&\)

\

ALL

\ \‘_
3
6
W\

\
QQ
N
!

@\
N

\Q\\
‘”@
N
\8
W\\Q
N

s

N

\

L one, two Bt

ANALN

N

7

N

\

N\

: g -
L el Aok — U
e st i . 9 Wos et o pud @ e
8 of g, Vew, 8 Ly e s DO e
G LT A g S0eC 1‘—“\ otk acvelo =
ety . feelint iy o .
i o £ 2CA1 g WY an & e it P
Py Mg by e o iy ‘
e wh AVt cont >
: ter % ‘

Al

§

)

PIMAAVAAGRA A
\8 1 AW
I Wm%@
?mﬁepm, ~ m dj///(
NI S853Q & & W)
?WSTCS/(D 3 ﬁ/ﬁﬁ@(

NIRRT

TEX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Publishing Company, Inc.

Copyright ©1996

Center for the Study of Language and Information
Leland Stanford Junior University

Co-published by Cambridge University Press
Printed in the United States

0302010099 65432

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
Selected papers on computer science / Donald E. Knuth
xii,274 p. 23 cm. -- (CSLI lecture notes ; no. 59)
Includes bibliographical references and index.
ISBN 1-881526-91-7 (paperback : alk. paper) --
ISBN 1-881526-92-5 (hardback : alk. paper)
1. Computer science. I. Title. II. Series.
QA76.6.K537 1996
004.1'1--dc20 96-11382
CIP

to George Forsythe

whose inspiring leadership
shaped the field

Contents

0 Algorithms, Programs, and Computer Science 1
1 Computer Science and its Relation to Mathematics 5
2 Mathematics and Computer Science: Coping with Finiteness 31
3 Algorithms 59
4 Algorithms in Modern Mathematics and Computer Science 87
5 Algorithmic Themes 115
6 Theory and Practice, I 123
7 Theory and Practice, II 129
8 Theory and Practice, III 141
9 Theory and Practice, IV 149
10 Are Toy Problems Useful? 169
11 Ancient Babylonian Algorithms 185
12 Von Neumann’s First Computer Program 205
13 The IBM 650: An Appreciation from the Field 227
14 George Forsythe and the Development of Computer Science 241
15 Artistic Programming 261

Index 263

vii

Preface

This book assembles under one roof all of the things I’ve written about
computer science for people who aren’t necessarily specialists in the
subject — for scientists and mathematicians in general, and for educated
people in all fields. I'm grateful for this opportunity to put the materials
into a consistent format, and to correct errors in the original publications
that have come to my attention. If any of this work deserves to be re-
membered, it is now in the form that I most wish people to remember it.

Scientists always find it easiest to write for colleagues who share
their own subspecialty. But George Forsythe told me in 1970 that I
should be prepared to explain things to a wider group of people —at
least once or twice during my life—even though it is somewhat scary
to talk to people you don’t know very well. I kept his advice in mind
during the next years and tried my best to fulfill this responsibility
whenever suitable opportunities arose. Writing such papers has proved
to be a pleasant task, and quite instructive, because it has given me a
chance to reflect on what I've been doing and to see things in a broader
perspective. Therefore I hope the reader will learn at least a fraction of
what I’ve learned while preparing the expository material in this book.

Chapter 0 gives a brief definition of Computer Science together with
the related notions of algorithms and programs. Then Chapter 1 dis-
cusses the relationship between Computer Science and the branch of
science that is its nearest neighbor: Mathematics. Synergy between
Computer Science and Mathematics is explored further in Chapter 2,
which tells the story of how we are learning to cope with fundamental
limitations of time and space, as computers get faster and more powerful
yet do not keep up with our growing expectations.

Algorithms are the life-blood of Computer Science, so Chapter 3 is
a general introduction to algorithms: what they are, what they’re good
for, how they are studied and compared. The similarities and differences

ix

x Selected Papers on Computer Science

between “algorithmic thinking” and “mathematical thinking” are high-
lighted in Chapter 4, which attempts to understand modes of thought
by analyzing a randomly chosen sample of works by prominent mathe-
maticians. Chapter 5, “Algorithmic Themes,” was written for the 100th
birthday of the American Mathematical Society; it gives an overview
of some interesting topics that belong to both Computer Science and
Mathematics.

When I try to characterize my own life’s work, I think of it primarily
as an attempt to balance theoretical studies with practical achievements.
Therefore I have often chosen the title “Theory and Practice” when I've
been asked to speak on special occasions. The texts of four such talks ap-
pear in Chapters 6-9. Chapter 6, never before published, was the speech
I gave when I was appointed to Stanford’s first endowed chair in Com-
puter Science (1977); Chapter 7 was a keynote speech delivered to the
European Association for Theoretical Computer Science in the ancient
Greek theater of Epidaurus (1985); Chapter 8, previously unpublished,
was an after-dinner talk at the 40th birthday party for ENIAC, the
first electronic computer (1986); Chapter 9 was the opening address of
the 11th World Congress of the International Federation of Information
Processing (1989). The philosophical flavor of these speeches carries
over into Chapter 10, “Are Toy Problems Useful?”, which discusses the
relevance of work that may seem at first to be purely recreational.

The remaining chapters are devoted to topics in the history of Com-
puter Science. Chapter 11 goes back thousands of years to the ancient
origins of algorithms in middle-Eastern cultures. Then Chapter 12 skips
to modern times (1945), with a detailed analysis of the first computer
program written by John von Neumann, one of the key pioneers of com-
puting. Chapter 13 is about the IBM 650, the first computer to be
installed in more than 1000 centers around the world. That machine
was near and dear to my heart, because I spent many pleasant evenings
with it during 1957-1960. Finally, Chapter 14 is an obituary of George
Forsythe, the inspiring leader who was chiefly responsible for the estab-
lishment of Computer Science as an academic discipline.

I have made minor adjustments to the texts, but by and large
these chapters remain essentially as I originally wrote them. The bib-
liographies have been put into a consistent format, and many of the
illustrations have been improved by redrawing them with METAPOST.
Additional references have been added where appropriate, and I've also
added supplementary material describing recent progress on problems
that were unsolved when I had first discussed them. The most extensive
amendments appear in Chapters 4 and 11.

Preface xi

P'm extremely grateful to Stanford’s Center for the Study of Lan-
guage and Information (CSLI) for the opportunity to publish this book
and for their expertise in preparing everything the way I like to see it. In
particular, Michael Inman prepared electronic forms of many files that
had originally been typed by my secretary, Phyllis Winkler; Tony Gee
collected and organized the materials in a timely manner; Copenhaver
Cumpston designed the cover; and Dikran Karagueuzian initiated and
supervised the entire project. Sun Microsystems provided me with a
computer on which I was able to do the final editing and polishing.

This is the second in a series of books that CSLI plans to publish
containing archival forms of the papers I have written. The first volume,
Literate Programming, appeared in 1992. Six additional volumes are in
preparation containing selected papers on Analysis of Algorithms, Com-
puter Languages, Design of Algorithms, Digital Typography, Discrete
Mathematics, Fun and Games.

Donald E. Knuth
Stanford, California
December 1995

Acknowledgments

“Algorithm and Program; Information and Data” originally appeared in
Communications of the ACM 9, Number 9 (June 1966), p. 654, as a letter to
the editor. Copyright ©1966 by ACM Press. Reprinted by permission. Copy-
rights and Permissions courtesy Association for Computing Machinery, Inc.

“Computer Programming and Computer Science” originally appeared in
The Academic Press Dictionary of Science and Technology (1992), p. 490.
Copyright ©1992 by Academic Press, a subsidiary of Harcourt, Brace & Co.
Reprinted by permission.

“Computer Science and its Relation to Mathematics” originally appeared
in American Mathematical Monthly 81, Number 4 (December 1974), pp. 323-
343. Copyright ©1974 by Mathematical Association of America. Reprinted
by permission.

“Mathematics and Computer Science: Coping with Finiteness” originally
appeared in Science 194, Number 4271 (December 17, 1976), pp. 1235-1242.
Copyright ©1976 by American Association for the Advancement of Science.
Reprinted by permission.

“Algorithms” originally appeared in Scientific American 236, Number 4
(April 1977), pp. 63-80. The illustrations have been redrawn by Donald E.
Knuth using METAPOST. Copyright ©1977 by Scientific American. Re-
printed by permission.

xii Selected Papers on Computer Science

“Algorithms in Modern Mathematics and Computer Science” originally
appeared in Lecture Notes in Computer Science 122 (1981), pp. 82-99. Copy-
right ©1981 by Springer-Verlag Berlin Heidelberg. Reprinted by permission.

“Algorithmic Themes” originally appeared in A Century of Mathematics
in America 1 (1988), pp. 439-445. Copyright ©1988 by American Mathemat-
ical Society. Reprinted by permission.

“Theory and Practice, II” originally appeared in Bulletin of the EATCS
27 (1985), pp. 15-21. Copyright ©1985 by European Association for Theo-
retical Computer Science. Reprinted by permission. Photo reprinted courtesy
of Gregory Mentzas.

“Theory and Practice, IV” is reprinted from Theoretical Computer Sci-
ence, Vol. 90, pp. 1-15, 1991 with kind permission from Elsevier Science — NL,
Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.

“Are Toy Problems Useful?” originally appeared in Popular Computing
5, Number 1 (January 1977), pp. 1-10, and 5, Number 2 (February 1977),
pp- 3-7. Copyright ©1977 by McGraw-Hill Inc. Reprinted by permission.

“Ancient Babylonian Algorithms” originally appeared in Communications
of the ACM 15, Number 7 (July 1972), pp. 671-677, with errata in Communi-
cations of the ACM 19, Number 2 (February 1976), p. 108. Copyright ©1972,
1976 by ACM Press. Reprinted by permission. Copyrights and Permissions
courtesy Association for Computing Machinery, Inc.

“Von Neumann’s First Computer Program” originally appeared in Com-
puting Surveys 2, Number 4 (1970), pp. 247-260. Copyright ©1970 by ACM
Press. Reprinted by permission. Copyrights and Permissions courtesy Asso-
ciation for Computing Machinery, Inc.

“The IBM 650: An Appreciation from the Field” originally appeared
in IEEE Annals of the History of Computing 8, Number 1 (January 1986),
pp. 50-55. Copyright ©1986 by IEEE Annals of the History of Computing.
Reprinted by permission.

“George Forsythe and the Development of Computer Science” originally
appeared in Communications of the ACM 15, Number 8 (August 1972),
pp. 721-726. Copyright ©1972 by ACM Press. Reprinted by permission.
Copyrights and Permissions courtesy Association for Computing Machin-
ery, Inc.

“Artistic Programming” originally appeared in Current Contents, Physi-
cal, Chemical & Earth Sciences 33, Number 34 (August 23, 1993), p. 8, and
in Current Contents, Engineering, Technology & Applied Sciences 24, Num-
ber 34 (August 23, 1993), p. 8, as “This Week’s Citation Classic”. Copyright
©1993 by Institute for Scientific Information. Reprinted by permission.

Chapter 0

Algorithms, Programs, and Computer
Science

Let’s begin by trying to understand some basic terms.

1. Algorithm and Program; Information and Data

[Originally published in Communications of the ACM, Volume 9, Num-
ber 9, September 1966.]

EDITOR:

The letter by Dr. Huber defines “algorithm” in terms of program-
ming languages. I would like to take a slightly different point of view,
in which algorithms are concepts that have existence apart from any
programming language. To me the word algorithm denotes an abstract
method for computing some output from some input, while a program is
an embodiment of a computational method in some language. I can write
several different programs for the same algorithm (e.g., in ALGOL 60
and in PL/I, assuming that those languages are given an unambiguous
interpretation).

Of course if I am pinned down and asked to explain more precisely
what I mean by these remarks, I am forced to admit that I don’t know
any way to define any particular algorithm except in a programming
language. Perhaps the set of all concepts should be regarded as a formal
language of some sort. But I believe that algorithms were present long
before Turing et al. formulated them, just as the concept of the number
“two” was in existence long before the writers of first grade textbooks
and other mathematical logicians gave it a certain precise definition.

By “computation” I mean essentially the same thing as what many
people nowadays call “data processing,” “symbol manipulation,” or
more generally “information processing.”

There seems to be confusion between the words information and
data much like that between algorithm and program. When a scientist

1

2 Selected Papers on Computer Science

conducts an experiment in which some quantity is being measured, we
have four things present, each of which is often called “information”:
(a) the true value of the quantity; (b) the approximation to this true
value that is actually obtained by the measuring device; (c) a represen-
tation of the value (b) in some formal language; and (d) the concepts
learned by the scientist by a study of the measurements. The word
“data” is most appropriately applied to (c), and the word “information”
when used in a technical sense should be further qualified by stating
what kind of information is meant.

2. Computer Programming and Computer Science

[Originally published in the Academic Press Dictionary of Science and
Technology (1992).]

A computer program is a representation of an algorithm in some well-
defined language. Algorithms are abstract computational procedures for
transforming information; programs are their concrete embodiments.

The world’s first programmer was Lord Byron’s daughter, A. Ada
Lovelace, who formulated precise instructions for the calculation of
trigonometric functions on Charles Babbage’s unfinished Analytical En-
gine in 1843. The total number of people who now consider programming
to be part of their profession has risen to more than 5 million in the
United States alone, and there are perhaps 50 million people worldwide
who regularly write programs of one kind or another.

The best programs are written so that computing machines can
perform them quickly and so that human beings can understand them
clearly. A programmer is ideally an essayist who works with traditional
aesthetic and literary forms as well as mathematical concepts, to com-
municate the way that an algorithm works and to convince a reader that
the results will be correct. Programs often need to be modified, because
requirements and equipment change. Programs often need to be com-
bined with other programs. Success at these endeavors is directly linked
to the effectiveness of a programmer’s expository skills.

Many subtle techniques are known by which programs can be made
to run considerably faster than would be possible with a naive approach.
The quantitative theory of program efficiency is often called the anal-
ysis of algorithms. This field of study has many important subfields,
including numerical analysis (the study of algorithms for scientific com-
putation); complexity theory (the study of the best possible ways to
solve given problems using given hardware); symbolic computation (the
study of algorithms for manipulating algebraic formulas); computational

Algorithms, Programs, and Computer Science 3

geometry (the study of algorithms that deal with lines, surfaces, and
volumes); combinatorial optimization (the study of algorithms for se-
lecting the best of many possible alternatives); information retrieval
and database theory (the study of algorithms for storing and retrieving
large collections of facts); and the study of data structures (techniques
of representing the relationships between discrete items of information).

