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Series Foreword

The world of modern computing potentially offers many helpful methods and tools to scientists and engineers, but the fast pace 
of change in computer hardware, software, and algorithms often makes practical use of the newest computing technology 
difficult. The Scientific and Engineering Computation series focuses on rapid advances in computing technologies, with the 
aim of facilitating transfer of these technologies to applications in science and engineering. It will include books on theories, 
methods, and original applications in such areas as parallelism, large-scale simulations, time-critical computing, computer-
aided design and engineering, use of computers in manufacturing, visualization of scientific data, and human-machine interface 
technology.

The series is intended to help scientists and engineers understand the current world of advanced computation and to anticipate 
future developments that will affect their computing environments and open up new capabilities and modes of computation.

This book describes how to use advanced features of the Message-Passing Interface (MPI), a communication library 
specification for both parallel computers and workstation networks. MPI has been developed as a community standard for 
message passing and related operations. Its adoption by both users and implementers has provided the parallel-programming 
community with the portability and features needed to develop application programs and parallel libraries that will tap the 
power of today's (and tomorrow's) high-performance computers.

JANUSZ S. KOWALIK

Page xvii

Preface

MPI (Message-Passing Interface) is a standard library interface for writing parallel programs. MPI was developed in two 
phases by an open forum of parallel computer vendors, library writers, and application developers. The first phase took place in 
1993–1994 and culminated in the first release of the MPI standard, which we call MPI-1. A number of important topics in 
parallel computing had been deliberately left out of MPI-1 in order to speed its release, and the MPI Forum began meeting 
again in 1995 to address these topics, as well as to make minor corrections and clarifications to MPI-1 that had been discovered 
to be necessary. The MPI-2 Standard was released in the summer of 1997. The official Standard documents for MPI-1 (the 
current version as updated by the MPI-2 forum is 1.2) and MPI-2 are available on the Web at http://www.mpi-forum.org. More 
polished versions of the standard documents are published by MIT Press in the two volumes of MPI—The Complete Reference 
[27, 79].

These official documents and the books that describe them are organized so that they will be useful as reference works. The 
structure of the presentation is according to the chapters of the standard, which in turn reflects the subcommittee structure of 
the MPI Forum.

In 1994, two of the present authors, together with Anthony Skjellum, wrote Using MPI: Portable Programming with the 
Message-Passing Interface [31], a quite differently structured book on MPI-1, taking a more tutorial approach to the material. 
A second edition [32] of that book has now appeared as a companion to this one, covering the most recent additions and 
clarifications to the material of MPI-1, and bringing it up to date in various other ways as well. This book takes the same 
tutorial, example-driven approach to its material that Using MPI does, applying it to the topics of MPI-2. These topics include 
parallel I/O, dynamic process management, remote memory operations, and external interfaces.

About This Book

Following the pattern set in Using MPI, we do not follow the order of chapters in the MPI-2 Standard, nor do we follow the 
order of material within a chapter as in the Standard. Instead, we have organized the material in each chapter according to the 
complexity of the programs we use as examples, starting with simple examples and moving to more complex ones. We do 
assume that the reader is familiar with at least the simpler aspects of MPI-1. It is not necessary to have read Using MPI, but it 
wouldn't hurt.

http://www.mpi-forum.org/
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We begin in Chapter 1 with an overview of the current situation in parallel computing, many aspects of which have changed in 
the past five years. We summarize the new topics covered in MPI-2 and their relationship to the current and (what we see as) 
the near-future parallel computing environment.

MPI-2 is not ''MPI-1, only more complicated." There are simple and useful parts of MPI-2, and in Chapter 2 we introduce them 
with simple examples of parallel I/O, dynamic process management, and remote memory operations.

In Chapter 3 we dig deeper into parallel I/O, perhaps the "missing feature" most requested by users of MPI-1. We describe the 
parallel I/O features of MPI, how to use them in a graduated series of examples, and how they can be used to get high 
performance, particularly on today's parallel/high-performance file systems.

In Chapter 4 we explore some of the issues of synchronization between senders and receivers of data. We examine in detail 
what happens (and what must happen) when data is moved between processes. This sets the stage for explaining the design of 
MPI's remote memory operations in the following chapters.

Chapters 5 and 6 cover MPI's approach to remote memory operations. This can be regarded as the MPI approach to shared 
memory, since shared-memory and remote-memory operations have much in common. At the same time they are different, 
since access to the remote memory is through MPI function calls, not some kind of language-supported construct (such as a 
global pointer or array). This difference arises because MPI is intended to be portable to distributed-memory machines, even 
heterogeneous clusters.

Because remote memory access operations are different in many ways from message passing, the discussion of remote memory 
access is divided into two chapters. Chapter 5 covers the basics of remote memory access and a simple synchronization model. 
Chapter 6 covers more general types of remote memory access and more complex synchronization models.

Chapter 7 covers MPI's relatively straightforward approach to dynamic process management, including both spawning new 
processes and dynamically connecting to running MPI programs.

The recent rise of the importance of small to medium-size SMPs (shared-memory multiprocessors) means that the interaction 
of MPI with threads is now far more important than at the time of MPI-1. MPI-2 does not define a standard interface to thread 
libraries because such an interface already exists, namely, the POSIX threads interface [42]. MPI instead provides a number of 
features designed to facilitate the use of multithreaded MPI programs. We describe these features in Chapter 8.

In Chapter 9 we describe some advanced features of MPI-2 that are particularly useful to library writers. These features include 
defining new file data representa-

Page xix

tions, using MPI's external interface functions to build layered libraries, support for mixed-language programming, attribute 
caching, and error handling.

In Chapter 10 we summarize our journey through the new types of parallel programs enabled by MPI-2, comment on the 
current status of MPI-2 implementations, and speculate on future directions for MPI.

Appendix A contains the C, C++, and Fortran bindings for all the MPI-2 functions.

Appendix B describes how to obtain supplementary material for this book, including complete source code for the examples, 
and related MPI materials that are available via anonymous ftp and on the World Wide Web.

In Appendix C we discuss some of the surprises, questions, and problems in MPI, including what we view as some 
shortcomings in the MPI-2 Standard as it is now. We can't be too critical (because we shared in its creation!), but experience 
and reflection have caused us to reexamine certain topics.

Appendix D covers the MPI program launcher, mpiexec, which the MPI-2 Standard recommends that all implementations 
support. The availability of a standard interface for running MPI programs further increases the protability of MPI applications, 
and we hope that this material will encourage MPI users to expect and demand mpiexec from the suppliers of MPI 
implementations.

In addition to the normal subject index, there is an index for the usage examples and definitions of the MPI-2 functions, 
constants, and terms used in this book.



We try to be impartial in the use of C, Fortran, and C++ in the book's examples. The MPI Standard has tried to keep the syntax 
of its calls similar in C and Fortran; for C++ the differences are inevitably a little greater, although the MPI Forum adopted a 
conservative approach to the C++ bindings rather than a complete object library. When we need to refer to an MPI function 
without regard to language, we use the C version just because it is a little easier to read in running text.

