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Preface

Signal Processing has always played a critical role in science and technology and develop-
ment of new systems like computer tomography, (PET, fMRI, EEG/MEG, optical record-
ings), wireless communications, digital cameras, HDTV, etc. As demand for high quality
and reliability in recording and visualization systems increases, signal processing has an
even more important role to play.

Blind Signal Processing (BSP) is now one of the hottest and emerging areas in Signal
Processing with solid theoretical foundations and many potential applications. In fact, BSP
has become a very important topic of research and development in many areas, especially
biomedical engineering, medical imaging, speech enhancement, remote sensing, communica-
tion systems, exploration seismology, geophysics, econometrics, data mining, etc. The blind
signal processing techniques principally do not use any training data and do not assume
a priori knowledge about parameters of convolutive, filtering and mixing systems. BSP
includes three major areas: Blind Signal Separation and Extraction, Independent Compo-
nent Analysis (ICA), and Blind Multichannel Blind Deconvolution and Equalization which
are the main subjects of the book. Recent research in these areas is a fascinating blend of
heuristic concepts and ideas and rigorous theories and experiments.

Researchers from various fields are interested in different, usually very diverse aspects
of the BSP. For example, neuroscientists and biologists are interested in the development
of biologically plausible neural network models with unsupervised learning. On the other
hand, they need reliable methods and techniques which will be able to extract or separate
useful information from superimposed biomedical source signals corrupted by huge noise
and interferences, for example, by using non-invasive recordings of human brain activities,
(e.g., by using EEG or MEG) in order to understand the brain ability to sense, recognize,

XXIX
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store and recall patterns as well as crucial elements of learning: association, abstraction
and generalization. A second group of researchers: engineers and computer scientists, are
fundamentally interested in possibly simple models which can be implemented in hardware
in actual available VLSI technology and in the computational approach, where the aim is to
develop flexible and efficient algorithms for specific practical engineering and scientific ap-
plications. The third group of researchers: mathematicians and physicists, have an interest
in the development of fundamental theory, to understand mechanisms, properties and abili-
ties of developed algorithms and in their generalizations to more complex and sophisticated
models. The interactions among the groups make real progress in this very interdisciplinary
research devoted to BSP and each group benefits from the others.

The theory built up around Blind Signal Processing is at present so extensive and appli-
cations are so numerous that we are, of course, not able to cover all of them. Our selection
and treatment of materials reflects our background and our own research interest and results
in this area during the last 10 years. We prefer to complement other books on the subject of
BSP rather than to compete with them. The book provides wide coverage of adaptive blind
signal processing techniques and algorithms both from the theoretical and practical point of
view. The main objective is to derive and present efficient and simple adaptive algorithms
that work well in practice for real-world data. In fact, most of the algorithms discussed
in the book have been implemented in MATLAB and extensively tested. We attempt to
present concepts, models and algorithms in possibly general or flexible forms to stimulate
the reader to be creative in visualizing new approaches and adopt methods or algorithms
for his/her specific applications.

The book is partly a textbook and partly a monograph. It is a textbook because it
gives a detailed introduction to BSP basic models and algorithms. It is simultaneously a
monograph because it presents several new results and ideas and further developments and
explanation of existing algorithms which are brought together and published in the book
for the first time. Furthermore, the research results previously scattered in many scientific
journals and conference papers worldwide, are methodically collected and presented in the
book in a unified form. As a result of its twofold character the book is likely to be of interest
to graduate and postgraduate students, engineers and scientists working in the field of
biomedical engineering, communication, electronics, computer science, finance, economics,
optimization, geophysics, and neural networks. Furthermore, the book may also be of
interest to researchers working in different areas of science, since a number of results and
concepts have been included which may be advantageous for their further research. One can
read this book through sequentially but it is not necessary since each chapter is essentially
self-contained, with as few cross references as possible. So, browsing is encouraged.
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Introduction to Blind Signal
Processing: Problems and
Applications

The fundamental problem of communication is that of reproducing at one point either exactly or

approximately a message selected at another point.
—(Claude Shannon, 1948)

In this book, we describe various approaches, methods and techniques to blind and semi-
blind signal processing, especially principal and independent component analysis, blind
source separation, blind source extraction, multichannel blind deconvolution and equaliza-
tion of source signals when the measured sensor signals are contaminated by additive noise.
An emphasis is given to an information-theoretical unifying approach, adaptive filtering
models and the development of simple and efficient associated on-line adaptive nonlinear
learning algorithms.

We derive, review and extend the existing adaptive algorithms for blind and semi-blind
signal processing with a special emphasis on robust algorithms with equivariant properties in
order to considerably reduce the bias caused by measurement noise, interferences and other
parasitic effects. Moreover, novel adaptive systems and associated learning algorithms are
presented for estimation of source signals and reduction of influence of noise. We discuss the
optimal choice of nonlinear activation functions for various signals and noise distributions,
e.g., Gaussian, Laplacian and uniformly-distributed noise assuming a generalized Gaussian
distributed and other models. Extensive computer simulations have confirmed the useful-
ness and superior performance of the developed algorithms. Some of the research results
presented in this book are new and are presented here for the first time.



2 INTRODUCTION TO BLIND SIGNAL PROCESSING: PROBLEMS AND APPLICATIONS
1.1 PROBLEM FORMULATIONS - AN OVERVIEW

1.1.1 Generalized Blind Signal Processing Problem

A fairly general blind signal processing (BSP) problem can be formulated as follows. We
observe records of sensor signals x(t) = [z1(t),z2(t), ..., 2, (t)]T from a MIMO (multiple-
input/multiple-output) nonlinear dynamical system’. The objective is to find an inverse
system, termed a reconstruction system, neural network or an adaptive inverse system, if it
exists and is stable, in order to estimate the primary source signals s(t) = [s1(t), s2(t), . . .,
s,(t)]T. This estimation is performed on the basis of the output signals y(t) = [y (t),
yo(t), ...,y (t)]T and sensor signals as well as some a priori knowledge of the mixing
system. Preferably, the inverse system should be adaptive in such a way that it has some
tracking capability in nonstationary environments (see Fig/l.1)). Instead of estimating the
source signals directly, it is sometimes more convenient to identify an unknown mixing and
filtering dynamical system first (e.g., when the inverse system does not exist or the number
of observations is less than the number of source signals) and then estimate source signals
implicitly by exploiting some a priori information about the system and applying a suitable
optimization procedure.

In many cases, source signals are simultaneously linearly filtered and mixed. The aim is
to process these observations in such a way that the original source signals are extracted
by the adaptive system. The problems of separating and estimating the original source
waveforms from the sensor array, without knowing the transmission channel characteristics
and the sources can be expressed briefly as a number of related problems: Independent
Components Analysis (ICA), Blind Source Separation (BSS), Blind Signal Extraction (BSE)
or Multichannel Blind Deconvolution (MBD) [31].

Roughly speaking, they can be formulated as the problems of separating or estimating the
waveforms of the original sources from an array of sensors or transducers without knowing
the characteristics of the transmission channels.

There appears to be something magical about blind signal processing; we are estimating
the original source signals without knowing the parameters of mixing and/or filtering pro-
cesses. It is difficult to imagine that one can estimate this at all. In fact, without some a
priori knowledge, it is not possible to uniquely estimate the original source signals. However,
one can usually estimate them up to certain indeterminacies. In mathematical terms these
indeterminacies and ambiguities can be expressed as arbitrary scaling, permutation and
delay of estimated source signals. These indeterminacies preserve, however, the waveforms
of original sources. Although these indeterminacies seem to be rather severe limitations,
but in a great number of applications these limitations are not essential, since the most
relevant information about the source signals is contained in the waveforms of the source
signals and not in their amplitudes or order in which they are arranged in the output of
the system. For some dynamical models, however, there is no guarantee that the estimated
or extracted signals have exactly the same waveforms as the source signals, and then the

n the special case a system can be a single-input single-output (SISO) or single-input/multiple-output
(SIMO).
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Fig. 1.1 Block diagrams illustrating blind signal processing or blind identification problem.

requirements must be sometimes further relaxed to the extent that the extracted waveforms
are distorted (filtered or convolved) versions of the primary source signals [175, 1277] (see
Figll.1).

We would like to emphasize the essential difference between the standard inverse iden-
tification problem and the blind or semi-blind signal processing task. In a basic linear
identification or inverse system problem we have access to the input (source) signals (see
Figll.2l (a)). Our objective is to estimate a delayed (or more generally smoothed or filtered)
version of the inverse system of a linear dynamical system (plant) by minimizing the mean
square error between the delayed (or model-reference) source signals and the output signals.
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Fig. 1.2 (a) Conceptual model of system inverse problem. (b) Model-reference adaptive inverse
control. For the switch in position 1 the system performs a standard adaptive inverse by minimizing
the norm of error vector e, for switch in position 2 the system estimates errors blindly.

In BSP problems we do not have access to source signals (which are usually assumed to
be statistically independent), so we attempt, for example, to design an appropriate non-
linear filter that estimates desired signals as illustrated in the case of a inverse system in
Figll.2l (a). Similarly, in the basic adaptive inverse control problem [12806], we attempt
to estimate a form of adaptive controller whose transfer function is the inverse (in some
sense) of that of the plant itself. The objective of such an adaptive system is to make the
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plant to directly follow the input signals (commands). A vector of error signals defined as
the difference between the plant outputs and the reference inputs are used by an adaptive
learning algorithm to adjust parameters of the linear controller. Usually, it is desirable that
the plant outputs do not track the input source (command) signals themselves but rather
track a delayed or smoothed (filtered) version of the input signals represented in Fig/T.2] (b)
by transfer function M(z). It should be noted that in the general case the global system
consisting of the cascade of the controller and the plant after convergence should model a
dynamical response of the reference model M(z) (see Figll.2] (b)) [1280].

1.1.2 Instantaneous Blind Source Separation and Independent Component Analysis

In blind signal processing problems, the mixing and filtering processes of the unknown
input sources s;(k) (j = 1,2,...,n) may have different mathematical or physical models,
depending on specific applications.

In the simplest case, m mixed signals x;(k) (i = 1,2,...,m) are linear combinations of
n (typically m > n) unknown mutually statistically independent, zero-mean source signals
s;(k), and are noise-contaminated (see Fig/I.3). This can be written as

.Z'z(k‘) :Zhij Sj(k)—‘rl/l(k'), (z: 1,2,...,m) (1.1)
j=1
or in the matrix notation
x(k) = Hs(k) + v(k), (1.2)
where x(k) = [z1(k),z2(k),...,2m(k)]T is a vector of sensor signals, s(k) = [s1(k),
s2(k),. .., sn(k)]T is a vector of sources, v(k) = [v1(k),va(k),...,vm(k)]T is a vector of

additive noise, and H is an unknown full rank m X n mixing matrix. In other words, it
is assumed that the signals received by an array of sensors (e.g., microphones, antennas,
transducers) are weighted sums (linear mixtures) of primary sources. These sources are
typically time-varying, zero-mean, mutually statistically independent and totally unknown
as is the case of arrays of sensors for communications or speech signals.

In general, it is assumed that the number of source signals n is unknown unless stated
otherwise. It is assumed that only the sensor vector x(k) is available and it is necessary
to design a feed-forward or recurrent neural network and an associated adaptive learning
algorithm that enables estimation of sources, identification of the mixing matrix H and/or
separating matrix W with good tracking abilities (see Fig/l.3]).

The above problems are often referred to as BSS (blind source separation) and/or ICA
(independent component analysis): the BSS of a random vector x = [x1,2,...,2,]7 is
obtained by finding an n x m, full rank, linear transformation (separating) matrix W such
that the output signal vector y = [y1,%2,...,yn]’, defined by y = W x, contains compo-
nents that are as independent as possible, as measured by an information-theoretic cost
function such as the Kullback-Leibler divergence or other criteria like sparseness, smooth-
ness or linear predictability. In other words, it is required to adapt the weights w;; of the
n x m matrix W of the linear system y(k) = W x(k) (often referred to as a single-layer
feed-forward neural network) to combine the observations x;(k) to generate estimates of the
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Unknown
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primary Il;altll?i‘;n mixed Neural network
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Fig. 1.3 Block diagram illustrating the basic linear instantaneous blind source separation (BSS)
problem: (a) General block diagram represented by vectors and matrices, (b) detailed architecture.
In general, the number of sensors can be larger, equal to or less than the number of sources. The

number of sources is unknown and can change in time [264) 275].
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source signals
(k) =ys(k) =Y wiiwi(k),  (G=12....n). (1.3)
i=1

The optimal weights correspond to the statistical independence of the output signals y; (k)
(see Figll.3).

Remark 1.1 In this book, unless otherwise mentioned, we assume that the source signals
(and consequently output signals) are zero-mean. Non zero-mean source can be modelled by
zero-mean source with an additional constant source. This constant source can be usually
detected but its amplitude cannot be recovered without some a priori knowledge.

There are several definitions of ICA. In this book, depending on the problem, we use different
definitions given below.

Definition 1.1 (Temporal ICA) The ICA of a noisy random vector x(k) € R'™ is 0b-
tained by finding an n X m, (with m > n), a full rank separating matric W such that the
output signal vector y(k) = [y1(k),y2(k), ..., yn(k)]T defined by

y(k) = Wx(k), (1.4)

contains the estimated source components s(k) € R"™ that are as independent as possible,
evaluated by an information-theoretic cost function such as the minimum Kullback-Leibler
divergence.

Definition 1.2 For a random noisy vector x(k) defined by

(k), (1.5)
k

v
where H is an (m x n) mizing matriz, s(k) = [s1(k), s2(k),...,sn(k)]T is a source vector
of statistically independent signals, and v(k) = [v1(k),v2(k),...,vm (k)T is a vector of
uncorrelated noise terms, ICA is obtained by estimating both the mizing matriz H and the
independent components s(k) = [s1(k), s2(k), ..., s, (k)]T.

x(k) = Hs(k) +

Definition 1.3 ICA task is formulated as estimation of all the source signals and their
numbers and/or identification of a mizing matriz H or its pseudo-inverse separating matriz
W = H assuming only the statistical independence of the primary sources and linear
independence of columns of H.

The mixing (ICA) model can be represented in a batch form as
X = HS, (1.6)

where X = [x(1),%(2),...,x(N)]T € R™* and S = [s(1),s(2),...,s(N)]T € RN, In
many applications, especially where the number of ICs is large and they have sparse (or
other specific) distributions, it is more convenient to use the following equivalent form:

XT =SsTHT. (1.7)
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By taking the transpose, we simply interchange the roles of the mixing matrix H =
[hy, hy,... h,] and the ICs S = [s(1),s(2),...,s(N)]T, thus the vectors of the matrix
HT can be considered as independent components and the matrix S” as the mixing matrix
and vice-versa. In the standard temporal ICA model, it is usually assumed that ICs s(k) are
time signals and the mixing matrix H is a fixed matrix without imposing any constraints
on its elements. In the spatio-temporal ICA, the distinction between ICs and the mixing
matrix is completely abolished [I105, 595]. In other words, the same or similar assump-
tions are made on the ICs and the mixing matrix. In contrast to the conventional ICA the
spatio-temporal ICA maximizes the degree of independence over time and space.

Definition 1.4 (Spatio-temporal ICA) The spatio-temporal I[CA of random matriz XT
= STHT is obtained by estimating both the unknown matrices S and H in such a way that
rows of S and columns of H be as independent as possible and both S and H consist of
the same or very similar statistical properties (e.g., the Laplacian distribution or sparse
representation).

The real-world sensor data often build up complex nonlinear structures, so applying ICA
to global data may lead to poor results. Instead, applying ICA for all available data, we
can preprocess this data by grouping it into clusters or sub-bands with specific features
and then apply ICA individually to each cluster or sub-band separately. The preprocessing
stage of suitable grouping or clustering of data is responsible for an overall coarse nonlinear
representation of the data, while the linear ICA models of individual clusters are used for
describing local features of the data.

Definition 1.5 (Local ICA) In the local ICA raw available sensor data are suitably pre-
processed, for example, by transforming (filtering) them through a bank of bandpass filters,
applying wavelets transform, joint time-frequency analysis, by grouping them into clusters
in space, or in the frequency or in the time-frequency domain, and then applying linear ICA
to each cluster (sub-band) locally. More generally, an optimal local ICA can be implemented
as the result of mutual interaction of two processes: A suitable clustering process and the
ICA process to each cluster.

In many blind signal separation problems, one may want to estimate only one or several
desired components with particular statistical features or properties, but discard the rest of
uninteresting sources and noises. For such problems, we can define Blind Signal Extraction
(BSE) (see Chapter [5] for more detail and algorithms).

Definition 1.6 (Blind Signal Extraction) BSE is formulated as a problem of estima-
tion of one source or a selected number of the sources with particular desired properties or
characteristics, sequentially one by one or estimation of a specific group of sources. Equiv-
alently the problem is formulated as an identification of the corresponding vector(s) h; of
the mizing matriz H and/or their pseudo-inverses w; which are rows of the separating ma-
tric W = ﬁ+, assuming only the statistical independence of its primary sources and linear
independence of columns of H.

Remark 1.2 [t is worth emphasizing that in the literature the terms of BSS/BES and ICA
are often confused or interchanged, although they refer to the same or similar models and are
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Mutual Independence,
Non-Gaussianity,
ICA

Temporal-Structure,
Linear Predictability,
Non-whiteness

Non-Stationarity,
Time-varying Variances

Time-Frequency,
Spectral and/or Spatial
Diversities

Fig. 1.4 Basic approaches for blind source separation with some a priori knowledge.

solved with the same or similar algorithms under the assumption that the primary sources
are mutually independent. However, in the general case, especially for real-world problems,
the objective for the ICA and the BSS are somewhat different. In fact, the objective of
BSS is to estimate the original source signals even if they are not completely mutually
statistically independent, while the objective of ICA is to determine such transformation
which assures that the output signals are as independent as possible. It should be noted that
ICA methods use higher-order statistics (HOS) in many cases, while BSS methods are apt to
use only second order statistics (SOS). The second order methods assume that sources have
some temporal structure, while the higher order methods assume their mutual independence.
Another difference is that the higher-order statistics methods can not be applied to Gaussian
signals while second order methods do not have such constraints. In fact, BSS methods do
not really replace ICA and vice versa, since each approach is based on different assumptions
and often different objectives.

Although many different source separation algorithms are available, their principles can
be summarized by the following four approaches (see Figll.4):

e The most popular approach exploits as the cost function some measure of signals
independence, non-Gaussianity or sparseness. When original sources are assumed to
be statistically independent without a temporal structure, the higher-order statistics
(HOS) are essential (implicitly or explicitly) to solve the BSS problem. In such case,
the method does not allow more than one Gaussian source (see Chapters 5 and [6] for
more detail).
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e If sources have temporal structures, then each source has non-vanishing temporal cor-
relation, less restrictive conditions than statistical independence can be used, namely,
the second-order statistics (SOS) is sufficient to estimate the mixing matrix and
sources. Along this line, several methods have been developed [1160, 1156 854} [92].
Note that these SOS methods do not allow the separation of sources with identical
power spectra shapes or i.i.d. (independent and identically distributed) sources (see
Chapter ).

e The third approach exploits nonstationarity (NS) properties and second order statis-
tics (SOS). Mainly, we are interested in the second-order nonstationarity in the sense
that source variances vary in time. The nonstationarity was first taken into account
by Matsuoka et al. [832] and it was shown that a simple decorrelation technique is able
to perform the BSS task. In contrast to other approaches, the nonstationarity infor-
mation based methods allow the separation of colored Gaussian sources with identical
power spectra shapes. However, they do not allow the separation of sources with
identical nonstationarity properties. There are some recent works on nonstationary
source separation [223], 224, [968] (see Chapters 4} [0 and [§] for overview and).

e The fourth approach exploits the various diversities? of signals, typically, time, fre-
quency, (spectral or “time coherence”) and/or time-frequency diversities, or more
generally, joint space-time-frequency (STF) diversity.

Remark 1.3 In fact, the space-time-frequency diversities concepts are widely used in wire-
less communications systems. Signals can be separated easily if they do not overlap in either
the time-, the frequency- or the time-frequency domain (see Figll.h and Fig/1.6). When sig-
nals do not overlap in the time-domain then one signal stops (is silent) before another one
begins. Such signals are easily separated when a receiver is accessible only while the signal
of interest is sent. This multiple access method is called TDMA (Time Division Multiple
Access). If two or more signals do not overlap in the frequency domain, then they can be
separated with bandpass filters as is illustrated in Fig/1.5. The method based on this prin-
ciple is called FDMA (Frequency Division Multiple Access). Both TDMA and FDMA are
used in many modern digital communication systems [/ 79]. Of course, if the source power
spectra overlap, the spectral diversity is not sufficient to extract sources, therefore, we need
to exploit another kind of diversities. If the source signals have different time-frequency
diversity and time-frequency signatures of the sources do not (completely) overlap then still
they can be extracted from one (or more) sensor signal by masking individual source signals
or interference in time-frequency domain and then syntheses from time-frequency domain
as tllustrated in Figll.0. However, in such the cases some a priory information about source
signals is necessary and separation is not completely blind but only semi-blind.

More sophisticated or advanced approaches use combinations or integration of all the above
mentioned approaches: HOS, SOS, NS and STF (Space-Time-Frequency) diversity, in order
to separate or extract sources with various statistical properties and to reduce the influence
of noise and undesirable interferences. Methods that exploit either the temporal structure

2By diversities we mean usually different characteristics or features of the signals.
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Fig. 1.5 Tllustration of exploiting spectral diversity in BSS. Three unknown sources and their available
mixture and spectrum of the mixed signal. The sources are extracted by passing the mixed signal by
three bandpass filters (BPF) with suitable frequency characteristics depicted in the bottom figure.

of sources (mainly second-order correlations) and/or the nonstationarity of sources, lead to
the second-order BSS methods. In contrast to BSS methods based on HOS, all the second-
order statistics based methods do not have to infer the probability distributions of sources
or nonlinear activation functions.

1.1.3 Independent Component Analysis for Noisy Data

As the estimation of a separating (unmixing) matrix W and a mixing matrix H in the
presence of noise is rather difficult; the majority of past research efforts have been devoted
to only the noiseless case, where v(k) = 0. One of the objectives of this book is to present
promising novel approaches and associated algorithms that are more robust with respect to
noise and/or that can reduce the noise in the estimated output vector y(k). Usually, it is
assumed that the source signals and additive noise components are statistically independent.
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Fig. 1.6 Tllustration of exploiting time-frequency diversity in BSS. (a) Original unknown source sig-
nals and available mixed signal. (b) Time-frequency representation of the mixed signal. Due to
non-overlapping time-frequency signatures of the sources by masking and synthesis (inverse trans-
form), we can extract the desired sources.

In some models described in this book, it is assumed that sources of additive noise
are incorporated as though they were unknown source signals. In other words, the effect
of incident noise fields impinging on several sensors may be considered to be equivalent
to additional sources, and thus are subject to the same separation process as the desired
signals. Of course, there may be more than one noise source. However, for the separation
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Fig. 1.7 Standard model for noise cancellation in a single channel using a nonlinear adaptive filter
or neural network.

of noise sources, at most one noise source may have a Gaussian distribution, and all other
sources must have non-Gaussian distributions. It may well be that one is not interested in
separation of the noise sources.

In general, the problem of noise cancellation is difficult and even impossible to treat be-
cause we have (m +n) unknown source signals (n sources and m noise signals, see Fig/L.8).
Various signal processing methods have been developed for noise cancelling [1236] 1237,
1234] and with some modifications they can be applied to noise cancellation in BSS. In
many practical situations, we can measure or model the environmental noise. Such noise is
termed reference noise (denoted by vg in Figll.7). For example, in the acoustic “cocktail
party” problem, we can measure or record the environmental noise by using an isolated
microphone. In a similar way, noise in biomedical applications can be measured by appro-
priately placed auxiliary sensors (or electrodes). The noise vz (k) may influence each sensor
in some unknown manner due to environmental effects; hence, such effects as delays, rever-
berations, echo, nonlinear distortions etc. may occur. It may be assumed that the reference
noise is processed by some unknown dynamical system before reaching the sensors. In a
simple case, a convolutive model of noise is assumed where the reference noise is processed
by some FIR filters (see Fig/I.8)). In this case, two learning processes are performed simulta-
neously: An un-supervised learning procedure performing blind separation and a supervised
learning algorithm performing noise reduction [267]. This approach has been successfully
applied to the elimination of noise under the assumption that the reference noise is available
[267, [671].
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Fig. 1.8 Illustration of noise cancellation and blind separation - deconvolution problem.

In a traditional linear Finite Impulse Response (FIR) adaptive noise cancellation filter,
the noise is estimated as a weighted sum of delayed samples of the reference interference.
However, the linear adaptive noise cancellation systems mentioned above may not achieve
an acceptable level of cancellation of noise in many real world situations when interference
signals are related to the measured reference signals in a complex dynamic and nonlinear
way.

In many applications, especially in biomedical signal processing, the sensor signals are
corrupted by various interference and noise sources. Efficient interference and noise cancel-
lation usually require nonlinear adaptive processing of the observed signals. In this book we
describe various neural network models and associated on-line adaptive learning algorithms
for noise and interference cancellation. In particular, we propose to use the Hyper Radial
Basis Function Network (HRBFN) with all of its parameters being fully adaptive. More-
over, we examine Amari-Hopfield recurrent neural networks [260]. We study the problem
from the perspective of optimal signal estimation and nonlinear adaptive systems. Our
mathematical analysis and computer simulations demonstrate that such neural networks
can be quite effective and useful in removing of interference and noise. In particular, it will
be shown that the Amari-Hopfield recurrent neural network (see Chapter [8) can be more
effective than feed-forward networks for certain noise distributions, where the data exhibit
a long memory structure (temporal correlation).

1.1.4 Multichannel Blind Deconvolution and Separation

A single channel convolution and deconvolution process is illustrated in Fig/1.9.
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Fig. 1.9 Diagram illustrating the single channel convolution and inverse deconvolution process.
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Fig. 1.10 Diagram illustrating standard multichannel blind deconvolution problem (MBD).

A multichannel blind deconvolution problem can be considered as a natural extension or
generalization of the instantaneous blind separation problem (see Fig/l.10). In the multidi-
mensional blind deconvolution problem, an m-dimensional vector of received discrete-time
signals x(k) = [z1(k),z2(k),...,7,(k)]T at time k is assumed to be produced from an
n-dimensional vector of source signals s(k) = [s1(k), s2(k), ..., s,(k)]T, m > n, by using a
stable mixture model |39, 31} 253, [612]

x(k)= Y Hps(k—p)=H,xs(k), with Y [H,| <o, (1.8)

p=—00 p=—00

where * denotes the convolution operator and H, is an (m x n) matrix of mixing coefficients
at time-lag p.
Define

H(z)= Y H,z" (1.9)

p=—00
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where 271 denotes the unit time-delay (backward shift) operator (i.e. z27P[s;(k)] = s;(k—p).
It should be noted that if z is replaced with the complex variable Z = exp(—o + jwT), then
H(Z) is the Z-transform of {H,}, i.e., it is the system matrix transfer function [379, 479].
Using (1.9), (1.8) may be rewritten as

x(k) = [H(2)] s(k). (1.10)

The goal of multichannel deconvolution is to calculate the possibly scaled and time-
delayed (or filtered) versions of the source signals from the received signals by using an
approximate knowledge of the source signal distributions and statistics. Typically, every
source signal s;(k) is an i.i.d. (independent and identically-distributed) sequence that is
independent of all the other source sequences.

In order to recover the source signals, we can use the neural network models depicted
in Figll.3 (b) and Fig/I.10/ but the synaptic weights should be generalized to filters (e.g.,
the FIR or IIR) as is illustrated in Fig/T.TI. In this book, many such extensions and
generalizations are described.

Let us consider briefly one example of such a generalization: A standard multichannel
blind deconvolution where each weight 38|, 216 [612]

M
Wii(z, k) =Y wjip(k) 277 (1.11)
p=0

is described by a multichannel finite-duration impulse response (FIR) adaptive filter at
discrete-time k [612, [657].

We will consider a stable feed-forward model that estimates the source signals directly
by using a truncated version of a doubly-infinite multichannel equalizer of the form [612]
(see Figll.11] (a))

y]<k) :Z Z wjipxi(k_p)z (j:1727"'7n) (112)
or in the compact matrix form as
y(k) = D Wy(k)x(k —p) = Wy (k) xx(k) = [W(z, k)] x(k), (1.13)

p=—00

where y (k) = [y1(k), y2(k), ..., yn(k)]T is an n-dimensional vector of outputs and W (k) =
{W,(k), —co < p < oo} is a sequence of n x m coefficient matrices used at time k, and the
matrix transfer function is given by

W(z, k) = i W, (k) 2. (1.14)

The goal of adaptive blind deconvolution or equalization is then to adjust W(z, k) such
that the global system be described as

klim G(z,k) = W(z,k)H(z) = PD(z), (1.15)
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Fig. 1.11 Exemplary models of synaptic weights for the feed-forward adaptive system (neural net-
work) shown in Fig/l.3l: (a) Basic FIR filter model, (b) Gamma filter model, (c) Laguerre filter
model.

where P is an n x n permutation matrix, D(z) is an n x n diagonal matrix whose (,7)-th
entry is ¢;z~ 2, ¢; is a non-zero scalar factor, and A; is an integer delay. We assume that
both H(z) and W(z, k) are stable with non-zero eigenvalues on the unit circle |z| = 1. In
addition, the derivatives of quantities with respect to W (z, k) can be understood as a series
of matrices indexed by the lag p of W, (k) [38, 39, [612].

Fig/l.11l (b) and (c) show alternative neural network models with the weights in the form
of stable constrained infinite impulse response (IIR) filters. In these models, the weights
W;; are generalized to real- or complex-valued Gamma [990, 989] or Laguerre filters (see
Figl.11l (b) and (c)) or other structures like state-space models (see Figll.13) which may
have some useful properties [31} 1359, [1375]. In all these models, it is assumed that only
the sensor vector x(k) is available and it is necessary to design a feed-forward or recurrent
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Fig. 1.12 Block diagram illustrating the sequential blind extraction of sources or independent com-
ponents. Synaptic weights w;; can be time-variable coeflicients or adaptive filters (see Fig/T.11)).

neural network and an associated adaptive learning algorithm that enables estimation of
the source signals.

1.1.5 Blind Extraction of Signals

There are two main approaches to solve the problem of blind separation and deconvolution.
The first approach, which was mentioned briefly in previous sections, is to simultaneously
separate all sources. In the second one, we extract sources sequentially in a blind fashion,
one by one, rather than separating them all simultaneously. In many applications, a large
number of sensors (electrodes, microphones or transducers) are available but only a very few
source signals are subjects of interest. For example, in the EEG or MEG devices, we observe
typically more than 64 sensor signals, but only a few source signals are interesting; the rest
can be considered as interfering noise. In another example, the cocktail party problem, it is
usually essential to extract the voices of specific persons rather than separate all the source
signals available from a large array of microphones. For such applications it is essential to
develop reliable, robust and effective learning algorithms which enable us to extract only a
small number of source signals that are potentially interesting and contain useful information
(see Fig/l.12). This problem is the subject of Chapter 5. The blind signal extraction
approach may have several advantages over simultaneous blind separation/deconvolution,
such as.

e Signals can be extracted in a specified order according to the statistical features of
the source signals, e.g., in the order determined by absolute values of generalized nor-
malized kurtosis. Blind extraction of sources can be considered as a generalization of
PCA (principal components analysis), where decorrelated output signals are extracted
according to the decreasing order of their variances.
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e Only “interesting” signals need to be extracted. For example, if the source signals
are mixed with a large number of Gaussian noise terms, we may extract only specific
signals which possess some desired statistical properties.

e The available learning algorithms for BSE are purely local and biologically plausible.
In fact, the learning algorithms derived below can be considered as extensions or
modifications of the Hebbian/anti-Hebbian learning rule. Typically, they are simpler
than those of instantaneous blind source separation.

In summary, blind signal extraction is a useful approach when our objective is to extract
several source signals with specific statistical properties from a large number of mixtures.
Extraction of a single source is closely related to the problem of blind deconvolution [612]
615, 1067, [1078]. In blind signal extraction (BSE), our objective is to extract the source
signals sequentially, i.e. one by one, rather than to separate all of them simultaneously. This
procedure is called the sequential blind signal extraction in contrast with the simultaneous
blind signal separation (BSS). Sequential blind signal extraction can be performed by using
a cascade neural network similar to the one used for the extraction of principal components.
However, in contrast with PCA, the optimization criteria for BSE are different. A single
processing unit (artificial neuron) is used in the first step to extract one source signal
with specified statistical properties. In the next step, a deflation technique can be used to
eliminate the already extracted signals from the mixtures.

1.1.6 Generalized Multichannel Blind Deconvolution — State Space Models

In the general case, linear dynamical mixing and demixing systems can be described by
state-space models. In fact, any stable mixing dynamical system can be described as (see
Figll.13)

E&k+1) = A €k)+Bs(k)+Nuvp(k), (1.16)

x(k) = CE&k)+Ds(k)+v(k), (1.17)

where € € R" is the state vector of the system, s(k) € R" is a vector of unknown input
signals (assumed to be zero-mean, non-Gaussian independent and identically distributed
(i.i.d.) and mutually (spatially) independent), x(k) is an available vector of sensor signals,
vp(k) is the vector of process noise, and the state matrices have dimensions: A € R"*" is
a state matrix, B € R"*" an input mixing matrix, C € R™*" an output mixing matrix,
D € R™*" an input-output mixing matrix and N € IR"*? is a noise matrix. The transfer
function is an m x n matrix of the form

H(z)=C (:1-A)" ' B+D, (1.18)
where 27! is a delay operator (i.e., 271 x(k) = x(k — 1)).
Analogously, we can assume that the demixing model is another linear state-space system
described as (see Figll.13))
Ek+1) = A€k +Bx(k)+Lvg(k), (1.19)
y(k) = CE&(k)+ D x(k), (1.20)
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Fig. 1.13 Conceptual state-space model illustrating general linear state-space mixing and self-
adaptive demixing model for Dynamic ICA (DICA). Objective of learning algorithms is estimation of
a set of matrices {A, B, C,D, L} 287, 289] 290}, 1359} 1360, [T361].

where the unknown state-space matrices, respectively have the dimension: A € RM*M

B e RY*™ Cc R™M D e R™™ Lec RM*™ with M > r (ie., the order of the
demixing system should be at least the same or larger than the order of the mixing system).

It is easy to see that the linear state-space model is an extension of the instantaneous
blind source separation model. In the special case when the matrices A, B, C in the mixing
model and A, B, C in the demixing model are null matrices, the problem is simplified to
the standard ICA problem. In general, the matrices @ = [A, B, C,D, L] are parameters
to be determined in a learning process on the basis of knowledge of the sequence x(k) and
some a priori knowledge about the system. The transfer function of the demixing model
is W(2) = C(2 I— A)"!B + D. We formulate the dynamical blind separation problem
as a task to recover original source signals from the observations x(k) without a priori

knowledge of the source signals or the state-space matrices [A, B, C, D], by assuming, for
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example, that the sources are mutually independent, zero-mean signals. Other assumptions
like smoothness or linear predictability of sources can also be used. We also usually assume
that the output signals y (k) = [y1(k), y2(k), . .., ym(k)]T will recover the source signals for
the noiseless case in the following sense

y(k) = [W(z) H(2)] s(k) = [D(2)] P s(k), (1.21)

where P is an m X n generalized permutation matrix which consists of n nonzero elements
and only one nonzero element in each column and D(z) = diag{D11(z), Dasa, . . ., Dym(2)} is
a diagonal matrix with transfer functions D;;(z) of shaping filters. In some applications, like
equalization problems, it is required that D;;(z) = \;z~ ™, where ); is a nonzero constant
scaling factor and 7; is any positive integer delay (i.e., constant scaling factors and/or pure
delays are only acceptable).

A question arising here is whether matrices [A, B, C, D] exist for the demixing model
shown in Fig/l.13] such that the transfer function W(z) satisfies (1.21). The answer is
affirmative [1356, 1375} [1376]. It will be shown later that if there is a filter W, (2), which is
the inverse of H(z) in the sense of (I.21)), then for the given specific matrices [A, B], there
are matrices [C, D], such that the transfer matrix W (z) satisfies equation (L.21)).

Remark 1.4 [t should be noted that we assume that D is an m X m square matrix, i.e., the
number of outputs of the system is equal to the number of sensors, although in practice the
number of sources can be less than the number of sensors (m > n). Such a model is justified
by two facts. First of all, the number of sources is generally unknown and may change over
time. Secondly, in practice we have additive noise signals that can be considered as auxiliary
unknown sources; therefore, it is also reasonable to extract these noise signals. In the ideal
noiseless case, the redundant (m—n) output signals y; should decay during adaptive learning
process to zero and then only n outputs will correspond to the recovered sources.

1.1.7 Nonlinear State Space Models — Semi-Blind Signal Processing

The above linear state-space demixing and filtering model is relatively easy to generalize
into a flexible nonlinear model as (see Fig/I.14)

§(k) = fx(k), &(F)], (1.22)
y(k) = C(k) &(k) + D(k) x(k), (1.23)

where &(k) = [€1(k), &1(K), ..., Ear(K)]T is the state vector, x(k) = [x1(k), 22(k), . .., 2m(k)]T
is an available vector of sensor signals, f[z(k), &(k)] is an M-dimensional vector of nonlin-
ear functions (with z(k) = [xT(k),xT(k),...,xT(k — L,)]T and &(k) = [¢7(k),&" (k —
D),.... &5 (k= L)IT), y(k) = [yi(k), y2(k), ..., ym(E)]T is the vector of output signals, and
C e R™M and D € R™*™ are output matrices. It should be noted that equation (1.22)
describes the nonlinear autoregressive moving average (NARMA) model while the output
model (L.23)) is linear. Our objective will be to estimate the output matrices C and D,
as well as to identify the NARMA model by using a neural network on the basis of sensor
signals x(k) and source (desired) signals s(k) (which are available for short-time windows).
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Fig. 1.14 Block diagram of a simplified nonlinear demixing NARMA model. For the switch in open
position we have feed-forward MA model and for the switch closed we have a recurrent ARMA model.

In order to solve this challenging and difficult problem, we attempt to apply a semi-blind
approach, i.e., we combine both supervised and un-supervised learning algorithms. Such an
approach is justified in many practical applications. For example, for MEG or EEG, we can
use a phantom of the human head with known artificial source excitations located in specific
places inside of the phantom. Similarly, for the cocktail party problem, we can record for
short-time windows original test speech sources. These short-time window training sources
enable us to determine, on the basis of a supervised algorithm, a suitable nonlinear demixing
model and associated nonlinear basis functions of the neural network and their parameters.

However, we assume that the mixing system is a slowly time-varying system for which
some parameters fluctuate slightly over time, mainly due to the change in localization of
source signals in space. Furthermore, we assume that training sources are available only for
short-time slots. During the time windows in which the training signals are not available,
we can apply an unsupervised learning algorithm which performs a fine adjustment of the
output matrices C and D (by keeping the nonlinear model fixed). In this way, we will be
able to estimate continuously in time the source signals. An exemplary implementation of
the nonlinear state-space model using the radial basis function (RBF) neural network is
shown in Figure [[.15] (see Chapter [12 for detail).

1.1.8 Why State Space Demixing Models?

There are several essential reasons why the state-space models provide a useful and powerful
approach in blind signal processing:

e The mixing and filtering processes of unknown input sources s;(k), (j = 1,2,...,n)
may have different mathematical or physical models, depending on specific applica-
tions. The state-space demixing model is a flexible and universal linear model which
describes a wide class of stable dynamical systems including standard multichannel
deconvolution models with finite impulse response (FIR) filters, Gamma filters or
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Fig. 1.15 Simplified model of RBF neural network applied for nonlinear semi-blind single channel
equalization of binary sources; if the switch is in position 1, we have supervised learning, and unsu-
pervised learning if it is in position 2.

1.2

more general models: AR (autoregressive), MA (moving average) and ARMA (au-
toregressive moving average) models as special cases.

Moreover, such a dynamical demixing model enables us to generate many canonical
realizations of the same dynamical system by using equivalent transformations.

It is easy to note that the linear state-space model is an extension of the instantaneous
mixture blind source separation model.

State-space models have two subsystems: A linear, memoryless output layer and a
dynamical linear or nonlinear recurrent network, which can be identified or updated
using different approaches [289) 290} 291, [T365].

POTENTIAL APPLICATIONS OF BLIND AND SEMI-BLIND SIGNAL
PROCESSING

The problems of independent component analysis (ICA), blind separation and multichan-
nel deconvolution of source signals have received wide attention in various fields such as
biomedical signal analysis and processing (EEG, MEG, ECG), geophysical data process-
ing, data mining, speech enhancement, image recognition and wireless communications
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[31} [39] 4506, [T089]. In such applications a number of observations of sensor signals or data
that are filtered superpositions of separate signals from different independent sources are
available, and the objective is to process the observations in such a way that the outputs
correspond to the separate primary source signals.

Acoustic applications include the situations where signals from several microphones in
a sound field that is produced by several speakers (the so-called cocktail-party problem)
and the signals from several acoustic transducers in an underwater sound field from the
engine noises of several ships (sonar problem). Radio and wireless communication examples
include the observations corresponding to outputs of antenna array elements in response to
several transmitters, and the observations may also include the effects of the mutual cou-
plings of the elements. Other radio communication examples include the use of polarization
multiplexing in microwave links; the maintenance of the orthogonality of the polarization
cannot be perfect and there is still interference between the separate transmissions. Radar
examples include the superposition of signals from different target modulating mechanisms
as observed by multiple receivers whose elements are sensitive to different polarizations.

Let us consider some exemplary promising biomedical applications in more detail.

1.2.1 Biomedical Signal Processing

A great challenge in biomedical engineering is to non-invasive asses the physiological changes
occurring in different internal organs of the human body (FigureI.10! (a)). These variations
can be modelled and measured often as biomedical source signals that indicators of the
function or malfunction of various physiological systems. To extract the relevant information
for diagnosis and therapy, expert knowledge in medicine and engineering is also required.

Biomedical source signals are usually weak, nonstationary signals and distorted by noise
and interferences. Moreover, they are usually mutually superimposed. Besides classical
signal analysis tools (like adaptive supervised filtering, parametric or non-parametric spec-
tral estimation, time-frequency analysis, and higher-order statistics) intelligent blind signal
processing techniques (IBSP) can be used for preprocessing, noise and artifact reduction,
enhancement, detection and estimation of biomedical signals by taking into account their
spatio-temporal correlation and mutual statistical dependence.

One successful and promising application domain of blind signal processing includes
those biomedical signals acquired with multi-electrode devices: Electrocardiography (ECG),
electromyography (EMG), electroencephalography (EEG) and magnetoencephalography
(MEG).

Exemplary applications in biomedical problems include the following:

e Fetal electrocardiogram (ECG) extraction, i.e., removing/filtering maternal electro-
cardiogram signals and noise from fetal electrocardiogram signals.

e FEnhancement of low-level ECG components.
e Separation of transplanted heart signals from residual original heart signals.

e Separation of heart sounds from gastrointestinal acoustic phenomena (bowel-sounds).
Bowel sounds can be measured in a non-invasive way by using microphones or ac-
celerometers positioned on the skin.
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e Reduction or blind separation of heart sounds from lung sounds using multichannel
blind deconvolution.

e Cancellation of artifacts and noise from electroencephalographic and magnetoen-
cephalographic recordings.

e Enhancement evoked potentials (EP) and categorize detected brain signals. (The
brain potentials evoked by sensory stimulations such as visual, acoustic or somatosen-
sory are generally called evoked potentials).

e Detection and estimation of sleep-spindles. (Sleep-spindles are specific phenomena
of electroencephalograms (ECG) appearing during sleep; they are characterized by a
group of oscillation in the range 11.5-15 Hz).

e Decomposition of brain sources as independent components and then localizing them
in time and space.

Let us consider in more detail, some exemplary promising biomedical applications.

1.2.2 Blind Separation of Electrocardiographic Signals of Fetus and Mother

The mechanical action of the heart muscles is stimulated by an electrical depolarization and
repolarization signals. These quasi-periodical signals project potential differences to the skin
level which can be measured and visualized as functions of time using electrocardiogram
(ECG). Like for adults, it would also be possible to measure the electrical activity of a fetal
heart [726, [728]. The characteristics of a fetal electrocardiogram (FECG) can be very useful
for determining if a fetus is developing or being delivered properly. These characteristics
include an elevated heart rate that indicates fetal stress, cardiac arrythmia and ST segment
depression which may indicate acidosis.

It is a non-trivial task to obtain an accurate and reliable FECG in a non-invasive fashion
by using several electrodes. Problems develop due to the facts, that the electrocardiogram
(ECG) also contains a maternal electrocardiogram (MECG) which can be from one-half to
one-thousandth the magnitude of the MECG. Moreover, the FECG will occasionally overlap
the MECG and make it normally impossible to detect. Along with the MECG, extensive
electromyographic (EMG) noise also interferes with the FECG and it can completely mask
the FECG. The separation of fetal and maternal electrocardiograms from skin electrodes
located on a pregnant woman’s body may be modelled as a Blind Signal Processing problem
(see Figure [I.16). The recordings pick up a mixture of FECG, MECG contributions, and
other interferences, such as maternal electromyogram (MEMG), power supply interference,
thermal noise from the electrodes and other electronic equipment. In fact, BSP techniques
can be successfully applied to efficiently solve this problem and the first results are very
promising [230], 232] [883]. Ordinary filtering and signal processing techniques have great
difficulties with this problem [1280].
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Fig. 1.16 Exemplary biomedical applications of blind signal processing: (a) A multi-recording mon-
itoring system for blind enhancement of sources, cancellation of noise, elimination of artifacts and
detection of evoked potentials, (b) blind separation of the fetal electrocardiogram (FECG) and ma-
ternal electrocardiogram (MECG) from skin electrode signals recorded from a pregnant women, (c)
blind enhancement and independent components of multichannel electromyographic (EMG) signals.
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1.2.3 Enhancement and Decomposition of EMG Signals

The movement and positioning of limbs are controlled by electrical signals travelling back
and forth between the central nervous system and the muscles. Electromyography is a
technique of recording of the electrical signals in the muscle (muscle action potentials).
Electromyographic (EMG) signals recorded by a multi-electrode system provide important
information about the brain motor system and the diagnosis of neuromuscular disorders
that affect the brain, spinal cord, nerves or muscles. EMG signals, which are recorded
simultaneously by several electrodes at low and moderate force levels can be composed of
motor unit action potentials (MUAPs) generated by different motor units. The motor unit
is the smallest functional unit of the muscle that can be voluntary activated: It consists of a
group of muscle fibers all innervated from the same motor neuron. In other words, MUAP
consists of the spatial and temporal summation of all single fiber potentials innervated
by the same motor neuron. The MUAP waveforms give information about the structural
organization of the motor units [1389].

Blind signal processing techniques can be used for the enhancement of EMG signals. A
more challenging problem is to apply BSS for decomposition of EMG signals into indepen-
dent components and MUAPs. Such blind or semi-blind processing may enable to easily
cluster MUAPs into groups of similar waveforms, providing important information about
the brain motor system and for the assessment of neuromuscular pathology.

1.2.4 EEG and Data MEG Processing

Applications of BSP show special promises in the areas of non-invasive human brain imaging
techniques to delineate the neural processes that underlie human cognition and sensoro-
motoric functions.

To understand human neurophysiology, we rely on several types of non-invasive neu-
roimaging techniques. These techniques include electroencephalography (EEG), magne-
toencephalography (MEG), anatomical magnetic resonance imaging (MRI) and functional
MRI (fMRI). While each of these techniques is useful, there is no single technique that
provides both the spatial and temporal resolution necessary to make inferences about the
intracranial brain sources of activity.

Very recently, several research groups have demonstrated that the techniques and meth-
ods of blind source separation (BSS) are related to those currently used in electromagnetic
source localization (ESL) [840]. This framework provides a methodology by which several
different types of information can be combined to aid in making inferences about a problem.
Neural activity in the cerebral cortex generates small electric currents which create poten-
tial differences on the surface of the scalp (detected by EEG) as well as very small magnetic
fields which can be detected using SQUIDs (SuperConducting QUantum Interference De-
vices). The greatest benefit of MEG is that it provides information that is complementary to
EEG. In addition, the magnetic fields (unlike the electric currents) are not distorted by the
intervening biological mass. Under certain circumstances, this allows precise localization of
the neural currents responsible for the measured magnetic field.

We begin with a description of the situation for EEG or MEG recordings. We here
give a very brief introduction of EEG and MEG [1250, [1251]. When a region of neural
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Fig. 1.17 Non-invasive multi-electrodes recording of activation of the brain using EEG or MEG.

tissue (consisting of about 100,000 neurons) is synchronously active, detectable extracellular
electric currents and magnetic fields are generated. These regions of activity can be modelled
as “current dipoles” because they generate a dipolar electric current field in the surrounding
volume of the head. These extracellular currents flow throughout the volume of the head
and create potential differences on the surface of the head that can be detected with surface
electrodes in a procedure called electroencephalography (EEG). One can also place super-
conducting coils above the head and detect the magnetic fields generated by the activity in
a procedure called magnetoencephalography (MEG).

If one knows the positions and orientations of the sources in the brain, one can calculate
the patterns of electric potentials or magnetic fields on the surface of the head. This is
called the forward problem. If otherwise one has only the patterns of electric potential or
magnetic fields then one needs to calculate the locations and orientations of the sources.
This is called the inverse problem. Inverse problems are notoriously more difficult to solve
than forward problems. In this case, given only the electric potentials and magnetic fields on
the surface there is no unique solution to the problem. The only hope is that there is some
additional information available that can be used to constrain the infinite set of possible
solutions to a single unique solution. This is where intelligent blind signal processing will
be used.

The idea is that one must use all the available information to solve the problem. We will
demonstrate this by focusing on an inverse problem, where we have information delivered
from one or several devices, say EEG and/or MEG.

In Figure [1.17, we depicted three neural sources, represented in this case by equivalent
current dipoles, in the cortical gray matter of the brain. The electrodes on the surface
of the head detect the potential differences due to the extracellular currents generated by
these active sources. The arrows merely demonstrate that each electrode detects some of
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the current flow from each neural source. The currents do not flow directly from the sources
to the electrodes, but instead they flow throughout the volume of the entire head.

Determining which regions of the brain are active, given EEG/MEG measurements on
the scalp level is an important problem. An accurate and reliable solution to such a problem
can give information about the higher brain functions and patient-specific cortical activity.
However, estimating the location and distribution of electric current sources within the
brain from EEG/MEG recording is an ill-posed problem, because there is no unique solution
and the solution does not depend continuously on data. The ill-posedness of the problem
and distortion of sensor signals by large noise sources makes finding a correct solution a
challenging analytic and computational problem.

The ICA approach and blind signal extraction methods are promising techniques for the
extraction of useful signals from the EEG/MEG recorded raw data. The EEG/MEG data
can be first decomposed into useful signal and noise subspaces using standard techniques like
local and robust PCA, SVD and nonlinear adaptive filtering. Next, we apply ICA algorithms
to decompose the observed signals (signal subspace) into independent components. The ICA
approach enables us to project each independent component (independent “brain source”)
onto an activation map at the skull level. For each activation map, we can perform next
an EEG/MEG source localization procedure, looking only for a single dipole (or 2 dipole)
per map. By localizing multiple dipoles independently, we can dramatically reduce the
complexity of the computation and increase the likelihood of efficiently converging to the
correct and reliable solution.

Figure [1.18 illustrates an example of a promising application of blind source separation
and independent component analysis (ICA) algorithms for localization of the brain source
signals activated after the auditory and somatosensory stimulus applied simultaneously. In
the MEG experiments performed in collaboration with the Helsinki University of Technol-
ogy, Finland, the stimulus presented to the subject was produced with a sub-woofer, and
the acoustic energy was transmitted to the shielded-room via a plastic tube with a balloon
on the end [264]. The subject had his hands in contact with the balloon and sensed the
vibration. In addition, the sound produced by the sub-woofer was listened to by the subject,
constituting the auditory stimulation. Using ICA, we successfully extracted auditory and
somatosensory evoked fields (AEF and SEF, respectively) and localized the corresponding
brain sources [264] (see Figure [1.18]).