Computer programming and the analysis of algorithms are, in turn,
subfields of a considerably larger discipline called computer science,
which deals with all of the complex phenomena surrounding comput-
ers. Computer science is known as “informatics” in French, German,
and several other languages, but American researchers have been reluc-
tant to embrace that term because it seems to place undue emphasis
on the stuff that computers manipulate rather than on the processes of
manipulation themselves.

Computer science answers the question “What can be automated?”
Its principal subfields, besides the analysis of algorithms, presently in-
clude software engineering (the study of languages and methodologies for
programming, of operating systems for controlling computer resources,
and of utility programs tailored to significant applications like account-
ing or desktop publishing); graphics and visualization (the development
of tools for analysis and synthesis of images); computer architecture
and communication (the design of machines and of networks to connect
them); artificial intelligence (the development of tools for accumulating,
applying, and reasoning about knowledge); human-machine interaction
(the study of interfaces between people and computers); robotics (the
development of mobile machines with sensors); and interdisciplinary
connections with virtually every other branch of science, technology,
medicine, and the humanities.

Chapter 1

Computer Science and its Relation to
Mathematics

[Originally published in American Scientist, vol. 61, no. 6, November-
December 1973; and in The American Mathematical Monthly, vol. 81,
no. 4, April 1974, with additional material that is reproduced here.|

A new discipline called Computer Science has recently arrived on
the scene at most of the world’s universities. The present article gives
a personal view of how this subject interacts with Mathematics, by dis-
cussing the similarities and differences between the two fields, and by
examining some of the ways in which they help each other. A typical
nontrivial problem is worked out in order to illustrate these interactions.

What is Computer Science?

Since Computer Science is relatively new, I must begin by explaining
what it is all about. At least, my wife tells me that she has to explain it
whenever anyone asks her what I do, and I suppose most people today
have a somewhat different perception of the field than mine. In fact, no
two computer scientists will probably give the same definition; this is not
surprising, since it is just as hard to find two mathematicians who give
the same definition of Mathematics. Fortunately it has been fashionable
in recent years to have an “identity crisis,” so computer scientists have
been right in style.

My favorite way to describe computer science is to say that it is
the study of algorithms. An algorithm is a precisely-defined sequence
of rules telling how to produce specified output information from given
input information in a finite number of steps. A particular representation
of an algorithm is called a program, just as we use the word “data” to
stand for a particular representation of “information” [16]. Perhaps the
most significant discovery generated by the advent of computers will

5

6 Selected Papers on Computer Science

turn out to be that algorithms, as objects of study, are extraordinarily
rich in interesting properties; and furthermore, that an algorithmic point
of view is a useful way to organize knowledge in general. G. E. Forsythe
has observed that “the question ‘What can be automated?’ is one of the
most inspiring philosophical and practical questions of contemporary
civilization” [8].

From these remarks we might conclude that Computer Science
should have existed long before the advent of computers. In a sense,
it did; the subject is deeply rooted in history. For example, I recently
found it interesting to study ancient documents, learning to what ex-
tent the Babylonians of 3500 years ago were computer scientists [18].
But computers are really necessary before we can learn much about the
general properties of algorithms; human beings are not precise enough
nor fast enough to carry out any but the simplest procedures. Therefore
the potential richness of algorithmic studies was not fully realized until
general-purpose computing machines became available.

I should point out that computing machines (and algorithms) do
not only compute with numbers. They can deal with information of any
kind, once it is represented in a precise way. We used to say that a
sequence of symbols, such as a name, is represented inside a computer
as if it were a number; but it is really more correct to say that a number
is represented inside a computer as a sequence of symbols.

The French word for computer science is Informatique; the German
is Informatik; in Danish, the word is Datalogi [23]. All of these terms
wisely imply that computer science deals with many things besides the
solution to numerical equations. However, these names emphasize the
“stuff” that algorithms manipulate (the information or data), instead
of the algorithms themselves. The Norwegians at the University of Oslo
have chosen a somewhat more appropriate designation for computer sci-
ence, namely Databehandling; its English equivalent, “Data Processing”
has unfortunately been used in America only in connection with business
applications, while “Information Processing” tends to connote library
applications. Several people have suggested the term “Computing Sci-
ence” as superior to “Computer Science.”

The search for a perfect name is somewhat pointless, of course, since
the underlying concepts are much more important than the name. Yet
we cannot help noticing that these other names for computer science all
de-emphasize the role of computing machines themselves, apparently in
order to make the field more legitimate and respectable. Many people’s
opinion of a computing machine is, at best, that it is a necessary evil:
a difficult tool to be used if other methods fail. Why should we give

Computer Science and its Relation to Mathematics 7

so much emphasis to teaching how to use computers, if they are merely
valuable tools like (say) electron microscopes?

Computer scientists, knowing that computers are more exciting than
mere tools, instinctively underplay the machine aspect when they are
defending their new discipline. However, it is not necessary to be
so self-conscious about machines; this has aptly been pointed out by
Newell, Perlis, and Simon [24], who define computer science simply as
the study of computers, just as botany is the study of plants, astronomy
the study of stars, and so on. The phenomena surrounding computers
are immensely varied and complex, requiring description and explana-
tion; and, like electricity, these phenomena belong both to engineering
and to science.

When I say that computer science is the study of algorithms, I am
singling out only one of the “phenomena surrounding computers,” so
computer science actually includes more. I have emphasized algorithms
because they are really the central core of the subject, the common de-
nominator that underlies and unifies the different branches. It might
happen that technology someday settles down, so that in say 25 years
computing machines will be changing very little. There are no indica-
tions of such a stable technology in the near future, quite the contrary,
but I believe that the study of algorithms will remain challenging and
important even if the other phenomena of computers might someday be
fully explored. The reader interested in further discussions of the nature
of computer science is referred to [19], [30], and [32], in addition to the
references cited above.

Is Computer Science Part of Mathematics?

Certainly there are diverse phenomena about computers that are now be-
ing actively studied by computer scientists, phenomena that are hardly
mathematical. But if we restrict our attention to the study of algorithms,
isn’t this merely a branch of mathematics? After all, algorithms were
studied primarily by mathematicians, if by anyone, before the days of
computing machines. Therefore one could argue that this central aspect
of computer science is really part of mathematics.

However, I believe that a similar argument can be made for the pro-
position that mathematics is a part of computer science! Thus, by the
definition of set equality, the subjects would be proved equal; or at least,
by the Schroder-Bernstein theorem, they would be equipotent. My own
feeling is that neither of these set inclusions is valid. It is always difficult
to establish precise boundary lines between disciplines (compare, for ex-
ample, the subjects of “physical chemistry” and “chemical physics”); but

8 Selected Papers on Computer Science

it is possible to distinguish essentially different points of view between
mathematics and computer science.

The following true story is perhaps the best way to explain the
distinction I have in mind. Some years ago I had just learned a mathe-
matical theorem from which it followed that any two n x n matrices A
and B of integers have a “greatest common right divisor” D. This means
that D is a right divisor of A and of B, i.e., A= A’D and B = B'D for
some integer matrices A’ and B’, and that every common right divisor
of A and B is a right divisor of D. So I wondered how to calculate the
greatest common right divisor of two given matrices. A few days later I
happened to be attending a conference where I met the mathematician
H. B. Mann, and I felt that he would know how to solve this problem.
I asked him, and he did indeed know the correct answer; but it was
a mathematician’s answer, not a computer scientist’s answer! He said,
“Let R be the ring of n X n integer matrices; in this ring, the sum of
two principal left ideals is principal, so let D be such that

RA+RB =RD.

Then D is the greatest common right divisor of A and B.” This for-
mula is certainly the simplest possible one; we need only eight symbols
to write it down. And it relies on rigorously-proved theorems of math-
ematical algebra. But from the standpoint of a computer scientist, it is
worthless, since it involves constructing the infinite sets R4 and RB,
taking their sum, then searching through infinitely many matrices D un-
til finding one for which this sum matches the infinite set 98D. I could
not determine the greatest common right divisor of (3 2) and (3 %) by
doing such infinite operations. (Incidentally, I eventually found a com-
puter scientist’s answer to this question in a book by E. Cahen, 1914;
see [17, exercise 4.6.1-19].)

One of my mathematical friends told me he would be willing to
recognize computer science as a worthwhile field of study, as soon as it
contains 1000 deep theorems. This criterion should obviously be changed
to include algorithms as well as theorems, say 500 deep theorems and 500
deep algorithms. But even so it is clear that computer science today does
not measure up to such a test, if “deep” means that a brilliant person
would need many months to discover the theorem or the algorithm.
Computer science is still too young for this; I can claim youth as a
handicap. We still do not know the best way to describe algorithms, to
understand them or to prove them correct, to invent them, or to analyze
their behavior, although considerable progress is being made on all these

Computer Science and its Relation to Mathematics 9

fronts. The potential for “1000 deep results” is there, but only perhaps
50 have been discovered up to the present time (1974).*

In order to describe the mutual impact of computer science and
mathematics on each other, and their relative roles, I'm therefore looking
somewhat to the future, to the time when computer science is a bit
more mature and sure of itself. Recent trends have made it possible
to envision a day when computer science and mathematics will both
exist as respected disciplines, serving analogous but different roles in a
person’s education. To quote George Forsythe again, “The most valuable
acquisitions in a scientific or technical education are the general-purpose
mental tools which remain serviceable for a lifetime. I rate natural
language and mathematics as the most important of these tools, and
computer science as a third” [9].

Like mathematics, computer science will be a subject that is consid-
ered basic to a general education. Like mathematics and other sciences,
computer science will continue to be vaguely divided into two areas,
which might be called “theoretical” and “applied.” Like mathematics,
computer science will be somewhat different from the other sciences, in
that it deals with artificial laws that can be proved, instead of natural
laws that are never known with certainty. Thus, the two subjects will
be like each other in many ways. The difference is in the subject matter
and the approach — mathematics dealing more or less with theorems, in-
finite processes, static relationships, and computer science dealing more
or less with algorithms, finitary constructions, dynamic relationships.

Many computer scientists have been doing mathematics, but many
more mathematicians have been doing computer science in disguise. I
have been impressed by numerous instances of mathematical theories
that are really about particular algorithms; these theories are typically
formulated in mathematical terms that are much more cumbersome and
less natural than the equivalent algorithmic formulation today’s com-
puter scientists would use. For example, most of the content of a 35-page
paper by Abraham Wald can be presented in about two pages when it
is recast into algorithmic terms [17, Section 3.5D]; and numerous other
examples can be given. But that is a subject for another paper.

Educational side-effects

A person well-trained in computer science knows how to deal with al-
gorithms: how to construct them, manipulate them, understand them,

*I now believe that the 1000 mark was passed about 1980. And Volume 1000
of Springer’s Lecture Notes in Computer Science was published in 1995.

10 Selected Papers on Computer Science

analyze them. This knowledge is preparation for much more than writ-
ing good computer programs; it is a general-purpose mental tool that
will be a definite aid to the understanding of other subjects, whether
they be chemistry, linguistics, or music, etc. The reason for this may be
understood in the following way: It has often been said that a person
does not really understand something until after teaching it to someone
else. Actually a person does not really understand something until after
teaching it to a computer, i.e., expressing it as an algorithm. “The auto-
matic computer really forces that precision of thinking which is alleged
to be a product of any study of mathematics” [7]. An attempt to for-
malize things as algorithms leads to a much deeper understanding than
if we simply try to comprehend things in the traditional way.

Linguists thought that they understood languages, until they tried
to explain languages to computers; they soon discovered how much more
remains to be learned. Many people have set up computer models of
things, and have discovered that they learned more while setting up the
model than while actually looking at the output of the eventual program.

In the late 1940s, when UNIVAC was the first large-scale computer
to be marketed commercially, a total of three customers signed up to
buy one: the U.S. Census Bureau, the Prudential Life Insurance Com-
pany, and the A. C. Nielsen Company of television rating fame. When
the Nielsen people, together with UNIVAC’s technical representatives,
analyzed their operations carefully enough to see how to computerize
everything, they discovered how to save so much time and money that
they didn’t need a computer after all [14]!

For three years I taught a sophomore course in abstract algebra for
mathematics majors at Caltech, and the most difficult topic was always
the study of “Jordan canonical forms” for matrices. The third year I
tried a new approach, by looking at the subject algorithmically, and
suddenly it became quite clear. The same thing happened with the
discussion of finite groups defined by generators and relations, and in
another course with the reduction theory of binary quadratic forms. By
presenting the subject in terms of algorithms, the purpose and meaning
of the mathematical theorems became transparent.

Later, while writing a book on computer arithmetic [17], I found
that virtually every theorem in elementary number theory arises in a
natural, motivated way in connection with the problem of making com-
puters do high-speed numerical calculations. Therefore I believe that the
traditional courses in elementary number theory might well be changed
to adopt this point of view, adding a practical motivation to the already
beautiful theory.

Computer Science and its Relation to Mathematics 11

These examples and many more have convinced me of the peda-
gogic value of an algorithmic approach; such an approach promotes the
understanding of concepts of all kinds. I believe that students who are
properly trained in computer science are learning things that will implic-
itly help them cope with many other subjects. Therefore there soon will
be good reason to claim that undergraduate computer science majors
have received a good general education, just as we now believe this of
undergraduate math majors. On the other hand, the present-day under-
graduate courses in computer science are not yet fulfilling this goal; at
least, I find that many beginning graduate students with an undergrad-
uate degree in computer science have been more narrowly educated than
I would like. Computer scientists are working to correct this present de-
ficiency, which I believe is probably due to an overemphasis on computer
languages instead of algorithms.

Some interactions

Computer science has been affecting mathematics in many ways, and I
shall try to list the good ones here. In the first place, of course, comput-
ers can be used to compute, and they have frequently been applied in
mathematical research when hand computations are too difficult; they
generate data that suggests or demolishes conjectures. For example,
Gauss said [11] that he first thought of the prime number theorem by
looking at a table of the primes less than one million. In my own Ph.D.
thesis, I was able to resolve a conjecture concerning infinitely many cases
by looking closely at computer calculations of the smallest case [15]. An
example of another kind is Marshall Hall’s recent progress in the deter-
mination of all simple groups of orders up to one million. Secondly, there
are obvious connections between computer science and mathematics in
the areas of numerical analysis [31], logic, and number theory; I need
not dwell on these here, since they are so widely known. However, I
should mention especially the work of D. H. Lehmer, who has combined
computing with classical mathematics in several remarkable ways; for
example, he has proved that every set of six consecutive integers > 285
contains a multiple of a prime > 41.