This book is not a reference manual, in which MPI functions would be grouped according to functionality and completely 
defined. Instead we present MPI functions informally, in the context of example programs. Precise definitions are given in 
volume 2 of MPI—The Complete Reference [27] and in the MPI-2 Standard [59]. Nonetheless, to increase the usefulness of this 
book to someone working with MPI, we have provided the calling sequences in C, Fortran, and C++ for each MPI-2 function 
that we discuss. These listings can be found set off in boxes located near where the functions are introduced. C bindings are 
given in ANSI C style. Arguments that can be of several types (typically message buffers) are defined as void* in C. In the 
Fortran boxes, such arguments are marked as being of type <type>. This means that one of the appropriate Fortran data types 
should be used. To
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find the "binding box" for a given MPI routine, one should use the appropriate bold-face reference in the Function and Term 
Index: C for C, f90 for Fortran, and C++ for C++. Another place to find this information is in Appendix A, which lists all MPI 
functions in alphabetical order for each language.
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1—
Introduction

When the MPI Standard was first released in 1994, its ultimate significance was unknown. Although the Standard was the 
result of a consensus among parallel computer vendors, computer scientists, and application developers, no one knew to what 
extent implementations would appear or how many parallel applications would rely on it.

Now the situation has clarified. All parallel computing vendors supply their users with MPI implementations, and there are 
freely available implementations that both compete with vendor implementations on their platforms and supply MPI solutions 
for heterogeneous networks. Applications large and small have been ported to MPI, and new applications are being written. 
MPI's goal of stimulating the development of parallel libraries by enabling them to be portable has been realized, and an 
increasing number of applications become parallel purely through the use of parallel libraries.

This book is about how to use MPI-2, the collection of advanced features that were added to MPI by the second MPI Forum. In 
this chapter we review in more detail the origins of both MPI-1 and MPI-2. We give an overview of what new functionality has 
been added to MPI by the release of the MPI-2 Standard. We conclude with a summary of the goals of this book and its 
organization.

1.1—
Background

We present here a brief history of MPI, since some aspects of MPI can be better understood in the context of its development. 
An excellent description of the history of MPI can also be found in [36].

1.1.1—
Ancient History

In the early 1990s, high-performance computing was in the process of converting from the vector machines that had dominated 
scientific computing in the 1980s to massively parallel processors (MPPs) such as the IBM SP-1, the Thinking Machines CM-
5, and the Intel Paragon. In addition, people were beginning to use networks of desktop workstations as parallel computers. 
Both the MPPs and the workstation networks shared the message-passing model of parallel computation, but programs were 
not portable. The MPP vendors competed with one another on the syntax of their message-passing libraries. Portable libraries, 
such as PVM [24], p4 [8], and TCGMSG [35], appeared from the research community and became widely used on workstation 
networks. Some of them allowed portability to MPPs as well, but
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there was no unified, common syntax that would enable a program to run in all the parallel environments that were suitable for 
it from the hardware point of view.

1.1.2—
The MPI Forum

Starting with a workshop in 1992, the MPI Forum was formally organized at Supercomputing '92. MPI succeeded because the 
effort attracted a broad spectrum of the parallel computing community. Vendors sent their best technical people. The authors of 
portable libraries participated, and applications programmers were represented as well. The MPI Forum met every six weeks 
starting in January 1993 and released MPI in the summer of 1994.

To complete its work in a timely manner, the Forum strictly circumscribed its topics. It developed a standard for the strict 
message-passing model, in which all data transfer is a cooperative operation among participating processes. It was assumed 
that the number of processes was fixed and that processes were started by some (unspecified) mechanism external to MPI. I/O 
was ignored, and language bindings were limited to C and Fortran 77. Within these limits, however, the Forum delved deeply, 
producing a very full-featured message-passing library. In addition to creating a portable syntax for familiar message-passing 
functions, MPI introduced (or substantially extended the development of) a number of new concepts, such as derived datatypes, 
contexts, and communicators. MPI constituted a major advance over all existing message-passing libraries in terms of features, 
precise semantics, and the potential for highly optimized implementations.



In the year following its release, MPI was taken up enthusiastically by users, and a 1995 survey by the Ohio Supercomputer 
Center showed that even its more esoteric features found users. The MPICH portable implementation [30], layered on top of 
existing vendor systems, was available immediately, since it had evolved along with the standard. Other portable 
implementations appeared, particularly LAM [7], and then vendor implementations in short order, some of them leveraging 
MPICH. The first edition of Using MPI [31] appeared in the fall of 1994, and we like to think that it helped win users to the 
new Standard.

But the very success of MPI-1 drew attention to what was not there. PVM users missed dynamic process creation, and several 
users needed parallel I/O. The success of the Cray shmem library on the Cray T3D and the active-message library on the CM-5 
made users aware of the advantages of "one-sided" operations in algorithm design. The MPI Forum would have to go back to 
work.
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1.1.3—
The MPI-2 Forum

The modern history of MPI begins in the spring of 1995, when the Forum resumed its meeting schedule, with both veterans of 
MPI-1 and about an equal number of new participants. In the previous three years, much had changed in parallel computing, 
and these changes would accelerate during the two years the MPI-2 Forum would meet.

On the hardware front, a consolidation of MPP vendors occurred, with Thinking Machines Corp., Meiko, and Intel all leaving 
the marketplace. New entries such as Convex (now absorbed into Hewlett-Packard) and SGI (now having absorbed Cray 
Research) championed a shared-memory model of parallel computation although they supported MPI (passing messages 
through shared memory), and many applications found that the message-passing model was still well suited for extracting peak 
performance on shared-memory (really NUMA) hardware. Small-scale shared-memory multiprocessors (SMPs) became 
available from workstation vendors and even PC manufacturers. Fast commodity-priced networks, driven by the PC 
marketplace, became so inexpensive that clusters of PCs combined with inexpensive networks, started to appear as "home-
brew" parallel supercomputers. A new federal program, the Accelerated Strategic Computing Initiative (ASCI), funded the 
development of the largest parallel computers ever built, with thousands of processors. ASCI planned for its huge applications 
to use MPI.

On the software front, MPI, as represented by MPI-1, became ubiquitous as the application programming interface (API) for 
the message-passing model. The model itself remained healthy. Even on flat shared-memory and NUMA (nonuniform memory 
access) machines, users found the message-passing model a good way to control cache behavior and thus performance. The 
perceived complexity of programming with the message-passing model was alleviated by two developments. The first was the 
convenience of the MPI interface itself, once programmers became more comfortable with it as the result of both experience 
and tutorial presentations. The second was the appearance of libraries that hide much of the MPI-level complexity from the 
application programmer. Examples are PETSc [3], ScaLAPACK [12], and PLAPACK [94]. This second development is 
especially satisfying because it was an explicit design goal for the MPI Forum to encourage the development of libraries by 
including features that libraries particularly needed.

At the same time, non-message-passing models have been explored. Some of these may be beneficial if actually adopted as 
portable standards; others may still require interaction with MPI to achieve scalability. Here we briefly summarize two 
promising, but quite different approaches.
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Explicit multithreading is the use of an API that manipulates threads (see [32] for definitions within a single address space. 
This approach may be sufficient on systems that can devote a large number of CPUs to servicing a single process, but 
interprocess communication will still need to be used on scalable systems. The MPI API has been designed to be thread safe. 
However, not all implementations are thread safe. An MPI-2 feature is to allow applications to request and MPI 
implementations to report their level of thread safety (see Chapter 8).

In some cases the compiler generates the thread parallelism. In such cases the application or library uses only the MPI API, and 
additional parallelism is uncovered by the compiler and expressed in the code it generates. Some compilers do this unaided; 
others respond to directives in the form of specific comments in the code.