1.2.5 Application of ICA/BSS for Noise and Interference Cancellation in
Multi-sensory Biomedical Signals

The nervous systems of humans and animals must encode and process sensory information
within the context of noise and interference, and the signals which are encoded (the images,
sounds, etc.) have very specific statistical properties. One of the challenging tasks is how to
reliably detect, enhance and localize very weak, nonstationary brain source signals corrupted
by noise (e.g., evoked and event related potentials EP/ERP) by using EEG/MEG data.
Independent Component Analysis (ICA) and related methods like Adaptive Factor Anal-
ysis (AFA) are promising approaches for elimination of artifacts and noise from EEG/MEG
data [259), 631]. In fact, for these applications, ICA/BSS techniques have been success-
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Fig. 1.18 (a) A subset of the 122-MEG channels. (b) Principal and (c¢) independent components
of the data. (d) Field patterns corresponding to the first two independent components. In (e) the
superposition of the localizations of the dipole originating IC1 (black circles, corresponding to the
auditory cortex activation) and IC2 (white circles, corresponding to the SI cortex activation) onto
magnetic resonance images (MRI) of the subject. The bars illustrate the orientation of the source
net current. Results are obtained in collaboration with researchers from the Helsinki University of
Technology, Finland [264].

fully applied to remove efficiently artifacts and noise including background brain activity,
electrical activity of the heart, eye-blink and other muscle activity, and environmental noise.
However, most of the methods require manual detection, classification of interference
components and the estimation of the cross-correlation between independent components
and the reference signals corresponding to specific artifacts [595, 811} 812, 1250, [1251].
One of the important problem is how to automatically detect, extract and eliminate noise
and artifacts. Another related problem is how to classify independent “brain sources” and
artifacts. The automatic on-line elimination of artifacts and other interference sources is
especially important for extended recordings, e.g., EEG/MEG recording during sleep.
Evoked potentials (EPs) of the brain are meaningful for clinical diagnosis and they are
important factors in understanding higher order mechanisms in the brain. The EPs are
usually embedded within the ongoing EEG/MEG with a signal to noise ratio (SNR) less
than 0 dB, making them very difficult to extract by using only a single trial. The traditional
method of EPs extraction uses ensemble averaging to improve the SNR. This often requires
hundreds or even thousands of trials to obtain a usable noiseless waveform. Therefore, it
is important to develop novel techniques that can rapidly improve the SNR and reduce
the number of trials required to a minimum. Traditional signal processing techniques,
such as Wiener filtering, adaptive noise cancellation, latency-corrected averaging [553] and
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invertible wavelet transform filtering, have recently been proposed for SNR improvements
and ensemble reduction. However, these methods require a priori knowledge pertaining
to the nature of the signal [537, [1138]. Since EP signals are known to be nonstationary,
sparse and changing their characteristics from trial to trial, it is essential to develop novel
algorithms for enhancement of single trial EEG/MEG noisy data.

The formulation of the problem can be given in the following form: Denote by x(k) =
[x1(k), x2(k), ..., (k)] the observed m-dimensional vector of noisy signals that must be
“cleaned” from the noise and interferences. Here we have two types of noise. The first is
so called “inner” noise generated by some primary sources that cannot be observed directly
but contained in the observations. They are mixtures of useful signals and random noise
signals or other undesirable sources. The second type of noise is the sensor additive noise
(observation errors) at the output of the measurement system. This noise is not directly
measurable, either. Formally, we can write that an observed n-dimensional vector of sensor
signals x(k) is a mixture of source signals plus observation errors

x(k) =Hs(k) +v(k), (1.24)

where k = 0,1,2, ... is a discrete-time index; H is a full rank (m X n) mixing matrix; s(k) =
[51(k), s2(k), ..., 5, (k)]T is an n-dimensional vector of sources containing useful signals and
v(k) is an m-dimensional vector of additive white noise. We also assume that some useful
sources are not necessarily statistically independent. Therefore, we cannot achieve perfect
separation of primary sources by using any ICA procedure. However, our purpose here
is not the separation of the sources but the removal of independent or uncorrelated noisy
sources.

Let us emphasize that the problem consists of cancellation of the noise sources and
reduction of observation errors based only on information about observed vector x(k).

A conceptual model for elimination of noise and other undesirable components from
multi-sensory data is depicted in Figure [1.19. Firstly, ICA is performed using any robust
(with respect to Gaussian noise) algorithm [25], [31], [260, 261], [854] by a linear transfor-
mation of sensory data as y(k) = Wx(k), where the vector y(k) represents independent
components. However, robust ICA methods allow us only to obtain an unbiased estimate
of the unmixing matrix W. Furthermore, due to memoryless structure such methods by
definition, cannot remove the additive noise. Noise removal can be performed using optional
nonlinear adaptive filtering and nonlinear noise shaping (see Figure[I.20). In the next stage,
we classify independent signals 7, (k) and then remove noise and undesirable components
by switching corresponding switches “off”.

The projection of interesting or useful independent components (e.g., independent acti-
vation maps) g;(k) back onto the sensors (electrodes) can be done by the transformation
x(k) = WTy(k), where W is the pseudo-inverse of the unmixing matrix W. In the typical
case, where the number of independent components is equal to the number of sensors, we
have W+ = W1,

The standard adaptive noise and interference cancellation systems may be subdivided
into the following classes [553, [555):

1. Noise cancellation (see Figure[1.20)). This term is normally referred to the case, when
we have both the primary signal y;(k) = ¢;(k) + n;(k) contaminated with noise and
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Fig. 1.19

Conceptual models for removing undesirable components like noise and artifacts and

enhancing multi-sensory (e.g., EEG/MEG) data: (a) Using expert decision and hard switches, (b)
using soft switches (adaptive nonlinearities in time, frequency or time-frequency domain), (c) using
nonlinear adaptive filters and hard switches [280] [1254].
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reference noise n;(k), which is correlated with the noise n;(k) but is independent of
the primary signal §;(k). By feeding the reference signal to the linear adaptive filter
we are able to estimate or reconstruct the noise, then subtract it from the primary
signal and thereby enhance the signal to noise ratio.

2. Deconvolution-reverberation and echo cancelling. This kind of interference cancelling
is often referred to as echo cancelling, because it enables the removal of reverberations
and echo from a single observed signal. A delayed version of the primary input signal
is fed to the linear adaptive filter thus enabling the filter to reconstruct and remove
reverberation from the primary signal. The deconvolver may also be used to cancel
periodic interference components in the primary input such as power line interference,
etc. The adaptive filter is able to extrapolate the periodic interference and subtract
this component from the undelayed primary input (see Figure [1.20)). This approach
normally provides superior performance compared to standard notch or comb filtering
techniques.

3. Line enhancement. In this case the objective is to estimate or extract a periodic or
quasi periodic signal buried in noise. The adaptive filter is receiving the same input
as the deconvolver, however, instead of subtracting the extrapolated periodic signal
from the input, it outputs directly the enhanced signal (see Fig/T1.20).

4. Adaptive bandpass filtering. Often we may take advantage of some a priori knowledge
regarding the bandwidth of the signal we wish to denoise. By bandpass filtering of
the signal, we eliminate a part of the frequency range where the useful signal is weak
and the noise is comparatively strong, thus enhancing the overall signal to noise ratio.

In a traditional linear Finite Impulse Response (FIR) adaptive noise cancellation filter, the
noise is estimated as a weighted sum of the delayed samples of reference interference. How-
ever, for many real world problems (when interference signals are related to the measured
reference signals in a complex dynamic and nonlinear way) the linear adaptive noise can-
cellation systems mentioned above may not achieve acceptable levels of noise cancellation.
Optimum interference and noise cancellation usually requires nonlinear adaptive processing
of the recorded and measured on-line signals [264] 267].

A common technique for noise reduction is to split the signal in two or more bands. The
high-pass bands are subjected to a threshold nonlinearity that suppresses low amplitude
values while retaining high amplitude values (see Figll.20) [550} 552]. In addition to de-
noising and artifacts removal, ICA /BSS techniques can be used to decompose of EEG/MEG
data into separate components, each representing physiologically distinct process or brain
source. The main idea here is to apply localization and imaging methods to each of these
components in turn. The decomposition is usually based on the underlying assumption
of statistical independence between the activation of different cell assemblies involved. An
alternative criterion for decomposition is temporal predictability or smoothness of compo-
nents. These approaches lead to interesting and exciting new ways of investigating and
analyzing brain data and developing new hypotheses how the neural assemblies communi-
cate and process information. This is actually a very extensive and potentially promising
research area, however these approaches still remain to be validated at least experimentally.
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Fig. 1.20 Adaptive filter configured for line enhancement (switches in position 1) and for standard
noise cancellation (switches in position 2).

1.2.6 Cocktail Party Problem

In the EEG/MEG brain source separation algorithms, we make the fundamental assumption
that the recorded signals from an instantaneous mixture, meaning that all of the signals are
time-aligned so that they enter the sensors simultaneously without any delays.

Consider now an application to speech separation in which the sounds are recorded in a
typical room using an array of microphones (see Figll.21]). Each microphone will receive a
direct copy of the sound source (at some propagation delay based on the location of both
the sources and the microphone) as well as several reflected and modified (attenuated and
delayed) copies of the sound sources (as the sound waves bounce off walls and objects in
the room).

The distortions of the recorded signals are dependent upon the reverberation and ab-
sorption characteristics of the room, as well as the objects within the room, and can be
modelled as an impulse response in a linear system. The impulse response provides a model
of all the possible paths that the sound sources take to arrive at the microphones.

To find a specific original sound source that was recorded with the microphones in the
conference room, we must cancel out, or deconvolve, the rooms impulse response to the
original sound source. Since we have no prior knowledge of what this room impulse response
is, we call this process as the multichannel blind deconvolution or cocktail party problem.

In the “cocktail party problem” our objective is to design intelligent adaptive systems
and associated learning algorithms that have similar abilities to humans to focus attention
on one conversation among the many that would be occurring concurrently in a hypothetical
cocktail party.

The “cocktail party” problem can be described as the ability to focus one’s listening
attention on a single talker among a cacophony of conversations and background noise;
it has long been recognized as an interesting and challenging problem. Also known as
the “cocktail party effect” or more technically, “multichannel blind deconvolution”, this
problem of separating a set of mixtures of convolved (filtered) signals, detected by an
array of microphones, into their original source signals is performed extremely well by the
human brain, and over the years attempts have been made to capture this function by using
assemblies of abstracted neurons or adaptive processing units.
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Fig. 1.21 Tlustration of the “cocktail party” problem and speech enhancement.

Humans are able to concentrate on listening to one voice in the midst of other conver-
sations and noise, but not all the mechanisms for this process are completely understood.
This specialized listening ability may be because of characteristics of the human speech
production system, auditory system, or high-level perceptual and language processing.

1.2.7 Digital Communication Systems

Blind and semi-blind signal processing models and algorithms also arise in a wide vari-
ety of digital communications applications, for example, digital radio with diversity, dually
polarized radio channels, high speed digital subscriber lines, multi-track digital magnetic
recording, multiuser/multi-access communications systems, multi-sensor sonar/radar sys-
tems, to mention just a few. BSP algorithms are promising tools for a unified and optimal
design of MIMO equalizers/filters/combiners for suppression of intersymbol interference
(IST), cochannel and adjacent channel interferences (CCI and ACI) and multi-access inter-
ferences (MAI). The state-of-the-art in this area incorporates complete knowledge of the
MIMO transfer functions which is unrealistic for practical communication systems. The op-
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Fig. 1.22 Wireless communication scenario.

erating environment may consist of dispersive media involving multipath propagation and
frequency-selective fading, the characteristics of which are unknown at the receiver. The
blind signal processing methods may result in more effective and computationally efficient
algorithms for a broad class of digital communication systems such as high-speed digital sub-
scriber lines, multi-track digital magnetic recording and multiuser wireless communications
[991), 1085, 1086, 1192, 1199).

In Figll.22 we have an illustration of multiple signal propagation in a wireless com-
munication scenario; a number of users broadcast digitally modulated signals s;, s2, ..., sy
towards a base station in a multi-path propagation environment. In other words, via multi-
ple paths digital signals are received at an antenna array from many users. The transmitted
signals interact with various objects in the physical region before reaching the antenna array
or the base station. Each path follows a different direction, with some unknown propaga-
tion delay and attenuation. This phenomenon of receiving a superposition of many delayed
signals is called multi-path fading.

Moreover, in some cellular networks, there is another additional source of distortion,
so called co-channel interferences. This interference may be caused by multiple users that
share the same frequency and time slot. The level of interference depends on the prop-
agation environment, mobile location and mobile transmission power. Each transmitted
signal is susceptible to multiple interference, multi-user interference and additive noise. In
addition, the channel may be time-varying due to user mobility. Advanced blind signal
processing algorithms are required to extract desired signals from the interference noise.
Even more challenging signal processing problem is the blind joint space-time separation
and equalization of transmitted signals, i.e. to estimate source signals and their channels
in the presence of other co-channel signals and noise without the use of a training set.
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Fig. 1.23 Blind extraction of binary image from superposition of several images [761].

1.2.7.1 Why Blind? Blind signal processing techniques are promising because they require
neither prior knowledge of the array response geometry nor any training signals in order to
equalize the channels. Moreover, they are usually robust under severe multi-path fading en-
vironments. In situations where prior spatial knowledge or a set of short training sequences
is available, the prior information can be incorporated in the semi-blind techniques applied.

There are several reasons to apply blind signal processing techniques [1085, 1132} [1133]
1134], such as

e Training examples for interference are often not available.
e In rapid time-varying channels, training may not be efficient.
e Capacity of the system can be increased by eliminating or reducing training sets.

e Multi-path fading during the training period may lead to poor source or channel
estimations.

e Training in distributed systems requires synchronization and/or sending a training
set each time a new link is to be set up and this may not be feasible in a multi-user
scenario.

1.2.8 Image Restoration and Understanding

Image restoration involves the removal or minimization of degradation (blur, clutter, noise,
interferences etc.) in an image using a priori knowledge about the degradation phenomena.
Blind restoration is the process of estimating both the true image and the blur from the
degraded image characteristics, using only partial information about degradation sources
and the imaging system.

Scientists and engineers are actively seeking to overcome the degradation of image quality
caused by optical recording devices, the effects of atmospheric turbulence and other image
degradation processes.
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Fig. 1.24 Blind separation of text binary images from a single overlapped image [761].

In many applications, for example, an image with specific properties is corrupted or super-
imposed with other images and it is necessary to extract or enhance the target image. This
is illustrated in Figure [1.23. In some applications, it is necessary to extract or separate all
superimposed images as is illustrated in Figurell.24. In many instances, the degraded obser-
vation g(z,y) can be modelled as the two-dimensional convolution of the true image f(z,y)
and the point-spread function (also called the blurring function) h(x,y) of a linear shift-
invariant system plus some additive noise n(z,y). That is, g(x,y) = f(z,y)*h(z,y)+n(z,y).
In many situations, the point-spread function hA(z,y) is known explicitly. The goal of the
general blind deconvolution problem is to recover convolved signals, when only a noisy
version of their convolution is available along with some or no partial information about
either signal. In practice, all blind deconvolution algorithms require some partial informa-
tion to be known and some conditions to be satisfied. Our main interest concerns image
enhancement, where the degradation involves a convolution process. Blind deconvolution
is a technique that permits recovery of the target object from a set of “blurred” images in
the presence of a poorly determined or unknown point spread function (PSF). Regular lin-
ear and non-linear deconvolution techniques require a known PSF. In many situations, the
point-spread function is known explicitly prior to the image restoration process. In these
cases, the recovery of the image is known as the classical linear image restoration problem.
This problem has been thoroughly studied and a long list of restoration methods for this
situation includes numerous well-known techniques, a few examples of which are as inverse
filtering, Wiener filtering, subspace filtering and least-squares filtering. However, there are
numerous situations in which the point-spread function is not explicitly known, and the
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(b)

Fig. 1.25 Tllustration of image restoration problem: (a) Original image (unknown), (b) distorted
(blurred) available image, (c) restored image using blind deconvolution approach, (d) final restored
image obtained after smoothing (post-processing) [329} [330].

true image must be identified directly from the observed image g(x,y) by using partial or
no information about the true image and the point-spread function. In these cases, we have
the more difficult problem of blind deconvolution of images. For the “blind” case a set of
multiple images (data cube) of the same target object is preferable, each having dissimilar
PSF’s. The blind deconvolution algorithm would be then able to restore not only the target
object but also the PSFs. A good estimate of the PSF is helpful for quicker convergence
but not necessary.

The algorithmic way of processing and analyzing digital images have developed powerful
means to interpret specific kinds of images, but failed to provide general image understand-
ing methods that work on all kinds of images. This is mostly due to the fact that every
image can be interpreted in many ways, as long as we do not know anything about what we
expect to be in it. Thus, we need to build models about the expected contents of images
in order to be able to “understand” them. There are many successful applications of image
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processing; but they are almost always fragile in the sense that it is difficult to adapt them
to slightly different forms of imagery or to slightly different circumstances. The aim of the
Image Understanding is to address this fundamental problem by providing a set of image
processing competences within an architecture that can observe the performance of each
process, reflect on them, and choose to use/reject certain processes.

Obviously, there is a wide gap between the nature of images and descriptions. It is
the bridging of this gap that has kept researchers very busy over the last two decades in
the fields of Artificial Intelligence, Scene Analysis, Image Analysis, Image Processing, and
Computer Vision. Nowadays we summarize these fields as “Image Understanding” research.

In order to make the link between image data and domain descriptions, an intermediate
level of description is introduced. It generally contains geometric information. Processing
usually starts with some image processing, where noise and distortion are reduced and
certain important aspects of the imagery are emphasized. Then, events are extracted from
the images that characterize the information needed for description. Typically, these events
are such as blobs, edges, lines, corners, regions. They are stored at the intermediate level
of abstraction. These are referred to in the literature as “features”. Such descriptions are
free of domain information - they are not specifically objects or entities of the domain of
understanding, but they contain spatial and other information. It is the spatial/geometric
(and other) information that can be analyzed in terms of the domain in order to interpret
the images.

Image understanding is one of the most important and difficult tasks on the way towards
what is known as artificial intelligence (AI). There is no working system yet which comes
close to the capabilities of the human visual system. Some reasons are:

e Biological systems cannot be easily imitated.
e Specialized problem solving methods can hardly be generalized.

e The computational power needed for real-time digital image analysis exceeds the ca-
pacity of even the best workstation.

BSP, especially ICA/PCA, are promising approaches to Image Understanding. One of
the ideas of a transform based image/signal description is to expand a signal by using a set of
transform basis functions. A well-suited signal description allows us to extract characteristic
signal properties which can be used for a variety of signal processing tasks, such as signal
estimation, signal compression, or signal analysis. The suitability of an image transform in
this context is connected to the efficiency of the transform in representing a given image,
i.e. how many coefficients does a transform need to represent the image. The measure
for efficiency is the sparseness of the transform coeflicients, represented by the decay of
the ordered coefficients from a given transform. The local singularities are characterized
by location, orientation, and spatial extension. Finding a suitable signal transform for the
description of linear singularities is the key for an analysis of the underlying information on
natural images.

The question arises: How to efficiently describe images which contain a linear or nonlinear
mixture of very different signal components. The application of classical signal transforms
(such as Fourier or wavelet transform) to such images is limited since there is no single
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dominant signal component that can be efficiently estimated with one transform. The idea
of ICA or related decomposition approaches is to decompose the image to basic independent
components and to start with a large set of independent components. For the image de-
scription, only those components that contribute to a sparse description are used. We want
to have a small (sparse) number of large coefficients that condense the image information.
The reason for desiring a sparse representation is that under certain assumptions it will also
reduce statistical dependencies among units: This provides a more efficient representation
of the image structure.

One of the specific goals of research is to understand the coding strategies used by the hu-
man visual system for accomplishing tasks such as object recognition and scene analysis. In
a task such as face recognition, much of the important information may be contained in the
high-order relationships among the image pixels. ICA and related decomposition/separation
techniques are able to recover signal components out of signal mixtures. Moreover, ICA /BSS
image decomposition allows us to efficiently represent signal components in images. It also
allows us to determine the “interesting” signal components in images (see Fig/1.19). There-
fore, ICA image decomposition is a promising tool for image analysis, reconstruction, and
classification, as well as for feature detection and image indexing. Statistically independent
basis images (e.g., for the faces) that can be viewed as a set of independent (facial) fea-
tures. These ICA basis images are spatially localized, unlike the PCA basis vectors. The
representation consists of the coeflicients for the linear combinations of basis images that
comprised each image. Theories of sensory coding based on the idea of maximizing infor-
mation transmission while eliminating statistical redundancy from the raw sensory signal
have been successful in explaining several properties of neural responses in the visual system
including the population of receptive fields in the visual cortex.

The long-term goal of the Image Understanding research is to develop computational
theories and techniques for use in artificial vision systems for which the performance matches
or exceeds that of humans, by analyzing sequence of images in space, time and frequency
domains.






Solving a System of Linear
Algebraic Equations and

Related Problems

A problem well stated is a problem half solved.
—(C.F. Kettering)

A problem adequately stated is a problem well on it’s way to being solved.
—(R. Buckminster Fuller)

In modern signal and image processing fields like biomedical engineering, computer to-
mography (image reconstruction from projections), automatic control, robotics, speech
and communication, linear parametric estimation, models such as auto-regressive moving-
average (ARMA) and linear prediction (LP) have been extensively utilized. In fact, such
models can be mathematically described by an overdetermined system of linear algebraic
equations. Such systems of equations are often contaminated by noise or errors, thus the
problem of finding an optimal and robust with respect noise solution arises if some a priori
information about the error is available. On the other hand, wide classes of extrapolation,
reconstruction, estimation, approximation, interpolation and inverse problems can be con-
verted to minimum norm problems of solving underdetermined systems of linear equations.
Generally speaking, in signal processing applications, the overdetermined system of lin-
ear equations describes filtering, enhancement, deconvolution and identification problems,
while the underdetermined case describes inverse and extrapolation problems. This chapter
provides a tutorial to the problem of solving large overdetermined and underdetermined sys-
tems of linear equations, especially when there is an uncertainty in parameter values and/or
the systems are contaminated by noise. A special emphasis is placed in on-line fast adap-
tive and iterative algorithms for arbitrary noise statistics. This chapter also gives several
illustrative examples that demonstrate the characteristics of the developed algorithms.

43
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2.1 FORMULATION OF THE PROBLEM FOR SYSTEMS OF LINEAR
EQUATIONS

Let us assume that we want to solve a large set of linear algebraic equations written in
scalar form as

Zhij Sj = Tg, (Z = 1,2,...,m) (21)
j=1

or in the matrix form
Hs=x. (2.2)

Here, s is the n-dimensional unknown vector, x is the m-dimensional sensor or measurement
vector and H = [h;;] is the m X n real, typically a full column rank matrix with known
elements.! Note that the number of equations is generally not restricted to m = n; it can
be less than, equal to or greater than the number of variables, i.e., the components of s.
If m < n, then the system of equations is called underdetermined, and if m > n, then the
system of equations is called overdetermined. Of course, such a system of equations may
have a unique solution s,, an infinite number of solutions or no exact solution may exist.
In practice, for linear estimation problems, a system of linear (overdetermined) equations
is formulated in a more general form as

Hs =x— e = Xrye, (2.3)

where H = [h;;] € R™*" is the matrix model, x € R™ is the vector of observations or mea-
surements, e € IR™ is the vector of unknown noise or measurement errors®, Xsye € IR is
the vector of true but unknown values and s € IR" is the vector of the system parameters or
sources to be estimated or computed. From a practical point of view, it is usually desirable
to find a (minimal norm) solution s,, if a solution exists, or to find an approximate solution
which comes as close as possible to the original one, subject to a suitable optimality crite-
rion if no exact solution exists. The problem can be formulated as an optimization problem:

Find a vector s € R" that minimizes the scalar objective (cost) function

Jp(s) = llx —Hs|, = lle(s)ll,, p=>1, (2.4)
where the residual error vector e for a given vector s
e(s) = [e1(s), e2(s), s em(s)]” (2.5)
has the components
e;(s) :xi—ths:xl-—Zhij sj, (1=1,2,..,m) (2.6)
j=1

1In contrast to other chapters in this book, we assume here that matrix H is known a priori or can be
estimated. In the next chapters, we will explain how such a matrix can be identified or estimated.

2In some applications a priori knowledge of the statistical nature of the error (noise) is available. Typically,
it is assumed that noise is zero-mean and has a Gaussian distribution.
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and ||e||, is the p-norm of the vector e. The p-norm solution s, satisfies the equation
Hs. +e(s.) = x. (2.7)

Thus, s, minimizes the p-norm of the residual vector e(s) = x — Hs with respect to the
vector s, i.e., the following relation holds:

|[x —Hs.|, <|x—-Hs|, VseR" (2.8)

For the optimization problem (2.4), there are three special cases which are important in
practice:

(a) For p =1, the problem is referred to as the 1-norm or least absolute deviation (LAD)
problem.

(b) For p = 2, the problem is called the 2-norm or linear least-squares (LS) problem.

(¢) For p = oo, the problem is referred to as the Chebyshev (infinity - norm) or minimax
problem.

A proper choice of the norm depends on the specific applications and the distribution
of the errors within the data x. If the error distributions have sharply defined transitions
(such as the uniform distribution), then the Chebyshev (infinity) norm may be the most
suitable choice. For the Laplacian error distribution one can use the 1-norm. For the normal
distribution of the errors, the best choice would be the 2-norm. It should be noted that,
in the special case of zero noise and the matrix H is square and nonsingular, ||e(s.)||, =0
and all the three special cases (p = 1,2,00) mentioned above are equivalent, i.e., they
provide the same unique solution as s, = H™! x. However, in general, for the noisy case for
all the three problems above, the solutions are different. Moreover, both the 1-norm and
infinity-norm solutions are not necessarily unique [282].

In some applications, for m < n, a more general optimization problem is considered in
which the minimization of the p-norm of the residual error vector e(s) = x — Hs is subject
to the linear constraints given by

cl's = uy, (i=1,2,...,0), (2.9)
cl's > uy, (i=1+1,...,k),
a]SS_/Sbja (j:1a27"'an)7
where ¢; = [¢i1, ¢, - - -, cm]T, u;, a; and b; are the given constraint parameters.

2.2 LEAST-SQUARES PROBLEMS

2.2.1 Basic Features of the Least-Squares Solution

The linear least-squares (LS) problem is a special case of the nonlinear least-squares problem
(NLS) which is probably the most fundamental operation in signal processors. It is basic



46 SOLVING A SYSTEM OF ALGEBRAIC EQUATIONS AND RELATED PROBLEMS

to Fourier analysis, deconvolution, correlation, optimum parameter estimation in Gaussian
noise, linear prediction and many other signal processing methods (cf. next chapters).
The linear least-squares problem associated with the problem (2.4) can be formulated as
follows:

Find the vector s € R" that minimizes the cost (energy) function

J(s) = Llx—Hs|2= 2 (x—Hs)T (x—Hs) (2.10)

where .
ei(s) :l'i—h;rS:l'i—Zhij Sj- (211)
7j=1

The cost function achieves the global minimum when its gradient equals zero:
VJ(s) =H" (x —Hs)=0. (2.12)

Hence, s, = (H' H)"' HT x.

Remark 2.1 The cost function J(s) has an interesting statistical interpretation. When the
noise vector e is drawn from the Gaussian distribution with zero-mean and unity variance,
the cost function J(s) is proportional to the negative of the logarithm of the likelihood.
Hence, minimizing J(s) is equivalent to maximizing the log likelihood.

The solutions of the LS problem can be grouped into three categories:

(i) H e R™", rank[H| = n = m (determined case): a unique solution

s. = H ! x exists with J(s.) =0, (2.13)

(i) H e R™ ", rank[H] = n < m (overdetermined case): an exact solution of the problem
(2.2)) generally does not exist, but the least-squares error solution can be expressed
uniquely as

s, = (HTH)'H ' x = H"x, (2.14)

with )
J(s.) = 5xT I-HH")x >0, (2.15)
where HY is the Moore-Penrose pseudo-inverse,

(iii) H € R™ ", rank[H] = m < n (underdetermined case): the solution of the problem
(2.2) is not unique, but the LS problem can give the minimum 2-norm ||s||% unique
solution [689]:

s, =HT (HH")"'x =HTx, (2.16)
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with
J(s:) =0 (2.17)

and thereby the resulting value of the norm leads to

s, ]|2 = x7 (HHT) " x. (2.18)

Remark 2.2 We can straightforwardly derive formula (2.10) by formulating the Lagrange
function as

L(s,\) = %STS + AT(x — Hs), (2.19)

where X = [A1, Aa, ..., \y]T is the vector of Lagrangian multipliers. For the optimal solution,
the gradient of the Lagrange function becomes zero

VeL(s,A\) =s, —H"A, = 0. (2.20)

Hence, we have A\, = (HH?)"'Hs, and s, = H'A, = H' (HH?) 'x = H*x.

It should be noted that generalized (the Moore-Penrose) pseudo-inverse matriz for the
underdetermined case is HY = HT (HH?)™', (n > m), while for the overdetermined case
is HY = (HT H)"'H”, (m >n).

In the general case, when rank (H) < min(m,n), i.e., matrix H may be rank deficient,
we seek the minimum norm solution s,, which minimizes both ||s||2 and [|x — Hs||s.

Assuming that the matrix H is not ill-conditioned, we can use (2.14)) in a straightforward
manner to find the parameters of the least-squares solution. For ill-conditioned problems,
direct inversion of the matrix HTH may cause the noise to be amplified to a degree which
is unacceptable in practice. In such cases, more robust solutions to the estimation problem
need to be found.

2.2.2 Weighted Least-Squares and Best Linear Unbiased Estimation

In some applications (for m > n), it is reasonable to satisfy some of the more important
equations at the expense of the others, i.e., it is required that some of the equations in (2.1)
are nearly satisfied while “larger” errors are acceptable in the remaining equations. In such
a case, a more general weighted least-squares problem can be formulated:

Minimize the cost function

1 1
J(s) = 5(X—HS)T . (x—Hs) = 5||z;/2e||§, (2.21)
where 3, is an m x m positive definite (typically diagonal) matrix which reflects a weighted
€rror.

Remark 2.3 The cost function (2.21]) corresponds to a negative likelihood when the zero-
mean error vector e is drawn from the Gaussian distribution with covariance matriz ..
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In the case that the matrix 3, is diagonal, i.e., ¥, = diag(c%,,03,,...,02,), the 2-norm
%HEi/QeH% = 13", oZe? will be minimized instead of § | e||3. Using such a transformation,
it is easy to show that the optimal weighted least-squares solution has the form®

s, =swis = (H' X, H)'HT 3, x (2.22)
and its minimum LS error is
Js)=x"[Z.-=.HH'=.H) 'H' =] x. (2.23)

It turns out that an optimal and natural choice for the weighting matrix ¥, is the
inverse of the covariance matrix of the noise under the assumptions that the noise is zero-
mean with the positive definite covariance matrix Ree and H is deterministic.¥ Assuming
that . = Rg} is known or can be estimated, we obtain so called BLUE (the Best Linear
Unbiased Estimator)

s« = sproe = (H  RGJH) 'HT R x, (2.24)

which also minimizes the mean-square error.

The matrix R} emphasizes (amplifies) the contributions of the precise measurements
and suppresses the contributions of the imprecise or noisy measurements. The above results
can be summarized in the form of the following well known Gauss-Markov Theorem [689]:

Theorem 2.1 Gauss-Markov Estimator If a system is described by the set of linear
equations

x=Hs+e, (2.25)

where H is a known m X n matriz, s is an n X 1 vector of parameters to be estimated, and e
is an m X 1 arbitrary distributed noise vector with zero-mean and known covariance matriz
Ree = E{eel’}, then the BLUE of s is

Tp-1yn—117 p-1
spor = (H Ry, H)7 HY R, x, (2.26)
where Spppr = [81, 82, ..., én]T and the minimum variance of §; is written as

var(3;) = E{87} = [H" R} H] (2.27)

i’

If the noise has the same variance, i.e., Ree = 021,,, the BLUE reduces to the standard
Least-Squares formula

sis = (HTH)'HT x. (2.28)

3Matrix HTZ.H in (2.22) must be nonsingular for its inverse to exist.
4In some applications, the matrix H is varying in time.
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2.2.3 Basic Network Structure-Least-Squares Criteria

To formulate the above problems (2.1))-(2.3) in terms of artificial neural networks (ANNs),
the key step is to construct an appropriate computational cost (energy) function J(s) such
that the lowest energy state corresponds to the optimal solution s, [282]. The derivations of
the energy function enable us to transform the minimization problem into a set of differential
or difference equations, on the basis of which we design ANN architectures with appropriate
connection weights (synaptic strengths) and input excitations [282].

There are many ways to connect neuron-like computing units (cells) into large-scaled
neural networks. These different patterns of connections between the cells are called ar-
chitectures or circuit structures. The purpose of this section is to review known circuit
structures and to propose some new configurations with improved performance and/or with
a reduced set of such computing units. Using a general gradient approach for minimization
of the energy function, the problem formulated by Eq. (2.10) can be mapped to a set of
differential equations (an initial value problem) written in the matrix form as

% =-uVJ(s)=pH"(x-Hs)=puH" e, (2.29)
where p = (5] is an nxn positive definite matrix which is often chosen to be a diagonal one.
The specific choice of the coefficients 11;; must ensure both the stability of the differential
equations and an appropriate convergence speed to the stationary solution (equilibrium)
state. It is straightforward to prove that the system of differential Eqs. (2.29) is stable (i.e.,
it always has an asymptotically stable solution) since

& OIS s (G T uv(s) < 0 (2.30)

under the condition that the matrix p is positive definite, and in the absence of round-off
errors in the full rank matrix H.

2.2.4 lterative Parallel Algorithms for Large and Sparse Systems

The system of differential equations (2.29) can be easily and directly converted to the
parallel iterative algorithm as [282]

s(k+1) =s(k) +n(k)H  [x — Hs(k)], (2.31)

where 7 is a symmetric positive definite matrix with upper bounded eigenvalues to ensure
the stability of the algorithm. In the special case, for n(k) = n; I the algorithm is sometimes
called the Landweber algorithm, which is known to converge to a LS solution of Hs = x,
whenever the learning rate 7, is chosen so that I—7,H” H is nonnegative definite. In other
words, the learning rate 7y should satisfy the constraint 0 < 7 < 1/Anaz, Where Apan
is the maximum eigenvalue of H'H. Generally, the algorithm converges faster if the n
is near the upper limit. In order to apply the algorithm efficiently, we must first estimate
the largest eigenvalue of HTH, to determine the upper limit. By suitably rescaling the



50 SOLVING A SYSTEM OF ALGEBRAIC EQUATIONS AND RELATED PROBLEMS

system of linear equations, we can accelerate the convergence and relatively easy estimate
the upper limit. For example, let H be an m X n matrix normalized so that the Euclidean
norm of each row is unity. Furthermore, let r; be the number of non-zero entries in the
Jj-th column of H and 7,4, be maximum of the {r;}. Then, the maximum eigenvalue of
the matrix HTH does not exceed 7,4, [122]. This property allows us to take nx = 1/7maz,
which, for very sparse matrices H, can considerably accelerate the convergence rate.

A further increase of convergence speed can be obtained by applying the block iterative or
ordered subset version of the algorithm [122] [170]. We obtain the block iterative algorithms
by partitioning the set {i = 1,2,...,m} into (not necessary disjoint) subsets S;, t =
1,2,...,T, for T > 1. At each iteration we select the current block and then we use only
those data x; with ¢ in the current block. The use of blocks tends to increase the upper
bounds of the learning rate and thereby increase the convergence speed.

The block iterative algorithm, called the BI-ART [I170] (block iterative- algebraic recon-
struction technique) can be written as

z; — hT s(k
(k1) = sk) o 30 DI S0 (2.32)
1€ES} Lo

In each iterative step the sum is taken only over the subset S;.

In extreme case for T = 1, we obtain the Kaczmarz algorithm [170] 282] (also called as
the row-action-projection method) which iterates through the set of equations in a periodic
fashion, and can be written as

x; —hl s(k)

k+1)=s(k
s(ho+1) = (k) + e

h;, i = k modulo (m + 1) (2.33)

where, 0 < 7, < 2 and at each iteration, we use only one row of H and a corresponding
component of x successively. In other words, the index 4 is taken modulo (m + 1), i.e., the
equations are processed in a cyclical order.

The Kaczmarz algorithm®, developed in 1937, has relatively low computational complex-
ity and converges fast to an exact solution if the system of equations is consistent without
having to explicitly invert the matrix HTH or HH”. This is important from a practical
point of view, especially when H has a large number of rows. For inconsistent systems, the
algorithm may fail to converge for the fixed learning rate and it can generate limit cycles,
i.e., the solution fluctuates in the vicinity of the least-squares solution as has been shown
by Amari [19] and Tanabe [122]. To remove this drawback, we can gradually reduce the
learning rate 7 to zero [19].

A more elegant way, which does not easily generalize to other algorithms, is simply
apply Kaczmarz algorithm twice. The procedure is sometimes called DART (double ART)
[122]. Let us assume that for any x the inconsistent system of equations satisfies after the

5The Kaczmarz algorithm has been rediscovered over the years in many applications, for example, as
the Widrow-Hoff NLMS (normalized least-mean-square) algorithm for adaptive array processing or the
ART (algebraic reconstruction technique) in the field of medical image reconstruction in computerized
tomography.
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convergence of the equation Hs, + e, = x. The minimal error vector e, is the orthogonal
projection of x onto the null space of the matrix transformation H”. Therefore, if H e, = 0
then s, is a minimizer of || x — Hs||s. The DART procedure is summarized as follows: first,
we apply the Kaczmarz algorithm to the He = 0, with initial conditions e(0) = x. After
the convergence the optimal error e, will be the member of the null space closest to x. In
the second step, we apply the Kaczmarz algorithm to the consistent system of the linear
equations Hs = x — e, = Hs,.

For sparse matrices, a significant acceleration of the convergence speed without the use
of blocks can also be achieved by the overrelaxation.

In general, the iterative algorithm takes the form

s(k+1) =s(k) +m(k) DH" (x — Hs(k)), (2.34)

where 7(k) is a diagonal matrix with the learning rates and D is a diagonal and positive
definite matrix ensuring the normalization of actual errors z; —h7s(k). The diagonal matrix
D can take different forms depending on the data structure and applications. Typically, for
large, sparse and unstructured problems it can take the form [170]

1 1 1
D:diag{ , by }, (2.35)
[ |7 e[| by (12

where h? is the i-th row of H and |/h;||2 denotes a weighted norm of the vector h;. For
a large and sparse matrix the norm is usually defined as ||h;||? = Z;-lzl rjh3;, where r; is
the number of the non-zero elements h;; of the column j of H. In such a case, the above
iterative formula, which is called as the CAV (Component Averaging) algorithm [170], can

be written in a vector form as

s(k+1) = Z %_ }:T ) 4, (2.36)

with 0 < 77(k) < 2.

2.2.5 Iterative Algorithms with Non-negativity Constraints

In many applications, some constraints may be imposed to obtain valid solutions of the
system of linear equations Hs = x. For example, in the reconstruction of medical images in
computer tomography, it is convenient to transform an arbitrary system of linear equations
to equivalent systems in which both the matrix H and vector x have only nonnegative
entries.

Remark 2.4 There is no loss of generality in considering here only the systems of linear
equations in which all the entries of matrizt H € R™ ™ are nonnegative. Such transfor-
mation can be done as follows [122]: Suppose that Hs = x is an arbitrary (real) system
of linear equation with the full-rank matriz H. After rescaling of some equations, if nec-
essary, we may assume that all X; are non-negative and that for each j the column sum
S hij is non-zero. Now, we can redefine H and s as follows: hy; = hyj/ > v, hij and



52 SOLVING A SYSTEM OF ALGEBRAIC EQUATIONS AND RELATED PROBLEMS

5; = 5;(3; hij). After such transformation, the new matriz H has column sums equal to
one and the vector x = H§ is unchanged. Due to the fact that sums of all columns are
unity, we have Z?Zl 5; =54 = Z:;l x; = x4. We can always find such positive coefficient
0B in that the matriz defined as B = H + 31 has all the nonnegative entries, where 1 is an
m x n matriz of which entries are all unity. Hence, we have B§ = H& + (85,) 1, where 1
is the vector of which entries are all one. Thus the new system of the equations to solve is
Bs=x+(fzy)1l=x.

We often made a further assumption that the column-sums of the matriz B are all
unity. To achieve this, we make one additional renormalization: replace by; with Bkj =
b/ (3t bij and §; with 3; = §; Y i~ bjj. Note that the vector BS is identical to HS and
the new matriz H is nonnegative and has column sums equal to one.

Let us consider the problem of solving of a system of linear equations Hs = x with
nonnegative elements h;; and Z; and the constraints s > 0 (i.e., s; > 0, Vj) [122, 878].
Without loss of generality, we assume that such system is normalized in a way that

H'1=1, (2.37)

where 1 is the vector of all ones. This indicates that all the columns of H are normalized
to have their 1-norm equals unity.

To solve the problem, we can apply the standard LS criterion: minimize J(s) = || x—H s||?
subject to the constraints s > 0 or alternatively by applying the Shannon entropy type
penalty term as J(s) = ||x — Hs|> + ad iy sjlogs; with s; > 0.

Non-negativity can alternatively be enforced by choosing the Kullback-Leibler distance or
maximum likelihood functional [122] [878]. The use of the maximum likelihood functional
is justified by the assumption of Poisson noise, which is a typical case in medical image
reconstruction [878)].

To find a solution, we minimize the Kullback-Leibler distance defined as

M
KL(x|[Hs) = > KL(z, h]s)

i=1

= Z Z;log _xTZ +h's -z, (2.38)
i=1 hi's

subject to s > 0, where K L(a,b) = alog(a/b) +b—a, KL(0,b) = b and Kl(a,0) = +oo for
positive scalars a and b, log denotes the natural logarithm and, by definition, 0log0 = 0.
It is straightforward to check that the above cost function can be simplified to a likelihood
function [878]

J(s) = Z [h!s — z;log(h]'s)] (2.39)

=1

subject to s > 0.
The above constrained optimization problem can be easily transformed into an uncon-
strained minimization problem by introducing a simple parametrization s = exp(u), that
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is, s; = exp(u;), Vj. With this parameterizations and taking into account that HT 1 = 1,
we are able to evaluate the gradient of the cost function as follows [878]

Vul(s) =Ds VsJ(s) = DsH' D! (Hs—x)
_ (17 -1 g\ 17’ N1 <
= DsH (1-Dg x)=s-DsH D X, (2.40)

where Dy = diag{s} = diag{sy, s2, ..., 5, } and D, = diag{Hs} =diag{hTs,hls... hTs}.
Hence , by setting the gradient to zero, we obtain the fixed point algorithm, which is alter-
natively called as the EMML (expectation maximization maximum likelihood) algorithm
[122, R78]

s(k+1) = Dg(k) H' D5l (k) x (2.41)

where Dg(k) = diag{s(k)} and Dﬁl(k) = diag{Hs(k)}. The EMML algorithm can be

written in scalar form as
sj(k+1) =s;(k Z y hT (j=1,2,...,n). (2.42)

If we had not normalized H so as to have the columns of H sum to one, the EMML algorithm
would have had the iterative step

si(k) & T; .
si(k+1) = Zﬁ;__zhijms(k), (j=1,2,....,n). (2.43)
7 ) =1 1

The closely related to the EMML algorithm is the SMART (Simultaneous Multiplicative
Algebraic Reconstruction Technique) developed and analyzed by Byrne [122]:

sj(k+1)
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sj(k):< Ti >h”, (G=1,2,....,n) (2.44)

which can be considered as the minimization of the Kullback-Leibler distance
M
KL(Hs||x) =Y KL(hs, z), (2.45)
i=1
over the nonnegative orthant.

In the consistent case (that is, when there is a vector s > 0 which satisfies x = H's), the
both SMART and EMML algorithms converge to the nonnegative solution that minimizes
K L(s||s(0)). When there are no such nonnegative vectors, the SMART converges to the
unique nonnegative minimizer of the cost function K L(Hs||x) for which KL(s|[s(0)) is
minimized, while the EMML converges to the to the unique minimizer of K L(x||Hs). It is
interesting to note that in the case when entries of the initial vector s(0) are all equal, the
SMART converges to the solution for which the Shannon entropy Jg = — .1 | s;logs;, is
maximized [122].
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2.2.6 Robust Circuit Structure by Using the Interactively Reweighted Least-Squares
Criteria

Although the ordinary (standard) least-squares (2-norm) criterion discussed in the previ-
ous section is optimal for a Gaussian error distribution, it nevertheless, provides very poor
estimates of the vector s, in the presence of large errors (called outliers) or spiky noise."
In order to mitigate the influence of outliers (i.e., to provide a more reliable and robust
estimate of the unknown vector s), we can employ the iteratively reweighted least-squares
criterion (also called as the robust least-squares criterion). According to this criterion, we
wish to solve the following minimization problem:

Find the vector s € R™ that minimizes the energy function

Jo(8) = 3 ples(s)]. (2.46)
i=1
where ple] is a given (usually convex) function called as the weighting or loss function and
its derivative W(e) = dp(e)/de is called as the influence function.” Typical robust loss
functions and corresponding influence functions are summarized in Table 2.1.

Remark 2.5 From the statistical point of view this corresponds to the negative of the log
likelihood, when the noise vector e has a distribution expressed by the pdf

p(e) = CHexp(—p(ei))- (2.47)

Note that by taking p(e;) = €?/2, we obtain the ordinary linear least-squares problem
considered in the previous section.® However, in order to reduce the influence of the outliers,
other weighting functions should be chosen. Omne of the most popular weighting (loss)
functions is the logistic function [282]

pile] = 3*log(cosh(e/ ), (2.48)

where (3 is a problem dependent parameter, which is called the cut-off parameter. The iter-
atively reweighted least-squares problem given by Eq. (2.46), often used in robust statistics,
is usually solved numerically by repeatedly solving a weighted least-squares problem. We
will attack this problem by mapping the minimization problem (2.46)) into a system of dif-
ferential equations. For simplicity, in our further considerations, let us assume that the
weighting function is the logistic function given by Eq. (2.48). Applying the gradient

6 For simplicity, we ensure that all the errors are confined to the observation (sensor) vector x.

"It is important to note that the energy function so defined is convex if the loss functions are convex.
Therefore the problem of convergence to a local minimum does not arise.

8The ordinary least-squares error criterion equally weights all the modelling errors and may produce a
biased parameters estimation, if the observed data are contaminated by impulsive noise or large isolated
errors.
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Table 2.1 Basic robust loss functions p(e) and corresponding influence functions W(e) = dp(e)/de.

Name Loss Function p(e) Influence Functions ¥(e)
1
Logistic pL =7 log (cosh (Be)) Uy = tanh (Be)
2 /e g
e”/2, for |e| < 5, . | < 3
Huber P = 32 Uy — ( A for \(|'_ B3;
Ble| — 7 otherwise Osign(e), otherwise
Ly PLp = % el? U, = |e|P " tsign(e)
2 en 2 i
Cauchy pc = % log [1 + (7) } Vo= —FC
’ 1+ (5)
o
Geman, . 1 pr S o2e
McCulre 7“7~ 2,7 2 “ (o + €%
2 en 2 e 2
Welsh pw = % [1 — exp (f (7) )} Uy = eexp (f (7) )
o o
Fair pr =0 |:‘O,‘ log(1+ | ‘)] Ve £
140
o
Li—L or12 = 2(y/1+€e2/2 -1 Upip = —(—5—
1 2 pri2 ( / ) L12 Tt/
-2 /2, | < 35 . | < 5
Talvar PTa = (2/' for Jel < 15; py = e, for M
37/2, otherwise 0, otherwise
32
(1 —cos (we/B)), for le| < B;
7 (1~ cos (ne/B)) el P
Hampel PHa = Ve = 0

23°

P

otherwise
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Fig. 2.1 Architecture of the Amari-Hopfield continuous-time (analog) model of recurrent neural net-
work (a) block diagram, (b) detailed architecture.

approach for the minimization of the energy function (2.46)), we obtain

ds m n .
d_t] = Hj (Zh” \I/i $i—2hip8p]> (]=1,2,...,n), (249)
i=1 p=1

with  s;(0) = 55-0),
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where ¥,[e;] is the sigmoidal activation function described as

The above system of differential equations can be rewritten in the compact matrix form

% =pH"T (x —Hs) = pH ¥(e), (2.51)
where p = diag{p1, p2, ..., un}t. The above system of differential equations can be imple-
mented by a flexible Amari-Hopfield neural network shown in Fig/2.1] [282].

Note that the above system of equations has a form similar to that given by Egs. (2.29)
and that they can be easily implemented by a similar network architecture under the as-
sumption that in the first (sensor) layer of neurons the sigmoidal nonlinearities are incorpo-
rated. The use of the sigmoidal nonlinearities in the first layer of neurons is essential, since
they enable us to compress large residuals e;(s), that is, to prevent their absolute values
from being greater than the prescribed cut-off parameter 3. Therefore, we are able to obtain
a more robust solution which is less sensitive to large errors (outliers) (in comparison with
the ordinary least-squares implementation).

2.2.7 Tikhonov Regularization and SVD

The noise in the measurements x;, in combination with the ill-conditioning of matrix H,
means that the exact solution of the standard LS problem (2.10) usually deviates strongly
from the noise-free solution and therefore is often worthless. To alleviate the problem, we
can apply regularization. The Russian mathematician Tikhonov was probably the first who
studied the concepts of regularization [282]. The idea behind this technique is to define a
criterion to select an approximate solution from a set of admissible solutions. The basic
feature of the regularization is a compromise between fidelity to data and fidelity to some
a priori information about the solution. In other words, the regularization method imposes
a weak smoothness constraint on the set of possible solutions.

According to the regularization theory, the regularized energy function (i.e., the function
to be minimized) is the weighted sum of two (or even more) terms:

J(s,a) = Jy(s) + a Js(s), (2.52)

where Jy is the data energy and Jg is the smoothness constraint (also called stabilizer
energy) [282].

Remark 2.6 This formulation has the following Bayesian statistical interpretation. Let us
assume that the true signal s has the prior distribution

w(s) = exp{—aJs(s)}. (2.53)
Then the joint distribution of s and x can be written as

p(x,8) = cexp{—Jai(s) — aJs(s)}. (2.54)
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Hence, the criterion of maximizing the posteriori distribution p(s|x) of the source signals
s given X is equivalent to minimizing J (s, «).

For our linear least-squares problem (cf. Eq. (2.10)), a regularized solution can simply be
defined as the solution of the following problem:

s(a) = arg min, J(s, a), (2.55)
where
1
J(s,0) = 5 (I = Hs|3 + a|s|3) , (2.56)
with a > 0.

Thus, in this case, the smoothness constraint energy is the squared 2-norm of the vector s.
Here, the regularization parameter o controls the “smoothness” of the regularized solution.”
Applying the standard gradient descent approach to the cost function (2.56), we obtain

a system of differential equations with leaky integrators [282]

ds T

E:H[H (x—Hs) —as]|. (2.57)
It should be noted that the minimization of the energy function J(s, «) (2.50), with respect
to s, is equivalent to the solution of the normal equation

HTH+al)s=H" x. (2.58)

It can be shown that the condition number of the realized matrix H = H” H 4+ oI is given
by
Tpaz T 0

2 )
Oimin +ta

cond(H) = (2.59)
where 0,4, and o,,;, are respectively the maximum and the minimum singular values of
the matrix H” H. Thus, the condition number of the regularized matrix H=H"H+al
can be much lower than that of the matrix H” H (i.e., H for o = 0). For example, for the
setting 0,00 = 1, 0min = 0.1 and a = 0.1, the condition number is improved by a factor of
10 (from 100 down to 10).

The solution of Eq. (2.58) can be interpreted by the use of the singular value decom-
position (SVD) theory. Assume that the m x n, matrix H, with rank n (m > n) has the
following SVD:

n
H=UXZV"=> ouyv/, (2.60)
i=1
where both U = [uj,us,...,u,] € R™™ and V = [vq,va,...,v,] € R™™" are or-

thogonal matrices and ¥ is a pseudo-diagonal m by n matrix whose top n rows contain

9Choosing the regularization parameter « for an ill-posed problem is an art based on good heuristic and a
priori knowledge of the noise in the observations.
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diag{oy,09,...,0,} (with ordered diagonal entries o1 > o9 > -+ > 0,,) and whose bottom
(m — n) rows are all zero. It can be shown that if {u;} and {v;} are the columns of U
and V, respectively, then the minimum norm least-squares Tikhonov regularized solution
to Eq. (2.58) can be approximated by

s, (a) = zn: g uiTXvi - zn: B (2.61)
o?+a o o+ ajo;

i=1 i=1

where 3; = ul x and a > 0 is the regularization parameter. It is interesting to note that,
if the singular values o; of the matrix H are much larger than the regularization parameter
«, then the regularization has little effect on the final (optimal) solution. However, if one
of the singular values o; is much smaller than «, the corresponding term in Eq. (2.61) can
be expressed as
v o
O'if—zozl/()'i = EZ 52 V; ((71‘ < OZ). (262)
Note that this term approaches zero as ¢; tends to zero. This demonstrates the required
continuity in the solution of a real physical system. Note also that such continuity of the
solution cannot be achieved if @« = 0. We then see that the role of the regularization
parameter « is to damp or filter the terms in the sum corresponding to the singular values
o; smaller than «. Hence, in any practical application, a will always satisty o, < a < oy,
where o; corresponds to significant gap in the singular values spectrum [282] 923].
In contrast to the Tikhonov regularized solution (2.61), the true solution for the noise
free problem is

Strue = Z ﬁi;*€i Vi, (263)
i=1 ¢

where ¢; = ul'e represents the unknown noise components. The goal of the optimal regu-
larization is to produce a solution as close as possible to the true solution. In other words,
the near to optimal value of the regularized parameter can be obtained by minimizing the
distance J(a) = ||s.(@) — Sgruel|?, Which after some mathematical operation leads to the
following algebraic equation [923]:

fa) = E": a(ulx)?  (ufx)? 52 ni:l 1 (2.64)
~ (07 +a)’ (oF+a)? (0] +a)? ’

where 62 is the estimated variance of noise. As has been shown by O’Leary, finding the
zero of such function gives an approximation of the Tikhonov regularization parameter «
close to its optimal value [923].