Another impact of computer science has been an increased empha-
sis on constructions in all branches of mathematics. Replacing existence
proofs by algorithms that construct mathematical objects has often led
to improvements in an abstract theory. For example, E. C. Dade and H.
Zassenhaus remarked, at the close of a paper written in 1963, “This con-
cept of genus has already proved of importance in the theory of modules
over orders. So a mathematical idea introduced solely with a view to

12 Selected Papers on Computer Science

computability has turned out to have an intrinsic theoretical value of its
own.” Furthermore, as mentioned above, the constructive algorithmic
approach often has pedagogic value.

Another way in which the algorithmic approach affects mathemati-
cal theories is in the construction of one-to-one correspondences. Quite
often there have been indirect proofs that certain types of mathemati-
cal objects are equinumerous; then a direct construction of a one-to-one
correspondence shows that in fact even more is true.

Discrete mathematics, especially combinatorial theory, has been
given an added boost by the rise of computer science, in addition to
all the other fields in which discrete mathematics is currently being
extensively applied.

For references to these influences of computing on mathematics, and
for many more examples, the reader is referred to the following sampling
of books, each of which contains quite a few relevant papers: [1], [2],
[4], [5], [22], [26], [28]. Peter Lax’s article [21] discusses the effect that
computing has had on mathematical physics.

But actually, in my opinion, the most important impact of computer
science on mathematics is somewhat different from all of the above. To
me, the most significant thing is that the study of algorithms themselves
has opened up a fertile vein of interesting new mathematical problems;
it provides a breath of life for many areas of mathematics that had been
suffering from a lack of new ideas. Charles Babbage, one of the “fa-
thers” of computing machines, predicted this already in 1864: “As soon
as an Analytical Engine [i.e., a general-purpose computer| exists, it will
necessarily guide the future course of the science. Whenever any result
is sought by its aid, the question will then arise — By what course of cal-
culation can these results be arrived at by the machine in the shortest
time?” [3]. And again, George Forsythe in 1958: “The use of practi-
cally any computing technique itself raises a number of mathematical
problems. There is thus a very considerable impact of computation on
mathematics itself, and this may be expected to influence mathematical
research to an increasing degree” [10]. Garrett Birkhoff [4, p. 2] has
observed that such influences are not a new phenomenon, they were al-
ready significant in the early Greek development of mathematics. I have
found that a great many intriguing mathematical problems arise when
we try to analyze an algorithm quantitatively, to see how fast it will
run on a computer; a typical example of such a problem is worked out
below. Another family of extremely interesting problems concerns the
search for best possible algorithms in a given class; see, for example, the
recent survey by Reingold [27]. One of the first mathematical theories

Computer Science and its Relation to Mathematics 13

to be inspired by computer science is the theory of languages, which by
now includes many beautiful results; see [12] and [13]. The excitement
of these new theories is the reason I became a computer scientist.

Conversely, mathematics obviously has a profound influence on com-
puter science; nearly every branch of mathematical knowledge has been
brought to bear somewhere. I recently worked on a problem dealing
with discrete objects called “binary trees,” which arise frequently in
computer representations of things, and the solution to the problem in-
volved the complex gamma function times the square of Riemann’s zeta
function [6]. Thus the results of classical mathematics often turn out to
be useful in rather amazing places.

The most surprising thing to me, in my own experiences with ap-
plications of mathematics to computer science, has been the fact that
so much of the mathematics has been of a particular discrete type, ex-
amples of which are discussed below. Such mathematics was almost
entirely absent from my own training, although I had a reasonably good
undergraduate and graduate education in mathematics. Nearly all of my
encounters with such techniques during my student days occurred when
working problems from the American Mathematical Monthly. 1 have
naturally been wondering whether or not the traditional curriculum —
the calculus courses, etc. —should be revised in order to include more of
these discrete mathematical manipulations, or whether computer science
is exceptional in its frequent application of them.

A detailed example

In order to clarify some of the vague generalizations and assertions made
above, I believe it is best to discuss a typical computer-science problem
in some depth. The particular example I have chosen is the one that
first led me personally to realize that computer algorithms suggest in-
teresting mathematical problems. This happened in 1962, when I was a
graduate student in mathematics; computer programming was a hobby
of mine, and a part time job, but I had never really ever worn my math-
ematician’s cloak and my computing cap at the same time. A friend
of mine remarked that “some good mathematicians at IBM” had been
unable to determine how fast a certain well-known computer method
works, and I thought it might be an interesting problem to look at.
Here is the problem: Many computer applications involve the re-
trieval of information by its “name”; for example, we might imagine a
Russian-English dictionary, in which we want to look up a Russian word
in order to find its English equivalent. A standard computer method
called hashing retrieves information by its name as follows. A rather

14 Selected Papers on Computer Science

large number, m, of memory positions within the machine is used to
hold the names; let us call these positions T1, T5, ..., Tr,. Each of
these positions is big enough to contain one name. The number m is
always larger than the total number of names present; therefore at least
one of the T; is empty. The names are distributed among the T}’s in
a certain way described below, designed to facilitate retrieval. Another
set of memory positions E;, Es, ..., E,, is used for the information
corresponding to the names; thus if 7; is not empty, E; contains the
information corresponding to the name stored in T;.

The ideal way to retrieve information using such a table would be
to take a given name z, and to compute some function f(z), which
lies between 1 and m; then the name x could be placed in position
Tf(z), and the corresponding information in Ey(,). Such a function f(z)
would make the retrieval problem trivial, if f(z) were easy to compute
and if f(z) # f(y) for all distinct names z # y. In practice, however,
these latter two requirements are hardly ever satisfied simultaneously; if
f(z) is easy to compute, we have f(z) = f(y) for some distinct names.
Furthermore, we don’t usually know in advance just which names will
occur in the table, and the function f must be chosen to work for all
names in a very large set U of potential names, where U has many more
than m elements. For example, if U contains all sequences of seven
letters, there are 267 = 8,031,810,176 potential names; it is inevitable
that f(z) = f(y) will occur.

Therefore we try to choose a function f(z), from U into the set
of locations {1,2,...,m}, so that f(z) = f(y) will occur with the ap-
proximate probability 1/m, when z and y are distinct names. Such a
function f is called a hash function. In practice, f(z) is often computed
by regarding = as a number and taking its remainder modulo m, plus
one; the number m in this case is usually chosen to be prime, since this
can be shown to give better results for the sets of names that generally
arise in practice. When f(z) = f(y) for distinct = and y, a “collision”
is said to occur; collisions are resolved by searching through positions
numbered f(z) + 1, f(x) + 2, etc.

The following algorithm expresses exactly how a hash function f(z)
can be used to retrieve the information corresponding to a given name
z in U. The algorithm makes use of a variable ¢ that takes on integer
values.

STEP 1. Set the value of i equal to f(z).

STEP 2. If memory position T; contains the given name z, stop; the
derived information is located in memory position F;.

Computer Science and its Relation to Mathematics 15

STEP 3. If memory position T; is empty, stop; the given name z is
not present.

STEP 4. Increase the value of i by one. (Or, if i was equal to m, set
i equal to one.) Return to step 2.

We still haven’t said how the names get into T3, ..., T,, in the first
place; but that is really not difficult. We start with all the T; empty.
Then to insert a new name x, we look for z using the algorithm stated;
it will stop in step 3 because z is not there. Then we set T; equal to z,
and put the corresponding information in E;. From now on, we will be
able to retrieve this information, whenever the name z is given, since
the algorithm will find position T; by repeating the actions that took it
to position T; when = was inserted.

The mathematical problem is to determine how much searching we
should expect to make, on the average; how many times must step 2 be
repeated before z is found?

This same problem can be stated in other ways, for example in
terms of a modified game of “musical chairs.” Consider a set of m
empty chairs arranged in a circle. A person appears at a random spot
just outside the circle, and dashes in a clockwise direction to the first
available chair. This is repeated m times, until all chairs are full. How
far, on the average, does the nth person have to run before finding
a seat? For example, let m = 10 and suppose there are ten players:
A B,C,D,E,F,G,H,I,J. To get a random sequence, let us assume
that the players successively start looking for their seats beginning at
chairs numbered according to the first digits of 7, namely 3, 1, 4, 1, 5,
9, 2, 6, 5, 3. Figure 1 on the next page shows the situation after the
first six have been seated. (Thus player A takes chair 3, then player B
takes chair 1, ..., player F' takes chair 9.) Now player G starts at chair
number 2, and eventually sits down in number 6. Finally, players H, I,
and J will go into chairs 7, 8, and 10. In this example, the distances
travelled by the ten players are respectively 0,0,0,1,0,0, 4,1, 3, 7.

It is not trivial to analyze this problem, because congestion tends
to occur; one or more long runs of consecutive occupied chairs will usu-
ally be present. In order to see why this is true, let’s consider Figure 1
again, supposing that the next player H starts in a random place; then
H will land in chair number 6 with probability 0.6, but in chair number
7 with probability only 0.1. Long runs tend to get even longer. There-
fore we cannot simply assume that the configuration of occupied vs.
empty chairs is random at each stage; the piling-up phenomenon must
be reckoned with.

16 Selected Papers on Computer Science

1

S
&
&

FIGURE 1.

A “musical chairs” game, which corresponds to an important
computer method.

Let the starting places of the m players be ajas . ..an; we shall call
this a hash sequence. For example, the hash sequence above is 3 14 1
59265 3. Assuming that each of the m™ possible hash sequences is
equally likely, our problem is to determine the average distance traveled
by the nth player, for each n, in units of “chairs passed.” Let us call this
distance d(m,n). Obviously d(m,1) = 0, since the first player always
finds an unoccupied place; furthermore d(m,2) = 1/m, since the second
player has to go at most one space, and the extra step is necessary
only if both players start at the same spot. It is also easy to see that
d(m,m) = (0+1+---+ (m —1))/m = 3(m — 1), since all chairs but
one will be occupied when the last player starts out. Unfortunately the
in-between values of d(m,n) are more complicated.

Let ug(m,n) be the number of partial hash sequences ajaz...a,
such that chair k£ will be unoccupied after the first n players are seated.
This quantity is easy to determine, by cyclic symmetry, since chair & is
just as likely to be occupied as any other particular chair; in other words,
ui(m,n) = ug(m,n) = --- = um(m,n). Let u(m,n) be this common
value. Furthermore, mu(m,n) = ui(m,n)+uz(m,n)+---+uy(m,n) =
(m—mn)m™, since each of the m™ partial hash sequences ajas . .. a, leaves
m — n chairs empty, and contributes 1 to exactly m — n of the numbers
ug(m,n). Therefore

ug(m,n) = (m —n)m™"L.

Computer Science and its Relation to Mathematics 17

Let v(m,n, k) be the number of partial hash sequences ajaz...a,
such that, after the n players are seated, chairs 1 through k£ will be
occupied, while chairs m and k£ + 1 will not. This number is slightly
harder to determine, but not really difficult. If we look at the numbers
a; that are < k + 1 in such a partial hash sequence, and if we cross out
the other numbers, the k values that are left form one of the sequences
enumerated by u(k + 1,k). Furthermore the n — k values crossed out
form one of the sequences enumerated by u(m — 1 — k,n — k), if we
subtract £+ 1 from each of them. Conversely, if we take any partial hash
sequence a; .. .ay enumerated by u(k+1, k), and another one b, ... b,k
enumerated by u(m — 1 — k,n — k), and if we intermix a; ...a; with
(b1 +k+1)...(bp—r + k+1) in any of the (}) possible ways, we obtain
one of the sequences enumerated by v(m,n, k). (The binomial coefficient

(k) = =

denotes the number of ways to choose k positions out of n.) For example,
let m = 10,n = 6,k = 3; one of the partial hash sequences enumerated
by v(10,6,3) is 2 7 1 8 2 8. This sequence splits into ajazaz = 21 2 and
(b1 +4)(b2 +4)(bs +4) = 7 8 8, intermixed in the pattern ababab. From
each of the u(4,3) = 16 sequences ajagas that fill positions {1,2, 3},
together with each of the u(6,3) = 108 sequences (b; +4)(b2 + 4)(b3 +4)
that fill three of positions {5,6,7,8,9}, we obtain (§) = 20 sequences
that fill positions {1, 2,3} and that leave positions 4 and 10 unoccupied,
by intermixing the a’s and b’s in all possible ways.
The construction just described shows that

v(m,n, k) = (:)u(k +1,k)u(m—k—1,n—k);

hence our formula for u(m,n) tells us that

v(m,n, k) = (Z) (k+1)*Ym—-n—1)(m-k—-1)~*1,

This is not a simple formula. But it is correct, so we cannot do any
better. If Kk = n = m — 1, the last two factors in the formula give 0/0,
which should be interpreted as 1 in this case.

Now we are ready to compute the desired average distance d(m,n).
The nth player must move k steps if and only if the preceding partial

18 Selected Papers on Computer Science

hash sequence a; ... a,—; has made chairs a,, through a,, +k—1 occupied
and chair a,, + k empty. The number of such partial hash sequences is

vim,n—1,k)+v(m,n—1,k+1)+v(mn—-1,k+2)+---,

since circular symmetry shows that v(m,n — 1,k + r) is the number of
partial hash sequences a; ...a,-; leaving chairs a,, + kK and a,, — r — 1
empty while the k£ + r chairs between them are filled. Therefore the
probability pi(m,n) that the nth player goes exactly k steps is

pe(m,n) =Y _v(m,n—1,r)/m"";

r>k
and the average distance is
d(m,n) =Y kpr(m,n)
k>0
-1

=(m-n)m™" Z k(n)(r+1)r_l(m—r— 1)nr-2

r>k>0 r
_ 1-n -1

- (mzn)m ™" ”2)’” Zr<”))(r +1)"(m—r— 1"

r>0

At this point, a person with a typical mathematical upbringing will
probably stop, or resort to asymptotic approximation; the answer is a
horrible-looking summation. Yet, if more attention were paid during our
mathematical training to finite sums, instead of concentrating so heavily
on integrals, we would instinctively recognize that a sum like this can
be considerably simplified. When I first looked at this sum, I had never
seen one like it before; but I suspected that something could be done to
it, since the sum over k of py(m,n) must be 1. Later I learned about
the extensive literature of such sums. I don’t wish to go into the details
here, but I do want to point out that such sums arise repeatedly in the
study of algorithms. By now I have seen literally hundreds of examples
in which finite sums involving binomial coefficients and related functions
appear in connection with computer science studies; so I have introduced
a course called “Concrete Mathematics” at Stanford University, in which
this kind of mathematics is taught.