OpenMP is a proposed standard for compiler directives for expressing parallelism, with particular emphasis on loop-level 
parallelism. Both C [68] and Fortran [67] versions exist.



Thus the MPI-2 Forum met during time of great dynamism in parallel programming models. What did the Forum do, and what 
did it come up with?

1.2—
What's New in MPI-2?

The MPI-2 Forum began meeting in March of 1995. Since the MPI-1 Forum was judged to have been a successful effort, the 
new Forum procedures were kept the same as for MPI-1. Anyone was welcome to attend the Forum meetings, which were held 
every six weeks. Minutes of the meetings were posted to the Forum mailing lists, and chapter drafts were circulated publicly 
for comments between meetings. At meetings, subcommittees for various chapters met and hammered out details, and the final 
version of the standard was the result of multiple votes by the entire Forum.

The first action of the Forum was to correct errors and clarify a number of issues that had caused misunderstandings in the 
original document of July 1994, which was retroactively labeled MPI-1.0. These minor modifications, encapsulated as MPI-
1.1, were released in May 1995. Corrections and clarifications, to MPI-1 topics continued during the next two years, and the 
MPI-2 document contains MPI-1.2 as a chapter (Chapter 3) of the MPI-2 release, which is the current version of the MPI 
standard. MPI-1.2 also contains a number of topics that belong in spirit to the MPI-1 discussion, although they were added by 
the MPI-2 Forum.
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MPI-2 has three "large," completely new areas, which represent extensions of the MPI programming model substantially 
beyond the strict message-passing model represented by MPI-1. These areas are parallel I/O, remote memory operations, and 
dynamic process management. In addition, MPI-2 introduces a number of features designed to make all of MPI more robust 
and convenient to use, such as external interface specifications, C++ and Fortran-90 bindings, support for threads, and mixed-
language programming.

1.2.1—
Parallel I/O

The parallel I/O part of MPI-2, sometimes just called MPI-IO, originated independently of the Forum activities, as an effort 
within IBM to explore the analogy between input/output and message passing. After all, one can think of writing to a file as 
analogous to sending a message to the file system and reading from a file as receiving a message from it. Furthermore, any 
parallel I/O system is likely to need collective operations, ways of defining noncontiguous data layouts both in memory and in 
files, and nonblocking operations. In other words, it will need a number of concepts that have already been satisfactorily 
specified and implemented in MPI. The first study of the MPI-IO idea was carried out at IBM Research [71]. The effort was 
expanded to include a group at NASA Ames, and the resulting specification appeared in [15]. After that, an open e-mail 
discussion group was formed, and this group released a series of proposals, culminating in [90]. At that point the group merged 
with the MPI Forum, and I/O became a part of MPI-2. The I/O specification evolved further over the course of the Forum 
meetings, until MPI-2 was finalized in July 1997.

In general, I/O in MPI-2 can be thought of as Unix I/O plus quite a lot more. That is, MPI does include analogues of the basic 
operations of open, close, seek, read, and write. The arguments for these functions are similar to those of the 
corresponding Unix I/O operations, making an initial port of existing programs to MPI relatively straightforward. The purpose 
of parallel I/O in MPI, however, is to achieve much higher performance than the Unix API can deliver, and serious users of 
MPI must avail themselves of the more advanced features, which include

• noncontiguous access in both memory and file,

• collective I/O operations,

• use of explicit offsets to avoid separate seeks,

• both individual and shared file pointers,

• nonblocking I/O,

• portable and customized data representations, and
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• hints for the implementation and file system.

We will explore in detail in Chapter 3 exactly how to exploit these features. We will find out there just how the I/O API 
defined by MPI enables optimizations that the Unix I/O API precludes.

1.2.2—
Remote Memory Operations

The hallmark of the message-passing model is that data is moved from the address space of one process to that of another by 
means of a cooperative operation such as a send/receive pair. This restriction sharply distinguishes the message-passing 
model from the shared-memory model, in which processes have access to a common pool of memory and can simply perform 
ordinary memory operations (load from, store into) on some set of addresses.

In MPI-2, an API is defined that provides elements of the shared-memory model in an MPI environment. These are called 
MPI's "one-sided" or "remote memory" operations. Their design was governed by the need to

• balance efficiency and portability across several classes of architectures, including shared-memory multiprocessors (SMPs), 
nonuniform memory access (NUMA) machines, distributed-memory massively parallel processors (MPPs), SMP clusters, and 
even heterogeneous networks;

• retain the "look and feel" of MPI-1;

• deal with subtle memory behavior issues, such as cache coherence and sequential consistency; and

• separate synchronization from data movement to enhance performance.

The resulting design is based on the idea of remote memory access windows: portions of each process's address space that it 
explicitly exposes to remote memory operations by other processes defined by an MPI communicator. Then the one-sided 
operations put, get, and accumulate can store into, load from, and update, respectively, the windows exposed by other 
processes. All remote memory operations are nonblocking, and synchronization operations are necessary to ensure their 
completion. A variety of such synchronizations operations are provided, some for simplicity, some for precise control, and 
some for their analogy with shared-memory synchronization operations. In Chapter 4, we explore some of the issues of 
synchronization between senders and receivers of data. Chapters 5 and 6 describe the remote memory operations of MPI-2 in 
detail.
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1.2.3—
Dynamic Process Management

The third major departure from the programming model defined by MPI-1 is the ability of an MPI process to participate in the 
creation of new MPI processes or to establish communication with MPI processes that have been started separately. The main 
issues faced in designing an API for dynamic process management are

• maintaining simplicity and flexibility;

• interacting with the operating system, the resource manager, and the process manager in a complex system software 
environment; and

• avoiding race conditions that compromise correctness.

The key to correctness is to make the dynamic process management operations collective, both among the processes doing the 
creation of new processes and among the new processes being created. The resulting sets of processes are represented in an 
intercommunicator. Intercommunicators (communicators containing two groups of processes rather than one) are an esoteric 
feature of MPI-1, but are fundamental for the MPI-2 dynamic process operations. The two families of operations defined in 
MPI-2, both based on intercommunicators, are creating of new sets of processes, called spawning, and establishing 
communications with pre-existing MPI programs, called connecting. The latter capability allows applications to have parallel-
client/parallel-server structures of processes. Details of the dynamic process management operations can be found in Chapter 7.



1.2.4—
Odds and Ends

Besides the above ''big three," the MPI-2 specification covers a number of issues that were not discussed in MPI-1.

Extended Collective Operations

Extended collective operations in MPI-2 are analogous to the collective operations of MPI-1, but are defined for use on 
intercommunicators. (In MPI-1, collective operations are restricted to intracommunicators.) MPI-2 also extends the MPI-1 
intracommunicator collective operations to allow an "in place" option, in which the send and receive buffers are the same.

C++ and Fortran 90

In MPI-1, the only languages considered were C and Fortran, where Fortran was construed as Fortran 77. In MPI-2, all 
functions (including MPI-1 functions) have C++ bindings, and Fortran means Fortran 90 (or Fortran 95 [1]). For C++, the MPI-
2 Forum chose a "minimal" approach in which the C++ versions of MPI functions are quite similar to the C versions, with 
classes defined
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for most of the MPI objects (such as MPI::Request for the C MPI_Request. Most MPI functions are member functions 
of MPI classes (easy to do because MPI has an object-oriented design), and others are in the MPI namespace.