An alternative method for the regularization of (2.10) is the truncated SVD approach,
in which we discard the smallest singular values simply by truncating the sum in Eq. (2.61)
at some r < n.

In practice, it appears that instead of keeping ||s||3 small as in Eq. (2.57), it is often
more effective to keep ||Ls||2 small, where L is suitably chosen matrix (typically, L = I).
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We now state a generalized regularized least-squares solution, which corresponds to the
minimum of the cost function

1
min {5 (.- )+ anis - 5013) ). (2.65)
where s, is the expected mean value of the estimated vector § (typically it is assumed
that 8. = 0), both ¥, and LTL are positive definite weighting matrices. The matrix L
is the regularization matrix, which is the identity matrix or a discrete approximation to
some derivative operator. Typical examples of such L are: the 1st derivative approximation
L; € R™ Y% and the 2nd derivative approximation Ly € R(" 2% given by

L =|. o ;o L= N (2.66)

It is straightforward to show that the regularized solution (called the generalized Tikhonov
regularized solution) can be written in the form

Sa = (H'S,H+oL"L) " (H S x +aWs,). (2.67)

Such regularization has a close relationship with the Bayesian approach, where we use prior
information in addition to the available data for the solution of the problem. In fact, it
can be shown that if the errors e are jointly Gaussian with zero-mean, the elements of
vector s are jointly Gaussian random variables with mean S, and the covariance matrix
Rss = E{s(k)sT(k)} (where s(k) is k-th observation of the vector s), then the solution

S = H'RJH+ R D 'H'R_!x + R'S,) (2.68)

minimizes the Bayesian mean square estimation criterion E{||s — 8||?}. It should be noted
that the above formula simplifies to the ordinary BLUE (Gauss-Markov minimum variance)
estimate:

Seve = (H'RJH) 'H 'R x (2.69)

by setting Rg.! = 0. This setting corresponds to an “infinite” variance of the parameters,
that is, there is no assumption on the properties of the parameters.

In fact, for such case (. = Rgg ), the minimization problem (2.65) is equivalent to the
solution of the normal equation

(H'RJH +aL’L)s = H' R x, (2.70)

which corresponds to the maximum a posteriori (MAP) estimates [595].

In the subspace regularization approach, we combine two approaches: subspace method
(SVD) and the Tikhonov regularization by setting Rg' = aH” (I — HsH%)H, where Hg
contains the n first principal eigenvectors of the data covariance matrix Ryx = F{xx!} =
UXUT associated with the n largest singular values [682].
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Similarly, we select in the cost function (2.65) L = (I-HsH%)'/?H in order to keep the
second term ||Ls|| small for all expectable 8,. Since

L'L =H"(1-HsH)H, (2.71)
the desired subspace regularized solution can be written in the form
Sa = [H'RZJH + oH" (1 - HsHE)H] ' H'Rx. (2.72)

The above approach is closely related to the Bayesian estimation. In this approach, the
second-order statistics of the set of the observations is used to form a priori information
model for the regularization [682].

2.3 LEAST ABSOLUTE DEVIATION (1-NORM) SOLUTION OF SYSTEMS OF
LINEAR EQUATIONS

The use of the minimum 1-norm or least absolute deviation (LAD) can often provide a
useful alternative to the minimum 2-norm (least-squares) or the infinity- (Chebyshev) norm
solution of a system of linear and nonlinear equations, especially in signal processing appli-
cations [282]. These applications span the areas of deconvolution, state space estimation,
inversion and parameter estimation. The (LAD) solutions of systems of linear algebraic
equations have certain properties not shared by the ordinary least-squares solutions, such
as:

(1) The minimum 1-norm solution of an overdetermined system of linear equations always
exists though the 1-norm solution is not necessarily unique in contrast to the minimum
2-norm solution, where the solution is always unique when the matrix H has a full
rank.

(2) The minimum 1-norm solutions are robust to outliers, that it, the solution is resistant
(insensitive) to some large changes in the data. It is an extremely useful property
when the data are known to be contaminated by occasional “wild points” (outliers)
or spiky noise.

(3) For fitting a number of data points by a constant, the 1-norm estimate can be inter-
preted as the median while the interpretation of the 2-norm estimate is the mean.

(4) The minimum l-norm solutions are in general sparse, in the sense that they have a
small number of non-zero components in the underdetermined case (see Section [2.5)).

(5) Minimum 1-norm problems are equivalent to linear programming problems and vice
versa. Linear programming problems may also be formulated as the minimum 1-norm
problems, while linear least-squares problems can be considered as a special case of
the quadratic programming problem [282].
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2.3.1 Neural Network Architectures Using a Smooth Approximation and
Regularization

The most straightforward approach for solving the problem of the least absolute value
problem is to approximate the absolute value functions |e;(s)| (i = 1,2,...,m) by smooth
differentiable functions, for example

To(8) = Y ples) (2.73)
where
pleu(s)] = ~log(cosh(e,(s). (2.74)

with v > 1. To ensure a good approximation, the coefficient v must be sufficiently large
(although its actual value is not critical). Applying the gradient approach, we obtain the
associated system of differential equations

L >y e (2.75)
where
U;lei(s)] = ag[:;(ss))] = tanh(ve;(s)), (2.76)

1
ei(s):Xifzhijsjv ,Ltj:? > 0.
j=1 J

It should be noted that, for a large value of the gain parameter v (typically v > 50),
the sigmoidal activation function ¥;[e;(s)] quite good approximates the sign (hard-limiter)
function and such a network is able to find a solution which approaches the minimum 1-
norm solution as v — oo. On the other hand, for small values of v (typically 0.1 < v < 1)
the activation function is almost linear over a wide range and the network is able to solve
approximately the least-squares (a minimum 2-norm) problem.

In fact, by controlling the gain parameter v (i.e., by changing its value over a wide range,
say over the range 0.1 < v < 1000) the network is able to solve a system of linear equations
in the minimum p-norm sense with 1 < p < 21Y However, in order to achieve the exact
1-norm solution, it is necessary that the gain -« approaches infinity. Unfortunately, a large
value of the parameter v is difficult to control, and this is inconvenient from a practical
implementation point of view, since an infinite gain is in fact often responsible for various
parasitic effects, such as parasitic oscillations which can decrease the final accuracy. To

10Strictly speaking, the activation function for the p-norm problem is given as W,lei(s)] =
lei(s)|P~ " signei(s)] (1 <p < o0).
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Fig. 2.2 Detailed architecture of the Amari-Hopfield continuous-time (analog) model of recurrent
neural network with regularization.

avoid this problem (especially the ill-conditioned problems), we have developed a modified
cost function with regularization [282]

J(s,0) =Y (plei(s)] + o 9i(s;)) | (2.77)

=1

where 9(s) is convex function, typically ¥(s) = s?>. The minimization of the above energy
function leads to the set of differential equations

ds; w
d_tj = W Z hij Wile;) — i o(s5) | (2.78)
=1
eit) = wi(t) =Y hijs;(t),
j=1

where ;(s;) = dv;j/ds;. On the basis of the above system of differential equations, we can
easily realize an appropriate neural network called the Amari-Hopfield network illustrated
in Figl2.2. Such a network will force the residuals e;(s) with the smallest absolute values
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to tends to zero, while other residuals with large values (corresponding to outliers) will be
inhibited (suppressed). The algorithm given by Egs. (2.78) makes it possible to obtain an
approximate minimum 1-norm solution, even when the gain parameter v has a relatively
low value (typically v > 80) [282].

2.3.2 Neural Network Model for LAD Problem Exploiting Inhibition Principles

Inhibition plays an important role of self-regulatory control in biologically plausible neural
networks and also in many artificial neural networks (ANN), mainly in various decision-
making and selection tasks [282]. The extremal form of inhibition is the Winner-Take-All
(WTA) function. In general, the function of an inhibition sub-network is to suppress some
signals (e.g., the strongest signals) while allowing other signals to be transmitted for further
processing. Our goal in this section is to employ this mechanism explicitly for solving the
LAD problem [282].

For an overdetermined linear system of equations (cf. Eq. (2.3)), in general, it is impos-
sible to satisfy all the m equations exactly, but there may exist a point s, in the n-space
satisfying at least the n equations if the matrix H is of full rank. This can be formulated
by the following Theorem [282]:

Theorem 2.2 There exists a minimizer s,,, € R" of the energy function Ji(s) = |le||1 =
S lei(s)] (with e =x —Hs and m > n) for which the residuals e;(s.) = 0 for at least n
values of i, say i1,12,...,1,, where n denotes the rank of matriz H.

From this theorem, it follows that the minimum 1-norm solution s; ,, of the overdetermined
m X n system interpolates at least n points of the m (with m > n) observed or measured
data points, assuming H is of full rank. We can say that the minimum 1-norm solution is
the median solution. On the other hand, the ordinary minimum 2-norm LS solution is the
mean solution, since it tries to satisfy most of the equations in the set, but this solution will
usually not solve exactly any of these equations. However, in the special case that the matrix
H is nonsingular (for m = n ), all the n equations are exactly solved with residuals equal
to zero. From this analysis, it follows that by using the ordinary least-squares technique,
we can solve the LAD problem iteratively in two stages. In the first stage, we compute all
the residuals e;(srs) (1 = 1,2,...,m) and select, from the m set of equations only the n
equations corresponding to the n residuals which are the smallest in absolute value, the rest
of equations are ignored (or inhibited). In the second stage, we use the reduced number of
determined equation to estimate the vector s;,p. The algorithm is summarized as follows:

Algorithm Outline: LAD Solution Using Multi-stage LS Procedure

Step 1. Compute the LS solution as
sis = (HHD)'HT x (2.79)

and on the basis of residual vector e(s) = x — H s, 4 select the reduced set of equations
corresponding to the modulus of the smallest residuals. After eliminating the (m —n)
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equations, we obtain the reduced set of determined equations in the form
H,s=x,,
where H, is a nonsingular n x n reduced matrix and x, € R" is a reduced sensor
vector.
Step 2. Compute the LAD solution as

Seap = H ' x,. (2.80)

T

Example 2.1 Let us consider the following ill-conditioned LAD problem:
Minimize J(s,H) = ||x — Hs||1,
where

1.1 40 70 =31 55
H” =] 20 51 80 —4.0 6.9
3.1 60 89 —50 8.1

and x = [-2 1.1 42 —0.5 2.1]7.
In the first step, we can obtain the LS (2-norm) solution and corresponding vector of the
residuals as

s = (H'H)'H"x=[1.6673 1.4370 —2.1198]7,
e; = x—Hsy,=[0.1368 —0.1795 —0.1015 —0.1821 0.1844]T.

Since the residuals corresponding to the fourth and fifth row have the largest amplitude,
we can remove them and compute the optimal LAD solution as

si=H 'x,=[21 -2, (2.81)

where x,, = [-2 1.1 4.2]7 and

11 2 3.1
H =| 4 51 6
7 8 89

Let us consider now a more difficult example with some ambiguities.

Example 2.2 Let us consider the following LAD problem:
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Minimize J(s) = ||x — Hs||1,

where

11 1 11
T _
H = 1 2 3 4 5
andx=1[112 3 3]T.
It is impossible to explicitly find the LAD solution in one step. In the first step, we can

obtain the LS (2-norm) solution and the error vector (residuals) as

s, = (HH)'H"x=[0.2 0.6]7,
es = x—Hs;=[02 —040 04 —02]7.

Since the residuals corresponding to the second or fourth rows have the same largest am-
plitude, we can remove only the second and the fourth row. Then, the optimal solution is
computed as

s;=H'"H,)'"H %, =[0.5 0.5, (2.82)

where x, = [1 2 3]T and

=
I
== =
ot W

The above simple algorithm can easily be implemented on-line by the Amari-Hopfield
neural network shown in Fig/2.2] with the adaptive activation functions ¥;(e;) (taking one
of two forms: ¢; or 0). In the first phase of the computation, all the activation functions are
U;(e;) = e;, thus both the LS estimation s s and corresponding residuals e(s) = x — Hsg
are simultaneously estimated automatically by the neural network.

In the second phase of the computation, the inhibition control circuit (not explicitly
shown on Figl2.2) selects the (m — n) largest modulus of the residuals e,(s.s) from the set
of all the m residuals e;(s.s) and inhibits the corresponding (m — n) hidden neurons by
switching their activation functions to ¥,(e,) = 0, allowing the smallest n residuals to be
further processed in the network. In this way, in the second phase of the computation, only
n equations are selected for which the residuals are minimized to zero, while the rest of the
equations are simply discarded.

The inhibition control subnetwork can be realized on the basis of the Winner-Take-All
principle. Firstly, the circuit selects the largest signal |e,(s.s)| which is immediately inhib-
ited and the corresponding switch is opened. Then, the procedure is sequentially repeated
for (n — m) times for the rest of the signals |e;(s)|.

While both the LS and LAD formulation of the estimation problem and their solution
are commonly employed in practice, it is worthy to mention of not only their usefulness, but
also their limitations [282]. These techniques are able to provide unbiased estimates of the
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coefficient vector in an ergodic environment, only when the entries of matrix H are known
precisely. In other words, an implicit assumption employed in the LS and LAD estimation
procedures and many of their variations is that there is negligible noise or contained in the
data matrix H. In other words, we attributed till now all the uncertainty about the system
parameters to the noise contained in the sensor signals x.

2.4 TOTAL LEAST-SQUARES AND DATA LEAST-SQUARES PROBLEMS

2.4.1 Problems Formulation

In the previous sections of this chapter, we have considered the case where only vector x
is contaminated by the error and the matrix H is known precisely. The total least-squares
approach is suitable for solving estimation problems that can be formulated as a system
of over-determined linear equations of the form Hs = x, in which both the entries of data
matrix H and the sensor vector x are contaminated by noise, i.e., we have the system of
linear equations

(Htrue + N) S = Xtrue +n=x (283)

where the true data (the data matrix Hy,.,e and the measurement vector Xy ) are unknown.
In contrast to the TLS, in the LS problems it is assumed that the data matrix Hy,,. is
known precisely, i.e., the noise matrix N € IR™*" is zero or negligibly small and only the
measurement vector x is contaminated by the unknown noise n, while, in the data least
squares (DLS) problem, it is assumed that noise n is zero or negligibly small and only the
noise contained in the matrix N exists. In TLS problem, it is assumed that the noise has
zero-mean with a Gaussian distribution.

In many signal processing applications the TLS problem is reformulated as an approxi-
mate linear regression problem of the form

z; ~ h’s; (i=1,2,...,m) (2.84)

where h! = [h;1, hia, . . ., hin)] is the i-th row of H.

The TLS solution that eliminates the effects of certain types of noise in the signals can be
shown to be related to a lower-rank approximation of the augmented matrix H = [x H].
Based on this result, we show how the unknown vector s can be estimated from noisy data.
This section is concerned with the estimation algorithms that are designed to alleviate the
effects of noise present in both the input and the sensor signals. We will show that the
total least-squares estimation procedure can produce unbiased estimates in the presence of
certain types of noise disturbances in the signals. This procedure will then be extended to
the case of arbitrary noise distribution. There is a large class of problems requiring on-line
estimation of the signals and the parameters of the underlying systems.

2.4.1.1 A Historical Overview of the TLS Problem The total least-squares (TLS) method
was independently derived in several areas of science, and is known to statisticians as the
orthogonal regression or the error-in-variables problem. The error-in-variables problem
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Fig. 2.3 This figure illustrates the optimization criteria employed in the total least-squares (TLS),
least-squares (LS) and data least-squares (DLS) estimation procedures for the problem of finding a
straight line approximation to a set of points. The TLS optimization assumes that the measurements
of the x and y variables are in error, and seeks an estimate such that the sum of the squared values of
the perpendicular distances of each of the points from the straight line approximation is minimized.
The LS criterion assumes that only the measurements of the y variable is in error, and therefore the
error associated with each point is parallel to the y axis. Therefore the LS minimizes the sum of
the squared values of such errors. The DLS criterion assumes that only the measurements of the x
variable is in error.

has a long history in statistical literature. Pearson in 1901 [581] solved the two-variable
model fitting problem that may be formulated as follows: given a set of points (z,yy) for
k=1,2...,m, we wish to find the optimal straight line

y=mx+c (2.85)

that minimizes the sum of the squared values of the perpendicular distances between the
points in the set and the straight line. Figure2.3/describes this problem graphically. Pearson
solved this problem and expressed the modelling errors associated with the points in terms of
the mean, standard deviation and correlation coefficients of the data. In the classical least-
squares problem, we wish to find the values of slope and intercept (m,¢) which minimizes
the sum of the squared distances between y, and its predicted values. In other words, the
LS solution results from minimizing the sum of the squared values of the vertical distances
between the line and the measurements yi. It assumes that the variables xj, are error free
and all the noise is contained in y. The Data Least-Squares (DLS) algorithms are another
class of estimation techniques based on the assumption that points gy are error-free and all
the noise is contained only in the measurements x. Therefore, the DLS algorithm attempts
to minimize the sum of the squared distances between the line and the measurements xy,
along the horizontal axis. For example, the DLS solution is useful in equalization problems
that involve certain types of deconvolution models. Unlike both the LS and DLS approaches,
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the TLS algorithms assume that both xj and y; are contaminated by noise. Consequently,
we can consider the standard LS and DLS algorithms as special cases of the extended TLS
technique.

Example 2.3 Let us determine the optimal line y = mx + ¢ by the ordinary LS, TLS, DLS
algorithm and also the solution to the minimum 1-norm and infinity-norm problem, for the
data points:

(zr,yr) = (1,2), (2,1.5), (3,3), (4,2.5), (5,3.5)

This problem is equivalent to solving the system of linear equations with respect to s:

Hs ~ x or equivalently to minimize |x — Hs||, where x = [ 2 15 3 25 35 ]T,
s = [m ] and data (input) matrix

1 2 3 4 5

T _

H = 11 1 1 1

Fig2.4lillustrates solutions of this problem using different criteria.

The problem of fitting a straight line to a noisy data set has been generalized to that of
fitting a hyper-plane to noisy, higher-dimensional data [581] [582].

In the field of numerical analysis, the total least-squares problem was first introduced
by Golub and Van Loan in 1980 [501], studied extensively and refined by Van Huffel,
Vandevalle, Lemmerling et. al. [581},582], Hansen and O’Leary, and many other researchers
581, 552,

There are many applications that require on-line adaptive computation of the parameters
s for the system model. Adaptive algorithms that employ the TLS formulation and their
extensions have been developed and analyzed by Amari and Kawanabe, Mathews, Cichocki,
Unbehauen, Xu, Oja, Douglas along with many others [41}, 58T, (582] 282, [827, 1309}, (293
294].

2.4.2 Total Least-Squares Estimation

The TLS solution explicitly recognizes that both the input matrix H and the sensor vector
x may be contaminated by noise. Let Hj.,. = H — NN represent the noise-free input
matrix, and let X;.,. = X — n represent the noise-free desired response vector. Here,
we do not consider any possible relationships that might exist among the elements of H.
Such constraints may be incorporated into the TLS formulation, but this will result in a
considerable increase in the complexity of the solution. The TLS procedure attempts to
estimate both the noise matrix N and the noise vector n to satisfy an exact solution of the
system of linear equations:

(H—N)sp s = (x—n). (2.86)
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Fig. 2.4 Straight lines fit for the five points marked by ‘x’ obtained using the: (a) LS (L2 -norm),
(b) TLS, (c) DLS, (d) Li-norm, (e) Lo -norm, and (f) combined results.

Generally, there may be many choices of N and n that satisfy (2.86). Among all such
choices, we select N and n such that'!

[[n NJR=2"nd+3 > 0 (2.87)

i=1 j=1

1We have assumed, that the signals are real-valued. The extension to complex-valued data is straightfor-
ward.
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is minimized, where n;; is the (4, 7)-th element of N and n; is the i-th element of n. To
solve the above problem, we rewrite (2.80) as

(H-[n N])[ -1 ]:o, (2.88)

StLs

where H = [x, H|. In the above equation, 0 is an m-dimensional vector filled with all zeros.
In general, because of the noise, the augmented input matrix H is full rank. If we assume
that m > n + 1, the rank of H is (n + 1).

The problem of finding n and N can be recast as that of finding the smallest perturbation
of the augmented input matrix H that results in a rank-n matrix.

Let us expand the matrix H using the singular value decomposition as

n+1
H=[x H]=) ouv/, (2.89)
i=1

where ¢;’s are the singular values of H, arranged in the descending order of magnitude, u;’s
and v;’s are respectively the left singular vectors containing m elements each, and the right
singular vectors containing (n + 1) elements each. We assume that we have selected the
singular vectors such that they have unit length, and that the sets {u;; i=1,2,...,n+1}
and {v; ; i=1,2,...,n+1} contain orthogonal elements so that u] u; =0 and v} v; =0
for i # j. It is well-known that the rank-n approximation of H introducing the least amount
of perturbation to its entries is given by [581]

n
i=1

Moreover, the error matrix [ n N ] is given by
[ n N ] = Un+1un+1V3;+1- (2.91)

Taking into account (2.88) and (2.90), we can write

ﬁ[ -1 }: lgaiuivf] [ -1 } =0. (2.92)

StLs StLs

Since v, 41 is orthogonal to the rest of the vectors: vy, v, ..., v, the TLS solution for the
coefficient vector given by

[ -1 }:—V”“ (2.93)

)
StLs Un+1,1

(where vy,41,1 is the first non-zero entry of the right singular vector v,,41) satisfies (2.92)).
Thus, the total least-squares solution is described by the right singular vector corresponding
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to the smallest singular value of the augmented input matrix H. An efficient approach to
computing this singular vector is to find the vector v that minimizes the cost function*?

_ VvTH Hv

J(v) = : (2.94)

v 113

and then to normalize the resulting vector so that

[ -1 } = Yopt (2.95)

b
StLs Vopt, 1

where v, denotes the solution to the optimization problem in (2.94)), and v,y 1 is the first
entry of v,,;. Simple calculations will show that the vector v minimizing J(v) is identical to
the (n + 1)-th right singular vector of H, and choosing v = v,,1; will provide the minimum
value of J(v) given by

J(Vopt) = 0241 (2.96)

It is also straightforward to show that the optimum choice for v corresponds to the eigen-

vector corresponding to the smallest eigenvalue of the matrix H H Thus, a numerical
method based on SVD or minor component analysis (MCA) for finding the TLS estimate
of the coefficients can be applied. The above derivation assumes that the smallest singular
value of the augmented data matrix H is unique. If this is not the case, the TLS problem
has an infinite number of solutions. To uniquely define s ¢ in such situations, usually a
solution is chosen for which || s;.s ||? is the smallest among all the possibilities.

When the noise in the entries of the augmented data matrix H belongs to independent
and identically distributed (i.i.d.) Gaussian processes with zero-mean, it can be shown
that the TLS solution obtained by minimizing the cost function in (2.94) is the maximum
likelihood estimate of the coefficient vector. When the noise sequences satisfy the i.i.d.
condition, the standard TLS estimate is unbiased. In other words, we obtain an unbiased
estimate if both the noise variance of the vector x (sensor signals) and the data matrix H
are the same, i.e., (02 = 0%).

Consequently, even though the standard total least-squares approach described above
results in unbiased estimates of the parameters of the system model, it does not necessarily
provide a good estimate of the signals of interest. In order to obtain better estimates of
the parameters, one may use an augmented data matrix H with the number of columns
n' >> n+1 (where (n+1) is the minimum number of columns needed by the TLS approach)
and then approximate this matrix with a rank-n matrix. The noise matrix estimated using
such an approximation has a rank larger than one, and therefore it is considered that the
estimate is a better one than that provided by the standard TLS algorithm described above.

12Scaling the coefficient vector by a scalar multiplier does not change the cost function. Consequently, we
can also formulate this problem equivalently as that of minimizing

J(v) = vIH Hv

subject to || v ||3= 1.
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2.4.3 Adaptive Generalized Total Least-Squares

The standard (ordinary) TLS is a method which gives an improved unbiased estimator only
when both the noise (errors) in the data matrix H and the sensor vector x are i.i.d. and
exhibit the same variance. However, in practice, the data matrix H and the observation
vector x represent different physical quantities and are therefore usually subject to different
noise or error levels. The generalized TLS (GTLS) problem deals with the case where the
data errors Ah;; = n;j are i.i.d. with zero-mean and variance 0% (i.e., Ryy = 0%1,) and
where the observation (sensor) vector components Az; = n; are also i.i.d. with zero-mean
and variance o2 # 0%

There are many situations in which the parameters of the underlying system in the
estimation problem are time-varying, while the input signals are corrupted by uncorrelated
noise. Even in the situations in which the characteristics of the operating environment
do not vary over time, either adaptive or iterative solutions are often sought, because the
singular value decomposition-based solutions tend to be computationally expensive and such
methods usually do not exploit the special structures or sparseness of the system model
to reduce the computational complexity. In this section, we discuss how the traditional
adaptive filtering algorithms such as the least-mean-square (LMS) algorithm can be modified
to account for the presence of the additive i.i.d. noise in both the sensor signals and the
mixing (data) matrix.

Solving the generalized TLS problem consists in finding the vector s which minimizes
582, 294]

1- n
YIIAH|Z + (1—7) [|Ax|%,  where —L=pg=1n (2.97)

and AH and Ax refer to perturbations of the matrix H and sensor vector x, respectively.
By changing the parameter v in the range [0, 1], we obtain the special cases: the standard
LS, TLS and DLS problems. The parameter v = 0 (§ = o0) yields the standard LS
formulation since in this case 0%, = 0, whereas v = 0.5 gives the standard TLS formulation
since 0% = 02, and finally v = 1 (8 = 0) results in the DLS formulation with o2 = 0.

n?

Let us first consider the standard mean square error cost function formulated as
J(s) = E{e” (k)e(k)}, (2.98)
where the error vector e is defined as
e(k) =x — Hs(k) = (X¢true + 1) — (Hirue + N) s(k), (2.99)

where Hy,e and xye are unknown true parameters. The cost function (2.98) can be
evaluated as follows

J(S) = E{(xtTue — Hirue S)T(Xtrue — Hirye S)} + O'EL + s Ryns
= E{(XtTue — Hirue S)T(Xtrue — Hirue S)} + U]2v (ﬁ + ST S) (2100)

on the assumption that noise components are uncorrelated i.i.d. and Ryn = 0%/ L,.
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It is obvious that minimizing the cost function J(s) with respect to the vector s will yield
a biased solution, since the noise components are the functions of s. To avoid this problem,
we can use the modified mean square error cost function formulated as the generalized TLS
problem which can be further reformulated as the following optimization problem [282] [294]:

Minimize the cost function

1 E{e”(k)e(k)}

Is) = 2 B+sTs
_ 1 E{(Xtrue - Htrue S(k))T(XtT'ue - Htrue S(k))} 2
= 3 G e + 03, (2.101)

The above cost function removes the effect of the noise, assuming that the power ratio of
the noise components (3 = o2 /o%; is known, since the last term in (2.101) is independent of
s.

To derive the iterative adaptive algorithm, we represent the cost function as

m

J(s) = Ji(s), (2.102)

i=1
where
_ 1E{e}(k)}
2 p[+sTs
and e; = z; — hl s (h denotes the i-th row of H).
Then the instantaneous gradient components can be evaluated as
de?  e;(k) h; e2(k)s

$75+5Ts*[ﬁisTs]2' (2.103)

Ji(s) = E{e*(k)}

Hence, the iterative discrete-time algorithm exploiting the gradient descent approach can
be written as

s(k+1) =s(k) + n(k) €;(k) [h; + €;(k) s(k)], =k modulo (m + 1), (2.104)

where
ei (k) - h7's(k)
B+sT(k)s(k)  B+sT(k)s(k)

Since the term (3 + sT (k) s(k))~! is always positive, it can therefore, be absorbed by the
positive learning rate, thus the algorithm can be represented in a simplified form as

(2.105)

ei(k) =

[s(k+ 1) = s(k) + (k) ei(k) [h; + & (k) s(k)], @ =kmodulo (m+1)|  (2106)

Remark 2.7 It should be noted that the index i is taken modulo (m + 1), i.e., the rows h;
of matrix H and elements x; of vector x are selected and processed in a cyclical order. In
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other words, after the first m iterations, for the (m + 1)th iteration, we revert back to the
first row of H and the first component of x. We continue with the (m + 2)-nd iteration
using the second row of H and second component of x, and so on, repeating the cycle every
m iterations. Moreover, it is interesting to note that the above algorithm simplifies to the
standard LMS algorithm when § = oo, while it becomes the standard DLS algorithm for

3=0.

Using the concept of component averaging (say, for block of all indices 4 in one iteration
cycle) and by applying self-normalization like in the Kaczmarz or NLMS algorithms, we
can easily derive a novel GTLS iterative formula for the sparse matrix H as

" o — hTs(k) [h ; — h's(k) s |, (2.107)

1) =s(k) +0R) D S Bt G (e

where 0 < 7j(k) < 2 is the normalized learning rate (relaxation parameter) and r; is the
number of non-zero elements h;; of the column j.

2.4.4 Extended TLS for Correlated Noise Statistics

We noted earlier that the TLS solution is unbiased when the noise in H belongs to an i.i.d.
process. When the noise is i.i.d. Gaussian-distributed this is also the maximum likelihood
solution. Unfortunately, when the noise is correlated in turn, the estimates are no longer
guaranteed to be unbiased. In such a case a modification is needed to make the TLS
approach useful, especially when the input signal is corrupted by non-i.i.d. noise sequences.
For the purpose of the derivation, we will assume that the noise samples are Gaussian
distributed with zero-mean. If the noise is non-Gaussian, the procedure described here will
still result in unbiased estimates of the system model parameters. However, these estimates
will no longer satisfy the maximum likelihood property. Let the statistical expectation of
the product of the augmented input matrix H with its own transpose be given by [327]

E {ﬁTﬁ} B S - (2.108)
where
RHH =B {[Xtrue Htrue]T [Xtrue Htrue]} (2109)
and
= T
o = E{[n N|” [n N]} (2.110)

respectively represent the autocorrelation matrices of the unbiased by noise signal compo-
nent and the zero-mean noise component. We have assumed that the two components are
uncorrelated with each other. Let H denote the transformation of the augmented input
matrix given by

H=-HRL/ (2.111)
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The (scaled) autocorrelation matrix of H is then
E {HTH} = Ril/? Ru Rui/? + L (2.112)

Thus, the transformed input matrix is corrupted by a noise process that is i.i.d. Gaussian
with zero-mean. Therefore, the maximum likelihood estimate Sgrp.¢ of the coefficient vector
for the transformed input matrix is given by the solution of the optimization problem

sTHTHSs

2.113
sTs ( )

min J(8) =

Obviously, this solution is unbiased. Let Sgyps denote the coefficient vector for H, obtained
by appropriately transforming the optimal solution Sgrrs of (2.113)). Since

H SprLs = H R;;/Q SwTLss (2.114)

we conclude that Sgyps, which is the optimal solution for the correlated noise problem, is
related to Sgrps through the transformation

SprLs = R;iz/z SeTLs- (2.115)

The entries for the augmented regression vector [z; h7]7 are obtained by an appropriate
scaling of Sy and given as

[ -1 } _ _ Sens , (2.116)

SgTLS SeTLS1

where Sgris, is the first non-zero element of Sgpr.s. Since scaling the solution vector does
not change the cost function, after substituting (2.115) and (2.116)) in (2.113), we can state
the optimization problem for the extended TLS approach as [327]

L n(]]

o]
T

The solution to the above optimization problem is given by the generalized eigenvector:®

(2.117)

. . . . ik
corresponding to the smallest generalized eigenvalue of the matrix pencil (H" H, Ryn)-

13Given two square matrices G and H, the generalized eigenvector of the matrix pencil (G, H) is a vector v
that satisfies the equality Gv = A Hv, where the constant A is known as a generalized eigenvalue. Assuming
that the inverse of the matrix H exists, the generalized eigenvectors of the matrix pencil (G, H) are the
eigenvectors of H™1G.
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24.4.1 Choice of Ry in Some Practical Situations The coefficient estimate obtained by
solving the optimization problem of (2.117) can be shown to be unbiased for any noise cor-
relation matrix Ryx. However, we need to have a priori knowledge of the noise correlation
matrix in order to implement the procedure. Fortunately, we need to use only a scaled
version of the noise correlation matrix, since the minimization of the cost function

o Lo Lo .

e[ L]

where c¢ is a scalar positive constant, gives the same solution as the optimization problem
in (2.117)). There are many situations in which we can provide an estimate of such scaled
noise correlation matrices. Some of these situations are:

e Uncorrelated Noise in the Input Signals: In many estimation problems, the matrix H
or equivalently each of its column vector h; is corrupted by the additive i.i.d. noise
with variance 0%, and the vector of sensor signals x is contaminated by independent
noise with variance o2. In such cases, we can use

cRyn = diag{3,1,1,...,1}, (2.119)

where 3 = 02 /0% is the ratio of the variance of the noise sequences associated with
ZT; and hz

e Data Least-Squares (DLS) problem: In a variety of the estimation problems that
belong to this class, the sensor signal z; contains no noise and the noise in h; can be
reliably modelled as i.i.d. An appropriate choice of cRyy in this case can be

cRyn = diag{0,1,1,...,1}. (2.120)

e Least-Squares (LS) Problems: In this situation, we assume that the regression vector
h; is noise-free and that only x; is corrupted by noise. Then, choosing

cRyn = diag{1,0,0,...,0} (2.121)

results in the standard least-squares problem formulation.

2.4.5 Adaptive Extended Total Least-Squares

In this section, we discuss a more general case when the noise components can be mutually
correlated and the covariance matrix of the noise is known or can be estimated, but when
the noise is independent of vector s(k).

In this derivation, we consider the most general situation considered in section 2.4.4! [827].
Recall from (2.117) that the extended TLS solution minimizes the cost function

PRI .

23]
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The ETLS adaptive filter attempts to vary its coefficients at each iteration in a way that it
reduces an instantaneous version of the above cost function defined as

ey Lo ] [ U= 21 ]

11" 4 -1
by shifting the coefficients along the direction that is opposite to that of the gradient of
J(s(k)) with respect to the current coeflicient values. We will use a discrete-time index &
for the noise correlation matrix to indicate that the noise statistics may vary over time.
We will also assume that the noise correlation matrix RNN(k) is available to the user at all
times.

Let us decompose Ry (k) as

, (2.123)

T

where r,,,,(k) is a scalar corresponding to the autocorrelation of the noise in the sensor signal,
r.~(k) is the vector containing the cross-correlation of the noise components in z; and h;,
and Ryn (k) denotes the autocorrelation matrix of the noise components in the regression
vector h;. Recently in [827] Mathews and Cichocki have shown directly calculating the
gradient of J(s(k)) with respect to the coefficient vector is given by

D)
st 2 (€:(k)hy + €2 (k) (—ran (k) + Run(K)s(k))), (2.125)

where €;(k) is a normalized version of the estimation error defined as

i () |
o ]TR“N<k) ]

Thus, the on-line version of the ETLS learning formula can be compactly written as

e;(k) = (2.126)

[s(k +1) = s(k) + @i(k) (i + (k) (—ran (k) + Run(k)s(R))) | (2.127)

In the special case of stationary, white noise in matrix H, and in the sensor signals, the
above ETLS adaptive algorithm simplifies to the GTLS algorithm.

The superiority of the extended TLS approach can be clearly seen for the correlated
noise. However, it is worth to note that the ETLS estimates make use of perfect knowledge
of the noise correlation matrices [827].

2.4.6 An lllustrative Example - Fitting a Straight Line to a Set of Points

Example 2.4 Consider the problem of estimating the slope and the intercept of a straight
line that fits the points (1,2.0), (2,1.5), (3,3.0), (4,2.5), (5,3.5). The augmented data
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matrix for this problem is given by

20 1 1
1.5 2 1
H=|30 3 1
25 4 1
35 5 1

The entries in the third column of this matrix are all fixed to ones because the y-intercept
of the line does not depend on the independent variable. The estimated autocorrelation
matrix of the data matrix H is given by

) o 33.75 4150 12.50
Ruyg=H H= | 41.50 55.00 15.00
12.50 15.00  5.00

The least-squares estimate of the slope and the intercept may be found as

mys | | 95.00 15.00 T 4150 | 0.40
cs | | 15.00  5.00 12.50 | | 1.30 |-

The total least-squares solution assumes that there is noise in all the entries of the matrix H,
and the solution is obtained from the eigenvector corresponding to the smallest eigenvalue
of Rygu. This estimate can be calculated as

Mmrs | | 0.2660
o= Ui )

A drawback of the above solution is that we have assumed that the last column of H is
in error, even though this column can be exactly specified in our problem. Consequently,
here we can utilize the extended TLS approach to estimate the parameters. Let us assume
that the noise in the first two columns of the data matrix H are uncorrelated with each
other. Then, a scaled autocorrelation matrix for the noise is given by diag{1, 1, 0}. The

extended TLS solution for the slope and intercept of the straight line is specified by the
generalized eigenvector corresponding to the smallest generalized eigenvalue of the matrix

pencil (RHH,diag{l, 1, ()})7 and is given by

Meres | | 0.4332

ceres | | 1.2003 |-
Figure 2.5/ shows the plots of the straight lines estimated using the three approaches: LS,
TLS and ETLS.

2.5 SPARSE SIGNAL REPRESENTATION AND MINIMUM FUEL
CONSUMPTION PROBLEM

In the previous sections, we have considered the problems of solving overdetermined systems
of linear equations. The problem of the underdetermined systems of linear equations can
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VA

V=

ol 1 2 3 4 5 6

Fig. 2.5 Straight lines fit for the five points marked by ‘x’ obtained using the LS, TLS and ETLS
methods.

be usually formulated as the following constrained optimization problem:
Minimize
Jp(s) = lIsllp (2.128)

subject to the constraint
Hs =x,

where H € R™*" (with m < n). For the standard 2-norm, the problem is usually called
as the minimum energy solution whereas for the infinity-norm, it is called as the minimum
amplitude solution. For p = 1, the problem provides a sparse representation of the vector
s and therefore is called as the minimum fuel solution. The term sparse representation or
solution usually refers to a solution with (m — n) or more zero entries in the vector s.

The minimum fuel problem is closely related to overcomplete signal representation and
the best basis selection (matching pursuit) problems [704} [T002]. In the overcomplete signal
representation problem, we search for an efficient overcomplete dictionary to represent the
signal. To solve the problem, a given signal is decomposed into a number of optimal
basis components which can be found from an overcomplete basis dictionary via some
optimization algorithms, such as matching pursuit and basis pursuit. The problem of basis
selection, i.e., choosing a proper subset of vectors from the given dictionary naturally arises
in the overcomplete representation of signals. In other words, in the problem of the best
basis selection, it is necessary to identify or select a few columns h; of matrix H that best
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represent the sensor vector x. This corresponds to finding a solution to (2.128) for p <1
with a few non-zero entries [511 [704] TOOT, [T002].

The above problems arise in many applications like electro-magnetic and biomagentic
inverse problem, time-frequency representation, neural and speech coding, spectral estima-
tion, direction of arrival estimation and failure diagnosis [511}, [T002].

Finding an optimal (smallest) basis set of vectors is NP hard and requires a combinatorial
search [1002]. For example, if we were interested in selecting r vectors h; that best represent
sensor data x, this would require searching over n!/(n—r)!r! possible ways in which the basis
set can be chosen as the best solution. This search cost is prohibitive for large value of n,
causing a search for the optimal solution by applying combinatoric approaches non-feasible
[100T, [1002).

The main objective of this section is to present several efficient and robust algorithms
which enable us to find the suboptimal solutions for the minimum fuel problem and its
generalizations, especially when the data are corrupted by noise.

2.5.1 Approximate Solution of Minimum Fuel Problem Using Iterative LS Approach

Intuitively, in order to find the minimum fuel solution, i.e., possibly a sparse representation,
of the vector s, we must optimally select some columns of the matrix H. Alternatively, using
a neural network representation, we should impose some ‘competition’ between the columns
of matrix H to represent optimally and sparsely the data vector x. Due to this competition,
certain columns will get emphasized, while others will be de-emphasized. In the end, at
most m columns will survive to represent x, while the rest or at least (n—m) will be ignored
or neglected, thereby providing a sparse solution.

The minimum energy (2-norm) solution is usually a rough approximation of the 1-norm
solution. However, in contrast to the 1-norm solution, the minimum 2-norm solution will
not provide a sparse representation. It rather has the tendency to spread the energy among
a large number of entries of s, instead by putting all the energy (concentrating it) into just
a few entries. The minimum energy problem can be easily solved explicitly using

So = H X,

where HY = HT (HH7”)~! denotes the Moore-Penrose generalized pseudo-inverse. The
solution has a number of computational advantages, but does not provide a desirable sparse
solution. Exploiting these properties and features, we propose the following approximative
multiple (at least two) stage algorithm based on the iterative minimum energy solution:

Algorithm Outline: Approximate Procedure for Sparse Solution

Step 1. Estimate the minimum 2-norm solution of the problem (2.128) as
so. = HT (HHT)'x =H" x, (2.129)

where H € R™*"" is the Moore-Penrose pseudo-inverse matrix of H. On the basis of
vector so,, we remove certain columns of the matrix H corresponding to the smallest
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modulus of components of the vector ss,. Then set these components of the vector
So, are set to zero as a partial solution of the minimum 1-norm problem.

Step 2. Estimate the remaining components of the vector s;:
si, = HY (H, H')"'x = H} x, (2.130)

where H, € R"™*" (with » > m) is the reduced matrix obtained by removing from
the matrix H certain columns corresponding to the smallest amplitude and s1,. € R".

Step 3. Repeat Step 1 and 2 until at least (n — m) or the specified number of columns from
the original matrix H are removed.

The algorithm will be illustrated by a simple example.
Example 2.5 Let us consider the following minimum fuel problem:
Minimize ||s||; subject to the constraint Hs = x,

where

23 -1 10 21 4 -9 1 -1
H=|12 2 8 15 3 8 -3 1
3 1 1 6 16 53 -7 2 2

and x = [118 77 129]7.
It is impossible to find the minimum fuel solution in one step. In the first step, we obtain
the minimum energy (2-norm) solution as

HT HHT) 'x (2.131)
= [0.131 0.086 —0.104 0.302 0.795 2.022 —0.9373 0.222 0.037]".

S2

Since the components s1, s2, S3, S4, Sg and sg have the smallest absolute values, we set them
to zero and remove the corresponding columns (i.e., [1,2,3,4,8,9]) of the matrix H which
yields its reduced version:

21 44 -9
H.=| 15 3 8
16 53 -7

In the second step, we compute the remaining components of the vector s; as
s, =H 'x=[12 —1]T.
Thus, the minimum 1-norm solution finally takes the sparse form as:

s..=[000012 —10 0.
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In many signal processing applications, the sensor vector is available at a number of time
instants, as in the multiple measurements or recordings, thus the system of linear equations
Hs(t) = x(t), (t=1,2...,N) can be written in a compact aggregated matrix form as

HS =X, (2.132)

where S = [s(1),s(2),...,s(N)] and X = [x(1),x(2),...,x(N)].

Our objective is to find a sparse representation of the matrix S. However, we require
the individual columns of S involved not only have a sparse structure but also share the
structure and have a common sparsity profile, that is, possibly a small number of rows
s; = [s;(1),5;(2),...,5;(N)] (j =1,2,...,n) of the matrix S have non-zero entries. In such
a case, we can extend or modify the proposed algorithm as follows:

Algorithm Outline: Extended Algorithm for Sparse Solution

Step 1. Estimate the minimum 2-norm solution of the problem (2.132) as
Sy, =H' (HHT)"'X =H" X, (2.133)

where HT € IR"*™ is the Moore-Penrose pseudo-inverse of H and S», € RV is the
matrix of estimated sources s;(k).

Then, we remove certain columns of the matrix H corresponding to the smallest
value of norm™ ||s;|| of the row vectors s; = [s;(1),5;(2),...,s;(N)] of the matrix
So.. Next, certain components of these row vectors are set to zero if they are below
some threshold value as a partial solution to the minimum fuel problem. In this stage,
we can remove (n —m) (or less) columns of H.

Step 2. Estimate the remaining components of the matrix S:
S, =H X =HI'(HH)'X, (2.134)

where S1, e RV is a required partial solution and H,. is the reduced version of the
matrix H (with removed certain columns of H corresponding to the smallest norms
of row vectors of the matrix So.).

Step 3 Repeat the Step 2 and 3 until at least (n — m) or the required number of columns
from the original matrix H are removed.

2.56.2 FOCUSS Algorithms

An alternative algorithm for the minimum fuel problem, called as FOCUSS (FOCal Under-
determined System Solver) has been proposed by Gorodnitsky and Rao [511] and extended

14The choice of norm ||s;|| depends on the noise distribution, e.g., for Gaussian noise the optimal is 2-norm,
and for Laplacian (impulsive noise) the 1-norm, whereas for uniform distributed noise infinity-norm is the
best choice.
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and generalized by Kreutz-Delgado and Rao [704], [TO0T, [T002].
Let us consider the following constrained optimization problem [704} [T00T), [T002]:

minimize J,(s) = >0, pls;|
subject to Hs = x,

where the cost function J,(s) (often called as the diversity measure) can take various
forms [1002]:

1. The generalized p-norm diversity measures
n
Typ(s) = sign(p) > |s; [, (2.135)
j=1

where p < 1 and is selected by user.

2. The Gaussian entropy diversity measure
n
Ja(s) = Ha(s) = Y log|s;|*. (2.136)
j=1

3. The Shannon entropy diversity measure

Js(s) = Hg(s) = — > §;log|3;, (2.137)
j=1
where the components §; can take different forms, e.g. 5; = |s;|, 5; = |s;|/|s|2,

5; = |s;l/|s|l1 or 5; = s; for s; > 0.

4. Renyi entropy diversity measure

Ins) = Hals) = 7o Y ()", (2.138)

where §; = s;/||s||1 and p # 1.

It should be noted that, for p = 1, we obtain the formulation of the standard minimum
fuel problem in which at least (n — m) components are zero. Choosing above diversity
measures, we can obtain a more sparse solution than for the minimum I1-norm solution
(corresponding to p = 1) (i.e., more than (n—m) entries in the vector s are zero). Moreover,
the solution can be much robust with respect to the additive noise. The general diversity
measures based on the negative norm or Gaussian, Shannon and Renyi entropies ensure
that a relatively large number of entries s; tend to be very small, albeit usually non-zero
amplitudes. In such cases, we use a small threshold below which the entries are set to be
Z€ro.
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To minimize the generalized p norm diversity measure Jp(s) in (2.135), subject to the
equality constraint Hs = x, we define the Lagrangian L(s, A) as

L(s,\) = Jp(s) + A (x — Hs), (2.139)

where A € IR" is the vector of the Lagrange multipliers [704, [T00T] [1002].
The stationary points of the Lagrangian function above can be evaluated as follows

VsL(s:A) = VeJ,(s)—HT A, =0, (2.140)
VyL(siA) = x—-Hs, =0, (2.141)

where the gradient of the p norm can be expressed as
Vsdp(s) = |p| Dlg‘l(s) s (2.142)

and Dg(s) € R™™" is a diagonal matrix with the entries d; = [s;|>?. Solving the above
equations by simple mathematical operations, we obtain

A = pl (HD|s|(S*)HT)_1X7 (2.143)
s = [p|7'Dig(s.) HT A,
— Dy (s.) H” (HD(s.)HT) ' x. (2.144)

The equation (2.144) is not in a convenient form for computation since the desired vector
S, is implicitly in the right side of the equation. However, it suggests that an iterative
algorithm for estimation of the optimal vector s, is given as

s(k+1) = Dy (k) HY (HDo (k) HT) ' x, (2.145)

where Dy (k) = diag{|s1(k)[*7P,[s1(k)|*77,...,[sn(k)[* P}. The above algorithm, called
as the generalized Focuss algorithm can be expressed in a more compact form [511]:

s(k +1) = Dig (k) <H]~3|S‘(k))+x, (2.146)

where the superscript (-)* denotes the Moore-Penrose pseudo-inverse and f)|s‘ (k) = D‘ls/f(k) =
diag{|s1|* "% (k), |s2|' "2 (k),...,|sn|" "% (k)}. It should be noted that the matrix Dy exists
for all s and even for a negative p. For p = 2, the matrix D) = I and the Focuss algorithm
simplifies to the standard LS or the minimum 2-norm solution s, = HT (HHT)~!x. For
another special case p = 0, the diagonal matrix ]3\5| = diag{|s1],|s2],---,|sn|}- In order
to derive rigorously the algorithm for p = 0, we should instead of (2.135)) use the Gaussian
entropy (2.130) for which the gradient can be expressed as

VsJa(s) =2Dg's, (2.147)

where Dg(s) = diag{|s1/?, |s2/%, .., |sn|*}
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For noisy data, we can use a more robust regularized Focuss algorithm in the form:

1

s(k+1) =Dy (k) H" (HDyy (k) H" + (k) I)  x, (2.148)

where a(k) > 0 is the Tikhonov regularization parameter depending on the noise level
[704], 1002].

Finally, it is worthy of mention that in order to solve the minimum fuel problem as in
(2.132) for the case of the multiple sensor vectors, we can formulate the following general-
ized constrained optimization problem [704, [1002]:

Minimize
n

Tp(S) =sign(p) Y (lIs;ll)?,  p<1, (2.149)
j=1

subject to the constraints H S = X,

N
where s; = [s;(1),5;(2), ..., s;(N)]" and [|s;ll2 = (.2, |s;(D[*)'/>.
Similarly to the previous case, we can derive the Focuss algorithm for the multiple sensor
vectors as

S(k+1) = Dygy (k) H” (HDyg (k) HT) ™" X, (2.150)

where Dg (k) = diag{dy(k),d2(k), ..., dn(k)} with d;(k) = [|s;]>?(k). The algorithm can
be considered as the natural generalization of the Focuss algorithm (2.145)). and initialized
by using the minimum Frobenius norm solution [T00T}, T002]. Alternatively for noisy data,
we can use the Tikhonov regularization technique, the truncated SVD or a modified L-curve
approach for noisy data [704, 1001, [1002].



Principal /Minor Component

Analysis and Related
Problems

I want to get the structural problems out of the way first, so I can get to what matters more.
—(John McPhee)

3.1 INTRODUCTION

Neural networks with unsupervised learning algorithms organize themselves in such a way
that they can detect or extract useful features, regularities, correlations of data or signals or
separate or decorrelate some signals with little or no prior knowledge of the desired results.:
Normalized (constrained) Hebbian and anti-Hebbian learning rules are simple variants of
basic unsupervised learning algorithms in particular, learning algorithms for principal com-
ponent analysis (PCA), singular value decomposition (SVD) and minor component analysis
(MCA) belong to this class of unsupervised rules [357, 910, [1207].

PCA is perhaps one of the oldest and the best-known techniques in multivariate analysis
and data mining. It was introduced by Pearson, who used it in a biological context and
next developed by Hotelling in works done on psychometry. PCA was also developed
independently by Karhunen in the context of probability theory and was subsequently
generalized by Loeve [357]. Recently, many efficient and powerful adaptive algorithms have
been developed for PCA, SVD and MCA and their extensions [20), 910, 917, [64, 281]. The
main objective of this chapter is a derivation and overview of the most important algorithms.

Tt is generally believed that the shape of the receptive fields in the visual cortex is determined by some
form of unsupervised learning.

87
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3.2 BASIC PROPERTIES OF PCA

3.2.1 Eigenvalue Decomposition

The purpose of principal component analysis (PCA) is to derive a relatively small number

of decorrelated linear combinations (principal components) of a set of random zero-mean

variables while retaining as much of the information from the original variables as possible.
Among the objectives of Principal Components Analysis are the following.

1. dimensionality reduction;
2. determination of linear combinations of variables;

3. feature selection: the choosing of the most useful variables;
4. visualization of multidimensional data;
5. identification of underlying variables;

6. identification of groups of objects or of outliers.

PCA has been widely studied and used in pattern recognition and signal processing. In
fact it is important in many engineering and scientific disciplines, e.g., in data compression,
feature extraction, noise filtering, signal restoration and classification [357]. PCA is used
widely in data mining as a data reduction technique. In image processing and computer
vision PCA representations have been used for solving problems such as face and object
recognition, tracking, detection, background modelling, parameterizing shape, appearance
and motion [1207, [712].

Often the principal components (PCs) (i.e., directions on which the input data have the
largest variances) are regarded as important, while those components with the smallest
variances called minor components (MCs) are regarded as unimportant or associated with
noise. However, in some applications, the MCs are of the same importance as the PCs, for
example, in curve and surface fitting or total least squares (TLS) problems [1309, 282].