Let d(m,n) be the average number of chairs skipped past by the
first n players:

6(m,n) = (d(m,1) + d(m,2) +--- + d(m,n))/n.

Computer Science and its Relation to Mathematics 19

This corresponds to the average amount of time needed for the hashing
algorithm to find an item when n items have been stored. The value of
d(m,n) derived above can be simplified to obtain the following formulas:

1 -1 —-1n-2 —-1ln—-2n-
dmyn) = > (P =L ygn—In-2 yn-dn-2n-3,
2 m m m m m m
1/n-1 n-1n-2 n-1n-2n-3
d(m,n) = = + + +--- .
2 m m m m m m

These formulas can be used to see the behavior for large m and n.
For example, if a = n/m is the ratio of filled positions to the total
number of positions, and if we hold « fixed while m approaches infinity,
then §(m, am) increases to the limiting value za/(1 — a).

The formula for §(m, n) also tells us another surprising thing:

n—-1 n-1

d(m,n) = v

d(m,n —1).

If somebody could discover a simple trick by which this simple relation
could be proved directly, it would lead to a much more elegant analysis
of the hashing algorithm and it might provide further insights. Unfor-
tunately, I have been unable to think of any direct way to prove this
relation.

When n = m (i.e., when all players are seated and all chairs are
occupied), the average distance traveled per player is

1/fm-1 m-1m-2 m-1m-2m-3
d(m,m) = = + + +-0 .
2 m m m m m m

It is interesting to study this function, which can be shown to have the
approximate value

™ 2

for large m. Thus, the number 7, which entered Figure 1 so artificially,
is actually present naturally in the problem as welll Such asymptotic
calculations, combined with discrete summations as above, are typical of

what arises when we study algorithms; classical mathematical analysis
and discrete mathematics both play important roles.

20 Selected Papers on Computer Science

Extensions

We have now solved the musical chairs problem, so the analysis of hash-
ing is complete. But many more problems are suggested by this one.
For example, what happens if each of the hash table positions T; is able
to hold two names instead of one, i.e., if we allow two people per chair
in the musical chairs game? Nobody has yet found the exact formulas
for this case, although some approximate formulas are known.

We might also ask what happens if each player in the musical chairs
game starts simultaneously to look for a free chair (still always moving
clockwise), starting at independently random points. The answer is
that each player will move past d(m,n) chairs on the average, where
d(m,n) is the same as above. This follows from an interesting theorem
of W. W. Peterson [25], who was the first to study the properties of
the hashing problem described above. Peterson proved that the total
displacement of the n players, for any partial hash sequence ajaz...a,,
is independent of the order of the a;’s; thus, 314 15 9 2 leads to
the same total displacement as 1123 459and 295141 3. His
theorem shows that the average time §(m,n) per player is the same for
all arrangements of the a;, and therefore it is also unchanged when all
players start simultaneously.

On the other hand, the average amount of time required until all n
players are seated has not been determined, to my knowledge, for the
simultaneous case. In fact, I just thought of this problem while writing
the present paper. New problems flow out of computer science studies
at a great rate!

We might also ask what happens if the players can choose to go
either clockwise or counterclockwise, whichever is shorter. In the non-
simultaneous case, the analysis above can be extended without difficulty
to show that each player will then have to go about half as far. (We
require everyone to go all the way around the circle to the nearest seat,
not taking a short cut through the middle.)

Another variant of the hashing problem arises when we change the
cyclic order of probing, in order to counteract the “piling up” phe-
nomenon. This interesting variation is of practical importance, since
the congestion caused by long stretches of occupied positions tends to
slow things down considerably when the memory gets full. Since the
analysis of this practical problem is largely unresolved, and since it has
several interesting mathematical aspects, I shall discuss it in detail in
the remainder of this article.

A generalized hashing technique that for technical reasons is called
single hashing is defined by any m x m matrix @ of integers for which

Computer Science and its Relation to Mathematics 21

(i) Each row contains all the numbers from 1 to m in some order;
(ii) The first column contains the numbers from 1 to m in order.

The other columns are unrestricted. For example, one such matrix for
m = 4, selected more or less at random, is

Q1=

W N =
Lo = W
N = W N
=N

The idea is to use a hash function f(z) to select a row of @ and then
to probe the memory positions in the order dictated by that row. The
same algorithm for searching the memory is used as before, except that
step 4 becomes

STEP 4'. Advance 7 to the next value in row f(z) of the matrix, and
return to step 2.

Thus, the cyclic hashing scheme described earlier is a special case of
single hashing, using a cyclic matrix like

Q2 =

>N =
oW N
N = W
W N = W

In the musical chair analogy, the players no longer are required to move
clockwise; different players will in general visit the chairs in different se-
quences. However, if two players start in the same place, they must both
follow the same chair-visiting sequence. This latter condition will pro-
duce a slight congestion, which is noticeable but not nearly as significant
as in the cyclic case.

As before, we can define the measures d’'(m,n) and §’'(m,n), cor-
responding to the number of times step 4’ is performed. The central
problem is to find matrices () that are best possible, in the sense that
§'(m,m) is minimized. This problem is not really a practical one, since
the matrix with smallest ¢'(m, m) might require a great deal of compu-
tation per execution of step 4’. Yet it is very interesting to establish
absolute limits on how good a single-hashing method could possibly be,
as a yardstick by which to measure particular cases.

One of the most difficult problems in algorithmic analysis that I
have had the pleasure of solving is the determination of d’'(m,n) for

22 Selected Papers on Computer Science

single hashing when the matrix () is chosen at random, i.e., to find the
value of d'(m,n) averaged over all (m — 1)!"™ possible matrices Q). The
resulting formula is

d’r(m,n)zm—z:—:ﬁi;(l+
1—1/(m+2 —5) - 1
m+z _,(1 = 1/(m(m+2-1)) 1;I< m(m+2— J)))

This one I do not know how to simplify at the present time. However,
it is possible to study the asymptotic behavior of d..(m,n), and to show
that

8 (m,m)~lnm+~y—15

for large m, plus a correction term of order (logm)/m. (Here v =~
.577216 is Euler’s constant.) This order of growth is substantially better
than the cyclic method, where §(m, m) grows like the square root of m;
and we know that some single-hashing matrices must have an even lower
value for §'(m,m) than this average value ¢/ (m, m). Table 1 shows the
exact values of §(m,m) and d..(m, m) for comparatively small values of
m; note that cyclic hashing is superior for m < 11, but it eventually
becomes much worse.

Proofs of the statements above, together with additional facts about
hashing, appear in [20].

No satisfactory lower bounds for the value of ¢’(m,m) in the best
single-hashing scheme are known, although I believe that none will have
§'(m, m) lower than

1 1 1
(1+2) (1435 1) o
m 2 m

this is the value that arises in the musical chairs game if each player
follows a random path independently of all the others. J. D. Ullman [29]
has given a more general conjecture from which this statement would
follow. If Ullman’s conjecture is true, then a random @ comes within %
of the best possible value, and a large number of matrices will therefore
yield values near the optimum. Therefore it is an interesting practical
problem to construct a family of matrices for various m, having provably
good behavior near the optimum, and also with the property that they
are easy to compute in step 4'.

Computer Science and its Relation to Mathematics 23

m é(m, m) §l.(m,m)

1 0.0000 0.0000

2 0.2500 0.2500
3 0.4444 0.4630
4 0.6094 0.6426
5 0.7552 0.7973
6 0.8873 0.9330
7 1.0091 1.0538
8 1.1225 1.1626

9 1.2292 1.2615

10 1.3301 1.3523
11 1.4262 1.4360
12 1.5180 1.5138
15 1.7729 1.7183
20 2.1468 1.9911
50 3.7716 2.9037
100 5.6050 3.6135
1000 19.1516 5.9658
10000 61.9996 8.2839

TABLE 1. Cyclic hashing versus random single hashing.

It does not appear to be easy to compute §’'(m, m) for a given ma-
trix M. The best method I know requires on the order of m - 2™ steps,
so I have been able to experiment on this problem only for small values
of m. (Incidentally, such experiments represent an application of com-
puter science to solve a mathematical problem suggested by computer
science.) Here is a way to compute §'(m, m) for a given matrix Q = (g;;):
If A is any subset of {1,2,...,m}, let | A| denote the number of elements
in A, and let p(A) be the probability that the first |A| players occupy
the chairs designated by A. Then it is not difficult to show that

) =— 3 (A {a})

(i.5)€s(A)
when A is nonempty, where s(A) is the set of all pairs (¢, j) such that
gik € A for 1 < k < j; consequently

dmm) =~ Y pA)s(A)],

|A|l=n—-1

24 Selected Papers on Computer Science

For example, in the 4 x 4 matrix ¢); considered earlier, we have

A P(A) |s(4)] A P(A) |s(4)]
0 1 0 {4} 1/4 1
{1} 1/4 1 {1,44 2/16 2
{2} 1/4 1 {2,44 2/16 2
{1,2} 3/16 3 {1,2,4} 9/64 4
{3} 1/4 1 (3,4} 4/16 4
{1,y 3/16 3 {1,3,4} 20/64 7
{2,3} 2/16 2 {2,3,4} 16/64 6
{1,2,3} 19/64 7 {1,2,3,4} 1 16

The first three chairs occupied will most probably be {1, 3,4}; the set of
chairs {1, 2,4} is much less likely. The “score” ¢§'(m, m) for this matrix
comes to 653/1024, which in this case is worse than the score 624/1024
for cyclic hashing. In fact, cyclic hashing turns out to be the best single
hashing scheme when m = 4.

When m = 5, the best single hashing scheme turns out to be ob-
tained from the matrix

1 2 45 3
2 351 4
Q=3 4125
4 5 2 31
51 3 4 2

whose score is 0.7440, compared to 0.7552 for cyclic hashing. Note that
Qs is very much like cyclic hashing, since cyclic symmetry is present:
each row is obtained from the preceding row by adding 1 modulo 5,
therefore the probing pattern is essentially the same for all rows. We
may call this generalized cyclic hashing; it is a special case of practical
importance, because it requires knowing only one row of @) instead of
remembering all m? entries.

When m > 5, an exhaustive search for the best single hashing
scheme would be too difficult to do by machine, unless some new break-
through is made in the theory. Therefore I have resorted to “heuristic”
search procedures. For all m < 11, the best single hashing matrices I
have been able to find actually have turned out to be generalized cyclic
hashing schemes, and I am tempted to conjecture that this will be true
in general. It would be extremely nice if this conjecture were true, since
it would follow that the potentially expensive generality of a non-cyclic
scheme would never be useful. However, the evidence for my guess is

Computer Science and its Relation to Mathematics 25

comparatively weak; it is simply that (i) the conjecture holds for m < 5;
(ii) I have seen no counterexamples in experiments for m < 11; (iii) the
best generalized cyclic hashing schemes for m < 9 are “locally optimum”
single hashing schemes, in the sense that all possible interchanges of two
elements in any row of the matrix lead to a matrix that is no better;
(iv) the latter statement is not true for the standard (ungeneralized)
cyclic hashing scheme, so the fact that it holds for the best ones may be
significant.

Even if this conjecture is false, the practical significance of general-
ized cyclic hashing makes it a suitable object for further study, especially
in view of its additional mathematical structure. One immediate con-
sequence of the cyclic property is that p(A) = p(A + k) for all sets A,
in the formulas above for computing d’'(m,n), where “A + k” means
the set obtained from A by adding k& to each element, modulo m. This
observation makes the calculation of scores almost m times faster. An-
other, not quite so obvious property, is the fact that the generalized
cyclic hashing scheme generated by the permutation ¢;q2 ... ¢, has the
same score as that generated by the “reflected” permutation ¢jgj...q),
where ¢; = m + 1 — g;. (It is convenient to say that a generalized
cyclic hashing scheme is “generated” by any of its rows.) This equiv-
alence under reflection can be proved by showing that p(A) is equal
to p'(m + 1 — A). I programmed a computer to find the scores for all
generalized cyclic hashing schemes when m = 6, and the results of this
computation suggested that two further simplifications might also be
valid:

(i) The sequences ¢19293 - - - ¢m and ¢2914gs - . . ¢m generate equally
good generalized cyclic hashing schemes.

(ii) The sequences qi . ..¢m—2¢m—19m and qi ...Gm—2g¢mgm—1 gen-
erate equally good generalized cyclic hashing schemes.
In fact, both of these statements are true; here is a typical instance where
computing in a particular case has led to new mathematical theorems.
After proving (i) and (ii), I suspected that ¢, ...g,, and

(G-a1)---(G—ax)qks+1---Gm

would always generate equally good schemes, whenever both of these
sequences are permutations. (Here j is any constant, and arithmetic
is done modulo m.) If this statement were true, it would include the
three previous results as special cases, for £ = 2, m —2, and m. Unfortu-
nately, I could not prove it; and I eventually found a counterexample (by
hand), namely ¢;...¢,, =13862754, k=4, and j = 9. However,

26 Selected Papers on Computer Science

this mistaken conjecture did lead to an interesting purely mathematical
question, namely to determine how many inequivalent permutations of
m objects there are, when ¢; ...q, is postulated to be equivalent to
(eq1+37)...(6qe +37) Qk+1 - - - @m, for e = £1 and 1 < j,k < m (whenever
these are both permutations, modulo m). We might call these necklace
permutations, by analogy with another well-known combinatorial prob-
lem, since they represent the number of different orders in which a person
could change the beads of a necklace from all white to all black, ignor-
ing the operation of rotating and/or flipping the necklace over whenever
such an operation preserves the current black/white pattern. The total
number of different necklace permutations for 1 < m < 10is 1, 1, 1, 2,
4, 14, 57, 347, 2375, 20752, respectively, and I wonder what can be said
for general m.

Returning to the hashing problem, the theorems mentioned above
make it possible to study all of the generalized cyclic hashing schemes
for m < 9, by computer; and the following turn out to be the best:

best permutation 8! . (m,m) &.,.(m,m)

1234 0.6094 0.6146
12453 0.7440 0.7514
125346 0.8650 0.8819
1423657 0.9713 0.9866
13487265 1.0676 1.0919
152384679 1.1568 1.1790

The right-hand column gives the average d'(m,m) over all m! schemes.
For m = 10 and 11 the best permutations I have found so far are 1 2
864931075and134897112106 5, with respective scores of
1.2362 and 1.3103. The worst such schemes for m < 9 are

worst permutation 4} .. (m,m)
1324 0.6250
12345 0.7552
135246 0.9132
1234567 1.0091
15374826 1.1719

147258369 1.2638

(This table suggests that the form of the worst cyclic scheme might be
obtainable in a simple way from the prime factors of m.)