MPI can't take advantage of some Fortran-90 features, such as array sections, and some MPI functions, particularly ones like 
MPI-Send that use a "choice" argument, can run afoul of Fortran's compile-time type checking for arguments to routines. This 
is usually harmless but can cause warning messages. However, the use of choice arguments does not match the letter of the 
Fortran standard; some Fortran compilers may require the use of a compiler option to relax this restriction in the Fortran 
language.1 "Basic" and "extended" levels of support for Fortran 90 are provided in MPI-2. Essentially, basic support requires 
that mpif.h be valid in both fixed-and free-form format, and "extended" support includes an MPI module and some new 
functions that use parameterized types. Since these language extensions apply to all of MPI, not just MPI-2, they are covered in 
detail in the second edition of Using MPI [32] rather than in this book.

Language Interoperability

Language interoperability is a new feature in MPI-2. MPI-2 defines features, both by defining new functions and by specifying 
the behavior of implementations, that enable mixed-language programming, an area ignored by MPI-1.

External Interfaces

The external interfaces part of MPI makes it easy for libraries to extend MPI by accessing aspects of the implementation that 
are opaque in MPI-1. It aids in the construction of integrated tools, such as debuggers and performance analyzers, and is 
already being used in the early implementations of the MPI-2 I/O functionality [88].

Threads

MPI-1, other than designing a thread-safe interface, ignored the issue of threads. In MPI-2, threads are recognized as a potential 
part of an MPI programming environment. Users can inquire of an implementation at run time what

1 Because Fortran uses compile-time data-type matching rather than run-time data-type matching, it is invalid to make two calls 
to the same routine in which two different data types are used in the same argument position. This affects the "choice" arguments 
in the MPI Standard. For example, calling MPI-Send with a first argument of type integer and then with a first argument of 
type real is invalid in Fortran 77. In Fortran 90, when using the extended Fortran support, it is possible to allow arguments of 
different types by specifying the appropriate interfaces in the MPI module. However, this requires a different interface for each 
type and is not a practical approach for Fortran 90 derived types. MPI does provide for data-type checking, but does so at run 
time through a separate argument, the MPI datatype argument.
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its level of thread-safety is. In cases where the implementation supports multiple levels of thread-safety, users can select the 
level that meets the application's needs while still providing the highest possible performance.

1.3—
Reading This Book

This book is not a complete reference book for MPI-2. We leave that to the Standard itself [59] and to the two volumes of 
MPI—The Complete Reference [27, 79]. This book, like its companion Using MPI focusing on MPI-1, is organized around 
using the concepts of MPI-2 in application programs. Hence we take an iterative approach. In the preceding section we 
presented a very high level overview of the contents of MPI-2. In the next chapter we demonstrate the use of several of these 
concepts in simple example programs. Then in the following chapters we go into each of the major areas of MPI-2 in detail. 
We start with the parallel I/O capabilities of MPI in Chapter 3, since that has proven to be the single most desired part of MPI-
2. In Chapter 4 we explore some of the issues of synchronization between senders and receivers of data. The complexity and 
importance of remote memory operations deserve two chapters, Chapters 5 and 6. The next chapter, Chapter 7, is on dynamic 
process management. We follow that with a chapter on MPI and threads, Chapter 8, since the mixture of multithreading and 
message passing is likely to become a widely used programming model. In Chapter 9 we consider some advanced features of 
MPI-2 that are particularly useful to library writers. We conclude in Chapter 10 with an assessment of possible future directions 
for MPI.

In each chapter we focus on example programs to illustrate MPI as it is actually used. Some miscellaneous minor topics will 
just appear where the example at hand seems to be a good fit for them. To find a discussion on a given topic, you can consult 
either the subject index or the function and term index, which is organized by MPI function name.

Finally, you may wish to consult the companion volume, Using MPI: Portable Parallel Programming with the Message-
passing Interface [32]. Some topics considered by the MPI-2 Forum are small extensions to MPI-1 topics and are covered in 
the second edition (1999) of Using MPI. Although we have tried to make this volume self-contained, some of the examples 
have their origins in the examples of Using MPI.

Now, let's get started!
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2—
Getting Started with MPI-2

In this chapter we demonstrate what MPI-2 "looks like," while deferring the details to later chapters. We use relatively simple 
examples to give a flavor of the new capabilities provided by MPI-2. We focus on the main areas of parallel I/O, remote 
memory operations, and dynamic process management, but along the way demonstrate MPI in its new language bindings, C++ 
and Fortran 90, and touch on a few new features of MPI-2 as they come up.

2.1—
Portable Process Startup

One small but useful new feature of MPI-2 is the recommendation of a standard method for starting MPI programs. The 
simplest version of this is

mpiexec -n 16 myprog

to run the program myprog with 16 processes.



Strictly speaking, how one starts MPI programs is outside the scope of the MPI specification, which says how to write MPI 
programs, not how to run them. MPI programs are expected to run in such a wide variety of computing environments, with 
different operating systems, job schedulers, process managers, and so forth, that standardizing on a multiple-process startup 
mechanism is impossible. Nonetheless, users who move their programs from one machine to another would like to be able to 
move their run scripts as well. Several current MPI implementations use mpirun to start MPI jobs. Since the mpirun 
programs are different from one implementation to another and expect different arguments, this has led to confusion, especially 
when multiple MPI implementations are installed on the same machine.

In light of all these considerations, the MPI Forum took the following approach, which appears in several other places in the 
MPI-2 Standard as well. It recommended to implementers that mpiexec be one of the methods for starting an MPI program, 
and then specified the formats of some of the arguments, which are optional. What it does say is that if an implementation 
supports startup of MPI jobs with mpiexec and uses the keywords for arguments that are described in the Standard, then the 
arguments must have the meanings specified in the Standard. That is,

mpiexec -n 32 myprog

should start 32 MPI processes with 32 as the size of MPI_COMM_WORLD, and not do something else. The name mpiexec was 
chosen so as to avoid conflict with the various currently established meanings of mpirun.
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Besides the -n <numprocs> argument, mpiexec has a small number of other arguments whose behavior is specified by 
MPI. In each case, the format is a reserved keyword preceded by a hyphen and followed (after whitespace) by a value. The 
other keywords are -soft, -host, -arch, -wdir, -path, and -file. They are most simply explained by 
examples.

mpiexec -n 32 -soft 16 myprog

means that if 32 processes can't be started, because of scheduling constraints, for example, then start 16 instead. (The request 
for 32 processes is a "soft" request.)

mpiexec -n 4 -host denali -wdir /home/me/outfiles myprog

means to start 4 processes (by default, a request for a given number of processes is "hard") on the specified host machine 
("denali" is presumed to be a machine name known to mpiexec) and have them start with their working directories set to /
home/me/outfiles.

mpiexec -n 12 -soft 1:12 -arch sparc-solaris \
        -path /home/me/sunprogs myprog

says to try for 12 processes, but run any number up to 12 if 12 cannot be run, on a sparc-solaris machine, and look for myprog 
in the path /home/me/sunprogs, presumably the directory where the user compiles for that architecture. And finally,

mpiexec -file myfile

tells mpiexec to look in myfile for instructions on what to do. The format of myfile is left to the implementation. More 
details on mpiexec, including how to start multiple processes with different executables, can be found in Appendix D.