Generally speaking, PCA is related and motivated by the following two problems:

1. Given random vectors x(k) € R™, with finite second order moments and zero mean,
find the reduced n-dimensional (n < m) linear subspace that minimizes the expected
distance of x from the subspace. This problem arises in the area of data compression
where the task is to represent all the data with a reduced number of parameters while
assuring as low as possible distortion generated by the projection.

2. Given random vectors x(k) € IR™, find the n-dimensional linear subspace that cap-
tures most of the variance of the data x. This problem is related to feature extraction,
where the objective is to reduce the dimension of the data while retaining most of its
information content.

It turns out that both the problems have the same optimal solution (in the sense of least-
squares error) which is based on the second order statistics, in particular, on the eigen
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structure of the data covariance matrix?. PCA can be converted to the eigenvalue problem
of the covariance matrix of x and it is essentially equivalent to Karhunen-Loeve transform
used in image and signal processing. In other words, PCA is a technique for computation
of the eigenvectors and eigenvalues for the estimated covariance matrix?

Ryx = E{x(k)x"(k)} = VAVT ¢ R™*™, (3.1)

where A = diag {\1, A2, ..., A\ } is a diagonal matrix containing the m eigenvalues and V
= [v1,V2,...,vp] € R™*™ is the corresponding orthogonal or unitary matrix consisting of
the unit length eigenvectors referred to as principal eigenvectors.

The Karhunen-Loeve-transform determines a linear transformation of an input vector x
as

Yep = Vg X, (3.2)

where
x = [w1(k), 22(k),...,2m(k)]T is a zero-mean input vector, yp» = [y1(k), y2(k), ..., yn (k)T
is the output vector called the vector of principal components (PCs), and Vg = [vy, va,
S, va]T € R™ ™ is the set of signal subspace eigenvectors, with the orthonormal vectors
vi = [vit, V2, - vim] T, (e, (vZij = ¢;;) for j <4, (d;; is the Kronecker delta). The
vectors v; (i =1,2,...,n) are eigenvectors of the covariance matrix, while the variances
of the PCs y; are the corresponding principal eigenvalues. On the other hand, the (m —n)
minor components are given by
yar = Vi, (3.3)

where V= [Vin, Vin—1, -« -, Vin—n+1] consists of the (m — n) eigenvectors associated with
the smallest eigenvalues.

Therefore, the basic problem we try to solve is the standard eigenvalue problem which
can be formulated by the equations

Rxsz' = /\ivi7 (’L = 1, 2, e ,TI,) (34)

where v; are the eigenvectors, )\; are the corresponding eigenvalues and Ry, = E{xxT}
is the covariance matrix of zero-mean signal x(k) and FE is the expectation operator. Note
that Eq.(3.4) can be written in matrix form VI Ry, V = A, where A is the diagonal matrix
of the eigenvalues of the covariance matrix Ry x.

In the standard numerical approach for extracting the principal components, first the co-
variance matrix Ry x = E{xxT} is computed and then its eigenvectors and (corresponding)
associated eigenvalues are determined by one of the known numerical algorithms. However,
if the input data vectors have a large dimension (say 1000 elements), then the covariance
matrix Ry is very large (10° entries) and it may be difficult to compute the required
eigenvectors.

2If signals are zero mean the covariance and correlation matrices become the same.
3The covariance matrix is the correlation matrix of the vector with the mean removed. Since, we consider
the zero-mean signals the both matrices are equivalent.
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The neural network approach and adaptive learning algorithms enable us to find the
eigenvectors and the associated eigenvalues directly from the input vectors x(k) without a
need to compute or estimate the very large covariance matrix Ry x. Such an approach will
be especially useful for nonstationary input data, i.e., in the cases of tracking slow changes
of correlations in the input data (signals) or in updating eigenvectors with new samples.
Computing the sample covariance matrix itself is very costly. Furthermore, the direct
diagonalization of matrix or eigenvalue decomposition can be extremely costly since this
operation is of complexity O(m?). Most of the adaptive algorithms presented in this chapter
do not require computing the sample covariance matrix and they have low complexity.

3.2.2 Estimation of Sample Covariance Matrices

In practice, the ideal covariance matrix Rxx is not available. We only have an estimate
Rxx of Rxx called the sample covariance matrix based on a block of finite number samples:

N 1
Rix = > x (k) x" (k). (3.5)
k=1

We assume that the covariance matrix does not change (or change very slowly) over the
length of the block. Alternatively, we can use the Moving Average (MA) approach to
estimate on-line the sampling covariance matrix as follows:

RY) = (1—no) RETY + o x(k) xT (k) (3.6)

X

where 79 > 0 is a learning rate (and (1 — 7g) is a forgetting factor) to be chosen according
to the stationarity of the signal (typically 0.01 <y < 0.1).

Alternatively, in real time applications, the sample covariance matrix can be recursively
updated as

k k—1
Ry — % 3 x(l)xT(l):% S x X7 (1) +x (k) x" (k)
N fﬁ*/\ +1 l=k—N+1
= TRN_1+Nx(lc)xT(k), (3.7)

where f{N denotes the estimated covariance matrix at k-th data instant so that

k—1
ﬁNfl = m Z X(Z)XT (l)

The recursive update can be formulated in more general form as
ﬁN = Oéf{N_l + Aﬁ, (38)

where a is a parameter in the range (0,1] and AR is a symmetric matrix of rank much less
than that of Ry_;. While working with stationary signals, we usually use rank-1 update
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with a = (N — 1)/N and AR = (1/N) x (k) xT (k), where x(k) is the data vector at k-th in-
stant. On the other hand, in the nonstationary case, rank-1 updating is carried out by choos-
ing 0 < a < 1 and AR = x (k) xT (k). Alternatively, in the nonstationary case, we can
use the rank-2 update with o = 1 and AR = x (k) xT (k) —x(k— N +1) x' (k— N + 1),
where N is the sliding window length over which the covariance matrix is computed. The
term Ry_;1 may be thought of as a prediction of R based on N — 1 observations and
x (k) xT (k) may be thought of as an instantaneous estimate of R.

3.2.3 Signal and Noise Subspaces - AIC and MDL Criteria for their Estimation

A very important problem arising in many application areas is determination of the di-
mension of the signal and the noise subspace. To solve this problem, we usually exploit
a fundamental property of PCA: It projects the input data x(k) from their original m-
dimensional space onto the n-dimensional output subspace y(k) (typically, with n < m),
thus performing a dimensionality reduction which retains most of the intrinsic information
in the input data vectors. In other words, the principal components y;(k) = vI x(k) are
estimated in such a way that, for n < m, although the dimensionality of data is strongly
reduced, the most relevant information must be retained in the sense that the original input
data x can be reconstructed from the output data (signals) y by using the transformation
X = Vgsy, that minimizes a suitable cost function. A commonly used criterion is the
minimization of least mean squared error ||x — V% Vg x||2.

PCA enables us to divide observed (measured), sensor signals: x(k) = x5(k) + v(k) into
two subspaces: the signal subspace corresponding to principal components associated with
the largest eigenvalues called principal eigenvalues: A1, Ag, ..., Ap, (m > n) and associated
eigenvectors Vg = [v1,Vva,...,v,] called the principal eigenvectors and the noise subspace
corresponding to the minor components associated with the eigenvalues A\, 41, ..., A\p,. The
subspace spanned by the n first eigenvectors v; can be considered as an approximation of
the noiseless signal subspace. One important advantage of this approach is that it enables
not only a reduction in the noise level, but also allows us to estimate the number of sources
on the basis of distribution of eigenvalues. However, a problem arising from this approach,
is how to correctly set or estimate the threshold which divides eigenvalues into the two
subspaces, especially when the noise is large (i.e., the SNR is low).

Let us assume that we model the vector x(k) € R™ as

x(k) = Hs(k) + v(k), (3.9)

where H € R™*" is a full column rank mixing matrix with m > n, s(k) € R" is a vector of
zero-mean Gaussian sources with the nonsingular covariance matrix Rgs = E{s(k)sT (k)}
and v(k) € R™ is a vector of Gaussian zero-mean i.i.d. noise modelled by the covariance
matrix Rypy = 021, furthermore, random vectors {s(k)} and {v(k)} are uncorrelated
[773].

Remark 3.1 The model given by Eq. (3.9) is often referred as the probabilistic PCA, and
have been introduced in machine learning context [1017, [1148]. Moreover, such model can
be also considered as a special form of Factor Analysis (FA) with isotropic noise [11]8].
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For the model (3.9) and under the above assumptions the covariance matrix of x(k) can be
written as

Rxx = E{x(k)x'(k)} =HRssH" + 021,
_ As O T
- [V57V/\/]|: 0 AN :| [V37VN]
= VsAsVE +VyANVE, (3.10)

where HRss HT = VSXSVE is a rank-n matrix, Vs € R™*" contains the eigenvectors
associated with n principal (signal+noise subspace) eigenvalues of Ag = diag{A\; > Ay -+ >
An} in descending order. Similarly, the matrix Vi € R™*(™~™) contains the (m—n) (noise)
eigenvectors that correspond to noise eigenvalues Ay = diag{Ani11,-..,Am} = JEIm,n.
This means that, theoretically, the (m — n) smallest eigenvalues of Ryxx are equal to o2, so
we can determine in theory the dimension of the signal subspace from the multiplicity of the
smallest eigenvalues under assumption that variance of noise is relative low and we perfect
estimate the covariance matrix. However, in practice, we estimate the sampled covariance
matrix from limited number of samples and the smallest eigenvalues are usually different,
so the determination of the dimension of the signal subspace is usually not easy task.

Instead of setting the threshold between the signal and noise eigenvalues by using some
heuristic procedure or a rule of thumb, we can use one of two well-known information
theoretic criteria, namely, Akaike’s information criterion (AIC) or the minimum description
length (M DL) criterion [671), [1266].

Akaike’s information theoretic criterion (AIC) selects the model that minimizes the cost
function [773]

AIC = —2log(p(x(1),x(2),...,2(N)|®)) + 2n, (3.11)

where p(x(1),x(2),...,2(N)|®) is a parameterized family of probability density, © is the
maximum likelihood estimator of a parameter vector @, and n is the number of free adjusted
parameters.

The minimum description length (M DL) criterion selects the model that instead mini-
mizes

MDL = —log(p(x(1),x(2),...,z(N)|®)) + %nlog N. (3.12)

Assuming that the observed vectors {x(k)}._, are zero-mean, i.i.d. Gaussian random vec-
tors it can be shown [1266] that the dimension of the signal subspace can be estimated by
taking the value of n € {1,2,...,m} for which

AIC(n) = —2N(m —n)logo(n)+ 2n(2m —n), (3.13)

MDL(n) = —N(m—n)logo(n)+ 0.5n(2m —n)log N (3.14)

is minimized. Here, N is the number of the data vectors x(k) used in estimating the data
covariance matrix Ryx, and

1

()\n+1)\n+2 ce )\m)m
#(An+l + /\n+2 + -+ >\m)

m—n

o(n) = (3.15)
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is the ratio of the geometric mean of the (m—n) smallest PCA eigenvalues to their arithmetic
mean. The estimate 7 of the number of terms (sources) is chosen so that it minimizes either
the AIC or M DL criterion.

Both criteria provide rough estimates (of the number of sources) that are rather very
sensitive to variations in the SNR and the number of available data samples [773]. Another
problem with the AIC and M DL criteria given above is that they have been derived by
assuming that the data vectors x(k) have a Gaussian distribution [1266]. This is done
for mathematical tractability, by making it possible to derive closed form expressions. The
Gaussianity assumption does not usually hold exactly in the BSS and other signal processing
applications. Therefore, while the M DL and AIC criteria yield suboptimal estimates only,
they still provide useful formulas that can be used for model order estimation.

Instead of setting the threshold between the signal and noise eigenvalues, one might even
suppose that the M DL and AIC criteria cannot be used in the BSS problem, because
there we assume that the source signals s;(k) are non-Gaussian. However, it should be
noted that the components of the data vectors x(k) = Hs(k) + v(k) are mixtures of the
sources, and therefore often have distributions that are not so far from the Gaussian one.
In practical experiments, the M DL and AIC criteria have quite often performed very well
in estimating the number n of the sources in the BSS problem [671]. We have found two
practical requirements for their successful use. Firstly, the number of the mixtures must be
larger than the number of the sources. If the number of sources is equal to the number of
sensors, both criteria inevitably underestimate n by one. The second requirement is that
there must be at least a small amount of noise. This also guarantees that the eigenvalues
An+1y Ant2, - - -, Am, corresponding to noise, are nonzero. It is obvious that zero eigenvalues
cause numerical difficulties in formulas (3.13) and (3.14).

3.2.4 Basic Properties of PCA
It is easy to obtain the following properties for principal components (PCs) y; = vIx :

1. The factor y; (k) = vIx(k) is the first principal component of x(k) if the variance of
y1(k) is maximally large under constraint that the norm of vector vy is constant [910].
Then the weight vector vi; maximizes the following criterion

J1(v1) = E{yi} = E{v] Ryxv1}, (3.16)

subject to the constraint ||vy||2 = 1. The criterion can be extended for n principal
components (with n any number between 1 and m) as

Tn(vi,va, .., va) = E{)_ui} = B _(v/ %)’} => v Rux Vi, (3.17)
1=1 =1 =1

subject to the constraints v v; = §;;.

2. The PCs have zero mean values

E{y;} =0, Vi (3.18)
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3. Different PCs are mutually uncorrelated

4. The variance of the i-th PC is equal to the i-th eigenvalue of the covariance matrix
RXX

var{y;} = o, = E{y;} = B{(vIx)*} = vIRvi = \;. (3.20)

5. The PCs are hierarchically organized with respect to decreasing values of their vari-
ances

> >0 (3.21)
L, Adp =A==\,

6. Best approximation property: for the mean-square error of approximation
n n
X = Z Yivi = Zviv?x, n <m, (3.22)
i=1 i=1

we have

m m

E{lx=xI?y =E{l > wvil®}= > E{wl}= )Y (3.23)

1=n+1 1=n—+1 i=n+1

Taking into account that A\; > Ay > --- > A, it is obvious that an approximation
with these eigenvectors vy, v, ..., Vv,, corresponding to the largest eigenvalues, leads
to the minimal mean square error.

3.3 EXTRACTION OF PRINCIPAL COMPONENTS USING OPTIMAL
COMPRESSION-RECONSTRUCTION PRINCIPLE

One of the simplest and intuitively understandable approach to the derivation of adaptive
algorithms for PCA is based on self-association (called also self-supervising or replicator
principle) [20, 281) 282]. According to this approach, we first compress the data vector
x(k) to one variable y; (k) = vIx(k) and next we attempt to reconstruct the original data
from y;(k) by using the transformation %X(k) = vyyi(k). Let us assume, that we would
like to extract principal components (PCs) sequentially by employing the concept of self-
supervising principle (replicator) and a cascade (hierarchical) neural network architecture
[281), 277, 282].

Let us consider a single linear neuron (see Fig/3.1)

(k) =vix= Zvlpxp(k), (3.24)
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which extracts the first principal component, with \; = E{y?}. Strictly speaking, the factor
y1 is called the first principal component of x, if the variance of y; is maximally large under
constraint that the principal vector v; has unit length.

The vector vi = [v11,v12,. - .,vlm]T should be determined in such a way that the re-
construction vector x = vyy; will reproduce (reconstruct) the input training vectors x(k)
as correctly as possible, according to a suitable optimization criterion. In general, the loss
(cost) function is expressed as

N
Ti(vi) = B{|lx = vivix|?} = Y N F|x(k) - vivix (k)| (3.25)
k=1

where v is the forgetting factor. As a special case, we can consider the simplified (instan-
taneous) version of the cost function which can be written as

2

N | =

L(v1) = Sllells =) el (3.26)
p=1

with
A A
€1 =X—Viy1, Y1 =Vi X
The formulation of the computational cost function Ji(vy) is a key step in our approach,
because this enables us to transform the minimization problem into a set of differential or
difference equations, which then determines the adaptive learning algorithm [281), 282].

The minimization of the cost function (3.26), according to the standard gradient descent
approach [281] for vector vy, leads to the following set of differential equations:

d’Ulp o 8J1 (Vl)
=
dt 81)117

=1 |y1(t)erp(t) + (1) va(t)@lh(t) , (p=1,2,...,m) (3.27)
h=1

which can be written in matrix form as

dv
d—tl = i [yrer +xvie], (3.28)
for any v1(0) # 0, p1 > 0.

The above learning rule can be further simplified as

dV1

o = favier = myifx = vi), (3.29)

since the second term in Equation (3.28), which can be written as xvie; = xv] (x—vyy;) =

x(1 — vI'vi)y1, tends quickly to zero as viv; tends to 1 with ¢ — oo and can therefore be
neglected. This feature has also been confirmed by extensive computer simulations.
It is interesting to note that the discrete-time realization of the learning rule:

vilh+1) = vi(k) + mB) g (W) —viB)pa(B)],  (k=0,1,2,..)  (3.30)

which is in the form known as the Oja algorithm [910].
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Xp =Xy Vi V11_+% X1 Voi Vor %* X3

Xy = Xpp Viz +\+ Y1 V12,+J X22 V22+\ Va sz,¢+ X3

+ - +

- Vim - Xom  Vom Vom - X
+ +

Fig. 3.1 Sequential extraction of principal components.

Remark 3.2 It is not well known, that the first paper which shows that a normalized Heb-
bian learning performs PCA was [20):

Vilk+1) = vi(k) +m(k) yi (k) x(k), (3.31)
ik +1)
vi(k+1) = [T (3.32)

If the normalization step is combined together with the Hebbian rule, we obtain the learning
algorithm (3.30).

The above learning rule can be easily extended for an arbitrary number of PCs using the
self-supervising principle and the cascade hierarchical neural network shown in Fig/3.1.

In what follows, we will discuss a deflation approach for sequential extraction of principal
components, corresponding to real-valued zero-mean signals without any need to estimate
the large covariance matrix. We will extract principal components sequentially as long as
the eigenvalues \; are larger than some suitably chosen threshold. We assume that minor
components for i > n correspond to additive noise.

The learning algorithm for the extraction of the second PC corresponding to the second
largest eigenvalue Ay = E{y3} works in a way similar to the extraction of the first principal
component. However, we apply the extraction process not directly to the input data x; (k) =
x(k) but to the residual error

e1(k) 2 x2(k) = x1 (k) — %1 (k) = x1 (k) — viy1 (k)

and yo(k) 2 vle (k) (not y2(k) = vIx(k) as usually is assumed). It can be easily shown
that the learning rule for the ¢ — th PC can be written in the general form as follows

Vz'(k + 1) = Vi(k) + 771(]6) yz(k) Xi+1(/€), (333)

where

x(k).

A AN
€ =Xij11=X; — V%, Yi=V; X, Xi1(k)
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Fig. 3.2 On-line on chip implementation of fast RLS learning algorithm for the principal component
estimation.

The extracted output signals y;(k) after applying the above learning procedure will be de-
correlated with decreasing values of the variances \; = E{y?}, (i =1,2,...,n).

In the accelerated version of the above algorithm, key roles are played by the learning
rates n;(k) > 0 and the forgetting factor . If the learning rate is too large, the algo-
rithm is unstable. Otherwise, if it is a fixed or an exponentially decreasing parameter, the
convergence speed of the algorithm may be very slow [281], 277, [282].

In order to increase convergence speed, we can minimize the cost function (3.25) by em-
ploying the recursive least-squares (RLS) or Kalman filtering approach for optimal updating
of the learning rate n; [281] 357, [1318] (see Fig. [3.2)):

x1(k) = x(k), 1,7 (0) = 2max{[|x; ()||*} = 2% mazs (3.34)

vi(0) = Ximae/||Xijmazll, (E=1,2,...,n), (3.35)

yi(k) = vi (k)xi(k), (3.36)

vilk +1) = vik) + 25 ) — pupvao, (3.37)
7; (k)

n; (k4 1) = ym; (k) + Jya(R), (3.38)

xi+1(k) = xi(k) — yi(k)vis, (3.39)
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where 7 is the forgetting factor (typically, 0.9 <~ < 0.99) and v;, means vector v;(k) after
achieving convergence.

The above fast algorithm can be generalized for Principal Subspace Analysis (PSA) and
nonlinear PCA.

3.4 BASIC COST FUNCTIONS AND ADAPTIVE ALGORITHMS FOR PCA

3.4.1 The Rayleigh Quotient — Basic Properties

Most of the adaptive algorithms for PCA and MCA (minor component analysis) can be
defined directly or indirectly by using the Rayleigh quotient (RQ) of the specific covariance
matrix as the cost function.

The Rayleigh quotient r(v) is defined for v # 0, as

VIRV

Ty

r(v) =7r(v,Rxx) = (3.40)

\%

where Ryxx = E{xx’}. The Rayleigh quotient has the following important properties:

1. Stationarity and critical points:

A1 = maxr(v, Rxx) (3.41)
Am = min7(v, Rxx), (3.42)
where \; and )\, denote the largest and smallest eigenvalues of the covariance matrix Ryx.

More generally, the critical points and critical values of (v, Rxx) are the eigenvectors
and eigenvalues of Ryx. Let the eigenvalues of the covariance matrix be ordered as

A=A > 2 A (3.43)
2. Homogeneity:
r(av,Rxx) = 07(v,Rxx) VYa#0, §#0. (3.44)
3. Translation invariance:
r(v,Rxx — o) = (v, Rxx) — a. (3.45)
4. Minimal residual:
[ (Raxe = 7(V; Racx ) D) V| < [[(Rxe — aD)v| (3.46)
Vv # 0 and any scalar coefficient a. (3.47)

5. Orthogonality:

v L (Rex — (v, Rxx)I) v. (3.48)
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6. The Hessian matrix of the Rayleigh quotient is:

0?r(v, Rxx) 2 4
H,(v,Rxx) = [ - = (Rxx —7(V)T) (I = —5vvT . (3.49)
dviOv; Iv]3 [v|3
For the eigenvalues A1, Az, ..., A\, and the corresponding eigenvectors vi,va,...,V,y,, the

Hessian can be expressed as [293]

Hr(vi) =2 (Rxx - )\11)

(
0, i=j

H,(v;)v; = { 200 — AV, i#; (

det H,(v;) = det[Rxx — NI =0 (

(

i.e., H, is singular for any eigenvector v;.

The Hessian matrix H,. has the same eigenvectors as Rxx but with different eigenvalues.

Remark 3.3 [t should be noted that it is not practical to use the Newton or quasi Newton
method for minimization of the Rayleigh quotient, since the Hessian matriz H, is singular
at the extremum points and so the inverse matriz does not exist.

3.4.2 Basic Cost Functions for Computing Principal and Minor Components

The maximum and minimum eigenvalues of the covariance matrix Ry, = E{xxT} can be
found as the extrema of the Rayleigh quotient, so the following basic cost can be used

T
Rxx
B(v)=r(v) =~V G eR™ ]2 £0. (3.54)

vliv
To find these extrema, we can compute the gradient as

_ or(v) Ry v(vIv) — v(vI RyxV)

\Y% =2 3.55
v (V) v VTv)2 ) (3.55)
from which it follows that the stationary points corresponding to Vyr(v) = 0 satisfy
VIRV
Ruxv=—7+7— .
v Ty (3.56)

This equation can be easily satisfied if v is a unit length eigenvector of Ryx with corre-
sponding eigenvalue A = v/’ Ryxv. Obviously, the minimum will correspond to the minimal
eigenvalue of Rxx and the maximum of r(v) corresponds to the maximum eigenvalue. In
the general case, the zeros of V,r(v) correspond to the eigenvectors of Ry, which can be
assumed to have unit length.

The above unconstrained optimization problem can also be formulated as a constrained
one:
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Maximize J5(v) = v Ry v
subject to the constraints vI'v = 1.

The Lagrangian for this constrained problem is
J3(v,A) = vIRv + M1 — vTv), (3.57)

where A € R is a scalar Lagrange multiplier. A necessary and sufficient condition for a
stationary point corresponding to an eigenvalue of Ryx is

VeJ3(v,A) =0 and V,J3(v,\) =0 (3.58)
and corresponds to
RuxV=v), viv=1 (3.59)

Alternatively, instead of the Lagrangian, we can employ the penalty method and formu-
late the following cost function

Ji(v) = VIRV — a1 — viv)? (3.60)
where « is a positive penalty coefficient.

Alternative class of objective functions, based on an information-theoretic criterion has
been recently proposed as® |1, [3]

vIR, v
J; = log ——— 3.61
5(v) = log Vv ( )
and
Js(v) = log(vI Ryxv) — vIv. (3.62)

Another important and relative simple cost function for PCA, that is not based on the
Raleigh quotient is:

Jr((v,¢) = E{[[x = v}, (3.63)

where ¢ is a scalar [357].

Various cost functions used for derivation of PCA algorithms are summarized in Table
3.1k

It is interesting to note that minimization of the above cost functions lead to adaptive
algorithms written in the general form:

vi(k+1) = vi(k) + m(k)F [v(k), RE] (3.64)

where the function F can take various forms (see Table[3.2)). The covariance matrix can be
estimated on-line as

RE) = (1—no) RE + nox(k)xT (), (3.65)

XX

where 79 is the learning rate.

41t is worth to mention, that any nonlinear monotonic transformation of the Raleigh quotient (e.g.,
log(r(v))) will have the same minimum as the standard cost function for PCA.
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Table 3.1 Basic cost functions which maximization leads to adaptive PCA algorithms.

L 5(v) = —E{lx — s’} = = T 3V x(k) - v x (k)]

2. Jo(v) = (VI Rxxv)/(vTV)

3. J3(v) = vIRyxv + )\(vTV -1

4. Ju(v) = VI Rxxv — a(viv — 1)?

5. J5(v) = log(vI Raxv) /(vTV)

6. Je(v)= log(vTRxxv) —vTy

7. Ji(v) = E{|lx = v}

3.4.3 Fast PCA Algorithm Based on the Power Method

Alternative fast algorithms for PCA can easily be derived by using the power method and
properties of the Rayleigh quotient [1003]. Assuming that the principal eigenvector v; has
unit length, i.e., vI'vy = 1, we can estimate it using the following iterations

Ryxvi(!
Vil 1) = — vi(l)

VI (D Rxevi () (3.66)

Taking into account that ygl)(k;) = vT(1)x(k) and Ryx = (x(k)xT (k)), we can finally use
the following simplified formula

Sl i (k)x(k)
vi(l+1)= 3.67
D=5 0w 07

or more generally, for a number of higher PCs, we use the deflation approach as

N @
v+ 1) = =¥ (k) Ly (3.68)

S (k)2

where y(l)(k) = vl (I)x;(k). After convergence of the vector v;(l) to v;., we perform the

%

deflation as: x;41 = X; — Viu¥i, X1 = X.
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Table 3.2 Basic adaptive learning algorithms for principal component analysis (PCA).

No. Learning Algorithm Notes, Relerences
1. Vi(k +1) = vi(k) + mvi (k)x(k)x(k) Amari (1978) [20]
vi(k+1) =Vi(k+1)/[[V1(k + 1)

2. Avi = 71 [RxxVi — V1Vi Raxvi] Oja (1982) [918]

= mlyix — [y1]*vi]
3. Avi = 1 [Raxvi(VIvi) = vivi Ryxvi] Chen, Amari (1998) [189]

= mfyixvi vi — yivi]
4. Avi = m[yix — ||[vi]]®v1] Yuille et al. (1994) [1341]
5. Avy= (2L ) Roweis (1998) [1017]

’ e vIRxxV1 !
Tipping, Bishop (1999) [1148]
L E x|
Zszl yi (k)
6. Avi = mg(vivi)[Raxvi — vi(vi RxxVi/Vivi)] Luo et al. (1996),
g(vivi) =1or vivior (vivi)™" Chatterje (1999) [177]

7. Avy = m[Rxxvi — Vivi Raxvi — vi(l — v{vl)] Abed-Meraim, Douglas,

= yix — y1?vi — vi(1 — vivi))] Hua, Chatterje (1999) [178]
8. Avy = m[2Rxxv1 — VivIRyxvi — RxxvlvlTvl)] Abed-Meraim, Douglas, |3}, 413]

&~ 2y1x — |y1]Pvi — y1vi vix)] Hua (1999) [578]
9. Avi =myiVi(x — y1vi) Robust Algorithm,

Cichocki - Unbehauen (1993) [281]

10. yi(k) = vi (k)xi(k) Fast RLS Algorithm, Cichocki,

n; (k) = ym; (k= 1) + Jys(k)|?
. = iRy )y
xit1(k +1) = xi(k) — yi(k)vix

xi(k) = x(k), n;'(0) = oy, = E{|y:|*}

Kasprzak, Skarbek [281], [269]
Yang (1995) [1318]
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The above fast PCA algorithm can be rigorously derived in a slightly modified form by
minimizing the cost function:

N
Liv,yD) = (k) —y vl (3.69)
k;l N N
= D Ix®IE+ v EY [V ®)] —2v" Yy O (k)x(k),
k=1 k=1 k=1

subject to the constraint ||v|| = 1. The above cost function achieves equilibrium when the
gradient of J; is zero, i.e., at

N
«(k)x(k
v, = —Zk:}vy (Q)X( ). (3.70)
Zk:l Yx (k)
This suggests the following iteration formula [T017) [TT48]:
N yOk)x(k

I yO(k)x (k)2

Outline of the fast PCA algorithm:
1. Initialization: set v1(0) 20 for I =0
2. Set y!V (k) =vT ()x(k), (k=1,2,...,N)

3. Compute
Sy 1 (k)x(k)

vi(l+1)=
TS R CITRmT

(+1)
4. Stop if (1 - JIJ(‘(”“)))) is less than a certain small threshold e. Otherwise, let [ := [+1
1(vy

and go to step 2.

It should be noted that the convergence rate of the power algorithm depends on a ra-
tio A2/Amaz, wWhere Ao is the second largest eigenvalue of Ryx. This ratio is generally
smaller than one, allowing adequate convergence of the algorithm. However, if the eigen-
value A\ = \,42 has one or more other eigenvalues of Rxx close by, in other words, when
A1 belongs to a cluster of eigenvalues then the ratio can be very close to one, causing very
slow convergence and in consequence the estimated eigenvector v may be inaccurate. For
multiple eigenvalues the power method fails to converge.
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3.4.4 Inverse Power lteration Method

The drawback of the power method can be partially overcome by applying the power method
to the matrix Txx = (Rxx — oI)7! instead of Rxyx, where o is positive coefficient, called
shift, specified by the user. This method converges to the eigenvector corresponding to the
eigenvalue \; closest to o rather A;q,;. The method is called inverse power iteration and
can formulated as the following algorithm:

Txxvr(l) z()
vp(l+1) = - , 3.72
) e O ~ T 7
where z() = [Ryx — oI]7'v(I). The stop criteria can be easily established as: |z —

M(D)v(D)||2 < &, where A\ = vr(1)z) and ¢ is a small threshold. After convergence
v; =vp/Ar and \; =0+ 1/Ap.

The inverse power method converges if v (0) is not perpendicular to v;. The convergence
rate is |(\; —0)/(\; — )|, where ); is an eigenvalue of Ry such that |\; —c|~! is the second
largest eigenvalue of Txx = (Rxx — ¢ I)~! in magnitude. The algorithm is particularly
effective when we have a good approximation to an eigenvalue for which we want compute
the eigenvector. By choosing o very close to a desired eigenvalue, the algorithm can converge
very quickly [62]. One advantage of the inverse power method is its ability to converge to
any desired eigenvalue closest to 0. Another efficient and fast algorithms for the eigenvalue
problems the reader can find in the excellent book [62].

3.5 ROBUST PCA

The learning algorithms discussed in the previous sections (e.g., (3.27), (3.28)) are optimal
only for a Gaussian distribution of the input data and they are rather very sensitive to
impulsive noise or outliers.

Remark 3.4 It is well known that standard PCA is optimal in the sense of Mean Square
Error (MSE). However, the estimation based on MSE is rather sensitive to non Gaussian
notse or outliers, so it is not a robust estimator. It is interesting to note that choosing the
1-norm (or more generally robust criteria) instead of the 2-norm cost function (3.69)), we
may obtain a more robust estimation of components when signals are corrupted by noise or
outliers.

Many approaches can be taken to increase the robustness of PCA with respect to noise and
outliers. Firstly, outlying measurements can be eliminated from the data; secondly outliers
can be suppressed or modified by replacing them with more appropriate values; and finally,
more robust criteria can be applied.

In order to derive more robust algorithms, we can formulate a cost function as:

m

p(el) = pr(elp)a (3-73)

p=1

AN
Jip(v1) =
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where

p(e1) £ Z pp(e1p)
p=1

and p;(e1;) are real, typically convex, functions known in statistics as “robust loss functions”.
In order to reduce the influence of outliers many different robust loss functions p(e) have
been proposed. Here, we give only four examples (see Table 2.1) [281]:

1. The absolute value function (i.e., 1-norm criterion)
pa(e) = el (3.74)

2. Huber’s function

[ €2 for |e] <4,
@ ={ Gl g2t Jo5 5 (3.75)
3. Talvar’s function
_f 2 for |e| <.
pr(e) = { P2 for || > 8 (3.76)
4. The logistic function
pr(e) = B*log(cosh(e/f)), (3.77)

where § > 0 is a problem dependent parameter, called the cut-off parameter (typically
1 < 8 < 3). Typical robust loss (cost) functions and their influence (activation) functions
defined by

U,(ep) = =+ (3.78)

are collected in Table 2.1.

Generally speaking, a suitable choice of the loss function depends on the distribution
of the input vector x(t). Applying a standard gradient descent approach to the energy
function (3.73)) after some mathematical manipulations, we obtain a learning algorithm
(generalization of Equation (3.27)).

d’Ul Ui
o= [ ¥len) oy };Ulh‘l’h(elh) : (3.79)
where p4(t) > 0 and
A Opp(er
Uplerp) = i )

861p
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The above learning algorithm can be written in matrix form as

dVl

il [1®(er) +xv] ¥(e1)], (3.80)

where

A
Tle) = [Tilenn), Ualera),. ., Uplern)]”
The simplified (approximated) version of the above learning rule takes the form

dV1

o piyi1¥(er) = iy ¥x — viyi), (3.81)

with pq > 0.

By using the self-supervising principle and a cascade hierarchical neural network the
above learning rules (3.79), (3.80) and (3.81) can easily be extended to obtain a number of
(higher) PCs. In other words, the learning algorithm for the extraction of the second PC
(y2) corresponding to the second largest eigenvalue Ay = E{y2y5}, is performed in a similar
way as the first component, but we apply the extraction process not directly to the input
data x but to the available errors

X~1 éel =X—X= (X—Vlyl), (382)
and
A
Y2 = vy er. (3.83)

In general, the sequence of the cost functions can be formulated as

m

ple)) => ppleip),  (i=1,2,....n) (3.84)

p=1

Jo(vi) 2

. A e
where e; = e;_1 — v;¥;, y; = vie;_ 1, with eg(t) = x(t). The minimization of these cost
functions by the gradient descent technique leads to an adaptive learning algorithm

dVi
dt

=i [yi®(e;) +ei_1vi ¥(e;)], (3.85)
for any v;(0) £ 0, (i =1,2,...,n), where
) > 0,
) = [Wilen), Palen) -, Unleim)]”,
o) = 228 g W (e,) = tanh(en/9))
)

8€ip

x(t).
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Usually, the second term in Equation (3.85) is relatively small and can be neglected”, thus
yielding a simplified version of the learning algorithm for extraction of the first m PCs:

D — ) ) s (1), (3.56)
or in a discrete-time form as
vi(k +1) = vi(k) +ni(k)y;(k)¥e; (k)] (3.87)

with v;(0) # 0, n;(k) > 0.

3.6 ADAPTIVE LEARNING ALGORITHMS FOR SEQUENTIAL MINOR
COMPONENTS EXTRACTION

In contrast to principal components which are directions in which the data have the largest
variances the minor components are directions in which the data have the smallest variances.
In other words, the minor component analysis (MCA) is the eigenvalue decomposition
(EVD) problem of finding the smallest eigenvalues and corresponding eigenvectors.

One would expect that algorithms similar to PCA could be applied, however a simple
change of sign of the learning rate causes most of the algorithms to be numerically unsta-
ble. Therefore, special stabilizing terms are usually introduced to provide stability for the
algorithms. For example, the Amari/Oja learning rule for PCA can be modified for MCA
as follows

v(k +1) = v(k) = n(k)ly(k)x(k) — y*(k)v(k) + (vT (k)v(k) = 1)v(k)], (3.88)

where v is the eigenvector corresponding to the smallest eigenvalue A\, = E{y?} =
E{(vTx)?} < 1. It should be noted that the auxiliary penalty term (vIv — 1)v is added
ensuring stability of the algorithm by forcing vector v to tend towards unit length (||v|| = 1).

A wide class of MCA algorithms can be derived from the unconstrained minimization
problem

TR,
min r(v)/2 with 7r(v) = ¥

3.89
veR™ v ( )

A%

Applying the gradient descent approach directly, we obtain a system of nonlinear ordinary
differential equations (ODE)

dv B or(v) Ryxvvlv — v(vIRyxv)
E = —u va(V) = —u v = —M (VTV)2 ) (390)

where p(t) > 0 is a learning rate.

5In fact the second term can be omitted if the actual error e; is small compared with excitation input vector
e;_1.
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An important property of the above flow is its isonormal property, i.e., the norm of the
vector v(t) is constant over time. This is easy to prove due to

d||v]? rdv
L oy = 91
o Vi =0, (3.91)

with initial conditions ||v(0)|| # 0. Hence, v(t) is constant over time with
v = lv(0)]l, Vvt=o0. (3.92)

Without loss of generality, we can assume that ||[v(0)|| = 1. This means that the state
vector of the above nonlinear system (3.91) evolves on a sphere with unit radius. In fact,
the term vIv can be neglected or formally absorbed by a positive learning rate fi(t), that
is,

dv ~

— =L (Rxxv—v

vIR, v
dt '

Ty (3.93)
The flow is isonormal and it will converge to the eigenvector corresponding to the minimal
eigenvalue of the covariance matrix Ryx. This flow can also be interpreted as a special case
of Brockett’s double bracket flow [113] [1T4].

On the basis of equation (3.93), several extensions or modifications have been proposed
in the literature, which can be written in the general form as follows:

dv T VIRV
or equivalently
dv _ —u(t) g(v'v) [Ruxvv?v — (v Ryx V) V] (3.95)
dt VTV XX XX ) .
where g(vIv) can take various forms, e.g., (vIv),1, (vIv)~L.
The discrete-time algorithms can be written in their simplest forms as:
T k)
_ _ (k) _ v (k)Rxxv(k)
v(k+1)=v(k) —n(k) [Rxxv(k) TRV v(k) (3.96)
and its on-line version
v(k +1) = v(k) = n(k)g(Iv*(k)|I) [y(k)x(k) — MV(@ (3.97)

where y(k) = vIx(k).

Unfortunately, due to numerical approximation the above discrete-time algorithms are
unstable (i.e., they can diverge after a large number of iterations unless the normalization
to unit length is performed every few iterations). To prevent this instability, the learning
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Table 3.3 Basic adaptive learning algorithms for minor component analysis (MCA).

No.  Learning Algorithm Notes, References

L Vet 1) = va(k) — 10 (B} (B)x(k) — () v ()] Oja (1092) [O10]
Va(k+1) = Vo (k+1)/[[Va(k + 1)

AV (k) = =1 (k) [yn (k)x(k) — yn (k)x(k)+
v (B (VT (B)va (k) — 1)]

2. Avalk) = =WV [ (0xl) — | Oia 199
where ’ Luo et al. (1997),
g(vTv) =1or viv, or (vIv,)™ ! Cirrincione (1998) [293]

3. Av, (k) = —nn(k) [yn(k)x(k) — H‘?: ((:))H %vn(k)} Xu (1994) [1309} 1310]

4. Avy, (k) = —=nn(k)yn (k) [||vn||gx(k) — yn(k)vn(k)] Chen, Amari, Lin [189]

(1998)
5. AVA(R) = —1 () (k) [[Vall3x (k) — o (B)va (k)] Douglas, Kung, [AT3]
Amari (1998) [189]

6. Avn(k) = =1 (k) [yn (k)x(K) + log (|[vn (F)[l») va (k)]

7. Avy (k) = —nn (k) [yn (k)x(k) + (d — ||[v1i(k)]|p)vna (k)] Zhang-Leung (1997)
where d > Aoz

8. AV (k) = =nn (k) [V (k) = yn(F)x (k) [Vallp]

9. yi(k) = v (k)x:(k) Sakai and Shimizu

i (k) = ym (k= 1) + Jys(k = DI, 07 1(0) = E{ly|*}

Yilk) oy o (ks
D 6) [xi(k) — yi(k)vi(k)]
Vi i=V; — EiJrl (vaj)vj7 Vi = VZ/H‘?Z)HQ

Jj=n

xi-1(k) = xi(k) + myi(k)vie, xn = x(k)

{’i(k + 1) = Vl(k) —

for i=mm—1,.... m—n+1

(1997) [1029]




110 PRINCIPAL/MINOR COMPONENT ANALYSIS AND RELATED PROBLEMS

rate (k) must decay exponentially to zero or we need to orthonormalize the vector v(k)
after every few iterations by formally taking:

v(k)

v(k) = . (3.98)

Iv(k)ll
After extraction of the first minor component, in order to extract the next minor component,
instead of eliminating the vector v = v,, from the sampled covariance matrix, we attempt
to make it the greatest principal component of the new covariance matrix defined as

R =R +7.vavy, (3.99)
where R = E{xxT} =3""  \;v;vl and v, is a fixed constant larger that A;.

All the above algorithms for MCA are rather slow and their convergence speed strongly
depends on the learning rate n(k).

Recently, Sakai and Shimizu extended and modified a fast PCA RLS algorithm (3.34) -
(3:39) for MCA [1029] (see also ([281]):

yi(k) = v{ (k)yi(k), (3.100)
ik +1) = vi(k) — yjl(k) xi (k) — yi(k)vi(k)], (3.101)
m; (k)
0y (k1) =i (k) + [y (k)2 (3.102)
1+1
Vo=V - Y ()Y, vilk) = Vilk) (97 (k)v:(k))~* (3.103)
Xi_1(k}) =X; + mei(k)vi(k‘) (3104)
xn(k) =x(k), i=mm-—1,..., (3.105)

where v, > A1.

The main difference between this algorithm and the RLS PCA algorithm (3.34) - (3.39)
lies in changing the sign of the learning rate, the orthonormalization of vector v;(k) in each
iteration step and different deflation procedure, which shifts the already extracted minor
components to the principal components.

3.7 UNIFIED PARALLEL ALGORITHMS FOR ESTIMATING PRINCIPAL
COMPONENTS, MINOR COMPONENTS AND THEIR SUBSPACES

In the previous sections, we have presented simple fast local algorithms which enable us to
extract principal and minor components sequentially one by one. In this section, we will
present a more general and unified approach which allows us to estimate principal and minor
components in parallel. Moreover, the discussed algorithms can also be used for principal
subspace analysis (PSA) and minor subspace analysis (MSA). When we have interest only
in the subspace spanned by the n largest or smallest eigenvectors, we do not need to identify
the respective eigenvectors v;, but any set of v;’s, which span the same subspace as v;’s, are
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sufficient. Indeed, when there are multiplicity in the eigenvalues, say A1 = A3, we cannot
obtain vy and vs uniquely, but obtain the subspace spanned by v; and vs. Such a problem
is called the principal subspace or minor subspace extraction.

All these problems (PCA, PSA, MCA and MSA) are very similar, including sequential
extraction (n = 1) as a special case. Therefore, it is desirable to obtain a general unified
principle applicable to all of these problems and obtain algorithms in a unified way. The
principle should elucidate the structure of the PCA and MCA problems, and not only
explain most algorithms proposed so far, but give unified algorithms.

3.7.1 Cost Function for Parallel Processing

We first explain the idea intuitively. Let {A1,...,An} and {di, -+ ,dmn} be two sets of
m positive numbers, where d; > --- > d,,, > 0. Consider the problem to maximize (or
minimize) the sum

S=> Avd; (3.106)
i=1
by rearranging the order of {A\1,..., A} as {Ar/,..., A}, where {1/,... ,m’} is a permu-
tation of {1,2,...,m}. It is easy to see that S is maximized when {\;/} is arranged in a
decreasing order (that is, Ay > --- > A;,/) and is minimized when Ay < -+ < Ay
Brockett generalized this idea to a matrix calculation [113| [114]. Let V = [vy,...,vy)]

be an orthogonal matrix whose columns satisfy

vivi=46; (VIV=1IL,). (3.107)

Let us put
J(V) =tr (DV'Rxx V) = tr (VDV' Ry) (3.108)
where D = diag (dy, . ..,d). When V consists of m eigenvectors of Rxx, V. = [vi/,..., V],
VIR,V = diag (A7, .., Anr) (3.109)

and Eq. (3.108) reduces to J(V) = > d;As. When V is a general orthogonal matrix,
VTR4«V is not a diagonal matrix. However, the following proposition holds.

Proposition 3.1 The cost function J(V) is mazimized when
V =1[vi,..., V] (3.110)

and minimized when
V= [vm,...,Vi] (3.111)

provided the eigenvalues satisfy Ay > -+ > Ay, J(V) has no local minima nor local mazima
except for the global ones.
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Now consider the case where dy > -+ > d,, > dp41 =+ = d,, = 0. In such a case,
dy
VDVT = [vi,. .., Vo, Vigds e Vil
dn
0
T
[V, oy Vi, Vi ds e« o5 Vi)
dy
= [Vi,...,Vy] vi,...,va”, (3.112)
dn

so that the last (m —n) columns of V automatically vanish. Let us use n arbitrary mutually
orthogonal unit vectors wq,...,w,, and put

W =[wy,...,w,]. (3.113)

We have
J(W) = tr (DW'Ryx W) = tr (WDW” Ry) , (3.114)

which plays the same role as J(V). It is immediate visible that J(W) is maximized (mini-
mized) when W consists of the eigenvectors of n largest (smallest) eigenvalues, and there are
no local maxima nor minima except for the true solution. So this cost function is applicable
for both PCA and MCA as well as PSA and MSA.

When n = 1, J(w) reduces to

J(w) = W RyxWw (3.115)

under the condition that d; = 1, w/'w = 1. Hence, this is equivalent to the Rayleigh
quotient or its constrained version.

Whendy =dy = -+ =d, =d, J(W) is maximized (minimized) when W is composed by
the eigenvectors of the n largest (smallest) eigenvalues. There are no other local maxima nor
minima, but only the subspace, not the exact eigenvectors, can be extracted by maximizing
(minimizing) this cost function.

3.7.2 Gradient of J (W)

The matrix W € R"™*™ satisfies
WIw =1,. (3.116)

The set of such matrices is called the Stiefel manifold O,, . We calculate the gradient of
J(W) in Oy, . Let dW be a small change of W, and the corresponding change in J(W)
is dJ = J(W +dW) — J(W). We have

dJ = tr (AW D W’ Ryx) + tr (W D dW” Ryx) . (3.117)

From (3.116), we have
dWTW + WTdW =0 (3.118)



UNIFIED PARALLEL ALGORITHMS FOR PCA/MCA AND PSA/MSA 113

Hence, from

8.7
dJ = 5 - AW, (3.119)

where A - B is 3, . ajjb; = tr(AB”) and the gradient is a matrix given by

aJ
~—~ = -WDW'R,W +R,,WDW'W
oW
= —-WDW'R,W +R,,WD. (3.120)
The gradient method for obtaining the principal components is written as
AWp =1 (RxxWpD — WpDWERWp) (3.121)
and, for the minor components,
AW = =1 (Rxx Wy D — Wy DW] R Wy ) (3.122)
where Wp = Vg = [wy,...,w,] and Wy = Vi = [Wp, ..., Wpi1].

Let us consider the special case with n = 1. By putting d; = 1, Eq. (3.121) reduces to
Aw =17 (Rxxw — waRxxw) , (3.123)
which is the well-known algorithm. Its on-line version is

Aw =1 (yx — y2w) , (3.124)

where we replaced the covariance matrix Ryxx by its instantaneous version xTx, and y =

wTx. This is the classic algorithm found by Amari (1978) and by Oja (1982) in which the
constraint term imposing w’w = 1 is treated separately [20} 910} (914} [1].

When n = m, this is the algorithm given by Brockett, while Xu derived it for n < m
[114}, 1309, 1310]. If we put dy = --- = d,, = 1, we obtain the subspace algorithm.

How does the algorithm (3.122) for extracting minor components work? It is obtained
from the same cost function, but it uses minimization instead of maximization. Hence,
the MCA algorithm changes the sign of the gradient. However, computer simulations show
that it does not work. We have shown that J(W) has only one maximum and only one
minimum, so that this looks strange. This was a puzzle for many years and it is interesting
to know the reason. This is related with the stability of the algorithms. We need a more
detailed stability analysis to elucidate the structure. Table [3.4] summarizes several parallel
algorithms for the PCA and PSA while Table[3.5 summarizes algorithms for the MSA /MCA.

3.7.3 Stability Analysis

It is easier to replace a finite time difference equation by its continuous time version for
analyzing the stability. The continuous time versions of (3.121)) and (3.122) are

AW (1)
dt
AW (t)
dt

= 4 (RexWD — WDW R, W), (3.125)

1t (Rxx WD — WDW' R, W) , (3.126)
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Table 3.4 Parallel adaptive algorithms for PSA/PCA.

No. Learning algorithm Notes, References
1. AW = g[xy™ — Wyy”] Oja-Karhunen (1985) [914]
2. AW = n[RxxWD — WDWH R, WD)] Brockett (1991) [114]

1%

n[xy"”D — WDyy" D]

3. AW = n(Rxx WWH - WWH R, )W Chen, Amari (1998) [189]

= xy"WIW — Wyy ™|

4. AW = n(Rux WDW? - WDW R, )W Chen, Amari (2001) [188]

For diagonal matrix D with positive-valued strictly decreasing entries the Brockett and
Chen-Amari algorithms perform parallel adaptive PCA [114], [188] [189].

where we omitted suffices P and M.
We assume here that W is a general n x m matrix, not necessarily belonging to O,, .,
and we put
Ut) =W t)W(t). (3.127)

We can prove that U (t) is invariant under the gradient dynamics (3.125)) and (3.126)), that
is

4

dt
when W(t) changes under the dynamics of (3.125) or (3.126). This is easily proved by the
direct calculations,

Ut)=0 (3.128)

d dW7T dW
—U(t) = W4+ wi——
v a WY TE
= pu(I-W'W)DW'R,,W + W'R,,WD) =0 (3.129)

with the initial condition: U (0) = WT(0)W(0) = I. Therefore, when W(0) at time ¢ = 0
belongs to the Stiefel manifold O, , it holds, U(0) = I, and hence U(t) = I for any ¢,
implying that W (¢) always belongs to O,, . Since any global extremum gives the true
solution of n principal or minor components, the dynamical equation (3.121)) or (3.122)
should converge to the true solution, provided W (t) always belong to Oy, 4.

If computer simulations show that (3.122)) does not work for minor components extrac-
tion, the dynamics (3.122) defined in O, , is stable in O,, , but is unstable when it is



UNIFIED PARALLEL ALGORITHMS FOR PCA/MCA AND PSA/MSA 115

extended to the entire space of R™*". In other words, if W(t) deviates to W (t) + dW
outside O, ,, due to noise or numerical rounding-off, the deviation grows and W (t) escapes
from O, .

To show the above scenario, let W be a small deviation of W € O, ,, in any direction.
It is known that the deviation is in general decomposed into the three terms

W = W4S + WHG + NGB, (3.130)

where §S is a n X n skew symmetric matrix, dG is a n X n symmetric matrix, 6B is a
(m —n) X n matrix, and IN is a m X (m —n) matrix whose (m —n) columns are orthogonal
to the columns of W. The current W consists of n orthonormal vectors {w,...,w,}
which define the n-dimensional subspace. The first term WdS represents a change of w;
to w; + 0w;, keeping the subspace spanned by w;’s invariant although its orthonormal
basis vectors change. The third term IN§B alters w; from the subspace, so that it alters
the directions of the subspace spanned by W but still staying in O, . The second term
WG destroys the orthonormality of W, so that it represents changes of W in the direction
orthogonal to O,, ,. Hence this term is 0, when the dynamics is restricted only to inside of
O

When W (t) deviates to W(t) + W (t), how such change 6W (¢t) develops through dy-
namics. The dynamics of §W (¢) is given by the variational equation

< 5w

w7 + 110 (Rex WD — WDWTR,, W)

= 44, (Rex0 WD — § WDW'R,, W - WDSWTR,,W). (3.131)

We analyze the variational equation in the neighborhood of the true solution, where the
variation 0W is not only inside O,, , but also in the orthogonal directions.

The results are summarized as follows (see Chen and Amari, 2001; Chen et al. 1998)
[188], [189].

1. The variational equations are stable at the true solution with respect to changes 6.5
and dB inside O, ,, when all d}s are different and all A} s are different.

2. When some d.s are equal, or some As are equal, the variational equations are stable
with respect to § B but only neutrally stable with respect to 6.5.

3. The variational equation is stable at the true solution concerning changes in G for
principle component extraction (3.125)), but is unstable for minor component extrac-
tion (3.120).