Computer Science and its Relation to Mathematics 27

Finally, I have tried to find the worst possible @ matrices, without
the cyclic constraint. Such matrices can be very bad indeed; the worst
I know, for any m, occur when g;; < g;(;j41) for all j > 2, e.g.,

1 2 3 45
213 45
31 2 45
4 1 2 3 5
51 2 3 4

when m = 5. Using discrete mathematical techniques like those illus-
trated above, it is not difficult to prove that the score for such matrices
is
m
8'(m,m) = (m+3+ 3) <1+i> —-25m—17— 2;5,
m m m

which is approximately (e —2.5)m + 3e —8 when m is large. We certainly
would not want to retrieve information in this way, and perhaps it is the
worst possible single hashing scheme.

We have seen that the mathematical analysis of generalized hashing
leads to interesting computational problems, which in turn lead to inter-
esting mathematical problems. Thus, the example of hashing illustrates
the typical interplay between computer science and mathematics.

I wish to thank Garrett Birkhoff for his comments on the first draft of this paper.

References

(1] American Mathematical Society and Mathematical Association of
America, co-sponsors of conference, The Influence of Computing on
Mathematical Research and Education, August 1973.

[2] A. O. L. Atkin and B. J. Birch, editors, Computers in Number
Theory (New York: Academic Press, 1971).

[3] Charles Babbage, Passages from the Life of a Philosopher (London,
1864). Reprinted in Charles Babbage and His Calculating Engines,
by Philip and Emily Morrison (New York: Dover, 1961); esp. p. 69.

[4] Garrett Birkhoff and Marshall Hall, Jr., editors, Computers in Al-
gebra and Number Theory, SIAM-AMS Proceedings 4 (American
Mathematical Society, 1971).

[5] R. F. Churchhouse and J.-C. Herz, editors, Computers in Mathe-
matical Research (Amsterdam: North-Holland, 1968).

28 Selected Papers on Computer Science

[6] N. G. de Bruijn, Donald E. Knuth, and S. O. Rice, “The average
height of planted plane trees,” in Graph Theory and Computing,
ed. by Ronald C. Read (New York: Academic Press, 1972), 15-22.

[7] George E. Forsythe, “The role of numerical analysis in an under-
graduate program,” American Mathematical Monthly 66 (1959),
651-662.

, “Computer Science and Education,” Information Processing
68, vol. 1, 1025-1039.

, “What to do till the computer scientist comes,” American
Mathematical Monthly 75 (1968), 454-462.

and Paul C. Rosenbloom, Numerical Analysis and Partial
Differential Equations, Surveys in Applied Mathematics 5 (New
York: Wiley, 1958).

[11] C. F. Gauss, Letter to J. F. Encke, Werke 2, 444-447.

[12] Seymour Ginsburg, The Mathematical Theory of Context Free Lan-
guages (New York: McGraw-Hill, 1966).

, Sheila Greibach, and John Hopcroft, Studies in Abstract
Families of Languages, American Mathematical Society Memoirs
87 (1969), 51 pp.

[14] F. E. Holberton and J. W. Mauchly, personal communication.

8]

(9]

[10]

[13]

[15] Donald E. Knuth, “A class of projective planes,” Transactions of
the American Mathematical Society 115 (1965), 541-549.

, “Algorithm and program; information and data,” Commu-
nications of the ACM 9 (1966), 654. [Reprinted in Chapter 0 of the
present volume.]

[16]

(17] , Seminumerical Algorithms, Vol. 2 of The Art of Computer
Programming (Reading, Massachusetts: Addison-Wesley, 1969),

624 pp.

[18] —, “Ancient Babylonian algorithms,” Communications of the
ACM 15 (1972), 671-677. [Reprinted as Chapter 11 of the present
volume.|

(19] , “George Forsythe and the development of Computer Sci-
ence,” Communications of the ACM 15 (1972), 721-726. [Re-

printed as Chapter 14 of the present volume.]

[20] , Sorting and Searching (Reading, Massachusetts: Addison-

Wesley, 1973), 722 pp.

Computer Science and its Relation to Mathematics 29

[21] Peter D. Lax, “The impact of computers on mathematics,” in Com-

puters and Their Role in the Physical Sciences, edited by S. Fern-
bach and A. H. Taub (New York: Gordon & Breach, 1970), 219-226.

[22] John Leech, ed., Computational Problems in Abstract Algebra
(Long Island City: Pergamon, 1970).

[23] Peter Naur, “‘Datalogy’, the science of data and data processes,
and its place in education,” Information Processing 68, vol. 2, 1383-
1387.

[24] Allen Newell, Alan J. Perlis, and Herbert A. Simon, “Computer
Science,” Science 157 (1967), 1373-1374.

[25] W. W. Peterson, “Addressing for random-access storage,” IBM
Journal of Research and Development 1 (1957), 130- 146.

[26] Proceedings of Symposia in Applied Mathematics, vol. 15, Ex-
perimental Arithmetic, High-Speed Computing, and Mathematics
(American Mathematical Society, 1962).

[27] E. Reingold, “Establishing lower bounds on algorithms— A sur-
vey,” AFIPS Conference Proceedings 40 (1972), 471-481.

[28] Computers and Computing, Slaught Memorial Monograph No. 10,
a supplement to American Mathematical Monthly 72 (February
1965), 156 pp.

[29] J. D. Ullman, “A note on the efficiency of hashing functions,”
Journal of the Association for Computing Machinery 19 (1972),
569-575.

[30] Peter Wegner, “Three computer cultures,” Advances in Computers
10 (1970), 7-78.

[31] J. H. Wilkinson, “Some comments from a numerical analyst,” Jour-
nal of the Association for Computing Machinery 18 (1971), 137-
147. Reprinted in ACM Turing Award Lectures (New York: ACM
Press, 1987), 243-256.

Additional Reference

[32] Peter J. Denning, “What is computer science?” American Scientist
73,1 (January-February 1985), 16-19.

Chapter 2

Mathematics and Computer Science:
Coping with Finiteness

Advances in our ability to compute are bringing us substantially closer
to ultimate limitations.

[Originally published in Science, Volume 194, December 17, 1976.]

A well-known book entitled One, Two, Three, ... Infinity was published
by George Gamov about 30 years ago [1], and he began by telling a story
about two Hungarian noblemen. It seems that the two gentlemen were
out riding, and one suggested to the other that they play a game: Who
can name the largest number. “Good,” said the second man, “you go
first.” After several minutes of intense concentration, the first nobleman
announced the largest number he could think of: “Three.” Now it was
the other man’s turn, and he thought furiously, but after about a quarter
of an hour he gave up. “You win,” he said.

In this article I will try to assess how much further we have come,
by discussing how well we can now deal with large quantities. Although
we have certainly narrowed the gap between three and infinity, recent
results indicate that we never will actually be able to go very far in
practice. My purpose is to explore relationships between the finite and
the infinite, in the light of these developments.

Some Large Finite Numbers

Since the time of Greek philosophy, scholars have prided themselves on
their ability to understand something about infinity; and it has become
traditional in some circles to regard finite things as essentially trivial, too
limited to be of any interest. It is hard to debunk such a notion, since
there are no accepted standards for demonstrating that something is
interesting, especially when something finite is compared with something

31

32 Selected Papers on Computer Science

transcendent. Yet I believe that the climate of thought is changing, since
finite processes are proving to be such fascinating objects of study.

In the first place, it is important to understand that finite numbers
can be extremely large. Let us start with some very familiar and fairly
small numbers: The value of zn is x + z + - -+ + z, the sum of n copies
of z. Similarly we can define a number I shall write as « 1 n, which
means the product zz ... x of n copies of z. For example, 10 1 10 =
10-10-10-10-10-10-10-10-10- 10 = 10,000,000,000 is 10 billion; this
is usually written 10!°, but it will be clear in a minute why I prefer to
use an upward arrow. In fact, the next step uses two arrows

zttn=ct(@t(-ta)-),

where we repeatedly form powers from n copies of z. For example,

1
10 11 10 = 101"’

=1 followed by 10 Zeros.

This is a pretty big number; at least, if a monkey sits at a typewriter and
types at random, the average number of trials before he types perfectly
the entire text of Shakespeare’s Hamlet would be much, much less than
this: It is merely a 1 followed by about 40,000 zeros. The general rule is

k arrows k-1 k-1 k-1
—N— —N—
zTT...Tn::'I:T...

—_——
Tt 1T 12)-).

n occurrences of

Thus, one arrow is defined in terms of none, two in terms of one, three
in terms of two, and so on.

In order to see how these arrow functions behave, let us look at a
very small example,

10 t111 3.

This is equal to
10 111 (10 111 10),

so we should first evaluate 10 $11 10. The latter is

10 71 (10 1 (10 1 (10 11 (10 11 (10 1 (10 1 (10 1 (10 11 10))))))))

Mathematics and Computer Science: Coping with Finiteness 33

and that is

1011 (10 1 (10 11 (10 71 (10 1 (10 1 (10 11 (10 11 10")N)))

10

=101 (10 11 (10 11 (10 11 (10 11 (10 1 (10 11 10'°))))))

where the stack of 10’s is 10 11 10 levels tall. We take the huge number at
the right of this formula, which I cannot even write down without using
the arrow notation, and repeat the double-arrow operation, getting an
even huger number, and then we must do the same thing again and
again. Let us call the final result #&. (It is such an immense number,
we cannot use just an ordinary letter for it.)

Of course we are not done yet, we have only evaluated 10 111 10; to
complete the job we need to stick this gigantic number into the formula
for 10 1111 3, namely

10 11113 = 10 $11 8 = 10 11 (10 11 (10 11 --- 11 (101110)--)) .
%t‘{mes

The three dots “---” here suppress a lot of detail — maybe I should have
used four dots. At any rate it seems to me that the magnitude of this
number 10 1111 3 is so large as to be beyond human comprehension.

On the other hand, it is very small as finite numbers go. We might
have used & arrows instead of just four, but even that would not get
us much further —almost all finite numbers are larger than this. I think
such examples help open our eyes to the fact that some numbers are very
large even if they are merely finite. Thus, mathematicians who stick
mostly to working with finite numbers are not really limiting themselves
too severely.

Realistic Numbers

This discussion has set the stage for the next point I want to make,
namely that our total resources are not actually very large. Let us
try to see how big the known universe is. Archimedes began such an
investigation many years ago, in his famous discussion of the number of
grains of sand that would completely fill the earth and sky; he did not
have the benefit of modern astronomy, but his estimate was qualitatively
the same as what we would say today. The distance to the farthest
observable galaxies is thought to be at most about 10 billion light years.

34 Selected Papers on Computer Science

10~18¢cm

s

40 billion
light years

(not drawn to scale)

FIGURE 1. The known universe fits inside this box.

On the other hand, the fundamental nucleons that make up matter are
about 107 !2 centimeter in diameter. In order to get a generous upper
bound on the size of the universe, let us imagine a cube that is 40 billion
light years on each side, and fill it with tiny cubes that are smaller than
protons and neutrons, say 10~!* cm on each side (see Fig. 1). The total
number of little cubes comes to less than 10'2°. We might say that this
is an “astronomically large” number, but actually it has only 125 digits.

Instead of talking only about large numbers of objects, let us also
consider the time dimension. Here the numbers never even reach 50
digits; for example, if we take as a unit the amount of time that light
rays take to travel 10713 cm, the total number of time units since the
dawn of the universe is only one fourth the number of little cubes along
a single edge of the big cube in Fig. 1, assuming that the universe is 10
billion years old.

Coming down to earth, it is instructive to consider typical trans-
portation speeds.

Snail 0.006 miles/hour
Man walking 4 miles/hour
U.S. automobile 55 miles/hour
Jet plane 600 miles/hour
Supersonic jet 1200 miles/hour

I would never think of walking from California to Boston, but the plane
flight is only 150 times faster. Compare this to the situation with respect
to the following computation speeds, given 10-digit numbers.

Mathematics and Computer Science: Coping with Finiteness 35

Man (pencil and paper) 0.2/sec
Man (abacus) 1/sec
Mechanical calculator 4/sec
Medium-speed computer 200,000/sec
Fast computer 200,000,000/sec

A medium-fast computer can add 1 million times faster than we can, and
the fastest machines are 1000 times faster yet. Such a ratio of speeds
is unprecedented in history: Consider how much a mere factor of 10 in
speed, provided by the automobile, has changed our lives, and note that
computers have increased our calculation speeds by at least six orders of
magnitude. That is more than the ratio of the fastest airplane velocity
to a snail’s pace.

I do not mean to claim that computers do everything a million times
faster than people can; mere mortals like us can do some things much
better. For example, you and I can easily recognize the face of a friend
who has recently grown a moustache. For tasks like filing, a computer
may be only ten or so times faster than a good secretary. But when
it comes to arithmetic, computers appear to be almost infinitely fast
compared with people.

As a result, we have begun to think about computational problems
that used to be unthinkable. Our appetite for calculation has caused us
to deal with finite numbers much larger than those we considered before,
and this has opened up a rich vein of challenging problems, just as ex-
citing as the problems about infinity that have inspired mathematicians
for so many centuries.

Of course, computers are not infinitely fast, and our expectations
have become inflated even faster than our computational capabilities.
We are forced to realize that there are limits beyond which we cannot go.
The numbers we can deal with are not only finite, they are very finite,
and we do not have the time or space to solve certain problems even
with the aid of the fastest computers. Thus, the theme of this article is
coping with finiteness: What useful things can we say about these finite
limitations? How have people learned to deal with the situation?

Advances in Technology and Techniques

During the last 15 years computer designers have made computing ma-
chines about 1000 times faster. Mathematicians and computer scientists

36 Selected Papers on Computer Science

have also discovered a variety of new techniques by which many prob-
lems can now be solved enormously faster than they could before. I will
present several examples of this; the first one, which is somehow sym-
bolic of our advances in arithmetic ability, is the following factorization
of a very large number, completed in 1970 by Morrison and Brillhart [2]:

340,282,366,920,938,463,463,374,607,431,768,211,457
= 5,704,689,200,685,129,054,721 x 59,649,589,127,497,217.

