk function R(W(z, l)) is formulated as [1356,
1358, 1365]

R(W(z, l)) = E{ρ(W(z, l))}

=
1
N

∫
p(y) log

p(y)
∏n

i=1

∏N
k=1 qi(yi(k))

dy, (9.114)

where we replace ri(·) by a hypothesized density model for sources, qi(·) since we do not
know the true probability distribution of sources, ri(·).
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To derive the relation between p(x) and p(y), we write (9.111) in matrix form,

y = WN x, (9.115)

where the WN is given by

WN =




W0 0 · · · 0
W1 W0 · · · 0

...
...

WN−1 WN−2 · · · W0


 (9.116)

The length of time delay L in the equalizer is much smaller than N , i.e., WL+1 = · · · =
WN−1 = 0. The input-output equation (9.115) written in a matrix form leads to the
following relation between p(x) and p(y):

p(y) =
p(x)

| detWN
0 |

. (9.117)

Invoking the relation (9.117), our loss function ρ(W(z, l)) is given by

ρ(W(z, l)) = − log | detW0| −
n∑

i=1

〈log qi(yi(k))〉 , (9.118)

where 〈·〉 represents the time-average, i.e.,

〈log qi(yi(k))〉 =
1
N

N∑

k=1

log qi(yi(k)). (9.119)

Note that p(x) was not included in (9.118) because it does not depend on the parameters
of the matrix {Wp(l)}.

Here we follow the derivation of the algorithm that was presented by Amari et al. [38, 39].
To determine a learning algorithm which minimizes the loss function (9.118), we calculate
an infinitesimal increment

dρ((W(z, l)) = ρ(W(z, l) + dW(z, l))− ρ(W(z, l)), (9.120)

corresponding to an increment dW(z, l). Simple algebraic and differential calculus yields

dρ((W(z, l)) =
〈
fT (y(k)) dX(z, l)y(k)

〉− tr{dX0(l)}, (9.121)

where dX0(l) = dW0(l)W−1
0 (l) and f(y(k)) is a column vector whose components are

defined as

fi(yi(k)) = −d log qi(yi(k))
dyi(k)

. (9.122)

Let us introduce the following notation

dX(z, l) = dW(z, l) ~ W†(z) =
[
dW(z, l)W−1(z, l)

]
L

, (9.123)



NATURAL GRADIENT ALGORITHMS WITH NONHOLONOMIC CONSTRAINTS 365

where [W(z)]L denotes a truncation operator that omits or sets to zero all terms with a
length higher than L in the polynomial matrix W(z) (see Appendix A). We can rewrite
dρ(W(z, l) in the following form

dρ(W(z, l)) = − tr(dX0) +
〈
f(y)T

〉
dW(z)W−1(z)y. (9.124)

From this equation, we obtain the partial derivatives of ρ(y,W(z, l)) with respect to dX(z)

∂ρ(W(z, l))
∂Xp

= −δ0,p I +
〈
f(y)yT (k − p)

〉
, (p = 0, 1, . . . , L). (9.125)

Using the natural gradient descent learning rule, Zhang et al. derived the simple natural
gradient learning rule as follows [1365, 1368, 1369]

∆Wp = −η

p∑
q=0

∂ρ(W(z))
∂Xq

Wp−q

= η

p∑
q=0

(
δ0qI−

〈
f(y(k))yT (k − q)

〉)
Wp−q, (9.126)

for p = 0, 1, . . . , L, where η is a learning rate. In particular, the learning algorithm for
p = 0, 1 is described by

∆W0 = η
(
I− 〈

f(y(k))yT (k)
〉)

W0, (9.127)

∆W1 = η[(I− 〈
f(y(k))yT (k)

〉
)W1 −

〈
f(y(k))yT (k − 1)

〉
W0]. (9.128)

The stationary points of (9.126) satisfy

E{〈fi(yi(k)) yi(k)〉} = 1. (9.129)

In other words, the learning algorithm (9.126) forces {yi(k)} to have constant magnitude.
Such constraints for the output signals are undesirable and they lead to the case that the
extracted signals have nearly flat frequency spectra [111]. Moreover, this may cause a
problem for m > n if we do not know the number of source signals. To avoid this drawback,
we follow the proposal of the nonholonomic constraint that was applied to ICA [30]. We
replace the identity matrix by a diagonal matrix Λ(k) which is given by

Λ(k) = diag{f1(y1(k)) y1(k), f2(y2(k)) y2(k), . . . , fn(yn(k)) yn(k)}.
(9.130)

Then, the natural gradient algorithm with nonholonomic constraints takes the form:

∆Wp(l) = η(l)
p∑

q=0

(〈
Λ(k)

〉
δ0q −

〈
f(y(k))yT (k − q)

〉)
Wp−q(l). (9.131)
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Applying the moving average approach, we can easily transform it to an on-line version:

Wp(k + 1) = Wp(k) + η(k)
p∑

q=0

(
Λ(k) δ0q −R(k)

f y (q)
)
Wp−q(k), (9.132)

where

R(k)
f y (q) = (1− η0)R

(k−1)
f y (q) + η0 f(y(k))yT (k − q), (q = 0, 1, . . . , L) (9.133)

and

Λ(k) = (1− η0)Λ(k−1) + η0 diag{f(y(k))yT (k)}. (9.134)

It should be noted that the algorithm looks similar, but in fact it is not identical to,
algorithms presented in the previous sections. The essential difference is that the update
rule for ∆Wp in this section depends only on Wq, in the range q = 0, 1, . . . , p, while
in other algorithms it depends on all parameters Wq, in the range q = 0, 1, . . . , L. The
algorithm (9.126) has two important properties, the uniform performance (the equivariant
property [155]) and the nonsingularity of W0. In the multichannel deconvolution problem,
an algorithm is equivariant if its dynamical behavior depends on the global transfer function
G(z) but not on the specific mixing filter H(z). In fact, the learning algorithm (9.126)
satisfies the equivariant property in the Lie group sense (see Appendix A).

It should be noted that the learning algorithm (9.132) keeps the filter W(z) on the
manifold M(L) if the initial filter is on the manifold. The equilibrium points of the learning
algorithm satisfy the following equations

E{f(y(k))yT (k − p)} = 0, (p = 1, 2, . . . , L), (9.135)
E{f(y(k))yT (k)} = Λ, (9.136)

where Λ is a diagonal positive definite matrix 5 which is automatically adjusted during the
learning process. The nonholonomic constraints imply no particular temporal structure on
estimated output signals.

Example 9.1 The geometrical interpretation of the Lie group’s inverse operation is illus-
trated in Fig.9.6, where H(z) is a two channel filter of length L = 50, W(z) = H†(z)
is the Lie group inverse filter of length 50 and the composite transfer function G(z) =∑2L

p=0 Gpz
−p = W(z)H(z) is a filter of length 2L. In this figure, the label H(z)1,1 de-

notes the sub-channel transfer function H11(z) =
∑L

p=0 h11 pz
−p, where the horizontal axis

indicates the time delays (p = 0, 1, . . . , L), and the vertical axis indicates the magnitudes
h11 p. From this illustration, we see that the composite transfer function G(z) is not the
exact identity matrix because there still exist small fluctuations in entries of the matrix
Gp, for p > L. The fluctuations can be negligibly small if we make the length L of W(z)
sufficiently large. However, considering the multiplication in the Lie group sense, we have
G(z) = W(z) ~ H(z) = I.

5For more sensors than sources (m > n) the matrix Λ is semi-positive definite.
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Fig. 9.6 Illustration of the Lie group’s inverse of an FIR filter, where H(z) is an FIR filter of length
L = 50, W(z) is the Lie group’s inverse of H(z), and G(z) = W(z)H(z) is the composite transfer
function.

9.5.2 Natural Gradient Algorithm for Fully Recurrent Network

Let us consider a linear feedback network with FIR weights (see Fig.9.4 (c)). The network
output y(k) is given by

y(k) = x(k)−
L∑

p=0

Ŵp(l)y(k − p)

= [I + Ŵ(z, l)]−1x(k), (9.137)

where Ŵ(z, l) =
∑L

p=0 Ŵp(l)z−p. We write (9.137) in matrix form as [212, 231]

x = ŴN y, (9.138)

where Ŵ is the corresponding (Lm)× (Lm) matrix, defined as

ŴN =




I + Ŵ0 0 · · · 0
Ŵ1 I + Ŵ0 · · · 0

...
...

ŴL ŴL−1 · · · I + Ŵ0




. (9.139)

Then, to minimize the spatio-temporal statistical dependence, our loss function is described
as

ρ(Ŵ(z, l)) = −
m∑

i=1

〈log qi(yi(k))〉 − log | det(I + Ŵ0(l))−1|. (9.140)
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Simple calculation yields

Ŵ(z, l)) =
〈
fT (y(k)) dX̂(z, l)y(k)

〉
− tr{dX̂0(l)}, (9.141)

where dX̂(z, l) is defined as

dX̂(z, l) = [I + Ŵ(z, l)]−1dŴ(z, l). (9.142)

The learning algorithm that minimizes (9.140) is therefore given by, in terms of dX̂(z, l)

∆X̂p(l) = −η(l)
dρ(Ŵ(z, l))

dX̂p(l)
= −η(l){Iδp0 −

〈
f(y(k))yT (k − p)

〉}. (9.143)

We replace the identity matrix in (9.143) by the diagonal matrix Λ(k) defined in (9.130).
Taking into account that

∆Ŵp(l) = ∆X̂p(l) +
L∑

q=0

Ŵq(l)∆X̂p−q(l) (9.144)

the learning algorithm in terms of dŴ(z, l) is given by

∆Ŵp(l) = −η(l)
[〈

Λ(k)
〉

δp0 −
〈
f(y(k))yT (k − p)

〉− Ŵp(l)
〈
Λ(k)

〉
+

〈
Ŷp(k)

〉]
,

(9.145)

where Ŷp(k) is defined as

Ŷp(k) =
L∑

q=0

Ŵq(k) f(y(k))yT (k − p + q). (9.146)

For on-line adaptation, we have [212]

∆Ŵp(k) = −η(k) {Λ(k) δp0 − f(y(k))yT (k − p)− Ŵp(k)Λ(k) + Ŷp(k − L)}, (9.147)

where

Ŷp(k − L) =
L∑

q=0

ŴL−q(k) f(y(k − L + p))yT (k − q). (9.148)

9.6 BLIND DECONVOLUTION OF NON-MINIMUM PHASE SYSTEM USING

FILTER DECOMPOSITION APPROACH

In this section, we present a filter decomposition approach for multichannel blind deconvo-
lution of non-minimum phase systems proposed by Zhang, Amari and Cichocki [1358, 1365].
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Fig. 9.7 Cascade of two FIR filters (non-causal and causal) for blind deconvolution of non-minimum
phase system.

Let us denote the set M(L,K) of filters (9.59) as

M(L,K) =



W(z)|W(z) =

L∑

p=−K

Wpz
−p



 . (9.149)

For simplicity in the following discussion, we assume that K = L. In general, the multi-
plication of two transfer functions belonging to M(L, L) of filters connected in a cascade
will increase the order of the global transfer function, and this does not belong to M(L,L).
This makes it difficult to introduce the natural gradient on the manifold of doubly-finite
multichannel non-causal filters. In order to explore the geometric structure of M(L, L)
and develop an efficient learning algorithm for W(z), we present the following filter de-
composition approach and present the basic algebraic operations of filters in the Lie group
framework (see Appendix A for theoretical background). It is plausible to decompose a
doubly-finite non-causal filter into a cascade form of a causal FIR filter and a non-causal
FIR filter, since then it becomes easy to study the invertibility of the filter and to develop
efficient learning algorithms.

Let us decompose a non-causal filter W(z) in M(L,L) into a cascade form of two FIR
filters (see Fig.9.7) as

W(z) = B(z)A(z−1), (9.150)

where A(z−1) =
∑L

p=0 Apz
p, with the constraint A0 = I, and B(z) =

∑L
p=0 Bpz

−p, and
both are one-sided finite multichannel FIR filters. The first one is a forward filter (with non-
causal components) and the second one is the standard FIR filter (with causal components).
The relation between the coefficients of three filters is as follows

Wp =
∑

r−q=p, 0≤r,q≤L

Br Aq, (p = −L, . . . , L). (9.151)

By applying this decomposition, it becomes possible to achieve invertibility of double-finite
multichannel non-causal filters in the Lie group sense [1369]. An important theoretical
question arises: What conditions guarantee that a non-causal filter W(z) in M(L,L) can
be decomposed as defined by (9.150)? In other words, the problem can be formulated as
follows: Given a double-finite filter W(z), it is desired to find an FIR filter A(z−1) such
that the multiplication of two filters in the Lie Group sense satisfies

[
W(z)C(z−1)

]
L

= W(z) ~ C(z−1) = B(z), (9.152)
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where matrix C(z−1) =
∑L

p=0 Cpz
p = A†(z−1), with C0 = I, Cp =

∑p
q=1 Cp

p−qAq is the
generalized inverse of A(z−1) in the Lie Group sense and [W(z)]L denotes a truncated
operator by which all terms with a length higher than L in the polynomial matrix W(z)
are omitted.

Unlike doubly-infinite filters, the doubly-finite filters do not have the self-closed multi-
plication and inverse operations in the manifold of the fixed length filters. In general, the
multiplication of two filters with a given length makes a filter with extended length, so does
the inverse operation [1356, 1369] (see Appendix A).

For the estimation of parameters of the causal filter, we can use on-line learning algorithm
derived in the Section 9.5

∆Bp = η

p∑
q=0

(
δ0qI− f(y(k))yT (k − q)

)
Bp−q. (9.153)

9.6.1 Information Back-propagation

The capability of achieving learning in a cascade of two adaptive filters is of fundamental
importance to the blind deconvolution of non-minimum phase systems. To explore this fact,
we begin with the filter decomposition and show how to estimate parameters (weights) of
the non-causal filter by using the mutual information back-propagation approach [1369].

According to the filter decomposition (see Fig.9.7), we denote

u(k) = [A(z−1)]x(k), (9.154)
y(k) = [B(z)] u(k). (9.155)

If we consider u(k) as the observed signals, we can apply the natural gradient learning
rule (9.126) to update parameters in the filter B(z). In order to develop an efficient learn-
ing algorithm for the non-causal filter A(z−1), we use the information back-propagation
technique. The back-propagation rule is described as follows

∂ρ(W(z))
∂u(k)

=
L∑

q=0

n∑

i=1

∂ρ(W(z))
∂yi(k + q)

∂yi(k + q)
∂u(k)

=
L∑

q=0

BT
q f(y(k + q)) = [BH(z)] f(y(k)), (9.156)

where BH(z) =
∑L

q=0 BT
q zq is the conjugate operator of B(z), and

∂ρ(W(z))
∂Ap

=
n∑

i=1

∂ρ(W(z))
∂ui(k)

∂ui(k)
∂Ap

,

=
∂ρ(W(z))

∂u(k)
xT (k + p), (9.157)

for p = 1, 2, . . . , L. The structure of the information back-propagation process is illustrated
in Figure 9.8.
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Fig. 9.8 Illustration of the information back-propagation learning.

In this structure, the blind statistical error ∂ρ(W(z))
∂y(k) is backward propagated through

channel BH(z) to form the blind error ∂ρ(W(z))
∂u(k) , which is used to estimate the parameters

of the non-causal filter A(z−1). There are several schemes for learning the parameters of
A(z−1). One typical scheme is the ordinary gradient descent learning algorithm, which is
described as follows

∆Ap = −η

(
∂ρ(W(z))

∂u(k))
xT (k + p)

)
. (9.158)

Using the natural gradient approach and information back-propagation, we can derive the
following learning rule [1356, 1369]

∆Ap = −η

p∑
q=1

(
L∑

r=0

BT
r f(y(k))uT (k − r + q))Ap−q, A0 = I, (p = 1, 2, . . . , L) (9.159)

9.6.2 Batch Natural Gradient Learning Algorithm

In this section, we consider the efficient implementation of the learning algorithms for
blind deconvolution of non-minimum phase systems. We can employ directly the learning
algorithm (9.153) to estimate parameters of the causal filter B(z). However, using the batch
approach, we can improve the convergence speed. Stacking (L + 1) samples of the vectors
x(k) and u(k)

X (k) = [xT (k),xT (k + 1), . . . ,xT (k + L)]T , (9.160)
U(k) = [uT (k),uT (k − 1), . . . ,uT (k − L)]T , (9.161)

and using the notation

A = [A0,A1, . . . ,AL], B = [B0,B1, . . . ,BL], (9.162)
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we can describe demixing system shown in Fig. 9.7 in the following matrix form

u(k) =
L∑

p=0

Apx(k + p) = AX (k), (9.163)

y(k) =
L∑

p=0

Bpu(k − p) = BU(k). (9.164)

The natural gradient algorithm (9.153) can be reformulated in the batch matrix form as
[1356, 1369]

∆B(l + 1) = η F(l) B(l), (9.165)

where the matrix F(l) is defined as

F(l) =




F 0 0 0 · · · 0
F 1 F 0 0 · · · 0
F 2 F 1 F 0 · · · 0
...

...
...

. . .
...

F L F L−1 F L−2 · · · F 0




. (9.166)

and the sub-matrices F p are estimated by

F p(l) = δ0p I− 〈
f(y(k))yT (k − p)

〉
, (p = 0, 1, . . . , L). (9.167)

Similarly, we can formulate the batch natural gradient algorithm for the non causal filter
parameters as [1356, 1369]

∆A(l + 1) = η L(l)A(l), (9.168)

where the matrix C(l) is defined as

C(l) =




0 0 0 · · · 0
C1 0 0 · · · 0
C2 C1 0 · · · 0
...

...
...

. . .
...

Cl CL−1 CL−2 · · · 0




. (9.169)

with the sub-matrices Cp evaluated as

Cp(l) = −
L∑

q=0

〈
BT

q (l) f(y(k))uT (k − q + p)
〉
, (p = 1, 2, . . . , L) (9.170)

and A0 = I.
Computer simulations show that the natural gradient algorithm has much better conver-
gence properties and performance than the ordinary gradient algorithm (9.158).
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9.7 COMPUTER SIMULATIONS EXPERIMENTS

In this section, we present some illustrative examples of computer simulations to demon-
strate the validity and effectiveness of the natural gradient algorithms for SIMO and MIMO
blind deconvolution/equalization problems.

Example 9.2 Let us consider a simple SIMO equalization model of Fig.9.2 (a) with m = 2
and non-minimum phase transfer functions of order 7 which are assumed to be completely
unknown (see Fig.9.9 (a)). Applying the NG algorithm (9.28) with nonlinearities g(y) =
sign(y) y2, after 1000 iterations, we obtain the filter coefficients as is illustrated in Fig.9.9
(a). It is clearly seen that the global system achieves equalization, although each single
channel is not able to do this (see Fig.9.9 (b) and (c)).

9.7.1 The Natural Gradient Algorithm vs. the Ordinary Gradient Algorithm

A large number of computer simulations have been performed to compare the performance
of the natural gradient learning algorithm (9.132) with the ordinary gradient algorithm for
the multichannel blind deconvolution. To evaluate the performance of the proposed learn-
ing algorithms, we employ the criterion of multichannel inter-symbol interference (MISI),
defined as [617]

MISI =
n∑

i=1

|∑j

∑
p |gij p| −maxp,j |gij p|
maxp,j |gij p|

+
n∑

j=1

|∑i

∑
p |gij p| −maxp,i |gij p|
maxp,i |gij p| (9.171)

It is easy to show that MISI = 0 if and only if G(z) = W(z)H(z) is of the form G(z) =
PD0(z) where P is any permutation matrix and D0(z) = diag{z−∆1 , z−∆2 , . . . , z−∆n}. We
evaluate the performance of the algorithms by using the ensemble average approach, that
is, in each trial we obtain a time sequence of MISI , and then we take the average of the
ISI performance to evaluate the performance of algorithms.

The mixing model used for computer simulations is the multichannel ARMA model

x(k) = −
M∑

p=1

Ĥp x(k − p) +
L∑

p=0

Hp s(k − p) + ν(k) (9.172)

where x, s and ν ∈ IR3.

Example 9.3 For simplicity, we assume here that m = n = 3, and thus the matrices
Ĥi ∈ IR3×3 and Hi ∈ IR3×3 They are randomly chosen such that the mixing system is
stable and of minimum phase. The source signals s are randomly generated as i.i.d. signals
uniformly distributed in the range (-1,1), and ν are the Gaussian noises with zero-mean
and a covariance matrix 0.1I. The nonlinear activation function is chosen to be fi(yi) = y3

i

for any i. We employ an AR model of order L = 20 as a mixing system, which can be
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Fig. 9.9 Simulation results of two channel blind deconvolution for SIMO system in Example 9.2: (a)
Parameters of mixing filters (H1(z), H2(z)) and estimated parameters of adaptive deconvoluting filters
(W1(z), W2(z)), (b) coefficients of global sub-channels (G1(z) = W1(z)H1(z), G2(z) = W2(z)H2(z)),
(c) parameters of global system (G(z) = G1(z) + G2(z)).

exactly inverted by an FIR filter. A large number of simulations show that the natural
gradient learning algorithm can easily and relatively quickly recover source signals in the
sense of W(z)H(z) = PD0(z). Fig.9.10 illustrates typical (100 trial ensemble average)
MISI performances of the natural gradient learning algorithm and the ordinary gradient
learning algorithm. It is observed that the natural gradient algorithm usually needs less than
3000 iterations to obtain satisfactory results, while the ordinary gradient algorithm needs
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Fig. 9.10 Typical performance index MISI of the natural gradient algorithm for multichannel blind
deconvolution in comparison with the standard gradient algorithm [1369].

more than 20000 for the same problem. Fig.9.11 illustrates the distribution of coefficients of
global transfer function G(z) = W(z)H(z) at the initial state (Fig.9.11 (a)) and after 3000
iterations (Fig.9.11 (b)), respectively, where the (i, j)th sub-figure plots the coefficients of
the transfer function Gij(z) =

∑∞
p=0 gijpz

−p up to length of 80. The corresponding MISI

performance is similar to the one given in the previous example.

9.7.2 Information Back-propagation Example

In the previous example, we assumed a minimum phase mixing system (i.e., all zeros and
poles of the transfer functions are located inside the unit circle). However, in practice many
systems are non-minimum phase dynamical systems whose transfer functions have zeros
outside and inside the unit circle. In such a case, we can use a cascade of two FIR filters
(see Fig.9.12). In this example sensor signals are produced by the multichannel ARMA
model (9.172), of which the matrices are chosen such that the mixing system is stable and
non-minimum phase.

It is easy to prove that the system is stable and non-minimum phase. The location of
zeros and poles of the mixing system are plotted in Fig. 9.12. In order to estimate source
signals, the learning algorithms (9.132) and (9.168) have been employed to estimate param-
eters of the demixing model. Fig.9.13 (a) and (b) illustrate the distribution of coefficients
of the global transfer function G(z) = W(z)H(z) at the initial state and after 3000 itera-
tions respectively, where the (i, j)th sub-figure plots the coefficients of the transfer function
Gij(z) =

∑∞
p=0 gijpz

−p up to length of 80.
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Fig. 9.11 The parameters of G(z) of the causal system in Example 9.3: (a) The initial state, (b)
after 3000 iterations [1368, 1374].

Appendix A. Lie Group and Riemannian Metric on FIR Manifold

In this Appendix, we discuss geometrical structures on the manifold of FIR filters B(z)
[1369, 1375]. In the following discussion, we denote by M(L) the subset of M(L, 0) having
the constraint that B0 is nonsingular. Firstly, we introduce the Lie group and the Rieman-
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Fig. 9.12 Zeros and poles distributions of the mixing ARMA model in Example 9.4.

nian structure on the manifold of FIR filters. Using the isometric property of Lie groups,
we derive the natural gradient for any cost function defined on the manifold M(L).

A.0.1 Lie Group

In the manifoldM(L), the Lie group has two basic operations: Multiplication ~ and inverse
†, which are defined as follows. For B(z), C(z) ∈M(L):

B(z) ~ C(z) =
L∑

p=0

p∑
q=0

BqC(p−q)z
−p, (A.1)

B†(z) =
L∑

p=0

B†
pz
−p, (A.2)

where B†
p is recursively defined by

B†
0 = B−1

0 , B†
1 = −B†

0B1, (A.3)

B†
p = −

p∑
q=1

B†
p−qBq, (p = 1, 2, . . . , L). (A.4)

With these operations, both B(z)~C(z) and B† remain in the manifold M(L). It is easy to
verify that the manifold M(L) with the above operations forms a Lie Group. The identity
element is E(z) = I.

In the following discussion, we consider the global transfer function in the Lie group sense
G(z) = W(z) ~ H(z). Moreover, the Lie group possesses the following properties

1) Associative Law : A(z) ~ (B(z) ~ C(z)) = (A(z) ~ B(z)) ~ C(z),
2) Inverse Property : B(z) ~ B†(z) = B†(z) ~ B(z) = I. (A.5)
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Fig. 9.13 The distribution of parameters of the global transfer function G(z) of non-causal system
in Example 9.4: (a) The initial state, (b) after convergence [1369].
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In fact, the Lie multiplication of B(z), C(z) ∈ M(L) is the truncated form of ordinary
multiplication up to length L, that is

B(z) ~ C(z) = [B(z)C(z)]L , (A.6)

where [B(z)]L is such a truncation operator that any terms with orders higher than L in
the polynomial matrix B(z) are omitted.

A.0.2 Riemannian Metric and Natural Gradient in the Lie Group Sense

The Lie Group has an important property that allows an invariant Riemannian metric (see
Zhang et al. [1355, 1365] for more detail). Let TW(z) and X(z), Y(z) ∈ TW(z) be tangent
vectors of the Lie group at W(z). In other words, for small ε > 0, the terms W(z)+ εX(z)
and W(z)+ εY(z) represent deviations of W(z) in two different directions X(z) and Y(z).
We introduce the inner product with respect to W(z) as < X(z),Y(z) >W(z) . Since
M(L) is a Lie group, any B(z) ∈ M(L) defines an onto-mapping: W(z) → W(z) ~ B(z).
The multiplication transformation maps a tangent vector X(z) at W(z) to a tangent vector
X(z)~B(z) at W(z)~B(z). Therefore, we can define a Riemannian metric on M(L), such
that the right multiplication transformation is isometric, that is, it preserves the Riemannian
metric on M(L). Explicitly, we write it as

< X(z),Y(z) >W(z)=< X(z) ~ B(z),Y(z) ~ B(z) >W(z)~B(z) . (A.7)

If we define the inner product at the identity E(z) = 1 by

< X(z),Y(z) >E(z) =
L∑

p=0

tr(XpYT
p )

=
1

2πj

∮
tr

[
X(z−1)YT (z)

]
z−1dz, (A.8)

then < X(z),Y(z) >W(z) is automatically induced by

< X(z),Y(z) >W(z)=< X(z) ~ W(z)†,Y(z) ~ W(z)† >E(z) . (A.9)

For a loss function ρ(W(z)) defined on the Riemannian manifold M(L), the natural gra-
dient ∇̃ρ(W(z)) is the steepest descent direction of the cost function ρ(W(z)) as measured
by the Riemannian metric on M(L), which is the contravariant form of partial derivatives
(ordinary gradient)

∂ρ(W(z))
∂W(z)

=
L∑

p=0

∂ρ(W(z))
∂Wp

z−p, (A.10)

where ∂ρ(W(z))
∂Wp

=
[

∂ρ(W)
∂wpij

]
n×n

. We introduce the following notation for the natural gradient

of the cost function ρ(W(z))

∇̃ρ(W(z)) =
L∑

p=0

∂̃pρ(W(z))z−p. (A.11)



380 MULTICHANNEL BLIND DECONVOLUTION: NATURAL GRADIENT APPROACH

From definitions (A.8)-(A.9), we have

〈X(z),∇ρ(W(z))〉E = 〈X(z) ~ W(z)†, ∇̃ρ(W(z)) ~ W(z)†〉E(z)

=
L∑

k=0

tr




k∑
p=0

XpW
†
k−p

(
k∑

q=0

∂̃qρW
†
k−q

)T



=
L∑

p=0

tr


Xp

L∑

k=p

W†
k−p

(
k∑

q=0

∂̃qρW
†
k−q

)T

 (A.12)

for any X(z) in TMW(z). This induces the following relation

∂pρ =
L∑

k=p

k∑
q=0

∂̃qlW
†
k−qW

†T
k−p. (A.13)

On the other hand, if we take the new differential variables

dX(z) = dW(z) ~ W†(z), (A.14)

which are nonholonomic, we have

∂pρ =
L∑

k=p

∂ρ(W(z))
∂Xk

W†T
k−p. (A.15)

Comparing equations (A.13) and (A.15) leads to the following relationship

∂ρ(W(z))
∂Xk

=
k∑

q=0

∂̃qlW
†
k−q, (A.16)

or writing it in operator form, we have

∂ρ(W(z))
∂X(z)

= ∇̃ρ(W(z)) ~ W†(z). (A.17)

According to the definition of the inverse operation in the Lie group, we have

∇̃ρ(W(z)) =
∂ρ(W(z))

∂X(z)
~ W(z), (A.18)

where X(z) is a nonholonomic base, which is defined by

dX(z) = dW(z) ~ W†(z) =
[
dW(z)W−1(z)

]
L

. (A.19)

It should be noted that dX(z) =
[
dW(z)W−1(z)

]
L

is a nonholonomic basis, which has a
definite geometrical meaning and proves to be useful in blind separation algorithms [30].
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Appendix B. Properties and Stability Conditions for the Equivariant Algorithm

B.0.1 Proof of Fundamental Properties and Stability Analysis of Equivariant NG

Algorithm (9.126)

The learning algorithm (9.126) in the Lie group form may be written as

∆W(z) = −η
∂ρ(W(z))

∂X(z)
~ W(z). (B.1)

Multiplying both sides by the mixing filter H(z) in the Lie group sense and using the
associative law of the Lie group, we have

∆G(z) = −η
∂ρ(W(z))

∂X(z)
~ G(z), (B.2)

where G(z) = W(z) ~ H(z). From equation (9.125), we know that ∂ρ(W(z))
∂X(z) is formally

independent of the mixing channel H(z). This infers that the learning algorithm (9.126) is
equivariant.