Result 1. shows that the gradient dynamics (3.125) and (3.126]) are successful for obtaining the
principal and minor components, respectively, in parallel, provided W(t) is exactly
controlled to belong to O,, .

Result 2. shows that the algorithms are successful for extracting principal and minor subspaces,
under the same condition when some d;’s or \;’s are equal.

Result 3. shows that algorithm (3.125) is successful for extraction principal components, but
algorithm (3.120)) fails for extracting minor components because of the instability in
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Table 3.5 Adaptive parallel MSA/MCA algorithms for complex valued data.

Learning rule

Notes, References

AW = —(Rax WWH - WWHR, )W =
~ xy"WHIW — Wyy ]

Chen, Amari,
Lin (1998) [189]

AW = —(Rxx WDWH - WDWH# R, )W+
+W(D - W'DW)

Chen, Amari
(2001) [188]

AW = [ Rex WWITWWITW - WW7R,, W] =

= nxy" WIWW'W - Wyy"]

Douglas, Kung,
Amari (1998) [413]

y(k) = W (k)x(k)

x(k) = W(k)y(k)

e(k) = x(k) — x(k)

a(k) = (1+1° le®)|*|ly (k)|*) 71/
Bk) = (ak) = 1)/lly (k)|

e(k) = —B(k)x(k)/n + a(k) e(k)

(AW (k) = —n&(k)y" (k))

u(k) = &(k) /lle(k)|l
z(k) = WH (k) u(k)
AW (k) = —2u(k) z™ (k)

Orthogonal Algorithm [I]
Abed-Meraim et al. (2000)

For D =1 the Chen-Amari algorithm perform MSA [188] [189], however, for matrix D with
positive strictly decreasing entries the algorithm performs stable MCA.

3.7.4 Unified Stable Algorithms

the directions orthogonal to Oy, ,,. Such deviations caused by noises or numerical
rounding-off, so that the W (¢) should be adjusted in each step to satisfy (3.110]).

In order to overcome the instability of minor components extraction, Chen et al. (1998)
added a term which forces W(t) to return to O,, , [I89]. The algorithms of principal and
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minor components extraction differ only in the signs:

dW

= (Rxx WDW'W — WDW' R« W) (3.132)
for PCA,
dW T p
= H (Rxx WDW'W — WDW' R, W) (3.133)
for MCA. Here,
W HWwW () =1, (3.134)

is not necessarily guaranteed in the course of dynamics, although we choose the initial value
to satisfy WT(0)W(0) = I,,. When (3.116) holds, (3.132) is the same as Xu’s algorithm
[1309, 1310]. But it cannot be applied to MCA by changing the sign, while (3.133) works
well for MCA.

However, the dynamics of (3.132) and (3.133)) are neutrally stable with respect to changes
in WJG. Douglas et al. performed detailed numerical simulations, and show that the
discretized version of the algorithm does not work when Ry is replaced by x(t)xT(t)
[412), [4T3| [414]. They proposed to strengthen the term to return to Oy, .

Taking this into account, Chen and Amari proposed the following algorithms [188)]

dW
— = [(Rux WDWTW — WDWTR,,W) + W(D - WDWT)] (3.135)
for PCA, and
dW - . -
— = (R WDW'W - WDW R, W) + W(D -~ WDW')] (3.136)

for MCA.
It is interesting to show that almost all algorithms proposed so far are induced by mod-
ifying the penalty term. See discussion in Chen and Amari for details [188].

Remark 3.5 Let Ao be an upper bound of all \; that is a constant larger than A\1. When
we know a bound X\g, we can define

Rox = Mo I — R (3.137)

Then, the eigenvalues of Rxx are A\g — A, Ao — A2, ..., Ao — Am. Hence, by performing
PCA on Ryx, we can easily obtain the minor components and their eigenvectors. This was
pointed out by Chen, Amari and Murata [190)].

It is well known that the principal components of Ryl correspond to the minor compo-
nents of Rxx. Hence any PCA algorithm can be used for MCA if we can calculate R,
but this needs an extra cost of matriz inversion.
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3.8 SINGULAR VALUE DECOMPOSITION IN RELATION TO PCA AND
FUNDAMENTAL MATRIX SUBSPACES

The singular value decomposition (SVD) is a tool of both practical and theoretical im-
portance in signal processing and identification problems. The SVD of real valued matrix
X = [x(1),x(2),...,x(N)] € R™N (m >n) is given by

X=UxVT, (3.138)

where U € R™*™ and V € RY*Y are orthogonal matrices and ¥ € R™*¥ is a pseudo-
diagonal matrix whose top n rows contain s = diag{o1,...,0,} (with non-negative diag-
onal entries ordered from the largest to the smallest one) and whose bottom (m — n) rows
are zero. Note that only n singular values ¢; are non zero and for the full rank matrix X,
n=m.

For noiseless data, we can use the following decomposition

3 0
X = [Us, Ux] [ 05 0 } Vs, V7, (3.139)
where Us = [uy,...,u,] € R™", ¥s = diag{o1,...,0,} and Uy = [upi1,..., upnl.

The set of matrices {Ug, X5, Vs} represents this signal subspace and the set of matrices
{Un, 7, Vv } represents null subspace or, in practice for noisy data, the noise subspace.
The n columns of U corresponding to these non-zero singular values that span the column
space of X and they are called the left singular vectors. Similarly, the n columns of V are
called the right singular vectors and they span the row space of X. Using these terms, the
SVD of X can be written in more compact size:

X =UsZsVE =Y o, . (3.140)
i=1
and we also have
XVi = 0o;Uuy,
XTw; = opvy. (3.141)

Perturbation theory of the SVD is partially based on the link between the SVD and the
PCA and eigenvalue decomposition. It is obvious that from the SVD of matrix X = UX VT
with rank n < m < N, we have

xx? = uziuT, (3.142)
XTX = vxivT, (3.143)

where ¥, = diag{o1,...,0,} and X9 = diag{o1,...,o0n} . This means that the singular
values of X are the positive square roots of the eigenvalues of XX’ and the eigenvectors
U of XX are the left singular vectors of X. Note that if m < N, the matrix X7X will
contain at least NV —m additional eigenvalues that are not included as singular values of X.
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As we discussed earlier, an estimate Rxx of the covariance matrix corresponding to a set of
observed vectors x(k) € R™ may be computed as Ryy = (1/N) Zszl x(k)xT (k). An alter-
nate and equivalent way of computing Ry is to form a data matrix X = [x(1),x(2),...,x(N)]
e R™" and represent the estimated covariance matrix by

N
Hence, the eigenvectors of the sample covariance matrix R.x are the left singular vectors
U of X and the singular values o; of X are the positive square roots of eigenvalues of Rocx.

From this discussion it follows that all the algorithms discussed in this chapter for PCA
and MCA can be applied (after some simple tricks) to the SVD of arbitrary matrix X =
[x(1),x(2),...,x(N)] without any need to directly compute or estimate the covariance
matrix. The opposite is also true; the PCA or EVD of the covariance matrix Ry can be
performed via the SVD numerical algorithms. However, for large matrices X, the SVD
algorithms become usually more costly, than the relatively efficient and fast PCA adaptive
algorithms although several reliable, and efficient numerical algorithms for the SVD exists
[311].

Now suppose that the data matrix X is perturbed by some noise matrix N, such that
X = X + M. The entries of N are generated by an uncorrelated, zero mean, white noise
process with variance o3, so that the covariance matrix of noise is given by E{NN T/N} =
021,,,. Under these conditions, we have [1223]

E{XXT/N} = E{XXT N} + 031, (3.145)
so that for large p, the SVD of the noisy matrix X is approximated by
X =~ U(2? 4+ Noid,) /2T (3.146)

for some orthogonal matrix V. This expression shows that, for large N and small noise
variance sz\/, the subspace spanned by the left singular vectors and singular values of the
perturbed covariance matrix E{XX7 /N} is relatively insensitive to the added perturbations
in the entries of the matrix X. Therefore, the SVD is a robust and numerically reliable
approach. Moreover, the singular values of X increase by an amount approximately equal
to UN\/N while the left singular vectors remain the same as for a noiseless matrix X.
Furthermore, the matrix X is now a full rank one and its (m — n) smallest singular values
are no longer zero, but now equal to oxv/N. In theory, we can recover the noiseless matrix
XXT by subtracting the term N O'JQ\/Im from 3. However, it is impossible to recover matrix
V or X because the length of the columns of V is equal to N and hence these vectors do
not participate in the averaging effect of increasing N [1223].

3.9 MULTISTAGE PCA FOR BLIND SOURCE SEPARATION OF COLORED
SOURCES

It is easy to show that, under some mild conditions, we can perform blind separation of
source signals with a temporal structure using two-stage or multistage PCA.
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Let us consider the instantaneous mixing model:
x(k) = Hs(k) + v(k), (3.147)

where x(k) € R™ is an available vector of sensor signals, H € R™*" is an unknown full
rank mixing matrix, with m > n, s(k) € IR" is the vector of colored sources signals and
v(k) € R™ is a vector of independent white noise signals.

In the first stage, we perform the standard PCA for the vector x(k), by formally making
eigenvalue decomposition of the covariance matrix [357]:

Ryx = VAVT, (3.148)
On the basis of dominant (largest) eigenvalues, we perform the spatial whitening procedure
x(k) = Qx(k) = A5"* VL x(k), (3.149)

where As = diag{A1,Aa,..., A} with Ay > Ao > -+ > A\, and Vg = [vy,va,...,Vv,] €
IRnxm.

In the second stage, we can perform PCA for a new vector of signals defined by [357,
993, 227)

x(k) =x(k) +x(k — p), (3.150)

where p is an arbitrary time delay (typically, p = 1). It is interesting to note that the
covariance matrix of the vector X(k) can be easily expressed as

R x = Rx(0) = E{X(k) X" (k)} = 2Rx(0) + Rx(p) + Rx (p), (3.151)
where
Rxx = Rx(0) = B{X(k)X"(k)} = AR AT =1 (3.152)
under the assumption that A = QH is orthogonal and Rgs = I and
Rx(p) = E{x(K) X" (k - p)} = A Ra(p) AT (3.153)
Hence, we obtain the matrix decomposition
Rzx = AD(p) A" = Vx Az Vg, (3.154)
where the D(p) is a diagonal matrix expressed as
D(p) = 21+ Rs(p) + R{ (p),
with diagonal elements d;;(p) = 2(1+FE{s;(k) s;(k—p)}. If the diagonal elements are distinct
(i.e., E{s;(k)si(k —p)} # E{s;(k)sj(k —p)}, Vi j), then the eigenvalue decomposition

is unique up to the permutation and sign of the eigenvectors and the mixing matrix can be
estimated as H = Q7 Vi and the source signals can be estimated as

s(k) = VIx(k) = VI Qx(k). (3.155)
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If some of the eigenvalues of the diagonal matrix Aiz are very close to each other the
performance of separation can be poor. In such the cases, we can try to repeat the last step
for different time delays until all eigenvalues are distinct.

The above described procedure belongs to a wide class of second order statistics (SOS)
techniques [1159, 92} [357, 223], 224]. More advanced and improved algorithms for BSS of
colored sources with different auto-correlation functions based on SOS and spatio-temporal
blind decorrelation will be described in the Chapter /4.

It should be noted that the above PCA algorithm can perform only BSS of colored sources
with different temporal structure or equivalently with different power spectra. In order to
perform ICA, we can apply rather nonlinear PCA which can performed by minimizing the
following cost function [595]

J(W) = B{||x - Wg(W"x)[|*} (3.156)
or equivalently
J(wi,wa,...,wy) = B{|x- szgz(yz)”2}
i=1

= 2 Elly - g:wl’}, (3.157)

where X = Qx = Wy, y = WTX, w; is i-th vector of the orthogonal matrix W, y; (k) =
wl'%(k) and g;(y;) are suitably chosen nonlinear functions, e.g., g;(y;) = y; + sign(y;)y? or
9i(y:) = tanh(SBy;).

There are at least several algorithms that can perform efficiently minimization of the
above cost function in order to estimate the separating matrix W. The modified recursive
least squares (RLS) method leads to the following algorithm [595]

a(k) = gly (k)] = g[W (k) X(k)], (3.158)

e(k) =x(k) — W(k)q(k), (3.159)
P(k) q(k)

o T PE A (3.160)

Pk+1)= %Tri [P(k) — m(k)q” (k) PT (k)] (3.161)

W(k+1) = W(k) + e(k) m” (k), (3.162)

with nonzero initial conditions, typically W(0) = P(0) = I,,; where X = Qx, ~ is the for-
getting factor and Tri means that only the upper triangular part of the matrix is computed
and its transpose is copied to the lower triangular part, ensuring that the resulting matrix
is symmetric.
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Alternatively, it is possible to estimate the vectors w;(k) in a sequential manner using
algorithm similar to (3.34)-(3.39) as

1(k) = X(K), 771(0) = 2max{[T(R) 3} = 2 [Fomac?, (3.163)

wi(0) = Ximaa/[Xi,maz | (3.164)

qi(k) = gilyi (k)] = gilw (k) %i ()], (3.165)

wilk +1) = wi(k) + 55 k)~ i)y walh)), (3.166)
n; (k)

n (k1) =y (k) + @ ()], (3.167)

Xiv1(k) =Xi(k) — yi(k) vis, (3.168)

Appendix A. Basic Neural Networks Algorithms for Real and Complex-Valued PCA

Many researchers have modified Amari and Oja’s algorithms to extract the true PCs for
real-valued data or signals [910], [443]. The main purpose of this Appendix is to review
and summarize some of those algorithms closely related to the subspace rule and then
to generalize them for complex-valued signals. We will restrict our considerations to four
popular learning algorithms® namely:

1. Sanger’s Generalized Hebbian Algorithm (GHA)

dv
ar K [XYT -V UT(y yT)] ) (A1)
where UT'(-) means the Upper Triangular operation, i.e., it sets the lower diagonal
elements of its matrix argument to zero. Sanger’s GHA learning algorithm can be
written in a scalar form as [1030]

d'UZ' ‘
dtP = L Yi [xp — Z Ukpyk] , (A.2)
k=1

where u; >0, (i=1,2,...,n; p=1,2,...,m).

2. The stochastic Gradient Ascent (SGA) proposed by Oja [910] can be formulated
as

i—1

d’l}i

dtp = Wi Yi [xp — VipY; — & E Ukpil/k} , (A~3)
k=1

where a > 1 typically a = 2.

6 All these algorithms have been developed only for real-valued data.
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3. The Weighted Subspace Algorithm (WSA) proposed by Oja, Ogawa and Wangvi-
wattana [919) [910]

dVv
i [xyT - Vny@] , (A4)

where © = diag[f;, 0, ...,0,] with 6; < 0;;1, i.e., © is a diagonal matrix with positive
and strictly decreasing entries.

In a scalar form, the WSA learning rule can take the form [919]
d’Uip -
o PV |Te 0 Z”kpyp ) (A.5)
k=1
where (i=1,2,...,n; p=1,2,...,m), 4; >0,0< 801 <Oy <--- <O,

4. Brockett’s Algorithm [113], [114] for extracting principal components can be writ-
ten as

A%

E:u[xyTDfVDnyD], (A.6)

where D is a diagonal matrix with positive and strictly decreasing entries, i.e.,
D:diag[dl,dg,...,dn], with dy >dy >--->d, > 0.

The Brockett’s Algorithm can also be written in a scalar form as

d’l}i " -
dtp = Hi Yi |j% - ; Oékivkpyk‘| ) (A7)
where
& <1 for k<i,
i = 1 for k=1,
‘fl—’? >1 for k>i,

and /AJ,,L = /J,Zdl > 0.

It is interesting to note that the above four learning algorithms can be written in the
“generalized form” given by Equation (A.7). For example, in the case of the GHA algorithm
the coefficients, ay; in (A.7) can be defined by

0 if k<i,
a“_{lifk>L (A.8)

Analogously, for the WSA algorithm, we have ay; = 60;, for any k.

The above algorithms can be extended or generalized for the extraction of the PCs of
complex-valued signals. For example, we can derive the Brockett’s algorithm for complex-
valued signals as follows [114].
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Table A.1 Fast implementations of PSA algorithms for complex-valued signals and matrices.

No. Learning rule Notes, References
1 AW (k) = &(k)z" (k) PAST Algorithm
2(k) = é (k= 1)y (k) Yang (1995) [[318]
y(k) = WH (k- 1)x(k)
v(k) = [1+y" (k)z(k)]
e(k) =y(k)[x(k) - W(k — 1)y (k)]
QMk) = 2Qk = 1) — (K)a(k)a" (k)
2. AW (k) = &(k)z" (k) OPAST Algorithm
1 1
B(k) = 5 -1 Abed-Meraim, Chkeif,
®) = Taon3 (w T n CIEECIE )
&(k) = B(k) W(k — 1)z(k) + (1 + B(k) |lz(k)||5) &(k) and Hua (2000) [1]

Let us consider a three layer self-supervising linear neural network with matrix transfor-
mations: ¥ = DVH x, % = V§ where V € C™*" is the feed-forward matrix of complex-
valued synaptic weights v;, and D is a real-valued diagonal matrix with strictly decreasing
entries providing a scaling (or inducing asymmetry) for outputs y. For such a network, we
can formulate a standard cost function as

1 2 1 2
Jo= e L e, (A9

where e 2 ef + jel =x—% = (I-VDVH)x. Using the back-propagation gradient

descent method the minimization of the above cost function leads to a general learning rule
av
- = pley? D +xef’ VD]

= upulxy?”D-VDyy”D]. (A.10)

Assuming again that the second term in Eq. (A.10)) is small and can be neglected, we obtain
a generalized form of Brockett’s algorithm for complex-valued signals as

A%
— =nxy"D-VDyy"'D], (A.11)

with V(0) # 0. In a scalar form the above algorithm becomes

dvi D

o = [; y; [m;—Zykapakil, (i=12,...,n; p=1,2,....m, n<m) (A.12)
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where
g = di/d;, fli = pid; >0

(i.e., the parameter d; is absorbed by the learning rate [i;(t) > 0), and dq > do > -+ - > d,,.
In the special case of ay; = 1 (Vk, i), (A.12) simplifies to the subspace learning algorithm.

Appendix B. Hierarchical Neural Network for Complex-valued PCA

Assume that the process x(k) € C™ comprises a zero-mean sequence whose covariance
matrix is defined as Ryx = E{xx"} and we wish to estimate (extract) on-line its complex-
valued eigenvectors v; and corresponding PCs [281], 277, [282]. Employing a self-supervising
principle and hierarchical neural network architecture, we shall extract the PCs sequentially.
Let us temporarily assume that we want to extract only the first” PC (y;) by a linear single
neuron

m
y=vix= Zvlpxp(t). (B.1)
p=1
The vector v; should be determined in such a way, that the reconstructed vector
X =viy, (B.2)

will reproduce the input vector x(t) as well as possible, according to a suitable optimization
criterion.
For this purpose let us define a complex-valued instantaneous error vector as

e1(t) = [enn(t),e1n(t),... em()]"
2 x(t) - x(t) = x(t) — viyi(t)
= (T—viv{) x(t) = ef'(t) + jei (1), (B.3)

where I is the identity matrix, eF is the real part and e! is the imaginary part of the error

vector e (t) and j = v/—1.
In order to find the optimal value of the vector vi, we can define a standard 2-norm cost
function

E1 (Vl) =

[l + [lef 3]
[i elp +Z elp ] (B.4)

= N

where eﬁj is the pth element of eff etc.

"The first PC y; corresponds to the largest eigenvalue A1 = E{y1y}} = E{|y1|?} of the covariance matrix
Rxx = E{xxH}, y1 = v] x, where (-)* denotes complex conjugate and (-) means the complex conjugate
transpose or Hermitian operation.
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The minimization of the cost function (B.4), according to the standard gradient descent
approach for the real and imaginary parts of vector vi = vi* 4 jv! leads to the following
set of differential equations:

dof, i OB (v1)
dt 81}{2
m m
= m {(€ﬁy5+€{py{) +$§Z (ethot, —einoin) JFZ}I;Z (ethvin+eipoth) } ;
h=1 h=1
(B.5)
dvf, 4y OEi(v)
e At A 2
dt ovi,
m m
R I_ I
= {(€1py1 —@1py1 Z elhv1h+€1hv1h Z €1hU1h elhvlh)}
(B.6)
where p7(t) > 0 is the learning rate and y; 2 yl + jyl, e1p = eﬁ) +je{p, (p=1,2,...,m)
Combining the above equations (B.5) and (B.6) and taking into account that v, = vﬁ, +
jv{p, we obtain the learning algorithm
d’U1 (t) « -
Tpt = p1(t) |yi(t)ei,(t) +z,(t) Z vip(t)ern(t) ], (p=1,2,...,m) (B.7)
which can be written in matrix form as
dv
ditl = 1 [yre] + x"v] eq], (B.8)
for any v1(0) # 0, pi(t) > 0.
The above learning rule can be further simplified to
dV1 «
i e
dt H1Yyieg
= muyi[x—vinl*
= m yl[X* —viyi]
= vix[I - vivil]x’, (B.9)
since the second term in Equation (B.8]), which can be written as
x*vie = x*v] (x — viy) = x* (1 — vivi)yi, (B.10)

tends quickly to zero as viTv; tends to 1 with ¢ — oo; it can therefore be neglected.
It is interesting to note that the discrete-time realization of the learning algorithm:

vi(k+1) = vi(k) + m(k) yi(k)[x"(k) —vi(k)yi (k) (k=0,1,2,...)  (B.11)
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is known as the Oja learning rule for complex-valued data.

Robust PCA for Complex-valued Data
In order to derive a robust algorithm for PCA, we can formulate a cost function as:

2

Jip(v1) = plef) + plel) =D pplefl) + D puled,), (B.12)

<

where pi(eﬁ’l) are real, typically convex, functions known in statistics as the “robust loss
functions”. In order to reduce the influence of outliers many different robust loss functions
p(e) have been proposed [281, 277, 282]. Generally speaking, a suitable choice of the loss
function depends on the distribution of the input vector x(t). Applying a standard gradi-
ent descent approach to the energy function (B.12), we obtain (after some mathematical
manipulations) a learning rule (generalization of Eq. (B.7)).

dvlp * * -
praiatl nVy(er,) +x, hzzjl vinVn(ewn) |, (B.13)
where 41 (t) > 0 and
A 601)(6{%) -6Pp(e{) R ol
v = =v v
p(€1p) el J el p TI¥
€1p = eﬁo + je{pa
eTp = eﬁ) - je{p7
Viley) = Wierp) — ¥ (en,)-

The above learning algorithm can be written in compact matrix form as

B o) +x VT (e)] (B.14)
where
‘I’(el) 2 [\1’1(611)7‘1’2(612),~ 7\I’n(€1m)}T,
Te)) = [¥ilen), Uhlers),. . Vilern)]”

Usually, the second term in Equation (B.14) is small or tends quickly to zero and can be
neglected. Thus, the simplified (approximated) version of the algorithm takes the form

dv X * N
T; = 1P (er) = 1 Px* — viyil, (B.15)

with pq > 0.
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The above learning algorithms (B.13| [B.14)) and (B.15) can be easily extended for the
higher PCs by using the self-supervising principle and a cascade hierarchical neural network.
In other words, the procedure for the extraction of the second PC (y2) corresponding to the
second largest eigenvalue Ay = E{ysy3} is performed in the same way as that of the first
component, but instead of carrying out the extraction process directly from the input data,
we extract the available errors

X1 ée1 =x—-%X=(x—viy), (B.16)
and
s 2 vier. (B.17)
In general, the sequence of the cost functions can be formulated as

2

Jip(vi) = plef) + ple]) =D pp(efl) +> pplel),  (i=1,2,....n)  (B.1Y)

. . A .
where e; = el + jel, e, = e;_1 — viy;, y; = vl e;,_1, with eo(t) = x(¢). Using the standard
gradient descent technique to minimize this cost function, we obtain the adaptive learning
algorithm:
dVi
dt
for any v;(0) #£0, (i=1,2,...,n), where

— s [y () + el VI U (e)] (B.19)

pi(t) > 0,
Tle;) = [Vi(en), Pale), - Unleim)]”,
B Opp(efl) — Opple,
\ij(eip) - 867{; +7 ae{p 5
(e Upleny) = tanh(el/)+ jtanh(el,/3)),
e(t) = x(¢).

Usually the second term in Equation (B.19) is relatively small and can be neglected®,
yielding a simplified version of the learning algorithm for extraction of the first m PCs:
dVZ(t)
dt

= pa(t) i (£) ¥ e (1)], (B.20)
or in the discrete-time form as

vi(k+1) = vi(k) + ni(k) yi (k) ®"[e; (k)] (B.21)
with v;(0) # 0, n;(k) > 0.

81n fact the second term can be omitted if the actual error e; is small compared with excitation input vector
e;_1.



Blind Decorrelation and
Second Order Statistics for

Robust Blind Identification

There are very few human beings who receive the truth, complete and staggering, by instant
illumination. Most of them acquire it fragment by fragment, on a small scale, by successive

developments, cellularly, like a laborious mosaic.
—(Anais Nin; 1903-1977)

Temporal, spatial and spatio-temporal decorrelations play important roles in signal pro-
cessing. These techniques are based only on second-order statistics (SOS). They are the
basis for modern subspace methods of spectrum analysis and array processing and often
used in a preprocessing stage in order to improve convergence properties of adaptive sys-
tems, to eliminate redundancy or to reduce noise. Spatial decorrelation or prewhitening
is often considered as a necessary (but not sufficient) condition for the stronger stochastic
independence criteria. After prewhitening, the BSS or ICA tasks usually become somewhat
easier and well-posed (less ill-conditioned), because the subsequent separating (unmixing)
system is described by an orthogonal matrix for real-valued signals and a unitary matrix for
complex-valued signals and weights. Furthermore, spatio-temporal and time-delayed decor-
relation can be used to identify the mixing matrix and perform blind source separation of
colored sources. In this chapter, we will discuss and analyze a number of efficient and robust
adaptive and batch algorithms for spatial whitening, orthogonalization, spatio-temporal and
time-delayed blind decorrelation. Moreover, we discuss several promising robust algorithms
for blind identification and blind source separation of nonstationary and/or colored sources.

129



130  BLIND DECORRELATION AND SOS FOR ROBUST BLIND IDENTIFICATION
4.1 SPATIAL DECORRELATION - WHITENING TRANSFORMS

4.1.1 Batch Approach

Some adaptive algorithms for blind separation require prewhitening (called also sphering or
normalized spatial decorrelation) of mixed (sensor) signals. A random, zero-mean vector y
is said to be white if its covariance matrix is the identity matrix, i.e., Ry, = E{y yi'y =1,
or E{y;y;} = 0;j, where §;; is the Kronecker delta. In whitening, the sensor vectors x(k)
are pre-processed using the following transformation (see Fig. [4.1):

yv(k) = Wx(k). (4.1)
s(k) x(k) o y(k)
— H » W(k) —>
/

Fig. 4.1 Basic model for blind spatial decorrelation of sensor signals.

Here y(k) denotes the whitened vector, and W is an n x m whitening matrix. If m >
n, where n is known in advance, W simultaneously reduces the dimension of the data
vectors from m to n. In whitening, the matrix W is chosen so that the covariance matrix
E{y(k)y(k)T} becomes the unit matrix I,. Thus the components of the whitened vectors
y(k) are mutually uncorrelated and they have unit variance, i.e.,

Ry, = E{yy"} = E{Wxx" W'} = WRW" =1,. (4.2)

Fig. 4.2]illustrates three basic transformations of sensor signals: prewhitening, PCA and
ICA.

Generally, the sensor signals are mutually correlated, i.e., the covariance matrix Rxx =
E{xx"} is a full (not diagonal) matrix. It should be noted that the matrix W € IR"*™
is not unique, since by multiplying an arbitrary orthogonal matrix to the estimated matrix
W from the left, property (4.2)) is preserved.

Since the covariance matrix of sensor signals x(k) is usually symmetric positive definite,
it can be decomposed as follows

Rux = VA VL = VLAYZAY2VT (4.3)

where Vy is an orthogonal matrix and Ax = diag {1, \2,..., A\,} is a diagonal matrix
with positive eigenvalues A\; > Ay > .-+ > A\, > 0. Hence, under the condition that the
covariance matrix is positive definite’, the required decorrelation matrix W (called also a

Hf the covariance matrix is semi-positive definite, we can take only positive eigenvalues and associated
eigenvectors.
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Fig. 4.2 Tllustration of basic transformation of two sensor signals with uniform distributions.

whitening matrix or Mahalanobis transform) can be computed as follows

1 1
W = A2V = diag { }V,{ (4.4)

1
VATV VA

or

W =UA_Y?VT, (4.5)

where U is an arbitrary orthogonal matrix. This can be easily verified by substituting (4.4)
or (4.5) into (4.2):

Ryy = E{yy"} = A;?VIVAVIV ALY =1, (4.6)

or

Ry, = UALY2VIV A VIV, A[V2UT =1, (4.7)
Alternatively, we can apply the Cholesky decomposition

Ryx = LLT, (4.8)
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where L is a lower triangular matrix. The whitening (decorrelation) matrix in this case is

4o

where U is an arbitrary orthogonal matrix, since

T

Ryy = E{yy"} = WRWW" =UL'LL" (L7!)" U =1,. (4.10)

In the special case when x(k) = v(k) is colored Gaussian noise with Ryy = E {vvT} #
021, the whitening transform converts it into a white noise (i.i.d.) process.

4.1.2 Optimization Criteria for Adaptive Blind Spatial Decorrelation

In the previous section, we have described some simple numerical or batch methods to
estimate decorrelation matrix W. Now, we consider optimization criteria that enable us to
derive adaptive algorithms. Let us consider a mixing system

x(k) = Hs(k) (4.11)
and a decorrelation system as depicted on Fig. 4.1
y(k) = Wx(k), (4.12)

where matrices H and W are n by n nonsingular matrices. Our objective is to find a simple
adaptive algorithm for estimation of decorrelation matrix W such that the covariance matrix
of the output signals will be a diagonal matrix, i.e.,

Ry, =E{yy'} =A, (4.13)

where A = diag {\1,...,\,} is a diagonal matrix, typically, A = I,,. It should be noted
that the output signals will be mutually uncorrelated if all the cross-correlations are zero:

ri; = E{yiy;} =0, forall i#j, (4.14)
with non-zero autocorrelations
rio=E{y;} =X\ > 0. (4.15)
The natural minimization criterion can be formulated as the p-norm
1 n n
Tp(W)==>">"|ry", (4.16)
P =
i
subject to the constraints ry; # 0, Vi, typically, r; = 1, Vi.

The following cases are especially interesting:

1-norm (Absolute value criterion),
2-norm (Frobenius norm),
0o-norm (Chebyshev norm).

The problem arises how to derive adaptive algorithms based on these criteria. The present
chapter studies only the Frobenius norm.
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4.1.3 Derivation of Equivariant Adaptive Algorithms for Blind Spatial Decorrelation

Relatively easily, we can derive an adaptive learning algorithm using the following criterion:
Minimize the global cost function:

n n

=2 > (E{yiy;} — Nidiy)? = HE{ny} A%, (4.17)

=1 j=1

%\»—‘

where ||A||  denotes the Frobenius norm of matrix A. In order to derive an adaptive learning
algorithm, we use the following transformation:

Ryy = E{yy"}=E{Wxx"W'} = E{WHss" (WH)"}
= GR G =GGT, (4.18)
where G = W H is the global transformation matrix from s to y, and we have assumed
without loss of generality that Rgg = F {s ST} = I,,. The optimization criterion can be
written in the form:

JﬂW):iHGGT A||F ftr[(GGT A) (GGT —A)]. (4.19)

Applying the standard gradient descent approach and the chain rule, we have

dgqjj 6J2 8]2 8rkp
= — E E 4.2
dt N Orp 0gij (4.20)
k=1p=1

where we use continuous-time version of the learning rule. Taking into account that Ry, =
G GT, we obtain

dgij
dt

=

[t

k=1p=1

n n
[2)\1' Gij = Y Tik Gk — Y Tpi gpj] : (4.21)
k=1 p=1

=

The above formula can be simplified by taking into account that the output covariance
matrix Ryy is symmetric, i.e. 7;; = rj;, as

dgi‘ - ..
dtj =U [/\z‘ 9ij — ];Tik gkj] (4, =12,...,n) (4.22)
or in more compact matrix form
dG T
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Taking into account that G = W H and assuming that H is only very slowly varying in
time, i.e., dH/dt ~ 0, we have

%H =pun(A— Ryy) W H. (4.24)
Hence
dW

Using the simple Euler formula, the corresponding discrete-time algorithm can be written
as

Wl +1)=W() + [A - Rg;} w(l). (4.26)

The covariance matrix Ry, can be estimated as follows:

1 N—-1
5 2y w w1 (1.27)
k=0

R{) = (yy") =

where y( (k) = W (1) x(k).
Alternatively, we can apply the moving average (MA) approach to estimate matrix W
on-line as

W(k+1) = W(k)+ k) [A—ﬁgf;] W(k)

= W)+ n(k) [A - WEREW (k)] W(k), (4.28)
where 0 < n(k) < 0.5 and
R{Y) = (1—mo) RY, ™ + oy (k) y” (k). (4.29)

where 19 € (0,1] is a fixed step size (learning rate). For on-line learning, the covariance
matrix can be very roughly estimated simply by neglecting the expectation operator as

Ryy = y(k)y” (), (4.30)

thus the discrete-time, on-line algorithm (4.26) simplifies as

AW (k) = W(k + 1) = W(k) = n(k) [A — y(k)y" (k)] W (k). (4.31)

Functional diagram illustrating implementation of the discrete-time on-line learning algo-
rithm (4.31)) is shown in Fig. 4.3l

It is interesting to note that a similar algorithm can be derived by using an information-
theoretic criterion (see Chapter [0/ for more detail)

J(W) = —% log (det (WWT)) — ZE {|yi|2}1 ; (4.32)
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Fig. 4.3 Block diagram illustrating the implementation of the learning algorithm (4.31)).

where W € R™™ with m > n. The first term of the cost function prevents the decor-
relation matrix W from becoming not a full rank and all the outputs from decaying to
zero, and the second term assures that the output signals will be mutually uncorrelated by
minimizing the global energy of these signals. The gradient components of the cost function
can be computed as follows

dlog det WWT “1
— w2 (WW') " w (4.33)
and
aE{"%"Q} 73E{|y1"2} Oy _ j=1,2 434
(9’LU¢‘ - ayz awz - <yixj> (7”.]_ ’ 7"'3”) ( . )
J J
or equivalently
0% B {lul*}
1= _ T
5w 2(yx"). (4.35)

Hence, applying the standard gradient descent approach, we obtain the learning algorithm
expressed in matrix form as
dW oJ
=—u

ar aw] =u [(WWT)T'W — (yxT)]. (4.36)

In order to avoid matrix inversion, we can apply the Atick-Redlich formula [51]:

dW

=W {8‘]} W=pn(I-(yy"))W. (4.37)

oW
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Alternatively, we can use Amari’s natural gradient (NG) formula to obtain the same final
algorithm [25] (see Appendix A and Chapter [0l for the theoretical explanation)

AW 9]

— = wWWTW =pu(I—({yy"))W. (4.38)

The corresponding discrete-time on-line algorithm can be written as:
W(k+1) = W(k)+nk) [I-yk)y" (k)] W(k). (4.39)

Remark 4.1 It is interesting to note that the above algorithms (4.38) and (4.39) converge
when global matric G = W H becomes a matriz satisfying relations

GG'=G"G =1, (4.40)

or G=! = GT, s0 the matriz G is orthogonal. Indeed, multiplying equation (4.39) by the
mizing matric H from the right hand side, we get:

W(k+1)HZGE+1) = G(k) + n(k) [I-G(k)(s(k)s"(k)) G" (k)] G(k).  (4.41)

Assuming, without loss of generality, that the autocorrelation matriz Res = (s(k)s™(k))
is the identity matriz, it is evident that a learning algorithm, employing the rule (/.41),
reaches an equilibrium when the matriz G (k) becomes orthogonal, i.e., G™!' = GT.
Moreover, the above algorithm posses the so-called “equivariant property” such that its
average performance does not depend on the eigenvalues of the covariance matric Ryx.

The algorithm (4.38) can be expressed in terms of the entries of a nonsingular mixing
matrix H = [h;;] € R"*". Assuming that WH =I,,, we have

dH dW

— =-H —H. 4.42

dt dt ( )
Hence, we obtain a local biologically plausible (normalized Hebbian) algorithm

dH

o = Iy =w(xy") - H] (4.43)
or in scalar form
dh;; .
dt] = (@i y;) — hij] (1,7 =1,2,...,n). (4.44)

4.1.4 Simple Local Learning Rule

The learning rules discussed in the previous section can be considerably simplified, if we
can assume that the decorrelation matrix W is symmetric positive definite one.? To this

2Tt is always possible to decorrelate vector x by using a symmetric positive definite matrix W by taking
U =V in (4.5).



SPATIAL DECORRELATION - WHITENING TRANSFORMS 137

end, we can use a stable simple gradient formula

aW _ O om0 or T
i~ aw W W s g W = lA =y (4.45)
or equivalently
dW oJ B T

It should be noted that W () will be symmetric positive definite if W (0) is positive definite
(typically W(0) =1), since Ryy = (yy”) is also symmetric in each iteration step.
The above formula can be written in scalar form as

dwij

The discrete-time, on-line, local learning algorithm can be written as

W(k+1) = W(k) +n(k) (A - y(k) y" (k) (4.48)

or in scalar form (see Fig. [4.4) as

|wig (b + 1) = wig (k) + (k) [6; X —wi(R)y;(K)] (i, =1,2,...,n).] (4.49)

L Vi(k)

v, (k)

Fig. 4.4 Implementation of the local learning rule (4.48) for the blind decorrelation.

In addition to the merit that the algorithm (4.48)) is much simpler to implement than
(4:39)), the local signal requirements of the algorithm in (4.48) make it ideal for hardware
and VLSI implementations. However, the performances of (4.39) and (4.48)) are not the
same, and convergence speed of the local algorithm is usually much slower. In order to
improve convergence properties a multi-layer neural network can be employed as it has
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been shown in [260], 268, [398] and described in detail in the next chapters. Furthermore,
the learning rate should be suitably chosen. A theoretical performance comparison of these
two algorithms is discussed in [398)].

The update in (4.48) has an interesting property that it converges also for a suitable
sequence of negative step sizes n(k) provided W(0) is a negative semi-definite matrix. To
see this result, multiply both sides of (4.48) by (—1). By defining W(k)=-W(k), y(k) =
—y(k) = W (k) x(k), and 7i(k) = —n(k),

W(k+1) = W(k)+i(k) (A =5 (k)y" (k). (4.50)
This algorithm is algebraically-equivalent to that in (4.48)), and thus the coefficient ma-
trix W (k) tends towards the solution obtained by —W (k) in the original algorithm. The

convergence conditions on 7j(k) are the same as those for —n(k) in the original algorithm.
Summarizing, the local learning rule can be formulated in a more general form as

W(k+1) = W(k) £n(k) (A - (y(k)y"(k)), (4.51)

where n(k) > 0 is the learning step, W(0) is a symmetric positive definite matrix and A is
a diagonal positive definite matrix (typically, identity matrix).

4.1.5 Gram-Schmidt Orthogonalization

The above adaptive algorithms for spatial decorrelation (whitening) are highly redundant
in the sense that each processing unit is connected to all inputs so that the decorrelating
matrix W is generally a full one. The blind decorrelation can be also performed by imposing
some constraints on matrix W, e.g., it can be a lower triangular matrix with unit entries
on the main diagonal. Let us consider the following simple cost function

W) = 5" Bl (4.5)
i=1

with the constraint that the decorrelation matrix is a lower triangular matrix.
Applying the standard gradient descent method leads to a simple adaptive algorithm
called Gram-Schmidt orthogonalization

vi(k) = wi(k)+ Y wij (k) (k), (4.53)
j<i—1
wij(k+1) = wi;(k) —n(k) (i(F)z;(k), j<i—1, i=2, (4.54)
with y1 (k) = x1(k) and wy; = 1. Tt should be noted that this set of weight vectors is not

unique.
Alternatively, we can use the batch Gram-Schmidt orthogonalization as follows:

W1 = ey, (455)

1—1
w; = ei*Zaijov (t=2,...,n) (4.56)
Jj=1



SPATIAL DECORRELATION - WHITENING TRANSFORMS 139

where e; = [0,...1,...,0]7 is the unit vector with 1 in the i-th place and

T
e; Ruxw;

iy = (G=1,2,...,i—1; i=1,2,...,n). (4.57)

T bl
w Ryxw;

One advantage of the Gram-Schmidt orthogonalization algorithm over the eigenvalue de-
composition approach is its lower computational complexity.

4.1.6 Blind Separation of Decorrelated Sources Versus Spatial Decorrelation

All the prewhitening rules can be used in the context of neural separating algorithms. The
algorithm which iteratively applies either the rule (4.39) or (4.51) achieves the equilibrium
point when the output signal covariance matrix becomes

Ry, = E{yy"} = E{Wxx" W'} = WE{xx"}WT = WR,, W' =1,,. (4.58)
Hence, assuming that W is a symmetric matrix, we get the equilibrium point at
W, = Rio? = VAL /2VT, (4.59)

where V is the orthogonal matrix and Ay is the diagonal matrix obtained by the eigen-
value decomposition of the covariance matrix: Ryxx = VxAsz . This means that the
output signals y;(k) will be mutually orthogonal with unit variances. In general, spatial
decorrelation is not sufficient to perform instantaneous blind source separation from linear
mixtures.

Remark 4.2 [t is interesting to note that for a special case when a mixing matric H
is nonsingular and symmetric, blind spatial decorrelation (whitening) algorithms with a
symmetric whitening matric W perform directly blind signal separation, since Ryx = H?
under weak assumption that Res = 1 (i.e., the sources are spatially uncorrelated and unit
variance) and hence

~

W, =H'=R_/?=V,A[/?VT (4.60)

XX

4.1.7 Bias Removal for Noisy Data

It should be noted that when the sensor signals x(k) are noisy such that x(k) = x(k) +v(k)
and x(k) = Hs(k), and y(k) = W (k) %(k) are noiseless estimates of the sensor and output
vectors, respectively, it is easy to show that the additive noise v (k) within x(k) introduces
a bias in the estimated decorrelation matrix W. The covariance matrix of the output can
be evaluated as

Ryy = B{y(k)y"(k)} = W Rxx W + WRyp W7, (4.61)

where Rgzx = E{x(k) %7 (k)} and Ryp = E{v(k) v’ (k)}.
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Assuming that the sample covariance matrix of the noise can be estimated (e.g., f{yy =
621), modified adaptive learning algorithms (cf. (4.51) and (4.39)) employing bias removal
can take the following forms:

AW (k) = n(k)[I - R + W (k) Ryp W (k)] (4.62)
and
AW (k) = n(k)[I - RY) + W (k) Ryp W (k)] W (k). (4.63)

where Ryy = (1 =) Ry + 0y () y7 (k).
The stochastic gradient version of the on-line global algorithm (4.39) for Rypy = 021 is

AW (k) = n(k)[I - y(k)y" (k) + o) W(k) W (k)]W (k). (4.64)

4.1.8 Robust Prewhitening - Batch Algorithm

For data corrupted by the noise, instead of the adaptive unbiased algorithms discussed in the
previous section, we can attempt to apply the batch procedure called robust prewhitening
based on the subspace approach. Using the subspace technique, we can relatively easily
estimate the variance of noise and number of sources in the simplest case when the covariance
matrix of the noise can be modelled as Rpyy = 012, I,, and the variance of noise is relatively
small (that is, the SNR is relatively high above some threshold).

Algorithm Outline: Robust Prewhitening for m > n

1. Compute the sample covariance matrix: Rux = HRgs HY + 621, = HHT + 621,,,,
which holds asymptotically under assumption of independent sources with the unit
variances and uncorrelated white noise.

2. Compute the eigenvalue decomposition:

. As 0
Rex = VzAme[VS,VN][ 08 AN][VS,VN’]T

= VsAsVE+ VANV, (4.65)

where Vs € R™*" contains the eigenvectors associated with n principal eigenvalues
of As = diag{A1 > Aa--+ > A\, } in descending order. Similarly, the matrix V €
R™* (™= contains the (m—n) noise eigenvectors that correspond to noise eigenvalues
Ay = diag{\p41 > -+ > A}, with A, > A,11. Usually, is required that A, >>
Ant1-

3. Estimate 62 by computing the mean value of (m —n) minor eigenvalues and the rank
of the matrix H. This can be done on the basis of distribution of eigenvalues by
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detecting the gap between them or applying the AIC or MDL criteria (see Chapter 3
for detail).

4. Define the whitening matrix”

W o= A5 VI = (As—42L,)" 2 VE

L (4.66)

. 1 1
d1ag{m, ey m}vs

and the prewhitened sensor vector: y = W x.

Remark 4.3 It should be noted that for noisy data (x(k) = Hs(k) + v(k)) the above
described whitening transform (y(k) = W x(k) = WHs(k) + Wuv(k)) can amplify the
noise rather than suppressing it, especially when m = n and/or the mizing matriz H is
ill-conditioned. For the ill-conditioned H the some eigenvalues Ay, An—1, - .. are very small.
The enhancement of noise will be different in different channels depending on distribution
of the eigenvalues. In such cases, to alleviate the problem, we can apply the regularization
approach discussed in Chapter|2, by using instead of (4.60]) the following formula for m > n:

. | )\1 / An T
W:dlag{ W, ey W}VS’ (467)
2

where 65, is estimated variance of the noise.
For Gaussian noise instead of the standard covariance matriz Ryx, we can employ fourth-
order matriz cumulants which are insensitive to an arbitrary Gaussian noise [889].

4.2 SECOND ORDER STATISTICS BLIND IDENTIFICATION BASED ON EVD
AND GEVD

4.2.1 Mixing Model

In this section we will discuss the basic methods that jointly exploit the second order
statistics (correlation matrices for different time delays) and temporal structure of sources.
We show how the problem of blind identification of mixing matrix can be converted to
standard eigenvalue decomposition (EVD), generalized eigenvalue decomposition (GEVD)
and simultaneous diagonalization (SD) problems.

We consider the case where sources may have arbitrary distributions but non-vanishing
temporal correlations. More precisely, let us consider the simple mixing model where the

3Such operation is called sometimes “quasi-whitening”, because it performs whitening not on the basis of
noisy sensor signals but rather on the estimated noise free data.
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m-dimensional observation (sensor) vector x(k) € IR is assumed to be generated by
x(k) = Hs(k) + v(k), (4.68)

where H € R™*" is an unknown full column rank mixing matrix, s(k) is the n-dimensional
source vector (which is also unknown and m > n), and v(k) is the additive noise vector
that is assumed to be statistically independent of s(k).

The task of blind identification or equivalently blind source separation (BSS) is to esti-
mate the mixing matrix H or its pseudo inverse separating (unmixing) matrix W = H* in
order to estimate original source signals s(k), given only a finite number of observation data
{x(k)}, k =1,...,N. Recall that two indeterminacies cannot be resolved in BSS without
some a priori knowledge Scaling and permutation ambiguities. Thus, if the estimate of the
mixing matrix, H satisfies G = WH=H"H =P D, where G is the global transformation
which combines the mixing and separating system, F is some permutation matrix and D
is some nonsingular scaling diagonal matrix, then (H,8) and (H, s) are said to be related
by a waveform-preserving relation [I160]. A key factor in the BSS is the assumption about
statistical properties of the sources like statistical independence among sources. That is the
reason why the BSS is often confused with the independent component analysis (ICA). In
this chapter, we exploit some weaker conditions for separation of sources assuming that they
have temporal structures with different autocorrelation functions or equivalently different
power spectra and/or they are nonstationary with time varying variances. Methods that
exploit either the temporal structure of sources (mainly the second-order correlations) or
the nonstationarity of sources, lead to the second-order statistics (SOS) based BSS meth-
ods. In contrast to the higher-order statistics (HOS) based BSS methods, all the SOS based
methods do not have to infer the probability distributions of sources or nonlinear activation
functions [234] 230].

In this and the next section, we describe several batch methods that exploit the spatio-
temporal decorrelation to estimate (or identify) the mixing matrix in the presence of spa-
tially correlated but temporally white noise (which is not necessarily Gaussian). Moreover,
we show that for a suitable set of time-delayed correlations of the observation data, we can
find a robust (with respect of additive noise) estimate of the separating matrix H. Through-
out this and next sections the following assumptions are made unless other is stated:

(AS1) The mixing matrix H is of full column rank.

(AS2) Sources are spatially uncorrelated with different autocorrelation functions but are
temporally correlated (colored) stochastic signals with zero-mean.

(AS3) Sources are stationary signals and /or second-order nonstationary signals in the sense
that their variances are time varying.

(AS4) Additive noises {v;(k)} are independent of source signals and they can be spatially
correlated but temporally white, i.e.,

E{v(k)v" (k—p)} = 6,0Ru(p), (4.69)

where 6§, is the Kronecker symbol and Ry is an arbitrary m x m matrix.
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4.2.2 Basic Principles: Simultaneous Diagonalization and Eigenvalue Decomposition

Taking into account the above assumptions, it is straightforward to check that the correla-
tion matrices of the vector x(k) of sensor signals satisfy

Rx(0) = E{x(k)x"(k)} =HRs(0)H" + Ry(0), (4.70)

Rx(p) = E{x(k)x"(k—-p)} =HRs(p)H", (4.71)

for some non-zero time lag p. It follows from the assumption (AS2) that both Rs(0) =
E{s(k)s™(k)} and Rs(p) = E{s(k)s” (k — p)} are non-zero distinct diagonal matrices.

In the case of overdetermined mixtures (more sensors than sources) when the covariance

matrix of the noise has the special form Rypy = Ry/(0) = E{v(k)vT(k)} = 021,,, the noise

variance o2 can be estimated for relatively high SNR (signal to noise ratio) from the least

singular value of Rx(0) (or the average of minor (m — n) singular values of Rx(0)) and the
unbiased covariance matrix Ry (0) can be estimated as

R (0) = Ry(0) — ¢21,, = HR4(0)HT. (4.72)

In order to estimate the mixing matrix H up to its re-scaled and permuted version, we
can perform simultaneous diagonalization of two covariance matrices: Ry(0) and Rx(p),
according to (4.71) and (4.72).

For the sake of simplicity, the simultaneous diagonalization will be explained first, in the
case when the number of sensor is equal to the number of sources (m = n). It* can be
performed in two steps: orthogonalization followed by an unitary transformation as shown
below

(1) First, the covariance matrix Ry (0) = (1/N) Zszl(x(k‘) xT(k)) — 621, is estimated
and its EVD is performed as I_{X(O) = Vx Ax VL. Then the standard whitening is
realized by a linear transformation:

%(k) = Qx(k) = Ax? VI x(k), (4.73)

where Q = Ay H VL. Hence, we have

x(k)x" (k) = QRx(0) Q" =1,, (4.74)

%(k)X"(k —p) = QRx(n) Q". (4.75)

(2) Second, an orthogonal transformation is applied to diagonalize the matrix ﬁ;(p). The
eigenvalue decomposition of Rx(p) has the form

Rx(p) = VzAxVE. (4.76)

4In the simultaneous diagonalization, the task is to diagonalize simultaneously only two matrices. In contrast
in the joint diagonalization problem, we attempt diagonalize (approximately) arbitrary number of matrices.
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Simultaneously, on the basis of (4.71)) and (4.75]), we obtain

Rx(p) = QRx(p) Q7 = QHR,(p) HT Q7. (4.77)

Hence, if the diagonal matrix Ax has distinct eigenvalues then the mixing matrix can
be estimated uniquely (up to sign and permutation matrices) (see Theorem 4.1] as
given below)

H=Q 'Vg=V,AY? Vg (4.78)

The simultaneous diagonalization of two symmetric matrices can be carried out with-
out going through the two-step procedure, by converting the problem to the generalized
eigenvalue decomposition (GEVD) [TT159}223]. In fact, the problem can be easily converted
to the standard eigenvalue problem which can be formulated for the nonsingular mixing
matrix H as (see Eqgs. (4.71)-(4.72))):

R (0Rx(p) = (H") 'R (0)Rs(p)HT = VAV, (4.79)
or equivalently the generalized eigenvalue problem:
Rx(p)V = R (0)VA (4.80)

on the condition that A = R;!(0)Rs(p) has distinct eigenvalues. Then, the mixing matrix
H can be estimated on the basis of eigenvectors of the GEVD (4.80) as

H=(VH1l=vT, (4.81)

up to arbitrary scaling and permutation of columns.
These basic results can be explained and summarized by the following Theorem [1159,
223].

Theorem 4.1 Let Ai, Ay, Dy, Dy € R™*" be diagonal matrices with non-zero diagonal
entries and additionally matrices A1 and Dy are positive definite. Suppose that G € R™*"
satisfies the following decompositions:

D, = GA;GT, (4.82)
D, = GA,GT. (4.83)

Then the matriz G is the generalized permutation matria® if Dl_1 D, and AflAg have
distinct diagonal entries.