2.2—
Parallel I/O

Parallel I/O in MPI starts with functions familiar to users of standard "language" I/O or libraries. MPI also has additional 
features necessary for performance and portability. In this section we focus on the MPI counterparts of opening and closing 
files and reading and writing contiguous blocks of data from/to them. At this level the main feature we show is how MPI can 
conveniently express parallelism in these operations. We give several variations of a simple example in which processes write a 
single array of integers to a file.
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Figure 2.1
Sequential I/O from a parallel program

2.2.1—
Non-Parallel I/O from an MPI Program

MPI-1 does not have any explicit support for parallel I/O. Therefore, MPI applications developed over the past few years have 
had to do their I/O by relying on the features provided by the underlying operating system, typically Unix. The most 
straightforward way of doing this is just to have one process do all I/O. Let us start our sequence of example programs in this 
section by illustrating this technique, diagrammed in Figure 2.1. We assume that the set of processes have a distributed array of 
integers to be written to a file. For simplicity, we assume that each process has 100 integers of the array, whose total length 
thus depends on how many processes there are. In the figure, the circles represent processes; the upper rectangles represent the 
block of 100 integers in each process's memory; and the lower rectangle represents the file to be written. A program to write 
such an array is shown in Figure 2.2. The program begins with each process initializing its portion of the array. All processes 
but process 0 send their section to process 0. Process 0 first writes its own section and then receives the contributions from the 
other processes in turn (the rank is specified in MPI_Recv) and writes them to the file.

This is often the first way I/O is done in a parallel program that has been converted from a sequential program, since no 
changes are made to the I/O part of the program. (Note that in Figure 2.2, if numprocs is 1, no MPI communication 
operations are performed.) There are a number of other reasons why I/O in a parallel program may be done this way.

• The parallel machine on which the program is running may support I/O only from one process.

• One can use sophisticated I/O libraries, perhaps written as part of a high-level data-management layer, that do not have 
parallel I/O capability.

• The resulting single file is convenient for handling outside the program (by mv, cp, or ftp, for example).
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/* example of sequential Unix write into a common file */
#include "mpi.h"
#include <stdio.h>
#define BUFSIZE 100

int main(int argc, char *argv[])
{
    int i, myrank, numprocs, buf[BUFSIZE];
    MPI_Status status;
    FILE *myfile;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
    for (i=0; i<BUFSIZE; i++)
        buf[i] = myrank * BUFSIZE + i;
    if (myrank != 0)
        MPI_Send(buf, BUFSIZE, MPI_INT, 0, 99, MPI_COMM_WORLD);
    else {
        myfile = fopen("testfile", "w");
        fwrite(buf, sizeof(int), BUFSIZE, myfile);



        for (i=1; i<numprocs; i++) {
            MPI_Recv(buf, BUFSIZE, MPI_INT, i, 99, MPI_COMM_WORLD,
                     &status);
            fwrite(buf, sizeof(int), BUFSIZE, myfile);
        }
        fclose(myfile);
    }
    MPI_Finalize();
    return 0;
}

Figure 2.2
Code for sequential I/O from a parallel program
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Figure 2.3
Parallel I/O to multiple files

• Performance may be enhanced because the process doing the I/O may be able to assemble large blocks of data. (In Figure 2.2, 
if process 0 had enough buffer space, it could have accumulated the data from other processes into a single buffer for one large 
write operation.)

The reason for not doing I/O this way is a single, but important one:

• The lack of parallelism limits performance and scalability, particularly if the underlying file system permits parallel physical I/
O.

2.2.2—
Non-MPI Parallel I/O from an MPI Program

In order to address the lack of parallelism, the next step in the migration of a sequential program to a parallel one is to have 
each process write to a separate file, thus enabling parallel data transfer, as shown in Figure 2.3. Such a program is shown in 
Figure 2.4. Here each process functions completely independently of the others with respect to I/O. Thus, each program is 
sequential with respect to I/O and can use language I/O. Each process opens its own file, writes to it, and closes it. We have 
ensured that the files are separate by appending each process's rank to the name of its output file.

The advantage of this approach is that the I/O operations can now take place in parallel and can still use sequential I/O libraries 
if that is desirable. The primary disadvantage is that the result of running the program is a set of files instead of a single file. 
This has multiple disadvantages:

• The files may have to be joined together before being used as input to another application.

• It may be required that the application that reads these files be a parallel program itself and be started with the exact same 
number of processes.

• It may be difficult to keep track of this set of files as a group, for moving them, copying them, or sending them across a 
network.
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/* example of parallel Unix write into separate files */
#include "mpi.h"
#include <stdio.h>
#define BUFSIZE 100

int main(int argc, char *argv[])
{
    int i, myrank, buf[BUFSIZE];
    char filename[128];
    FILE *myfile;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    for (i=0; i<BUFSIZE; i++)
        buf[i] = myrank * BUFSIZE + i;
    sprintf(filename, "testfile.%d", myrank);
    myfile = fopen(filename, "w");
    fwrite(buf, sizeof(int), BUFSIZE, myfile);
    fclose(myfile);
    MPI_Finalize();
    return 0;
}

Figure 2.4
Non-MPI parallel I/O to multiple files

The performance may also suffer because individual processes may find their data to be in small contiguous chunks, causing 
many I/O operations with smaller data items. This may hurt performance more than can be compensated for by the parallelism. 
We will investigate this topic more deeply in Chapter 3.

2.2.3—
MPI I/O to Separate Files

As our first MPI I/O program we will simply translate the program of Figure 2.4 so that all of the I/O operations are done with 
MPI. We do this to show how familiar I/O operations look in MPI. This program has the same advantages and disadvantages as 
the preceding version. Let us consider the differences between the programs shown in Figures 2.4 and 2.5 one by one; there are 
only four.

First, the declaration FILE has been replaced by MPI_File as the type of myfile. Note that myfile is now a variable of 
type MPI_File, rather than a pointer to an object of type FILE. The MPI function corresponding to fopen is (not 
surprisingly)
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/* example of parallel MPI write into separate files */
#include "mpi.h"
#include <stdio.h>
#define BUFSIZE 100

int main(int argc, char *argv[])
{
    int i, myrank, buf[BUFSIZE];
    char filename[128];
    MPI_File myfile;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    for (i=0; i<BUFSIZE; i++)
        buf[i] = myrank * BUFSIZE + i;
    sprintf(filename, "testfile.%d", myrank);
    MPI_File_open(MPI_COMM_SELF, filename,
                  MPI_MODE_WRONLY | MPI_MODE_CREATE,



                  MPI_INFO_NULL, &myfile);
    MPI_File_write(myfile, buf, BUFSIZE, MPI_INT,
                   MPI_STATUS_IGNORE);
    MPI_File_close(&myfile);
    MPI_Finalize();
    return 0;
}

Figure 2.5
MPI I/O to separate files

called MPI_File_open. Let us consider the arguments in the call

MPI_File_open(MPI_COMM_SELF, filename,
              MPI_MODE_CREATE | MPI_MODE_WRONLY,
              MPI_INFO_NULL, &myfile);

one by one. The first argument is a communicator. In a way, this is the most significant new component of I/O in MPI. Files in 
MPI are opened by a collection of processes identified by an MPI communicator. This ensures that those processes operating 
on a file together know which other processes are also operating on the file and can communicate with one another. Here, since 
each process is opening its own file for its own exclusive use, it uses the communicator MPI_COMM_SELF.
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The second argument is a string representing the name of the file, as in fopen. The third argument is the mode in which the 
file is opened. Here it is being both created (or overwritten if it exists) and will only be written to by this program. The 
constants MPI_MODE_CREATE and MPI_MODE_WRONLY represent bit flags that are or'd together in C, much as they are in 
the Unix system call open.