Another important property of the learning algorithm (9.128) is that it keeps the non-
singularity of W0 if the initial W0 is nonsingular [1368]. In fact, if we denote the inner
product of two matrices by < A,B >= tr(AT B), we can easily calculate the derivative of
the determinant |W0| in the following way

d|W0|
dt

= 〈∂|W0|
∂W0

,
dW0

dt
〉 = 〈|W0|W−T

0 ,
dW0

dt
〉 (B.3)

= tr
(|W0|W−1

0 (I− f(y)yT (k))W0) = tr(I− f(y)yT (k))|W0|
)
. (B.4)

This equation results in

|W0(t)| = |W0(0)| exp(
∫ t

0

tr(I− f(y(τ))yT (τ))dτ). (B.5)

Therefore, the matrix W0(t) is nonsingular if the initial matrix W0(0) is nonsingular. This
means that the learning algorithm (9.126) keeps the filter W(z) on the manifold M(L) if
the initial filter is on the manifold.

It is easily observed that separated signals y(k) can achieve the highest possible mutual
independence if the nonlinear activation functions f(y) are suitably chosen. If the mixing
model is simplified into the instantaneous mixture, the learning algorithm (9.126) is the
same as the one discussed in Chapter 6 [33].

B.0.2 Stability Analysis of the Learning Algorithm

Since the learning algorithm for updating Wp, (p = 0, 1, . . . , L), is a linear combination
of Xp, the stability of the learning algorithm for Xp implies the stability of the learning
algorithm (9.126). In order to analyze the stability of the learning algorithm, we suppose
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that the separating signals y = [y1, y2, . . . , yn]T are not only spatially mutually independent
but temporally identically and independently distributed for each component (i.e., indepen-
dent for different components). Now consider the continuous-time learning algorithm for
updating Xp:

dXp

dt
= η(δ0,pI−

〈
f(y(t)yT (t− p))

〉
, (p = 0, 1, . . . , L). (B.6)

To analyze the asymptotic properties of the learning algorithm, we take the expectation in
equation (B.6)

dXp

dt
= η

(
δ0,pI− E{f(y)yT (t− p)}) , (p = 0, 1, . . . , L). (B.7)

Taking a variation δXp on Xp, we have

dδXp

dt
= −ηE{f ′(y)δyyT (t− p) + f(y(t)) δyT (t− p)}, (p = 0, 1, 2, . . . , L) (B.8)

where δy(k − p) = [δW(z)]u(k − p) = [δX(z)]y(k − p) =
∑∞

j=0 δXp y(k − p − j). Using
the mutual independence and i.i.d. properties of signals yi and the normalized condition
(9.136), we deduce that

dδfX0

dt
= −η

(
E{(f ′(y)δX0y)yT }+ δXT

0

)
, (B.9)

dδXp

dt
= −η

(
E{(f ′(y)δXp y(t− p)y(t− p)T }) , p = 1, 2, . . . , L. (B.10)

Then the stability conditions for (B.9)-(B.10) are

mi + 1 > 0, (i = 1, 2, . . . , n), (B.11)
κi > 0, (i = 1, 2, . . . , n), (B.12)

κiκjσ
2
i σ2

j > 1, (i, j = 1, 2, . . . , n), (B.13)

where mi = E{f ′(yi) y2
i }, κi = E{f ′i(yi)}, σ2

i = E{|yi|2}, i = 1, 2, . . . , n. The conditions
are identical to the ones derived by Amari et al. [29] for instantaneous blind source sepa-
ration. It can be easily shown that the stability conditions are satisfied when one chooses,
for example, the nonlinear activation function

f(y) = (|y|r−1 + α|y|)sign(y), r > 2, 0 < α ¿ 1, (B.14)

for sub-Gaussian signals (with negative kurtosis) and

f(y) = tanh(γy), γ > 2 (B.15)

for super-Gaussian signals (with positive kurtosis).



10
Estimating Functions and

Superefficiency for ICA and
Deconvolution

Climb mountains to see lowlands.
—-Old Asian Proverb

We have so far studied a rather great number of algorithms for BSS, ICA and MBD.
Some are on-line and some are in the batch mode, although most online algorithms can
easily be converted to the batch mode by taking the average. Some algorithms extract all
the components in parallel, while some do one by one sequentially. Intermediate algorithms
extract several components in parallel. The present chapter searches for a unified viewpoint
to explain most of these algorithms from the statistical point of view.

The present chapter introduces the method of estimating functions to elucidate the com-
mon structures in most of the existing algorithms. We use information geometry for this
purpose, and define estimating functions in semiparametric statistical models which include
unknown functions as parameters [24, 1358]. Differences in most existing algorithms are
only in the choices of estimating functions.

We then give error analysis and stability analysis in terms of estimating functions. This
makes it possible to design various adaptive methods for choosing unknown parameters
included in estimating functions, which control accuracy and stability. The Newton method
is automatically derived by the standardized estimating functions.

First the standard BSS/ICA problem is formulated in the framework of the semipara-
metric model and a family of estimating functions.

Furthermore, the present chapter will discuss and extend further convergence and effi-
ciency of the batch estimator and natural gradient learning for blind separation/deconvolution
via the semiparametric statistical model and estimating functions and standardized estimat-

383
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ing functions derived by using efficient score functions elucidated recently by Amari et al.
[24, 28, 40, 41] and Zhang et al. [1358, 1368, 1372]. We present the geometrical properties
of the manifold of the FIR filters based on the Lie group structure and formulate the mul-
tichannel blind deconvolution problem within the framework of the semiparametric model
deriving a family of estimating functions for blind deconvolution. We then analyze the effi-
ciency of the batch estimator based on estimating function - obtaining its convergence rate.
Finally, we show that both batch learning and natural gradient learning are superefficient
under given nonsingular conditions.

10.1 ESTIMATING FUNCTIONS FOR STANDARD ICA

10.1.1 What is Estimating Function?

We begin with the simplest mixture model

x(k) = Hs(k) + ν(k), (10.1)

where H is an m × n unknown full rank mixing matrix. Here, si and sj are independent,
but each signal may have temporal correlations. We assume, for the moment m = n, and
that the noise vector ν is negligibly small. Let W be an n×n matrix, which is a candidate
of the separating matrix,

y(k) = Wx(k) (10.2)

such that yi(k), i = 1, 2, . . . , n, are original independent random source signals, or their
rescaled and permuted version. An on-line learning method uses a candidate matrix W (k)
at discrete-time k, and calculates y(k) = W (k)x(k), which is an approximation of the
original independent source signals. The candidate is then updated by

W (k + 1) = W (k) + η F (x(k), W (k)) , (10.3)

where η is a learning constant (which may depend on k) and F (x, W ) ∈ IRn×n is a matrix-
valued function, such that W (k) converges to the true solution. Usually, F depends on x
through y = Wx, and is in the form of F̃ (y)W , as is the case with the natural gradient.

There have been proposed various F , which are derived in many cases (but not in all
cases) as the gradients of cost functions to be minimized. The cost functions are, for
example, higher-order cumulants, entropy, negative log likelihood and others. In many
cases, algorithms include free parameters, sometimes free functions, to be chosen adequately
or to be determined adaptively. Since the probability density functions of the source signals
are usually unknown, there is no way to avoid such parameters.

There are conditions which the function F should satisfy for an algorithm to converge
to the true solution. The true W should be an equilibrium of dynamics (10.3). Since this
is a stochastic difference equation, it is more convenient to use its continuous time version
for mathematical analysis,

d

dt
W (t) = µ F [x(t), W (t)] . (10.4)
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Since x(t) is a stochastic process, its expected version is written as

d

dt
W (t) = µ E {F [x(t),W (t)]} . (10.5)

The condition that the true solution W is an equilibrium of (10.5) is given by

E {F (x,W )} = 0, (10.6)

where the expectation is taken over x = Hs, except for indeterminacy due to permutations
and rescaling.

A function F (x, W ) satisfying (10.6) for the true (desired) W , and E
{
F (x, W ′)

} 6= 0
for false W ′, is called the estimating function. This is defined in relation to a semiparametric
statistical model, as is shown in the next section.

10.1.2 Semiparametric Statistical Model

We formulate the problem in the statistical framework. Let ri(si) be the true probability
density function of si. The joint probability density of s is written as

r(s) =
n∏

i=1

ri(si) (10.7)

since they are independent. The observation vector x is a linear function of s, so that its
probability density function is given in terms of W = H−1 by

pX(x; W , r) = det |W | r(Wx). (10.8)

Since we do not know r except that it is a product from (10.7), the probability model
(10.8) of x includes two parameters, W called the “parameter of interest” which we want to
estimate, and the unknown function r = r1 · · · rn called the “nuisance parameter (function)”
which we do not care. Such a statistical model including an infinite or functional degree
of freedom of nuisance parameters is called a semiparametric model. It is in general a
difficult problem to estimate the parameter of interest, because of the existence of unknown
functions.

A method of estimating functions has been developed for estimation in semiparametric
statistical models in the framework of information geometry (Amari and Kawanabe [40, 41];
see also Amari [21], Amari and Nagaoka [42] as for information geometry).

The advantage of using the semiparametric approach is that we do not need to estimate
the nuisance parameters: the probability density functions of source signals in blind sepa-
ration and deconvolution problems. It is inferred from the theory of estimating functions
that the batch estimator of the estimating equation converges to the true solution as the
number of observed data tends to infinity.

An estimating function in the present case is a matrix-valued function F (x, W ) =
[Fab(x, W )] of x and W not including the nuisance parameter r, that satisfies

1) EW,r{F (x, W ′)} = 0, when W ′ = W (10.9)
2) EW,r{F (x, W ′)} 6= 0, whenW ′ 6= W , (10.10)
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where EW,r denotes expectation with respect to the probability distribution given by (10.8).
It is required that (10.9) holds for all r of the form (10.7). Here, suffices a, b, c, · · · represent
components of the original source signals or recovered signals, s or y. Sometimes, we require
a milder condition that we require that

2) K = EW,r

{
∂

∂W
F (x,W )

}
(10.11)

is non-degenerate. That is, condition 2 holds only locally. It should be noted that K is a
matrix-by-matrix linear operator that maps a matrix to a matrix. The components of K
are

Kab,ij = EW,r

{
∂

∂Wij
Fab(x, W )

}
, (10.12)

where Wij denote elements of W , and suffices i, j, a, b, etc. representing components of
observed signals x. It is convenient to use capital indices A, B, · · · to represent a pair (a, b),
(i, j) and so on of indices. Then, for A = (a, b), B = (c, i), K has a matrix representation
K = [KAB ] that operates on (WB) = (Wij) as

KW =
∑

B

KABWB =
∑

i,j

Kab,ijWij . (10.13)

The inverse of K is defined by the inverse matrix of K = [KAB ].
Given an estimating function F (x, W ), a batch estimator W̃ for observed data x(1), . . . ,

x(N), is given by the estimating equation

N∑

k=1

F {x(k), W } = 0. (10.14)

This is derived by replacing the expectation in (10.9) by the empirical sum of observations.
As well as the on-line learning algorithm is given by (10.3), the batch estimating equation
works without making use of the unknown r. The problem is 1) if there exists an estimating
function which works without knowing r, and 2) how to find a “good” estimating function
F when there are many.

10.1.3 Admissible Class of Estimating Functions

Algorithms proposed by Jutten and Herault [656]; Bell and Sejnowski [81]; Amari et al. [33];
Cardoso and Laheld [155]; Oja and Kahrunen [915] etc. use various estimating functions
found heuristically. There are good ones and bad ones. Estimating function F is better
than F ′, when the expected error of estimator Ŵ derived by F is smaller than that by F ′.
However, it may happen that F is better than F ′ when the true (unknown) distribution is
r(s) but F ′ is better when it is r′(s). Hence, they are in general not comparable. A family
of estimating functions is said to be admissible, when, given any estimating function, an
equivalent or better estimating function can be found in the family. We may focus only on
an admissible class of estimating functions. Moreover, this class includes the best estimator
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in the sense that it satisfies the extended Cramér-Rao bound asymptotically (that is, the
Fisher efficient estimator).

Amari and Cardoso [28] applied the information geometrical theory of estimating func-
tions of Amari and Kawanabe [40, 41], and proved that estimating functions of the form

F (x, W ) = I−ϕ(y)yT , (10.15)

or
Fij(x, W ) = δij − ϕi(yi)yj

in component form, give a set of admissible estimating functions, where

ϕ(y) = [ϕ1(y1), ϕ2(y2), . . . , ϕn(yn)]T (10.16)

are arbitrary non-trivial functions ϕi. This is indeed an estimating function as is easily
shown. When W is the true solution, yj and yj are independent. Therefore, whatever r is,

Er,W {ϕi (yi) yj} = E {ϕi (yi)}E {yj} = 0, i 6= j. (10.17)

However, when W is not the true solution, the above equation does not hold in general.
For the diagonal terms, i = j, we have

E {ϕi (yi) yi} = 1, (10.18)

which specifies the magnitude of the recovered signal yi. Since the magnitude may be
arbitrary, we may put the diagonal terms Fii arbitrarily, including the nonholonomic one
where Fii = 0.

We give typical examples of estimating functions. Let

q(s) =
n∏

i=1

qi (si) (10.19)

be a (misspecified) joint probability density function of s, which might be different from
the true one

r(s) =
n∏

i=1

ri (si) .

The negative log likelihood of x derived therefrom is

ρ(x,W ) = − det |W | −
n∑

i=1

log qi (yi) , (10.20)

where yi is the i-th component of y = Wx, depending on both x and W . The criterion
of minimizing ρ is interpreted as maximization of the entropy, or maximization of the
likelihood. Let us put

ϕi (yi) = − d

dyi
log qi (yi) . (10.21)
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The gradient of ρ gives an estimating function

F̃ (x, W ) = −∂ρ(x, W )
∂W

= W−T −ϕ(y)xT . (10.22)

We can prove that this F̃ is an estimating function. However, when F̃ is an estimating
function,

F (y) = F̃ (x, W )W T W =
[
I−ϕ(y)yT

]
W (10.23)

is also an estimating function. It is easy to prove that

E {F (y)} = 0 (10.24)

and
E

{
F̃ (x, W )

}
= 0 (10.25)

are equivalent.
When the true distributions are ri, the best choice of ϕi is

ϕa(i) = − d

ds
log ri(s).

This gives the maximum likelihood estimator (Pham [965, 969]). However, even when
we use a different ϕa, the estimating equation (10.14) gives a

√
N -consistent estimator,

that is, the estimation error converges to 0 in probability in the order of 1/
√

N as N
goes to infinity, when N is the number of observations. It is easy to show that similar
estimating functions are derived from the criterion of maximizing higher-order cumulants
and others. The algorithms given by Cardoso, Jutten-Herault, Karhunen-Oja etc. use
respective estimating functions [145, 283, 656, 676, 595].

We have shown that F̃ (x, W ) and F (y) are equivalent estimating functions, because they
are linearly related and their estimating equations give the same solution. More generally,
let R(W ) be an arbitrary nonsingular linear operator acting on matrices. When F (x, W )
is an estimating function matrix, R(W ) F (x,W ) is also an estimating function matrix,
because

EW,r {R(W )F (x, W )} = R(W ) EW,r{F (x, W )} = 0. (10.26)

Moreover, F (x, W ) and R(W )F (x, W ) are equivalent in the sense that the derived batch
estimators are exactly the same, because the two estimating equations

N∑

k=1

F [x(k), W ] = 0, (10.27)

N∑

k=1

R(W ) F [x(k), W ] = 0 (10.28)

give the same solution Ŵ ∗ (neglecting the arbitrary scaling and permutation). This de-
fines an equivalent class of estimating functions which are essentially the same for batch
estimation.
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However, two equivalent estimating functions F (x, W ) and R(W )F (x, W ) give differ-
ent dynamical properties in on-line learning. That is, the dynamical properties of on-line
learning algorithms

W (k + 1) = W (k) + η F (x(k), W (k)) , (10.29)
W (k + 1) = W (k) + η R (W (k)) F (x(k), W (k)) (10.30)

are completely different. Therefore, instead of the form (10.15), we need to consider an
enlarged type of estimating function of the form R(W )F (x, W ) to derive a good on-line
estimator.

10.1.4 Stability of Estimating Functions

One of the important dynamical properties of on-line learning is the stability of the algo-
rithm at the true solution W , which is guaranteed to be an equilibrium of the dynamics by
using F . We begin with the averaged dynamics of natural gradient learning

d

dt
W (t) = µE{F (x, W (t)}W (t), (10.31)

with F (x, W (t)). The stability of dynamics (10.31) at the equilibrium is given by studying
the eigenvalues of its Hessian. For the stability analysis, let us put

W (t) = W + δW (t), (10.32)

where δW (t) is a small deviation from the true W . Then, (10.31) is rewritten as

d

dt
δW (t) = µ E {F [x, W + δW (t)]} (W (t) + δW (t). (10.33)

It is convenient to use the nonholonomic variables

δX = δWW−1, (10.34)

and rewrite the dynamics in the neighborhood of the true solution as

d

dt
δX(t) = µE {F (x, W + δXW )} . (10.35)

By Taylor expansion, we have

d

dt
δX(t) = µ K(W )δX(t), (10.36)

where

K(W ) =
∂E {F (x, W )}

∂X
=

∂E {F (x,W )}
∂W

◦W (10.37)

is a linear operator which maps a matrix to matrix. Since both F = [Fab] and X = [Xcd]
are matrices K has four indices, Kab,cd

Kab,cd =
∂E{Fab}

∂Xcd
(10.38)
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in the component form. At the true value W where ya = sa is recovered, for F given by
(10.15), K is calculated as

Kab,cd = E{ϕ′a(sa) s2
b} δbd δac + δad δbc, (10.39)

where ϕ′ denotes the derivative of ϕ. We derive the above result in the following.
In order to calculate the gradient of F with respect to X, we put

dF (x, W ) = F (x, W + dW )− F (x, W )
= F (x, W + dXW )− F (x,W ),

where dF denotes the increment of F due to change dW of W , and expand it in the form

dFab(x, W ) =
∑

Mab,cd(x, W ) dXcd, with

Mab,cd =
∂Fab

∂Xcd

and its expectation gives Kab,cd.
For F = (Fab) given by

Fab = δab − ϕ(ya)yb,

we have

dFab = dϕ(ya)yb + ϕ(ya)dyb

= ϕ′(ya)dyayb + ϕ(ya)dyb.

From
dy = dWx = dWW−1Wx = dXy,

we have

dya =
n∑

d=1

dXadyd =
n∑

c,d=1

ydδacdXcd.

Therefore,
Mab,cd = ϕ′(ya)ybydδac + ϕ(ya)ybδbc.

At the true W , ya and yb are independent for a 6= b. Hence,

E{ϕ′(ya)ybyd}δac = E{ϕ′(sa)y2
b}δacδbd,

E{ϕ(ya)yd}δbc = δad.

The diagonal term Faa may be disregarded, because it can be arbitrary.
Many components of K vanish. For a 6= b,

∂Fab

∂Xcd
= 0, (10.40)
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except for the cases (a, b) = (c, d) or (a, b) = (d, c). When the pairs (a, b) and (c, d) are
equal, (4.5) gives

Kab,ab = κaσ2
b ,

Kab,ba = 1,Kaa,bb =
∂E{Faa

∂Xaa
= E{ϕ′(sa)s2

a}+ E{ϕ(sa)sa} = κaσ2
a + 1,

where
κa = E{ϕ′(sa)}. (10.41)

and
σ2

a = E{y2
a}. (10.42)

Let us summarize the above results. For the pairwise components of the enlarged matrix
K = (KAB), KAB = 0 except for A = (a, b), a 6= b, and A′ = (b, a). This shows that
K = (KAB) is decomposed in the two-by-two minor matrices of ∂Fab/∂Xab, ∂Fab/∂Xba,
∂Fba/∂Xab and ∂Fba/∂Xba,

[ KAA KAA′

KA′A KA′A′

]
=

[
κaσ2

b 1
1 κbσ

2
a

]
, (10.43)

where A = (a, b) and A′ = (b, a) (see also [29, 155, 28]).
The inverse of K has also the same diagonalized form, for (A,A′)-part,

[
κaσ2

b 1
1 κbσ

2
a

]−1

= cab

[
κbσ

2
a −1

−1 κaσ2
b

]
, (10.44)

where

cab =
1

κaκbσ2
aσ2

b − 1
. (10.45)

The on-line dynamics is stable at the true solution, when K = (KA,B) is positive definite.
Since it is decomposed in the two-by-two sub-matrices, it is positive definite when all the
sub-matrices KAA′ are positive definite. Hence, we have the following stability Theorem.

Theorem 10.1 (Stability Theorem) Assume that E{ϕasa} = 1. Then learning dynam-
ics is stable when

κiκjσ
2
j σ2

j > 1 (10.46)
κi > 0. (10.47)

The stability depends on the parameters κi and σ2
i , which are related to ϕ and r.

Remark 10.1 We may choose the diagonal terms Faa arbitrarily. In order to arrange ya

in the same scale, we may choose Faa = y2
a− 1. Then, σ2

a = E{y2
a} = 1 holds. The stability

conditions are: κiκj > δi δj, κi > 0, where δi = E{ϕi(yi) yi}.
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10.1.5 Standardized Estimating Function and Adaptive Newton Method

The learning dynamics

∆W (k) = W (k + 1)−W (k) = η F [x(k),W (k)] W (k) (10.48)

can be accelerated by the Newton method, given by

∆X(k) = η K−1 [W (k)] F [x(k), W (k)] . (10.49)

Note that K−1F is an estimating function equivalent to F . That is, the Newton method is
derived by the estimating function

F ∗(x,W ) = K−1(W )F (x,W ). (10.50)

Its convergence is superlinear. Moreover, the true solution W is always stable, because the
Hessian of F ∗ is the identity matrix. This is easily shown from

K∗ = E

{
∂F ∗

∂X

}
=

∂K−1

∂X
E {F }+ K−1 ◦K = I. (10.51)

We call F ∗ the standardized estimating function, for which K∗ is the identity operator.
By using (10.43) or (10.44), the standardized estimating function matrix F ∗ is derived

as
F ∗ab = cab{κbσ

2
aϕa(ya)yb − ϕb(yb)ya}, a 6= b. (10.52)

The standardized estimating function F ∗ includes the parameters σ2
a and κa, which are

usually known. They depend on the statistical properties of the source signal sa. Therefore,
an adaptive method is necessary to implement the Newton method, which estimates the
parameters. This not only accelerates the convergence, but automatically stabilizes the
separating solution.

Let κa(k) and σ2
a(k) be their estimates at discrete-time k. Then, we can use the following

adaptive rules to update them:

κa(k + 1) = (1− η0)κa(k) + η0 ϕ′a (ya(k)) , (10.53)
σ2

a(k + 1) = (1− η0)σ2
a(k) + η0 y2

a(k), (10.54)

where η0 is the learning rates.
We may use the diagonal term of F to be equal to

Faa = 1− y2
a. (10.55)

Then, the recovered signal is normalized to σ2
a = 1, so that F ∗ is simplified to

F ∗ab = − 1
κaκb

{κbϕa(ya)yb − ϕb(yb)ya}, a 6= b. (10.56)
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10.1.6 Analysis of Estimation Error and Superefficiency

Let us consider the estimation error in the case of batch estimator Ŵ which is the solution
of the estimating equation

N∑

k=1

F (x(k), W ) = 0. (10.57)

The error depends on F and the number N of observations. By using the standard method
of statistical analysis, we can calculate the covariance of estimator Ŵ = W + ∆W , where
∆W is the error. It is easier to calculate E {∆X ∆X} in terms of ∆X = ∆W W−1.

It should be noted that F and R F give the same error, since the estimating equations
are equivalent. This is a big difference in comparison with online learning, where F and R F
are different in convergence speed and stability. The covariance of ∆X is now calculated
explicitly. To this end, we put

la = E{ϕa(sa)}, (10.58)
G∗ab,cd = E{F ∗ab(x,W )F ∗cd(x, W )} (10.59)

by using the standardized estimating function F ∗.

Lemma 10.1 The covariances of ∆X
(N)
ab are given as

E{∆X
(N)
ab ∆X

(N)
cd } =

1
N
G∗ab,cd +O

(
1

N2

)
, (10.60)

G∗ac,bc = caccbcσ
2
aσ2

bσ2
cκ2

c lalb, a 6= b, c 6= a, c 6= b. (10.61)

It is possible to evaluate the error by the covariance matrix of the error ∆y in the
recovered signals, where we assume the magnitudes are adjusted, that is y = s and

y = (W + ∆X W )x = s + ∆s, (10.62)
∆s = ∆X s. (10.63)

Let us put
V

(N)
ab = E {∆sa ∆sb} (10.64)

We calculate, for a 6= b,

E{ya(k) yb(k)} = E{[sa(k) +
∑

c

∆Xac sc(k)] [sb(k) +
∑

d

∆Xbd sd(k)]}

= E{∆sa ∆sb} =
∑

c,d

E{∆Xac ∆Xbd sc sd}

=
∑

c,d

E{∆Xac ∆Xbd}E{sc sd} =
∑

c

E{∆Xac ∆Xbc}σ2
c .
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Hence, we have

V
(N)
ab = E{∆sa ∆sb} = E{ya(k) yb(k)}

=
∑

c

E{∆X(N)
ac ∆X

(N)
bc }σ2

c . (10.65)

Lemma 10.2 The covariance matrix V N of ∆s is given by

V
(N)
ab =

1
N

∑
c

G∗ac,bc σ2
c +O

(
1

N2

)
, (a 6= b). (10.66)

The lemma shows that the covariances

V
(N)
ab = E{∆sa ∆sb} = E{ya yb} = (1/N)

N∑

k=1

ya(k) yb(k)

of the recovered signals ya(k) and yb(k) (a 6= b) decrease in the order of 1/N . This fact
agrees with the ordinary asymptotic statistical analysis, as is expected. However, it happens
that the covariance of any two recovered signals decreases in the order of 1/N2 under a
certain condition. This is much smaller than 10.66 of order 1/N . We call this property
superefficiency.

Theorem 10.2 A batch estimator is superefficient, V
(N)
ab = O (

1
N2

)
when

la = E {ϕa(y)} = 0 (10.67)

is satisfied, because G∗ac,bc = 0.

The condition (10.67) holds when

ϕa = − d

dy
log(ra(y)). (10.68)

It also holds when ra(y) is an even function, that is, the distribution is symmetric.
The superefficiency holds in the case of on-line learning

∆W (k) = η F (x(k), W (k))W (k). (10.69)

When learning rate η is a small positive constant, W converges to the true solution W ∗,
but finally fluctuates in its neighborhood. The magnitude of fluctuation is

lim
k→∞

E{||W (k)−W ∗||2} = O(η), (10.70)

as has been proved in a general case of stochastic gradient dynamics [19]. However, when
(10.67) holds, we have superefficiency of on-line learning

lim
k→∞

E{||W (k)x(k)− s||2} = O(η). (10.71)
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10.1.7 Adaptive Choice of ϕ Function

The estimation error depends on the choice of F (x,W ) or F ∗(x, W ), that is, the func-
tions ϕ. Note that the standardized F ∗ improves the stability and convergence, but the
asymptotic error for the batch mode and also on-line learning depends on ϕ.

In order to improve the error, an adaptive choice of ϕ is useful. An adaptive choice of
ϕ is also useful for guaranteeing stability. When ϕ is derived from the true probability
distributions of the sources, the estimated Ŵ is MLE, and is efficient in the sense that the
asymptotic error is minimal and is equal to the inverse of the Fisher information matrix.
However, it is highly expensive to estimate the probability density functions of the sources.
Instead, we use a parametric family of ϕ,

ϕa = ϕa (y;Θa) (10.72)

for each source sa and update the parameter Θa which specifies ϕa by

∆Θa = −ηΘ
∂ρ

∂Θa
. (10.73)

There are a number of models to specify ϕa. The Gaussian mixture is one method for
approximating the source probability density. It is the parametric family

q(y;Θ) =
u∑

i=1

vi exp

{
− (x− µi)

2

2σ2
i

}
, (10.74)

where Θ consisting of a number of vi, µi and σ2
i . The corresponding parametric ϕ(y;Θ)

is derived therefrom. This covers both sub-Gaussian and super-Gaussian distributions.
However, this family is computationally expensive .

A simpler method is to use the generalized Gaussian family

q(y, Θ) = c exp
{−|y|Θ}

, (10.75)

where Θ is the only parameter to be adjusted. This family covers both super-Gaussian
and sub-Gaussian cases. The adaptive nonlinear activation function commonly used in ICA
algorithm has in this case the following form (see Chapter 6 for detailed explanation)

ϕ(y, Θ) = c̃ sign(y) |y|Θ−1 (10.76)

where c̃ is some positive scaling constant.
Zhang et al. [1357] proposed an exponential family connecting three typical distribu-

tions; Gaussian, super-Gaussian and sub-Gaussian. It is the following exponential family
of distributions [1357]

qa (s, θa) = exp
{

θT
a g(s)− ψ (θa)

}
, (10.77)

where θa is the canonical parameters, g(s) is an adequate vector function and ψ is the
normalization factor. The function ϕa is derived as

ϕa(y) = − d

dy
log qa (y, θa) = θT

a g′(y). (10.78)
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Zhang [1357] proposed to use the three-dimensional model,

g(y) =
[
log sesh(y),−y4,−y2

]T
(10.79)

or
g′(y) =

[
tanh(y), y3, y

]T
, (10.80)

of which components correspond to the typical ϕ proposed so far. They are responsible for
the super-Gaussian, sub-Gaussian and linear cases, respectively. The ϕa(y) is their linear
combination, covering all the cases. The parameter θa is adaptively determined as

θa(k + 1) = θa(k)− η(k) [g (ya(k)) + E {g (ya)}] , (10.81)

where E {g (ya)} may be adaptively estimated.