Proof. From (4.82)), there exists an orthogonal matrix U such that

(e A;) - (D%) U. (4.84)

5The generalized permutation matrix is defined as G = PD, where P is a standard permutation matrix
and D is any nonsingular diagonal matrix.
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Hence,
G =DIUA;". (4.85)
Substitute (4.85) into (4.83) to obtain
D;'D; = UA;'A,UT. (4.86)

Since the right-hand side of (4.80) is the eigen-decomposition of the matrix Dleg, the
diagonal elements of D7 "Dy and A Ay are the same. From the assumption that the
diagonal elements of Dl_ng are distinct, the orthogonal matrix U must have the form
U = PS,, where P is a permutation matrix and Sy is a diagonal matrix whose diagonal
elements are either +1 or —1. Hence, we have

G = D}PS,A;"
— PPTD?PS,A]*
~ PD,, (4.87)

where Dy is a diagonal matrix expressed as
Dy = PTDZPS,A; 2. (4.88)

Remark 4.4 For successful source separation, we may choose any time delay p for which
R (0)Rx(p) has non-zero distinct eigenvalues. We have found, by extensive experiments,
that for typical real world signals a good choice is usually p = 1. It is also possible to choose
a linear combination Y., ;R (i) instead of Ry (p).

It is also important to note, that instead of using the generalized eigenvalue decomposi-
tion, we can use the standard eigenvalue decomposition (EVD) or equivalently the singular
value decomposition (SVD) in a two stage procedure described in detail below [1159].

Algorithm Outline: Two-stage EVD/SVD for more sensors than sources

1. Estimate the correlation matrix of sensor signals as

N 1 &
Ry(0) = & x(k) xT (k). (4.89)

k=1

2. Compute the EVD (or equivalently SVD) of Ry (0) as (see section 1.1.8)

Rx(0) = U,=, VL=V, VT
= VsAsVE+VyANVE, (4.90)
where Vg = [v1, va, ..., v,] € R™*" contains the eigenvectors associated with n prin-

cipal eigenvalues of As = diag{A\1 > Ao -+ > A, } in descending order. Similarly, ma-
trix Vi € R™*(™~™ contains the (m—n) noise eigenvectors that correspond to noise
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eigenvalues Ay = diag{\,+1 > -+ > A}, with A, > Au11. It should be noted that
the eigenvalues have usually typical relationship A\;y > Ao > - Ay > A1 = -+ &= A\,
m > n. This means that the last (m — n) non-significant (minor) eigenvalues corre-
spond to noise subspace and the first significant (principal) eigenvalues correspond
to signal plus noise subspace. Estimate the number of sources n from the number of
most significant singular values.

3. Estimate also the variance o2 of the white noise as the mean value of the (m — n)
least significant eigen (or singular) values.

4. Perform a robust (with respect to the white noise) prewhitening transformation as
~—1)
S

%(k) = As VI x(k) = Qx(k), (4.91)

where As = diag{(A1 — 62), A2 — 62),..., (An — 62)}).

5. Estimate the covariance matrix of the vector X(k) for specific time delay p # 0 (typi-
cally, p = 1 gives best results) and perform the SVD of the covariance matrix:

1N

¥ (k) X" (k — p) = Ux Bx VL. (4.92)
k=1

ﬁf(p) =

6. Check whether for the specific time delay p all singular values of the diagonal matrix
3 are distinct. If not, repeat step 4 for a different time delay p.

If the singular values are distinct and sufficiently far away from each other then we
can estimate successfully the mixing matrix as

~ n ~1/2

H=Q"Ux=VsAs; Ux (4.93)
and if necessary noisy source signals® as

/

y(k) =8(k) = ULx(k) = UL A5 * VE x(k). (4.94)

It should be noted that if both covariance matrices ﬁx(O) and ﬁf(p) are symmetric positive
definite then Uy = V and Ux = Vg, respectively and the SVD and PCA /EVD techniques
are equivalent.

The above procedure is a modified and optimized version of the algorithm called the
AMUSE (Algorithm for Multiple Unknown Signals Extraction) [1159, [854]. Usually, for
single sample time delay p = 1 the above algorithm successfully separates colored sources

6The estimated sources will be recovered without cross-talking due to unbiased estimation of the unmixing
matrix. However, they will be corrupted by additive noise since the noise is projected from the sensor
signals by the linear transformation (4.94). In order to remove noise, we need to apply methods described
in Chapters 1 and 8.
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with different power spectra shapes. This means that in such a case the eigenvalues of the
time-delayed covariance matrix are distinct. The main disadvantage of this algorithm is
that its accuracy is strongly deteriorates in the presence of additive noise.

The AMUSE algorithm for BSS of colored sources can be naturally extended to the
ICA of independent non Gaussian source signals if instead of the standard time-delayed
covariance matrices Rx(p), we use the contracted quadricovariance matrices defined as

Cx(E) = Cx{X'(k)Ex(k)X(k)XT(k)}
B{x" (k) ExX(k)%(k)X" (k)} — Rx(0) E Rx(0)
— tr(E Rx(0)) Rx(0) — Rx(0) E” Rx(0), (4.95)

where Rx(0) = E{x(k)x" (k)} ™ and E € R"*" is some freely chosen matrix called eigen-
matrix (typically, E = I, or E = e, eg, where e, are vectors of some unitary matrix)
[136}, 137].

It can be easily shown that such matrix has the following eigenvalue decomposition
(EVD):

Cx(E)=UAgUT, (4.96)

with Ag = diag{\jufEuy,..., \,ulEu,}, \; = rk4(s;) = E{s}} — 3E%{s?} is the kurtosis
of zero-mean i-th source and u; is the i-th column of the orthogonal eigenvector matrix
U. Hence, if the EVD of Cx(E) = UAg U7 = A C4(E) AT is unique in the sense that
all eigenvalues of Ag are distinct, we can estimate the mixing matrix A= QH =U. In
the special case for E = I,, these conditions are satisfied if the source signals have different
values of kurtosis. The above procedure is called FOBI (Fourth-Order Blind Identification)
[136], 137, [883], [595].

Remark 4.5 The main advantage of the use of fourth order quadricovariance matrices is
their theoretical insensitivity to an arbitrary Gaussian noise. Furthermore, the HOS-based
techniques enable us to identify the mizing system when sources are i.i.d. and mutually
independent. Howewver, it should be emphasized that the standard time-delayed covariance
matrices can be estimated accurately with far fewer data samples than their higher order
counterparts. In such cases, when the number of available samples is relatively low, work-
ing with SOS-based instead of HOS-based techniques is advantageous, especially in a time-
varying environment.

The above algorithms based on the time-delayed covariance matrices and symmetric
EVD/SVD and GEVD are probably the simplest batch algorithms for blind identification
and blind separation of sources with temporal structure. However, their robustness with
respect to noise and performance can be poor, especially when additive noise is large or we
not able to estimate precisely the covariance matrix of the noise. In order to alleviate the
problem, we can use the two covariance matrices: Ryx(p1) and Ry (p2) for non-zero time
delays (p1 # p2 # 0). Since the noise vector was assumed to be temporally white, the

"For the prewhitened data we have Rx(0) = I,,.
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covariance matrices Rx(p1) and Ry (p2) are not affected by the noise vector, i.e.,

Rx(p1) = HRs(p)H',

Ry(p2) = HRs(p2)H"

for any time delay different from zero. Thus, it is possible to obtain a robust estimate of the
unmixing matrix, regardless of probability distributions and spatial structure of the noise
vector [223], 224]. However, to perform GEVD or EVD with robust prewhitening one of the
matrices Rx(p1) or Rx(p2) must be positive definite which is not guaranteed for any time
delay. So a new problem arises, how to select an optimal time delays, such that at least
one of the covariance matrices is symmetric positive definite. Furthermore, the described
algorithms exploit only two different correlation matrices of the observation vector, so their
performance is degraded if some eigenvalues of Rg(p) are close to each other. In order to
avoid these drawbacks, we should use rather a larger set of time-delayed correlation matrices
for various time lags as explained in the next sections of this chapter.

4.3 IMPROVED SOS BLIND IDENTIFICATION ALGORITHMS BASED ON
SYMMETRIC EVD/SVD

There is a current trend in ICA/BSS to investigate the “average eigen-structure” of a large
set of data matrices which are functions of available data (typically, covariance or cumulant
matrices for different time delays). In other words, the objective is to extract reliable
information (like for example, estimation of sources and/or the mixing matrix) from the
eigen-structure of a possibly large set of data matrices [160]. However, since in practice only
a finite number of samples of signals corrupted by noise is available, the data matrices do not
exactly share the same eigen-structure. Furthermore, it should be noted that determining
the eigen-structure on the basis of one or even two data matrices leads usually to poor
or unsatisfactory results because such matrices, based usually on arbitrary choice, may
have some degenerate eigenvalues and they usually discard information contained in other
data matrices. Therefore, from a statistical point of view, in order to provide robustness
and accuracy it is necessary to consider the average eigen-structure by taking into account
simultaneously a possibly large set of data matrices [I58| [159] (160, [1222]. In this and the
next section, we will describe several approaches that exploit average eigen-structure in
order to estimate reliable sources and mixing matrix.

4.3.1 Robust Orthogonalization of Mixing Matrices for Colored Sources
Let us consider the standard mixing model:
x(k) = Hs(k) + v(k), (4.97)

where x(k) € R™ is the available vector of sensor signals, H € R™*" is the full column
rank mixing matrix and s(k) € IR" is the vector of temporally correlated sources.
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We formulate the robust orthogonalization problem as follows: Find a linear transforma-
tion X(k) = Qx(k) € R" such that the global mixing matrix, defined as A = QH € R™*",
will be orthogonal and unbiased by the additive white noise v(k).

Such robust orthogonalization is an important pre-processing step in a variety of BSS
methods. It ensures that the global mixing matrix is orthogonal. The conventional whiten-
ing exploits the zero time-lag covariance matrix Ryx = Rx(0) = E{x(k)xT(k)}, so that
the effect of the additive white noise can not be removed if the covariance matrix of the
noise can not be precisely estimated, especially in the case when the number of sensors is
equal to the number of sources.

The idea of the robust orthogonalization is to search for such a linear combination of
several (typically, from 5 to 50) symmetric time-delayed covariance matrices, i.e.,

K
Ry() = > i Rue(pi), (4.98)

i=1

that matrix Ry is positive definite and moreover, it is not sensitive to the additive white
noise [1156]. A proper choice of coefficients {«;} induces that the matrix Ry will be sym-
metric positive definite. Tt should be noted, that matrices Ry (p;) = [Rax(p;) + R (p;)]/2
are symmetric but not necessarily positive definite, especially for a large time delay p;.
The practical implementation of the algorithm for data corrupted by white noise, is given

below [1156, 90, 236].

Algorithm Outline: Robust Orthogonalization

1. Estimate a set of time-delayed covariance matrices of sensor signals for preselected
time delays (p1,pa, - . ., px ) and construct an mxmK matrix R = [Rx(p1) - - - Rx(pK )],
where Ry (p;) = ((x(k)x* (k — p)) + (x(k — p)xT(k)))/2.

Then compute the singular value decomposition (SVD) of R, i.e.,
R=UXDVT, (4.99)

where U = [U,,U,] € R™*™ (with U, = [uy,...u,] € R™*") and V € R™K*™mK
are orthogonal matrices, and 3 is an m x mK matrix whose left n columns contain
diag{o1,09,...,0,} (with non increasing singular values) and whose right (mK — n)
columns are zero. The number of unknown sources n can be detected by inspecting
the singular values as explained in the previous section under the assumption that
the noise covariance matrix is modelled as Ry = 021, and the variance of noise is
relative low, i.e., 02 < 02.

2. Fori=1,2,..., K, compute
R; = U Rx(pi)Us. (4.100)

3. Choose any non-zero initial vector of parameters o = a1, g, ..., ax]T.
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Compute

K
R=> aR. (4.101)
=1

5. Compute the EVD decomposition of R and check if R is positive definite or not. If

R is positive definite, go to Step 7. Otherwise, go to Step 6.

Choose an eigenvector u corresponding to the smallest eigenvalue® of R and update
« via replacing a by « + 8, where

[uTRlu S uTRKu] r

6= . 4.102
W Ryu T Rl 102
Go to step 4.
Compute symmetric positive definite matrix
K ~
Ry(on) =Y a;i Ru(pi), (4.103)
i=1
and perform SVD or symmetric EVD of Ry,
= b 0
Rx(a*) = [US7UN] |: OS 2/\/ :| [VS,V_/\[]T, (4104)

where (cv,) is the set of parameters «; after the algorithm achieves convergence, i.e.,
positive definiteness of the matrix R, Ug contains the eigenvectors associated with n
principal singular values of ¥ s = diag{o1,02,...,0,}.

The robust orthogonalization transformation is performed by
x(k) = Qx(k), (4.105)

_1
where Q = X452 U%.

Some remarks and comments are now in order:

e The robust orthogonalization algorithm converges globally for any non-zero initial

condition of ar under assumption that all sources have different autocorrelation func-
tions which are linearly independent or equivalently they have distinct power spectra.
Moreover, it converges in a finite number of steps [1156].

81f the smallest eigenvalues has some multiplicity, take any vector u corresponding to the smallest eigenvalue.
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e In the ideal noiseless case, the last (m —n) singular values of Ry () are equal to zero,
thus 3 = 0.

e In the case of m = n (equal numbers of sources and sensors), step 1 and 2 are not
necessary. Simply, we let R; = Ry (p;) = (Rx(p;) + RL(p:))/2.

e For m > n the linear transformation X(k) = Q x(k) besides orthogonalization enables
us to estimate the number of sources, i.e., the orthogonalization matrix reduces the
array of sensor signals to an n-dimensional vector, thus the number of sources can be
estimated, under conditions that the SNR is relative high.

e By defining a new mixing matrix as A = QHD'/2, where D = Zle o; Rg(p;) is
a diagonal (scaling) matrix with positive entries, it is straightforward to show that
AAT =1, thus the matrix A is orthogonal. This orthogonality condition is necessary
for performing separation of signals using the symmetric EVD or Joint Diagonaliza-
tion approaches. It should be noted that in contrast to the standard prewhitening
procedure for our robust orthogonalization generally E{xx'} = Dx # I,. We have
X = A5+Qn, where § = D~/2 s, but due to the scaling indeterminacy of the sources,
we may write in the sequel that X = As+ 2 (U = Qv). The diagonal elements of
D are positive, due to the positive definiteness of Ry (a) [458].

Several extensions and improvements of the above presented robust orthogonalization
algorithm are possible, especially, if the noise is not completely white (i.e., the noise has
white and colored components) and/or the number of available samples is relatively small.

First of all, instead of the simple shift (time delay) operator, we can use generalized
delay operators or more generally suitably designed filters. In other words, instead of the
standard time-delayed sampled covariance matrices Rx(p;) = (x(k)x” (k — p;)), we can use
the generalized sampled covariance matrices of the form

N
Rux(Bi) = = > _x(b)x5 (k),  (i=12,....K) (4.106)

where vector Xp, (k) = B;(2)[x(k)] = >_, bipx(k — p) is a filtered version of the vector x(k)
and B;(z) denotes transfer function of a suitably designed filter or generalized time-delay
operator”. It should be noted that in general any set of FIR (finite impulse response) or
stable ITR (infinite impulse response) filter may be used in the preprocessing stage. However,
we propose to use banks of bandpass filters possibly with overlapping band-passes covering
a bandwidth of all source signals but with different central frequencies as is illustrated by
Fig. [4.5. For example, we can use simple second-order IIR bandpass filters with transfer
characteristics
(weiz Y (ri +13) — 1
1 —wez=t+r2z=2 "

Bi(z) =z"%(1—r;) (4.107)

9In the simplest case B;(z) = z~%. Generalized delay operator of the first-order has the following form

-1
Bi(z) = (1"152271 , where «, # and v are suitably chosen coefficients.
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Fig. 4.5 Tllustration of processing of signals by using a bank of bandpass filters: (a) Filtering a vector
x of sensor signals by a bank of sub-band filters, (b) typical frequency characteristics of bandpass
filters.

where we; (k) = 2r; cos(2m fo;k) with the center frequency f.; and the parameter r; related
to the frequency bandwidth by relationship B,,; = (1—r;)/2. The suitably designed bank of
bandpass filters enables us to remove efficiently wide-band noise, which is out of the band-
width of the source signals*? If the bandwidth of source signals is known approximately,
we can use only K = n bandpass filters with bandwidths consistent with the bandwidth of
the sources.
In order to ensure the symmetry of the generalized covariance matrices, we will use the
matrices defined as: Ryx(B;) = (E{x(k) X}, (k)} + E{Xp, (k) x" (k)})/2, where the vectors
xp, (k) = [Z1(k),...,Zm(k)]T represent sub-band filtered versions of the vector x(k).

For nonstationary source signals and stationary noise and/or interference, we can adopt
an alternative approach, based on the concept of the differential correlation matrices, defined
as [225]

5Rx(n7Tj7pl) = Rx(Tz’,pl) - Rx(Tjapl)a (4108)

where T; and T} are two not overlapping time windows of the same size and R« (T}, p;)
denotes the time-delayed correlation matrix for the time window T;. It should be noted
that such defined differential time-delayed correlation matrices are insensitive to stationary
signals. In order to perform robust orthogonalization for nonstationary sources, we divide
the sensor data x(k) into K non-overlapping blocks (time windows T;) and estimate the set
of differential matrices 5Rx(ﬂ,Tj,pl) fori=1,...,K,j>tand l =1,..., M (typically,
M =5 and K = 10 and the number of samples in each block is 100).

107t is important that bandpass of the filters possibly match bandwidths corresponding to the highest energy
of the individual sources.
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In the next step, we formulate the composite differential matrix defined as

0Ru(@) =Y iji ORx(Ty, Tyopr)  (i=1,2,...,K; j>i;1=1,2,...,M) (4.109)

ijl
and using the approach described above, we can estimate the set of coefficients a;j;; for
which the matrix 0Rx(c) is positive definite. In the last step, we perform the symmetric

EVD of the positive definite matrix 0Rx () and compute the orthogonalization matrix Q
(cf. Eqs. (.101)-(4.105)).

For sensor signals corrupted by any Gaussian noise, instead of the time-delayed covariance
matrices, we can use the fourth order quadricovariance matrices defined as:

Cx(p.Eg) = Cx{(x"(k—p)Egx(k—p)) x(k)x" (k)}
E{(x" (k — p) Eqx(k — p)) x(k) x" (k)} - Rx(p) Eq RY ()
— tr(Eq Rx(0)) Rx(0) — Rx(p) By Ry (p), (4.110)

where Ry (0) = E{x(k)xT(k)} = E{x(k — p)xT(k — p)}, Rx(p) = E{x(k)xT(k — p)} and
E, € R™™" is any matrix, typically, E, = I or E, = uqug7 where u,, is the p-th vector
of some orthogonal matrix U. ™Y Our objective is to find such a set of matrices E, and
time-delay p that the quadricovariance matrix (4.110) (or linear combination of several such

matrices) is positive definite.

4.3.2 Improved Algorithm Based on GEVD

On basis of robust matrix orthogonalization, we can develop several improved and extended
algorithms based on the EVD/SVD or GEVD. In this section, we will discuss an improved
algorithm based on GEVD or the matrix pencil proposed by Choi et al. [223] 235].

The set of all matrices of the form R; —AR5 (with some parameter A) is said to be a matriz
pencil. Frequently, we encounter the case where R; is symmetric and Ry is symmetric and
positive definite. Pencils of this variety are referred to as symmetric definite pencils [501].

Theorem 4.2 IfR; — ARy is a symmetric definite pencil (i.e. both matrices are symmetric
and Ry is positive definite), then there exists a nonsingular matriz V.= [vy,...,v,] which
performs simultaneous diagonalization of R1 and Ry:

VIR,V = Dy, (4.111)
VIR,V = Dy, (4.112)
if the diagonal matriz D, D2_1 has distinct entries. Moreover, the problem can be converted

to the GEVD: RV = Ry V A, where A = diag{\1, \a,..., A\, } = Dy D! (or equivalently

Riv; = NRov; fori=1,...,n), if all eigenvalues \; = 32533 are distinct.

11 The matrix U can be estimated by the EVD of the simplified contracted quadricovariance matrix for p = 0
and Eq =TI as Cx(0,I) = Cx {(xT (k) x(k)) x(k) xT (k)} = B{(xT (k) x(k)) x(k) xT (k)} — 2 Rx(0) Rx(0) —
tr(Rx(0)) Rx(0) = UA; UT.
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It is apparent from Theorem [4.2/ that Ry should be symmetric and Ry should be sym-
metric and positive definite so that the generalized eigenvector V can be a valid solution
(in the sense that H = (VT)~!) on the condition that all the generalized eigenvalues \;
are distinct. Unfortunately, for some time delays the covariance matrices Rx(p1) = Ry and
Rx(p2) = Ra cannot be positive definite. Moreover, due to some noise and numerical error
they cannot be symmetric. Thus, we might have a numerical problem in the calculation of
the generalized eigenvectors, which can be complex-valued in such cases [235] 230].

Remark 4.6 In fact, the positiveness of matrix Re = Ry is not absolutely necessary. If
R and Ry are symmetric and Ry is not positive definite, then we can try to construct a
positive definite matricx Rz = B1R1 + B2Reo for some choice of real coefficients 81, B2, and
next to solve equivalent generalized symmetric eigen problem Rq1'V = R3 VA in the sense
that the eigenvectors of the pencils R — ARg and R1 — ARg are identical. The eigenvalues
Ai of R1 — ARy and the eigenvalues i of R1 — ARg3 are related by \; = B2 5\1/(1 — 01 5\1)

Let us consider two time-delayed covariance matrices Rx(p1) and Rx(p2) for non-zero time
lags p; and ps. For the requirement of symmetry, we replace Rx(p1) and Rx(p2) by Rx(p1)
and Rx(p2) that are defined by

Ra(py) = % [Ru(p1) + RZ(p)} . (4.113)

Rep2) = 5 {Rulp2) + RL(m)} (1114)

Then the pencil f{x(pl) - /\Rx(pg) is a symmetric pencil. In general, the matrix Rx(pg)
is not positive definite. Therefore, instead of Rx(p2) for a single time delay, we consider a
linear combination of several time-delayed covariance matrices:

K
Ry(a) = a; Rue(pi). (4.115)

i=1

The set of coefficients {a;} is chosen in such a way that the matrix Ry(a) is positive
definite, as described in the previous section. Hence, the pencil Ry (p1) — ARx () is a sym-
metric definite pencil and its generalized eigenvectors are calculated without any numerical
problem.

This method referred to as Improved GEVD (Matriz Pencil) Method is summarized below
[223, 235).

Algorithm Outline: Improved GEVD (Matrix Pencil) Algorithm

1. Compute R; = Ry(p1) for some time lag p; # 0 (typically, p = 1) and calculate
a symmetric positive definite matrix Ry = Rx(a) = Zfil a; Ryx(pi) by using the
robust orthogonalization method (employing a time-delay operator, bank of bandpass

filters or differential correlation matrices).
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2. Find the generalized eigenvector matrix V for the generalized eigen value decomposi-
tion (GEVD)

Rx(p1)V =Ry (a) VA. (4.116)

3. The mixing matrix is given by H = (VT)~! on the condition that all eigenvalues are
real and distinct.

4.3.3 Improved Two-stage Symmetric EVD/SVD Algorithm

Instead of the GEVD approach, we can use the standard symmetric EVD or SVD in a
two-stage (or more) procedure. Let us assume, that the sensor signals are corrupted by the
additive white noise and the number of sources is generally unknown (with the number of
sensors larger or equal to the number of sources).

Using a set of covariance matrices and the robust orthogonalization described above, we
can implement the following algorithm.

Algorithm Outline: Robust EVD/SVD Algorithm

1. Perform a robust orthogonalization transformation X(k) = Qx(k) using one of the
method described in previous section, such that the global mixing matrix A = QH
is orthogonal.

2. Compute the linear combination of a set of the time-delayed covariance matrices of the
vector X(k) for a set of time delays p; # 0 (or alternatively using a bank of bandpass
filters)

M
Ef(ﬁ) = Z Bi Rf(Pi)a (4.117)

where a set of coefficients §; can be randomly chosen.
3. Perform SVD (or equivalently EVD) as
Rx(8) = UxZxUL (4.118)

and check whether for the specific set of parameters 3; and p; all singular values of
the diagonal matrix 3% are distinct. If not, repeat step 2 and 3 for different set of
parameters. If the singular values are distinct and sufficiently far away from each
other then, we can estimate (unbiased by white noise) the mixing matrix as

H=Q" Ug (4.119)
and/or if necessary-estimate (noisy) colored source signals as

y(k) =8(k) = ULx(k) = UL Qx(k). (4.120)
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4.3.4 Blind Separation and ldentification Using Bank of Bandpass Filters and Robust
Orthogonalization

Instead of using the linear combination of a set of covariance matrices for various time delays,
we can use a single generalized covariance matrix R_z = (E{X(k) X(k) T +E{x(k) X7 (k)}) /2,
where the vector X(k) = [Z1(k), ..., T, (k)] represents a filtered version of the vector X.
More precisely, each signal T;(k) = B(2)Z; (k) = >, bpT;(k — p) is a sub-bandpass filtered
version of signal T;. It should be noted that all filters have identical transfer function B(z)
for each channel and each source signal should have a frequency range located, at least par-
tially, in the bandwidth of the filters. Detailed implementation of the algorithm are given
below.

Algorithm Outline: Robust SVD with Bank of Band-Pass Filters

1. Perform the robust orthogonalization transformation (X(k) = Qx(k)), for example,
by computing the SVD of a symmetric positive definite matrix

K
R.x(a) = Z a; Ryx(B;) = Us Bs V§, (4.121)
i=1

such that the global mixing matrix (A = QH € R"*") is orthogonal.

2. Generate the vector X(k) = [T1(k),...,Tn(k)]T, defined as X(k) = B(2)%(k) =
25:1 bpX(k — p), by passing the signals Z;(k) through the bandpass filter B(z). Es-
timate next the symmetric generalized covariance matrix defined as

1

R, - = 5 (B{x(k) 2(k)TY + B{X(k) XL (k)}). (4.122)

3. Perform the SVD (or equivalently the EVD) of the symmetric covariance matrix ﬁﬁi
R,z = UxS;UZ (4.123)

and check whether for a specific set of parameters of the filter (B(z) = 25:1 bpz~1)
all singular values of the diagonal matrix X are distinct. If not, repeat step 2 and
3 for the different set of parameters of filters. If the singular values are distinct and
sufficiently far away from each other then, we can estimate (unbiased by the noise)

the mixing matrix as
H= Q' Ug = Us (Zs)"/? Ug (4.124)
and/or the noisy source signals as

y(k) =3(k) = ULx(k) = UL (Zs) /2 ULx(k). (4.125)
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4.4 JOINT DIAGONALIZATION - ROBUST SOBI ALGORITHMS

In the previous section, we have implemented the average eigen-structure by taking linear
combination of several covariance matrices and applying the standard EVD or SVD. The
alternative approach to the EVD/SVD is to apply the approximate joint diagonalization
procedure [105] 158, 160, 57T, 44T [1389]. The objective of this procedure is to find the
orthogonal matrix U which diagonalizes a set of matrices [120, 870, [1389):

M; = UD,U” + ¢, (i=1,2,...,L) (4.126)

where M; € IR"*" are data matrices (for example, time-delayed covariance and /or cumulant
matrices), the D; are diagonal and real, and &; represent additive errors or noise matrix (as
small as possible). If L > 2 matrices M; are available, the problem becomes overdetermined
and in general case we can not find an exact diagonalizing matrix U with e; = 0, V.

A natural and common criterion for Joint Approximative Diagonalization (JAD) is the
least-squares (LS) approach which can be formulated as minimization of a general cost
function [1222] 1267]:

L
J(U,D;) = > ||M; - UD,U”|[3.. (4.127)

i=1

It should be noted that the minimization proceeds not only over the orthogonal matrix
U, but also over the set of diagonal matrices D;, since they are also unknown. Thus the
problem can be solved by, so called, Alternating Least Squares (ALS) technique. In the ALS
technique, we alternatively minimize over one component set, keeping the other component
set fixed. In particular, assume that at the k-th iteration, we have an estimate Uj. The
next step is to minimize J(Uy, D;) with respect to D; [1222].

It can be shown that the problem of estimating of the orthogonal matrix U can be
converted to the problem of minimization of the following cost function [1267]

L n
J(U) =) luf My, ?

i=1 j=1
L

= =) | diag{U"M,U}|%, (4.128)
i=1

where || diag(+)|| denotes here the norm of the vector built from the diagonal of the matrix.
The above criterion can be formulated in a slightly different form as

J(U) = XL: oftf{UTM, U}, (4.129)

i=1

where
of (M} =)~ |my;|*.

i#j
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In order to improve convergence of the optimization procedure, we can attempt to find
a good (close to optimum) initial estimate of U by applying the eigenvalue decomposition
for two selected data matrices as

M,M, ' = UgA, A, 'Ugt. (4.130)

It is known from our previous discussion that such initialization is possible if the inverse of
matrix M, exists and the eigenvalues Ay, = AI,A;1 are real and distinct. However, due
to noise and numerical errors the eigenvalues A,, may become complex-valued. We have
shown earlier that if either M,, or M, is positive definite, then eigenvalues of A, are real.
Thus, to avoid the problem, we can search among all the data matrices {M;} for a matrix
that is a symmetric positive definite one and then we use this matrix in our initialization
step [1222].

The above criteria assume that the matrix U is orthogonal and sensor data are pre-
processed using robust whitening or orthogonalization procedure.

Recently, Pham proposed a different criterion for a set of symmetric positive definite
matrices {M;}, which does not require any prewhitening and the diagonalizing matrix
W is simultaneously a separating matrix [966]. Using the Hadamard inequality det M <
det(diag M) for a symmetric positive definite matrix M, with equality if and only if M is
the diagonal, he proposed the cost function

L
J(W) =i [log det diag{WM;W"} — log det(WM;W")], (4.131)

=1

where ~; are positive weighting coefficients and diag{-} denotes the diagonal matrix with
the same diagonal as its argument. The one advantage of such cost function is that its mini-
mization leads to estimation of the separating matrix directly without the orthogonalization
or prewhitening. In practice, we usually want to avoid this prewhitening since it deteriorates
the performance of the whole process, since the bias or error in preprocessing stage cannot
be corrected in the following separation (rotation) stage. However, the drawback of this
approach is that it requires the set of data matrices to be symmetric and positive definite,
so we need to find linear combinations of the data matrices that are positive definite what
increases the computational complexity.

An important advantage of the Joint Approximate Diagonalization (JAD) is that several
numerically efficient algorithms exist for its computation, including Jacobi techniques (one
sided and two sided), Alternating Least Squares (ALS), PARAFAC (Parallel Factor Anal-
ysis) and subspace fitting techniques employing the efficient Gauss-Newton optimization
[158, 1222, [1267).

The matrices M; can take different forms. In one of the simplest cases, for colored sources
with distinct power spectra (or equivalently different autocorrelation functions), we can use
the time-delayed covariance matrices, i.e.,

M; = Rx(pi) = E{X(k)X" (k — p)}- (4.132)

In such a case, we obtain the second order blind identification (SOBI) algorithm developed
first by Belouchrani et al. [92, [88]. It should be noted, that for prewhitened sensor signals
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or orthogonalized mixing matrix A = Q H, we have
Rx(pi) = QRx(p;) Q1 = AR (p;) AT = UD, U7, (i=1,2,...L). (4.133)

Thus, the orthogonal mixing matrix can be estimated as A= Qﬁ = U up to irrelevant
scaling and permutation of columns on the condition that at least one diagonal matrix D;(p;)
has distinct diagonal entries. The source signals can be estimated as §(k) = UT Q x(k) and
the mixing matrix is estimated as H= Q1 U7T. It should be noted, that it is rather difficult
to determine a priori a single time lag p for which the diagonal matrix D(p) has distinct
diagonal elements. The JAD reduces the probability of un-identifiability of a mixing matrix
caused by an unfortunate choice of time lag p. The Robust Second Order Blind Identification
(RSOBI) algorithm can be summarized as follows [90].

Algorithm Outline: Robust SOBI Algorithm

1. Perform robust orthogonalization X(k) = Qx(k), according to the algorithm described
in section 4.3.1.

2. Estimate the set of covariance matrices:
N

Rx(pi) = (1/N) Y %(k) =" (k — pi) = QRx(pi) Q" (4.134)

k=1
for a preselected set of time lags (p1,pa,...,pr) or bandpass filters B

3. Perform the JAD: Rx(p;) = UD;U”, Vi, that is, estimate the orthogonal matrix U
using one of the available numerical algorithms [160}, 304}, 306}, 441}, [571), [1222] [1267].

4. Estimate the source signals as
s(k) = UT Qx(k) (4.135)

and the mixing matrix as R
H=Q'U. (4.136)

Remark 4.7 It should be noted that the sampled covariance matrices f%% = <i(k)§g (k)>,

~T
with X, (k) = Bi(2)[X(k)], employing the bandpass filters B;(z), can be very ill-conditioned,
especially, if the used filters have very narrow band-passes. Therefore, the joint diagonaliza-
tion may do not work properly for such covariance matrices or the separation performance
can be poor. To avoid this problem, we can jointly diagonalize the following composite data
sampled matrices
M | M N
Rz(0) = Y Rez(Bi) = 5 2 ((X0)%5, (1)) + (e, (X" (R))), (4137)

1= =1

—

where §Biq (k) = [Big(2)[x(k) = [¢71B;(2)x(k), (¢=1,2,...,L).
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4.4.1 Modified SOBI Algorithm for Nonstationary Sources: SONS Algorithm

In this section, we describe a very flexible and efficient algorithm developed by Choi and
Cichocki referred to as SONS (Second-Order Nonstationary Source separation) [223] [224]
235, 225]. The method jointly exploits the nonstationarity and the temporal structure of
the sources under assumption that additive noise is white or the undesirable interference
and noise are stationary signals.

The main idea of the SONS algorithm is to exploit the nonstationarity of signals by
partitioning the prewhitened sensor data into non-overlapping blocks (time windows T;),
for which we estimate time-delayed covariance matrices. We consider the case where source
signals have time varying variances, they have non-vanishing temporal correlations and
undesirable additive noise is white or stationary. It follows from the assumptions (AS1)-
(AS4) given in section [4.2 that we have

R (Ti,p1) = ARG (T, p) AT, Vil (4.138)
and
SR (T, Tj, ;1) = ASRs (T3, Ty, pi) AT, Vi, 1,7 > i, (4.139)

where A € R™*" is an orthogonal mixing matrix, p; are time lags, the index T} denotes the
i-th time window and the discrete-time differential correlation matrix is defined as [225]

5Rx(Tia/Tjapl) = 5RX(CT’L7pl) - 5Rx(z}vpl)v (7’ 7& .7) (4140)

Algorithm Outline: SONS Algorithm with Robust Orthogonalization [224]

1. The robust orthogonalization method (described in section 4.3.1) is applied to obtain
the whitened vector X(k) = Qx(k). In the robust orthogonalization step, we use the
all available data points.

2. Divide the spatial whitened sensor data {X(k)} into L non-overlapping blocks (time
windows T;) and estimate the set of covariance matrices f{;(Ti, p) fori =1,...,L
and [ = 1,..., M. In other words, at each time-windowed data frame, we compute
M different time-delayed covariance matrices of X(k) (typically, good performance
is obtained for M = 1, L = 20 and the number of samples in each block is within
10 — 200).

3. Find an orthogonal matrix U for all {R%(T;,p;)} using the joint approximate diago-
nalization method in [I60], which satisfies

U" Rx(T;,p1) U = Dy, (4.141)
where {D,,} is a set of diagonal matrices.

4 The mixing matrix is computed as H = Q*+ U.
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Remark 4.8 Instead of the sampled covariance matrices Rx(T;,pi), with ¢ = 1,2,... L
and p; = 1,2,..., M, we can attempt to jointly diagonalize the sampled differential correla-
tion matrices OR=(T;,T;,pr), with j > i and p;y =0,1,..., M — 1. However, such matrices
can be very ill-conditioned. To improve the conditioning, we can diagonalize the following
composite sampled matrices rather than the previous one:

L
Ef(pl) = Z ZéRf(TivTjapl)7 (pl = 07 ]-7 ceey M — 1) (4142)

i=1 j>i

4.4.2 Computer Simulation Experiments

Computer simulations show that the SONS algorithm is very robust with respect to the
temporally white noise, regardless of the probability distributions of noises. In fact the
SONS is a generalization of the SOBI [806} [90] to the case of nonstationary sources. The
SONS algorithm is applicable to the case of nonstationary sources including nonstationary
ii.d. and/or temporally correlated (colored) sources while the SOBI algorithm is able to
separate or extract only colored sources. In fact, through numerical experiments, we have
confirmed the robustness with respect to noise and useful behavior of the SONS algorithm, in
a variety of cases: (1) the case where several nonstationary Gaussian sources exist and each
Gaussian source has no temporal correlation; (2) the case where additive noises are spatially
correlated but temporally white Gaussian processes; (3) the case where measurement noises
have white uniform distribution.

In order to measure the performance of algorithms, we use the performance index (PI)
defined by

1
Pl=———
nin —1)

27@“ 1)+ Zilg’“" 1) Y, (a4
= |\ max; [gi] £ max; |g;il

where g;; is the (7, j)-element of the global system matrix G = W H and max; g;; repre-
sents the maximum value among the elements in the ith row vector of G, max; g;; does
the maximum value among the elements in the ith column vector of G. When the perfect
separation is achieved, the performance index is zero. In practice, the value of performance
index around 1072 gives quite a good performance. Figure [4.6 shows typical performance
of the several algorithms discussed in this chapter. At high SNR, all tested algorithms
worked very well. At low SNR, one can observe that the RSOBI with robust orthogonal-
ization outperforms the standard SOBI with standard whitening. The SONS gives better
performance than the RSOBI algorithm in most ranges of SNR. In the range between 0
and 6 dB, the SONS is worse than the RSOBI. The advantage of SONS over RSOBI with
robust orthogonalization lies in the fact that the first method works even for the case of
nonstationary sources with identical spectra shape, whereas the latter does not.
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Fig. 4.6 Comparison of performance of various algorithms as a function of the signal to noise ratio
(SNR) [223, [235].

4.4.3 Possible Extensions of Joint Approximate Diagonalization Technique

In order to improve performance and/or to extend the JAD approach to various kinds of
source signals several extensions and generalizations have been proposed [1222), 1334 [1330,
1337].

For example, instead of standard covariance matrices ﬁf(pi) = (1/N) Z,ivzl x(k)xT (k —
p;), we can use the generalized covariance matrices of the form

N
M; = Rgx(B;) = % Zi(/@)ﬁgi (k), (4.144)
k=1

where vector Xp, (k) = B;(2)[X(k)] = >, bipX(k — p) is a filtered version of the vector X(k)
and B;(z) denotes transfer function of a filter or generalized time-delay operator.

Choosing the entries of the covariance matrix Rgx(pi) = [ri;(p1)],, ., 88
1
rij(p) =+ D T(R) T (k — p), (4.145)

k=1
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leads to the extended SOBI algorithm for complex-valued signals.
Other choices for the entries r;; of Rg (p;, ) can be

N
1 .
rij(p @) = 5 D Ti(R) T (k — pr) exp(-2mjak), (4.146)
k=1

which leads to an algorithm in which sources with different cyclostationarity*? properties
can be separated [1336], [1337].
The choice

L
rij(k, )= > ¢(m, ) Ti(k+m+ 1T (k+m — 1) exp(—4m;j fk), (4.147)
m,l=—L

for various k- time and f- frequency indices and specific smoothing kernel ¢(m, 1), leads to
time-frequency JAD algorithm proposed by Belouchrani and Amin [87, 88].

Instead of covariance or generalized covariance matrices, we can employ higher order
statistics (HOS), i.e., cumulant matrices. For example, by performing the joint approximate

diagonalization for fourth-order n xn cumulant matrices M;; = Cx(4,7), Vi,j=1,2,...,n;
whose (m, [)-th element is given by [158, 160, 1267, 1389)
emi(iy ) = Cum{f!(k)vfj(k)a T (k), 77 (k) 1, (4.148)

we obtain the JADE (Joint Approximate Diagonalization of Eigen-matrices) algorithm for
ICA (see Appendix C and Chapter [§ for more detail).

4.4.4 Comparison of the Joint Approximate Diagonalization and Symmetric
Eigenvalue Decomposition Approaches

Although the JAD approach usually gives a better performance, especially for noisy data
with low SNR, the symmetric EVD approach has several important advantages that are
worth mentioning.

e Both approaches: The EVD and JAD are batch processing algorithms in the sense
that the entire data set or block of data are collected and processed at once. How-
ever, the EVD approach needs to perform only one average diagonalization, instead
of performing many joint diagonalizations of data matrices simultaneously, thus the
symmetric EVD has generally less numerical complexity than the JAD algorithms.

e The EVD controls explicitly whether a separation of the sources is performed success-
fully by monitoring eigenvalues, which must be distinct.

e Recently, several efficient algorithms have been developed for the EVD with high
convergence speed (even cubic convergence) like power method, PCA RLS algorithm
and conjugate gradient on Stiefel manifold [T017].

12A signal z(k) is said to be cyclostationary if its correlation function is cyclic, say with period g, i.e., the
following relation holds E{z(k)z*(k + p)} = E{x(k + q) z*(k + p + q)}, for all k,p.
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4.5 CANCELLATION OF CORRELATION

4.5.1 Standard Estimation of Mixing Matrix and Noise Covariance Matrix

The concept of spatial decorrelation called also correlation cancelling plays an important
role in signal processing [925]. Consider two zero-mean vector signals x(k) € R™ and
s(k) € R" related by a linear transformation

x(k) = Hs(k) + e(k), (4.149)

where H € R™*" is an unknown full column rank mixing matrix and e(k) € R"™ is a vector
of zero-mean error, interference or noise depending on application. Generally, vectors s(k),
x(k) are correlated, i.e., Rxs = F {X ST} # 0 but the error or noise e is uncorrelated with
s. Hence, our objective is to find the matrix H such that the new pair of vectors e = x—H's
and s are no longer correlated with each other, i.e..:

Res = E{es”"} =E{(x—Hs)s"} =0. (4.150)
The cross-correlation matrix can be written as
Res = E {xs” —Hss" } = Rys - HR.s. (4.151)
Hence the optimal mixing matrix for cancelling correlation can be expressed as
H,, = Ry Ry = E{xs7} (E{ss"}) . (4.152)

It should be noted that the same result is obtained by minimizing the mean square error
cost function:
1
Je) = 5E{eTe} = E{(x—Hs)" (x—Hs)}
1
= 5 (E{x"x} - B{s"H" x} - E{x"Hs} + E{s" H' Hs}). (4.153)

By computing the gradient of the cost function J(e) with respect to H, we obtain

a.J(e)
oH

= —E{xs"} + HE{ss"}. (4.154)
Hence, applying the standard gradient descent approach, we obtain an on-line adaptive

algorithm for the estimation of the mixing matrix

AH(k) = —1 3;? 17 (Rxs —H(k) Rss) . (4.155)

Assuming that the optimum matrix Hyp, is achieved when the gradient is zero, we have

Hopt - Rxs R;517 (4156)
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where the minimum value for the error (or noise) covariance matrix can be estimated as

Ree = F{ee’} = Ry — Rys R, Rox (4.157)

assuming that noise is spatially colored but independent of sources signals. In the simplest
case, when noise is spatially white the covariance matrix of the noise takes the form: Ree =
01, where the variance of noise can be estimated for relative high SNR as

2

67 = minimum eigenvalue of Ryxx

or alternatively

62 = mean of (m —n) minor eigenvalues of Ry, € R™*™  m > n.
In the case, when the noise covariance matrix is known or it can be estimated, we can
obtain by a simple manipulation of Egs. (4.156)-(4.157) an alternative formula (for m > n)

H = (Rux — Ree) R, (4.158)

where R, is the Moore-Penrose pseudo-inverse matrix of Rex. Hence, neglecting the noise
covariance matrix Ree, we obtain the Wiener filter equation:

§ = Ry RS, x, (4.159)

which minimize the mean square error E{||s — §||?}. The fundamental problem in this
method is to obtain an estimator for the cross-covariance matrix Rsx when the vector s is
not available.

4.5.2 Blind Identification of Mixing Matrix Using the Concept of Cancellation of
Correlation

In blind separation scenario, both the mixing matrix H and the source signals s are un-
known. In such case, we need to formulate a modified estimation function in the form (see
Chapter 10/ and [27] for more detail)

F(H,s) = Rgs = E{&s"}, (4.160)

where &(k) = X(k) — HS and X = [#1,72,...,%m|” and § = [51,52,...,5,]7 are filtered
versions of sensor signals x(k) and estimated sources s(k) respectively. More precisely, all
the sensor signals and also the estimated source signals are filtered by using filters with an
identical transfer function B(z) = 25:1 by 271, that is,

L
Zi(k) = byrj(k—p), (G=12...,m) (4.161)
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and
L
Sik)=> bpsi(k—p), (i=12...,n) (4.162)
p=1

The choice of the filter B(z) depends on the statistics of sources and additive noise (for more
detail see the next chapter). Generally, the approach presented in this section is useful when
source signals are colored, i.e., they have temporal structure.

It is straightforward to check that the above function satisfies the basic properties of
estimation function [27].

From (4.160) we can obtain the formula for estimation of the mixing matrix

H = Rzs R (4.163)

Let us consider first the case, when the number of sensors is larger than the number of
sources (m > n) and the sources are colored, that is, they have temporal structure and the
covariance matrix Ree 0of the additive zero-mean and uncorrelated noise is known or can be
estimated. In such a case, we can propose to use the following algorithm which is robust
with respect to the noise.

Algorithm Outline: BLUE Algorithm for Blind Identification and Source Sep-
aration

1. Make arbitrary non-zero initialization of the mixing matrix H and estimate the sources
using the BLUE formula (see in Chapter 2 Eq. (2.24))

§(k) = (HT R H) " HT R x(k), (4.164)
where ﬁee is the estimated covariance matrix of the noise uncorrelated with the
sources.

2. Compute the mixing matrix H on the basis of estimated sources in Step 1 as

H=Rz:sRJ, (4.165)

where Rxs = & S0, X(k)8T (k) and Rss = & Sop, 8(k)37 (k).

3. Repeat alternatively Step 1 and 2, until convergence is achieved.

Remark 4.9 The above two-phase procedure is similar to the expectation mazimization
(EM) scheme: (i) Freeze the entries of the mizing matriz H and learn new statistics (i.e., the
actual vector of the estimated source signal; (ii) freeze the covariance and cross-correlation
matrices and learn the entries of the mizing matriz, then go back to (i) and repeat. Hence, in
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phase (i) our algorithm estimates source signal, whereas in phase (ii) it learns the statistics
of the sources and estimate the mizing matriz.

Let us consider now a more challenging task when the number of sensors is less than the
number of sources (m < n). Assuming that all sources have sparse representation, we can
apply the robust Focuss algorithm discussed in Chapter 2. The idea is similar to the above
procedure: First, after initialization, we estimate a sparse representation of sources, then
an estimate of the mixing matrix, H = RzsRg gl, which consequently produces a new esti-
mate of the sparse source vector S(k) obtained, for example, by using the Focuss algorithm.
Iterations are conducted until the algorithm converges.

Alternatively, we can use the following adaptive algorithm.

Algorithm Outline: Focuss Adaptive Algorithm for Blind Identification and Es-
timation of Sparse Sources

1. After initialization, we estimate sparse source signals using the Focuss algorithm as
PN ~ -1
Si11(k) = D () B (HkD‘S|(l) Y + o 1) x(k), Yk 1=1,2,..., (4.166)

where Dig((1) = diag{|51, [321], .- -, |3}, ;1 denotes estimation of 5;(k) in j-th in-
ternal iteration, and «; is a suitably chosen regularization parameter [L001].

2. Estimate iteratively the mixing matrix H as
Hyy = Hy — [Hkﬁéé — Rygs — v Hy [ (4.167)

where v, = tr[ﬁf(ﬁkﬁgg ~Rs 5)] is a forgetting factor which ensures that the Frobe-
nius norm of the matrix H is kept approximately constant during the iteration process
(see Appendix B for proof). Such constraints on entries of the mixing matrix prevent
the trivial solution H = 0 and ensure the stability of the algorithm.

Repeat alternatively the Step 1 and 2, until convergence is achieved.

Example 4.1 Figurel4.7 illustrates the performance of the blind identification and estima-
tion of sparse images in the case when the number of observations is less than the number of
sources. Three sparse images shown in Fig. [4.7 (a) are mixed by full row rank ill-conditioned
mixing matrix H € IR**3. In this way, we obtained two superimposed images shown in Fig.
4.7 (b). Using the algorithm (4.166)-(4.167), we reconstructed approximately the original
images as shown in Fig. [4.7 (c) on the basis of only the superimposed (overlapped) images.
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(b)

(©)

Fig. 4.7 Blind identification and estimation of sparse images: (a) Original sources, (b) mixed available
images, (c) reconstructed images using the proposed algorithm (4.166))-(4.167).

Appendix A. Stability of the Amari’s Natural Gradient and the Atick-Redlich Formula

Theorem A.3 Consider a dynamical system, described by the following differential equa-
tion

AW 9J(W)_ s
= e WIW, (A.1)
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where J(W) is a lower bounded differentiable function and p € R™ ™ is a symmetric posi-
tive definite matriz of learning rates. Then J(W) is a Lyapunov function for the dynamical
system (A.1).

Proof. [460] Denote by w;j, p;; and b;j, (4,7 = 1,...,n) the elements of the matrices W, p
and B = %WT respectively. We calculate:

n

dt o —1 awij dt

2,9

n n n n

aJ aJ
= - Z 6wij ;/Lilz Wlkwrkwm’

i,j=1 r=1k=1

- - Z bir Z/Lilblr
=1

i,r=1

= *szﬂﬂbr <0, (A.2)

r=1

where b, denotes the r-th column vector of B. It is easy to see that zero is achieved if
and ounly if b, = 0 for every r = 1,...,n, i.e., when dW/dt = 0. This means, according
to the Lyapunov theorem, that the continuous trajectory of the natural gradient algorithm
converges to a stationary point. In the special case, we can use a scalar learning rate by
putting: p = pol, po > 0.

In contrast to the NG, for the gradient formula proposed by Atick and Redlich (see Eq.
4.37) [51], we can formulate more restrictive conditions for stability [460]:

Theorem A.4 Consider a dynamical system, described by the following differential equa-
tion

W _
dt

(A.3)

where J(W) is a lower bounded, differentiable cost function and p > 0 is a learning rate.
Suppose that the matrix B = aa—‘V{,WT is a symmetric matriz, then J(W) is a Lyapunov
function for the dynamical system (A.5).
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Proof. Denote by w;; and b;;, (i,7 = 1,...,n) the elements of the matrices W and B
respectively. We calculate:

n

dt o “— 18wij dt

)=

= —,LLZ 07 Zzwkv Wy

7.]1 ”rlkl

= —H Z bribir

7,r=1

= —H Z bzr ) (A4)

7,r=1

as zero is achieved if and only if dW /dt =
Using a nonholonomic basis dX = dWW !, (A.1) and (A.3) become respectively

ax 0J
— = =W A5
dt How (4.5)
and .
dX 0J
= W = A.
i~ o) (8
Putting B = 8‘] WT we have B = ax, we obtain
dJ(W (1)) T
" =-ntu(B'B) Zb (A7)
7,7=1
as equality is achieved if and only if 9J/OW = 0 (assuming that W is nonsingular).
Analogously, for (A.6), we obtain
dJ(W (t
% — 4 tr(BB) = —u Z bijbi. (A.8)

1,j=1

The equation (A.7) shows that J is a Lyapunov function. The trace in (A.8) is not always
positive. Let us decompose B as
B =Bgs + By,

where Bg is a symmetric matrix and B4 is an antisymmetric matrix, respectively. Then,
we have

tr(BB) = > bibji = [Bs|® — [Bal*. (A.9)
ij=1

This gives a sufficient condition for convergence of the Atick-Redlich algorithm, that is,
IBsllr > |Ballr for any W (the matrices B, Bg, B4 depend on W).
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Appendix B. Gradient Descent Learning Algorithms with Invariant Frobenius Norm of
the Separating Matrix

In order to ensure the convergence of some learning algorithms and to provide their practical
implementations it is necessary to restrict the values of synaptic weights to a bounded
subset. Such bound can be, for example, imposed by a gradient descent learning system by
keeping the norm of the matrix of the synaptic weights bounded or fixed (invariant) during
the learning process. In this appendix, we present two theorems which propose how to solve
this problem.

Theorem B.5 The modified natural gradient descent learning algorithm with a forgetting
factor described as

dW OJ(W) ___r

O = | WO W (0 W) (B.1)
where J(W) is the cost function, VwJ = % denotes its gradient with respect to the
nonsingular matriz W € R™*", p > 0 is the learning rate and

v(t) = tr (WT(t) 82(‘:;7) WT(t)W(t)> (B.2)

is a forgetting factor, ensures that the Frobenius norm of the matriz W (t) is
IW@lrp=1, ¥t
if [WQO)[=1.