The point, of course, is not simply to compute the exact 39-digit product
of these two large numbers; that multiplication is trivial and takes only a
few millionths of a second. The problem is to start with the big 39-digit
number and to discover its prime factors. (The big number is 2128 + 1,
and its factors are of use, for example, in the design of codes of a type
used for space communications.) The number of microseconds per year
is only 31,556,952,000,000, a 14-digit number, so even if we could test
1 million factors every second it would take about 2000 years to discover
the smaller factor. The factorization actually took about 90 minutes
of computer time; it was achieved by a combination of sophisticated
methods representing a culmination of mathematical developments that
began about 160 years earlier.

Latin Squares

Now let us look at another kind of example. Here is a so-called latin
square of order 8, an arrangement of eight numbers in eight rows and
eight columns so that each number appears in each row and each column.

1 23 456 78
21436587
3412785 6
4 3 21876 5
5 6 781 2 3 4
6 58 7 21 4 3
785 6 3 41 2
8 76 54 3 21

On top of this square we can overlay another latin square of order 8,
using italic numbers; again there is one italic digit of every kind in every
row and in every column.

Mathematics and Computer Science: Coping with Finiteness 37

11 22 33 44 55 66 77 88
28 14 41 32 67 58 85 76
35 46 17 28 71 82 58 64
47 38 25 16 838 74 61 52
54 638 72 81 18 27 36 45
62 51 84 78 26 15 48 37
78 87 56 65 34 43 12 21
86 75 68 57 42 31 24 13

These two latin squares are called orthogonal, since the superposition
shows that every pair of roman and italic numbers occurs exactly once.
Thus we have roman 1 with italic I (in the upper left corner), roman 1
with italic 2 (near the lower right corner), and so on; all 8 x 8 possibil-
ities appear. Latin squares and orthogonal latin squares are commonly
used in the design of statistical experiments and for such things as crop
rotation.

The great 18th-century mathematician Euler showed how to con-
struct pairs of orthogonal latin squares of all sizes except for order 2,
6, 10, 14, 18, and so on, and he stated his belief that orthogonal latin
squares of these missing orders do not exist [3]. It is easy to verify this for
order 2; and in 1900, an exhaustive analysis by a French mathematician
[4] showed that orthogonal latin squares of order 6 are indeed impossible.
During the next several years, mathematicians in France, Germany, and
America each asserted [5] that Euler was right in the remaining cases
10, 14, 18, ...; but unfortunately their “proofs” had serious flaws, so
the question was still not settled.

Finally computers were invented, and an attempt was made to test
Euler’s conjecture in the smallest remaining case, order 10. A group of
mathematicians at the University of California at Los Angeles (UCLA)
decided in 1952 to search for latin squares orthogonal to the following
10 x 10 example:

0123 456 7829
18325 476 90
2956 308471
3 709 8615 2 4
4 6 75 2 90813
509 478 316 2
6 547132908
7418029 356
8 36 0 915 2 47
92816 74035

38 Selected Papers on Computer Science

This particular square was selected more or less at random, using a
procedure analogous to one discussed in the next example below; the
probability of generating it [6] turns out to be about 10726, so I imagine
that there are extremely many 10 x 10 latin squares, something like 1026
at least. However, the computer at UCLA ran for many hours trying
to find an orthogonal mate for this square; finally, having produced no
answers, it was shut off [7]. This failure was consistent with Euler’s
conjecture that no mates exist, but the investigators realized that sev-
eral hundred more years of calculation would be required to show this
exhaustively —and then they would have to try to find mates for the
other 10%¢ or so initial squares.

The method used in their experiment was to look for a mate by filling
in the entries row by row, one entry at a time in all possible ways, without
violating the definition of orthogonal latin squares. Furthermore, they
used the fact that the leftmost column of the orthogonal mate can be
assumed to contain the digits 0 to 9 in order. Five years later E. T.
Parker [8] discovered a far better way to look for orthogonal mates. His
idea, which can in fact be traced to Euler’s original paper [3], was to find
all ways to put ten 0’s into an orthogonal mate for a particular square;
this means finding one entry in each row and each column so that no
two entries contain the same digit. This is a much easier problem, and
it turned out that there were roughly 100 ways to do it, using any cell
in the first column. The remaining problem is to combine a solution
for the 0’s with a solution for the 1’s and a solution for the 2’s, and
so forth; again this is comparatively simple. Parker was able to deduce
that there is exactly one latin square orthogonal to the one studied at
UCLA, namely the italic digits in the following array:

00 12 28 35 49 54 67 73 86 91
11 87 34 29 58 46 756 60 92 08
22 95 56 64 38 07 80 41 79 13
33 76 09 90 84 65 18 52 21 47
44 68 71 57 25 93 06 89 10 32
55 01 97 48 70 82 39 14 638 26
66 59 40 72 17 31 23 98 04 85
77 43 15 81 02 20 94 36 58 69
88 30 62 038 96 19 51 27 45 74
99 24 83 16 61 78 42 05 37 50

The total time for his program to be completed, on a slow computer in
1959, was less than 1 minute.

Mathematics and Computer Science: Coping with Finiteness 39

This example, together with the previous example about factoring,
illustrates an important point: We should never expect that the first way
we try to do something on a computer is the best way. Good program-
ming is much more subtle than that; chances are that an expert can find
a method that will go considerably faster than that of a novice, especially
in combinatorial problems where there have been significant advances in
techniques during recent years. By analyzing Parker’s method statisti-
cally, I estimate that his approach runs about 100 billion times faster
than the original method used by the extremely competent mathemati-
cians who studied this problem at UCLA; that is 11 orders of magnitude
faster, because of a better idea.

By now many sets of orthogonal latin squares of order 10 have been
found, and orthogonal pairs are known to exist for all orders greater than
6. But computers were of little help in discovering these facts; the con-
structions were discovered by hand (by Parker, Bose, and Shrikhande),
generalizing from patterns observed in the smaller cases [9]. For order
14 the problem is so much larger that even Parker’s method would no
longer be fast enough to search for all orthogonal mates by computer.
This illustrates another point about combinatorial problems: The com-
putation time often increases greatly when the size of the input to the
problem has gone up only slightly.

Counting the Paths on a Grid

The next examples are all based on a single diagram, namely a grid of
100 squares; it is the diagram we would obtain if we drew boxes around
the elements of a 10 x 10 latin square. (Incidentally, there are many
possible examples that illustrate the points I wish to make, so it was
necessary for me to find some way to narrow down the selection. Since
a 10 x 10 array fits nicely on a page, I have decided to stick mostly to
examples that are based somehow on this one diagram.)

First let us consider how many ways there are to go along the lines of
such a grid from the lower left corner to the upper right corner, without
touching the same point twice. Problems like this have been studied by
chemists and physicists concerned with the behavior of large molecules
[10]; it seems to be a difficult problem, and no way is known to calculate
the exact number of such paths on a large grid in a reasonable amount
of time. However, it is possible to obtain approximate solutions that are
correct with high probability.

The idea is to construct a “random” path from the starting point
to the finishing point. First we must go up or to the right; by flipping
a coin or rolling some dice we might decide to go right. Again there

40 Selected Papers on Computer Science

1 2 2 1 2 1 2
2 3 2 2 3 2 2
2 2 2 2 2 3 3 2 3 1

3 3 2
3 3 2
3 2 1 2 3

FIGURE 2. A “random” path from the lower left corner to the
upper right corner of a 10 x 10 grid.

are two choices, and half the time we will go up. From here there are
three possibilities, and we may choose from these at random, say to the
right. And so on. Figure 2 shows the first random path I generated in
this way. At each choice point of Fig. 2, I have written the number of
alternatives present when the path got that far. For example, the 1’s at
the edges mean that there was only one way to go, since the other way
either was already occupied or led into a blind alley.

The probability that this particular path would be obtained by such
a random procedure is the product of all the individual probabilities at
each choice point, namely

= 1/4,852,102,490,441,335,701,504,

about one chance in 5 x 102!. So I am pretty sure that you have never
seen this particular path before, and I doubt if I will ever generate it
again.

In a similar vein, it is interesting to note that the great Mozart
wrote a considerable amount of music that has never yet been performed.
In one of his more playful moments, he specified 11 possibilities for
each of the 16 bars of a waltz [11]; the idea was that people from the

Mathematics and Computer Science: Coping with Finiteness 41

1

3

3 3

FIGURE 3. A second path, which would be obtained
with probability 278371% ~ 3 x 10712,

audience should roll dice 16 times, obtaining a sequence of 16 numbers
between 2 and 12 inclusive, and the performers would play the 16 bars
corresponding to these respective rolls. The total number of ways to
play Mozart’s dice waltz is 2 x 111 = 759,499,667,966,482 [12]; so it is
safe to say that fewer than one out of every million of Mozart’s melodies
will ever be heard by human ear.

Actually I have a phonograph record that contains 36 randomly
selected waltzes from Mozart’s scheme [13], and after hearing the fifth
or sixth one I began to feel that the rest all sounded about the same.
We might suspect that a similar thing will happen in this random path
problem: All random paths from lower left to upper right might tend to
look approximately like the first few.

Figure 3 shows the second path I generated by making random
choices. Notice that this one has quite a different character, and the
strange thing is that the probability of obtaining it is more than ten
orders of magnitude larger than we saw in Figure 2. But still the prob-
ability is “negligibly small.”

The third path I generated in this way decided to get into a corner
and to hug the edge. The fourth one had its own twist; and the fifth was
reminiscent of the first. These paths are shown in Fig. 4. Of course I am
displaying here each path exactly as I obtained it, not suppressing any

42 Selected Papers on Computer Science

that were uninteresting or unexpected, because the experiment must be
unbiased.

The difference between this game and Mozart’s dice music is that
we know of no way to generate a truly random path, in the sense that
each path should occur with the same probability. Although we have
seen that each path occurs with extremely small probability, virtually
zero, the actual probabilities differ from each other by many orders of
magnitude.

If we want to estimate the total number of possible paths, solely
on the basis of these data, a theorem of statistics tells us that the best
estimate is obtained by using the average value of the reciprocals of
the probabilities observed. Thus, although three of these five paths had
probabilities around 101!, suggesting that there are about 10!! possible
paths, the much lower probabilities in the other two cases imply that it
is much better to guess that there are about 1022 paths in all. Based on
the five experiments I have described, the best estimate of the average
length of path will be about 70; and the best estimate of the chance
that the point in the middle occurs somewhere on the path is that it
almost always occurs, even though three-fifths of the experiments said
the opposite. When large numbers like this are involved, we get into
paradoxical situations, where the rules of statistics tell us that the best
estimates are made by throwing away most of our data.

As you might expect, five experiments are not enough to deter-
mine the answers reliably. But by using a computer to generate several
thousand random paths in the same way, I am fairly confident that
the total number of possible paths from lower left to upper right is
(1.6 £ 0.3) x 1024, and that the average length of path is 92 + 5. Con-
flicting evidence was obtained about the chance of hitting the center,
but it seems that 81 £ 10 percent of all paths do hit the center point.
Of course, I have only generated an extremely small fraction of these
paths, so I cannot really be sure; perhaps nobody will ever know the
true answer.*

The Shortest Paths

For the next examples we will add weights to the lines in the grid.
The basic diagram is shown in Fig. 5, where a random digit has been
placed beside each line; these digits may be thought of as the lengths
of roads between adjacent points of intersection. Thus, there are three
roads of length 4 on the bottom line, and the upper part of the diagram

* See the addendum at the end of this chapter.

2
2
2
3 1
probability 27193711
(a) z |2 -1
~1x10
2 3 3 3 1
2 2 3 2 1
2 2 3 3 2 1
2 3 3 13 3 2 1
2 1 2 2 2 2 1 1
1 1
3 1 3 2
3 2 2 2
2 2 2
3 1 2
(b) —} probability 2~ 193-12
~4x1071?
3 2
2
2
3 [3 I3 |2 I3 3 |2 |3 2
2 2 1 2 1 2 1 2 1
1 2 2 2
3 3 2
2 2 3 3 1
1 3 I3 3 2 3 2 2
3 1 3 2 1 2 |3 3
(©) — - probability 27283729
~5x10"28
2 1 2 3 3
1 3 |2 1 2 3 3 3
2 13 |2 |2 1 3 3
2 3 [3 |2 3
2 1 2 2 2 2

FIGURE 4. Three more randomly generated paths, with
their associated probabilities.

44 Selected Papers on Computer Science

contains three adjacent roads of length 0. Actually I must admit that
the sequences of numbers are not completely arbitrary; for example, the
reader might recognize 1.414213562. .. in the top line as the square root
of 2, and 7 appears down the second column. For our purposes these
digits will be random enough.

1414213562
1 2

1+74+34+240-t5s 0+8+0+7—|
5 6 0

221316t o+t6 7—|—9—}—7—|—7-{
7 1 7

w
(=
(=2}
[¥)
(%]
N

=
[)
o
©
©
[~

-
—
o
©
[~
[=}

(=]
[=>]
©
w
-
'S

-
<
©
o
(=]
-

T

~N
w
(=}

THTWT“T“T‘OT”T“T“TATOT
e o S
e
FofototefetetotToter
et tetetetetofoted
R e e
o e S

~N

)
o
o

1 4 4

=]
©

FIGURE 5. Network to be used in subsequent examples,
based on 22 mathematical constants.

The first problem we might ask about such a network of roads is:
What is the shortest route from the lower left corner to the upper right
corner? We have estimated that there are some 10%* possible paths,
altogether, and we might want to know which of these is shortest, using
the given lengths.

Fortunately we do not have to try all possible paths to find the
shortest; there is a simple method due to Dijkstra [14] that can be used
to solve this problem by hand in less than half an hour. The answer
(see Fig. 6) is a curious sort of path, which might very well be missed
if one does not use a systematic method; it is the only way to go from
southwest to northeast in a path of length 43.

The idea underlying Dijkstra’s method is remarkably simple. Sup-
pose that at some stage we have found all positions at distance 20 or

Mathematics and Computer Science: Coping with Finiteness 45

~

tm
—L—m
i-u
—tm
H_fc:

[=]

L]
+
BN
._i__
=
+
o
®
wlololnlalolaleles

[}

N
©

T
+
T

—
o

-
(=}

e

o]

2

3—l—0—i——2 j o_i_g_‘_2_|

3 1 4 1 0
1—Lg L 4t ol gl gl gl gl 41 g

[e)

ofofrotefofotate

o

5

T
Fefofotetotete
T
1
T

Fofrots
_.i_pi_h.}_w
Fotote

FIGURE 6. The shortest route from lower left to
upper right in the network of Figure 5.

less, say, from the southwest corner. By looking at the roads connecting
these points to the others it will be easy to see which points will be
at distance 21, and so on. You can imagine a fluid spreading over the
diagram at the rate of one unit of length per minute.