10.2 ESTIMATING FUNCTIONS IN NOISY CASE

Let us analyze the noisy case
x = Hs + ν, (10.82)

where ν is a noise vector in the measurement. We assume ν is Gaussian and that their
components are uncorrelated. Let

Rνν = E{ννT } = diag{σ2
1 , σ2

2 , . . . , σ2
n} (10.83)

be its covariance matrix. In order to fix the scale, we also assume

E{s2
i } = 1. (10.84)

Let W = H−1 be the true separating matrix, and put

y = Wx. (10.85)

Then, we have
y = s + Wν = s + ν̃, (10.86)

where ν̃ = Wν is a noise vector whose components are correlated.
In the noisy case, functions of the type F = I − ϕ(y)yT are not in general estimating

functions. Indeed,
E

{
I−ϕ(y)yT

} 6= 0 (10.87)

even when y is derived from the true W , because yi and yj are no more independent even
when W = H−1. However, estimating functions exist even in the noisy case.

For the true W = H−1, the noise term is

ν̃ = Wν, (10.88)

which is Gaussian. Let its covariance matrix be

V = E
{
ν̃ν̃T

}
= E

{
WννT W T

}
= WRννW T . (10.89)
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Kawanabe and Murata [688] studied all possible estimating functions. The following is a
simplest estimating matrix function F (y, W ) with entries

Fab(y, W ) = y3
ayb − 3vaayayb − 3vaby

2
a + 3vaavab, (10.90)

where vab are elements of V . We can easily prove that

E {F (y, W )} = 0, (10.91)

when W = H−1. Hence, the adaptive learning algorithm

W (k + 1) = W (k) + η(k) F {y(k), W (k)}W (k) (10.92)

is effective even under large Gaussian noise.
When the covariance matrix Rνν of the measurement noise is unknown, we need to

estimate it. Factor analysis provides a method of estimating it (Ikeda and Toyama [604]).
The off-diagonal term can be adaptively estimated from

vab(k + 1) = (1− η0) vab(k) + η0 ya(k) yb(k), (10.93)

where η0 is a learning rate.
The learning algorithm (10.92) is not necessarily stable. A stable algorithm given by

the standardized estimating function F ∗, which is the adaptive Newton method. We can
obtain F ∗ explicitly in a method similar to the noiseless case.

10.3 ESTIMATING FUNCTIONS FOR TEMPORALLY CORRELATED SOURCE

SIGNALS

10.3.1 Source Model

Independent source signals si(k) are temporally correlated in many cases. If we use this fact,
separation can be done much easier, even if we do not know the exact temporal correlation
coefficients. Moreover, the second order correlations are sufficient for separation. We begin
with the description of the temporally correlated source models.

Let us consider a stationary stochastic model described by a linear model

si(k) =
Li∑

p=1

aipsi(k − p) + εi(k), (10.94)

where Li is finite or infinite and εi(k) is a zero mean independent and identically distributed
(that is, white) time series called innovation. The present section treats such source models.

The innovation may be Gaussian or non-Gaussian. We assume that they satisfy

E{εi(k)} = 0,

E{εi(k)εj(k′)} = 0, (i 6= j or k 6= k′). (10.95)
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When Li is finite, this is an AR model of degree Li. By introducing the time shift operator
z−1 such that z−1si(k) = si(k − 1), we can rewrite (10.94) as

[
Ai

(
z−1

)]
si(k) = εi(k), (10.96)

where

Ai

(
z−1

)
= 1−

Li∑
p=1

aipz
−p. (10.97)

By using the inverse of the polynomial Ai, the source signal is written as

si(k) =
[
A−1

i

(
z−1

)]
εi(k), (10.98)

where A−1
i

(
z−1

)
is a formal infinite power series of z−1

A−1
i

(
z−1

)
=

∞∑
p=0

āipz
−p. (10.99)

Function A−1
i

(
z−1

)
represents the impulse response of the i-th source, by which {si(k)}

is generated from white signals {εi(k)}. Let ri(εi) be the probability density function of
εi(k). Then, the conditional probability density function of si(k) conditioned on the past
signals can be written as

pi {si(k)|si(k − 1), si(k − 2), . . .} = ri

{
si(k)−

∑
p

aipsi(k − p)

}
= ri

{
Ai

(
z−1

)
si(k)

}
.

(10.100)
Therefore, for vector source signals s(k) = [s1(k), . . . , sn(k)]T at time k, the conditional
probability density is

p {s(k)|s(k − 1), s(k − 2), . . .} =
n∏

i=1

ri

{
[Ai(z−1)]si(k)

}
. (10.101)

We introduce the following notations:

ε = [ε1, ε2, . . . , εn]T , (10.102)
A

(
z−1

)
= diag{A1(z−1), . . . , An(z−1)}, (10.103)

r(ε) =
n∏

i=1

ri (εi) , (10.104)

and use the following abbreviation

sk = s(k), xk = x(k) yk = y(k) = Wx(k), (10.105)

when there is no confusion. We also denote the past signals by

s(k, past) = {s(k − 1), s(k − 2), · · · } . (10.106)
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Then, eq. (10.101) is rewritten as

p {s(k)|s(k, past)} = r
{
A

(
z−1

)
s(k)

}
. (10.107)

The joint probability density function of {s(1), s(2), . . . , s(N)} is written as

p (s(1), s(2), . . . , s(N)) =
N∏

k=1

p {s(k)|s(k, past)}

=
N∏

k=1

r
{
A

(
z−1

)
s(k)

}
, (10.108)

where s(k) (k ≤ 0) are put equal to 0. Practically s(k) (k < 0) are not equal to 0 so that
(10.108) is an approximation which holds asymptotically, that is, for large N .

The source models are specified by n functions ri(εi) and n inverse impulse response
functions Ai

(
z−1

)
. Blind source separation should extract the independent signals from

their instantaneous linear mixtures x(k) without knowing exact forms of ri(εi) and Ai

(
z−1

)
.

In other words, they are treated as unknown nuisance parameters.
Given N observations {x(1), x(2), . . . , x(N)}, their joint probability density function is

easily derived from (10.108) and sk = Wxk, where W = H−1. It is written as

p {x1, . . . , xN , W ;A, r} = det |W |N
N∏

k=1

rk

{
A

(
z−1

)
Wxk

}
, (10.109)

which is specified by the unmixing parameter W = H−1 and the nuisance parameters A
and r’s of the source models.

10.3.2 Likelihood and Score Functions

For the moment, we assume that r and A are known. We are then able to use the maximum
likelihood (ML) method to estimate W . The log likelihood is derived from (10.109) as

ρ(N) (x1, . . . , xN ; W , A, r) = − log p {x1, . . . , xN ;W , A, r}

= −N log |W | −
N∑

k=1

log r
{
A

(
z−1

)
Wxk

}

= −N log |W | −
N∑

k=1

log r
{
A

(
z−1

)
yk

}
, (10.110)

where we put yk = Wxk. The MLE (Maximum Likelihood Estimator) is the one that
maximizes the above likelihood for given N observations x1, . . . , xN .

We put
ρ (yk, W ) = − log r

(
A

(
z−1

)
yk

)
. (10.111)
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Note that ρ depends not only on yk but also on past yk−1, yk−2, . . ., because of the operator
A

(
z−1

)
. Note also that ρ is a function of W only through yk’s. We then have

ρ(N) = −N log |W | −
N∑

k=1

ρ (yk,W ) . (10.112)

The small change dρ of ρ due to a small change of W to W + dW is

dρ = −ϕr (Ayk)T
d (Ayk) , (10.113)

where ϕr(y) = − ∂
∂y log r(y) is a vector. Noting that d (Ayk) = Adyk and

dyk = dWxk = dXyk, (10.114)

we have
dρ = ϕr (Ayk)T

A dXyk. (10.115)

We finally have the score function in terms of dX,

∂ρ(N)

dX
=

∂ρ(N)

∂W
W =

N∑

k=1

[
I− {ϕr (Ayk)A}yT

k

]
, (10.116)

where ϕrA is a column vector whose components are ϕjAj

(
z−1

)
. Note that, when d ρ is

written in component form as dρ =
∑

cijdXij , the derivative ∂ρ/dX is a matrix whose
elements are cij . Hence, ϕr (Ay)AyT is represented in component form as ϕi

(
Ai

(
z−1

)
yi

)
Ai

(
z−1

)
yj .

By putting
∂ρ

dX
= F (y, W ; r,A) = I− {ϕr (Ay) ◦A}yT , (10.117)

the likelihood equation is given by

N∑

k=1

F (yk,W ; r,A) = 0, (10.118)

whose solution Ŵ gives the maximum likelihood estimator.

10.3.3 Estimating Functions

Since we do not know the true distributions of sources {ri} and filters {Ai(z−1}, we cannot
use the above considered estimation function F , which depends on r and A. We search for
estimating functions in the following class:

F (y, W , q,B) =
dρ(y,W , q, B)

dX
= I−ϕq

{(
B

(
z−1

)
y
)
B

(
z−1

)}
yT , (10.119)
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for any fixed independent distribution q and matrix B
(
z−1

)
= diag{B1(z−1), . . . , Bn(z−1)},

with fixed filters Bi(z−1) =
∑Li

p=0 bipz
−p. This is an estimating function whatever q and B

are, because it satisfies
EW,r,A [F (y,W , q, B)] = 0 (10.120)

for any sources having true independent distributions r and filters A
(
z−1

)
. It should be

noted that F (y,W , q, B) is the true score function when the true nuisance parameters
happen to be r = q and A = B

(
z−1

)
. However, even when q and B are misspecified, it

works as an estimating function.
To be more precise, we state the identifiability conditions (Tong et al. 1991 [1158, 1159];

Comon, 1994 [305]).

Identifiability Condition:

1) All the independent sources have different spectra, that is, all Ai

(
z−1

)
are different, or

2) when some sources have the same spectra, the distributions ri of these sources are
non-Gaussian except for one source.

Summarizing these, we obtain the following Theorem from the general theory (Amari
[21]).

Theorem 10.3 When the identifiability condition is satisfied, the smallest admissible class
of estimating functions is spanned by the non-diagonal elements of F (y, W , q, B), where q
and B are arbitrary.

The estimating equation is
N∑

k=1

F (yk,W , q, B) = 0. (10.121)

An adaptive learning algorithm on the basis of such estimation function can take the form

∆W (k) = η(k)F [y(k),W (k)] W (k) (10.122)

or more generally by using the standardized estimating function,

∆W (k) = η(k)F ∗ [y(k), W (k)] , (10.123)

which will be presented in the following sections.

10.3.4 Simultaneous and Joint Diagonalization of Covariance Matrices and

Estimating Functions

Joint diagonalization of the covariance matrices

Rx(τ) = E{x(k)xT (k − τ)} (10.124)
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for various τ is a standard method for blind separation of temporally correlated sources
(Tong et al., 1991; Molgedey and Schuster, 1994; Ikeda and Murata, 1999; Belouchrani et
al., 1997 [1160, 90, 92, 854, 870, 871]). This type of estimator looks quite different from
those derived from estimating functions. To our surprise, this method is also given by an
estimating function when the source signals are colored Gaussian. Although joint diago-
nalization is important for practical applications and interesting from the computational
viewpoint, it is not admissible, and there always exist better estimating functions.

Another example of non-admissible estimating functions is the following,

F̃ (y) = ϕ
(
B

(
z−1

)
y
) [

C
(
z−1

)
y
]T

, (10.125)

where B and C are arbitrary filters which may be equal to each other.
Let Rs(τ), Rx(τ) and Ry(τ) be the cross-correlation matrices of s(t),x(t) and y(t),

respectively, defined by

Rs(τ) = E{s(k)sT (k − τ)}, (10.126)
Rx(τ) = E{x(k)xT (k − τ)}, (10.127)
Ry(τ) = E{y(k)yT (k − τ)}. (10.128)

Since different sources are independent, Rs(τ) is a diagonal matrix for any time delay τ .
These matrices are connected by the relations

Rx(τ) = HRs(τ)HT , (10.129)
Rx(τ) = WRx(τ)W T (10.130)

so that the true W is the one that diagonalizes Rx(τ) for all τ simultaneously.
This leads us to the following batch algorithm of estimating W (see Chapter 4 for more

details and explanation).
1. From observed signals {x1, . . . , xN}, calculate the empirical cross-correlation

R̂x(τ) =
1
N

N∑

k=1

x(k)xT (k − τ). (10.131)

2. Prewhiten the signals by x̄ = Λ1/2Qx such that the correlation matrix with 0 delay
R̂x̄(0) =

〈
x̄(k)x̄T (k)

〉
becomes equal to the identity matrix, where Q is the orthogonal

matrix composed of the eigenvectors of R̂x(0) = VΛVT and Λ1/2 is a diagonal matrix
composed of the inverse square roots of eigenvalues. We then have the resultant cross-
correlation matrix R̂x̄(τ) of x1, where R̂x̄(0) is the identity matrix.

3. Let W = UΛ1/2Q be the singular value decomposition of W . We have fixed Λ1/2

and Q by using R̂x(0). The remaining task is to diagonalize R̂x̄(τ), τ = 1, 2, . . ., by finding
a suitable orthogonal matrix U such that R̂y(τ) are diagonal where y = Ux̄. A typical
algorithm is to find U that minimizes a weighted sum of the squares of off-diagonal elements
of Ry(τ),

Ĵ(U) =
∑

i6=j

∑

τ 6=0

c(τ)
{

R̂ij(τ)
}2

, (10.132)
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where Rij(τ) = E{yi(k)yj(τ)} and c(τ) are suitably chosen non-negative weights.
We show how the above method is related to estimating functions. We have, for i 6= j,

τ > 0, and in the Gaussian case,

Cij(τ) = E{(yi(k)yj(k − τ))2}
= E

{
{yi(k)}2

}
E

{
{yj(k − τ)}2

}
+ 2E2 {yi(k)yj(k − τ)}

= 1 + 2 {Rij(τ)}2 , (10.133)

because E{x̄i(k)2} = E{yi(k)2} = 1 holds when U is an orthogonal matrix. Therefore, the
cost function (10.132) to be minimized is written as

J(U) =
1
2

∑

i 6=j

∑
τ

cτCij(τ). (10.134)

Given a set of observations y(1), . . . , y(N), where y(k) = Ux̄(k), Cij(τ) is replaced by
its empirical estimate

Ĉij(τ) =
1
N

N∑

k=1

[yi(k)yj(k − τ)]2 , (10.135)

where yj(k), k ≤ 0, are put equal to 0. Therefore, the estimator Û minimizes

Ĉ(U) =
1
2

∑

i6=j

∑
τ

cτ Ĉij(τ). (10.136)

In order to calculate the derivative of Ĉij(τ), we use

d
[
y2

i (k)y2
j (k − τ)

]
= 2

[
yi(k)dyi(k)y2

j (k − τ) + yi(k)2yj(k − τ)dyj(k − τ)
]

= 2
∑

l

[
yi(k)dXilyl(k)y2

j (k − τ) + y2
i (k)yj(k − τ)dXjlyl(k − τ)

]
,

(10.137)

where dXil are entries of the matrix

dX = dUU−1, (10.138)

which is an antisymmetric matrix, because U is an orthogonal matrix.
We note that

N

2
d


∑

i 6=j

Ĉij(τ)




=
∑

i 6=j

∑

l

N∑

k=1

[
yi(k)dXikyl(k)y2

j (k − τ) + y2
i (k)yj(k − τ)dXjlyl(k − τ)

]

=
N∑

k=1

∑

l

∑

i 6=j

dXil

[
yi(k)yl(k)y2

j (k − τ) + y2
j (k + τ)yi(k)yl(k)

]
, (10.139)
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where y(k), k > N is put equal to 0. We take up the coefficient of dXil in the first term of
the right-hand side of (10.139),

∑

j 6=i

yi(k)yl(k)y2
j (k − τ). (10.140)

Because dXil = −dXli holds, the coefficients of dXil are summarized into

yi(k)yl(k)


∑

j 6=i

y2
j (k − τ)−

∑

j 6=l

y2
j (k − τ)




= yi(k)yl(k)
[
y2

l (k − τ)− y2
i (k − τ)

]
. (10.141)

A similar relation holds for the second terms. Therefore, the derivatives are given by

∂

∂Xil

N

2

∑

p 6=q

Ĉpq(τ)

=
∑

k

yi(k)yl(k)
[
y2

l (k − τ)− y2
i (k − τ) + y2

l (k + τ)− y2
i (k + τ)

]
. (10.142)

Summarizing these results, we have the following Theorem.

Theorem 10.4 When the source signals are colored Gaussian, the method of simultaneous
diagonalization is equivalent to the estimating function method with the entries of matrix
estimating function

Fij(y,U) = yiyj

∑
τ

c(τ)
(
z−τ + zτ

) (
y2

j − y2
i

)
. (10.143)

Note that the estimating function (10.143) does not belong to the admissible class. Hence,
one can always find a better estimating function.

10.3.5 Standardized Estimating Function and Newton Method

Let R(W ) = (RAB) be a nonsingular matrix operator which may depend on W . Then, F
and F̃ = RF are equivalent estimating functions.

Among a class of equivalent estimating functions, the one F ∗ that satisfies

K∗ = E

{
∂F ∗

∂X

}
= identity operator (10.144)

is called the standardized estimating function (Amari, 1999 [27]). Given an estimating
function F , its standardized form is given by

F ∗ = K−1F , (10.145)

where

K = E

{
∂F

∂X

}
. (10.146)
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We now calculate

K = E

{
∂F (y, W , q,B)

∂X

}
(10.147)

at the true solution W = H−1. Rewriting F = ∂ρ/dX or

dρ = −tr dX +
[
ϕ (ỹ)T

B
(
z−1

)]
dXy (10.148)

in component form, where we put

ỹ = [B
(
z−1

)
]y, (10.149)

we calculate the second-order differential in the component form as follows:

d2ρ = d[
∑

i,j,p

ϕi(ỹi)bipyj(k − p)]dXij

=
∑

i,j,p

{ϕ′i (ỹi) dỹibipyj(k − p) + ϕi (ỹi) bipdyj(k − p)} dXij

=
∑

i,j,m,q,k

ϕ′i (ỹi) biqym(k − q)bipyj(k − p)dXimdXij

+
∑

i,j,m,k

ϕ (ỹi) bipym(k − p)dXjmdXij , (10.150)

where ϕ′i(y) = dϕi(y)/dy.
At the true solution, we have

E{ϕ′ (ỹi) yjym} = E{ϕ (ỹi) yj} = 0, unless i = j = m (10.151)

and

d2ρ =
∑

i

E
{
ϕ′i (ỹi) ỹ2

i

}
(dXii)

2 +
∑

i,j

E {ϕ (ỹi) ỹi} dXijdXji

+
∑

i 6=j

E{ϕ′i(ỹi)[
∑
p=0

bipyj(k − p)]2}(dXij)2. (10.152)

Hence, the quadratic form d2ρ in terms of dXij ’s splits into the diagonal terms
∑

(m̃i + 1) (dXii)
2 (10.153)

and 2× 2 minor matrices consisting of dXij and dXji (i 6= j),
∑

i 6=j

{
κ̃iσ̃

2
ij (dXij)

2 + dXijdXji

}
, (10.154)

where we put

m̃i = E{ϕ′i(ỹi)ỹ2
i }, (10.155)

κ̃i = E{ϕ′i (ỹi)}, (10.156)

σ̃2
ij = E{[

∑
p=0

bipyj(k − p)]2}. (10.157)
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When we put
Fii(y) = 1− y2

i , (10.158)

the recovered signals satisfy
E{y2

i } = 1. (10.159)

In this case, the diagonal term is
2

∑
dX2

ii, (10.160)

and the 2× 2 diagonal terms are

κ̃iσ̃
2
ij (dXij)

2 + h̃idXijdXji, (10.161)

where
h̃i = E{ϕ (ỹi) ỹi}. (10.162)

From this analysis, we have the stability condition of the algorithm

∆W = η F (y, W ) W . (10.163)

Theorem 10.5 The separating solution is asymptotically stable, when and only when

1) m̃i + 1 > 0, (10.164)
2) κ̃i > 0, (10.165)
3) κ̃iκ̃j σ̃

2
ij σ̃

2
ji > 1. (10.166)

The inverse of K has the same block structure as K. Its diagonal KAA parts for A = (i, i)
are

kii,ii =
1

1 + m̃i
(10.167)

and its 2× 2 diagonal parts KAA′ for A = (i, j) and A′ = (j, i), i 6= j are

KAA′ = cij

[
κ̃j σ̃

2
ji −1

−1 κ̃iσ̃
2
ij

]
(10.168)

where
cij =

1
κ̃iκ̃j σ̃2

ij σ̃
2
ji − 1

. (10.169)

We have similar expressions for Fii = 1− y2
i .

We thus have the standardized estimating function.

Theorem 10.6 The standardized estimating function F ∗(y,W ) has entries given by

F ∗ij = cij

[
−κ̃j σ̃

2
jiϕi (ỹi) ỹ

(i)
j + ϕj (ỹj) ỹ

(j)
i

]
, (10.170)

F ∗ii =
1

m̃i + 1
{1− ϕi (ỹi) ỹi} , (10.171)
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where
ỹ
(i)
j = Bi

(
z−1

)
yj . (10.172)

The associated adaptive learning algorithm

∆W = η F ∗ (y, W ) (10.173)

is the Newton method.

10.3.6 Asymptotic Errors

The asymptotic estimation error is easily obtained from

G∗AB = E {F ∗AF ∗B} . (10.174)

The results in this section are derived in a similar way used in Amari (1999) [26].

Theorem 10.7

G∗ik,jk = cik cjk σ̃2
ik σ̃2

jk σ̃2
kk κ̃2

j l̃i l̃j , (10.175)

G∗ii,ij =
1

m̃i + 1
cij κ̃j σ̃2

ii σ̃2
ij l̃j E{ỹ2

i ϕi (ỹi)}, (10.176)

where

l̃i = E{ϕi (ỹi)}, m̃i = E{ϕ′i(ỹi)ỹ2
i }, κ̃i = E{ϕ′i (ỹi)}, (10.177)

σ̃2
ij = E{[

∑
p=0

bipyj(k − p)]2}, cij = [κ̃iκ̃j σ̃
2
ij σ̃

2
ji − 1]−1. (10.178)

The error covariances of recovered signals are given from

E{∆yi ∆yj} =
∑

E{∆Xik ∆Xjk}σ2
k. (10.179)

It is remarkable that “superefficiency” of

E{∆yi ∆yj} = O
(

1
N2

)
, (i 6= j) (10.180)

holds, when the condition
l̃i = E{ϕi (ỹi)} = 0 (10.181)

holds. The proof is similar to the non-correlated case (Amari, 1999 [27]).

10.4 SEMIPARAMETRIC MODELS FOR MULTICHANNEL BLIND

DECONVOLUTION

Most theories treat only blind source separation of instantaneous mixtures and it is only
recently that the natural gradient approach has been proposed for multichannel blind de-
convolution [39, 1358, 1368]. Amari et al. [38, 39] discussed the geometric structures of the
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IIR filter manifold, to develop an efficient learning algorithm for blind deconvolution. How-
ever, in most practical implementations, it is necessary to employ a filter of finite length as
a deconvolution model. Zhang et al. [1358, 1368, 1372] directly investigated the geometric
structures of the FIR filter manifold and derived the natural gradient algorithm for training
FIR filters. Local stability condition for natural gradient learning is also extended for the
blind deconvolution case.

The present section will examine further convergence and efficiency of the batch estimator
and natural gradient learning for blind deconvolution via the semiparametric statistical
model and estimating functions [104]. First we introduce the geometrical properties of
the manifold of the FIR filters based on the Lie group structure and formulate the blind
deconvolution problem within the framework of the semiparametric model deriving a family
of estimating functions for blind deconvolution. We then analyze the efficiency of the
batch estimator based on estimating function - obtaining its convergence rate. Finally, we
prove that both batch learning and natural gradient learning are superefficient under given
nonsingular conditions [1358, 1368].

10.4.1 Notation and Problem Statement

As a convolutive mixing model, we consider a multichannel linear time-invariant (LTI)
system of the form (see Chapter 9 for more detail and learning algorithms):

x(k) =
∞∑

p=0

Hps(k − p), (10.182)

where Hp is an n × n-dimensional matrix of mixing coefficients at time-lag p, called the
impulse response at time p, s(k) = [s1(k), s2(k) . . . , sn(k)]T is an n-dimensional vector of
source signals, zero-mean and independent and identically distributed (i.i.d.), and x(k) =
[x1(k), . . . , xn(k)]T is an n-dimensional vector of sensor signals. For simplicity, we use the
notation

H(z) =
∞∑

p=0

Hpz
−p, (10.183)

where z is the z-transform variable. H(z) is usually called the mixing filter, unknown in
blind deconvolution.

The goal of multichannel blind deconvolution is to retrieve source signals only using
sensor signals x(k) and some knowledge of source signal distributions. Generally, we carry
out the blind deconvolution with another multichannel LTI and non-causal system of the
form

y(k) =
∞∑

p=−∞
Wpx(k − p), (10.184)

where y(k) = [y1(k), y2(k), . . . , yn(k)]T is an n-dimensional vector of the outputs and Wp

is an n × n-dimensional coefficient matrix at time lag p, of which components are the
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parameters to be determined during training. The matrix transfer function of deconvolutive
filters can be expressed as

W(z) =
∞∑

p=−∞
Wpz

−p, (10.185)

The objective of blind deconvolution is to make the output signals y(k) of the separating
model maximally spatially mutually independent and temporarily i.i.d. In this section we
employ a semiparametric model to derive a family of estimating functions and develop
efficient learning algorithms for training the separating filter W(z). Finally we analyze the
convergence and efficiency of the learning algorithms.

In practice, we can easily implement the blind deconvolution problem with a finite impulse
response (FIR) filter

W(z) =
L∑

p=0

Wpz
−p, (10.186)

where L is the maximum order (length) of the deconvolutive/separating filters. Alterna-
tively we can employ non-causal filters of the symmetrical form W(z) =

∑L/2
p=−L/2 Wpz

−p.
In general, the multiplication of two filters of form (10.186) will enlarge the filter length.
Below, we will discuss briefly some geometrical structures of the FIR manifold (see Chapter
9 for more detail).

10.4.2 Geometrical Structures on FIR Manifold

Geometrical structures, such as the Riemannian metric on the parameter space, can help us
develop efficient learning algorithms for training parameters. The commonly used gradient
descent learning is not optimal in minimizing a cost function defined on a Riemannian space.
The steepest search direction is given by the natural gradient. It has been demonstrated that
the natural gradient search scheme is an efficient approach for solving iterative parameter
estimation problems [24]. In order to develop an efficient learning algorithm for blind
deconvolution, we first explore some geometrical properties of the manifold of FIR filters.

The set of all FIR filters W(z) of length L, having the constraint W0 is nonsingular, is
denoted by M(L),

M(L) =

{
W(z) | W(z) =

L∑
p=0

Wpz
−p, det(W0) 6= 0

}
. (10.187)

M(L) is a manifold of dimension n2(L+1). In general, multiplication of two filters in M(L)
will enlarge the filter length. This makes it difficult to introduce the Riemannian structure to
the manifold of multichannel FIR filters. In order to explore possible geometrical structures
of M(L) which will lead to effective learning algorithms for W(z), we define the algebraic
operations of filters in the Lie group framework.
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10.4.3 Lie Group

In the manifoldM(L), Lie operations, multiplication~ and inverse †, are defined as follows:
For W(z), H(z) ∈M(L),

W(z) ~ H(z) =
L∑

p=0

p∑
q=0

WqH(p−q)z
−p, (10.188)

W†(z) =
L∑

p=0

W†
pz
−p, (10.189)

where W†
p are recurrently defined by W†

0 = W−1
0 , W†

p = −∑p
q=1 W†

p−qBqW−1
0 , p =

1, 2, . . . , L. With these operations, both W(z)~H(z) and W†(z) still remain in the manifold
M(L). It is easy to verify that the manifold M(L) with the above operations forms a Lie
Group [1358]. The identity element is E(z) = I, where I is the identity matrix. In fact
the Lie multiplication of two W(z), H(z) ∈ M(L) is the truncated form of the ordinary
multiplication up to order L, that is

W(z) ~ H(z) = [W(z)H(z)]L (10.190)

where [W(z)]L is a truncating operator such that any terms with orders higher than L in
the matrix polynomial W(z) are omitted.

The fluctuations will be negligible if we make the length L of W(z) sufficiently large.
However, considering the multiplication in the Lie group sense, we have G(z) = W(z) ~
H(z) = I. In the following discussion, we consider the global transfer function in the Lie
group sense G(z) = W(z) ~ H(z).