The fourth argument, MPI_INFO_NULL here, is a predefined constant representing a dummy value for the info argument to 
MPI_File_open. We will describe the MPI_Info object later in this chapter in Section 2.5. In our program we don't need 
any of its capabilities; hence we pass MPI_INFO_NULL to MPI_File_open. As the last argument, we pass the address of 
the MPI_File variable, which the MPI_File_open will fill in for us. As with all MPI functions in C, MPI_File_open 
returns as the value of the function a return code, which we hope is MPI_SUCCESS. In our examples in this section, we do not 
check error codes, for simplicity.

The next function, which actually does the I/O in this program, is

MPI_File_write(myfile, buf, BUFSIZE, MPI_INT,
               MPI_STATUS_IGNORE);

Here we see the analogy between I/O and message passing that was alluded to in Chapter 1. The data to be written is described 
by the (address, count, datatype) method used to describe messages in MPI-1. This way of describing a buffer to be written (or 
read) gives the same two advantages as it does in message passing: it allows arbitrary distributions of noncontiguous data in 
memory to be written with a single call, and it expresses the datatype, rather than just the length, of the data to be written, so 
that meaningful transformations can be done on it as it is read or written, for heterogeneous environments. Here we just have a 
contiguous buffer of BUFSIZE integers, starting at address buf. The final argument to MPI_File_write is a "status" 
argument, of the same type as returned by MPI_Recv. We shall see its use below. In this case we choose to ignore its value. 
MPI-2 specifies that the special value MPI_STATUS_IGNORE can be passed to any MPI function in place of a status 
argument, to tell the MPI implementation not to bother filling in the status information because the user intends to ignore it. 
This technique can slightly improve performance when status information is not needed.

Finally, the function

MPI_File_close(&myfile);

closes the file. The address of myfile is passed rather than the variable itself because the MPI implementation will replace its 
value with the constant MPI_FILE_NULL. Thus the user can detect invalid file objects.
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/* example of parallel MPI write into a single file */
#include "mpi.h"
#include <stdio.h>
#define BUFSIZE 100

int main(int argc, char *argv[])
{
    int i, myrank, buf[BUFSIZE];
    MPI_File thefile;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    for (i=0; i<BUFSIZE; i++)
        buf[i] = myrank * BUFSIZE + i;
    MPI_File_open(MPI_COMM_WORLD, "testfile",
                  MPI_MODE_CREATE | MPI_MODE_WRONLY,
                  MPI_INFO_NULL, &thefile);
    MPI_File_set_view(thefile, myrank * BUFSIZE * sizeof(int),
                      MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
    MPI_File_write(thefile, buf, BUFSIZE, MPI_INT,
                   MPI_STATUS_IGNORE);
    MPI_File_close(&thefile);
    MPI_Finalize();
    return 0;
}

Figure 2.6
MPI I/O to a single file

2.2.4—
Parallel MPI I/O to a Single File

We now modify our example so that the processes share a single file instead of writing to separate files, thus eliminating the 
disadvantages of having multiple files while retaining the performance advantages of parallelism. We will still not be doing 
anything that absolutely cannot be done through language or library I/O on most file systems, but we will begin to see the ''MPI 
way" of sharing a file among processes. The new version of the program is shown in Figure 2.6.

The first difference between this program and that of Figure 2.5 is in the first argument of the MPI_File_open statement. 
Here we specify MPI_COMM_WORLD instead of MPI_COMM_SELF, to indicate that all the processes are opening a single file 
together. This is a collective operation on the communicator, so all participating processes
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Figure 2.7
Parallel I/O to a single file

must make the MPI_File_open call, although only a single file is being opened.

Our plan for the way this file will be written is to give each process access to a part of it, as shown in Figure 2.7. The part of the 
file that is seen by a single process is called the file view and is set for each process by a call to MPI_File_set_view. In 
our example here, the call looks like



MPI_File_set_view(thefile, myrank * BUFSIZE * sizeof(int),
                  MPI_INT, MPI_INT, "native", MPI_INFO_NULL);

The first argument identifies the file. The second argument is the displacement (in bytes) into the file where the process's view 
of the file is to start. Here we multiply the size of the data to be written (BUFSIZE * sizeof(int)) by the rank of the 
process, so that each process's view starts at the appropriate place in the file. This argument is of a new type MPI_Offset, 
which on systems that support large files can be expected to be a 64-bit integer. See Section 2.2.6 for further discussion.

The next argument is called the etype of the view; it specifies the unit of data in the file. Here it is MPI_INT, since we will 
always be writing some number of MPI_INTs to this file. The next argument, called the filetype, is a very flexible way of 
describing noncontiguous views in the file. In our simple case here, where there are no noncontiguous units to be written, we 
can just use the etype, MPI_INT. In general, etype and filetype can be any MPI predefined or derived datatype. See Chapter 3 
for details.

The next argument is a character string denoting the data representation to be used in the file. The native representation 
specifies that data is to be represented in the file exactly as it is in memory. This preserves precision and results in no 
performance loss from conversion overhead. Other representations are internal and external32, which enable various 
degrees of file portability across machines with different architectures and thus different data representations. The final 
argument
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Table 2.1
C bindings for the I/O functions used in Figure 2.6

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,
               MPI_File *fh)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
               MPI_Datatype filetype, char *datarep, MPI_Info info)

int MPI_File_write(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
               MPI_Status *status)

int MPI_File_close(MPI_File *fh)

is an info object as in MPI_File_open. Here again it is to be ignored, as dictated by specifying MPI_INFO_NULL for this 
argument.

Now that each process has its own view, the actual write operation

MPI_File_write (thefile, buf, BUFSIZE, MPI_INT,
                MPI_STATUS_IGNORE);

is exactly the same as in our previous version of this program. But because the MPI_File_open specified 
MPI_COMM_WORLD in its communicator argument, and the MPI_File_set_view gave each process a different view of the 
file, the write operations proceed in parallel and all go into the same file in the appropriate places.

Why did we not need a call to MPI_File_set_view in the previous example? The reason is that the default view is that of a 
linear byte stream, with displacement 0 and both etype and filetype set to MPI_BYTE. This is compatible with the way we used 
the file in our previous example.

C bindings for the I/O functions in MPI that we have used so far are given in Table 2.1.

2.2.5—
Fortran 90 Version



Fortran now officially means Fortran 90 (or Fortran 95 [1]). This has some impact on the Fortran bindings for MPI functions. 
We defer the details to Chapter 9, but demonstrate here some of the differences by rewriting the program shown in Figure 2.6 
in Fortran. The MPI-2 Standard identifies two levels of Fortran support: basic and extended. Here we illustrate programming 
with basic support, which merely requires that the mpif. h file included in Fortran programs be valid in both free-source and 
fixed-source format, in other words, that it contain valid syntax
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Table 2.2
Fortran bindings for the I/O functions used in Figure 2.8

MPI_FILE_OPEN(comm, filename, amode, info, fh, ierror)
            character*(*) filename
            integer comm, amode, info, fh, ierror

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info, ierror)
            integer fh, etype, filetype, info, ierror
            character*(*) datarep
            integer(kind=MPI_OFFSET_KIND)disp

MPI_FILE_WRITE(fh, buf, count, datatype, status, ierror)
            <type> buf(*)
            integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror

MPI_FILE_CLOSE(fh, ierror)
            integer fh, ierror

for Fortran-90 compilers as well as for Fortran-77 compilers. Extended support requires the use of an MPI "module," in which 
the line

include 'mpif.h'

is replaced by

use mpi

We also use "Fortran-90 style" comment indicators. The new program is shown Figure 2.8. Note that the type MPI_Offset in 
C is represented in Fortran by the type INTEGER(kind=MPI_OFFSET_KIND). Fortran bindings for the I/O functions used 
in Figure 2.8 are given in Table 2.2.