Connecting Points in a Network

The next problem is somewhat harder. Suppose we want to construct
electrical connections between all four of the corner points in Fig. 5:
What is the shortest electrical hookup joining these four points, using
only the lines and distances shown? Such a collection of wires is usually
called a Steiner tree [15], and Fig. 7 shows an optimal one.

The number of possible Steiner trees connecting the four corners
is much larger than the number of paths, but still I am sure that the
tree of Figure 7 is as short as possible. In this case I do not know
how to compute the shortest tree by hand, but a properly programmed
computer can do it in a few seconds.

We say that we have a “good” algorithm for some problem if the
time to solve it increases only as a polynomial in the size of the inputs;
in other words, if doubling the size of the problem increases the solution

46 Selected Papers on Computer Science

1.
o ©
T
> ©
T3
T.
S ©
T3
IR

(=]

©

oc
IN
=

o

(=]

w+m+m+c+m+q+o
O_I_N__l_w_l_w__l__.j_o,_l_c,_l_o,_l_w__!_o

~fe
ot
T

FIGURE 7. A shortest way to connect the four corners.

time by at most a constant factor. There is a good algorithm to find
Steiner trees connecting up to five points; it takes roughly n® steps,
where n is the total number of points in the network of roads [16]. But
if we want to connect larger numbers of points by Steiner trees, the
computation rapidly gets larger; and when the number of points to be
connected is, say, as large as n/10, no good algorithm is known.

On the other hand, when our job is to find the shortest way to con-
nect up all n of the points in the network, a good algorithm is available,
again one that is so good it can be performed by hand in half an hour.

A minimal connection of all points in a network is called a span-
ning tree, and in the particular network we are considering it is possi-
ble to prove that the total number of possible spanning trees is really
huge, more than 4 x 1052, In fact, the exact number [17] is 40,325,021,
721,404,118,513,276,859,513,497,679,249,183,623,593,590,784.

Yet we can find the best one, in a remarkably easy way discovered
by J. B. Kruskal [18]: Simply consider all the lines one by one in order
of increasing length, starting with the shortest, then the next shortest,
and so on. In case of ties between lines of the same length, use any
desired order. The rule is to include each line in the spanning tree if and
only if it connects at least two points that are not connected by a path

Mathematics and Computer Science: Coping with Finiteness 47

of previously selected lines. This is called a “greedy algorithm” because
it is based on the idea of trying the best conceivable possibilities first.
Such a policy does not always solve a combinatorial problem — we know
that greed does not always pay off in the long run— but in the case of
spanning trees the idea works perfectly (see Fig. 8).

(Do 19D 4 <DV ¢- 39596 9

© 3 9 @ 0 0 O ® O
(97 3 —9=(2)0=(0)=9— 5 —9=(0)=9— 8 =0)4 7

4 @ 8 ® ® ® ® O O
O4=24-34 6404647494747

®@ 4« O ® s 7 ® 7 O 7 ®
3 91— 6 —4=(2)=¢=(2)=9— 7 7 —4=(6)=¢— 6 —9=(0)

4 QO 17 8 9 8 7 7 8 8 (6
0220, &5 B 29 02 82 &

@ 5 @ ® 6® 9 8 @ © © G
(D¢ 1 D444 9 ¢ 54 740

9 9 (6 O ©O 3 7 @O 3 8 (O
(D408 494200 74D 5

4 @ ® 9 @ &8 9 5 B s @
O 6 4 9 ¢G4 (D4<(D4- 7 4D 8 4=0)

4 6 @ ® @ 5 @ 6 9 9 9
(D-e=<(0)-4-9 8 6 —9=(1)9=2)0=(2 9 8 8

8 5 9 8 © B @ 6 8 @ @
2 2604 0220 &8 & 92 L Oasth &

O 3 @ &6 O @ O @ s
(Do 4 & 4 (D46 4 94 5 4040

FIGURE 8. A minimum spanning tree.

Maximum Matching

Another problem on this network for which a good algorithm is available
is to choose 60 nonoverlapping lines with the maximum possible sum.
We may think now of the points as people, instead of as cities, and the
numbers now measure the amount of happiness generated between one
person and his or her neighbor. The idea is to pair off the people so
as to get the maximum total happiness. If men and women alternate
in the diagram, with men at the corners, there will be 61 men and 60
women in all, so one man will have no partner; he makes a personal
sacrifice for the greater good of the group as a whole. There are exactly
1,801,272,981,919,008 ways to do such a pairing, according to a math-
ematical theory worked out to solve a physical problem about crystals
[19]; Fig. 9 exhibits the best one.

48 Selected Papers on Computer Science

30000 Shin aC8 Shin a0
%+®+§ +®++0++®-+

X
Mﬁi%iﬁié

(§§+@+ +®+€B+@-+

e

FIGURE 9. The best choice of 60 nonoverlapping lines in the diagram.

It turns out that the circled man (row 7, column 9) is the best to
omit, and the others should pair up as shown. Once again we are able
to find the optimum solution in 1 or 2 seconds on a computer if we use
a suitable algorithm, even though the number of possible arrangements
is far too large to examine exhaustively. In this case the algorithm is
somewhat more subtle than the ones I have discussed earlier, but it is
based on simple ideas. First we add a “dummy” woman who will be
paired with the man who gets no real woman. The happiness rating is 0
between the dummy woman and every man. Then if we add or subtract
some number from all the happiness ratings touching any particular
person, the solution to the problem does not change. A clever way of
adjusting these scores can be used so that all 61 of the ratings for the
couples matched here are 9, and all the other ratings are 9 or less [20].

An Apparently Harder Problem

From these examples, one might get the idea that a good algorithm can
be found for virtually any combinatorial problem. Unfortunately this
does not appear to be true, although I did want to demonstrate that
considerable progress has been made toward finding good methods. The
next problem seems to be much harder: What is the shortest path from

Mathematics and Computer Science: Coping with Finiteness 49

the lower left corner to the upper right corner that passes through all
121 points of the grid exactly once?

This is called the traveling salesman problem, because we might
think of a salesman who wants to visit each city with minimum travel
time. The problem arises frequently in industry — for example, when
the goal is to find the best order in which to do n jobs, based on the
costs of changing from one job to another. But it has resisted all attacks.
We know how to solve medium-sized problems, but the algorithms are
not good in the technical sense since the running time goes up rapidly
on large cases.

O 200 202 20, 20 202 2O di oGO &
®©@ 3 o o 9 2 o O @® @ ©
O @ 2229200 &5 L2t ol ol
4+ O ©® 3 8 ® B 5 ® © G
(24293969096 (79— 9 ¢ 7 —4=<7)
B 4 6 7 6 (O O 71 6
S DasiieaOa aOs 20 20 s 262 20
@ ®© 7 8 9 8 17 7 8 8 (&
% 5922005 @5 22292202005 &3 &,
@ s 4 B (6 9 8 2 © @O s
02 205 &5 €289200 &5 sl sl
9 9 G O o 3 @O ®O_ 3 8 O
(D404~ 8 40424047 D¢ 1 4®
@ 2 3 9 4 8 9 5 B ® 2
Op 20, &l 9209200220220 gtk 2O
4 6 (@ ® 4 5 4 6 9 9 (9
(D4~(04-9 484 6 4(D¢4- 2 =284~ 8
® 5 9 &8 O ® @ © &8 @ @
24 3 40454545 942
1 6 1 4 ® O O

FIGURE 10. A shortest path from lower left to upper right,
touching each point just once.

The traveling salesman’s path shown in Fig. 10 is as short as possi-
ble, and it required several minutes of computer time to verify the fact.
To my knowledge, this is the largest network for which the traveling
salesman problem had ever been solved exactly, at the time this paper
was prepared. I used a method suggested in 1971 by Held and Karp [21],
based on a combination of ideas that work well in the spanning tree and
matching problems: It is possible to add or subtract numbers from all
the lines that touch a particular point, without changing the shape of the

50 Selected Papers on Computer Science

minimum tour, and we can use a greedy algorithm to construct a mini-
mum spanning tree for the changed distances. The minimum spanning
tree is no longer than the shortest tour, since every tour is a spanning
tree; but by properly modifying the distances we can make the minimum
spanning tree very nearly a tour, hence comparatively few possibilities
need to be tried. I extended the Held and Karp method to take advan-
tage of the fact that each point has at most four neighbors. In this way
it was possible to verify at reasonable cost that this tour is optimum;
but if I were faced with a larger problem, having say twice as many
points to visit, there would be no known method to get the answer in a
reasonable amount of time.

In fact, it may well be possible in a few years to prove that no good
algorithm exists for the traveling salesman problem. Since so many
people have tried for so many years to find a good algorithm, without
success, the trend is now to look for a proof that success in this endeavor
is impossible. It is analogous to the question of solving polynomial equa-
tions: Quadratic equations were resolved in ancient Mesopotamia, and
the solution of cubic and quartic equations was found at the beginning
of the Renaissance, but nobody was able to solve arbitrary equations
of the fifth degree. Finally, during the first part of the 19th century,
Abel and Galois proved conclusively that there is no way to solve fifth
degree equations in general, using ordinary arithmetic [22]. It is now be-
lieved that there is no good algorithm for the general traveling salesman
problem, and we are awaiting another Abel or Galois to prove it.

In support of this belief, several important things have already been
proved, notably that the traveling salesman problem is computationally
equivalent to hundreds of other problems of general interest [23]. If there
is a good algorithm for any one of these problems, which for technical
reasons are called NP-complete problems, then there will be good al-
gorithms for all the NP-complete problems. Thus, for example, a good
algorithm for the traveling salesman problem would lead immediately to
a good algorithm for many other difficult problems, such as the optimum
scheduling of high school classes, the most efficient way to pack things
into boxes, or the best Steiner trees connecting a large number of points.
A good solution to any one of these problems will solve them all, so if
any one of them is hard they all must be.

A Provably Harder Problem

In recent years, certain problems have, in fact, been shown to be intrin-
sically hard, in the sense that there never will be a fast way to solve

Mathematics and Computer Science: Coping with Finiteness 51

them. Probably the most interesting example of this type was devel-
oped in 1974 by A. Meyer and L. J. Stockmeyer [24]. The problem is to
decide whether or not certain logical statements about whole numbers
0,1, 2, ... are true or false, even when the form of these statements is
severely restricted.

Here are some examples of the sorts of statements we must deal
with.

048 <1063

This statement is clearly true.
Ynim(m <n+1)

This expression is logical shorthand that can be translated as follows,
for people who are not familiar with the new math: “For all numbers n
there exists a number m such that m is less than n + 1.” It is clearly a
true statement, since we may take m equal to n.

Vnim(m+1<n)

“For all numbers n there exists a number m such that m + 1 is less

than n.” This statement is false, for if n = 0 there is no number less than

zero; we are considering only statements about nonnegative numbers.
The next example is a little more complicated.

VeVy(y > z+2=32(c < 2A2<y))

“For all numbers z and all numbers y, if y is greater than or equal to
z + 2 then there exists a number z such that z is less than 2 and z is
less than y.” In other words, if y is at least 2 more than z, there is a
number z between z and y, and this is obviously true.

Finally we can also make statements about sets of numbers; for
example

VS(3z(z € S)=>Ty(ye SAVz(z€ S=>y < 2))

“For all sets S of numbers, if there exists a number z such that z is in S
then there exists a number y such that y is in S and for all numbers z in S
we have y < 2.” Informally, the statement says that every nonempty
set of numbers has a smallest element, and this is true. The similar
statement in which “y < 2” is replaced by “y > 2” would, however, be
false, since the set of all numbers has no largest element.

52 Selected Papers on Computer Science

The logical statements we shall be concerned with cannot be es-
sentially any harder than these examples. They may not involve sub-
traction, multiplication, or division; they cannot even involve addition,
except addition of a constant. (They cannot involve the formula z + y.)
Thus the statements must be very simple —much, much simpler than
those used every day by mathematicians constructing proofs of theorems.

According to a well-known theorem of Biichi [25], it is possible to
decide in a finite number of steps whether or not any statement of the
simple kind we have described is true or false, even though these logical
statements may concern infinitely many cases.

But the new theorem says that it is impossible actually to do this
in the real world, even if we limit ourselves to statements that can be
written in no more than 617 symbols: “No realistic algorithm will ever
be able to decide truth or falsity for arbitrary given statements of length
617 or less.”

In order to understand exactly what this theorem means, we have
to know what it means to speak of a “realistic” algorithm. The theorem
of Meyer and Stockmeyer is based on the fact that anything that can be
done by computer can be done by constructing an electrical circuit, and
so they envisage a setup like that shown in Fig. 11. At the top of such
a device, one can insert any statement whose truth is to be tested. The
logical language involved here makes use of 63 different symbols and a
blank character, so we can place the statement (followed if necessary by
blanks) into a sequence of 617 positions. Each position is converted into
six electrical pulses, whose configuration of “on” and “off” identifies the
corresponding character; thus, the letter z might be represented by the
six pulses “off, on, on, off, off, on.” The resulting 6 x 617 pulses now
enter an electrical circuit or “black box” consisting of AND, OR, and NOT
circuits; AND produces a signal that is “on” only when both inputs to AND
are “on,” OR produces a signal that is “on” when either or both of its
inputs are “on,” and NOT changes “on” to “off” and vice versa. At the
bottom of the circuit, a pulse comes out that is “on” or “off” according
to whether the given logical statement of length 617 was true or false.

According to Biichi’s theorem, it is possible to construct such an
electrical circuit with finitely many components, in a finite amount of
time. But Meyer and Stockmeyer [24] have proved that every such circuit
must use at least 10'2% components, and we have seen that this is much
larger than the number of protons and neutrons in the entire known
universe.

Thus it is hopeless to find an efficient algorithm for this finite prob-
lem. We have to face the fact that it can never be done—no matter

Mathematics and Computer Science: Coping with Finiteness 53

Put logical statements of length 617 in here

Black Box containing electrical circuits
to decide truth or falsity

N_/ N/ !
’AND‘|0R||NUTI
7T\ 7T\ 7T\

The answer (true or false)
comes out here

FIGURE 11. Electrical circuit to decide the correctness
of logical statements containing up to 617 characters.

how clever we may become, or how much money and energy is invested
in the project.