10.4.4 Natural Gradient Approach for Multichannel Blind Deconvolution

The Lie group has an important property that admits an invariant Riemannian metric
[1358]. Using the Lie group structure, we derive the natural gradient of a cost function
ρ(W(z)) defined on the manifold M(L)

∇̃ρ(W(z)) =
∂ρ(W(z))

∂X(z)
~ W(z) = ∇ρ(W(z)) ~ W(z), (10.191)

where dX(z) is a nonholonomic variable [30], defined by the following equation

dX(z) = dW(z) ~ W†(z) =
[
dW(z)W−1(z)

]
L

. (10.192)

Alternatively, the natural gradient can be expressed as

∇̃ρ(W(z)) = ∇ρ(W(z)) ~ WT (z−1) ~ W(z). (10.193)

However, it is much easier to evaluate the natural gradient, if we introduce the nonholonomic
differential variable dX(z) defined by (10.192). There are two ways to calculate the ∂ρ(W(z))

∂X(z) .



SEMIPARAMETRIC MODELS FOR MULTICHANNEL BLIND DECONVOLUTION 411

One is to evaluate it by the following relation

∂ρ(W(z))
∂X(z)

=
∂ρ(W(z))
∂W(z)

~ WT (z−1). (10.194)

The other way is to directly calculate it by using the following property,

dy(k) = dW(z)x(k) = dX(z)y(k). (10.195)

From the above equation, we see that the differential dX(z) defines a channel variation
with respect to variation of output of the separating model. This property is critical for the
derivation of learning algorithms with equivariance property.

Assuming that dX(z) =
∑L

p=0 dXpz
−p is inM(L), and ρ(X(z)) is a cost function defined

on M(L), we can define

∂ρ(X(z))
∂Xp

=
(

∂ρ(X(z))
∂Xp,ij

)

n×n

. (10.196)

Hence, we can write

∂ρ(X(z))
∂X(z)

=
L∑

p=0

∂ρ(X(z))
∂Xp

z−p. (10.197)

The estimating function for blind deconvolution is denoted by

F(y,X(z)) =
L∑

p=0

Fp(y,X(z))z−p (10.198)

where Fp ∈ IRn×n, p = 0, 1, . . . , L are matrix functions on M(L). Given p, q, the derivative
∂Fp

∂Xq
is a 4-dimensional tensor, defined by ∂Fp

∂Xq
=

(
∂Fp,ij

∂Xq,lk

)
n×n×n×n

. For any matrix P ∈
IRn×n, the operation ∂Fp

∂Xq
P is defined by ∂Fp

∂Xq
P =

∑
l,k

∂Fp

∂Xq,lk
Plk Therefore the derivative

∂F(y,X(z))
∂X(z) is an operator mapping M(L) to M(L), defined by

∂F(y,X(z))
∂X(z)

P(z) =
L∑

p=0

L∑
q=0

∂Fp

∂Xq
Pqz

−p (10.199)

for any filter P(z) ∈M(L).
Using the above properties, we derive the natural gradient learning algorithm for multi-

channel deconvolution.
In order to implement the adaptive on-line learning, we formulate the standard cost

function as

J(y,W(z)) = E{ρ(y,W(z))} = − log |det(W0)| −
n∑

i=1

E{log q(yi)}, (10.200)
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where q(yi) is an estimator of the true probability density function of source signals.
We evaluate the total differential dρ(y,W(z))

dρ(y,W(z)) = d(− log |det(W0)| −
n∑

i=1

log q(yi))

= −tr(dW0W−1
0 ) + ϕT (y)(y)T dy, (10.201)

where tr is the trace of a matrix and ϕ(y) is a vector of nonlinear activation functions,

ϕi(yi) = −d log qi(yi)
dyi

= −q′i(yi)
qi(yi)

. (10.202)

By introducing the nonholonomic differential base (10.192), we rewrite (10.201) as

dρ(y,W(z)) = − tr(dX0) + ϕT (y)dW(z)W−1(z)y. (10.203)

Hence, we obtain

∂ρ(y,W(z))
∂Xp

= −δ0,p I + ϕT (y)yT (k − p), p = 0, 1, . . . , L (10.204)

Using the natural gradient descent learning rule, we obtain an efficient on-line learning
algorithm as follows

∆Wp(k) = −η(k)
p∑

q=0

∂ρ(W(z))
∂Xq

Wp−q

= η(k)
p∑

q=0

[
δ0,q I−ϕ(y(k))yT (k − q)

]
Wp−q(k), (10.205)

for p = 0, 1, . . . , L, where η is the learning rate. In particular, the learning algorithm for
W0 is described by

∆W0(k) = η(k)
[
I−ϕ(y(k))yT (k)

]
W0(k). (10.206)

Alternatively, we can use an adaptive batch version of the algorithm

∆Wp(k) = η

p∑
q=0

[
δ0,q I−R(k)

ϕy(q)
]
Wp−q(k), (10.207)

where

R(k)
ϕy(q) = (1− η0)R

(k−1)
ϕy (q) + η0ϕ(y(k))yT (k − q). (10.208)

The NG algorithms (10.205) and (10.207) have two important properties, uniform per-
formance (the equivariant property) and invariance of nonsingularity of W0.
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Remark 10.2 In the multichannel blind deconvolution, an algorithm is equivariant if its
dynamical behavior depends on the global transfer function G(z) = W(z)~H(z), but not on
the specific mixing filter H(z). In fact the learning algorithm (10.205) has the equivariant
property in the Lie group sense. Writing the learning algorithm in the Lie group form and
multiplying both sides by the mixing filter H(z) in the Lie group sense, we obtain

∆G(z) = −η
∂ρ(W(z))

∂X(z)
~ G(z). (10.209)

where G(z) = W(z) ~ H(z). From equation (10.204), we know ∂ρ(W(z))
∂X(z) is formally inde-

pendent of the mixing channel H(z). This means that the algorithm (10.205) is equivariant.

Another important property of the learning algorithm (10.206) is that it keeps the non-
singularity of W0 provided the initial W0 is nonsingular [1321]. In fact if we denote the
inner product of two matrices by 〈A,B〉 = tr(AT B), we can easily calculate the derivative
of the determinant |W0| = detW0 in the following way

d|W0|
dt

= 〈∂|W0|
∂W0

,
dW0

dt
〉 = 〈|W0|W−T

0 ,
dW0

dt
〉 (10.210)

= tr
(|W0|W−1

0 (I−ϕ(y)yT (k))W0

)
= tr

(
I−ϕ(y)yT (k))|W0|

)
.

(10.211)

This equation results in

|W0(t)| = |W0(0)| exp(
∫ t

0

tr(I−ϕ(y(τ))yT (τ))dτ). (10.212)

Therefore the matrix W0 is nonsingular whenever the initial matrix W0(0) is nonsingular.
This means that the learning algorithm (10.205) keeps the filter W(z) on the manifold
M(N) if the initial filter is on the manifold. The condition implies that the equilibrium
points of the learning algorithm satisfy the following equations

E
{
ϕ(y(k))yT (k − p)

}
= 0, for p = 1, 2, . . . , L, (10.213)

E
{
I−ϕ(y(k))yT (k)

}
= 0. (10.214)

The nonlinear activation function ϕ(y) originally is defined by the score function of loga-
rithm of source distribution functions. The choice of ϕ(y) depends on both the statistics
of the source signals and stability conditions of the learning algorithm.

10.4.5 Efficient Score Matrix Function and its Representation

In this section, we give an explicit form of the score function of the parameters of interest,
by using a local nonholonomic reparameterization. We then derive the efficient score by
projecting the score function into the subspace orthogonal to the nuisance tangent space.

Assume that the mixing filter H(z) is in M(L). The blind deconvolution problem is
to find a separating FIR filter W(z) such that the output y(k) of the separating model
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is maximally spatially mutually independent and temporarily i.i.d. To this end, we first
define the score functions of log-likelihood with respect to W(z). Since the mixing model
is a matrix FIR filter, we write an estimating function in the same matrix filter format

F(x,W(z)) =
L∑

p=0

Fp(x,W̄)z−p, (10.215)

where Fp(x,W̄) are matrix functions of x and W̄ = [W0,W1, . . . ,WL].
Now let us consider the W̄-score function, which is a filter in TM(L), defined by [1358]

∂ log p(y;W̄, r)
∂W(z)

=
L∑

p=0

∂ log p(y;W̄, r)
∂Wp

z−p, (10.216)

where p(y;W̄, r) is the probability density function of y, and ∂ log p(y;W̄,r)
∂Wp

denotes the

gradient in matrix form, whose (i,j)-element is defined by ∂ log p(y;W̄,r)
∂Wpij

.
Using Amari’s natural gradient approach [24, 155], we define

dX(z) = dW(z) ~ W†(z), (10.217)

a nonholonomic differential variable which is not integrable. The variation dH(z) of H(z)
is represented as dH(z) = −H(z) ~ dX(z) in terms of dX(z) assuming W(z) = H†(z).

Denote the inner product of any two filters W(z) and H(z) in tangent space TMW(z)

by [1358]

< W(z),H(z) >=
L∑

p=0

tr(WT
p Hp).

Consider the differential d log p(y;W̄, r) with respect to the new variables,

d log p(y;W̄, r) =<
∂ log p(y;W̄, r)

∂X(z)
, dX(z) > . (10.218)

On the other hand, using relation (10.217), we have

d log p(y;W̄, r) = <
∂ log p(y;W̄, r)

∂W(z)
, dW(z) >

= <
∂ log p(y;W̄, r)

∂W(z)
~ WT (z−1), dX(z) > . (10.219)

Comparing the two equations (10.218) and (10.219), and using the invariant property of
the differential expression, we deduce

∂ log p(y;W̄, r)
∂X(z)

=
∂ log p(y;W̄, r)

∂W(z)
~ WT (z−1). (10.220)
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Using the relation (10.195), we evaluate the score function at X(z) = 0

∂ log p(y;W̄, r)
∂Xp,ij

|X(z)=0 = ϕi(yi(k))yj(k − p), (10.221)

where ϕi(yi) = −d log(ri(yi))
dyi

, i = 1, 2, . . . , n. This can also be re-written in the compact
form

U(x,W(z), r) =
L∑

p=0

Upz
−p =

L∑
p=0

ϕ(y(k))yT (k − p)z−p, (10.222)

where ϕ(y) = [ϕ1(y1), . . . , ϕn(yn)]T , and y is the vector of estimated source signals. It
should be noted that the score function U(x,W(z), r) generally depends on the sensor
signals x(k) and the separating filter W(z). However, by introducing the nonholonomic
reparameterization, we derive the score function that only depends on output of the sepa-
rating model or the global transfer function G(z). This property is called the equivariance
in blind separation of instantaneous mixtures [155]. The relative or the natural gradient
of a cost function on the Riemannian manifold can be automatically derived from this
nonholonomic representation [26, 1368]

The efficient scores, denoted by UE(x;W(z), r), can be obtained by projecting the score
function to the subspace orthogonal to the nuisance tangent space T NW(z),r. (See Zhang et
al. [1358] for more details).

In summary we have the following theorem [1358]

Theorem 10.8 The efficient score, UE(x;W(z), r) is expressed by

UE(x;W(z), r) =
L∑

p=0

UE
p z−p, (10.223)

where

UE
p = ϕ(y)(k)yT (k − p), for p ≥ 1; (10.224)

UE
0 =

{
ϕ(y(k))yT (k), for off − diagonal elements,
c2(ϕi(yi(k)) yi(k)− 1), for diagonal elements. (10.225)

10.5 ESTIMATING FUNCTION AND STANDARDIZED ESTIMATING FUNCTION

FOR MULTICHANNEL BLIND DECONVOLUTION

In this section, we discuss a family of estimating functions and standardized estimating
functions for blind deconvolution.

It has been shown by Zhang et al. [1358, 1368, 1372] that the efficient score function is
an estimating function which can be expressed as

F(x(k),W(z)) =
L∑

p=0

ϕ(y(k))y(k − p)T z−p − I, (10.226)
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where y(k) =
∑L

p=0 Wpx(k − p), and ϕ is a vector of given activation functions, provided

that the derivative operator K(z) = E
{

∂F(x,W(z))
∂X(z)

}
is invertible. The estimating function

is the efficient score function, when and Fii(yi) = ϕi(yi)yi − 1.
The derivative operator K(z) = E

{
∂F(x,W(z))

∂X(z)

}
is a tensor filter, represented by

K(z) =
L∑

p=0

Kpz
−p. (10.227)

See Appendix A for detailed derivation.
We take the following notations

mi = E{y2
i ϕ′i(yi)}, κi = E{ϕ′i(yi)}, σ2

i = E{y2
i }, (10.228)

cij = [κiκjσ
2
i σ2

j − 1]−1, li = E{ϕ(yi)}. (10.229)

Lemma 10.3 The coefficients of the operator K(z) =
∑L

p=0 Kpz
−p can be expressed by

Kp,ij,lm = E{ϕ′(yi(k))s2
j (k − p)}δil δjm + δim δjl δ0p. (10.230)

Furthermore, if the following conditions are satisfied

κi 6= 0, κiκjσ
2
i σ2

j − 1 6= 0, mi + 1 6= 0, (10.231)

then the derivative operator K(z) is invertible.

The semiparametric approach suggests the use of the following estimating equation [28,
145] for parameters of interest,

N∑

k=1

F(x(k),W(z)) = 0. (10.232)

The estimator obtained from (10.232) is called an M-estimator. An M-estimator is con-
sistent, that is, the estimator W(z, k) converges to the true value as N tends to infinity
without reference to the true distribution of the sources r(s). The estimating function is
not unique, since that for any nonsingular linear operator R(z) mapping from M(L) to
M(L), R(z)F(x,W(z)) is also an estimating function. It has already been established that
the two estimating functions are equivalent in the sense that the derived batch estimators
give exactly the same solution. This defines an equivalent class of estimating functions that
are essentially the same in batch estimation. However, when we consider online learning,
the learning dynamics is not equivalent and this necessitates introduction of an estimating
function that will make the learning algorithm more stable and efficient. To this end, we
introduce the concept of standardized estimating function. The standardized estimating
function [24] is defined as follows: If the derivative operator K(z) = E

{
∂F(x,W(z))

∂X(z)

}
is an
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identity operator, the estimating function is called the standardized estimating function
[1358, 1368, 1372].

Lemma 10.4 Given any estimating function F(x,W(z)), if the operator K(z) is invertible,
then

K−1(z)F(x,W(z)) (10.233)

is a standardized estimating function.

Using lemma (10.4) we can formulate a family of standardized estimating functions for the
blind deconvolution problem.

Theorem 10.9 ([1358, 1368]) Given an estimating function of form (10.226), the stan-
dardized estimating function is expressed by

F∗(x,W(z)) =
L∑

p=0

F∗p(x,W(z))z−p, (10.234)

where

F ∗0,ii =
1

mi + 1
{ϕi(yi)yi − 1}, for i = 1, 2, . . . , n (10.235)

F ∗0,ij = cij {κjσ
2
i ϕi(yi)yj − ϕj(yj)yi}, for i 6= j (10.236)

F ∗p,ij = ϕi(yi)yj(k − p)/(κiσ
2
j ), for p ≥ 1. (10.237)

Proof In order to compute the inverse of the operator K(z), we consider the following
equation

K(z)F∗(x,W(z)) = F(x,W(z)) (10.238)

Using expression (10.230), we can rewrite (10.238) into the following component form

(mi + 1)F ∗0,ii = F0,ii, for i = 1, 2, . . . , n, (10.239)

κiσ
2
j F ∗0,ij + F ∗0,ji = F0,ij , for i, j = 1, 2, . . . , n, i 6= j. (10.240)

κiσ
2
j F ∗p,ij = Fp,ij , for p ≥ 1, i, j = 1, 2, . . . , n. (10.241)

Solving the above equations, we obtain the results.
¤
There are some advantages of using the standardized estimating function in on-line learn-

ing. The natural gradient learning is given by

∆W(z) = −η F∗(x,W(z)) ~ W(z). (10.242)

It can be proved that the true solution W(z) = H†(z) is always the stable equilibrium of the
natural gradient learning above, provided conditions (10.231) are satisfied. The property
is called universal convergence. See [24] for further information. The statistics in (10.228)
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and (10.229) require on-line estimate so as to implement learning algorithm (10.242). In
particular, if the source signals are binary, taking values 1,−1, we can calculate the statistics
for the standardized estimating function. if we choose the cubic function ϕi(yi) = y3

i as
activation function, the statistics are evaluated by

mi = 3, κi = 3, σ2
i = 1, γ̃ij = c−1

ij = 8. (10.243)

Therefore, the standardized estimating function can be given explicitly.

10.5.1 Superefficiency of Batch Estimator

Amari [24] proves that in the instantaneous case, the covariance Vij(N) = E{yiyj} (i 6= j)
vanishes at rate 1

N2 under certain simple conditions. This property is called superefficiency.
Zhang et al. proved that superefficiency remains valid in blind deconvolution [1358, 1368,
1372].

Suppose that F∗(x,W(z)) is a standardized estimating function:

E{∆XN (z, k)⊗∆XT
N (z, k)} =

1
N

G∗(z) + O(
1

N2
), (10.244)

where G∗(z) = K−1(z)G(z)K−T (z) = E{F∗(x,W(z))⊗ F∗T (x,W(z))}.

Lemma 10.5 The coefficients of G∗(z) are expressed by

G∗0,il,jl = cilcjlσ
2
i σ2

j σ2
l k2

l lilj , for i 6= j, j 6= l, l 6= i, (10.245)

G∗0,ii,ji =
1

mi + 1
cjiκiσ

2
j ljE{s2

i ϕi(si)}, for i 6= j, (10.246)

G∗p,il,jl =
lilj
κiκj

, for p ≥ 1, i, j = 1, 2, . . . , n. (10.247)

Using the expression of F∗(x,W(z)) in Theorem 10.9, we can derive the result by direct
calculation [1358].

Theorem 10.10 A batch estimator is superefficient when the following condition is satis-
fied

li = E{ϕi(si)} = 0, for i = 1, 2, . . . , n. (10.248)

Proof Using Lemma 10.5 and (10.248), we have

G∗p,il,jl = 0, for i 6= j, p = 0, 1, . . . , L, l = 1, 2, . . . , n. (10.249)

Writing the estimate (10.244) in component form,

E{∆X
(N)
p,il ∆X

(N)
p,jl } =

1
N

G∗p,il,jl +O(
1

N2
) = O(

1
N2

), (10.250)
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for i 6= j. leads to the following estimation

V
(N)
ij =

n∑

l=1

L∑
p=0

E{∆X
(N)
p,il ∆X

(N)
p,jl }σ2

l = O(
1

N2
). (10.251)

This proves our result.
¤
From the arguments above we can see that superefficiency of both batch estimator and

natural gradient algorithm require that

li = E{ϕi(si)} = 0, for i = 1, 2, . . . , n. (10.252)

Fortunately, the commonly used activation functions, such as the cubic function and the
hyperbolic tangent function, satisfy these conditions.

In this chapter, we have discussed estimating functions and semiparametric approach to
blind separation/deconvolution, and discussed the convergence and efficiency of the batch
estimator and natural gradient learning. First blind separation and multichannel decon-
volution is formulated in the framework of the semiparametric model and a family of esti-
mating functions and standardized estimating functions are derived by using efficient score
functions. The advantage of using the semiparametric approach is that we do not need
to estimate the nuisance parameters- the probability density functions of source signals in
blind deconvolution. It is inferred from the theory of estimating functions that the batch es-
timator of the estimating equation converges to the true solution as the number of observed
data tends to infinity. If stability conditions are satisfied, the natural gradient learning
also converges to the true solution whatever the probability density function of the source
signals. The superefficiency of both the batch estimator and natural gradient learning is
proven when certain local conditions are satisfied.

Appendix A. Representation of Operator K(z)

In this appendix, we present the explicit form of operator K(z) and its inverse K−1(z) and
give a definition of the transpose KT (z) of K(z) [1358]. Assume that the recovered signal
y(k) is spatially mutually independent and temporally i.i.d.

Lemma A.6 For any p 6= q,

E

{
∂Fp

∂Xq

}
= 0. (A.1)

Proof By definition, Fp,ij = ϕ(yi) yj(k − p)− δ0,p. Using the i.i.d. properties of y(k) and
the relation (10.195), we have , for p 6= q,

E

{
∂Fp,ij

∂Xq,lm

}
= E

{
ϕ′(yi)

∂yi(k)
∂Xq,lm

yj(k − p) + ϕ(yi)
∂yj(k − p)

∂Xq,lm

}
= 0. (A.2)
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Proposition A.1 The derivative operator K(z) can be represented as

K(z) =
L∑

p=0

Kpz
−p =

L∑
p=0

E

{
∂Fp

∂Xp

}
z−p, (A.3)

which maps P(z) ∈M(L) to K(z)P(z) =
∑L

p=0 KpPpz
−p. Furthermore, the coefficients of

K(z) are given by

Kp,ij,lm = E{ϕ′(yi(k)) y2
j (k − p)}δil δjm + δim δjl δ0p. (A.4)

Proof From definition (10.199) and using (A.1) we have

K(z)P(z) =
L∑

p=0

L∑
q=0

E

{
∂Fp

∂Xq

}
Pqz

−p =
L∑

p=0

E

{
∂Fp

∂Xp

}
Ppz

−p. (A.5)

Using the i.i.d. properties of y(k) and (10.195), we have

E

{
∂Fp,ij

∂Xp,lm

}
= E

{
ϕ′(yi)

∂yi(k)
∂Xp,lm

yj(k − p) + ϕ(yi)
∂yj(k − p)

∂Xp,lm

}

= E{ϕ′(yi(k)) y2
j (k − p)} δil δjm + δim δjl δ0p. (A.6)

The result follows.
¤
In order to calculate the inverse of K(z), consider the following equation

K(z)X(z) = P(z), (A.7)

where X(z) and P(z) ∈M(L). Substitute (A.4) into (A.7), and write it in component form

(mi + 1)X0,ii = P0,ii, for i = 1, 2, . . . , n, (A.8)
κiσ

2
j X0,ij + X0,ji = P0,ij , for i, j = 1, 2, . . . , n, i 6= j, (A.9)

κiσ
2
j Xp,ij = Pp,ij , for p ≥ 1, i, j = 1, 2, . . . , n. (A.10)

We can directly solve X0,ii and Xp,ij from (A.8) and (A.10). For X0,ij , i 6= j, we can write
(A.9) in the following 2× 2 self-closed subsystem

[
κiσ

2
j 1

1 κjσ
2
i

] [
X0,ij

X0,ji

]
=

[
P0,ij

P0,ji

]
. (A.11)

If γ̃ij = κiκjσ
2
i σ2

j − 1 6= 0, we can uniquely solve the above equations. Therefore, we have
the following result.

Proposition A.2 If mi + 1 6= 0, κi 6= 0, γ̃ij = c−1
ij = κiκjσ

2
i σ2

j − 1 6= 0, then the operator
K(z) is invertible and the inverse K−1(z) =

∑L
p=0 Rpz

−p is expressed by

R0,ii,lm =
1

mi + 1
δil δim, Rp,ij,lm =

1
κi σ2

j

δilδjm (A.12)

R0,ij,lm = cij(κj σ2
i δil δjm − δim δjl). (A.13)
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Now we give a definition of the transpose operation of tensor filters. The transpose of a
tensor filter K(z) is given by

KT (z) =
L∑

p=0

KT
p z−p, (A.14)

where KT
p = [Kp,lm,ij ], given Kp = [Kp,ij,lm].





11
Linear Blind Filtering and

Separation Using a
State-Space Approach

Every tool carries with it the spirit by which it has been created.
—(Werner Karl Heisenberg; 1901-1976)

In this chapter, we present a flexible and universal framework using the state-space
approach to blind separation and filtering. As a special case, we consider the standard
multichannel blind deconvolution problem with causal FIR filters.

The state-space description of dynamical systems [659, 896] is a powerful and flexible
generalized model for blind separation and deconvolution or more generally for filtering
and separation. There are several reasons why the state-space models are advantageous
for blind separation and filtering. Although transfer function models in the z-domain or
the frequency domain are equivalent to the state-space models in the time domain for any
linear, stable time-invariant dynamical system, using transfer function directly it is difficult
to exploit internal representation of real dynamical systems. The main advantage of the
state-space description is that it not only gives the internal description of a system, but
there are various equivalent canonical types of state-space realizations for a system, such as
balanced realization and observable canonical forms [659, 896]. In particular, it is possible
to parameterize some specific classes of models which are of interest in applications. In
addition, it is relatively easy to tackle the stability problem of state-space systems using
the Kalman filter. Moreover, the state-space model enables a much more general description
than the standard finite impulse response (FIR) convolutive filtering models discussed in the
Chapter 9. In fact, all the known filtering models, such as the AR, MA, ARMA, ARMAX
and Gamma filtering, could also be considered as special cases of flexible state-space models
[989, 1365].

423
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The state-space approach to blind source separation/deconvolution problems has been
developed by Zhang, Cichocki and Amari [1355]-[1375], [287]-[290] and independently by
Salam et al. [1031, 1032, 1033, 1257]. Efficient natural gradient learning algorithms have
been derived by Zhang and Cichocki [1365] to adaptively estimate the state matrices by
minimizing the mutual information. In order to compensate for the model bias and to
reduce the effect of noise, a state estimator approach [1373] has been recently proposed
using the Kalman filter. We also extend the state-space approach to nonlinear systems
[289], and a two-stage learning algorithms [287] for estimation the parameters in nonlinear
demixing models (see Chapter also 12).

In this chapter, we briefly review adaptive learning algorithms based on the natural
gradient approach and give some new insight into multiple-input multiple-output blind
separation and filtering in the state-space framework.

11.1 PROBLEM FORMULATION AND BASIC MODELS

Suppose that the unknown source signals s(k) are mixed by a stable but unknown causal,
linear time invariant dynamical system described by the following set of matrix difference
equations (see Fig. 11.1)

ξ(k + 1) = A ξ(k) + Bs(k) + N νP (k), (11.1)
x(k) = C ξ(k) + Ds(k) + ν(k), (11.2)

where ξ(k) ∈ IRd is the state vector of the system, s(k) ∈ IRn is a vector of unknown source
signals (assuming that they are zero-mean, i.i.d. and spatially independent), x(k) ∈ IRm is
an available vector of sensor signals, A ∈ IRd×d is a state matrix, B ∈ IRd×n is an input
mixing matrix, C ∈ IRm×d is an output mixing matrix, D ∈ IRm×n is an input-output
mixing matrix and N ∈ IRd×d is a noise matrix. The integer d is called the state dimension
or system order. In principle, there exists an infinite number of state space realizations for
a given system. For example, the state vector ξ(k) might contain some states that are not
excited by the input or are not observed in the output. In practice, we consider models for
which the order d is minimal. Even for the minimal order (called canonical form), the state
representation is not unique. An equivalent system representation giving the same transfer
function is obtained by applying a state transformation nonsingular matrix T ∈ IRd×d to
define a new state vector ξ

′
(k) = Tξ(k). The eigenvalues of the state matrix A are invariant

under this transformation. In order to ensure the stability of the system, the eigenvalues
of A must be smaller than 1 in absolute value, i.e., the eigenvalues must be located in the
unit circle. In fact, the eigenvalues of A are directly related to the poles of matrix transfer
function.

Let us assume that there exists a stable inverse system (in some sense discussed later)
called a separating or demixing-filtering system. In other words, we assume that the demix-
ing/filtering model consists of another linear state-space system, described as (see Fig. 11.1)

ξ(k + 1) = A ξ(k) + B x(k) + LνR(k), (11.3)
y(k) = C ξ(k) + D x(k), (11.4)
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Fig. 11.1 Conceptual block diagram illustrating the general linear state-space mixing and self-
adaptive demixing model for blind separation and filtering. The objective of learning algorithms
is the estimation of a set matrices {A,B,C,D,L} [287, 289, 290, 1359, 1360, 1361, 1368].

where ξ(k) ∈ IRM is the state vector of the separating system and the unknown state-space
matrices have dimensions: A ∈ IRM×M , B ∈ IRM×m, C ∈ IRm×M , D ∈ IRm×m, with
M ≥ d (i.e., the order of the demixing system should be at least of the order of the mixing
system).

Since the mixing system is completely unknown (we do not know its parameters or
even its order), our objective is to identify this system or to estimate a demixing/filtering
system with some kind of ambiguities. In the blind deconvolution problem, the estimation
of order (dimension M) is a difficult task, and therefore we are usually overestimate it, i.e.,
M >> d. The overestimation of the order M may produce auxiliary delays of output signals
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with respect to original sources, but this is usually acceptable in the blind deconvolution
since it is most important to recover waveform of the original signals.

The state-space description [659, 896] allows us to divide the variables into two types: The
internal state variable ξ(k), which produce the dynamics of the system, and the external
variables x(k) and y(k), which represent the input and output of the demixing/filtering
system, respectively. The vector ξ(k) is known as the state of the dynamical system,
which summarizes all the information about the past behavior of the system that is needed
to uniquely predict its future behavior.The linear state-space model plays a critical role
in the mathematical formulation of a dynamical system. It also allows us to realize the
internal structure of the system and to define the controllability and observability of the
system [659]. The parameters in the state equation of the separating/filtering system are
referred to as internal representation parameters (or simply internal parameters), and the
parameters in the output equation as external ones. Such a partition enables us to estimate
the demixing model in two stages: Estimation the internal dynamical representation and
the output (memoryless) demixing. The first stage involves a batch or adaptive on-line
estimation of the state space and input parameters represented by the set of matrices A,B,
such that the systems would be stable and have possibly sparse, and lowest dimensions. The
second stage involves fixing the internal parameters and estimating the output (external)
parameters represented by the set of matrices C,D by employing suitable batch or adaptive
algorithms. In general, the set of matrices Θ = {A,B,C,D,L} contains parameters, to
be determined in a learning process on the basis of the sequence of available sensor signals
x(k) and some a priori knowledge about the system and noise.