Proof. Let us assume that |[W(0)[|% = tr{W7T(0)W(0)} = 1. Then, it is sufficient to show
that

dtr(WT;l(tt)W(t)) o (B.3)
Evaluating
dtr(WTd(z)W(t)) — tr <d‘;‘t’T W4 WT % >
= —tr (W WVRJW -7y W'W+ W'V W''W — 7y WT'W)
= —2n7(t) (1 - te(W () W(1))) . (B.4)

it is seen, that dtr(WT ()W (t))/dt = 0 only holds if ||[W(0)[|% = tr{WT(0)W(0)} =
1. O

Theorem B.6 The learning rule

O = 1) [P(y) (L] WD), (B5)
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where ~(t) = tr (F(y)W(t) W (t)) stabilizes the Frobenius norm of W (t) to be fized V.
Proof. 1t is straightforward to check that
dtr(WWT)
dt

Hence, if the initial matrix W (0) has the unit Frobenius norm, the norm of W (t) is preserved
to be one for any ¢ > 0. O
In a similar way, we can prove easily the following Theorems:

=2u(t) tr(F(y) WWT) [1 — tr(WTW)]. (B.6)

Theorem B.7 The stochastic gradient descent learning algorithm

AW [2J(W)
dt OW

- v(t)vv(t)} , (B.7)

where J(W) is the cost function, VwJ(W) = ng‘}]\/) denotes its gradient with respect to
the nonsingular matriz W € R™ ", > 0 is the learning rate and
dJ(W)
t) = tr( WH(t) ™ B.8
0 = (wr 2550 (B.)

is a forgetting factor, ensures that the Frobenius norm of the matriz W (t) is
IWH)llrp=1,  Vt

if W) = 1.

Theorem B.8 The modified Atick-Redlich descent learning algorithm with forgetting factor

dW
dt

w | 25| wo - v<t>w<t>] , (B.9)

where J(W) is the differentiable cost function, VwJ = 8‘2(\,?) denotes its gradient with

respect to the nonsingular matriz W € R™"™, u > 0 is the learning rate and

y(t) = tr (WT(t)W(t) [ag(‘zqu W(t)) (B.10)

is a forgetting factor, ensures that the Frobenius norm of the matriz W (t) is invariant and

equal to one
IW@)|lp=1, ¥t

if IWQO)[[r=1.

Theorem B.9 The natural gradient dynamic systems on the Stiefel manifolds:

T
aw [aJ(W) W {&](W)] W(t)] | (B11)

dt OW oW
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and
T
=200 2] 0| (B.12)

with p > 0 satisfy during the learning process the semi-orthogonality constraints:

WHOWTL(t) =1,, vt if WO)WT(0)=1,, WeRP*" p<n (B.13)
and

ATWA®) =1,, vt if AT(0)A(0)=1,, AcR™", n<m, (B.14)
respectively.

Appendix C. JADE Algorithm

The JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm can be consid-
ered as a natural extension or generalization of the SOBI and FOBI algorithms [158| (160,
1267, [1389).

In the JADE, in contrast to the FOBI algorithm, we jointly diagonalize the set of n? (or
less) of the contracted quadricovariance matrices defined as:

My, (By) = Cx {(%7 (k) By (k) X)) X7 ()} = E{(XT (k) By X(k)) %(k) X (k)}
~Ri(0) Epg R(0) — tr(Ey Rx(0)) R(0) — Re(0) EL, Re(0)

(C.1)

for all 1 < p, ¢ < n, where Rx(0) = E{x(k) X' (k)} and E,, € R"*" is the set of matrices
called eigen-matrices. It has been shown that the eigen-matrices E,, should satisfy the
following conditions:

Cx (qu) = Apg Epg, tr(qu Egl) =4(p,q,k,1), (1<p,g<n) (C.2)

where 0(p,q,k,1) =1 for p=¢q =k =1, and 0 otherwise. Each E,, is the eigen-matrix and
the real scalar A, is the corresponding eigenvalue. Only n non-zero eigenvalues A, exist
[158].

There are several techniques to select the eigen-matrices E,, that satisfy the above
relations. In the ideal case, we can choose E,q = e, eqT, where e, denotes the n-dimensional
vector with 1 at the pth position and 0 elsewhere. However, this method creates rather the
large number of n? matrices and the problem cannot be computationally feasible for more
than n > 40. We can reduce the number of matrices to n(n+1)/2 by selecting the following
matrices [889]:
for p=k,

T
€€,

E,, = (epeg + eqeg)/\/i, for p<q, (C.3)

0, for p>gq.
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If still the number of matrices is too large, we can reduce it by selecting only L matrices

Cx (Epq) with the largest squared sums of their diagonal elements. The number L is selected

by a user depending on required performance and computation speed (typically, L > n).
An alternative approach is to generate only the n (where n is the number of sources)

quadricovariance matrices Cx (E,), by estimating the eigen-matrices E, = uya; (for
p=1,2,...,n), where u, is the p-th column of the orthogonal matrix U which estimates

diagonalizing matrix. The exact diagonalizing matrix is of course not known in advance, but
we can roughly estimate it by the EVD of the special quadricovariance matrix for E = I,
as
Cx(I) = E{X'(k)x(k)x(k)X'(k)} — 2Rx(0) Rx — tr(Rx(0)) Rx(0)
_ ﬁ Ax [AJT7 (C.4)

where Ay = diag{x4(s1), k4(s2),...,K4(sn)}-
It is easy to check, that E, = upug satisfies the conditions (C.2). We have, in fact,

Cx(E,) = Cx (upug) =U diag{)\lulTupugul, ce )\nugupugun} u”
= Udiag{0,...,0,1,,0,...,0} U" = Mu,u] = A\, E,. (C.5)

It is also straightforward to verify, that tr(E, Eq) = 6,4 and Cx (uyu’) = 0 for p # ¢. This
means, that we can reduce considerably the number of a set of diagonalized quadricovariance
matrices to n, what makes the JADE algorithm computationally attractive [158, [889)].

Algorithm Outline: Robust and Efficient JADE Algorithm

1. Apply the robust prewhitening or orthogonalization method (described in section
4.3.1 and section [4.1.8)) to obtain the whitened (pre-processed) vector X(k) = Qx(k).
Preferably, for the data corrupted by Gaussian noise use the set of quadricovariance
matrices.

2. Perform the EVD of the sampled contracted quadricovariance matrix

N
Cx() = %Z[KT(k)i(k) (k) X" (k)]} — 2 Rx(0)Rx(0) — tr(Rx(0)) Rx(0)
k=1
= UAUT, (C.6)

where Rx(0) = & S0 [%(k) X7 (K)]} and U = [y, G, . . ., u,].

3. Estimate the n sampled contracted quadricovariance matrices:

~ ~

k
— tr(E, Rx(0)) R%(0) - RxE! Rx (C.7)
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for Ep:ﬁpAg;, p=12,...,n.

. Find an orthogonal joint diagonalizing orthogonal matrix U for all n matrices {Cx (E,)}
using one of the available joint approximate diagonalization numerical methods.

. Estimate the mixing matrix as H = QTA = Q*+ U.







Sequential Blind Signal
Extraction

A large brain, like large government, may not be able to do simple things in a simple way.
—(Donald O. Hebb)

The problem of blind signal extraction (BSE) has received wide attention in various
fields such as biomedical signal analysis and processing (EEG, MEG, fMRI), geophysical
data processing, data mining, wireless communications, speech and image recognition and
enhancement.

In this chapter, we will discuss a large family of unconstrained optimization criteria,
from which we derive learning algorithms that can extract a single source signal from a
linear mixture of source signals. One can repeat this process to extract the original source
signals one by one. To prevent the newly extracted source signal from being extracted
again in the next processing unit, we employ another unconstrained optimization criterion
that uses information about this signal. From this criterion, we then derive a learning rule
that deflates from the mixture of the newly extracted signal. By virtue of blind extraction
and deflation processing, the described cascade neural network can cope with a practical
case where the number of mixed signals is equal to or larger than the unknown number
of sources. We prove that the proposed criteria both for blind extraction and deflation
processing have no spurious equilibria. In addition, the proposed criteria, in most cases, do
not require whitening of mixed signals. Using computer simulation experiments, we also
demonstrate the validity and performance of the developed learning algorithms. In this
chapter, we adopt the neural network approach. There are three main objectives of this
chapter:

1. To present simple neural networks (processing units) and propose unconstrained ex-
traction and deflation criteria that do not require either a priori knowledge of source
signals or the whitening of mixed signals. These criteria lead to simple, efficient,

177
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purely local and biologically plausible learning rules (e.g., Hebbian/anti-Hebbian type
learning algorithms).

2. To prove that the proposed criteria have no spurious equilibria. In other words, the
most learning rules discussed in this chapter always reach desired solutions, regardless
of initial conditions (see appendixes for proof).

3. To demonstrate with computer simulations the validity and high performance for
practical use of the presented neural networks and associated learning algorithms.

We will use two different models and approaches. The first approach is based on higher
order statistics (HOS) which assume that sources are mutually statistically independent
and they are non-Gaussian (expect at most one) and as criteria of independence, we will
use some measures of non-Gaussianity. The second approach based on the second order
statistics (SOS) assumes that source signals have some temporal structure, i.e., the sources
are colored with different autocorrelation functions or equivalently different shape spectra.
Special emphasis will be given to blind source extraction (BSE) in the case when sensor
signals are corrupted by additive noise.

5.1 INTRODUCTION AND PROBLEM FORMULATION

The mixing and filtering processes of the unknown input sources s;(t) (j = 1,2,...,n) may
have different mathematical or physical models, depending on the specific applications. In
this chapter, we will focus mainly on the simplest cases when m mixed signals x;(t) are
linear combinations of n (typically m > n) unknown, zero mean source signals s;(t) that
either statistically independent and/or they have different temporal structures. They are
written as

zi(t) = hijsi(t)  (i=1,2,...,m) (5.1)
j=1

or in the matrix notation

x(t) = Hs(t), (5.2)

where x(t) = [21(t), x2(t), ..., zm(t)]T is a sensor vector, s(t) = [s1(t),s2(t),...,sn(t)]T
is a vector of source signals assumed to be zero mean and statistically independent, and
H is an unknown full column rank m X n mixing matrix. It is assumed that only the
sensor vector x(t) is available to use and it is desired to develop algorithms that enable
estimation of primary sources and/or identification of the mixing matrix H with some
intrinsic ambiguities such as arbitrary permutations and scaling factors (see Chapter [1] for
more detail).

There are two principal approaches to solve this problem. The first approach discussed
in the previous and next chapters is to separate all sources simultaneously. In the second
approach, we extract sources one by one sequentially rather than separating them all si-
multaneously. In many applications, a large number of sensors (electrodes, microphones
or transducers) are available but only a very few source signals are the subject of interest.
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For example, in EEG or MEG, we observe typically more than 64 sensor signals and only
a few source signals are considered interesting, the rest are considered to be interfering
noise. Another example is the cocktail party problem; it is usually applied to extract voices
of specific persons rather than separate all the available source signals from an array of
microphones. For such applications, it is essential to develop reliable, robust and effective
learning algorithms which enable us to extract only the small number of source signals that
are potentially interesting and contain useful information.

Before we begin to explain the derivation of learning algorithms for blind source ex-
traction (BSE), let us recall some of the advantages of this approach. The blind signal
extraction approach may have the following advantages over simultaneous blind separation
[254, 279):

1. Signals can be extracted in a specified order according to the stochastic features of
the source signals, (e.g., in the order determined by absolute values of generalized nor-
malized kurtosis, some measures of sparseness, non-Gaussianity, smoothness or linear
predictability.) The blind extraction can be considered as a generalization of PCA
(principal components analysis), where decorrelated output signals (principal compo-
nents) are extracted according to the decreasing order of their variances. Analogously,
independent components can be ordered according for example to the decreasing ab-
solute value of normalized kurtosis which is a measure of non-Gaussianity or according
to any higher order normalized moment or cumulant.

2. The approach is very flexible, because many different criteria based on HOS and SOS
can be applied for extraction wide spectrum of sources, like i.i.d. sources, colored
Gaussian, sparse sources, nonstationary sources, smooth sources with relative high
measure of predictability, etc. In fact in each stage of extraction, we can use various
criteria and corresponding algorithms depending on requirement to extract sources
with specific features.

3. Only “interesting” signals need to be extracted. For example, if the source signals
are mixed with a large number of noise sources or interferences, we may extract only
signals with some desired stochastic properties.

In EEG/MEG signal processing is often desired to extract so called evoked potentials
with non-symmetric distributions from symmetric distributed noises and interferences.

4. The learning algorithms developed for BSE are local and biologically plausible. In
fact, the learning algorithms derived in this chapter can be considered as extensions or
modifications of the Hebbian/anti-Hebbian learning rule. Typically, they are simpler
than algorithms for simultaneous blind source separation.

In summary, blind signal extraction is a useful approach when it is desired to extract
several source signals with specific stochastic properties from a large number of mixtures.
Extraction of a single source is closely related to the problem of blind deconvolution dis-
cussed in chapters [9] through [12] [552], 616, 612}, [TO80].

On the other hand, the sequential blind extraction approach may give poorer performance
in comparison to the simultaneous blind separation approach discussed in the following
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Optional

Prewhitening Extraction  Deflation

x,(k) x,(K)

Fig. 5.1 Block diagrams illustrating: (a) Sequential blind extraction of sources and independent
components, (b) implementation of extraction and deflation principles. LAE and LAD mean learning
algorithm for extraction and deflation, respectively.

chapters for some ill-conditioned problems due to accumulation of error during deflation
procedures. Furthermore, some of the blind extraction approaches need some preprocessing
of sensor data, such as prewhitening or matrix orthogonalization.

5.2 LEARNING ALGORITHMS BASED ON KURTOSIS AS COST FUNCTION

Sequential blind source extraction (BSE) can be performed by using a cascade neural net-
work similar to the one used for the extraction of principal components (see Fig. [5.1).
However, in contrast to PCA, the optimization criteria for BSE are different. For the prin-
cipal component extraction, we have applied the optimization criterion that ensures the
best possible reconstruction of vector x(k) after its compression using a single processing
unit.
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In order to extract independent source signals, we use different criteria, e.g., maximization
of the absolute value of normalized kurtosis which is a measure of the deviation of the
extracted source signal from Gaussianity.

5.2.1 A Cascade Neural Network for Blind Extraction of Non-Gaussian Sources with
Learning Rule Based on Normalized Kurtosis

A single processing unit (artificial neuron) is used in the first step to extract one independent
source signal with the specified stochastic properties. In the next step, a deflation technique
is used in order to eliminate the already extracted signals from the mixtures.

Let us assume that the sensor signals are prewhitened (sphered), for example, by using
the standard PCA technique. Then, the transformed sensor signals satisfy the condition

E{Xle} =1, (5.3)

where x; = X = Qx and a new global n X n mixing matrix A = QH is orthogonal, that
is, AAT = ATA =1,,. Hence the ideal n x n separating matrix is W, = A~! = AT for
m=n.

Let us consider a single processing unit, as shown in Fig. 5.1 described by

m
Y1 = W,{Xl = Zwlixli. (54)
i=1

The unit successfully extracts a zero-mean source signal, say the jth signal, if wq(c0) = wy,
satisfying the relation wi, A = ejT7 where e; denotes the jth column of an n X n nonsingular
diagonal matrix.

As a cost function for minimization, we may employ [279] [1144]

Fiwr) = =g Imalon)| = ~Tmalan) | 655

where k4(y1) is the normalized kurtosis defined for zero-mean signals by

Bl
W=y

and parameter § determines the sign of the kurtosis of the extracted signal, i.e.,

(5.6)

—1, for extraction of a source signal

with negative kurtosis,
5= (5.7)
+1, for extraction of a source signal
with positive kurtosis.

We do not employ any further constraints (like normalization of output signal to unit
variance), since we used the normalized kurtosis. We will show in Appendix A that such
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a cost function has no spurious equilibria if sources are mutually independent and they
do not have Gaussian distribution (see Appendix A). In other words, we will prove that
the cost function (5.5) does not have local minima corresponding to spurious (undesired)
equilibria of the dynamics. Each local minimum corresponds to one extracted source signal.
Therefore, successful extraction of a source signal from the mixture is always guaranteed,
regardless of initial conditions. In addition, use of the normalized criteria makes it possible
to eliminate any constraints that were required for the normalized criteria in [347, [595].

Remark 5.1 Intuitively the use of kurtosis as the cost function can be justified as follows:
According to Central Limit Theorem (a classical result in probability theory), the distribu-
tion of a sum of independent random variables tends towards a Gaussian distribution (under
certain mild conditions). This means that a sum of several variables typically has a dis-
tribution that is closer to Gaussian than any of the original random variables. Therefore,
roughly speaking, our objective is to find such vector wi that mazimizes the non-Gaussianity
of the output variable y; = wlx. On the other hand, it should be noted that the absolute
value of the normalized kurtosis may be considered as one of the simplest measures of non-
Gaussianity of the extracted signal y1. Furthermore, the kurtosis measures the flatness
or peakedness of a distribution of signals. A distribution with negative kurtosis is called
sub-Gaussian, platykurtic or short-tailed (e.g., uniform). A distribution with positive kur-
tosis is referred to as super-Gaussian, leptokurtic or long-tailed (e.g., Laplacian), and a
zero-kurtosis distribution is named mesokurtic (e.g., Gaussian).

Applying the standard gradient descent approach to minimize the cost function (5.5)), we
have
dwi 0T (w1) ma(y1) | me (yl)
=g = h g

dt X1} - 1Xig|, .
dt Bw, 3(y1) m4(y1)E{y1 t = E{yixi} (5.8)

where p; > 0. It should be noted that the term E{|y|*}/E3{|y|?} = ma(y1)/m3(y1) is
always positive, so it can be absorbed by the learning rate p; as i3 = ;négi;/“ > 0.

The moments mg,(y1) = E{y1(t)?}, for ¢ = 2 and 4, can be estimated on-line using the
following moving averaging (MA) formula

dring (y1 ()
dt

= Mo [yil(t) - mq (yl(t))]v (q = 2a 4) (59)

Now applying the stochastic approximation technique, we obtain an on-line learning formula
[251], 253]:

dWl

T pa(t) e(yi(t)) x1(t), (5.10)

where p1(t) > 0 is a learning rate and

ma(y1) {mz(yl) 3_y1]

P =55t | malun)

(5.11)
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is a nonlinear adaptive activation function. Since the positive term m4(y1)/m2(y1) can be
absorbed by the learning rate, we can also use the following approximation of nonlinear
activation function:

p1(y1) = B mi&;y? - Z/l] (5.12)
— 1 3 1
#alun) =5 [m4(y1)y1 mz(y1)y1] ' (5.13)

In general, the nonlinear activation function is not fixed but changes its shape during the
learning process according to the statistics of the extracted signals [251) 279].

Remark 5.2 [t should be noted that in our approach, we use the normalized kurtosis. More-
over, for spiky signals with positive kurtosis (super-Gaussian signals), the nonlinear activa-
tion function closely approximates a sigmoidal function, which is not only robust, but also
biologically plausible.

In the special case, applying a simple approximation for the derivative using the Euler
approximation, we obtain the discrete-time learning rule [254] 279]:

’ wi(k+1) = wi(k) +ni(k) p1(y1(k))x1(k),

where x; is the vector of sensor signals and the nonlinear activation function ¢; is evaluated
by (5.12]).

The higher-order moments mo and my and the sign of the kurtosis k4(y1) can be esti-
mated on-line by using the following averaging formula

g (k) = (1 —=10) 1i2g (k = 1) + 10 [y2 (R)[*, (5.15)

with 19 € (0,1] and 7q(k) = E{|y1(k)|?}, ¢ = 2,4. The above cost function is similar to
that already proposed by Shalvi and Weinstein [1067, 1069, [1204] and in an extended form
by Inouye [612] [613] and Comon [307] for blind deconvolution problems [552]. However,
instead of the standard kurtosis (E{y;} — 3E?{y?}), we employ a normalized one which
eliminates any constraint on the variance of the output signals and therefore considerably
simplifies the optimization procedure. Furthermore, the normalized kurtosis is more robust
in respect to outliers and spiky noise.

In some applications like communications, source signals are typically sub-Gaussian, so
they have negative kurtosis. In such cases, the nonlinear function can be simplified as

e1lyn] = (y1 — ayi) = (1 — f(n)), (5.16)

where a = B{[y|*}/E{ly|*}, f(y) =y and = sign(ra{y}) = 1.

The presented algorithms can be considered as the Blind Least Mean Square (BLMS)
algorithm with a “blind” error signal equal to e; (k) = y1(k) — f[y1(k)]. It should be noted
that the BLMS learning algorithm resembles a standard LMS algorithm where the error is
represented by e (k) (see Fig. [5.2). In fact, many techniques and approaches known from
the standard adaptive signal processing can be adopted to improve the performance of the
BLMS algorithm.

(5.14)
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xn(k)c nwi
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xlz(k)c l\twlz

xlm(kl.

Fig. 5.2 Block diagram illustrating blind LMS algorithm.

5.2.2 Algorithms Based on Optimization of Generalized Kurtosis

The above adaptive learning algorithm can easily be generalized by minimizing the following
cost function

1
Tonlwr) = = Il } = —gnp,q{yl}, (5.17)

where £, ¢{y1} is the generalized normalized kurtosis (or Gray’s variable norm) [516}, [721],
defined as

E{lya["}
kpa{y1} = B{lypla} P (5.18)

where ¢4 is a positive constant, such that, for the Gaussian distribution x, 4 = 0 and p, ¢
are chosen suitably positive (typically, ¢ = 2 and p = 1, 3,4, 6). In the special case for p = 4,
g =2 and cpq = 3, the generalized kurtosis reduces to the standard normalized kurtosis.

Applying the standard gradient descent approach to minimize the cost function (5.17),
we have

dwy _ 0T pq(W1)
dt Hpa 8W1
. E{|y: [P/ . _ . _
— i | S B i) — Bl P} 6.19)
E{ly: [P}

where i, > 0 and fipg = Fari{ |y p7ay Hpa > 0 are the learning rate.
Applying the stochastic approximation technique, we obtain an on-line learning formula

[Awi(F) = w1k + 1) = wa(k) = g (k) 91 (1 (k) 1 (). (5.20)




LEARNING ALGORITHMS BASED ON KURTOSIS AS COST FUNCTION 185

where ¢1[y1(k)] has the general form

p/q
rbn] = sign(n) I/ = SR ) (521

assuming for simplicity that all the source signals are sub-Gaussian with negative kurtosis.
In the special case, for sub-Gaussian signals, where p = 1 and ¢ = 1/2, we obtain the
modified Sato algorithm with nonlinearity [1040), 1041}, T173] [944]

e1lp] = yl—msign(yl)- (5.22)

More generally, for the sub-Gaussian signals, the choice of ¢ = 1/2 produces the class of Go-
dard or constant modulus algorithms (CMA) (5.14) with the adaptive nonlinear activation
function [045, [721], 276, 275, BS, 05|

e1ln] = (ul” =) ylp P2, (5.23)
where

L EsmPr)
P EJRMP)

assuming that the statistics of the estimated source signal §; are known. However, in
general, when the statistics of the source signals are not known (or cannot be estimated) the
parameter R, (81(k)) is not fixed but can be adapted during the learning process depending
on the higher-order moments of the absolute values of the estimated output signal y(k).
In this case, the higher-order moments of the form m, (k) = E{|y(k)|"} appearing in the
nonlinearities, can be estimated on-line by using the moving average (MA) procedure.

It is interesting that the above algorithms easily can be extended to complex-valued
signals by noting that in such a case, y;(k) = x(k)w;(k) (where superscript H means
the complex conjugate transpose or Hermitian operation) and is replaced sign[y; (k)] b,
y1(k)/|y1(k)|. For example, the constant modulus algorithm (CMA) for p = 4, ¢ = 2, for
complex-valued coefficients and signals, takes the form:

= const (5.24)

E{ln|?}

By iy (B i k), (5.25)

wi(k+1) =wi(k) £n(k) |yi(k) —

where x7 is the vector of the complex conjugate sensor signals, where the plus sign is for
sub-Gaussian while the minus sign for super-Gaussian signals. The above algorithms can be
considered as the BLMS (Blind Least Mean Square) algorithm with the “blind” error signal
equal to y1 (k) — %yl( Yy1(k)|2. Many powerful and efficient techniques developed
for standard LMS can be also applied to the above algorithms (see Fig. [5.2)).

It should be noted that, in general, the activation function can be not a fixed one but
is instead adaptive during the learning process. This observation was first made by several
researchers [34, 227, 229]. Adapting the nonlinearities are important in the multichannel
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case, since the signals may consist of the mixture of several sources with different distribu-
tions. The optimal choice for the values of p and ¢ depends on the statistics of the input
signals, implying a trade-off between the tracking ability and the estimation accuracy of
the algorithm [721]. Such methods also have a natural extension to multichannel blind
deconvolution problems [231), 226, [944].

Remark 5.3 [t should be noted that the above method does not need prewhitening. How-
ever, for ill-conditioned problems (when a mizing matriz is ill-conditioned and/or source
signals have different amplitude or variance), we can apply preprocessing (prewhitening) in
the form of x; = Qx, where the decorrelation matriz Q € IR™™ "™ ensures that the auto-
correlation matriz Ry,x, = E{x1x?} = I,. Prewhitening can simultaneously reduce the
dimensional redundancy of the signals from m to n, if we select Q € R™*™. It should
be noted that after the decorrelation process, the mew unknown mizing matriz defined as
A = QH, is an orthogonal matriz satisfying the relation ATA = 1,, i.e., ala; = d;j,
where a; is the i-th vector of the global mizing matriz A (see Fig. [5.1 (b)).

5.2.3 KuicNet Learning Algorithm

The KuicNet learning algorithm developed by Kung and Douglas has been derived from
the same cost function (normalized kurtosis) but under the constraint that vector wi has
unit length, i.e., ||[w1||> = 1 [415]. Taking into account that

E{y%} = E{W?Xlx,{wl} = W{Rxlxlwl = W?wl = 17 (526)

the cost function can be reformulated as

8 E{yt}

A

Ji(wy) =

(5.27)

Applying the standard stochastic gradient approach, we obtain a simple learning rule
wi(k+1) = wi(k) + 08 (4 (k) x1(k) — yi (k) wa (k) , (5.28)

where 1 > 0 is the learning rate and 5 = sign(r4(y1)).

It should be noted that the above KuicNet learning rule has a self-normalizing property,
such that the unit length of the weight vector wq (||w1(k)|| &~ 1) is approximately main-
tained. However, when the extracted source signal y;(k) has a negative value of kurtosis
the above algorithm is unstable (due to accumulation of error in iterative process) and the
vector w1 must periodically be renormalized to the unit length as follows

wi (k+1) =wi(k)+n8 [yix1 — yiwi], (5.29)

where wy(k + 1) = wi (k+1)/||w] (k + 1)]|.
Alternatively, we can use the ordered rotation KuicNet learning rule proposed recently
by S. Douglas and S. Y. Kung [415]

wi(k+1) = wi(k) + 197 (k) [xi (k) — y2 (k) wi(k)] for 5> 0, (5.30)
wilk+1) = wi(k) — 93 [[[w1l|*%1 (k) — ga (k) wr (k)] for 6 <0. (5.31)

Implementations of BLMS and KuicNet algorithms are shown in Fig. 5.3/ (a) and (b).
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Fig. 5.3 Implementation of BLMS and KuicNet algorithms.

5.2.4 Fixed-point Algorithms

Hyvéarinen and Oja proposed a family of batch learning rules, called fixed-point or fast

ICA algorithms for a hierarchical neural network that extracts the source signals from their

mixtures in a sequential fashion. In the hierarchical neural network, the output of the jth

extraction processing unit is described as y; = w] x1, where w; = [wj1,wjo, ..., Wjn]" .

Contrary to the cascade neural network, the input vector for each processing unit of the

hierarchical neural network is the same x; = Q x vector from the prewhitened sensor signals.
Let us consider as the cost function the standard kurtosis for a zero mean signal i

T(wrn) = maly(w)) = § [Blol} —382(3Y] (532)

where y; = w1 x; is the output of a single processing unit.
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In order to find the optimal value of vector wy, we apply the following iteration rule
[595), 461]:

T Vara(m()
Wil = 1, i ) (5.33)

where V., k4(W1) = Ok4(w1)/0w;. Equivalently, we can apply the following formula:

W1+(l + 1) = lem(wl(l)),
wi(l+1)

N ]

: (5.34)

which enforces that the vector wy has unit length in each iteration step. The gradient of
the cost function can be evaluated as

Oka(W1)

ow, E{yixi} — 3E{yi} E{y1x1}. (5.35)

le /434(W1) =

Assuming that the sensor signals are prewhitened and the covariance matrix Rx = E{x1x} } =
I and the vector wy is normalized to unit length, (i.e., E{y?} = 1), we obtain

Vuka(wi) = EBlyixi} = 3E{y{} E{x1x{ w}
= E{yix;} - 3w,. (5.36)

Thus the fixed point algorithm in its standard form can be written as

wil+1) = (yix1) =3wi(l), y1 =w] (Dxi,
wi(l+1)

In a similar way, we can derive the modified fixed point algorithm for generalized normalized

kurtosis
L E{mly
Kpglyr} = o (Eq{|y1(/€)lp/q} pq) ) (5.38)

where ¢, is a positive constant, such that for the Gaussian distribution &, 4, = 0.
It is straightforward to check that the gradient of the generalized normalized kurtosis
with respect to vector wi, can be expressed by

Orp.g _ E{sign(y)lyi|" x1 }E|ya["/ 7} — B{|y1 [PYEC {]y1 [P/} E{sign(y1) lya /7 "1 }
ow, B24{Jyi[/e) |

Thus the new algorithm can take the form

wi(l+1) = Vo kip.g(W1 (1) (5.39)

IV fp g (W (D)1
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o

X, (k) yl(k)=X1(f)W1

A4
=

0| [0

<X1g(y1)> W,
w,
o ©®
il W

W1+ = <X1 g(y1)> - <g'(y1)>w1

Fig. 5.4 Block diagram illustrating the implementation of the generalized fixed-point learning al-
gorithm developed by Hyvérinen-Oja [595]. () means averaging operator. In the special case of
optimization of standard kurtosis, where g(y1) = v$ and ¢'(y1) = 3v3.

where

E{ly. [}

— : p—1 _ i p/q—1
- Eq+1{|y1‘p/q}E{Slgn(ylﬂyl‘ Xl} E{Slgn(y1)|y1| Xl}? (540)

Vs, ipq(W1(1))
with 41 = w7 (1)x;. In the special case, for p = 4, ¢ = 2, cpq = 3, and prewhitened sensor
data the above algorithm can be simplified to a form similar to the learning rule given by
Eq. (5.37) as

3X
wi(l+1) = <y<;411>1>_wl(l)7 y1 = wi (I)x1, (5.41)
_ w4
Wil +1) = (5.42)

The above algorithm is more robust to outliers and spiky noise than algorithm (5.37).
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Let us consider an alternative derivation of the fixed point algorithm (5.37) in a slightly
more general form. For this purpose, we formulate the following constrained optimization
problem:

maximize J(w1) = E{G(y1)},
subject to the constraint E{y?} = ||w1||> = 1,

where G(y) is a suitably chosen convex function (typically G(y) = log cosh(ay)/a).
For signals with spiky noise, we can use more robust functions (see Chapter 2/ and Table
2.1).

Assume now that the sensor data are prewhitened (i.e., E{x;x{} = I). According to
the Kuhn-Tucker conditions, the maxima of J(wi) = E{G(y1)} (under the constraint
E{|w¥x1]?} = |[w1||?> = 1) are obtained at points w; satisfying

VE{G(y1)} = A\VE{|w{ x1|*} = 0, (5.43)
where A is Lagrange multiplier. After a simple mathematical manipulation, we obtain
F(wy) = E{x19(y1)} — Aw; = 0, (5.44)

where ¢g(y) = dG(y)/dy. The Newton method can be used to efficiently solve Eq. (5.44).
For this purpose the Jacobian matrix of VE{G(y1)} = E{x19(y1)} is evaluated as follows:

VE{G(y1)} = E{xix] ¢'(y1)} ~ E{x1x{ } E{¢'(y1)}- (5.45)
Taking into account that the approximate Jacobian matrix
J=(E{d(y)} - NI (5.46)

is a diagonal matrix (and thus is easy to invert), we obtain the following approximate
Newton iteration:

wi = w; —J 'F(wy)
E{xig9(y1)} — Awy
= Wi — , 5.47
N PO S (540
+
Wy
W1 =
Izl

Finally, by multiplying of both sides of the above equation by the factor (—E{¢'(y1)} + \),
the algorithm is simplified to the so called fast-ICA algorithm as

wi = E{xig(y)} - E{g'(y:1)}wr, (5.48)
+
w; = Wi
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where ¢'(y1) = dg(y1)/dy1. Fig. 5.4 illustrates the implementation of the fast ICA batch
learning algorithm for the extraction of the first source. In order to extract the subsequent
source signals, we can apply deflation technique as described in the next section.

In theory, the Hyvérinen-Oja neural network (as shown in [595]) provides a typically
successful extraction of non-Gaussian source signals. However, in practice, due to the use
of fixed nonlinearities and high sensitivity to accumulated errors of Gram-Schmidt-like or-
thogonalization (or decorrelation) used in the deflation procedure, the quality of extracted
signals from the Hyvérinen-Oja neural network may increasingly degrade at subsequent
extraction units. In the next section, we present a simple and robust cascade (sequen-
tial) extraction deflation procedure which avoids accumulation of error during the deflation
procedure.

5.2.5 Sequential Extraction and Deflation Procedure

We now describe the simple and efficient deflation procedure. Figures 5.1 (a) and (b) il-
lustrate the extraction and deflation process. The cascade neural network employs two
different types of processing units, alternately connected with each other in a cascade fash-
ion, one type for blind extraction and the other for deflation. The j-th extraction processing
unit extracts a source signal from inputs that are linear mixture of the remaining source
signals yet to be extracted. The jth deflation processing unit then deflates (removes) the
newly extracted source signal from the mixtures and feeds the resulting outputs to the next
(j + 1)-th extraction processing unit.

After the successful extraction of the first source signal y1(k) ~ s;(k) (i € I,n), we
can apply the deflation procedure which removes the previously extracted signals from the
mixtures. This procedure may be recursively applied to extract sequentially the all source
signals. This means, that we require an on-line linear transformation given by (see Figl5.1)
[279]

Xj+1(k) =Xj (k) - v’(’jyj(k)a (.7 =12,... ?) (549)

where w; can be optimally estimated by the minimization of the cost (energy) function
. 1
Ji(wj) = E{p(xj11)} = §E{Z$?+1,p}, (5.50)
p=1

where E{p(x;41)} is the objective function and y;(k) = w]x;(k). Intuitively speaking,
such cost (objective) function can be considered as an energy function whose minimum is
achieved when the extracted source signal y; is eliminated from the mixture of sources.
Note that Ww; is different from w;. Minimization of the cost function (5.50)) leads to the
simple local type LMS learning rule [279, 278 [1144]

%50+ 1) = %5 (k) + () gy (R) xga (k) (G =1,2,...,m)] (5.51)

where (as we will show later) w; is an estimation of j-th column ﬁj of the identified mixing

matrix ﬁ, Y = W? x; is the j-th extracted signal, by using the following learning rule,
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similar to (5.21))

w5 1) = w0, (8) 1y 8) s )], ), (5:52)
) — Yi \p/a _ E{|yj‘p/q} P
i) = T (e - P ) (5.53)

The procedure can be continued until all the estimated source signals are recovered, that
is, until the amplitude of each signal x;1 reaches a preassigned threshold. This procedure
means that there is no requirement to know the number of source signals in advance, but
it is assumed that the number is constant and the mixing system is stationary (e.g., the
sources do not “change” during the convergence of the algorithm). It can easily be proved
that this deflation optimization procedure has no spurious (undesired) minima and, after
the convergence, the algorithm (5.51) estimates one column of the mixing matrix H with
scaling and permutation indeterminacy.

Alternatively, instead of an adaptive on-line algorithm, we can use a very simple and
efficient batch one-step formula. Minimization of the mean squares cost function

jj(‘x’j) = E{XjTHXjH} =

Bixjx;} — 2w} B{x;y;} + w; w;E{y;}, (5.54)

with respect to w; leads to an alternative batch simple updating equation,

Bi{xjy;}  B{x;x]}w;

W, =h; = = ,
T By} E{y3}

(5.55)

where ﬂj is, in fact, an estimated column of the mixing matrix H neglecting arbitrary
scaling and permutation of columns ambiguities.

It is important to note that by performing for each processing unit prewhitening or PCA,
the covariance matrices are identity matrices, i.e.,

Ryx, = E{x;x] } =1 Vj (5.56)

and keeping ||w;|| = 1 which implies E{y?} = 1, we do not need to estimate any of vectors
w; in the deflation procedure since

\A?\'fj = ﬁj = Wj7 (557)

where @; is the j-th vector of the estimated orthogonal mixing matrix A= Qﬁ with Q
prewhitening matrix.

In Appendixes A and B, we proved that such algorithms converge to a desired solution,
i.e., they can successfully extract the sources that have nonzero kurtosis. More precisely,
we can prove now that the family of extraction criteria discussed in previous sections have
no spurious equilibria and hence successful extraction of a source signal from the mixture
of original source signals can always be achieved, regardless of initial conditions. We then
extend the theoretical results and perform a more general analysis for the jth extraction
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and deflation processing units. In this general analysis, it will be shown that the jth extrac-
tion processing unit can always successfully extract a source signal from a mixture of the
remaining source signals and that the outputs of the jth deflation processing unit produce
a new mixture which does not contain this newly extracted signal. Finally, based on these
analytical results, in Appendix B, we describe implementation techniques for determining
a proper value of 3, and we formulate criteria for terminating the extraction and deflation
procedures.

5.3 ADAPTIVE ON LINE ALGORITHMS FOR BLIND SIGNAL EXTRACTION OF
TEMPORALLY CORRELATED SOURCES

In previous sections, we discussed algorithms based on the assumptions that “interesting”
sources are independent and non-Gaussian. In this and next sections, we relax these condi-
tions and assume that sources are colored, i.e., they have different temporal structures but
they can have arbitrary distributions including Gaussian. In this section, we will derive a
family of on-line adaptive learning algorithms for sequential blind extraction of arbitrarily
distributed but generally not i.i.d. (independent and identically distributed) sources from
their linear mixture. The algorithms discussed in this section are computationally simple
and efficient, and they exploit only the second order statistics. Thus, in contrast to the
algorithms described in previous sections of this chapter for blind extraction, they do not
assume non-zero kurtosis for the sources, thus signals with low or even zero kurtosis (colored
Gaussian) can be successfully extracted. Specifically, some biomedical source signals are
characterized by extremely low values of normalized kurtosis and due to nonstationarities,
their distribution may change in time. In fact, the algorithms discussed in previous sections
use some nonlinear activation functions whose optimal forms depend on statistics of source
signals. However, such statistics are usually unknown. Moreover, such algorithms may
have poor performance and relatively slow convergence speeds for small absolute values of
normalized kurtosis.

Our main objective in this section is to derive an alternative class of algorithms which
would be able to estimate colored source signals sequentially, one-by-one, assuming that they
are arbitrarily distributed but generally but they have different auto-correlation functions,
ie, E{s;(k—p)si(k)} # E{sj (k—p)s; (k)} for some time delays.

Let us assume that temporally correlated source signals are modelled by autoregressive
processes (AR) as

L
si(k) = 5(k)+ > ajps;(k—p)
p=1

= 5j(k) + A;(2)s; (k) (5.58)

where A4;(z) = Ziﬂ ajp 2 P, 27Ps(k) = s(k —p) and 5;(k) are i.i.d. unknown innovative
processes. In practice, the AR model can be extended to more general models like the
Auto Regressive Moving Average (ARMA) model or the Hidden Markov Model (HMM)
27, 52, [595).
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Fig. 5.5 Block diagram illustrating implementation of learning algorithm for temporally correlated
sources.

For ill-conditioned problems (when a mixing matrix is ill-conditioned and/or source sig-
nals have different amplitude), we can apply optional preprocessing (prewhitening) to the
sensor signals x in the form of

X1 = va
where Q € R™*™ is the decorrelation matrix ensuring that the correlation matrix Ry, x,
= E{x;x}} =1, is the identity matrix (see Chapters 4/ and [§ for more detail and robust
algorithms with respect to noise).

To model the temporal structures of source signals, we consider a linear neural network
cascaded with an adaptive filter with transfer function B;(z) (which estimates one of A4;(z))
as illustrated on Fig. (5.5, where the input-output relations of the network and the filter are
described, respectively, as follows:

y; (k) = Wj(k?)Txl(k) = ijixli(k) (5.59)
and
gj(k) =[1—-B;(2)]y;(k), (=12,....n) (5.60)

where B;(z) is the transfer function of a suitably chosen filter.
Depending on specific applications and requirements, the filters B;(z) can take different
forms to extract the source signals with specific stochastic properties, for example:

e The filter Bj(z) can be a simple Finite Impulse Response (FIR) filter which performs
a linear prediction of the output signal y;(k). (See more details in the next sections).
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e As a special case, we can use the simplest first order FIR filter (with single unit
delay) with one step prediction, i.e., only the first order predictor can be applied in
the simplest case.

e We can also employ Infinite Impulse Response (IIR) or FIR band pass filters or banks
of band pass filters in order to extract source signals with specific properties, i.e., with
specific frequency bandwidth.

e Furthermore, the concept can be generalized by employing a nonlinear predictor in-
stead of a simple linear predictor. For example, a multilayer perceptron (MLP) or
radial basis function (RBF) network can be used as a nonlinear predictor. In the
simplest case, a nonlinear predictor can be described as

L
gj(k) = [yj(k) - (Z by (k — p))] : (5.61)
p=0

where ¢(y) is a suitably chosen adaptive or fixed nonlinear function [27, 282]. By
employing a suitable design nonlinear predictor, we can extend the class of extracted
signals, e.g., it may be possible to extract close to white independent and/or colored
signals with similar spectra shapes.

5.3.1 On Line Algorithms for Blind Extraction Using Linear Predictor

Let us assume for simplicity, that we want to extract only one source signal, say s;(k), from
the available sensor vector x(k). For this purpose, we employ the single processing unit
described above as (see Fig. [5.0):

yi (k) = wix(k)=> wym(k), (5.62)
i=1

L
er(k) = w1 (k)= by (k—p)

= wix(k) —biyi(k), (5.63)
where  wi = [wi1, Wiz, ..., Wim] yi(k) =l (k= 1), 3k —=2),....3n (k- L)]",
L
by = [b11,b12,- .-, blL]T and By (2) = ) bipz~? is a transfer function of the corresponding
p=1

FIR filter. It should be noted that the FIR filter can have a sparse representation, in
particular, only one single processing unit, say with delay p and b1, # 0 can be used instead
of L parameters. The processing unit has two outputs: y; (k) which estimates the extracted
source signals, and &7 (k), which represents a prediction error or innovation, after passing
the output signal y; (k) through FIR filter.

Our objective is to estimate the optimal values of vectors w; and by, in such a way that
the processing unit successfully extracts one of the sources. This is achieved if the global

T . .
vector defined as g; = ATw, = (wa) = c;e; contains only one nonzero element, say in
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Fig. 5.6 The neural network structure for one-unit extraction using a linear predictor.

the j-th row, such that y; (k) = ¢;s,, where ¢; is an arbitrary nonzero scaling factor. For
this purpose, we reformulate the problem as a minimization of the cost function

The main motivation of applying such a cost function is the assumption that primary
sources signals (signals of interest) have temporal structures and can be modelled, e.g., by
the autoregressive model [34] 67, 68, 274, [954].

According to the AR model of the source signals, the filter output can be represented as
e1(k) = y1(k) — 91(k), where g1 (k) = Eﬁ:l b1py1(k — p) is defined as an error or estimator
of the innovation source 5;(k). The mean square error E{e?(k)} achieves a minimum
G E{33(k)}, where ¢; is a positive scaling constant, if and only if y; = +c;s; for any
j € {L,2,...,m} or y1 = 0 holds (see Appendix C). To prevent the latter trivial case,
we need a constraint to bound E{y}(k)} to, say, 1. We can formulate this constrained
optimization criterion as

1
minimize J;(w1,by) = §E{5f} + %(1 — E{y?})?, (5.65)
where (51 > 0 is the constant penalty factor. The standard stochastic gradient descent

method leads to an on-line learning algorithm for vector w; and coefficients of the FIR
adaptive filter by, respectively,

Awi(k) = wi(k+1)—wi(k) = —m Wl(a":vllvbl)
= —m(k) [(e1 (k)X (k) — v(k)w(k)], (5.66)
where (k) = —fi[1 — 63, (k)] is a forgetting factor and
Abip(k) = bip(k+1) = bip(k) = —h W

= m(k) (e1(k)yi(k —p)), (5.67)
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where X; (k) = x1(k) — 25:1 bipx1(k — p) and 71 as well as 77 are learning rates.

The variance of output signal o7 = E{y1(k)’} can be estimated on-line by using the
standard moving averaging formula
Gy, (k) = (1 —mo) &y, (k — 1) +no i (k). (5.68)

In this model, we are exploiting the temporal structure of signals rather than the statisti-
cal independence [278, 1104]. Intuitively speaking, the source signals s; have less complexity
than mixed sensor signals x;. In other words, the degree of temporal predictability of any
source signal is higher than (or equal to) that of any of the mixture. For example, the
waveforms of mixture of two sine waves with different frequencies are more complex or
less predictable than either of the original sine waves. This means that applying the stan-
dard linear predictor and by minimizing the least mean error E{e?}, which is measure of
predictability, we can separate or extract signals with different temporal structures. More
precisely, by minimizing the error, we maximize a measure of temporal predictability for
each recovered signal [278, [274] [68].

It is interesting to note that there is some analogy between the measure of temporal
predictability and the measure of non-Gaussianity. The central limit theorem ensures that
the probability density function (pdf) of any mixture is closer to the Gaussian distribution
than (or equal to) any of its component source signals. As some measure of non Gaussianity
or statistical independence, we have used in the previous section the absolute value of the
kurtosis and the generalized kurtosis. However, it should be noted, that these two measures:
temporal linear predictability and non-Gaussianity based on kurtosis may lead to different
results. Temporal predictability forces the extracted signal to be smooth and possibly to
be of low complexity while the non-Gaussianity measure forces the extracted signals to be
independent as possible and have sparse representation for sources with positive kurtosis.

In Appendix C, we formulate and prove sufficient conditions in order to successfully
extract source signals using the cost function E{e}} subject to some constraints.

5.3.2 Neural Network for Multi-unit Blind Extraction

For extraction of multiple source signals, we present a neural network architecture (see Fig.
5.7) that connects, in a cascade fashion, extraction processing units and other processing
units of different types for deflation as described in [279,[1T44]. In this cascade architecture,
a jth deflation processing unit deflates (eliminates) the newly extracted source signal y;,
yielded by the jth extraction processing unit, from the mixtures x; = [a:jl, Tj2,. .- ,xjm}T
and feeds the resulting new mixtures as outputs x;+1, to the next (j + 1)th extraction
processing unit which then extracts another source signal. It can be analytically shown
by the following linear transformation that the resulting outputs x;4; of the jth deflation
processing unit do not include the already extracted signals {y1,...,y;} [1144]

xj1(k) © x;(k) — W, (k)y; (k), (5.69)

which minimizes the loss function

Fi(%5) = S B0 (5.70)
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Fig. 5.7 The cascade neural network structure for multi-unit extraction.

. In (5.69), -—w]ijis

the output of the jth extraction processing unit whose weights w; = |w;1,wj2,. .. ,wjm}
are updated according to the learning rule in (5.73).

For w, we obtain the following updating rule by applying the stochastic gradient descent
method to (5.70))

- o - 1T T
where w; = [wjl,wjg, o ,wjm} and x; = [le,mj% o ,mjm]

0F;(w;)

Aw;(k) = =1 ==
J

=1 (k) y; (k) %;11(F), (5.71)

where 7;(k) > 0 is a learning rate.
Applying the standard stochastic gradient descent method to a generalized criterion of
(5.65) for the jth extraction processing unit, i.e.,

Bi

Jj(wj,bj) = *E{ =By’ (5.72)
we obtain the following adaptive on-line learning algorithms for vectors w; (j =1,2,...,n)
and coefficients of the FIR adaptive filters b;;,, respectively,

[Aw; () = (M), F(h) + () By (- maly (W)Y () (k)|  (5.73)
and
’Abjp(k) = =1 (k) e;(k) y; (k — p), \ (5.74)
where

ei(k) =y;(k) = > bipy;(k — p) = [1 = B;(2)] y; (k)
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X;(k) = x;(k) = > bipx;(k — p) = [1 — B;(2)] x;(k),

P
Ama(y; (k) = 7;(k) [y7 (k) — ma(y; (k)]
B; > 0 is a penalty factor, and n;(k), 77;(k), 7;(k) are learning rates [278].

5.4 BATCH ALGORITHMS FOR BLIND EXTRACTION OF TEMPORALLY
CORRELATED SOURCES

The objective of this section is to derive alternative batch algorithms for extraction of col-
ored sources with different autocorrelation functions. Let us consider the processing unit
shown in Fig. 5.0 with the following constrained minimization problem:

Minimize the cost function
J(wi,bi) = E{ei} (5.75)
subject to the constraint ||wy|| = 1,

where e1(k) = y1(k) — 71(k), y1 = W] x1, x1 = x, fu(k) = b y1(k) = S0 bipys (k — p)

and y1 = [y1(k — 1), y2(k),...,y1(k — L)]T.
The cost function can be evaluated as follows:

E{e?} = wlRu, s, w1 — 2w Ry, 5, b1 + b Ry, 5, by, (5.76)

where Ry,x, ~ E{x1xT}, ﬁxm’q ~ E{x1y7} and f{ylyl ~ E{y1y7}, are the estimators
of the true values of correlation and cross-correlation matrices: R, x,, Rx,y,, Ry,y,, Te-
spectively. In order to estimate vectors wi and by, we evaluate the gradients of the cost
function and equalize them to zero as follows:

aj (W ab ) 5 oy

16#111 = 2Ry, W1 — 2Ry 5,b1 = 0, (5.77)

d b _ .

% = 2Ry,5,b1 — 2Ry 5, Wi = 0. (5.78)
1

Solving the above matrix equations, we obtain an iterative algorithm

+ R-1 R wi
Wi = Rxllex1)71bla w1 = W7 (579)
1
bl = R3;115’1 Rylxl Wi = R§11371 RS’1 Y1 (580)

~

where the matrices f{yl ¢, and Rg . are estimated on the basis of the parameters w;
obtained in the previous iteration step.
In order to avoid the trivial solution w; = 0, we normalize the vector wy to unit length in
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each iteration step as wi(I+1) = wi (I+1)/||w{ (I + 1)|| (which ensures that E{y?} =1).

Remark 5.4 It should be emphasized here that in our derivation f{yl g, and f{yl g, are
assumed to be independent of the actually evaluated vector wi(l + 1), i.e., they are esti-
mated based on w1 (l) in the previous iteration step. This two-phase procedure is similar to
the expectation mazimization (EM) scheme: (i) Freeze the correlation and cross-correlation
matrices and learn the parameters of the processing unit (wi,by); (i) freeze wy and by
and learn new statistics (i.e., matrices ﬁyl v and Ry, 5,) of the estimated source signal,
then go back to (i) and repeat. Hence, in phase (i) our algorithm extracts a source signal,
whereas in phase (ii) it learns the statistics of the source.