2.2.6—
Reading the File with a Different Number of Processes

One advantage of doing parallel I/O to a single file is that it is straightforward to read the file in parallel with a different 
number of processes. This is important in the case of scientific applications, for example, where a parallel program may write a 
restart file, which is then read at startup by the same program, but possibly utilizing a different number of processes. If we have 
written a single file with no internal structure reflecting the number of processes that wrote the file, then it is not necessary to 
restart the run with the same number of processes as before. In
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! example of parallel MPI write into a single file, in Fortran
PROGRAM main
    ! Fortran 90 users can (and should) use
    !     use mpi
    ! instead of include 'mpif.h' if their MPI implementation provides a
    ! mpi module.
    include 'mpif.h'

    integer ierr, i, myrank, BUFSIZE, thefile
    parameter (BUFSIZE=100)
    integer buf(BUFSIZE)
    integer(kind=MPI_OFFSET_KIND) disp

    call MPI_INIT(ierr)
    call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

    do i = 0, BUFSIZE
        buf(i) = myrank * BUFSIZE + i
    enddo
    call MPI_FILE_OPEN(MPI_COMM_WORLD, 'testfile', &
                       MPI_MODE_WRONLY + MPI_MODE_CREATE, &
                       MPI_INFO_NULL, thefile, ierr)
    ! assume 4-byte integers
    disp = myrank * BUFSIZE * 4
    call MPI_FILE_SET_VIEW(thefile, disp, MPI_INTEGER, &
                           MPI_INTEGER, 'native', &
                           MPI_INFO_NULL, ierr)
    call MPI_FILE_WRITE(thefile, buf, BUFSIZE, MPI_INTEGER, &
                        MPI_STATUS_IGNORE, ierr)
    call MPI_FILE_CLOSE(thefile, ierr)
    call MPI_FINALIZE(ierr)

END PROGRAM main

Figure 2.8
MPI I/O to a single file in Fortran
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Table 2.3
C bindings for some more I/O functions

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
                MPI_Status *status)

Figure 2.9 we show a program to read the file we have been writing in our previous examples. This program is independent of 
the number of processes that run it. The total size of the file is obtained, and then the views of the various processes are set so 
that they each have approximately the same amount to read.

One new MPI function is demonstrated here: MPI_File_get_size. The first argument is an open file, and the second is the 
address of a field to store the size of the file in bytes. Since many systems can now handle files whose sizes are too big to be 
represented in a 32-bit integer, MPI defines a type, MPI_Offset, that is large enough to contain a file size. It is the type used 
for arguments to MPI functions that refer to displacements in files. In C, one can expect it to be a long or long long—at 
any rate a type that can participate in integer arithmetic, as it is here, when we compute the displacement used in 
MPI_File_set_view. Otherwise, the program used to read the file is very similar to the one that writes it.



One difference between writing and reading is that one doesn't always know exactly how much data will be read. Here, 
although we could compute it, we let every process issue the same MPI_File_read call and pass the address of a real 
MPI -Status instead of MPI_STATUS_IGNORE. Then, just as in the case of an MPI_Recv, we can use 
MPI_Get_count to find out how many occurrences of a given datatype were read. If it is less than the number of items 
requested, then end-of-file has been reached.

C bindings for the new functions used in this example are given in Table 2.3.

2.2.7—
C++ Version

The MPI Forum faced a number of choices when it came time to provide C++ bindings for the MPI-1 and MPI-2 functions. 
The simplest choice would be to make them identical to the C bindings. This would be a disappointment to C++ programmers, 
however. MPI is object-oriented in design, and it seemed a shame not to express this design in C++ syntax, which could be 
done without changing the basic structure of MPI. Another choice would be to define a complete class library that might look 
quite different from MPI's C bindings.
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/* parallel MPI read with arbitrary number of processes*/
#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{
    int myrank, numprocs, bufsize, *buf, count;
    MPI_File thefile;
    MPI_Status status;
    MPI_Offset filesize;

    MPI_Init(&argc, &argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
    MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
    MPI_File_open(MPI_COMM_WORLD, "testfile", MPI_MODE_RDONLY,
                  MPI_INFO_NULL, &thefile);
    MPI_File_get_size(thefile, &filesize); /* in bytes */
    filesize = filesize / sizeof(int);     /* in number of ints */
    bufsize = filesize / numprocs + 1;     /* local number to read */
    buf = (int *) malloc (bufsize * sizeof(int));
    MPI_File_set_view(thefile, myrank * bufsize * sizeof(int),
                      MPI_INT, MPI_INT, "native", MPI_INFO_NULL);
    MPI_File_read(thefile, buf, bufsize, MPI_INT, &status);
    MPI_Get_count(&status, MPI_INT, &count);
    printf("process %d read %d ints\n", myrank, count);
    MPI_File_close(&thefile);
    MPI_Finalize();
    return 0;
}

Figure 2.9
Reading the file with a different number of processes
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Although the last choice was explored, and one instance was explored in detail [80], in the end the Forum adopted the middle 
road. The C++ bindings for MPI can almost be deduced from the C bindings, and there is roughly a one-to-one correspondence 
between C++ functions and C functions. The main features of the C++ bindings are as follows.

• Most MPI "objects," such as groups, communicators, files, requests, and statuses, are C++ objects.

• If an MPI function is naturally associated with an object, then it becomes a method on that object. For example, MPI_Send
( . . .,comm) becomes a method on its communicator: comm.Send( . . .).

• Objects that are not components of other objects exist in an MPI name space. For example, MPI_COMM_WORLD becomes 
MPI::COMM_WORLD and a constant like MPI_INFO_NULL becomes MPI::INFO_NULL.

• Functions that normally create objects return the object as a return value instead of returning an error code, as they do in C. 
For example, MPI::File::Open returns an object of type MPI::File.

• Functions that in C return a value in one of their arguments return it instead as the value of the function. For example, comm.
Get_rank returns the rank of the calling process in the communicator comm.

• The C++ style of handling errors can be used. Although the default error handler remains MPI::ERRORS_ARE_FATAL in C
++, the user can set the default error handler to MPI::ERRORS_THROW_EXCEPTIONS In this case the C++ exception 
mechanism will throw an object of type MPI::Exception.