If we ignore the noise terms in the mixing model, its transfer function is an m×m matrix
of the form1

H(z) = C (z I−A)−1 B + D, (11.5)

where z−1 is a time delay operator.
We formulate the blind separation problem as a task to recover the original signals from

observations x(k) = [H(z)] s(k), without a priori knowledge of the source signals s(k) or
state-space matrices [A, B, C, D] except of certain statistical features of the source signals.

For simplicity, we assume that the noise terms both in the mixing and demixing models
are negligibly small. The transfer function of the demixing model can be expressed as

W(z) = C (z I−A)−1 B + D. (11.6)

The output signals y(k) should estimate the source signals in the following sense

y(k) = [W(z)H(z)] s(k) = P [Λ(z)] s(k), (11.7)

where P is any permutation (memoryless) matrix and Λ(z) is a diagonal matrix with
entries λiz

−∆i ; here λi is a nonzero scaling constant and ∆i is any nonnegative integer.
In other words, we assume that the independent sources are fully recoverable from the

1In this chapter, we assume without loss of generality that the number of outputs is equal to the number
of sensors, and the number of sources is less than or equal to the number of sensors (please see the previous
chapters for an explanation and justification).
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demixing model (11.3) and (11.4) if the global matrix transfer function satisfies the following
relationship

G(z) = W(z)H(z) = PΛ(z). (11.8)

11.1.1 Invertibility by State Space Model

The fundamental question arises as to whether a set of matrices [A,B,C,D] exists in the
demixing model (11.3) and (11.4), such that its transfer function W(z) satisfies (11.8). The
answer is affirmative under some weak conditions. We will show that if the matrix D in the
mixing model satisfies rank(D) = n, and W∗(z) is the inverse of H(z), then any state-space
realization [A,B,C,D] of a new transfer function W(z) = PΛ(z)W∗(z) satisfies equation
(11.4). Suppose that D satisfies rank(D) = n, and D + is the generalized inverse of D in
the sense of the Penrose generalized pseudo-inverse2.

Let
D = D +, A−A = BC,

B = BD, C = −DC,

and thus the global system can be described as

G(z) = W(z)H(z) = In. (11.9)

Any nonsingular transform matrix T does not change the transfer functions if the following
relations hold

A = T (A−B D + C) T−1,

B = T B D +,

C = −D + C T−1,

D = D +.

Therefore, source signals can, in principle, be recovered by the linear state space demix-
ing/filtering model (11.3) and (11.4). We summarize this feature in the form of the following
Theorem [1365]:

Theorem 11.1 If the matrix D in the mixing model is full column rank, i.e., rank(D) = n,
then there exists a set of matrices W = {A,B,C,D}, such that the output signals y of the
state-space system (11.3) and (11.4) recover the independent source signals in the sense of
(11.8).

Remark 11.1 In the blind deconvolution/separation problem, we do know in advance nei-
ther the set of matrices [A,B,C,D] nor the state-space dimension M . Before we begin to
estimate the matrices [A,B,C,D], we may attempt to estimate the dimension M of the
system if one needs to obtain a canonical solution. There are several criteria for estimating
the dimension of a system in system identification, such as the AIC and MDL criteria (see

2In practice, the matrix D ∈ IRm×m is a square nonsingular matrix, and thus D+ = D−1.
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Chapter 3). However, the order estimation problem in blind demixing and filtering is a quite
difficult and challenging problem. It remains an open problem that is not discussed in this
book. Fortunately, if the dimension of the state vector in the demixing model can be simply
overestimated, i.e., if we take it larger than necessary, we can still successfully recover the
original source signals.

11.1.2 Controller Canonical Form

If the transfer function of the demixing dynamical system is given by

W(z) = P(z)Q−1(z), (11.10)

where P(z) =
∑L

i=0 Piz
−i and Q(z) =

∑L
i=0 Qiz

−i, with Q0 = I, then the matrices A,B,C
and D required for the canonical controller form can be represented as follows

A =
[ −Q −QL

Im(L−1) O
]

, B =
[

Im

O
]

(11.11)

C = (P1, P2, . . . , PL), D = P0, (11.12)

where Q = (Q1 Q2, . . . , QL−1) is an m × m(L − 1) matrix, O is an m(L − 1) × m
null matrix, Im and Im(L−1) are the m × m and m(L − 1) × m(L − 1) identity matrices,
respectively. It should be noted that in the special case when synaptic weights are FIR
filters, W(z) = P(z), and both internal space matrices A and B are constant matrices and
they can be determined explicitly.

11.2 DERIVATION OF BASIC LEARNING ALGORITHMS

The objective of this section is to derive basic adaptive learning algorithms that perform an
update of the external (output) parameters W = [C,D] in the demixing model. It should
be noted that for any feed-forward dynamical model, the internal parameters represented
by the set of matrices [A,B] are fixed and they can be explicitly determined on the basis
of the assumed model. In such a case, the problem is reduced to the estimation of external
(output) parameters but the dynamical (internal) part of the system can be established and
fixed in advance.

In fact, the separating matrix W = [C,D] ∈ IRm×(m+M) can be estimated by any
learning algorithm for ICA, BSS or BSE discussed in the previous chapters, assuming that
the sensor vector has the form x = [ξT , xT ]T = [ξ1, ξ2, . . . , ξM , x1, x2, . . . , xm]T ∈ IRM+m.
In other words, our objective in this section is to estimate the non-square full rank separating
matrix W for a memoryless system with (M + m) inputs and m outputs.

The basic idea is to use the gradient descent approach to minimize suitably design cost
functions. We can use several criteria and cost functions discussed in the previous chapters.
To illustrate the approach, we use the minimization of the Kullback-Leibler divergence as
a measure of independence of the output of the signals. In order to obtain an improved
learning performance, we define a new search direction, which is related to the natural
gradient, developed by Amari [21] and Amari and Nagaoka [42].
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11.2.1 Gradient Descent Algorithms for Estimation of Output Matrices

W = [C, D]

Let us consider a basic cost (risk) function derived from the Kullback-Leibler divergence
and mutual information as [287, 1365]

R(y,W) = −1
2

log
∣∣det(DDT )

∣∣−
m∑

i=1

E{log qi(yi)}. (11.13)

Its instantaneous representation - the loss function can be written as

ρ(y,W) = −1
2

log
∣∣det(DDT )

∣∣−
m∑

i=1

log qi(yi), (11.14)

where det(D) is the determinant of the matrix D. Each pdf qi(yi) is an approximation of
the true pdf ri(yi) of an estimated source signal.

The first term of the loss function prevents all the outputs signals from decaying to zero
and the second term provides the output signals to be maximally statistically independent.
It should be noted that by minimization of such a loss function, we are not explicitly aiming
to recover the source signals, but we only attempt to make the output signals mutually
independent. The true source signals may differ from these recovered independent output
signals by an arbitrary permutation and convolution.

In order to evaluate the gradient of the loss function ρ(y,W) with respect to W, we
calculate the total differential dρ(y,W) of ρ(y,W), where we take a differential dW on W,

dρ(y,W) = ρ(y,W + dW)− ρ(y,W). (11.15)

which can be expressed as

dρ(y,W) = −tr(dDD−1) + fT (y)dy, (11.16)

where tr(·) is the trace of a matrix and f(y) = [f1(y1), f2(y2), . . . , fm(ym)]T is a vector of
nonlinear activation functions

fi(yi) = −d log qi(yi)
dyi

= −q′i(yi)
qi(yi)

(i = 1, 2, . . . , m). (11.17)

Taking a differential of y in equation (11.4), we have the following relation

dy(k) = dC ξ(k) + dD x(k) + C dξ(k). (11.18)

Hence, we obtain the gradient components

∂ρ(y,W)
∂C

= f(y) ξT , (11.19)

∂ρ(y,W)
∂D

= −D−T + f(y)xT . (11.20)
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Let us apply now the standard gradient descent method for updating the matrix C and the
natural gradient rule for updating the matrix D. Then, we obtain on the basis of (11.19)
and (11.20) the adaptive learning algorithm

∆C(l) = C(l + 1)−C(l) = −η
∂R
∂C

= −η
〈
f [y(k)] ξT (k)

〉
, (11.21)

∆D(l) = D(l + 1)−D(l) = −η
∂R
∂D

DT D

= η
[
I− 〈

f [y(k)]xT (k)DT (l)
〉]

D(l)

= η
[
I− 〈

f [y(k)]yT
x (k)

〉]
D(l), (11.22)

where yx(k) = D(l)x(k) [287].
The on-line version of the algorithm can take the following form

C(k + 1) = C(k)− ηC(k)R(k)

f ξ
(11.23)

and

D(k + 1) = D(k)− ηD(k)
[
I−R(k)

f yx

]
D(k), (11.24)

where

R(k)

f ξ
= (1− η0)R

(k−1)

f ξ
+ η0 f [y(k)] ξT (k) (11.25)

and

R(k)
f yx

= (1− η0)R
(k−1)
f yx

+ η0 f [y(k)] xT (k)DT (k). (11.26)

The above algorithm is computationally efficient because the matrix D do not need to
be inverted at each iteration step, but it does not dramatically improve the convergence
speed in comparison to the standard gradient descent method because the modified search
direction is not exactly the natural gradient one [288].

Remark 11.2 The above algorithm uses the vector of activation functions f(y). The opti-
mal choice of the activation function is given by equation (11.17) with qi(yi) = ri(yi), if we
can adaptively estimate the true source probability distribution ri(yi). Another solution is to
use a score function according to the statistics of source signals. Typically, if a source signal
yi is a super-Gaussian, one can choose fi(yi) = tanh(yi), and if it is a sub-Gaussian, one
can choose fi(yi) = y3

i [29, 30, 402]. A question can be raised whether the learning algorithm
will converge to a true solution if the approximated activation functions are used. The the-
ory of the semi-parametric model for blind separation/deconvolution [28, 40, 41, 1356, 1358]
shows that even if a misspecified pdf is used in the learning algorithm, it can still converge
to the true solution if certain stability conditions are satisfied (see Chapter 10) [29].
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The equilibrium points of the above learning algorithm satisfy the following equations

E{f(y(k)) ξT (k)} = 0, (11.27)
E{I− f(y(k))yT

x (k)} = 0. (11.28)

By pre-multiplying equation (11.27) by CT from the right hand, and adding it to equation
(11.28), we obtain

E
{
I− f(y(k))yT (k)

}
= 0. (11.29)

This means that the output signals y converge when the generalized covariance matrix

Rf y = E{f(y(k))yT (k)} = I (11.30)

is the identity matrix (or more generally any positive definite diagonal matrix).

For the special case when matrix D = 0, we can formulate the following alternative cost
function [288]

R2(y,C) = −1
2

log(det(C1 CT
1 ))−

m∑

i=1

E{log qi(yi)},

where C1 is an m×m nonsingular matrix which is the block matrix of the output matrix
C = [C1,C2] ∈ IRm×M . The first term in the cost function ensures that the trivial solution
y = 0 is avoided, while the second term ensures mutual independence of outputs.

By using the combined natural-standard gradient approach, we obtain simple learning
rules for C1 and C2 [1360, 1361]

∆C1 = −η
∂R2

∂C1
CT

1 ΛC1 (11.31)

= η
[
Λ− 〈

f [y(k)]yT
1 (k)

〉]
C1, (11.32)

∆C2 = −η
∂J2

∂C2
= −η

〈
f [y(k)] ξT

2 (k)
〉

, (11.33)

where y1 = ΛC1 ξ1, ξ1 = [ξ1, ξ2, . . . , ξm]T , and ξ2 = [ξm+1, ξm+2, . . . , ξM ]T .
A slightly different algorithm can be derived by applying the extended natural gradient

rule, described in Chapter 6, given in general form as [1361, 1363, 1364]

∆W = −η
∂J

∂W

[
W

T
W + QT ΛQ Q

]
, (11.34)

where W = [C,D] ∈ IRm×(m+M) represents output matrices, Q ∈ IR(m+M)×(m+M) is any
orthogonal matrix and ΛQ ∈ IR(m+M)×(m+M) is a quasi-diagonal matrix with nearly all the
elements zero except the first M diagonal elements which have positive values. The optimal
choice of the matrix Q depends on the character of noise [1362].

After simple mathematical manipulation, we can derive the on-line learning algorithm
for the state-space model, and this can be considered as an extension of some previously
described algorithms [1365]:

∆C = η
(
I− 〈

f [y(k)]yT (k)
〉)

C− η
〈
f [y(k)] ξT (k)

〉
ΛM , (11.35)

∆D = η
[
I− 〈

f [y(k)]yT (k)
〉]

D, (11.36)
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with Q = I, where ΛM ∈ IRM×M is a positive definite diagonal matrix.

11.2.2 Special Case - Multichannel Blind Deconvolution with Causal FIR Filters

Let us consider a special case of a simplified, moving average (convolutive) model described
as [287, 288]

y(k) = C ξ(k) + D x(k) = [W(z)]x(k)

=
L∑

p=0

Wpz
−p x(k) =

L∑
p=0

Wp x(k − p), (11.37)

where C = [W1,W2, . . . ,WL] ∈ IRm×M , D = W0 ∈ IRm×m and ξ(k) = x(k) = [xT (k −
1), . . . ,xT (k − L)]T , with M = mL. It should be noted that for a such model, the state
space vector ξ(k) ∈ IRM is determined explicitly by the sensor vector x(k), so the estimation
of matrices A and B is not required in this case. For this model, on the basis of the above
derived generalized learning algorithms (11.21)-(11.22), we can easily obtain a learning rule
for the standard blind deconvolution problem:

∆W0 = η
[
(I− 〈

f [y(k)]yT
x (k)

〉]
W0, (11.38)

∆Wp = −η
〈
f [y(k)]xT (k − p)

〉
, (p = 1, 2, . . . , L). (11.39)

Alternatively, we can use the NG learning rule (in the Lie Group sense) proposed by Zhang
et al. [1363, 1365] (see Chapters 6 and 9 for more details):

∆Wp = η[(I− 〈
f [y(k)]yT (k)

〉
)Wp − (1− δp0)

〈
f [y(k)]xT (k − p)

〉
]ΛM , (11.40)

where p = 0, 1, . . . , L, δp0 is the Kronecker delta and ΛM is a diagonal positive definite
matrix.

11.2.3 Derivation of the Natural Gradient Algorithm for State Space Model

The learning algorithms presented in the previous section, although of practical value, have
been derived in a heuristic or intuitive way. In this section, we derive the efficient natural
gradient learning algorithm in a mathematically rigorous way [1365].

Let us assume without loss of generality that the number of outputs is equal to the
number of sensors and the matrix D ∈ IRm×m is nonsingular. From the linear output
equation (11.4), we have

x(k) = D−1 (y(k)−C ξ(k)). (11.41)

Substituting (11.41) into (11.18), we obtain

dy = (dC− dDD−1C) ξ + dDD−1 y + C d ξ. (11.42)

In order to improve the computational efficiency of learning algorithms, we introduce a new
search direction defined as

dX1 = dC− dDD−1 C, (11.43)
dX2 = dDD−1. (11.44)
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Straightforward calculation leads to the following relationships

∂ρ(y,W)
∂X1

= f(y(k)) ξT (k), (11.45)

∂ρ(y,W)
∂X2

= f(y(k))yT (k)− I. (11.46)

Using the standard gradient descent approach, we obtain X1 and X2

∆X1(k) = −η
∂R(y,W)

∂X1
= −η

〈
f(y(k)) ξT (k)

〉
, (11.47)

∆X2(k) = −η
∂R(y,W)

∂X2
= −η (

〈
f(y(k))yT (k)

〉− I), (11.48)

Taking into account the relationships (11.43) and (11.44), we obtain a batch version of the
natural gradient learning algorithm to update the matrices C and D as

∆C(l) = η
[(

I− 〈f(y(k)) yT (k)
〉
)C(l)−

〈
f(y(k)) ξT (k)

〉]
, (11.49)

∆D(l) = η
[
I− 〈

f(y(k))yT (k)
〉]

D(l). (11.50)

On the basis of the above considerations we can establish the relationship between the
natural gradient ∇̃R and the standard gradient ∇R for the state-space models as follows

∇̃R = ∇R
[

I + CT C CT D
DT C DT D

]
= ∇R M, (11.51)

where ∇R =
[

∂R(y,W)
∂C

∂R(y,W)
∂D

]
is the standard gradient and M is a symmetric positive

definite pre-conditioning matrix

M =
[

I + CT C CT D
DT C DT D.

]

The natural gradient learning algorithm can be rewritten equivalently in the following form

∆W = [∆C ∆D] = −η ∇̃R(y,W) = −η∇R M. (11.52)

Using the moving-average method, the on-line version of the natural gradient algorithm
with nonholonomic constraints (see Chapter 6) can be expressed as

C(k + 1) = C(k) + ηC(k)
[(

Λ(k) −R(k)
f y

)
C(k)−R(k)

f ξ

]
(11.53)

and

D(k + 1) = D(k) + ηD(k)
[
Λ(k) −R(k)

f y

]
D(k), (11.54)
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where

R(k)

f ξ
= (1− η0)R

(k−1)

f ξ
+ η0 f [y(k)] ξT (k), (11.55)

R(k)
f y = (1− η0)R

(k−1)
f y + η0 f [y(k)] yT (k) (11.56)

and elements of the diagonal matrix Λ(k) = diag{λ(k)
1 , λ

(k)
2 , . . . , λ

(k)
m } are updated as

λ
(k)
i = (1− η0)λ

(k−1)
i + η0 fi(yi(k))yi(k). (11.57)

It is straightforward to check that the above algorithm is an extension or generalization of
the natural gradient algorithm discussed in Chapter 6 for the dynamical state-space model.

The natural gradient not only ensures better convergence properties but also provides a
form by which the analysis of stability becomes much easier. The equilibrium points of the
learning algorithm satisfy the following equations

E{f(y(k)) ξT (k)} = 0, (11.58)
E{f(y(k))yT (k)} = Λ, (11.59)

where Λ is a positive definite matrix for m = n and a semi-positive definite diagonal matrix
for m > n. This means that separated signals in vector y can achieve mutual independence,
if the nonlinear activation function f(y) is suitably chosen.

On the other hand, if the output signals y of (11.4) are spatially mutually independent
and temporary i.i.d. signals, it is easy to verify that they satisfy (11.58) and (11.59). In
fact, from (11.3) and (11.4), we have

ξ(k + 1) =
k−1∑
p=0

Ãp B̃ y(k − p), (11.60)

where Ã = A−BD−1 C, B̃ = BD−1 and we have assumed that ξ(0) = 0. Substituting
(11.60) into (11.58), we deduce that (11.58) is satisfied for i.i.d. signals.

11.3 ESTIMATION OF MATRICES [A, B] BY INFORMATION

BACK–PROPAGATION

Till now we have assumed that the matrices [A,B] are fixed and are determined explicitly
from an assumed structure of the dynamical system. However, for recurrent dynamical
systems, these matrices are unknown and must be estimated by a suitably designed learning
algorithm. In order to develop a learning algorithm for matrices A and B, we use in this
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Table 11.1 Family of adaptive learning algorithms for state-space models.

Reference Model Algorithm

Zhang and Cichocki (1998) [1359] linear
∆C = −η



f(y) �T

�
∆D = η [I− 
f(y)xT DT

�
]D

Zhang and Cichocki (1998) [1360] linear

∆C = η [(I− 
f(y)yT
�
)C− 
f(y) �T

�
]

∆D = η [I− 
f(y)yT
�
]D

with Kalman filter

Cichocki and Zhang (1998) [1361] nonlinear
∆C = η [(Λ− 
f(y)yT

�
)C− 
f(y) �T

�
]

∆D = η [Λ− 
f(y)yT
�
]D

Cichocki and Zhang (1998) [287] nonlinear Two-stage approach

Cichocki and Zhang (1999) [288] nonlinear
∆C = η [(I− 
f(y)yT

�
)C− 
f(y) �T

�
Λ]

∆D = η [I− 
f(y)yT
�
]D

Salam and Waheed (2001) [1033] linear Recurrent network

Salam and Erten (1999) [1032] nonlinear Lagrange multiplier approach

Zhang and Cichocki [1365, 1366] nonholonomic ∆[C D] = −η∇R
24 I + CT C CT D

DT C DT D

35

NG Algorithm

∆C(k) = η(k)
h�

Λ(k) −R
(k)
f y

�
C(k)−R

(k)

f �
i

∆D(k) = η(k)
h
Λ(k) −R

(k)
f y

i
D(k)

section the information back-propagation approach discussed in Chapter 9. Combining
(11.16) and (11.18), we express the gradient of ρ(y,W), with respect to ξ(k) as

∂ρ(y)
∂ξ

= CT f(y(k)). (11.61)
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Therefore, we can calculate the gradient of the loss function ρ(y), with respect to A ∈
IRM×M and B ∈ IRM×m as follows

∇Aρ(y) =
∂ρ(y)
∂A

=
M∑

h=1

∂ρ(y)
∂ξh(k)

∂ξh(k)
∂A

, (11.62)

∇Bρ(y) =
∂ρ(y)
∂B

=
M∑

h=1

∂ρ(y)
∂ξh(k)

∂ξh(k)
∂B

, (11.63)

where entries of matrices ∂ξh(k)
∂A and ∂ξh(k)

∂B are obtained by the following on-line iterations

∂ξh(k + 1)
∂aij

=
M∑

p=1

ahp
∂ξp(k)
∂aij

+ δhi ξj(k), (11.64)

∂ξh(k + 1)
∂biq

=
M∑

p=1

ahp
∂ξp(k)
∂biq

+ δhi xq(k), (11.65)

for h, i, j = 1, 2, . . . ,M and q = 1, 2, . . . , m, where δhi is the Kronecker delta.
The minimization of the loss function (11.14) by the gradient descent method leads to a

mutual information back-propagation learning algorithm as follows

∆aij(k) = −η(k) fT (y(k))
M∑

h=1

ch
∂ξh(k)
∂aij

, (11.66)

∆biq(k) = −η(k) fT (y(k))
M∑

h=1

ch
∂ξh(k)
∂biq

, (11.67)

where ch is the h-th column vector of the matrix C.
Since the matrices A and B are sparse in the canonical forms, we do not need to update

all elements of these matrices. Here, we elaborate the learning algorithm for the controller
canonical form. In the controller canonical form, the matrix B is a constant matrix, and
only the first n rows of matrix A are variable parameters. Denote the vector of the h-th
row of the matrix A by ah, (h = 1, 2, . . . ,M), and define a matrix

∂ξ(k)
∂ah

=
[
∂ξi(k)
∂ahj

]

M×M

. (11.68)

The derivative matrix ∂ξ(k)
∂ah

can be calculated by the following iteration

∂ξ(k + 1)
∂ah

= A
∂ξ(k)
∂ah

+ Φh(k), (11.69)

where Φh(k) = [δhi ξj(k)]M×M . Substituting the above representation into (11.66) and
(11.67), we get the following learning rule for ah,

∆ah = −η(k) fT (y(k))C
∂ξ(k)
∂ah

, (h = 1, 2, . . . , M). (11.70)
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The above learning algorithm updates on-line the internal parameters of the dynamical
system. The dynamical system (11.64) and (11.65) is the variational system of the demixing
model with respect to A and B. The purpose of the learning algorithm is to estimate on-
line the derivatives of ξ(k) with respect to A and B. It should be noted that we should
choose very carefully the initial values of the matrices A and B to ensure stability of the
system during learning process3. However, there is no guarantee that the system will stable
during the learning process even if in initial iterations the system was stable. Stability is a
common problem in dynamical system identification. One possible solution is to formulate
the demixing model in the Lyapunov balanced canonical form [896].

11.4 STATE ESTIMATOR – THE KALMAN FILTER

In order to overcome the above mentioned problem, an alternative approach is to employ
the Kalman filter to estimate the state of the system. From output equation (11.3), it is
observed that if we can accurately estimate the state vector ξ(k) of the system, then we
can separate mixed signals using the learning algorithm (11.49) and (11.50).

11.4.1 Kalman Filter

The Kalman filter is a powerful approach for estimating the state vector in state-space
models [119, 517, 1373]. The function of the Kalman filter is to generate on-line the state
estimate of the state ξ(k). The Kalman filter dynamics is given as follows (see Fig. 11.2)

ξ̂(k + 1|k) = A ξ̂(k|k) + Bx(k), (11.71)

ξ̂(k|k) = ξ̂(k|k − 1) + Le(k), (11.72)

e(k) = y(k)− (C ξ̂(k|k − 1) + Dx(k)), (11.73)

where L is the Kalman filter gain matrix, and e(k) is called the innovation or residual which
measures the error between the measured (or expected) output y(k) and the predicted
output ŷ(k|k− 1) There are a variety of algorithms with which to update the Kalman filter
gain matrix L as well as the state ξ̂(k|k− 1); refer to [517] for more details. In this section,
we introduce a concept called hidden innovation in order to implement the Kalman filter
for the blind separation and filtering problem [1373]. Since the updating matrices C and
D will produce an innovation in each learning step, we can define a hidden innovation as
follows

e(k) = ∆y(k) = y(k)− ŷ(k | k − 1) = ∆C(k) ξ(k) + ∆D(k)x(k), (11.74)

3The system is stable if all eigenvalues of the state matrix A are located inside the unit circle in the complex
plane.
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Fig. 11.2 Kalman filter for noise reduction.

where ∆C(k) = C(k + 1) −C(k) and ∆D(k) = D(k + 1) −D(k). The hidden innovation
presents the adjusting direction of the output of the demixing system and is used to generate
an a posteriori state estimate. Once we define the hidden innovation, we can employ the
commonly used Kalman filter to estimate the state vector ξ(k) and to update the Kalman
gain matrix L (see Fig. 11.2). The updating rules are described as follows [517, 1373, 1365]

Algorithm Outline: Kalman filter for robust state estimation

1. Kalman gain
L(k) = R(k)

ee CT (k)[C(k)R(k)
ee CT (k) + R(k)

νν ]−1.

2. Update the estimate with hidden innovation

ˆ̂
ξ(k|k) = ξ̂(k|k + 1) + L(k) e(k).
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3. Update the error covariance

R̂(k)
ee = (I− L(k)C(k))R(k)

ee .

4. Predict the state vector ahead

ξ̂(k + 1|k) = A(k) ξ̂(k|k) + B(k)x(k).

5. Predict the error covariance ahead

R(k+1)
ee = A(k) R̂(k)

ee AT (k) + Rk)
nn,

where R(k)
nn and R(k)

νν are the covariance matrices of the noise vector n(k) and output
measurement noise ν(k), respectively.

One disadvantage of the above algorithm is that it requires knowledge of the covariance
matrices of the noise. The theoretical problems such as convergence analysis and stability of
the above procedure remains an open problem. However, extensive simulation experiments
show that this algorithm, based on the Kalman filter, can separate the convolved signals
efficiently [1373, 1365].

11.5 TWO–STAGE SEPARATION ALGORITHM

In this section, we present a two-stage separation algorithm for state-space models. In this
approach, we decompose the separation problem into the following two stages. First, we
separate the mixed signals in the following sense [287, 1365, 1374]

G(z) = W(z)H(z) = PD(z), (11.75)

where P is permutation matrix and D(z) = diag{D1(z), D2(z), . . . , Dn(z)} is a diagonal
matrix in polynomials of z−1. At this stage the output signals will be mutually independent
and each individual output signal will be a filtered version of one source signal. So, to
recover the original sources, a blind equalization of each channel is necessary. In other
words, we need only to apply single channel equalization methods, such as the natural
gradient approach or Bussgang methods, to obtain the temporarily i.i.d. recovered signals.

The question here is whether a set of matrices Θ = {A,B,C,D} exists in the demixing
model (11.3) and (11.4), such that its transfer function W(z) satisfies (11.75). The answer
is affirmative under some weak conditions. Suppose that there is a stable inverse filter
W∗(z) of H(z) in the sense of (11.75). Since W∗(z) is a rational polynomial of z−1, we
know that there is a state-space realization [A∗,B∗,C∗,D∗] of W∗(z). Then, we rewrite
W∗(z) as

W∗(z) = D∗ + C∗(z I−A∗)−1B∗

=
L∑

i=0

Piz
−i/Q(z−1) (11.76)
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We can construct a linear system with transfer function
∑M

i=0 Piz
−i as follows

A =
[ OT 0m

Im(M−1) O
]

, B =
[

Im

O
]

(11.77)

C = (P1,P2, . . . ,PL), D = P0, (11.78)

where Im(M−1) is an m(M − 1)×m(M − 1) identity matrix, 0m is an m×m zero matrix,
and O is an m(M − 1)×m zero matrix, respectively. Then, we deduce that

W(z) = D + C(z I−A)−1 B = W∗(z)Q(z−1). (11.79)

Thus, we have
G(z) = W(z)H(z) = PΛ(z)Q(z−1) = PD(z), (11.80)

where D(z) = Λ(z)Q(z−1) is a diagonal matrix in polynomials of z−1 in its diagonal
entities. It is easily seen that both A and B are constant matrices. Therefore, we have only
to develop a learning algorithm to update C and D so as to obtain the separated signals in
the sense of (11.75).

On the other hand, we know that if the matrix D in the mixing model satisfies rank(D) =
n, then there exists a set of matrices {A,B,C,D}, such that the output signal y of state-
space system (11.3) and (11.4) recovers the independent source signals in the sense of
(11.75). Therefore, we have the following Theorem [1365]:

Theorem 11.2 If the matrix D in the mixing model satisfies rank(D) = n, then for given
specific matrices A and B as (11.77), there exist matrices [C,D], such that the transfer
matrix W(z) of the system (11.3) and (11.4) satisfies equation (11.75).