The above algorithm can be considerably simplified. It should be noted, that in order
to avoid the inversion of the autocorrelation matrix Ry, x, in each iteration step, we can
apply as a preprocessing the standard prewhitening or standard PCA and next normalize
the sensor signals to unit variance. In such cases, Rx,x, = I, and the algorithm is simplified
to [68]

+
Wy

f_ = Rx,5.b1 = Ry, w1 = ||W+H’
1

(5.81)

_ N N
where Ry, 4, = % S xy (k) (k).
k=1

It is interesting to note that the algorithm can be formulated in an equivalent form as

(x1(k)y1(k))
(i(k)

In order to reduce bias caused by white additive noise, we can modify the formula (5.82) as

(x1 (k) (k)
(y1(F)g (k)

The formulas (5.81) and (5.82)) extend up our basic simplified learning batch algorithm. A
length of the FIR filter should be chosen sufficiently large but a value of L from 5 to 10
was enough in our experiments. However, as shown by our extensive computer simulations,
in practice it is sufficient to use only a single delay unit with a suitably chosen delay ¢ if
some a priori information about source signals is available. The suitable choice of the single
delay ¢ depends on the autocorrelation function of the extracted source [67, 68, 274] 278].

wi(l+1)= (5.82)

wi(l+1) = (5.83)

Remark 5.5 From (5.81)-(5.82) it follows that our algorithm is similar to the power
method for finding the eigenvector wy associated with the maximal eigenvalue of the matriz
Ry, (by) = E{Zﬁzl bipx1(k)x] (k — p)}. This observation suggests that it is not needed
to minimize the cost function with respect to parameters {bi,} but it is enough to choose
the arbitrary set of them for which the largest eigenvalue is unique. More generally, if all
eigenvalues of the generalized covariance matriz Ry, (b1) are distinct, then we can extract
all sources simultaneously by estimating principal eigenvectors of Ry, (b1) (see Chapter [/
for more details).
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5.4.1 Blind Extraction Using a First Order Linear Predictor

The algorithms derived in the previous section can be further simplified, if we assume that
the linear predictor has only one single time delay z79. In such a case the cost function can
be simplified as follows [68]

j(wla blq) = E{éﬁ} = W{ E[Xl X’{]Wl - 2b1q E{qu W,{ Xl} + b%q E{Y%q}v (584)

where y1, = y1(k — q¢) = wl x(k — ¢). This cost function achieves a minimum when its
gradient reaches zero with respect to wy and by,. Thus, taking into account that y; = wi xy,
we find

OT0D) — apax s — 2hag Blunxa} + 20, Bk — ] (6 — a)}ws =
(5.85)
9] b
OO0~ 2B yugan) + 2oy B (57} =0 (5:56)
q

Solving the above system of equations, we obtain
wi = [E{xi (k) x{ (k)} + b7, E{xi(k — ¢)x{ (k — )] E{yi(k — ¢)x1(k)}brg,  (5.87)

with big = E{y1(k — )y (k) }/ E{y?(k — q)}-
This equation yields the following updating rule,

_ b
wi = E{xix] } 'E{y:(k — ¢)x1 (k)}1 +122 : (5.88)
1q

In order to avoid the trivial solution w; = 0, we normalize the vector to unit length at each
iteration step as wy = w /||wi||. With this, the term by,/(1 + b3,) can be disregarded.
Moreover, without losing generality, we can assume that the sensor data are prewhitened,
thus E[x;x7] = I. With this, (5.88) leads to a very simple learning rule,

N
wii+1) = Galbulh—a) = x> xaElk—a) (589)
k=1
o owi(l+ 1)
wi(l+1) = m, (5.90)

where y1 (k) = wi (1) x1(k), x1(k) = Qx(k) and y14 = y1(k — q¢) = w{ () x1(k — g). The
above algorithm can be formulated in the following simplified form (as shown by Barros
and Cichocki in [68]):

(x1(k) y1(k —q))
(Wi(k)

wi(l+1)= (5.91)
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Fig. 5.8 The conceptual model of single processing unit for extraction of sources using adaptive
bandpass filter.

Remark 5.6 [t is interesting to note that minimization of the cost function

1 1
T(w) = 5 B{e%) = SE{(y(k) = byy(k — )%} (5.92)
is equivalent to maximization of
wl Ry, () W (5.93)

subject to the constraint ||w|| = 1, where Ry, (q) = E{x1(k)xT(k —q)}.

In fact, the algorithm (5.90))-(5.91) is the well known power method for finding the eigenvec-
tor corresponding to the mazximal eigenvalue of the covariance matriz Ry, (q). This means
that the problem is equivalent to PCA or the eigenvalue problem of finding an eigenvector w
corresponding to the largest eigenvalue of the covariance matriz Ry, (q), thus any efficient
algorithm for estimation extremum eigenvalue and associated eigenvector can be employed.
The problem has a solution if this largest eigenvalue is distinct from the other eigenvalues.
If the largest eigenvalue is multiple, we must choose another time delay or employ the linear
predictor with many delays.

It can easily be shown that if all the eigenvalues or covariance matriz Rx, (q) are distinct
then for the prewhitened data x1 by applying eigenvalue decomposition as

Ry, (¢) = E{x1(k)x] (k—q)} = ARs(q) AT =V A VT, (5.94)

we can estimate the global orthogonal mizxing matriz A= Qﬁ = V or equivalently the
separating matriz as W = VT (see Chapters 3 and|] for more details).

5.4.2 Blind Extraction of Sources Using Bank of Adaptive Bandpass Filters

For noisy data instead of linear predictor, we can use a bandpass filter (or in a parallel way
several processing units with a bank of bandpass filters) with fixed or adjustable center fre-
quency and a bandpass bandwidth. The approach is illustrated in Fig. [5.8. By minimizing
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the cost function
J(wj) = E{3} (5.95)

subject to constraint ||w;|2 = 1, we obtain the on-line learning rule (see Section [5.3.1] for
more details)

Aw;(k) = —m (k) [{e;(F)X1(k)) = 7; (k)w1 (k)] (5.96)

where v, (k) = —3; [1 —&;j (k)] is a forgetting factor, X1 (k) = x1 (k) — B;(2)x1(k) and B;(z)
means transfer function of the bandpass filters.
Analogously to the procedure presented in previous section, for prewhitened sensor sig-

nals, we can derive simple batch algorithm as

wyt+1) = ) (5.97)
or alternatively
N
WHIEY) =GB ) = 1 D= (R)ih) (5.99)
k=1
W;r(l +1) .

where y;(k) = wf(l) x1(k), 7;(k) = Bj(2)y;j(k) = xF(k)w;(l). The above algorithms
extract successfully sources if the covariance matrix Ry, z, = E{x1X;} has unique maximum
eigenvalue.
The proposed algorithm (5.98)-(5.99) is insensitive to white noise and any noise which is out
off the bandwidth of the bandpass filter. Moreover, the processing unit is able to extract
the filtered from noise version of a source signal if it is narrow band signal.

As one of the simplest bandpass filters we can use the second order IIR filter with transfer
function (4.107) discussed in Chapter 4. Alternative realization of bandpass filter with easy
adjustable central frequency and bandwidth is the 4-th order Butterworth filter with the

transfer function:

bo + b22_2 + b4Z_4

B(z) = - 5.100
(2) 14+ aqwez™ (agw?2 + ab)z72 + agwez ™3 + agz™4 ( )
where
by = by=1/(d*+2%°d+1), by = —2by,
by = by = —4by, ay; = —2d(2d + 2°5)by,

4d?by, aby = 2(d? — 1)by,
az = 2d(=2d+2°%)by, ay = (d* —2%%d + 1)by, d = cotan(mwBy,),

az
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Fig. 5.9  Frequency characteristics of 4-th order Butterworth bandpass filter with adjustable center
frequency and fixed bandwidth.

and
_ cos(mf1 + fo)

cos(mBy,)
where f; and f5 are normalized lower and higher cutoff frequencies and B,, is normalized
bandwidth. It should be noted that for fixed (constant) bandwidth B, w. is an only
center frequency f. dependent parameter. It is worthwhile mentioning that the stability
constraints on B(z) are provided if

lwe] <1 and d>0. (5.102)

<1, (5.101)

It should be noted that the second order bandpass filter (£.107)) provides unity gain only
at center frequency f. alone and makes rather large distortions for source signal which
are usually not pure sinusoids with some frequency variability. Therefore, by choosing a
very narrow bandwidth, this filter can be applied for tracking and enhancement of single
sinusoid in white noise. In contrast the forth-order Butterworth filter has a flat characteristic
around central frequency and enable enhance arbitrary narrow-band source signal with low
distortion (see Fig. [5.9. By changing or adjusting the center frequency and bandwidth of
the band pass filter, we can extract different narrow band sources using the some processing
unit. We can also extract sources simultaneously by employing several processing units with
bandpass filters with different bandwidths and center frequencies.

By maximizing the output power of the band pass filter, we can adjust automatically the
center frequency to extract narrow-band sources located in specific bandwidth. The filter
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output is given by

y(k) = bos(k) + bas(k —2) + bys(k —4) — aqw.(k)y(k — 1)
(a2 (k) + bk — 2)asewo(B)i(k — 3) — agi(k —4).  (5.108)
In order to find optimal value of parameter w.(k) for specific bandwidth, we can maximize

cost function E{y?(k)} using gradient ascent procedure obtaining simple learning rule for
estimating automatically the optimal center frequency for specific bandwidth

we(k +1) = we(k) +n(k)y(k)a(k), (5.104)
where n(k) = n/r(k), r(k) = (1 —no) r(k — 1) +no (k) and

alh) = A0 = ~alh ~ 1)  2agur (W7~ 2) = aaill - 3) ~ anwelBal - 1)

— (ahy + agwe (k) a(k — 2) — azwe(k)a(k — 3) — asa(k — 4). (5.105)

~—

Summarizing, the method presented in this section has several essential advantages:

e The method does not need to apply deflation procedure. One processing unit can
extract all desired narrow-band sources sequentially one-by-one by adjusting the cen-
ter frequency and bandwidth of the bandpass filter. Parallel extraction of arbitrary
group of sources is also possible by employing several bandpass filters with different
characteristics.

e The algorithms are computationally very simple and efficient.

e The proposed algorithms are robust to additive noise, both white and narrow band
colored noise. In contrast to other methods the covariance matrix of the noise does
not need to be estimated or modelled.

5.4.3 Blind Extraction of Desired Sources Correlated with Reference Signals

In many applications it is desired to extract independent components or separate sources
with specific stochastic properties or features, but ignore other “uninteresting” sources and
noises. Such extraction is possible if some a priori information about original sources is
available.

For example, if a bandwidth of a desired narrow-band source signal is known, then we
can apply a bandpass filter with the same specific bandwidth (passband) to extract desired
source (see Section 5.4.2 and learning rules (5.96)-(5.99).

If a source signal is periodic or quasi periodic and its frequency f, is known or can be
estimated, then we can apply the learning rules (5.89) - (5.91)) with time delay ¢ = 1/f,.

In many applications, like biomedical applications (e.g., fMRI) some reference signal is
explicitly available which corresponds to stimulus. In such cases, it is usually desired to
extract an independent source which is correlated as high as possible with the reference
signal r(k — A), where A is suitable chosen time delay. For this purpose, we can add to
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cost functions discussed above auxiliary penalty term E{r?(k — A)y?(k)}. For example, we
can use the following cost function (see Section [5.3 and [5.4))

J(w) = %E{EQ} + g (c — E{g?(k)r?(k — A)})?, (5.106)

where (k) = y(k) — Z£=1 byy(k — p), y(k) = wi'xy(k), B > 1 is a penalty factor and c is
suitably chosen positive constant (typically ¢ = 1).

The minimization the cost function according to the standard gradient descent method
leads to learning rule for vector w as

Aw(l) = w(l+1)—w()=—n a:;g:f)
= =) [(e®)Xi(k)) =) (k) r?(k — A)xa(k))] (5.107)

where

y(1) = B [e = (y*(k)r?(k — A))]
is a forgetting factor and X; (k) = x(k) — 25:1 bpyx(k — p).

5.5 STATISTICAL APPROACH TO SEQUENTIAL EXTRACTION OF
INDEPENDENT SOURCES
5.5.1 Log Likelihood and Cost Function

Let us consider the problem of extracting one source from the statistical point of view. Let
X = x1 = Q x be vector of prewhitened sensor signals x = Hs , i.e,,

n
x;=As=)Y s;a, (5.108)
j=1
where A = QH and aj,as,...,a, are the column vectors of the orthogonal mixing matrix

A. Let the probability density function of s be
q(s) = H q; (s55), (5.109)
j=1

where g; (s;) is that of s;.
We assume without loss of generality that source signals are independent and they have
unit variance, i.e., E{S?} = 1. Then, A is an n X n orthogonal matrix, satisfying aiTaj = ;5.
We extract only one source signal by

y1=w'x. (5.110)
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To this end, we formulate the problem in such a way that all the source signals are extracted

by w1, Wws,...,w,, although we have interest only in a single source,
y=wixi, (j=12,...,n). (5.111)
or
y=Wxq, (5.112)

where the true sources are extracted when
W =A" (5.113)

or w; = a; (neglecting irrelevant scaling and permutation of columns of matrix).
Because of s = Wx; and det |[W| = 1, the probability density function of x; is given by

p(xi; W) = det|Wlg(Wx1) = q(Wx1)
= H q; (ijxl) . (5.114)
j=1

Hence, the log likelihood

p(x1; W) =logp (x1; W) (5.115)
is decomposed as
p(x1; W) :ZIquj (W;‘-Fxl) :ij (x1;w;), (5.116)
j=1 j=1

where each term depends only on one w;. In order to extract one independent source signal,
say y1 = W1 xy, the maximum likelihood method searches for w; that maximizes the log
likelihood.

The problem is hence formulated as follows':

minimize J(w) = —E{log(q1(y) } (5.117)
subject to ||w||> = 1. (5.118)

This is similar formulation to the extended fixed point algorithm [595].
The Lagrange function can be formulated as

L(w, \) = —E{log(q1(y)} + A(lw]]* = 1). (5.119)
Using the Lagrange’s Theorem, we obtain the condition at the equilibrium point w = w,

_ 0E{log(q1(y)}

VwL(w,\) = -

+2\w =0 (5.120)

1For simplicity, in further considerations in this section, we omit indexes, i.e, y1 =y, x1 = x and w1 = w.
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or
E{o(y)x} + 2 w =0, (5.121)
where

_ _dpi(x1,w) _ dlogqi(y)
oly) = ) 200), (5.122)

By multiplying Eq. (5.121) by w7’ and taking into account that ||w||?> = 1, we obtain
1
A= =5 Blely)y} (5.123)

and

E{p(y)x} = E{o(y)ytw. (5.124)

Hence, we can obtain a new simple batch fixed point algorithm

E{p(w! (1)x) x}

VD = oW () 3}

(5.125)

5.56.2 Learning Dynamics

Furthermore, the similar analysis is applicable to all the gradient methods where various
cost functions J(w) are introduced from different considerations (see Table [5.1)).

Applying the standard gradient descent method to the Lagrange function (5.119), we
obtain the batch learning rule:

Aw(l) = w(l+1)—w(l) = - W
= —n [E{o(y)x} — E{p(y) y} w(l)], (5.126)
where expectation terms can be estimated as follows:
N
E{p(y)x) ~ (1/N) Y olwT (1)x(k))x(k)
k=1
and
N
E{p(y)y} =~ (1/N) Y olw" (O)x(k)][w" (1)x (k)]
k=1

and learning rate is bounded [32§]

2
E{¢'(y) —ye(y)}

0<n< (5.127)
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Hence applying the stochastic approximation, we obtain a simple on-line learning rule:

[Aw(k) = —n(k) [p(y(k) x(k) — y(R)e(y(k))w(k)] | (5.128)

However, when the step-size 7 is not so small, we need to normalize w+ Aw at each iteration
step.

The present method is designed to extract the source signal whose probability distribution
is ¢1 (s1). A problem is that we do not know the exact source distribution ¢; (s1). However,
even when we misfit ¢; (s1), or even when we use an arbitrary function ¢(y), the true w is
an equilibrium of the dynamics (5.128)). This is because the right-hand side of (5.128) gives
an estimating function of w, which will be explained in Chapter [10.

5.5.3 Equilibrium of Dynamics

We show here directly that w; = w, or more generally any w; = a;, is an equilibrium of
the dynamics, whatever ¢ is. Then, the equilibrium of (5.128)) satisfies

E{p(y)x —yp(y)w} = 0. (5.129)

Because of x =) s;w; and

y= wix = wl (Z sjwj)
= Zgjsj =g, (5.130)
by putting
Bi(g) = E{s;e (Z gi3i> 1, (5.131)

we have

E{p(y)x} > Biwy, (5.132)

Blyeywh = (Y ai6) (X owi). (5.133)

Hence, any equilibrium w should satisfy

B(g) = (Z g]ﬂj) g (5.134)

which implies
B=cg (5.135)
for some constant c. It is straightforward to see that g =e; =1[0,...,0,1,0,..., 0]7 satisfies
this condition. That is, g = (w7 A)T = e; is an equilibrium.
Alternatively, we can show this feature by reformulating the optimization problem (5.117])
as

minimize J(g) = —E{log(q1(v)} (5.136)
subject to ||g||* =1, (5.137)
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in terms of the global vector defined as g = A”w and taking into account that y = w’'x =

wTAs =gTs. The Lagrange function can be formulated as

L(g.\) = —E{log(ai(g"s)} + M(llg]* — 1), (5.138)
with A = (1/2) E{¢(y)y}. Using the Lagrange’s Theorem, we obtain
E{p(g"s)s} = E{o(y) v} & (5.139)

It is straightforward to see that the above equation is satisfied for g = e; = [0,...,0,1,0,...,0]
if y =sj.

By choosing the nonlinear activation functions ¢(y) adequately, the algorithm can extract
the source whose probability distribution is close to the one that gives ¢(y). However,
there may exist local minima. There are two special functions ¢ which guarantee the global
convergence. One is derived from the 4th order cumulant (kurtosis) [348,[349]. The tensorial
property of cumulants guarantees this, as we have proved in Appendix A. The other is the
one derived from the minimization of entropy or the negative log likelihood.

J(w) = —E{logq; (w'x)}. (5.140)

This was proved by Cruces et al. by using the entropy inequality [329]. They further gave
another interpretation of the log likelihood [328, 329]. Let q(y) = q1 (w{x1) and qg(y) be
the standard Gaussian distribution. Then,

K (a(y) |l ac()] = Eqy) {log qqcf(yzj)}

= E{logq(y)} + %log(Qwe) (5.141)

is the Kullback-Leibler divergence from ¢(y) to the Gaussian gg(y). Hence, this is a mea-
sure of the non-Gaussianity of ¢(y). The minimization of the negative log likelihood is
exactly the same as maximization of non-Gaussianity. Gaussianity is increased by mixing
signals because of the central limit theorem. Hence, the entropy increases and higher-order
cumulants decrease at the same time.

Remark 5.7 When we do not know approzimately the pdf of the estimated sources signal
q(y), we can use an adaptive method of estimating q(y). We can use a parametric form
q(y; ©) of the density function, and modify set of parameters © at each step by (see Chapter
0l for more detail)

dlogq(y;©)

A("):n@ 00

(5.142)

5.5.4 Stability of Learning Dynamics and Newton’s Method

Now we give the stability analysis when the activation function ¢(y) is adequately chosen.
This leads to Newton’s method automatically. The continuous-time averaged version of
learning dynamics is much easier to analyze, so that we use the continuous-time version of
(5.128)) given by

dw

= f(xw), (5.143)
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where

F(x,w) = E{o(y)x — yo(y)w}, (5.144)
y=wlx. (5.145)

The variational equation, which shows how a small deviation dw develops in the time course
of the dynamics, is

d of (x,w)T
el = 2" Sw. 14
g ow(t) A ow (5.146)
The stability of the algorithm is determined by the eigenvalues of the Hessian matrix
Of (x, w)
K =" 5.147
(w) = L5 (5.147)

at the equilibrium w = a;.
For A = E{yp(y)}, we have

T
K(w)=FE{w (gv)s\/) + (M- ¢ (y)xx")}. (5.148)

At the equilibrium w = a;, we have

E{¢'(y)xx"} = E{¢' (s1) > _s7a;a]}

=1

= E{¢ (s1) st} ara] + E{¢' (s1)} (I-aja]), (5.149)

because of E{s3}, Z;ﬂ:z aja] =I—aja]. Hence, the variational equation at w = ay,

d
a5w = plC (ay) ow, (5.150)

can be written as J
%5w = dcia; + codw. (5.151)

The first term of the right-hand side is in the direction of the solution w = a;, so that
it enlarges or shrinks the magnitude of w, but it is ineffective because of ||w||> = 1. The
change in the direction orthogonal to a; is given by the second term

d
&5w =—x0w, (5.152)
where
X:E{SDI (51)} — E{s1¢(s1)}- (5.153)

When ¢ is given by (5.122)),

E{sip(s1)} = /_5%(]1(3)(15 = /q1(3)d8 =1 (5.154)
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On the other hand,
d2
E{¢'(s1)} = B{- 5 loga(s)} = G (5.155)
is the Fisher information of the distribution of the source signal s;. Since s; is normalized,
we easily have

G > oo, (5.156)

where the equality holds when ¢;(s) is Gaussian. Hence, the stability of the dynamics is
proved when ¢ is derived from ¢ (s).
For an arbitrary chosen ¢, the stability condition is given by

[E{s1e (1)} < B{¢ (s1)} ] (5.157)

The above analysis shows that

K(a)) =cl+caal. (5.158)
Hence, its inverse has a similar form
K (a;) =él +éajal. (5.159)
Newton’s algorithm corresponding to (5.128) is given by

_ af(w)
Aw = —n KN (w) =, 5.160
w =K (w) (5.160)
However, by multiplying &~ (w) to (5.128), we have exactly the same form of the up-dating
equation. Hence, the dynamics of a single source extraction (5.128) is by itself equivalent

to Newton’s method , proving its efficiency.

5.6 STATISTICAL APPROACH TO TEMPORALLY CORRELATED SOURCES

The temporally correlated but spatially independent source signals s(1),s(2),...,s(N) are
statistically modelled as follows. For an estimated source signal, say y1(k) = $1(k) = §(k)
that is the first component of §(k), we assume an AR model

L
§(k) =e(k) + Y _byd(k — p). (5.161)
[1— B(2)] 5(k) = (k). (5.162)

Here, B(z) = E;“:l bpyz7P, e(k), k =1,2,..., are a sequence of independent signals called
innovation, and let ¢(e) be its probability density function. Then, for a large number of

2 Assuming, that we are sufficiently close to the equilibrium w = hy.
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samples N, the joint probability density of s(1), s(2), ..., s(N) is the same as the probability
density of the corresponding £(1),£(2),...,e(N). Hence, it is written as

N
p{s(1),5(2),...,s(N);b} = [[a((k)

N
= [La(@-B@)15H), (5.163)
where b = [by, ba,...br]T. The observed signals, when they are prewhitened are given by
xi(k) = As(k) = QHs(k) =) _s;(k)a;. (5.164)
j=1

We recover the source signal by
y(k) = 8(k) = Wxi (k), (5.165)

where W = AT is the true solution. We use the sequential method of extracting one by
one as
y1 (k) = wix (k). (5.166)

The total log likelihood of the observed signal sequence x;(1),...,x;1(N) is decomposed as

logp{x1(1),x1(2),...,x1(N); W, By,...,B,}
= logg; {wj (1 - Bj)xi(k)} (5.167)
j.k

as before. Hence, for the maximum likelihood method, the cost function is
J(w,b) = —logq {w'x(k)} (5.168)

under the constraint ||w||?> = 1, where
L
X(k) = [1 = B(2)]x1(k) =1 =Y _byx1(k —p). (5.169)
p=1

The on-line gradient learning algorithm is derived by

Aw(k) = -n 76‘72:;’]3)

= =11 [ple(k)Jx(k) = yw(k)], (5.170)

where

v=B8({y")-1) (5.171)
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is the forgetting factor (see Section [5.3.1]),

p(e) = —% log g(e), (5.172)

is nonlinear activation function, and
e(k) = [1 = B(2)lw"x1(k) = [1 = B(2)] y(k),

is the innovation signal. When the innovation e is Gaussian, we have a linear activation
function,

ple) =e. (5.173)

The linear ¢ works well in the case of temporally correlated sources, but a nonlinear ¢ may
be more robust.

Since the temporal structure of the source signals are not exactly known, we use an
adaptive method to decide B(z). The update rule of the filter is derived from the likelihood
as

B _0J(w,b)
Ab, = -7 T}p (5.174)
= qelek)] y(k —p). (5.175)

The true solution w = a; and B(z) = Bj(z) is an equilibrium of dynamics (5.170)
and (5.175) whatever ¢ is chosen. We can prove this in the same way as we did in the
previous section. The stability analysis can also be done similarly, giving the same stability
condition where y is replaced by §. The sequential update rule (5.170)) is automatically
Newton’s method (assuming that we are sufficiently close to equilibrium w = ay).

5.7 ON-LINE SEQUENTIAL EXTRACTION OF CONVOLVED AND MIXED
SOURCES

The criteria and algorithms discussed in the previous sections for blind signal extraction
from instantaneous mixture can be relatively easily extended or generalized to the problem
of extraction of convolved and mixed independent sources. In this section, we illustrate this
by a simple extension of the standard Godard-type blind equalization algorithm that is able
to extract multiple source signals from their unknown convolutive mixtures [219] 220} 221].

5.7.1 Formulation of the Problem

In multichannel blind deconvolution, an m dimensional vector of received signals x(k) =
[21(k), 22(k), ..., 2m(k)]" is assumed to be generated from an n dimensional vector of spa-
tially independent, temporally i.i.d. unknown source signals s(k) = [s1(k), s2(k), .. ., sn(k)]*
using the multi-variate linear time invariant filters, i.e.,

x(k)= Y Hys(k—p) = [H(z)]s(k) (5.176)

p=—00
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or equivalently in scalar form

oo n
zi(k)= > > higpsi(k—p),  (i=12...,m) (5.177)

p=—o00 j=1
where H(2) = >°°°  H,2 7 is an unknown (m x n) polynomial matrix with m > n,
and z7P is the delay operator such that z7Ps(k) = s(k — p). A task of multichannel
deconvolution is to recover the source signals s(k) from the received signals x(k), up to a
scaled, permuted, and delayed version of the source signals, i.e., the estimates of sources,
y(k) = 8(k) = PAD(z)s(k), where P € R"™" is a permutation matrix, A € R"*" is
a nonsingular scaling diagonal matrix, and D(z) is a diagonal matrix whose ith diagonal

element is given by z~%.

5.7.2 Extraction of Single i.i.d. Source Signal

Let us consider an FIR equalizer whose first processing unit with output y; (k) is described
by

m

y1(k) = Z wiipTi(k — D), (5.178)

i=1

where {w1;,} are the FIR equalizer coefficients and {z;(k)} is the ith sensor output.
A single source can be extracted by the minimization of the Godard criterion which is
described by [219] [379]

=SBl ()~ ), (5.179)

where ~ is some positive constant, typically v = 1. For the constant modulus (CM) signals
7 can be chosen as vo = E{|§1]|*}/E{|91]?}. Using the stochastic gradient descent method,
one can derive the updating rule for the FIR equalizer coefficients wy;, in the form of

wiip(k+1) = wiip(k) —m(k) a?uip
~  wiip(k) +m(k) 1(y1(k)) z7 (k — p), (5.180)

where the complex conjugate variables are denoted by superscript *, n1(k) > 0 is the
learning rate, and the nonlinear activation function ¢1(y;(k)) is given by

e1(y1) =291 — yilun . (5.181)

A similar activation function can be obtained by using the normalized kurtosis or the
generalized normalized kurtosis as optimization criteria. Table 5.1l shows typical criteria for
blind source extraction and blind equalization.

For a doubly-infinite FIR channel, the only existing minima of (5.179) correspond to the
points where a single source is extracted, provided that the source signal is sub-Gaussian
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Table 5.1 Cost functions for sequential blind source extraction one by one, y = w” x. (Some criteria
require prewhitening of sensor data, i.e., Rux = I or AAT = I).

No.  Cost function J(y, w) Remarks
L. —E{logp(y)} Entropy
st |lw| =1
2. *%‘E{‘Uﬁ} - 3E*{|y’|}| Kurtosis
st |lw|| =1
3. =225 a8|Crs(y)l Sum of cumulants

st. |lwl|=1,a3 >0

4. —(B{ly"}/EP'1{|y|?}) — cpql Generalized normalized kurtosis

5. —Cum{y(k),y(k),y(k —p),y(k —p)} = Self cumulant with time delay
= —(E{y*(k)y*(k — p)} — B{y* ()} E{y* (k — p)}
—2E*{y(k)y(k - p)})

st [lw] =1
6. E{e*} Linear predictor
s.t. ||wl| =1,

where ¢(k) = y(k) — 3, byy(k — p),
particularly by = 1 and b, =0 for p # 1

7. E{Y(y(k))}, Constant modulus criteria
eg, Yy(k)] = 55(yl” —7s)°
e = B{I9*°}/E{|9°}

(negative kurtosis)” [1200} 1201] whenever the equalizer is doubly-infinite. For a finite order
FIR channel, there also exists a finite order FIR equalizer under some mild conditions on
the FIR channel [226, 23T], 1200, [1201] (in this case, the number of sensors should be greater
than the number of sources) and using (5.179)) one can extract a single source successfully.

3 For super-Gaussian signals (positive kurtosis), the updating rule is derived from the maximization of
(5.179) instead of minimization.
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The algorithm in this case can written in the vector form as
wii(k + 1) = wii(k) £m (k) o(y1 (k) % (k), (5.182)

where Wi, = [’wlio, W14l ’LUM‘M]T, if(k}) = [I:(k), I:(k — 1), . ,zf(k — M)]T and the =+
sign is chosen opposite to the sign of the source kurtosis.

It should be noted that applying the extended Godard criterion (5.179) several times,
the same sources might be extracted at different outputs even if start for different initial
conditions. To avoid this problem, Inouye [612], Papadias and Paulraj [944} 945] introduced
auxiliary constraints and extra processing which spatio-temporally decorrelate the extracted
signals. This leads to a relatively complicated iterative algorithm and it requires to know

in advance the number of source signals.

5.7.3 Extraction of Multiple i.i.d. Sources

We discuss now an on-line approach to extract multiple source signals one by one using
the cascaded connections of modules which consist of equalization units (a processing unit
extracting a single source) and deflation units (a processing unit eliminating the contribution
of the already extracted signal from mixtures) [219].

Without loss of generality, we can assume that the first extracted signal y; (k) corresponds
to the 1st source signal s1(k), i.e., y1(k) = c151(k—d1). The deflation unit coefficients {wy;, }
are updated to minimize the energy (cost) function given by

p= 5 BLY lea()?}. (5183)
i=1
where
woi(k) = wi(k) = Y @1 p(k)y1 (k — p)- (5.184)

Applying the stochastic gradient descent method, the updating rule for {ws;,} is given by
Wiip(k +1) = w1ip(k) — m 22i(k) y1 (k = p). (5.185)

In order to show that the learning algorithm (5.185)) is able to eliminate the contribution
of the first extracted signal y; (k) which is given by

y1(k) = crs1(k — dy), (5.186)

from the observation x(k), we investigate the stationary points of the averaged version of
(5.185). If the learning algorithm (5.185]) approaches steady state, we have

E{asi(k)yi (k —p)} = E{wi(k)yi (k — p)} — wuip (k) E{|y1(k — p)P} =0.  (5.187)
Then, wn; »(k) is given by

— oy Blaik)yr(k—p)}
e AR

(i=1,2,....,m). (5.188)
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Using the fact that y; (k) is the first extracted source signal and assuming that the all source
signals are i.i.d., we have [219]

E{x(k)yi(k—p)} = E{Z Z hijqsi(k — @)ersi(k —p—di)} = crhitpra, 02, (5.189)

q j=1

where 02 = E{|s;(k)[*}. Using the result (5.189), the w1, (k) defined in (5.188) becomes

wiip(k) = hﬂ%d (i=1,2,...,m). (5.190)

Thus, after deflation processing is done, the input to the equalization unit in the next
module {z1;(k)} is

h; L
$2L(k) = l‘i(k’)—zﬂcls1(/€—p—d1)

C1

= 2i(k) =Y hirgsi(k—q). (5.191)

Therefore, we can see that the deflation algorithm given in (5.185) can eliminate the contri-
bution due to the first source signal s;(k) from the received signals {z;(k)}. The deflated
mixture x1;(k) is fed into the next module in order to extract the 2nd source signal, and
generates the mixture by eliminating the contribution of the 2nd extracted signal. By con-
tinuing this procedure until the output of the module converges to a small value pre-specified
(which means all source signals are extracted), we can successfully extract all source signals
[219, 220]. We should emphasize that any other blind equalization algorithm instead of
Godard algorithm, can be applied to the presented here approach. Note that a similar de-
flation approach to multichannel blind deconvolution has been introduced by Inouye [612]
and Tugnait [1200, T201]. In [I201], batch-type deflation processing using the equation
(5.188)) was applied to cancel the contribution due to the already extracted signals.

5.7.4 Extraction of Colored Sources from Convolutive Mixture

The procedure described in the previous section allows us to extract i.i.d. sources. Moreover,
to extract several unknown sources, we need to apply rather computationally involved
deflation procedure.

Using the concepts presented in section 5.4, we easily extend derived algorithms for
extraction of multiple colored sources form their multichannel convolutive mixture by em-
ploying suitable designed linear predictors (LP’s) or bank of bandpass filters (BPF’s).

For example, using the concept of bank of bandpass filters (cf. Egs. (5.79)-(5.83) and
(5.97)- (5.99)) we can use the following novel iterative algorithm:

_ p-1 (Wik)x7(k))
Wji(l+1) = RX7IX7W, (5.192)
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where
m M
yi(k) = D> wjipwi(k—p), (5.193)
i=1 p=1
yi(k) = [B;j(2)] y; (k) (5.194)
Wi = [Wjio, Wy, - -, wiiv) T and X5 (k) = [af(k),zf(k —1),..., 25 (k — M)]T.

The advantage of the proposed approach is that, we can avoid the deflation procedure
by using the bandpass filters with different frequency characteristics. Furthermore, the
algorithm allows us to extract colored sources with different shape spectra.

5.8 COMPUTER SIMULATIONS: ILLUSTRATIVE EXAMPLES

We now illustrate the performance of selected algorithms presented in this chapter. In each
example presented in this section, source signals are mixed with a mixing matrix H whose
elements are randomly selected in the range [-1, 1]. All weights are initialized with random
values in the range [-0.1, 0.1].

To show qualitatively the performance of the presented algorithms, we use a performance
index which is defined at the ith extraction processing unit by

1 &N G
PI,L* = —(Z /\2” _ 1)’
m j=1 Gig~
where
~ _ Ty~ o ~
g = Wi H’L - [gilvg’ﬂv e 7gim}7
§ij* :max{ﬁij} forj = 1,27._.,m’
H; = (I- vA"i—l""zT—1)ﬂi—1,
and

H, — QH, when mixed signals are whitened
1= H, are not whiten.

The smaller the value of PI;, the better the quality of the extracted source signal at the
ith extraction processing unit, as compared to the original source signal.
5.8.1 Extraction of Colored Gaussian Signals

Example 5.1 Three colored Gaussian signals are used here. Each colored Gaussian signal
is generated by passing Gaussian sequences with variance 1 through an FIR filter of length
20 whose elements were randomly chosen between -1 and 1#. The normalized kurtosis of

4Colored Gaussian signals used in subsequent examples are also generated in the same fashion.
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Fig. 5.10 Exemplary computer simulation results for mixture of three colored Gaussian signals,
where s;, 15, and y; stand for the j-th source signals, whiten mixed signals, and extracted signals,
respectively. The sources signals were extracted by employing the learning algorithm (5.73)-(5.74)
with L = 5 [1142].

the resulting signals s1, s, and s3 are close to zero, i.e., 0.02, -0.02, and -0.06, respectively.
These signals are mixed with the randomly chosen mixing matrix

0.82 —-0.90 -0.62
H=| -054 -084 0.69
-0.52  0.28 —0.65

In order to extract the source signals, we applied the algorithm (5.73)) - (5.74) with L =5
and the learning rates n = 0.005. Fig. [5.10/ shows, from top to bottom, the original source
signals s = [s1, 82, 53]7, the whitened mixed signals x; = [z11, 712, 213]7, and the extracted
signals y = [y1,92,y3]T. The performance indexes are PI; = 0.00002, PI; = 0.00006, and
PI3; = 0.00011. Visual comparison of the original source signals and the extracted signals
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Fig. 5.11 Exemplary computer simulation results for mixture of natural speech signals and a colored
Gaussian noise, where s; and 15, stand for the j-th source signal and mixed signal, respectively. The
signals y; was extracted by using the neural network shown in Fig. [5.7 and associated learning
algorithm (5.91) with ¢ = 1,5, 12.

(with y; = —s1, y2 = s3, and y3 = —s2), together with the performance indexes, confirms
the validity of the proposed algorithms.

5.8.2 Extraction of Natural Speech Signals from Colored Gaussian Signals

Example 5.2 Two natural speech signals”, i.e., an English word /hello/ (s; with normal-
ized kurtosis = 3.44) and a Japanese word /moshimoshi/ (s3 with normalized kurtosis =
6.13), and a colored Gaussian signal (so with normalized kurtosis = —0.003) are mixed by
the same mixing matrix as that used in the above example. The original source signals and

5Tt is known that speech signals have temporal structures.
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Fig. 5.12 Exemplary computer simulation results for mixture of three non-i.i.d. signals and two i.i.d.
random sequences, where s;, 15, and y; stand for the j-th source signals, mixed signals, and extracted
signals, respectively. The learning algorithm (5.81) with L = 10 was employed [1142].

the whitened mixed signals are shown in the top and middle rows of Fig. 5.11] respectively.
In order to extract the source signals, we applied the batch algorithm (5.82) with L = 10.
The extracted signals are shown in the bottom row of Fig. [5.11 which reveals that the
recovered signals (with y; = so, y2 = —s3, and y3 = —s1) are very close to the original
sources. The performance indexes are PI; = 0.0037, PI; = 0.0045, and PI3 = 0.0042.

5.8.3 Extraction of Colored and White Sources

Example 5.3 For this example, three non-i.i.d. signals, i.e., a sub-Gaussian signal s,,
a colored Gaussian signal s3, and a super-Gaussian signal s, are mixed with two i.i.d.
sequences, one being a uniform random noise s1, and the other being a Gaussian random
noise s5. The normalized kurtosis of sy, s2, s3, 4, and s5 are —1.22, —2.00, —0.04,0.41,
and 0.07, respectively. These signals are mixed with the randomly generated mixing matrix
H. Our aim here is to show an interesting property of the algorithm (5.81), which is able
to extract only colored sources. Specifically, from mixtures of non-i.i.d. signals (or signals
with temporal structures) and i.i.d. signals, only non-i.i.d. signals can be extracted from
the mixtures using the second order statistics (SOS) algorithms.
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Z12 Z13 L14 T15

Fig. 5.13 Exemplary computer simulation results for mixture of three 512 x 512 image signals,
where s; and x1; stand for the j-th original images and mixed images, respectively, and y; the image
extracted by the extraction processing unit shown in Fig. The learning algorithm (5.91) with

g = 1 was employed [68] [1142].

Fig. [5.12 shows, from top to bottom, the original source signals s = [sy, 2, 53, 54, 55]7
the whitened mixed signals x; = [z11, %12, 13, T14, x15]T, and the estimated source signals
from the first three extraction processing units, y = [y1, 2, y3]7. The performance indexes
are PI; = 0.0030, PI> = 0.0001, and PI3 = 0.0077. Both the performance indexes as well
as a visual comparison between the original source signals and the extracted signals (with
Y1 = —Sa2, Y2 = —S4, and y3 = —s3) confirm the validity of the aforementioned conjecture.

5.8.4 Extraction of Natural Image Signal from Interferences

Example 5.4 In this section, we further test performance of the SOS algorithms using
image signals for a case where the number of sensors is greater than the number of sources.
Three 512x512 images are used, with a natural image used for s;. This image has tem-
poral correlations when scanned in one dimension. The other two images are interferences
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artificially generated from Gaussian i.i.d. noises s; and binary i.i.d. sequences s3. The
normalized kurtosis of images s, s3, and sz are 0.02, 0.31 and -2.00, respectively. These
image signals are mixed with the randomly chosen non-square mixing matrix

—-0.97 —-0.16 0.68
049 069 —0.96
H=| -011 005 0.36
0.87 —0.59 -0.24
-0.07 0.34  0.66

Fig. [5.13 shows, from top to bottom, the original images s = [s1, 2, s3]7, the mixed images
X1 = |11, %12, T13, T14, T15) ., and the extracted signal at the first processing unit y; using
the learning algorithm (5.91) with ¢ = 1. The performance index at the first processing unit
is 0.00004. As can be seen from Fig. 5.13, this unit has successfully extracted the natural
image.

5.9 CONCLUDING REMARKS

In this chapter we have presented rather a large number of various algorithms for blind
source extraction (BSE). The reader faced with the problem of the BSE or BSS/ICA is
justified in being puzzled as to which algorithm to use. Unfortunately, there is no a general
valid answer. The right choice may very well depend on the nature and statistical prop-
erties of sources and the area of specific applications. If the sources signals are mutually
independent i.i.d. signals the methods based on the HOS, especially, the maximization of
the absolute value of kurtosis may give the best results. However, such approach fails to
extract sources with small value of kurtosis or colored Gaussian signals. For extraction of
colored sources, especially smooth signals with high degree of predictability the best perfor-
mance can be obtained by using the SOS approach, especially based on linear predictor and
eigenvalue decomposition using, for example, power method or any other efficient method
for estimation of eigenvectors. The SOS methods fail to extract white or i.i.d. sources.
Unsymmetrical distributed sources can be extracted by employing skewness instead of kur-
tosis. For extraction of very sparse sources, we should use rather higher order cumulants
or generalized kurtosis with p = 6. Also cumulants criteria are useful for independent sig-
nals corrupted by arbitrary Gaussian noise. For colored sensor signals buried in the white
arbitrary distributed noise the SOS robust algorithm with respect to the noise should be
used. If we have mixture of different kind of sources (i.i.d. and colored) the best results
may be achieved by combination of several algorithms in the sense that in each stage we
use different algorithm depending what kind of source signal is desired to extract.
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Appendix A. Global Convergence of Algorithms for Blind Source Extraction Based on
Kurtosis

Assuming that source signals s; are independent, the following property holds [349]
Ka(y1) = /<34(g1TS) = ZM(SJ‘)Q%J" (A1)
j=1

where g1; is the jth element of the row vector gl = w{ A. Next, let us assume throughout
this section without loss of generality that every source signal has unit variance (or unit
second order cumulant), i.e.,

Kao(s;) = 0?(sj) = E{s?} =1, V5. (A.2)

This assumption is always feasible because the source signals have zero-mean and differences
in the variance (power) can be absorbed in the mixing matrix A.

Lemma A.1 Consider the optimization problem [J01):

Mazimize

n

J(v) = Z djv; = viDyv, Ivf=¢>0 (A.3)
j=1

where D is a diagonal matriz: D = diag{ds,...,d,}. Assume that there exists only one
indexr jo such that d;, = maxi<j<nd;. Then every local mazima is global and the point
of global mazimum is exactly the vector £ce;,, where e;, = (0,...0,1,0,...,0), (1 is in the
Jjo—th place).

Proof. Applying the Lagrange multipliers theorem for a point of a local maximum
Vi = (U1, vy Unx ), W€ Write:

dj’l}j* — )\Uj* = O, (] = 1, 2, [N ,TL) (A4>

where A is a Lagrange multiplier.
Multiplying (A.4) by v;, and summing, we obtain:

2
Jmaa: = Ac ’

where J,,,, means the value of J at the local maximum. Hence

Jmaz
A= . (A.5)

From (A.4)), we obtain
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whence either v, = 0, or Jya. = djc® for every j = 1,...,n. Therefore, if v, is a global
maximum, then v, = +cej,.

We shall prove that every local maximum is global.

According to the second order optimality condition, a point v, is a local maximum if

cI'V2L(v.)e<0 Vee K(v,)={c:c'v, =0}, c#0,

where
Zdv— (vl =€)

is the Lagrange function.
In our case, we obtain

n

I VIL(v e = (dj — N3 (A.6)

K(+cej) ={c:¢c; =0}.

We conclude that the quadratic form (A.6) is negatively definite at v, for ¢ € K(v,) if and
only if A =d;, and v, = £ce;,. O

In a similar way, we can prove the following Lemma [4G1].

Lemma A.2 Consider the optimization problem:

n
Minimize (mazimize) Z KUY
j=1
subject to ||v|| = ¢ > 0, where p > 2 is even.

Denote It = {j € {1,2,...,n} : k; > 0}, I~ ={j € {1,2,...,n} : k; < 0} and e; =

(0,...,0,1,0,...,0), (1 is the j—th place). Assume that I # () and I~ #0.
Then the points of local minimum are exactly the vectors v] = *ce;,j € I~ and the

points of local mazimum are exactly the vectors v = tcej,jel.

Using the Lemma (A.2), we are able to formulate and prove the following Theorem [461].

Theorem A.1 Let wy be a local minimum of the cost function given by (5.5). Then the
output signal y1 = wix recover one of the source signals, y1 converges to one of the desired
solutions, i.e., £csy+ if and only if Bra(s1+) > 0, where y1 = wixy, x; = As, gl = wl A,
where A is full column rank and s1« € {$1,82,- .., Sm -

Proof. According to the property in (A.1), the minimization of (5.5)) is equivalent to
maximization of .
B PO EACHI
4 (Z?:l ma(s ])g%j)Q

Ji(g1) = (A7)



APPENDIX 227

Because of the assumption in (A.2), the criterion J;(g1) in (A.7) reduces to

- 10 malsy)gl
A Y

(A.8)
Maximization of (A.8)) is equivalent to the constraint maximization problem:

Maximize Z;’L:I ﬁ,‘m(sj)g‘llj under constraint ||g1]| = 1. Applying the Lemma [A.2 we
finish the proof.

(]

Appendix B. Analysis of Extraction and Deflation Procedure

At the jth extraction and deflation processing units, we assume without loss of generality
that elements s; in s are permuted such that the first j — 1 elements are the source signals
that were previously extracted. We further assume that the column vectors h; in the mixing
matrix H are also permuted accordingly.

Theorem B.2 Under notations of section5.2.5 and assuming E{sf} =1, Vj, we have
xi(k) = > hy,s,(k), (B.1)
r=j+1

where xo(k) = x(k), i.e., x;, = HD; s, where D; = diag{di1,ds2, ..., din}, with d;; =0 for
j<ianddy; =1 forj>i.

Proof. We shall prove the Theorem by induction. For j = 0, the conclusion (B.1) is true.
Assume that (B.1) is true for some j. Using the Theorem [A.1, we obtain y; = +s;41 and
for 7 + 1, we obtain:

xja(k) = (k) =Wy (k) = > hes(k) — E{x;y;}y; (k)

r=j+1
= Z h, s, (k) — E{ Z hysp(k)sji1(k)}sjta(k) = Z h, s, (k).(B.2)
r=j+1 r=j+1 r=j+2

O

Next, we discuss two implementation issues: The first issue is how to choose or estimate
on-line a proper value of 8, and the second issue is when to terminate the extraction and
deflation procedures if it is necessary to extract all non-Gaussian signals.

Use of Analytical Results for Implementation
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Implementation Issue 1

One of the main assumptions used both in the Theorem [A.1l and the Theorem B.2 is
that at the jth extraction and deflation processing units (j = 1,2,... ), there exists an
index r < j such that Br4(s,) > 0. Let S; denote the set of indices of the remaining,
non-extracted source signals at the jth extraction processing unit. At the jth extraction
processing unit, there are two possible cases where this assumption is violated, i.e.,

e Case I: Jis set to -1 when k4(s,) > 0, Vr € S;, or
e Case II: 3 is set to +1 when k4(s,) <0, Vr € §;.

Let us denote g; = [gj1,gj2s-- -+ gjn] = (w;‘»FHDj)T. Applying the property (A.1), we
have

Kaly;) = Z Ka(5:) g0 (B.3)

Based on this feature, we can prevent the above two cases by fixing 8 to 1 (or -1). Let
K (yj(k)) denote the estimated value of normalized 4th-order cumulant. At the jth ex-
traction processing unit, if the condition (k4 (yj(k')) > 0 holds for k = fj, where ij is a
specified time period, this means that x4(s,) > 0 (or < 0), Vr € S;. We then stop and
restart the extraction process at the jth extraction processing unit with 3 being flipped
to -1 (or 1). Alternatively, we can estimate the sign of k4(y;) on-line during the learning
process, as done in [278], 279, 1143} 1144]). Another approach is to maximize absolute value
of the normalized kurtosis.

Implementation Issue 2

Here we discuss a terminating condition for the extraction and deflation procedures.
We need to consider this issue because, we employ the assumption that the number of
source signals is not known in advance and is less than or equal to the number of sensor
signals, i.e., n < m. According to Theorem [B.2, at the (j = n)th deflation processing unit,
Xnp1 = HD, s =10,0,...,0]7. As a result, in practice, due to error and/or additive noise,
we can terminate the extraction and deflation procedures when the amplitudes of all entries
of the vector x;41 = x; — W,y; are below a small given threshold or all the elements of the
vector x;1 are Gaussian signals, i.e., they have zero kurtosis.

Appendix C. Conditions for Extraction of Sources Using Linear Predictor Approach

The theoretical results for the learning model used the linear predictor can be summarized
in the form of the following Theorem.

Theorem C.3 Consider the minimization problem:
Minimize

J(w,b) = E{?}, (C.1)
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where (k) = y(k) — Zﬁzl byy(k —p).
Assume that the following conditions are satisfied

1) E{s?} =1forj=1,2,...,n.

2) Rs(p,q) = E{s(k—p)s(k—q)T} = E{s, Sg} are diagonal matrices for p,q =0,1,..., L
such that J attains its global minimum with respect to w and the matrix

L
Re(b) =2 b, Re(p) — D bybyRs(p,q) — 1,

p=1 p,q=1

is diagonal with unique mazimal diagonal element for any coefficients by,.
Then g. = HTw, has the form g. = +c.e;, where e; = (0,...,1,...,0), with 1 in the j-th
place, for some index j € {1,...,n} and some scalar c,.

The above Theorem says that the cost function in (5.65) has no spurious minima. As a
result, it is guaranteed that a desired solution can always be reached independent of initial
conditions or, in other words, a source signal having unique temporal structures can always
be extracted from the mixtures.

Proof. Let J given by Eq: (C.1) attain its minimum at the point w, (such a point
exists, since the cost function is quadratic).

Under the assumptions of the Theorem and taking into account that y = w
x = H's, we obtain

Tx and

L L
J(w,b) = B{y*} — 2 pr wiE{xx,}w+ Z by by W' E{x,x_ } w.
p=1 p,q=1

Since E{y?} = E{wlxxTw} = E{wTHss"H'w} = gl'g = ||g||? the cost function can
be expressed as

L L
J(w,b)=g"g—2> b,g"Ra(p)g+ > bybyg"Ra(p,q) g,

p=1 p,q=1

where the global vector g = H” w.

Thus the problem converts to the following one:
Maximize g’ R g, subject to g’'g = c.

Applying Lemma [A.1, we finish the proof. O






Natural Gradient Approach to
Independent Component
Analysis

Two roads diverged in a wood, and I... took the one less travelled by, and that has made all the
difference.
—Robert Frost “The Road Not Taken”

In this chapter, fundamental signal processing and information theoretic approaches are
presented together with learning algorithms for the problem of adaptive blind source sepa-
ration (BSS) and Independent Component Analysis (ICA). We discuss recent developments
of adaptive learning algorithms based on the natural gradient approach in the general lin-
ear, orthogonal and Stiefel manifolds. Mutual information, Kullback-Leibler divergence,
and several promising schemes are discussed and reviewed in this chapter, especially for
signals with various unknown distributions and unknown number of sources. Emphasis is
given to an information-theoretical and information-geometrical unifying approach, adap-
tive filtering models and associated on-line adaptive nonlinear learning algorithms. We
discuss the optimal choice of nonlinear activation functions for various distributions, e.g.,
Gaussian, Laplacian, impulsive and uniformly-distributed signals based on a generalized-
Gaussian-distributed model. Furthermore, family of efficient and flexible algorithms that
exploit nonstationarity of signals are also derived.

231



232 NATURAL GRADIENT APPROACH TO INDEPENDENT COMPONENT ANALYSIS

Unknown
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Fig. 6.1 Block diagram illustrating standard independent component analysis (ICA) and blind source
separation (BSS) problem.

6.1 BASIC NATURAL GRADIENT ALGORITHMS

Let us consider the simple mixing system illustrated in Fig. [6.1 and described in a vector-
matrix form as

x(k) = Hs(k) + v(k), (6.1)
where x(k) = [x1(k),..., 2 (k)] is a noisy sensor vector, s(k) = [s1(k),...,sn(k)]T is a
source signal vector, v(k) = [v1(k),...,vm(k)]T is the noise vector, and H is an unknown

full rank m X n mixing matrix. It is assumed that only the sensor vector x(k) is available.
The objective is to design a feed-forward or recurrent neural network and an associated
adaptive learning algorithm that enables estimation of sources and/or identification of the
mixing matrix H and/or separating matrix W with good tracking abilities for time variable
systems.

The present section is devoted to the analysis of learning algorithms for a typical but
simple instantaneous blind source separation problem. Here, we assume that the number
of source signals is known and is equal to the number of sensors (with m = n), so that
both H and W are nonsingular n x n matrices. The source signals s;(k) are assumed to be
mutually independent with zero-mean (E{s;(k)} = 0). We also assume that additive noise
terms v(k) are negligible or reduced to be at negligible levels by the preprocessing stated
in the previous chapters. The following section gives a prototype of mathematical analysis.
We will then relax most of these constraints in later sections.

6.1.1 Kullback-Leibler Divergence - Relative Entropy as Measure of Stochastic
Independence

In order to obtain a good estimate y = Wx of the source signals s, we introduce an objective
or loss function p(y, W) in terms of the estimated y and W. Its expected value, called risk
function

R(W) = E{p(y, W)}, (6.2)
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represents measure of mutual independence of output signals y(k). In other words, the
risk function R(W) should be minimized when the components of y become independent,
that is, when W is a rescaled permutation of H™!'. To 