What should we do in the face of such limitations? Whenever some-
thing has been proved impossible, there is an aspect of the human spirit
that encourages us to find some way to do it anyway. In this particu-
lar case, we might try the following sneaky approach: We could build
an electric circuit that gives the correct answer in all simple cases and
that gives a random answer, true or false, in the other cases. Since the
problem is so hard, nobody will be able to know the difference.

But this is obviously unsatisfactory. A better approach would be
to distinguish between levels of truth; for example, the answer might
be “true,” “false,” or “maybe.” And we could give various shades of
“maybe,” saying perhaps that the statement is true in lots of cases.

Let’s consider the traveling salesman problem again. It is reasonably
likely that, some day, somebody will prove that no good algorithm exists
for this problem. If so, that will be a truly great theorem; but what
should we do when we actually need to solve such a problem?

The answer, of course, is to settle for a tour that is not known to
be the shortest possible one, but is pretty close. It has recently been
observed that we can quickly find a traveling salesman’s tour that is
guaranteed to be no worse than 50 percent longer than the shortest pos-
sible tour, if the distances satisfy the triangle inequality. And algorithms
have recently been developed for other problems that give “probably cor-
rect” answers, where the degree of probability can be specified but the
answer is not absolutely certain.

54 Selected Papers on Computer Science

In this way, computer scientists and mathematicians have been
learning how to cope with our finite limitations.

Summary

By presenting these examples, I have tried to illustrate four main points.

1) Finite numbers can be really enormous, and the known universe
is very small. Therefore the distinction between finite and infinite is not
as relevant as the distinction between realistic and unrealistic.

2) In many cases there are subtle ways to solve very large prob-
lems quickly, in spite of the fact that they appear at first to require
examination of too many possibilities.

3) There also are cases where we can prove that a fairly natural
problem is intrinsically hard, far beyond our conceivable capabilities.

4) It takes a good deal of skill to decide whether a given problem
is in the easy or hard class. But even if a problem does turn out to be
hard, there are useful and interesting ways to change it into one that
can be done satisfactorily.

References and Notes

[1] G. Gamov, One, Two, Three, ... Infinity (New York: Viking,
1947).

(2] M. A. Morrison and J. Brillhart, “A method of factoring and the fac-
torization of Fr,” Mathematics of Computation 29 (1975), 183-205.

[3] L. Euler, “Recherches sur une nouvelle espéce de quarrés mag-
iques,” Verhandelingen uitgegeven door het zeeuwsch Genootschap
der Wetenschappen te Vlissingen 9 (1782), 85-239. Reprinted in
Leonhardi Euleri Opera Omnia (1) 7 (1923), 291-392.

[4] G. Tarry, “Les permutations carrées de base 6,” Mathésis 20 (1900)
Supplement, 23-30.

(5] J. Petersen, “Les 36 officiers,” Annuaire des mathématiciens 1901-
1902 (Paris: Laisant & Buhl, 1902), 413-427; P. Wernicke, “Das
Probleme der 36 Offiziere,” Jahresbericht der Deutschen Mathe-
matiker-Vereinigung 19 (1910), 264-267; H. F. MacNeish, “Euler
squares,” Annals of Mathematics 23 (1922), 221-227.

[6] M. Hall and D. E. Knuth, “Combinatorial analysis and computers,”
American Mathematical Monthly 72, part 2, Computers and Com-
puting, Slaught Memorial Papers No. 10 (February 1965), 21-28.

[7] C. B. Tompkins, “Machine attacks on problems whose variables are
permutations,” Proceedings of Symposia in Applied Mathematics

Mathematics and Computer Science: Coping with Finiteness 55

6 (American Mathematical Society, 1953), 195-212; L. J. Paige and
C. B. Tompkins, “The size of the 10 x 10 orthogonal latin square
problem,” Proceedings of Symposia in Applied Mathematics 10
(American Mathematical Society, 1958), 71-84.

[8] E. T. Parker, “Computer investigation of orthogonal latin squares
of order ten,” Proceedings of Symposia in Applied Mathematics 15
(American Mathematical Society, 1962), 73-82.

[9] For a complete survey see J. Dénes and A. D. Keedwell, Latin
Squares and Their Applications (New York: Academic Press, 1974).

[10] See, for example, M. N. Barber and B. W. Ninham, Random and
Restricted Walks (New York: Gordon & Breach, 1970), Chapter 7.

[11] W. A. Mozart, Anleitung zum Componiren von Walzern, so viele
man will vermittelst zweier Wiirfel, ohne etwas von der Musik oder
Composition zu verstehen (Berlin: Simrock, 1796); first published
by J. J. Hummel of Amsterdam and Berlin, 1793. Reprinted as
Mozart’s Musikalisches Wiirfelspiel, K. 516f Anh. C 30.01 (Mainz:
Schott, 1956). See Martin Gardner, “Melody-making machines,” in
Time Travel (New York: Freeman, 1988), Chapter 7.

[12] The 11 possibilities for bar 8 are all identical, and Mozart gave only
two distinct possibilities for bar 16, so the total number of waltzes
is 2 x 114 rather than 111,

[13] T. H. O’Beirne, Dice-Composition Music (Glasgow: Barr & Stroud,
Glasgow, 1967).

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik 1 (1959), 269-271.

[15] See, for example, N. Christofides, Graph Theory, An Algorithmic
Approach (London: Academic Press, 1975), Section 7.4.

[16] First construct the matrix of distances between all pairs of points,
then try all possible intermediate junction points.

[17] A determinant formula that specifies the number of spanning trees
in a particular graph was discovered by J. J. Sylvester [Quarterly
Journal of Pure and Applied Mathematics 1 (1857), 42-56] and by
C. W. Borchardt [Journal fiir die reine und angewandte Mathematik
57 (1860), 111-121]. When the graph is a square grid, with m rows
and m columns, the number of spanning trees seems to be always
of the form mz? or 2mz?, where all the prime factors > m of z
are rather small numbers of the form km =+ 1; at least this is true
when m < 12. For example, the large number cited in the text
corresponds to the case m = 11, and in factored form it equals

56

[20]

21]

22]

[23]

24]

[25]

[26]

Selected Papers on Computer Science

215.112 . 232 .89 - 109 - 199 - 241 - 373 - 397 - 419. This curious
circumstance, which I noticed while preparing the present article,
can be explained by factoring the characteristic polynomial of the
matrix, as pointed out by Noam Elkies in personal correspondence
(1989).

J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph
and the traveling salesman problem,” Proceedings of the American
Mathematical Society 7 (1956), 48-50.

E. W. Montroll, “Lattice statistics,” in Applied Combinatorial
Mathematics, edited by E. F. Beckenbach (New York: Wiley, 1964),
105-113.

This is the well-known “Hungarian method” for the assignment
problem; for example, see Christofides [15], Section 12.4.

M. Held and R. M. Karp, “The traveling-salesman problem and
minimum spanning trees,” Operations Research 18 (1970), 1138-
1162; Mathematical Programming 1 (1971), 6-25.

See, for example, C. B. Boyer, A History of Mathematics (New
York: Wiley, 1968), pp. 555 and 641.

R. M. Karp, “Reducibility among combinatorial problems,” in Com-
plexity of Computer Computations, edited by R. E. Miller and J. W.
Thatcher, (New York: Plenum, 1972), 85-103. See also A. V. Aho,
J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Com-
puter Algorithms (Reading, Massachusetts: Addison-Wesley, 1974),
Chapter 10. For a popular account of related work, see G. B. Ko-
lata, “Analysis of algorithms: Coping with hard problems,” Science
186 (1974), 520-521.

L. J. Stockmeyer, The Complexity of Decision Problems in Au-
tomata Theory and Logic, report MAC TR-133 (Ph.D. thesis, Mas-
sachusetts Institute of Technology, 1974), Chapter 6.

J. R. Biichi, “Weak second-order arithmetic and finite automata,”
Zeitschrift fiir Mathematische Logik und Grundlagen der Mathe-
matik 6 (1960), 66-92.

The preparation and publication of this article were supported in
part by the National Science Foundation, the Office of Naval Re-
search, and IBM Corporation. Some of the computations were done
with the MACSYMA system, supported by the Defense Advanced
Research Projects Agency; others were done on the SUMEX-AIM
computer, supported by the National Institutes of Health; still oth-
ers were done at the Université de Montréal, Centre des Recherches

Mathematics and Computer Science: Coping with Finiteness 57

Mathématiques, where a preliminary version of this article was pre-
pared under the auspices of the Chaire Aisenstadt. A lecture based
on this material was presented at the AAAS annual meeting in
Boston on 22 February 1976, in the session entitled “The Frontiers
of the Natural Sciences” organized by R. M. Sinclair.

Addendum

When I prepared this paper I did not realize that it is possible to
count the number of paths in grid graphs by a technique known to
computer scientists as “discrete dynamic programming” and to combi-
natorial mathematicians as the “transfer matrix method.” This fact
was first pointed out to me in 1977 by Richard Schroeppel. The num-
ber of paths from corner to corner on an 11 x 11 grid was computed
by John Van Rosendale in 1981 while testing a Cray 1 computer at
Boeing Computer Services Company; the exact value turns out to be
1,568,758,030,464,750,013,214,100. By the end of 1995, personal com-
puters were fast enough to calculate this quantity in less than one
minute, while in 1976 I had not believed I would ever know the an-
swer in my lifetime! I recently used a similar method to enumerate
the paths that go through the center point; this number is exactly
1,243,982,213,040,307,428,318,660 —about 79.3% of the overall total.
Moreover, the average length of path is ~ 91.9009, because the sum
of all path lengths is 144,170,284,249,598,867,501,946,128. All three of
my Monte Carlo estimates were correct! (Perhaps I was just lucky.)

Exactly 685,736,844,148,461,678,310,714 of the paths (about 43.7%)
touch the upper left corner; and 299,749,325,823,584,122,861,402 (about
19.1%) touch all four corners. The latter is very nearly 43.7% of 43.7%.

The total number of paths from corner to corner that touch all
121 points is 1,445,778,936,756,068. During recent years many authors
have independently discovered techniques by which such numbers can
be computed efficiently as long as the grid is not too large.

The number of 10 x 10 latin squares with 0123456789 in the
first row and column has recently been computed by Eric Rogoyski and
Brendan McKay [Electronic Journal of Combinatorics 2 (1995), #N3];
it is 7,580,721,483,160,132,811,489,280, slightly less than my estimate
of “10%6 at least.”

Chapter 3

Algorithms

An algorithm is a set of rules for getting a specific output from a specific
input. FEach step must be so precisely defined that it can be translated
into computer language and executed by machine.

[Originally published in Scientific American 236, 4 (April 1977).]

Ten years ago the word “algorithm” was unknown to most edu-
cated people. Indeed, it was scarcely necessary. But the rapid rise of
computer science, which has the study of algorithms as its focal point,
has changed all that; the word is now essential. The English language
has several other words that almost, but not quite, capture the concept
that is needed: procedure, recipe, process, routine, method, rigmarole.
Like these things an algorithm is a set of rules or directions for getting
a specific output from a specific input. The distinguishing feature of
an algorithm is that all vagueness must be eliminated; the rules must
describe operations that are so simple and so well defined that they
can be executed by a machine. Furthermore, an algorithm must always
terminate after a finite number of steps.

A program is the statement of an algorithm in some well-defined
language. Thus a computer program represents an algorithm, although
the algorithm itself is a mental concept that exists independently of any
representation. In a similar way the concept of the number 2 exists in
our minds without being written down. Anyone who has prepared a
computer program will appreciate the fact that an algorithm must be
very precisely defined, with an attention to detail that is unusual in
comparison with the other things people do.

Programs for numerical problems were written as early as 1800 B.C.,
when Babylonian mathematicians at the time of Hammurabi gave rules
for solving many types of equations. The rules were stated as step-by-
step procedures applied systematically to particular numerical examples.

59

60 Selected Papers on Computer Science

The word algorithm itself originated in the Middle East, although at a
much later time. It comes from the last name of the Persian scholar
Abu ‘Abd Allah Muhammad ibn Miusa al-Khwarizmi, whose textbook
on arithmetic (about A.D. 825) had a significant influence for more than
500 years.

Traditional algorithms were concerned solely with numerical calcu-
lation. Experience with computers has shown, however, that the data
manipulated by programs can represent virtually anything. Accordingly
the emphasis in computer science has now shifted to the study of various
structures by which information can be represented, and to the branch-
ing or decision-making aspects of algorithms, which allow them to follow
one or another sequence of operations depending on the state of affairs
at the time. It is precisely these features of algorithms that often make
algorithmic models more suitable than traditional mathematical models

Input:

1|2|3(4]5|6|7|8]|9[10[11|12]13[14]15(16{17|18]|19|20|21|22|23|24|25
=
o = = a [
[o || = a = [=] | >
(&} 0= ZgD < | == -1 << | M|
= kol o (2] KoK | =2 (2|0 =1 13> =
HU)I!JU)OU)NH% ol |Oo|lnn|=|lniH K= Q
M = | H X g M AdGde (RO | =K >lH (=0
m<aazoz WSS (EO =T < | > WX (O el
<|Qa g|lO|K|[<| <K [([>|O||H|HID|IH|O|&|< ARSI A=
< |~ |EE(R|FEF|a|lf|n|lalnlaln|c|Zo|<|Dis|a|F
F

1|2(3[4|5|6|7]|8]|9(10[11[12[13[14|15]|16|17|18|19]|20|21|22|23|24|25
=
o = = a &=
[o = E = [=] | >
(4] 0= = o < | == -1 < ||
= oMl o w0 Klojk|=(J[0 53] o | od [> g
Hn K wno|ln m|H| olE|IO|sK|Ioln|tjlnnlH (= ;| o
R H X ﬁmx..!..ln::nozzmu. >HVJEU)
nNiL|ILQ|=2|0|= WD > |- EBIOZ(W|<| > BRI O 1
< AN |O(t|<|<K|>|O|<<|HHIDIH|O|@G || <[|]| OOt |r
g |H|IED(ED|D|>IDm(F|A|IFR|ILAMAQAD|OIDN(O O = (A=

F

7 steps later

1|2(3(4f5]|6|7|8]|9(10[11(12[13|14|15(|16{17]18|19]|20|21|22|23|24|25
=
o = = o B
= (=] = = [} AR
& Q= = o <|=|= o’ Llig|m
= oll\o [72] oKk |=|(Q(0 el | oS ad | > =
Hn K wn o|n m|H|x oOE|