The two-stage blind deconvolution can be realized in the following way: First, we construct
the matrices A and B of the state equation in the form (11.77), and then we employ the
natural gradient algorithm to update C and D. After the first stage, the outcome signals
can be represented in the following form

ŷi(k) = Q(z)si(k), (i = 1, 2, . . . ,m). (11.81)

Then we can employ the blind equalization approach discussed in Chapter 9 for double
finite FIR filter to remove distortion caused by filtering or convolution of the signals. It
should be noted that the two-stage approach enables us also to recover the source signals
mixed by a non-minimum phase dynamical system [1367].

Appendix A. Derivation of the Cost Function

We consider n observations {xi(k)} and n output signals {yi(k)}, with length N .

x(k) = [xT (1),xT (2), . . . ,xT (N)]T ,

y(k) = [yT (1),yT (2), . . . ,yT (N)]T ,
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where x(k) = [x1(k), x2(k), . . . , xm(k)]T and y(k) = [y1(k), y2(k), . . . , ym(k)]. The task of
blind deconvolution is to estimate a state-space demixing model, such that output signals
achieve independence, i.e., when the joint probability density of y is factorized as follows:

p(y) =
m∏

i=1

N∏

k=1

pi(yi(k)), (A.1)

where {pi(·)} is the probability density of source signals. In order to measure the mutual
independence of output signals, we employ the Kullback-Leibler divergence as a criterion,
which is an asymmetric measure of the distance between two different probability distribu-
tions,

Kpq(W(z)) =
1
N

∫
p(y) log

p(y)
∏m

i=1

∏N
k=1 qi(yi(k))

dy, (A.2)

where we replace pi(·) by certain approximate density functions qi(·) for estimated sources,
since we do not know the true probability distributions ri(·) of original source signals.

Provided that initial conditions are set to ξ(1) = 0, we have the following relation [1365]

y = Wx, (A.3)

where W is given by

W =

26666664
H0 0 · · · 0 0
H1 H0 · · · 0 0
...

...
. . .

...
...

HN−2 HN−3

. . . H0 0
HN−1 HN−2 · · · H1 H0

37777775 , (A.4)

and Hi are the Markov parameters defined by H0 = D, Hi = CAi−1B, ( i = 0, 1, . . . , N−
1). According to the property of the probability density function, we derive the following
relation between p(x) and p(y):

p(y) =
p(x)

| detHN
0 |

. (A.5)

Using the relation (A.2), we derive the loss function ρ(W(z)) as follows

ρ(W(z)) = − log | detH0| −
m∑

i=1

1
N

N∑

k=1

log qi(yi(k)). (A.6)

Note that p(x) was not included in (A.6) because it does not depend on the set of parameters
{Hi}.





12
Nonlinear State Space Models

– Semi-Blind Signal
Processing

We must dare to think unthinkable thoughts. We must learn to explore all the options and
possibilities that confront us in a complex and rapidly changing world. We must learn to welcome
and not to fear the voices of dissent. We must dare to think about unthinkable things because
when things become unthinkable, thinking stops and action becomes mindless.

—(J. William Fulbright)

Beyond each corner new directions lie in wait.
—(Stanislaw Lec)

12.1 GENERAL FORMULATION OF THE PROBLEM

In this chapter we attempt to extend and generalize the results discussed in the previous
chapters to nonlinear dynamical models. However, the problem is not only very challenging
but intractable in the general case without a priori knowledge about the mixing and filtering
nonlinear process. Therefore, in this chapter we consider very briefly only some simplified
nonlinear models. In addition, we assume that some information about the mixing and
separating system and source signals is available.

In practice, special nonlinear dynamical models are often considered in order to simplify
the problem and solve it efficiently for specific applications. Specific examples include the
Wiener model, the Hammerstein model, bilinear models, Volterra models, and NARMA
(Nonlinear Autoregressive Moving Average) models [58, 289, 690, 1128, 1253, 1287, 1323].
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Fig. 12.1 Typical nonlinear dynamical models: (a) The Hammerstein system, (b) the Wiener system
and (c) Sandwich system.

The Hammerstein and Wiener systems consist of linear dynamical systems in cascade
(series) with static (memoryless) nonlinearities (see Fig. 12.1). In the Wiener system, linear
filters precede memoryless nonlinearities, while in the Hammerstein system a nonlinear
memoryless system precedes linear (dynamical) filters. Both systems are special cases of an
important class of block oriented sandwich systems with static nonlinearities sandwiched
between two linear dynamical subsystems [1128]. Sandwich systems constitute a relatively
simple but important class of nonlinear systems since linear combination of such systems can
approximate a wide class of nonlinear dynamical systems [1125, 1127, 1128]. Such models
arise in practice whenever measurement (sensor) devices have nonlinear characteristics (see
Fig. 12.2). It should be noted that, in the special case when the nonlinear function is known
or can be estimated and the inverse function exists, the Wiener model can be simplified to
linear problems described in last three chapters, as illustrated on Fig. 12.2. However in
such models, usually some typical nonlinearities such as hard limiters, dead-zone limiters,
quantizers and hysteresis are excluded and for such nonlinearities it is impossible to estimate
exact inverse systems.

The problems illustrated in Fig. 12.1 (a) and (c) are difficult, because of the permutation
and scaling ambiguities even if the nonlinearities are known and invertible. However, in the
special case when the set of all nonlinear functions {Ψ} are identical and are known, we can
easily convert the problem to linear multichannel blind deconvolution which was discussed
in the previous chapters. It should be noted, that all these specific nonlinear dynamical
models can be described by a general and flexible nonlinear state-space model or NARMA
model discussed below.
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Fig. 12.2 The simple nonlinear dynamical model which leads to the standard linear filtering and
separation problem if the nonlinear function can be estimated and their inverses exist.

Assume that unknown source signals s(k) = [s1(k), s2(k), . . . , sn(k)]T ∈ IRn are zero-
mean i.i.d. and mutually statistically independent. Suppose that the unknown source
signals s(k) are mixed by a stable unknown nonlinear dynamical system

ξ̄(k + 1) = F [
ξ̄(k), s(k), νP (k)

]
, (12.1)

x(k) = G
[
ξ̄(k), s(k)), ν(k),

]
, (12.2)

where F and G are two unknown nonlinear mappings, ξ̄(k) ∈ IRd is the state vector of the
system, and x(k) ∈ IRm (with m ≥ n) is a vector of available sensor signals, νP (k) and
ν(k) are the process noises and sensor noises of the mixing dynamical system, respectively.

Let us consider another adaptive dynamical system as a demixing model (see Fig. 12.3)

ξ(k + 1) = F [x(k), ξ(k), Θ] (12.3)
y(k) = G [x(k), ξ(k), ΘG] , (12.4)

where x(k) ∈ IRm is the vector of sensor signals, ξ(k) ∈ IRM is the state vector of the
system, y(k) ∈ IRn is designated to recover the source signals in a certain sense, F is a
nonlinear mapping described by a general nonlinear capability neural network, Θ is the set
of parameters (synaptic weights and nonlinear basis functions) of the neural network, G is
a nonlinear mapping with non-singularity of the derivative ∂G

∂x , and ΘG are the weights of
G. The dimension M of the state vector is the order of the demixing system.

If both of the mappings, F and G are linear, the nonlinear state-space model will reduce
to the standard multichannel blind filtering and separation discussed in the previous chapter.
Since the problem is still intractable in the general case, we consider a slightly simplified
model:

ξ(k + 1) = F [x(k), ξ(k), Θ] , (12.5)
y(k) = C ξ(k) + D x(k). (12.6)

In this demixing model, the output equation is assumed to be linear. The restriction is
reasonable since in many practical problems, the measurement is a linear combination of
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Fig. 12.3 Nonlinear state-space models for multichannel semi-blind separation and filtering: (a)
Generalized nonlinear model, (b) simplified nonlinear model.

certain variables. Since the mixing system is unknown (we neither know the nonlinear
mappings F and G, nor the dimension d of the state vector ξ̄(k)), we may attempt to
estimate the order and approximate nonlinear mappings of the demixing system in order
to estimate original source signals. However in the blind deconvolution, it is rather very
difficult to determine the dimensionality M of the demixing system, therefore usually over-
estimate i.e., M > d. The overestimation of the order M may produce auxiliary delays
in the output signals, but this is acceptable in blind deconvolution. There are a number
of neural networks such as Radial Basis Function (RBF), Support Vector Machine (SVM)
and multilayer perceptron (MLP), which can be used as demixing models. In this chapter,
we employ the RBF to model and identify the nonlinear mapping F in the demixing model
and to estimate the set of output matrices W = [C, D] we can employ learning algorithms
described in Chapter 11.
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12.1.1 Invertibility by State Space Model

Assume that the number of sensor signals equals the number of source signals, i.e., m = n.
In the following discussion, we restrict the mixing model to the following form,

ξ(k + 1) = F [
ξ̄(k), s(k)

]
, (12.7)

x(k) = C ξ̄(k) + D s(k), (12.8)

where the state equation is a nonlinear dynamical system, and the output equation is a
linear one. From a theoretical point of view, we can easily find the inverse of the state-
space models in the same form, if the matrix D is invertible. In fact, the inverse system is
expressed by

ξ̄(k + 1) = F [
ξ̄(k), D−1 (x(k)−C ξ̄(k))

]
, (12.9)

s(k) = D−1 (x(k)−C ξ̄(k)). (12.10)

This means that if the mixing model is expressed by (12.7) and (12.8), we can recover the
source signals using the inverse system (12.9) and (12.10). There is an advantage of the
state-space model that we do not need to invert any non linear functions explicitly.

12.1.2 Internal Representation

As we have already discussed in the Chapter 11, the state-space description allows us to
divide the variables into two types: The internal state variable ξ(k), which produces the
dynamics of the system, and the external variables x(k) and y(k), which represent the
input and output of the system, respectively. The vector ξ(k) is known as the state of
the dynamical system, which represents all the information about the past behavior of the
system that is needed to predict its future behavior, except for the purely external input
x(k). The state-space description plays a critical role in mathematical formulation of a
dynamical system. It allows us to realize the internal structure of the system and to define
the controllability and observability of the system as well. In the state-space framework, it
becomes much easier to discuss the stability, controllability and observability of nonlinear
dynamical systems.

We formulate the separating model in the framework of the state-space models for blind
separation and filtering. The parameters in the state equation of the separation are referred
to as internal representation parameters (or simply internal parameters), and the parameters
in the output equation as external ones. Such an approach enables us to estimate the
demixing nonlinear dynamical model in two stages: First an estimation on some a priori
knowledge the internal nonlinear dynamical representation and second to fix the internal
set of parameters and estimate the output linear demixing subsystem. In the estimation of
the internal representation stage, we will make the state-space matrix as sparse as possible
such that the output signals can be represented as a sparse linear combination of the state
vector ξ(k) and sensor vector x(k).
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Fig. 12.4 Block diagram of a simplified nonlinear demixing NARMA model. For the switch open,
we have a feed-forward nonlinear MA model, and for the switch closed we have a recurrent nonlinear
ARMA model.

12.2 SUPERVISED-UNSUPERVISED LEARNING APPROACH

12.2.1 Nonlinear Autoregressive Moving Average Model

The linear state-space separating and filtering model described in the previous chapters can
be extended and generalized to a flexible nonlinear model as (see Fig. 12.4) [289, 290]

ξ(k) = f [x(k), ξ(k)], (12.11)
y(k) = C(k) ξ(k) + D(k) x(k), (12.12)

where ξ(k) = [ξ1(k), . . . , ξM (k)]T is the state vector, x(k) = [x1(k), . . . , xm(k)]T is an
available vector of sensor signals, f [x(k), ξ(k)] is an M -dimensional vector of nonlinear
functions (with x(k) = [xT (k), . . . ,xT (k−Lx)]T and ξ(k) = [ξT (k− 1), . . . , ξT (k−Lξ)]T ),
y(k) = [y1(k), . . . , yn(k)]T is a vector of output signals, and C ∈ IRn×M and D ∈ IRn×m

are output matrices.
It should be noted that equation (12.11) describes the NARMA model while the output

memoryless model (12.12) is linear. Our objective is to estimate or identify in the first stage
the NARMA model by using a neural network approach. In the general case, we will be able
to estimate the parameters if both sensor signals x(k) and source (desired) signals s(k) are
available for at least short time windows to perform standard input output identification.

In other words, in order to solve this challenging and difficult problem, we attempt
to apply a semi-blind approach, i.e., we combine supervised and un-supervised learning
algorithms. Such an approach is justified in many practical applications, especially for
time-variable models, For example, for MEG or EEG, we can use a phantom of the human
head with known artificial source excitations located in specific places inside the phantom.
Similarly, for the cocktail party problem we can record, for short-time windows, test speech
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sources. These short-time window training sources enable us to determine, on the basis
of a supervised algorithm, a suitable nonlinear demixing model and associated nonlinear
basis functions of the neural network and their parameters. However, in practice such
complex nonlinear dynamical mixing system is usually slowly time-varying, i.e., some of
its parameters may fluctuate slightly with time, e.g., due to movement of source signals in
space. After we loose the training signals, we can apply an unsupervised learning approach
and apply leaning algorithms described in previous chapters. In this way, we will be able to
perform fine adjustment of the output matrices C and D (by keeping the nonlinear model
fixed). The on-line update of the matrices C and D can be performed on basis of several
criteria, for example minimizing the mutual information.

12.2.2 Hyper Radial Basis Function Neural Network Model

We assume that a small amount of training (desired) signals d(k) = αs(k−∆) is available.
So the NARMA model can be estimated by using standard neural models such as multi-
layer perceptron (MLP), radial basis function (RBF), wavelets, Volterra or sigma-pi neural
networks [282]. Furthermore, we assume that the output model can be adjusted to com-
pensate for small fluctuations or slow drifts of the mixing system, and that its parameters
can be estimated in the time windows by unsupervised ICA algorithm when the training
(desired) signals are not available. In this section, we describe briefly a hyper radial basis
function (HRBF) network introduced first by Poggio and Girosi (see Fig. 12.5) [282, 1253]
to estimate a NARMA model because of its flexibility as a universal approximator of mul-
tidimensional nonlinear mapping.

The HRBFN can be considered as a two-layer neural network in which the hidden layer
performs an adaptive nonlinear transformation with adjustable parameters, in such a way
that the L = (Lξ + Lx + 1) dimensional input space

x̃(k) = [xT (k), . . . ,xT (k − Lx), ξT (k − 1), . . . , ξT (k − Lξ)]T

is mapped to the M - dimensional output space

ξ(k) = [ξ1(k), ξ2(k), . . . , ξM (k)]T

which is described be a set of nonlinear equations

ξi = wi0 +
h∑

j=1

wij Φj(rj), (i = 1, 2, . . . ,M). (12.13)

The above nonlinear mapping can written in a compact matrix form as1

ξ = f(x) = w0 + W Φ(r), (12.14)

1For simplicity of our considerations, we consider here a simplified feed-forward model (nonlinear moving
average (MA) model with the switch off in Fig. 12.4, i.e, with the vector �(k) = [�T (k−1), . . . �T (k−Lξ]T =
0, i.e., Lξ = 0.
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Fig. 12.5 Conceptual block diagram illustrating HRBF neural network model employed for nonlinear
semi-blind separation and filtering: (a) Block diagram, (b) detailed neural network model.
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Fig. 12.6 Simplified model of HRBF neural network for nonlinear semi-blind single channel equal-
ization; if the switch is in position 1, we have supervised learning, and unsupervised learning if it is
in position 2, assuming binary sources.

where x = [xT
1 ,xT

2 , . . . ,xT
L]T , (with xi = x(k − i + 1), for i = 1, 2, . . . , L), W = [wij ] ∈

IRM×h, r = (r1, r2, . . . , rh) and Φ(r) = [Φ1(r1),Φ2(r2), . . . , Φh(rh)]T .
The nonlinear activation functions Φi(ri) are defined as generalized (hyper) multidimen-
sional Gaussian functions

Φj(rj) =
1
2

exp(−r2
j /2) (12.15)

and

r2
j = (x− cj)T QT

j Qj (x− cj), (j = 1, 2, . . . , h), (12.16)

with adaptive centers cj = [cj1, cj2, . . . , cjL]T .
It should be noted that, in the special case when the symmetric positive definite L× L

matrix QT
j Qj reduces to a diagonal matrix QT

j Qj = diag{σ−2
j1 , σ−2

j2 , . . . , σ−2
jL }, the HRBF

network is simplified to the standard RBF neural network.

12.2.3 Estimation of Parameters of HRBF Networks Using Gradient Approach

Our objective is to estimate the set of parameters Θ = {C, D, w0, W, {Qj}, {cj}} of the
demixing system using the standard cost function

J(Θ) =
1
2

∑

k

||e(k)||2, (12.17)
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where the error vector is defined as e(k) = d(k)− y(k).
In order to avoid getting stuck in local minima of the above cost function, we apply the
Manhattan learning formula of the form [282]

∆Θ = −η(k) sign
∂J

∂Θ
, (12.18)

with self-adaptive learning step matrix η [282].
It can be shown by direct simple calculations that gradient components for the model shown
in Fig.12.4 with the HRBF neural network depicted in Fig.12.5 can be evaluated as follows:

∂J

∂C
= −e ξT ,

∂J

∂D
= −e xT , (12.19)

∂J

∂w0
= −CT e,

∂J

∂W
= −CT e ΦT (r), (12.20)

∂J

∂Qj
= δj Qj (x− cj) (x− cj)T , (12.21)

∂J

∂cj
= −δj QT

j Qj(x− cj), (12.22)

where δj = Φj(rj) [WT CT e]j and [e]j means j-th element of the vector e. On the basis of
these formulas, we can formulate the supervised learning rules. The unsupervised learning
algorithms can be alternatively used for updating the output matrices C, D as described
in the Chapter 11.

It is interesting to note that in the special case of binary signals, we can estimate the
desired signals by taking d̂(k) = sign(y(k)), as illustrated for the simplified network shown
in Fig. 12.6. In this case, instead of back propagating the true error, we can propagate
the “blind” error. Instead of propagating the error e(k), we can back propagate mutual
information ê(k) = f(y(k))− y(k) [1323, 1324].

The algorithms discussed in this chapter can be considered as extensions and general-
izations of some existing algorithms proposed for the linear multichannel blind separation
and/or deconvolution problems. Computer simulation experiments confirmed the validity
and their good performance of the developed algorithms and ability to recover the source
signals even if the mixing dynamical model is nonlinear and its structure is unknown.
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Appendix – Mathematical

Preliminaries

He who would perfect his work must first sharpen his tools.
—( Confucius)

13.1 MATRIX ANALYSIS

13.1.1 Matrix inverse update rules

Neumann expansion of the inverse matrix:

(I + A)−1 = I−A + A2 − . . . , (13.1)

if the eigenvalues of A are smaller than one in absolute value.

Matrix inversion lemma:

(A + BCD)−1 = A−1 −A−1B
(
C−1 + DA−1B

)−1
DA−1. (13.2)

Here and further it is assumed that A ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×m and D ∈ IRm×n

and that indicated inverse exist. In the special case when D = BT we obtain

(A + BCBT )−1 = A−1 −A−1B(C−1 + BT A−1B)−1BT A−1. (13.3)

A special case known as Woodbury identity results for B = u ∈ IRn and D = vT ∈
IRn×n,C = I

(
A + uvT

)−1
= A−1 − A−1uvT A−1

1 + vT A−1u
. (13.4)

453
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A−1 =
(

B−1 + B−1DF−1CB−1 −B−1DF−1

−F−1CB−1 F−1

)
, (13.5)

where matrices A =
(

B D
C Q

)
and F = Q−CB−1D are nonsingular.

13.1.2 Some properties of determinant

det
(

A B
D C

)
= det(C) det(A−BC−1D) = det(A) det(C−DA−1B), (13.6)

where A ∈ IRs×s, C ∈ IRr×r are nonsingular, B ∈ IRs×r, D ∈ IRr×s.
In particular,

det(Ir + AB) = det(Is + BA), (13.7)

where Ir ∈ IRr×r and Is ∈ IRs×s are identity matrices, A ∈ IRr×s, B ∈ IRs×r.

det(I + XXT ) = 1 + ‖X‖2. (13.8)

13.1.3 Some properties of the Moore-Penrose pseudo-inverse

A+ = A−1 for non-singular A (13.9)

(A+)+ = A (13.10)

(AT )+ = (A+)T (13.11)

A+ = A if A is symmetric and idempotent (13.12)

AA+ and A+A are idempotent (13.13)

A, A+, AA+ and A+A have the same rank (13.14)

AT AA+ = AT = A+AAT (13.15)

AT (A+)T A+ = A+ = A+(A+)T AT (13.16)

(AT A)+ = A+(A+)T (13.17)

(AAT )+ = (A+)T A+A(AT A)+AT A = A = AAT (AAT )+A (13.18)

A+ = (AT A)+AT = AT (AAT )+ (13.19)
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A+ = (AT A)−1AT if A has full column rank (13.20)

A+ = AT (AAT )−1 if A has full row rank (13.21)

A = 0 ↔ A+ = 0 (13.22)

AB = 0 ↔ B+A+ = 0 (13.23)

A+B = 0 ↔ AT B = 0 (13.24)

(A⊗B)+ = A+ ⊗B+, where ⊗ is Kronecker product symbol (13.25)

13.1.4 Matrix Expectations

E{x} = mx (13.26)

E{(x−mx)(x−mx)T } = Rxx (13.27)

E{tr(A)} = tr(E{A}) (13.28)

E{Ax + b} = Amx + b (13.29)

E{(Ax + a)(Bx + b)T } = ARxxBT + (Amx + a)(Bmx + b)T (13.30)

E{xxT } = Rxx + mxmT
x (13.31)

E{xaT x} = (Rxx + mxmT
x )a (13.32)

E{(Ax)(Ax)T } = A(Rxx + mxmT
x )AT (13.33)

E{(x + a)(x + a)T } = Rxx + (mx + a)(mx + a)T (13.34)

E{(Ax + a)T (Bx + b)} = tr(ARxxBT ) + (Amx + a)T (Bmx + b) (13.35)

E{xT x} = tr(Rxx) + mT
xmx = tr(Rxx + mxmT

x ) (13.36)

E{xT axT } = aT (Rxx + mxmT
x ) (13.37)

E{xT Ax} = tr(ARxx) + mT
xAmx = tr(A(Rxx + mxmT

x )) (13.38)

E{(Ax)T (Ax)} = tr(ARxxAT ) + mT
xAT Amx = tr(A(Rxx + mxmT

x )AT ) (13.39)
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E{(x + a)T (x + a)} = tr(Rxx) + (mx + a)T (mx + a) = tr(Rxx) + ‖mx + a‖2 (13.40)

E{(Ax + a)(Bx + b)T (Cx + c)} = ARxxBT (Cmx + c) (13.41)
+ ARxxCT (Bmx + b)
+ tr(BRxxCT )(Amx + a)
+ (Amx + a)(Bmx + b)T (Cmx + c)

E{xxT x} = 2Rxxmx + (tr(Rxx) + mxmT
x )mx (13.42)

13.1.5 Differentiation of a scalar function with respect to a vector

∂

∂x

(
yT x

)
=

∂

∂x

(
xT y

)
= y (13.43)

∂

∂x

(
xT A

)
= A (13.44)

∂

∂x

(
xT

)
= I (13.45)

∂

∂x

(
xT x

)
= 2x (13.46)

∂

∂x

(
xT Ay

)
= Ay (13.47)

∂

∂x

(
yT Ax

)
= AT y (13.48)

∂

∂x

(
xT Ax

)
=

(
A + AT

)
x (13.49)

∂

∂x

(
xT Ax

)
= 2Ax if A is symmetric (13.50)

∂

∂x

(
xT AxxT

)
= (A + AT )xxT + xT AxI (13.51)

∂

∂x

[
aT (x)Qa (x)

]
= ∇xaT (x) (Q + QT )a (x) (13.52)

∂

∂x

[
aT (x)b (x)

]
=

[
∂a (x)

∂x

]T

b (x) +
[
∂b (x)

∂x

]T

a (x) (13.53)
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13.1.6 Matrix differentiation

d

dt
(A + B) =

dA
dt

+
dB
dt

. (13.54)

d

dt
(ABC) =

dA
dt

BC + A
dB
dt

C + AB
dC
dt

. (13.55)

d

dt
An =

dA
dt

An−1 + A
dA
dt

An−2 + . . . + An−1 dA
dt

. (13.56)

d

dt
A−1 = −A−1 dA

dt
A−1 for det (A) 6= 0. (13.57)

d

dt
(det (A)) = tr

(
dA
dt

A
)

. (13.58)

d

dt
log detA = tr[A−1 d

dt
A]. (13.59)

∂ det(X)
∂X

=
∂ det(XT )

∂X
= det(X)

(
XT

)−1
if det (X) 6= 0. (13.60)

∂ det(Xk)
∂X

= k det(Xk)
(
XT

)−1
. (13.61)

∂ log (det(X))
∂X

=
(
XT

)−1
if det (X) 6= 0. (13.62)

∂ det(AXB)
∂X

= det(AXB)AT (BT XT AT )−1BT if det
(
BT XAT

)−1 6= 0. (13.63)

∂ det(AXB)
∂X

= det(AXB)(X−1)T det (X) 6= 0 if detA 6= 0, detB 6= 0,detX 6= 0.

(13.64)

∂ log(det(XXT ))
∂X

= 2(XXT )−1X if det(XXT ) 6= 0. (13.65)

∂ det(XT CX)
∂X

= det(XT CX)(C + CT )X(XT CX)−1 (13.66)

for real matrices, if detXT CX 6= 0. (13.67)

∂ det(XT CX)
∂X

= 2det(XT CX)CX(XT CX)−1, (13.68)

if C is real and symmetric, and if detXT CX 6= 0. (13.69)
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∂ log(det(XT CX))
∂X

= 2CX(XT CX)−1 if C, (13.70)

is real and symmetric, and if detXT CX 6= 0. (13.71)

DX(AXB) = BT ⊗A, (13.72)

where DXF(X) means the Jacobian matrix of the matrix function F at X:

DXF(X) =
∂vecF (X)
∂vecXT

.

DXAX−1B = −(X−1B)T ⊗ (AT X−1). (13.73)

∂(aT Xb)
∂X

= abT . (13.74)

∂(aT XT b)
∂X

= baT . (13.75)

∂(aT XT Xb)
∂X

= X(abT + baT ). (13.76)

∂(aT XT Xa)
∂X

= 2XaaT . (13.77)

∂(aT XT CXb)
∂X

= CT XabT + CXbaT . (13.78)

∂(aT XT CXa)
∂X

= (C + CT )XaaT . (13.79)

∂(aT XT CXa)
∂X

= 2CXaaT if C is symmetric. (13.80)

∂((Xa + b)T C(Xa + b))
∂X

= (C + CT )(Xa + b)aT . (13.81)

13.1.7 Trace

1. The trace of matrix A, denoted by tr(A) is the sum of the diagonal elements of A. The
trace is invariant under circular permutation in its argument consequently:

tr (ABC) = tr (BCA) = tr (CAB) (13.82)

2. The trace is linear operator:

tr (A + B) = tr (A) + tr (B) and tr (αA) = α tr (A) (13.83)
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3. The following expectation of the quadratic Hermitian form holds:

E
{
xT Ax

}
= E

{
tr

(
xT Ax

)}
= E

{
tr

(
AxxT

)}

= tr
(
AE

{
xxT

})
= trARxx (13.84)

var
{
xT Ax

}
= E

{(
xT Ax

)2
}

= 2tr(ARxx)2 + 4mxARxxAmx, (13.85)

if the random n× 1 vector x has normal distribution.

13.1.8 Matrix differentiation of trace of matrices

∂tr (X)
∂X

= I. (13.86)

∂tr (AX)
∂X

= AT . (13.87)

∂tr
(
AXT

)

∂X
= A. (13.88)

∂tr
(
Xk

)

∂X
= k

(
Xk−1

)T
. (13.89)

∂tr
(
AXk

)

∂X
=

(
k−1∑

i=0

XiAXk−i−1

)T

. (13.90)

∂tr
(
XT AX

)

∂X
=

(
A + AT

)
X. (13.91)

∂tr
(
XAXT

)

∂X
= X

(
A + AT

)
. (13.92)

∂tr
(
AXT B

)

∂X
= BA. (13.93)

∂tr (AXB)
∂X

= AT BT . (13.94)

∂tr (AXBX)
∂X

= AT XT BT + BT XT AT . (13.95)

∂tr
(
AXBXT

)

∂X
= AXB + AT XBT . (13.96)

∂tr
(
AXXT B

)

∂X
=

(
AT BT + BA

)
X. (13.97)

∂tr
(
X−1

)

∂X
= − [

X−1X−1
]T

. (13.98)
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∂tr
(
AX−1B

)

∂X
= − (

X−1BAX−1
)T

. (13.99)

∂tr (det (AXB))
∂X

= det (AXB)
(
X−1

)T
, (13.100)

if A,B,X are nonsingular.
∂tr

(
eX

)

∂X
= eXT

. (13.101)

∂tr (log(In −X))
∂X

= −((In −X)−1)T , (13.102)

where X is n × n matrix, whose eigenvalues are smaller than one in absolute value. Here
by definition,

log(In −X) = −
∞∑

k=1

1
k
Xk. (13.103)

13.1.9 Important Inequalities

Cauchy-Schwartz inequality
(xT y)2 ≤ (xT x)(yT y) (13.104)

with equality if and only if x and y are linearly dependent.

(∑

i

xiyi

)2

≤
(∑

i

x2
i

)(∑

i

y2
i

)
. (13.105)

(xT Ay)2 ≤ (xT Ax)(yT Ay), (13.106)

if A is positive semi-definite, with equality if and only if Ax and Ay are linearly dependent.

(xT y)2 ≤ (xT Ax)(yT A−1y), (13.107)

if A is positive definite, with equality if and only if x and A−1y are linearly dependent.



∫

Ω

fg dv




2

≤
∫

Ω

f2 dv

∫

Ω

g2 dv (13.108)

with equality if and only if f and g are linearly dependent.
The Lagrange inequality

(∑

i

x2
i

)(∑

i

y2
i

)
−

(∑

i

xiyi

)2

≤
∑

i<j

(xiyj − xjyi)
2
. (13.109)

Holder’s inequality
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if xi, yi ≥ 0, i = 1, 2, . . . , n and
(

1
p

)
+

(
1
q

)
= 1, p > 0

∑

i

xiyi ≤
(∑

i

xp
i

) 1
p

(∑

i

yq
i

) 1
q

, (13.110)

if 1
p + 1

q + 1
r + ... ≤ 1

∑

i

xiyizi... ≤
(∑

i

xp
i

) 1
p

(∑

i

yq
i

) 1
q

(∑

i

zr
i

) 1
r

... (13.111)

Minkowski’s inequality

[∑

i

(xi + yi)k

] 1
k

≤
(∑

i

xk
i

) 1
k

+

(∑

i

yk
i

) 1
k

. (13.112)

Hadamard’s inequality for complex matrix B

det(B)2 ≤
n∏

j=1

(
n∑

k=1

b2
ik

)
(13.113)

det(B) ≤ 1 if
n∑

k=1

b2
ik = 1, i = 1, 2, . . . , n (13.114)

det(B) ≤ Mnn
n
2 if |bij | ≤ M. (13.115)

If B is positive semi-definite, then

detB ≤
n∏

i=1

bii. (13.116)

Jensen’s inequality for convex function

E{f(x)} ≥ f [E{x}] . (13.117)

Inequalities in information theory.
Let

∑
ai and

∑
bi be convergent series of positive numbers such that

∑
ai ≥

∑
bi then

∑
ai log

bi

ai
≤ 0. (13.118)

Further, if ai ≤ 1 and bi ≤ 1 for all i

2
∑

ai log
ai

bi
≥

∑
ai(ai − bi)2. (13.119)
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13.2 DISTANCE MEASURES

13.2.1 Geometric distance measures

The distance measures between two n-dimensional vectors x = [x1, x2, . . . , xn]T and y =
[y1, y2, . . . , yn]T can be defined as follows:

Minkowski Lp metric, p ≥ 1

d(x,y) =

(
n∑

i=1

|xi − yi|p
) 1

p

(13.120)

L2 Euclidean metric

d(x,y) =

√√√√
n∑

i=1

(xi − yi)2 (13.121)

L1 metric

d(x,y) =
n∑

i=1

|xi − yi| (13.122)

Camberra metric

d(x,y) =
n∑

i=1

|xi − yi|
xi + yi

(13.123)

Chebyshev metric

d(x,y) = max
i=1,2,...,n

|xi − yi| (13.124)

City block metric, with given weights ai ≥ 0

d(x,y) =
n∑

i=1

ai|xi − yi| (13.125)

Quadratic metric, with given weighting symmetric positive definite matrix Q

d(x,y) = (x− y)T Q(x− y) (13.126)

13.2.2 Distances between sets

Let X, Y be two sets in IRn, and let d(x, y) be a metric on IRn. Then we have the following
set of distances between X and Y :
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Nearest neighbor distance

D(X,Y ) = min
x∈X,y∈Y

d(x, y). (13.127)

Farthest neighbor distance

D(X,Y ) = max
x∈X,y∈Y

d(x, y). (13.128)

Hausdorff metric, depending on a given norm ‖.‖ in IRn

D(X, Y ) = inf{c ∈ IR : X ⊆ (Y + cN‖.‖) and Y ⊆ (X + cN‖.‖)}, (13.129)

where N‖.‖ is the open unit ball in IRn (with respect to the norm ‖.‖).

13.2.3 Discrimination measures

The information measures S(Ω/z), where Ω = {X, Y } is the set of classes and z a point in
the space, express a measure of separation or discrimination between the classes X and Y
at point z. These information measures also depend on:

1. The a priori probabilities Pr(X), Pr(Y ) of the classes X and Y
2. The conditional probability density functions p(z/X), p(z/Y )
3. The a posteriori probabilities p(X/z) and p(Y/z) of the classes, conditional on z
4. The combined probability density p(z) = Pr(X)p(z/X) + Pr(Y )p(z/Y )
The following is the a list of major separation measures:
Shannon entropy

S(Ω/z) = E{−Pr(X/z) log Pr(X/z)− Pr(Y/z) log Pr(Y/z)} (13.130)

Average quadratic entropy

S(Ω/z) = E{Pr(X/z)[1− Pr(X/z)] + Pr(Y/z)[1− Pr(Y/z)]} (13.131)

Bayesian distance

S(Ω/z) = E{Pr(X/z)2 + Pr(Y/z)2} (13.132)

Kullback-Leibler divergence

S(Ω/z) = E

{[
Pr(X/z)
Pr(X)

− Pr(Y/z)
Pr(Y )

]
log

[
Pr(Y )Pr(X/z)
Pr(X)Pr(Y/z)

]}
(13.133)

Bhattacharyya coefficient

S(Ω/z) = − log(ρ), (13.134)

where ρ =
∫

[p(X/z)p(Y/z)]
1
2 dx, 0 < ρ < 1.
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Chernov bound for 0 ≤ s ≤ 1

S(Ω/z) = E{Pr(X/z)sPr(Y/z)1−s} (13.135)

Kolmogorov variational distance for s > 0

S(Ω/z) =
1
2
E{|Pr(X/z)− Pr(Y/z)|s} (13.136)

Generalized Traubert distance measure

S(Ω/z) = E

{
Pr(X/z)n + Pr(Y/z)n

Pr(X/z)n−1 + Pr(Y/z)n−1

}
. (13.137)
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866. É. Moulines and J.-F. Cardoso. Direction finding algorithms using fourth-order statistics.
Asymptotic performance analysis. In Proc. ICASSP, pages 437–440, March 1992.
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Hérault-Jutten network to signals including delays for blind separation. In S. Usui, Y. Tohkura,
S. Katagiri, and E. Wilson, editors, Neural Networks for Signal Processing VI. Proceedings of
the 1996 IEEE Signal Processing Society Workshop, pages 443–452, Neural Networks for Signal
Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop, Kyoto,
Japan, 4-6 Sept. 1996, 1996. IEEE.

895. S.J. Nowlan and G.E. Hinton. A soft decision-directed LMS algorithm for blind equalization.
IEEE Trans. Communications, 41(2):275–279, February 1993.

896. R. J. Ober. Balanced canonical forms. In S. Bittanti and G. Picci, editors, Identification,
Adaptation, Learning, NATO ASI Series, pages 120–183. Springer, 1996.

897. D. Obradovic and G. Deco. Linear feature extraction in non-Gaussian networks. In Proc. of the
1995 World Congress on Neural Networks (WCNN’95), volume 1, pages 523–526, Washington,
D.C., USA, July 17-21 1995. INNS.

898. H. Oda and Y. Sato. High speed convergence of blind equalization. Trans. of the Institute of
Systems, Control and Information Engineers, 6(7):305–318, July 1993.

899. K.-N. Oh and Y.-O. Chin. Modified constant modulus algorithm: blind equalization and
carrier phase recovery algorithm. In Proc. IEEE Int. Conference Communic., pages 498–502
vol.1, Seattle, WA, 1995.

900. K.-N. Oh and Y.-O. Chin. A new dual-mode blind equalization algorithm combining carrier
phase recovery. Journal of the Korean Institute of Telematics and Electronics, 32A(5):14–23,
May 1995.

901. K.-N. Oh and Y.-O. Chin. Blind decision feedback equalizer using dual-variance Gaussian
clustering algorithm for wireless communications. In Proc. IEEE VTC, pages 696–700 vol.2,
Atlanta, GA, 1996.

902. T. Ohgane. Characteristics of CMA adaptive array for selective fading compensation in dig-
ital land mobile radio communications. Electronics and Communications in Japan, Part 1
(Communications), 74(9):43–53, September 1991.

903. T. Ohgane, N. Matsuzawa, T. Shimura, M. Mizuno, and H. Sasaoka. BER performance of
CMA adaptive array for high-speed GMSK mobile communication-a description of measure-
ments in central Tokyo. IEEE Trans. Vehicular Technology, 42(4):484–490, November 1993.



518 REFERENCES

904. T. Ohgane, H. Sasaoka, N. Matsuzawa, and T. Shimura. BER performance of CMA adaptive
array for a GMSK/TDMA system-a description of measurements in central Tokyo. In Vehicular
Technology Society 42nd VTS Conference. Frontiers of Technology. From Pioneers to the 21st
Century, pages 1012–1017 vol.2, Denver, CO, USA, 10-13 May 1992, 1992. IEEE.

905. T. Ohgane, H. Sasaoka, N. Matsuzawa, K. Takeda, and T. Shimura. A development of
GMSK/TDMA system with CMA adaptive array for land mobile communications. In 41st
IEEE Vehicular Technology Conference. Gateway to the Future Technology in Motion, pages
172–177, St. Louis, MO, USA, 19-22 May 1991, 1991. IEEE.

906. T. Ohgane, T. Shimura, N. Matsuzawa, and H. Sasaoka. An implementation of a CMA
adaptive array for high speed GMSK transmission in mobile communications. IEEE Trans.
Vehicular Technology, 42(3):282–288, August 1993.

907. E. Oja. A simplified neuron model as a principal component analyzer. Journal of Mathematical
Biology, 16:267–273, 1982.

908. E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press and J. Wiley,
Letchworth, England, 1983.

909. E. Oja. Neural networks, principal components, and subspaces. Int. Journal on Neural Sys-
tems, 1:61–68, 1989.

910. E. Oja. Principal components, minor components and linear neural networks. Neural Net-
works, 5:927–935, 1992.

911. E. Oja. The nonlinear PCA learning rule and signal separation – mathematical analysis.
Helsinki Univ. of Technology, Lab. of Computer and Information Science, Report A26, 1995.

912. E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomputing,
17(1):25–46, 1997.

913. E. Oja and A. Hyvärinenn. Blind signal separation by neural networks. In S. Amari, L. Xu,
L.-W. Chan, I. King, and K.-S. Leung, editors, Progress in Neural Information Processing.
Proceedings of the International Conference on Neural Information Processing, pages 7–14
vol.1, Hong Kong, 1996. Springer-Verlag.

914. E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. Journal of Math. Analysis and Applications, 106:69–84,
1985.

915. E. Oja and J. Karhunen. Computational Intelligence, chapter Signal separation by nonlinear
Hebbian learning. IEEE Press, 1995.

916. E. Oja and J. Karhunen. Signal separation by nonlinear Hebbian learning. In M. Palaniswami
et al., editors, Computational Intelligence – A Dynamic System Perspective, pages 83–97. IEEE
Press, 1995.

917. E. Oja, J. Karhunen, and A. Hyvärinen. From neural principal components to neural in-
dependent components. In Proc. Int. Conference on Artificial Neural Networks, Lausanne,
Switzerland, 1997.

918. E. Oja, J. Karhunen, L. Wang, and R. Vigário. Principal and independent components in neu-
ral networks – recent developments. In Proc. of the 7th Italian Workshop on Neural Networks
(WIRN-95), page 20, Vietri sul Mare, Italy, May 1995.

919. E. Oja, H. Ogawa, and J. Wangviwattana. Principal component analysis by homogeneous
neural networks, part ii: Analysis and extensions of the learning algorithms. IEICE Trans.
Inf. & Systems, E75–D(3):376–382, 1992.



REFERENCES 519

920. E. Oja and L.-Y. Wang. Neural fitting: Robustness by anti-Hebbian learning. Neurocomputing,
12:155–170, 1996.

921. E. Oja and L.-Y. Wang. Robust fitting by nonlinear neural units. Neural Networks, 9:435–444,
1996.

922. R. Ojeda and J.-F. Cardoso. Non linearity tests for time series using the invariance principle.
In Proc. Int. Symposium on non-linear theory and its applications, pages 817–820, 1995.

923. D. P. O’Leary. Near-optimal parameters for Tikhonov and other regularization methods.
SIAM J. Sci. Comput., 23(4):1161–1171, 2001.

924. B.A. Olshausen and D.J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381:607–609, 1996.

925. S. J. Orfanidis. Optimum Signal Processing: An Introduction. McGraw-Hill, New York, 2
edition, February 1988.

926. J. Orr and K.-R. Mller. Neural Networks: Tricks of the Trade. Springer, Heidelberg, 1998.

927. G.C. Orsak and S.C. Douglas. Code-length-based universal extraction for blind signal separa-
tion. In to be presented at IEEE International Conference Acoustics, Speech, Signal Processing,
Istanbul, Turkey, June 2000.

928. S. Osowski and A. Cichocki. Learning in dynamic neural networks using signal flow graphs.
Int. Journal of Circuit Theory and Applications, 27:209–228, April 1999.

929. A.J. O’Toole, H. Abdi, K.A. Deffenbacher, and D. Valentin. Low–dimensional representation
of faces in higher dimensions of the face space. Journal of the Optical Society of America A,
10(3):405–411, 1993.

930. B. Ottersten. Array processing for wireless communications. In Proc. IEEE workshop on
Stat. Signal Array Processing, pages 466–473, Corfu, June 1996.

931. K. Pahlavan and A.H. Levesque. Wireless data communications. Proc. IEEE, 82(9):1398–
1430, September 1994.

932. P. Pajunen. Nonlinear independent component analysis by self-organizing maps. In C. von der
Malsburg, W. von Seelen, J.C. Vorbruggen, and B. Sendhoff, editors, Artificial Neural Networks
- ICANN 96. 1996 International Conference Proceedings, pages 815–820, Bochum, Germany,
1996. Springer-Verlag.

933. P. Pajunen. Blind separation of binary sources with less sensors than sources. In Proc. 1997
Int. Conference on Neural Networks, volume 3, pages 1994–1997, Houston, Texas, USA, June
1997.

934. P. Pajunen. A competitive learning algorithm for separating binary sources. In Proc. European
Symposium on Artificial Neural Networks (ESANN’97), pages 255–260, Bruges, Belgium, April
1997.

935. P. Pajunen, A. Hyvärinen, and J. Karhunen. Nonlinear blind source separation by self-
organizing maps. In S. Amari, L. Xu, L.-W. Chan, I. King, and K.-S. Leung, editors, Progress
in Neural Information Processing. Proceedings of the International Conference on Neural In-
formation Processing, pages 1207–1210 vol.2, Hong Kong, 1996. Springer-Verlag.

936. P. Pajunen and J. Karhunen. A maximum likelihood approach to nonlinear blind source
separation. In Proc. Int. Conference on Artificial Neural Networks (ICANN’97), pages 541–
546, Lausanne, Switzerland, Oct. 1997.



520 REFERENCES

937. P. Pajunen and J. Karhunen. Self-organizing maps for independent component analysis. In
Proc. of Workshop on Self-Organizing Maps (WSOM’97), pages 96–99, Espoo, Finland, June
1997.

938. P. Pajunen and J. Karhunen. Least-squares methods for blind source separation based on
nonlinear PCA. Int. Journal of Neural Systems, 8(5 and 6):601–612, 1998.

939. D. Pal. Fractionally spaced semi-blind equalization of wireless channels. In 26-th Asilomar
Conference Signals, Systems Comp., pages 642–645 vol.2. IEEE, 1992.

940. D. Pal. Fractionally spaced equalization of multipath channels: A semi-blind approach. In
Proc. IEEE ICASSP, pages 9–12 vol.3, 1993.

941. H. Pan, D. Xia, S.C. Douglas, and K.F. Smith. A scalable VLSI architecture for multichannel
blind deconvolution and source separation. In Proc. IEEE Workshop on Signal Processing
Systems, pages 297–306, Boston, MA, October 1998.

942. C.B. Papadias and A. Paulraj. Decision-feedback equalization and identification of linear
channels using blind algorithms of the Bussgang type. In 29-th Asilomar Conference Signals,
Systems, Comp., pages 335–340 vol.1. IEEE, 1996.

943. C.B. Papadias and A. Paulraj. A space-time constant modulus algorithm for SDMA systems.
In Proc. IEEE VTC, pages 86–90 vol.1, Atlanta, GA, 1996.

944. C.B. Papadias and A. Paulraj. Space-time signal processing for wireless communications :
a survey. In First Signal Processing Workshop on Signal Processing Advances in Wireless
Communications SPAWC’97 , Paris, France, pages 285–288, April 16-18 1997.

945. C.B. Papadias and A.J. Paulraj. A constant modulus algorithm for multi-user signal separation
in presence of delay spread using antenna arrays. IEEE Signal Processing Letters, 4, No. 6:178–
181, June 1997.

946. C.B. Papadias and D.T.M. Slock. New adaptive blind equalization algorithms for constant
modulus constellations. In International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP-94)Adelaide, Australia, pages III–321–324, April 19-22 1994.

947. C.B. Papadias and D.T.M. Slock. Towards globally convergent blind equalization of constant-
modulus signals: a bilinear approach. In Signal Processing VIII: Proc. EUSIPCO-94, 1994.

948. C.B. Papadias and D.T.M. Slock. Normalized sliding window constant modulus and decision-
directed algorithms: a link between blind equalization and classical adaptive filtering. IEEE
Trans. Signal Processing, 45(1):231–235, January 1997.

949. A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, NJ,
1991.

950. Y. Park, K.M. Park, I. Song, and H.-M. Kim. Blind channel identification and equaliza-
tion from second-order statistics and absolute mean. IEICE Trans. Communications, E79-
B(9):1271–1277, September 1996.

951. T.W. Parsons. Separation of speech from interfering speech by means of harmonic selection.
Journal of the Acoustical Society of America, 60(4):911–918, Oct. 1976.

952. A.J. Paulraj and T. Kailath. Increasing capacity in wireless broadcast systems using dis-
tributed transmission/directional reception (DTDR). U.S. Patent 5345599, September 1994.

953. A.J. Paulraj and C.B. Papadias. Space-time processing for wireless communications. IEEE
Signal Processing Mag., 14(6):49–83, November 1997.



REFERENCES 521

954. B.A. Pearlmutter and L.C. Parra. A context-sensitive generalization of ICA. In S. Amari,
L. Xu, L.-W. Chan, I. King, and K.-S. Leung, editors, Progress in Neural Information Pro-
cessing. Proceedings of the International Conference on Neural Information Processing, pages
151–157 vol.1, Hong Kong, 1996. Springer-Verlag.

955. P.Z. Peebles. Probability, Random Variables, and Random Signal Principles. McGraw-Hill,
Singapore, 1993.

956. R.A. Peloso. Adaptive equalization for advanced television. IEEE Trans. Consumer Elec-
tronics, 38(3):119–126, August 1992.

957. M. Peng, C.L. Nikias, and J.G. Proakis. Adaptive equalization for PAM and QAM signals
with neural networks. In 25-th Asilomar Conference Signals, Systems Comp., pages 496–500
vol.1. IEEE, 1991.

958. A. Perez-Neira and M. Lagunas. Multiuser array beamforming based on a neural network map-
ping. In Proc. of the 1994 IEEE Int. Conference on Acoustics, Speech, and Signal Processing,
pages 9–12, A.aide, Australia, 1994.

959. S. Perreau, L.B. White, and P. Duhamel. A reduced computation multichannel adaptive
equalizer based on HMM. In Proc. IEEE SP Workshop on Stat. Signal Array Processing,
pages 156–159, Corfu, Greece, 1996.

960. R. Peterson and Jr. D.J. Costello. Binary convolutional codes for a multiple-access channel.
IEEE Trans. Information Theory, 25(1):101–105, Jan 1979.

961. A.P. Petropulu. Blind deconvolution of non-linear random signals. In IEEE SP Workshop on
Higher-Order Stat., pages 205–209, South Lake Tahoe, CA, 1993.

962. A.P. Petropulu and C.L. Nikias. Blind deconvolution based on signal reconstruction from
partial information using higher-order spectra. In Proc. IEEE ICASSP, pages 1757–1760
vol.3, Toronto, Ont., Canada, 1991.

963. A.P. Petropulu and C.L. Nikias. Blind convolution using signal reconstruction from partial
higher order cepstral information. IEEE Trans. Signal Processing, 41(6):2088–2095, June 1993.

964. A.P. Petropulu and C.L. Nikias. Blind deconvolution of coloured signals based on higher-
order cepstra and data fusion. IEE Proc. F (Radar and Signal Processing), 140(6):356–361,
December 1993.

965. D.-T. Pham. Blind separation of instantaneous mixture of sources via an independent com-
ponent analysis. IEEE Trans. Signal Processing, 44(11):2768–2779, November 1996.

966. D.-T. Pham. Joint approximate diagonalization of positive definite hermitian matrices. SIAM
Journal on Matrix Analysis and Applications, 22(4):1136–1152, April 2001.

967. D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixtures of non stationary
sources. In Proceedings of the Second International Workshop on ICA and BSS, ICA’2000,
pages 187–192, Helsinki, Finland, 19-22 June 2000.

968. D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixtures of non stationary
sources. IEEE Trans. on Signal Processing, 49(9):1837–1848, September 2001.

969. D.-T. Pham, P. Garat, and C. Jutten. Separation of a mixture of independent sources through
a maximum likelihood approach. In J. Vandewalle, R. Boite, M. Moonen, and A. Oosterlinck,
editors, Signal Processing VI: Theories and Applications, pages 771–774, 1992.

970. G. Picchi and G. Prati. Blind equalization and carrier recovery using a ’stop-and-go’ decision-
directed algorithm. IEEE Trans. Communications, 35(9):877–887, September 1987.



522 REFERENCES

971. G. Picchi and G. Prati. A blind Sag-So-DFD-FS equalizer. In Proc. IEEE Int. Conference
Communic., pages 957–961 vol.2, Philadelphia, PA, 1988.

972. R. Pickholtz and K. Elbarbary. The recursive constant modulus algorithm: A new approach
for real-time array processing. In 27-th Asilomar Conference Signals, Systems Comp., pages
627–632. IEEE, 1993.

973. J.C. Platt and F. Faggin. Networks for the separation of sources that are superimposed and
delayed. In Advances in Neural Information Processing Systems 4, pages 730–737. Morgan
Kaufmann, 1992.

974. B. Polyak. New method of stochastic approximation type. Automatic Remote Control, 51:937–
946, 1990.

975. H.V. Poor and X. Wang. Adaptive suppression of narrowband digital interferers from spread
spectrum signals. In Proc. IEEE ICASSP, pages 1061–1064 vol. 2, Atlanta, GA, 1996.

976. K.J. Pope and R.E. Bogner. Blind separation of speech signals. In Proc. of the Australian
Int. Conference on Speech Science and Technology, Perth, Western Australia, Dec. 6-8 1994.

977. K.J. Pope and R.E. Bogner. Blind signal separation. I. Linear, instantaneous combinations.
Digital Signal Processing, 6(1):5–16, January 1996.

978. K.J. Pope and R.E. Bogner. Blind signal separation. II. Linear, convolutive combinations.
Digital Signal Processing, 6(1):17–28, January 1996.

979. B. Porat. Digital Processing of Random Signals Theory & Methods. Prentice Hall, NJ, 1993.

980. B. Porat and B. Friedlander. Blind adaptive equalization of digital communication channels
using high-order moments. In Proc. IEEE ICASSP, pages 1372–1375 vol.2, Glasgow, UK,
1989.

981. B. Porat and B. Friedlander. Blind equalization using fourth order cumulants. In 24-th
Asilomar Conference Signals, Systems Comp., pages 253–257 vol.1. Maple Press, 1990.

982. B. Porat and B. Friedlander. Blind equalization of digital communication channels using
high-order moments. IEEE Trans. Signal Processing, 39(2):522–526, February 1991.

983. B. Porat and B. Friedlander. FIR system identification using fourth-order cumulants with ap-
plication to channel equalization. IEEE Trans. Automatic Control, 38(9):1394–1398, Septem-
ber 1993.

984. B. Porat and B. Friedlander. Blind deconvolution of polynomial-phase signals using the high-
order ambiguity function. Signal Processing, 53(2-3):149–163, September 1996.

985. H. Pozidis and A.P. Petropulu. Cross-correlation based multichannel blind equalization. In
Proc. IEEE SP Workshop on Stat. Signal Array Processing, pages 360–363, Corfu, Greece,
1996.

986. S. Prakriya and D. Hatzinakos. Blind identification of LTI-ZMNL-LTI nonlinear channel
models. IEEE Trans. Signal Processing, 43(12):3007–3013, December 1995.

987. S. Prakriya and D. Hatzinakos. Blind identification of nonlinear models using higher order
spectral analysis. In Proc. IEEE ICASSP, pages 1601–1604 vol.3, Detroit, MI, 1995.

988. C. Prati, F. Rocca, Y. Kost, and E. Damonti. Blind deconvolution for Doppler centroid
estimation in high frequency SAR. IEEE Trans. Geoscience and Remote Sensing, 29(6):934–
941, November 1991.

989. J.C. Principe, B. de Vries, and P. Guedes de Oliveira. The Gamma filter - a new class of
adaptive IIR filters with restricted feedback. i3etsp, 41:649–656, 1993.



REFERENCES 523

990. J.C. Principe, C. Wang, and H.-C. Wu. Temporal decorrelation using teacher forcing anti-
Hebbian learning and its application in adaptive blind source separation. In S. Usui, Y. Tohkura,
S. Katagiri, and E. Wilson, editors, Neural Networks for Signal Processing VI. Proceedings of
the 1996 IEEE Signal Processing Society Workshop, pages 413–422, Neural Networks for Sig-
nal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop, Kyoto,
Japan, 4-6 Sept. 1996, 1996. IEEE.

991. J.G. Proakis. Digital communications. McGraw-Hill, 2nd edition, 1989.

992. J.G. Proakis and C.L. Nikias. Blind equalization. Proc. SPIE, 1565:76–87, 1991.

993. C.G. Puntonet, A. Prieto, and J. Ortega. New geometrical approach for blind separation of
sources mapped to a neural network. In Proceedings International Workshop on Neural Net-
works for Identification, Control, Robotics, and Signal/Image Processing, pages 174–182, Pro-
ceedings of International Workshop on Neural Networks for Identification, Control, Robotics
and Signal/Image Processing, Venice, Italy, 21-23 Aug. 1996, 1996. IEEE Comput. Society
Press.

994. V. Radionov and S. Mayrargue. Semi-blind approach to second order identification of SIMO-
FIR channel driven by finite alphabet sequence. In IEEE Int. Conference on Dig. Signal
Processing, volume 1, pages 115–118. IEEE Press, Santorini (Greece), July 1997.

995. R. Raheli and G. Picchi. Synchronous and fractionally-spaced blind equalization in dually-
polarized digital radio links. In Proc. IEEE ICC, pages 156–161 vol.1, Denver, CO, 1991.

996. M.G. Rahim, B.-H. Juang, W. Chou, and E. Buhrke. Signal conditioning techniques for robust
speech recognition. IEEE Signal Processing Letters, 3(4):107–109, April 1996.

997. G. Raleigh, S. Diggavi, V. Jones, and A. Paulraj. A blind adaptive transmit antenna algorithm
for wireless communication. In Proc. IEEE ICC, 1995.

998. J. Ramos and M.D. Zoltowski. Reduced complexity blind 2D RAKE receiver for CDMA. In
Proc. IEEE SP Workshop on Stat. Signal Array Processing, pages 502–505, Corfu, Greece,
1996.

999. J. Ramos, M.D. Zoltowski, and H. Liu. A low-complexity space-time RAKE receiver for
DS-CDMA communications. IEEE Signal Processing Letters, 4(9):262–265, September 1997.

1000. A. Ranheim and P. Pelin. Decoupled blind symbol estimation using an antenna array. In
Proc. IEEE SP Workshop on Stat. Signal Array Processing, pages 136–139, Corfu, Greece,
1996.

1001. B. D. Rao and K. Kreutz-Delgado. Basis selection in the presence of noise. In Conference
Record of the 32rd Asilomar Conference on Signals, Systems and Computers, pages 752–756,
1998.

1002. B. D. Rao and K. Kreutz-Delgado. An affine scaling methodology for best basis selection.
IEEE Trans. Sig. Proc., 47(1):187–200, January 1999.

1003. Y. Rao and J.C. Principe. A fast on-line generalized eigendecomposition algorithm for time
series segmentation. In Proc. Symposium 2000: Adaptive Systems for Signal Processing,
Communications and Control (AS-SPCC), 2000.

1004. T.S. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall, Upper
Saddle River, NJ, 1996.

1005. M.J. Ready and R.P. Gooch. Blind equalization based on radius directed adaptation. In
Proc. IEEE ICASSP, pages 1699–1702 vol.3, Albuquerque, NM, USA, 3-6 April 1990, 1990.



524 REFERENCES

1006. V.U. Reddy, C.B. Papadias, and A. Paulraj. Second-order blind identifiability of certain
classes of multipath channels using antenna arrays. In International Conference on Acoustics,
Speech, and Signal Processing, Munich, Germany, pages 3465–3468, April 21-24 1997.

1007. V.U. Reddy, C.B. Papadias, and A.J. Paulraj. Blind identifiability of certain classes of
multipath channels for second-order statistics using antenna arrays. IEEE Signal Processing
Letters, 4, No. 5:138–141, May 1997.

1008. P. A. Regalia and M. Mboup. Properties of some blind equalization criteria in noisy multi-
user environments. IEEE Trans. Signal Processing, 49:3112–3122, 2001.

1009. E. Ribak. Astronomical imaging by pupil plane interferometry. Proc. SPIE, 1038:418–426,
1989.

1010. C. Ringeissen. Combining decision algorithms for matching in the union of disjoint equational
theories. Information and Computation, 126(2):144–160, May 1996.

1011. C. Riou, T. Chonavel, and P.-Y. Cochet. Adaptive subspace estimation-application to moving
sources localization and blind channel identification. In Proc. IEEE ICASSP, pages 1648–1651
vol. 3, Atlanta, GA, 1996.

1012. H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat., 22:400–
407, 1951.

1013. R.S. Roberts, P.S. Lewis, and O.A. Vela. A pattern recognition algorithm for the blind
discrimination of liquid and solid filled munitions. In 29-th Asilomar Conference Signals,
Systems, Comp., pages 1310–1314 vol.2. IEEE, 1996.

1014. J.A. Rodriguez-Fonollosa and J. Vidal. Adaptive ARMA identification using cumulants. In
J.L. Lacoume, editor, Higher Order Statistics. Proceedings of the International Signal Process-
ing Workshop, pages 125–128, Chamrousse, France, 1992. Elsevier.

1015. R. Rosipal, M. Girolami, L.J. Trejo, and A. Cichocki. Kernel PCA for feature extraction and
de-noising in non-linear regression. Neural Computing and Applications, 10:231–243, 2001.

1016. F.J. Ross and D.P. Taylor. An enhancement to blind equalization algorithms. IEEE Trans.
Communications, 39(5):636–639, May 1991.

1017. S. T. Roweis. EM algorithms for PCA and SPCA. In Advances in Neural Information pro-
cessing Systems NIPS-98, volume 10, pages 452–456, 1998.

1018. J. Rubner and P. Tavan. A self organizing network for principal components analysis. Euro-
physics Letters, 10:693–689, 1989.

1019. M.J. Rude and L.J. Griffiths. Incorporation of linear constraints into the constant modulus
algorithm. In Proc. IEEE ICASSP, pages 968–971 vol.2, Glasgow, UK, 23-26 May 1989, 1989.

1020. M.J. Rude and L.J. Griffiths. A linearly constrained adaptive algorithm for constant modulus
signal processing. In L. Torres, E. Masgrau, and M.A. Lagunas, editors, Signal Processing V.
Theories and Applications. Proceedings of EUSIPCO-90, Fifth European Signal Processing
Conference, pages 237–240 vol.1, Barcelona, Spain, 18-21 Sept. 1990, 1990. Elsevier.

1021. M.J. Rude and L.J. Griffiths. An untrained, fractionally-spaced equalizer for co-channel
interference environments. In 24-th Asilomar Conference Signals, Systems Comp., pages 468–
472 vol.1, Pacific Grove, CA, USA, 5-7 Nov. 1990, 1990. Maple Press.

1022. M.J. Rude and L.J. Griffiths. Sensitivity of the linearly-constrained constant-modulus cost
function. In 25-th Asilomar Conference Signals, Systems Comp., pages 984–988 vol.2. IEEE,
1991.



REFERENCES 525

1023. M. Rupp and S.C. Douglas. A posteriori analysis of adaptive blind equalizers. In Proc. 32nd
Asilomar Conference on Signals, Systems, and Computers, volume 1, pages 369–373, Pacific
Grove, CA, November 1998.

1024. W. Rupprecht. Odd-order Volterra circuits with potential application to blind equalization
of linear channels. In 26-th Asilomar Conference Signals, Systems Comp., pages 319–323 vol.1.
IEEE, 1992.

1025. I. SabaÃla, A. Cichocki, and S. Amari. Relationships between instantaneous blind source
separation and multichannel blind deconvolution. In Proc. Int. Joint Conference on Neural
Networks, pages 148–152, Alaska USA, 1998.

1026. M.J. Sabin. Global Convergence and Empirical Consistency of the Generalized Lloyd Algo-
rithm. PhD thesis, Stanford University, Stanford, CA, 1984.

1027. M. Sabry-Rizk, W. Zgallai, P. Hardiman, and J. O‘Riordan. Blind deconvolution homomor-
phic analysis of abnormalities in ECG signals. In IEE Colloquium on ‘Blind Deconvolution -
Algorithms and Applications‘ (Ref. No.1995/145), pages 5/1–9, London, UK, 1995. IEE.

1028. H. Sahlin and U. Lindgren. The asymptotic Cramer-Rao lower bound for blind signal sepa-
ration. In Proc. IEEE SP Workshop on Stat. Signal Array Processing, pages 328–331, Corfu,
Greece, 1996.

1029. H. Sakai and K. Shimizu. Two improved algorithms for adaptive subspace filtering. In
Proc. 11th IFAC Symposium System Identification (SYSID’97), pages 1689–1694, Kitakyushu,
Japan, July 1997.

1030. J. Sala and G. Vazquez. A statistical reference criterion for adaptive filtering. In Proc. IEEE
ICASSP, pages 1660–1663 vol. 3, Atlanta, GA, 1996.

1031. F. Salam. An adaptive network for blind separation of independent signals. In Proc. of
the 1993 IEEE International Symposium on Circuits and Systems, volume 1, pages 431–434,
Chicago, USA, May 3-6 1993. IEEE.

1032. F. Salam and G. Erten. The state space framework for blind dynamic signal extraction and
recovery. In Proc of ’99 Int. Symposium on Circuits and Systems, ISCAS’99, volume 5, pages
66–69, Orlando, Florida, 1999.

1033. F. Salam and K. Waheed. State space feedforward and feedback structures for blind source
recovery. In Proc. of the Third International Conference on Independent Component Analysis
and Signal Separation (ICA-2001), pages 248–253, San Diego, USA, Dec. 9-13 2001.

1034. F.S. Samaria and A.C. Harter. Parameterization of a stochastic model for human face iden-
tification. In Workshop on the Application of Computer Vision, pages 138–142, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

1035. M. Sambur. Adaptive noise canceling for speech signals. IEEE Trans. Acoustics Speech,
Signal Processing, ASSP-26:419–423, October 1978.

1036. T.D. Sanger. Optimal unsupervised learning in a single–layer linear feedforward neural net-
work. Neural Networks, 2:459–473, 1989.

1037. T.D. Sanger. Analysis of the two-dimensional receptive fields learned by the generalized
Hebbian algorithm in response to random input. Biological Cybernetics, 63:221–228, 1990.

1038. I. Santamaria-Caballero, C. Pantaleon-Prieto, F. Diaz de Maria, and A. Artes-Rodriguez. A
new inverse filter criterion for blind deconvolution of spiky signals using Gaussian mixtures.
In Proc. IEEE ICASSP, pages 1680–1683 vol. 3, Atlanta, GA, 1996.



526 REFERENCES

1039. K. Sasaki and H. Masuhara. Blind-deconvolution analysis of transient curves by the use of a
convolved autoregressive model. Applied Optics, 35(26):5312–5316, September 1996.

1040. Y. Sato. A method of self-recovering equalization for multilevel amplitude-modulation sys-
tems. IEEE Trans. Communications, 23:679–682, June 1975.

1041. Y. Sato. Blind equalization and blind sequence estimation. IEICE Trans. Communications,
E77-B(5):545–556, May 1994.

1042. E.H. Satorius and J.J. Mulligan. Minimum entropy deconvolution and blind equalization.
Electronics Letters, 28(16):1534–1535, July 1992.

1043. E.H. Satorius and J.J. Mulligan. An alternative methodology for blind equalization. Digital
Signal Processing, 3(3):199–209, July 1993.

1044. M. Savic, H. Gao, and J.S. Sorenson. Co-channel speaker separation based on maximum-
likelihood deconvolution. In International Conference on Acoustics, Speech and Signal Pro-
cessing, volume I, pages 25–28, 1994.

1045. G. Scarano and G. Jacovitti. Sources identification in unknown Gaussian coloured noise with
composite HNL statistics. In Proc. IEEE ICASSP, pages 3465–3468 vol.5, Toronto, Ont.,
Canada, 1991.

1046. S.V. Schell. An overview of sensor array processing for cyclostationary signals. In W.A.
Gardner, editor, Cyclostationarity in Communications and Signal Processing, pages 168–239,
New Jersey, USA, 1994. IEEE Press.

1047. S.V. Schell and W.A. Gardner. Maximum likelihood and common factor analysis-based blind
adaptive spatial filtering for cyclostationary signals. In Proc. IEEE ICASSP, pages IV:292–
295. IEEE, 1992.

1048. S.V. Schell and T.E. Shrimpton. Super-exponentially convergent blind fractionally-spaced
equalization. In 29-th Asilomar Conference Signals, Systems, Comp., pages 703–709 vol.1.
IEEE, 1996.

1049. T. Schirtzinger, X. Li, and W.K. Jenkins. A comparison of three algorithms for blind equaliza-
tion based on the constant modulus error criterion. In Proc. IEEE ICASSP, pages 1049–1052
vol.2, Detroit, MI, 1995.

1050. L. Schlicht and G. Ilgenfritz. Simulation of diffusion in 2-D heterogeneous systems: com-
parison with effective medium and percolation theories. Physica A, 227(3-4):239–247, June
1996.

1051. R.O. Schmidt. A Signal Subspace Approach to Multiple Source Location and Spectral Esti-
mation. PhD thesis, Stanford University, Stanford, CA, 1981.

1052. R.O. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. on
Antenna and Propagation, AP-34(3):276–280, March 1986.

1053. J.B. Schodorf and D.B. Williams. A blind adaptive interference cancellation scheme for
CDMA systems. In 29-th Asilomar Conference Signals, Systems, Comp., pages 270–274 vol.1.
IEEE, 1996.

1054. J.B. Schodorf and D.B. Williams. A constrained adaptive diversity combiner for interference
suppression in CDMA systems. In Proc. IEEE ICASSP, pages 2666–2669 vol. 5, Atlanta, GA,
1996.

1055. J.B. Schodorf and D.B. Williams. Partially adaptive multiuser detection. In Proc. IEEE
VTC, pages 367–371 vol.1, Atlanta, GA, 1996.



REFERENCES 527

1056. T.J. Schulz. Multiframe blind deconvolution of astronomical images. Journal of the Optical
Society of America A (Optics and Image Science), 10(5):1064–1073, May 1993.

1057. M. Segal, E. Weinstein, and B.R. Musicus. Estimate-Maximize algorithms for multichannel
time delay and signal estimation. IEEE Trans. on Signal Processing, 39(1):1–16, Jan. 1991.

1058. J.H. Seldin and J.R. Fienup. Iterative blind deconvolution algorithm applied to phase re-
trieval. Journal of the Optical Society of America A (Optics and Image Science), 7(3):428–433,
March 1990.

1059. C. Serviere. Blind source separation of convolutive mixtures. In Proc. IEEE SP Workshop
on Stat. Signal Array Processing, pages 316–319, Corfu, Greece, 1996.

1060. C. Serviere and D. Baudois. Source separation with noisy observations: a noise cancelling
application. Signal Processing, 42(1):45–57, February 1995.

1061. C. Serviere and V. Capdevielle. Blind adaptive separation of wide-band sources. In Proc.
IEEE ICASSP, pages 2698–2701 vol. 5, Atlanta, GA, 1996.

1062. N. Seshadri. Joint data and channel estimation using fast blind trellis search techniques. In
IEEE Proc. GLOBECOM, pages 1659–1663 vol.3, San Diego, CA, 1990. IEEE.

1063. W.. Sethares, G.A. Rey, and C.R. Johnson, Jr. Approaches to blind equalization of signals
with multiple modulus. In Proc. IEEE ICASSP, pages 972–975 vol.2, Glasgow, UK, 23-26
May 1989, 1989.

1064. W.A. Sethares, R.A. Kennedy, and Z. Gu. An approach to blind equalization of non-minimum
phase systems. In Proc. IEEE ICASSP, pages 1529–1532 vol.3, Toronto, Ont., Canada, 1991.

1065. B. Shafai and S. Mo. Adaptive deconvolution and identification of nonminimum phase FIR
systems using Kalman filter. In Proc. IEEE ICASSP, pages 489–492 vol.5, San Francisco, CA,
1992.

1066. A.A. Shah. Fast channel classification. Technical report, Stanford University, 1993.

1067. O. Shalvi and E. Weinstein. New criteria for blind deconvolution of nonminimum phase
systems (channels). IEEE Trans. Informat. Th., 36(2):312–321, March 1990.

1068. O. Shalvi and E. Weinstein. Super-exponential methods for blind deconvolution. IEEE
Trans. Informat. Th., 39(2):504–519, March 1993.

1069. O. Shalvi and E. Weinstein. Universal method for blind deconvolution. In S. Haykin, editor,
Blind Deconvolution, pages 121–180. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1994.

1070. S. Shamsunder and G.B. Giannakis. Modeling of non-Gaussian array data using cumulants:
DOA estimation of more sources with less sensors. Signal Processing, 30:279–297, 1993.

1071. M. Sharma and R. Mammone. Subword-based text-dependent speaker verification system
with user-selectable passwords. In Proc. IEEE ICASSP, pages 93–96 vol. 1, Atlanta, GA,
1996.

1072. T. Shimada and S.K. Mitra. Blind adaptive equalization for digital storage systems using
timing interpolation. In Proc. IEEE ICASSP, pages 1475–1478 vol.3, Albuquerque, NM, 1990.

1073. J. Shin, J.-S. Lee, E.-T. Kim, C.-S. Won, and J.-K. Kim. An improved stop-and-go algo-
rithm for blind equalization. IEICE Trans. Fundamentals of Electronics, Communications and
Computer Sciences, E79-A(6):784–789, June 1996.

1074. V. Shtrom and H. Fan. Blind equalization: a new convex cost function. In Proc. IEEE
ICASSP, pages 1779–1782 vol. 3, Atlanta, GA, 1996.



528 REFERENCES

1075. J.J. Shynk and C.K. Chan. A comparative analysis of the stationary points of the constant
modulus algorithm based on Gaussian assumptions. In Proc. IEEE ICASSP, pages 1249–1252
vol.3, Albuquerque, NM, USA, 3-6 April 1990, 1990.

1076. J.J. Shynk and C.K. Chan. Error surfaces of the constant modulus algorithm. In 1990 IEEE
International Symposium on Circuits and Systems, pages 1335–1338 vol.2, New Orleans, LA,
USA, 1-3 May 1990, 1990. IEEE.

1077. J.J. Shynk and C.K. Chan. Performance surfaces of the constant modulus algorithm based
on a conditional Gaussian model. IEEE Trans. Signal Processing, 41(5):1965–1969, May 1993.

1078. J.J. Shynk, C.K. Chan, and M.R. Petraglia. Blind adaptive filtering in the frequency domain.
In 1990 IEEE International Symposium on Circuits and Systems, pages 275–278 vol.1, New
Orleans, LA, USA, 1-3 May 1990, 1990. IEEE.

1079. J.J. Shynk and R.P. Gooch. Convergence properties of the Multistage CMA adaptive beam-
former. In 27-th Asilomar Conference Signals, Systems Comp., pages 622–626 vol.1. IEEE,
1993.

1080. J.J. Shynk and R.P. Gooch. The constant modulus array for co-channel signal copy and
direction finding. IEEE Trans. on Signal Processing, 44 No.3:652–660, March 1996.

1081. J.J. Shynk, R.P. Gooch, G. Krishnamurthy, and C.K. Chan. A comparative performance
study of several blind equalization algorithms. In Proc. SPIE Vol. 1565 Adaptive Signal
Processing, pages 102–117. SPIE, 1991.

1082. J.J. Shynk, D.P. Witmer, M.J. Ready, R.P. Gooch, and C.K. Chan. Adaptive equalization
using multirate filtering techniques. In 25-th Asilomar Conference Signals, Systems Comp.,
pages 756–762 vol.2. IEEE, 1991.

1083. F.M. Silva and L.B. Almeida. A distributed decorrelation algorithm. In E. Gelenba, edi-
tor, Neural Networks, Advances and Applications, pages 145–163, Amsterdam, 1991. North–
Holland.

1084. W. Skarbek, A. Cichocki, and W. Kasprzak. Principal subspace analysis for incomplete image
data in one learning epoch. Neural Network World, 6(3):375–382, 1996.

1085. B. Sklar. Rayleigh fading channels in mobile digital communication systems, part I: Charac-
terization. IEEE Communications Magazine, 35(7):90–100, July 1997.

1086. B. Sklar. Rayleigh fading channels in mobile digital communication systems, part II: Miti-
gation. IEEE Communications Magazine, 35(7):102–109, July 1997.

1087. D.T.M. Slock. Blind fractionally-spaced equalization, perfect-reconstruction filter banks and
multichannel linear prediction. In Proc. IEEE ICASSP, pages IV:585–588, 1994.

1088. D.T.M. Slock. Blind joint equalization of multiple synchronous mobile users for spatial
division multiple access. In Proc. 7th Tyrrhenian Int. Workshop on Digital Communications:
Signal Processing in telecommunications, Viareggio, Italy, Sept. 10-14 1995.

1089. D.T.M. Slock. Spatio-temporal training-sequence-based channel equalization and adaptive
interference cancellation. In Proc. ICASSP 96 Conference, Atlanta, Georgia, May 1996.

1090. D.T.M. Slock and C.B. Papadias. Blind fractionally-spaced equalization based on cyclosta-
tionarity. In Proc. Vehicular Technology Conference, pages 1286–1290, Stockholm, Sweden,
June 1994.

1091. D.T.M. Slock and C.B. Papadias. Further results on blind identification and equalization of
multiple FIR channels. In Proc. Int’l Conference on Acoustics, Speech and Signal Processing,
, Detroit, Michigan, pages 1964–1967, May 8-12 1995.



REFERENCES 529

1092. J. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ, 1991.
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Glossary of Symbols and

Abbreviations

Principal Symbols

A = [aij ] matrix (mixing or state-space matrix)

aij ij-th element of matrix A

arg max
θ

J (θ) denotes the value of θ that maximizes J (θ)

bi i-th element of vector b

D diagonal scaling matrix

det (A) determinant of matrix A

diag (d1, d2, . . . , dn) diagonal matrix with elements d1, d2, . . . , dn on main diagonal

d (n) desired response

ei natural unit vector in ith direction

exp exponential

E {·} expectation operator

Ex expected value with respect to p.d.f. of x

f(y) = [f1(y1), . . . , fn(yn)]T nonlinear transformation of vector y

g(y) = [g1(y1), . . . , gn(yn)]T nonlinear transformation of vector y
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H mixing matrix

H−1 inverse of a nonsingular matrix H

H+ pseudo-inverse of a matrix H

H (z) transfer function of discrete-time linear filter

H(z) matrix transfer function of discrete-time filter

H(y) = 〈log py(y)〉 entropy

I or In identity matrix or identity matrix of dimension n× n

Im( ) imaginary part of

j
√−1

J (w) cost function

KL(y||s) =
〈
log py(y)

ps(y)

〉
Kullback-Leibler divergence, relative entropy

KL(py(y)||ps(s)) as above

log natural logarithm

k discrete-time or number of iterations applied

to recursive algorithm

n number of inputs and outputs

N data length

m number of sensors

p(x) or px(x) probability density function (p.d.f.) of x

py(y) probability density function (p.d.f.) of y(k)

P permutation matrix

rxy [τ ] cross-correlation function of discrete-time

processes x [n] and y [n]

rxy (τ) cross-correlation function of continuous-time

processes x (t) and y (t)

Rx or Rxx covariance matrix of x

Rxy covariance matrix of x and y

Rfg correlation matrix between f(y) and g(y)

IRM real M-dimensional parameter space

Re( ) real part
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s vector of source signals

s (t) continuous-time signal

s(k) = [s1(k), . . . , sn(k)]T vector of (input) source signals at k-th sample

S(z) Z-transform of source signal vector s(k)

sign (x) sign function (= 1 for x > 0 and = −1 for x < 0)

t continuous time

tr (A) trace of matrix A

W = [wij ] separating (demixing) matrix

WH = (W∗)T transposed and complex conjugated (Hermitian) of W

W(z) matrix transfer function of deconvoluting filter

x(k) observed (sensor or mixed) discrete-time data

|x| absolute value (magnitude) of x

‖x‖ norm (length) of vector x

y vector of separated (output) signals

z−1 unit-sample (delay) operator

Z z transform

Z−1 inverse z transform

δij Kronecker delta

η learning rate for discrete-time algorithms

Γ (x) Gamma function

λmax maximum eigenvalue of correlation matrix R

λmin minimum eigenvalue of correlation matrix R

Λ diagonal matrix

κ4(y) kurtosis of random variable y

κp(y) p-th cumulant

µ learning rate for continuous-time algorithms

Φ cost function

ϕ (y) activation function of a neuron, expressed as a

function of input y

ϕi (·) nonlinear activation function of neuron i
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σ2 variance

Θ unknown parameter (vector)

θ̂ estimator of θ

ω normalized angular frequency; 0 < ω ≤ 2π

4wi small change applied to weight wi

∇ gradient operator

∇wi
J gradient of J with respect to variable wi

∇WJ gradient of cost function J with respect to matrix W

[·]+ superscript symbol for pseudo-inversive of a matrix

[·]T transpose

[·]∗ complex conjugate

[·]H complex conjugate, transpose

〈·〉 average operator

? convolution

̂ denotes estimator

⊗ Kronecker product

Abbreviations

i.i.d. independent identical distribution

cdf cumulative density function

pdf probability density function

BSE Blind Signal Extraction

BSS Blind Signal Separation

BSD Blind Signal Deconvolution

CMA Constant Modulus Algorithm

CLT Central Limit Theorem

FIR Finite Impulse Response

ICA Independent Component Analysis

IIR Infinite Impulse Response
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ISI Intersymbol Interference

LMS Least Mean Squares

MCA Minor Component Analysis

MBD Multichannel Blind Deconvolution

MED Maximum Entropy Distribution

MIMO Multiple-Input, Multiple-Output

PAM Pulse-Amplitude Modulation

PCA Principal Component Analysis

QAM Quadrature Amplitude Modulation

RLS Recursive Least Squares

SIMO Single-Input, Multiple-Output

SISO Single Input, Single Output

SVD Singular Value Decomposition

TLS Total Least Squares

ETLS Extended Total Least Squares

GTLS Generalized Total Least Squares
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Acoustic speech reconstruction, 336
Adaptive filter, 33
Adaptive learning algorithm, 285
Adaptive noise cancellation systems, 312
Adaptive time-varying nonlinearities, 294
Alternating Least Squares, 157
Amari-Hopfield neural network, 63, 329–330
Ambiguities, 2
AMUSE, 146
Array of microphones, 34, 336
Artifact reduction, 24
Atick-Redlich formula, 135, 315
Average eigen-structure, 148
Basic properties of PCA, 93
Batch adaptation, 290
Batch estimator, 408
Best Linear Unbiased Estimator, 48
Bias Removal for ICA, 307
Bias removal, 140
Binary signals, 452
Biomagentic inverse problem, 81
Blind equalization, 214, 336, 340
Blind extraction of sparse sources, 320
Blind identification, 142
Blind Signal Extraction, 8
Blind signal extraction, 19, 179
Blind signal processing, 2
Blind SIMO equalization, 342
BLUE, 48
Brain motor system, 27

Brockett’s algorithm, 123
BSP, 4
BSS for more sensors than sources, 318
BSS for Unknown Number of Sources, 293
BSS, 5
Bussgang algorithms, 336
Cascade hierarchical neural network, 106
Cholesky decomposition, 131
Co-channel interferences, 36
Cocktail party problem, 34
Colored Gaussian, 219
Complex-valued PCA, 122
Constrained minimization problem, 323
Continuous–time algorithm, 327
Convolutive colored noise, 310
Correlation cancelling, 164
Cross-cumulants, 333
Cross-moment matrices, 334
Cumulant based equivariant algorithm, 319
Cumulants based cost function, 314
Cumulants for complex-valued signals, 318
Cyclostationarity, 163
Data least squares, 67
Decorrelation algorithm, 291
Definitions of ICA, 7
Deflation procedure, 191
Deflation, 218
Differences between ICA and BSS, 8
Diversity measures, 84
DLS, 67

552



INDEX 553

EASI algorithms, 291
Eigenvalue decomposition, 120, 144
Electrocardiogram, 25
Electroencephalography, 27
Electromagnetic source localization, 27
EMG, 27
Equalization criteria, 338
Equilibrium points, 431
Equivalent learning algorithm, 279
Equivariant ICA algorithms, 320
Equivariant property, 136
Estimating function, 385
Evoked potentials, 25
Extended TLS, 75, 77, 79
Extraction group of sources, 242
Extraction of principal components, 96
Family of ICA algorithms, 288
Fast algorithms for PCA, 101
Feature detection, 41
Feature extraction, 88
Fetal electrocardiogram, 24
FIR equalizer, 215
Fixed point algorithm, 188
Flexible ICA, 250, 293
FOBI, 147
Focuss algorithm, 83, 86
Fractionally sampled, 338
Gaussian entropy, 84
Gaussian exponent, 243, 249
Gaussian noise, 327
Generalized Cauchy distribution, 247
Generalized Gaussian distribution, 243, 248
Generalized TLS problem, 74
Generalized zero-forcing condition, 351
Global convergence, 226
Godard criterion, 215
Gram-Schmidt orthogonalization, 138–139
Hadamard product, 334
Hadamard’s inequality, 255
Hammerstein model, 443
Hammerstein system, 444
Hebbian learning, 96, 343
Hessian, 241
Hierarchical neural network, 125
Higher-order statistics, 9, 254
HOS, 9
HRBF, 449
Hyper radial basis function, 449
Hyperbolic-Cauchy, 243
ICA for noisy data, 11
ICA for nonstationary signals, 254
ICA, 5
Image analysis, 41
Image decomposition, 41
Image enhancement, 38
Image restoration, 38

Image understanding, 39
Impulsive noise, 247
Indeterminacies, 2
Information back-propagation, 435–436
Inhibition control circuit, 66
Internal parameters, 426
Internal state, 426
Inverse control problem, 4
Inverse power iteration, 104
Inverse problem, 28
Invertibility, 447
Isonormal property, 108
JADE, 163
Joint diagonalization, 157
Jutten and Hérault algorithm, 274
Jutten-Hérault learning algorithm, 277
Kalman filter, 437
Karhunen-Loeve-transform, 89
Kullback-Leibler divergence, 233
Kurtosis, 249
LAD, 45, 61
Lagrange function, 207
Learning rate, 290
Least absolute deviation, 45, 61
Least-squares problem, 45
Leptokurtic, 182, 249
Linear predictor, 201
Linear state-space system, 424
Local ICA, 8
Local learning rule, 284
Localizing multiple dipoles, 29
LS, 45, 67
Magnetoencephalography, 27
Manhattan learning, 452
Matching pursuit, 80
Matrix Cumulants, 333
Matrix inversion approach, 285
MCA algorithms, 107
MCA, 98, 107
Measure of independence, 233
Measure of non Gaussianity, 197
Measure of temporal predictability, 197
MEG, 28
Mesokurtic, 182
MIMO, 335
Minimum 1-norm, 61
Minimum energy problem, 81
Minimum fuel problem, 80
Minimum norm problem, 45
Minor component analysis, 98
Minor subspace analysis, 110
Model for noise cancellation, 312
Moving Average, 90
Moving-average method, 433
MSA, 110
Multi-path fading, 338
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Multilayer neural networks, 282
Multistage PCA for BSS, 119
NARMA, 443
Natural gradient, 232, 237
Noise cancellation, 13, 33, 311
Noise reduction, 33
Non-linear PCA, 292
Non-stationary sources, 254
Nonholonomic constraints, 433
Nonholonomic learning algorithms, 238
Nonholonomic NG algorithm, 238
Nonlinear activation function, 214
Nonlinear dynamical system, 447
Nonlinear PCA, 121
Nonlinear state-space model, 445
Normalized kurtosis, 181
Normalized learning rate, 289
Oja algorithm, 95
On-line estimator, 389
On-line learning algorithms, 389
On-line learning, 394
Overcomplete signal representation, 80
Parallel algorithms for PCA/MCA, 110
Parallel Factor Analysis, 158
PCA, 88
Performance index, 219
Platykurtic, 182, 249
Prewhitening, 130
Principal component analysis, 331
Principal components, 88
Properties of matrix cumulants, 314
PSA, 110
Rayleigh quotient, 98
Recurrent neural network, 237, 274
Recursive least squares, 121
Regularization, 57, 329
Renyi entropy, 84
Robust algorithms, 104
Robust Focuss algorithm, 167
Robust loss functions, 105, 127
Robust orthogonalization, 149
Robust PCA, 104
Robust prewhitening, 140, 331
Robust SOBI, 159
Robustness to outliers, 294
RSOBI, 159
Sample covariance matrix, 90

Score functions, 384
Second order statistics, 9, 121
Self-regulatory control, 64
Self-supervising linear neural network, 124
Self-supervising principle, 106, 125
Semi-blind, 448
Semi-orthogonal matrix, 322
Semiparametric statistical model, 385
Separating/filtering system, 426
Shannon entropy, 84
Signal and the noise subspace, 91
SIMO, 336
Simultaneous blind separation, 179
Singular value decomposition, 118
Somatosensory stimulus, 29
SOS cost functions, 255
SOS, 9
Sparse representation, 81
Spatial decorrelation, 130, 164
Spatio-temporal ICA, 8
Speech separation, 34
Sphering, 130
Stability conditions, 240, 300
Standard gradient descent, 105
Standardized estimating functions, 415
State-space description, 423
Statistical independence, 274
Stiefel manifold, 114, 240, 320
Stochastic approximation, 209
Sub-Gaussian, 182, 243
Subspace analysis, 110
Super-Gaussian, 182, 243
Superefficiency, 394
Supervised learning, 452
SVD, 118
Symmetrically distributed noise, 316
Temporally correlated source signals, 193
Time-frequency domain, 10
TLS, 67
Total least-squares, 67
Two-layer neural network, 449
Typical cost functions, 320
Why blind?, 37
Wiener filter, 165
Wiener model, 443
Winner-Take-All, 64
Zero-forcing condition, 351
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