We illustrate some of the features of the C++ bindings by rewriting the previous program in C++. The new program is shown 
in Figure 2.10. Note that we have used the way C++ can defer defining types, along with the C++ MPI feature that functions 
can return values or objects. Hence instead of

int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

we have

int myrank = MPI::COMM_WORLD.Get_rank();

The C++ bindings for basic MPI functions found in nearly all MPI programs are shown in Table 2.4. Note that the new 
Get_rank has no arguments instead of the two that the C version, MPI_Get_rank, has because it is a method on a
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// example of parallel MPI read from single file, in C++
#include <iostream.h>
#include "mpi.h"

int main(int argc, char *argv[])
{
    int bufsize, *buf, count;
    char filename[128];
    MPI::Status status;

    MPI::Init();
    int myrank = MPI::COMM_WORLD.Get_rank();
    int numprocs = MPI::COMM_WORLD.Get_size();
    MPI::File thefile = MPI::File::Open(MPI::COMM_WORLD, "testfile",
                                        MPI::MODE_RDONLY,
                                        MPI::INFO_NULL);
    MPI::Offset filesize = thefile.Get_size(); // in bytes
    filesize    = filesize / sizeof(int);    // in number of ints
    bufsize     = filesize / numprocs + 1;   // local number to read
    buf = (int *) malloc (bufsize * sizeof(int));
    thefile.Set_view(myrank * bufsize * sizeof(int),
                     MPI_INT, MPI_INT, "native", MPI::INFO_NULL);



    thefile.Read(buf, bufsize, MPI_INT, &status);
    count = status.Get_count(MPI_INT);
    cout << "process " << myrank << " read " << count << " ints"
         << endl;
    thefile.Close();
    MPI::Finalize();
    return 0;
}

Figure 2.10
C++ version of the example in Figure 2.9
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Table 2.4
C++ bindings for basic MPI functions

void MPI::Init(int& argc, char**& argv)

void MPI::Init()

int MPI::Comm::Get_size() const

int MPI::Comm::Get_rank() const

void MPI::Finalize()

Table 2.5
C++ bindings for some I/O functions

MPI::File MPI::File::Open(const MPI::Intracomm& comm, const char* filename,
              int amode, const MPI::Info& info)

MPI::Offset MPI::File::Get_size const

void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,
               const MPI::Datatype& filetype, const char* datarep,
               const MPI::Info& info)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
                MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Close

communicator and returns the rank as its value. Note also that there are two versions of MPI::Init. The one with no 
arguments corresponds to the new freedom in MPI-2 to pass (NULL, NULL) to the C function MPI_Init instead of 
(&argc, &argv).

The C++ bindings for the I/O functions used in our example are shown in Table 2.5. We see that MPI::File::Open returns 
an object of type MPI::File, and Read is called as a method on this object.

2.2.8—
Other Ways to Write to a Shared File



In Section 2.2.4 we used MPI_File_set_view to show how multiple processes can be instructed to share a single file. As is 
common throughout MPI, there are
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multiple ways to achieve the same result. MPI_File_seek allows multiple processes to position themselves at a specific 
byte offset in a file (move the process's file pointer) before reading or writing. This is a lower-level approach than using file 
views and is similar to the Unix function 1seek. An example that uses this approach is given in Section 3.2. For efficiency 
and thread-safety, a seek and read operation can be combined in a single function, MPI_File_read_at; similarly, there is 
an MPI_File_write_at. Finally, another file pointer, called the shared file pointer, is shared among processes belonging to 
the communicator passed to MPI_File_open. Functions such as MPI_File_write_shared access data from the current 
location of the shared file pointer and increment the shared file pointer by the amount of data accessed. This functionality is 
useful, for example, when all processes are writing event records to a common log file.

2.3—
Remote Memory Access

In this section we discuss how MPI-2 generalizes the strict message-passing model of MPI-1 and provides direct access by one 
process to parts of the memory of another process. These operations, referred to as get, put, and accumulate, are called remote 
memory access (RMA) operations in MPI. We will walk through a simple example that uses the MPI-2 remote memory access 
operations.

The most characteristic feature of the message-passing model of parallel computation is that data is moved from one process's 
address space to another's only by a cooperative pair of send/receive operations, one executed by each process. The same 
operations that move the data also perform the necessary synchronization; in other words, when a receive operation completes, 
the data is available for use in the receiving process.

MPI-2 does not provide a real shared-memory model; nonetheless, the remote memory operations of MPI-2 provide much of 
the flexibility of shared memory. Data movement can be initiated entirely by the action of one process; hence these operations 
are also referred to as one sided. In addition, the synchronization needed to ensure that a data-movement operation is complete 
is decoupled from the (one-sided) initiation of that operation. In Chapters 5 and 6 we will see that MPI-2's remote memory 
access operations comprise a small but powerful set of data-movement operations and a relatively complex set of 
synchronization operations. In this chapter we will deal only with the simplest form of synchronization.

It is important to realize that the RMA operations come with no particular guarantee of performance superior to that of send 
and receive. In particular, they
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have been designed to work both on shared-memory machines and in environments without any shared-memory hardware at 
all, such as networks of workstations using TCP/IP as an underlying communication mechanism. Their main utility is in the 
flexibility they provide for the design of algorithms. The resulting programs will be portable to all MPI implementations and 
presumably will be efficient on platforms that do provide hardware support for access to the memory of other processes.

2.3.1—
The Basic Idea:
Memory Windows

In strict message passing, the send/receive buffers specified by MPI datatypes represent those portions of a process's address 
space that are exported to other processes (in the case of send operations) or available to be written into by other processes (in 
the case of receive operations). In MPI-2, this notion of ''communication memory" is generalized to the notion of a remote 
memory access window. Each process can designate portions of its address space as available to other processes for both read 
and write access. The read and write operations performed by other processes are called get and put remote memory access 
operations. A third type of operation is called accumulate. This refers to the update of a remote memory location, for example, 
by adding a value to it.



The word window in MPI-2 refers to the portion of a single process's memory that it contributes to a distributed object called a 
window object. Thus, a window object is made up of multiple windows, each of which consists of all the local memory areas 
exposed to the other processes by a collective window-creation function. A collection of processes can have multiple window 
objects, and the windows contributed to a window object by a set of processes may vary from process to process. In Figure 
2.11 we show a window object made up of windows contributed by two processes. The put and get operations that move data 
to and from the remote memory of another process are nonblocking; a separate synchronization operation is needed to ensure 
their completion. To see how this works, let us consider a simple example.

2.3.2—
RMA Version of cpi

In this section we rewrite the cpi example that appears in Chapter 3 of Using MPI [32]. This program calculates the value of π 
by numerical integration. In the original version there are two types of communication. Process 0 prompts the user for a 
number of intervals to use in the integration and uses MPI_Bcast to send this number to the other processes. Each process 
then computes a partial sum, and the total sum is obtained by adding the partial sums with an MPI_Reduce operation.
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Figure 2.11
Remote memory access window on two processes. The shaded area covers a single window

object made up of two windows.

In the one-sided version of this program, process 0 will store the value it reads from the user into its part of an RMA window 
object, where the other processes can simply get it. After the partial sum calculations, all processes will add their contributions 
to a value in another window object, using accumulate. Synchronization will be carried out by the simplest of the window 
synchronization operations, the fence.

Figure 2.12 shows the beginning of the program, including setting up the window objects. In this simple example, each window 
object consists only of a single number in the memory of process 0. Window objects are represented by variables of type 
MPI_Winin C. We need two window objects because window objects are made up of variables of a single datatype, and we 
have an integer n and a double pi that all processes will access separately. Let us look at the first window creation call done on 
process 0.

MPI_Win_create (&n, sizeof(int), 1, MPI_INFO_NULL,
                MPI_COMM_WORLD, &nwin);

This is matched on the other processes by

MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL,
               MPI_COMM_WORLD, &nwin);

The call on process 0 needs to be matched on the other processes, even though they are not contributing any memory to the 
window object, because MPI_Win_create is a collective operation over the communicator specified in its last argument. 
This communicator designates which processes will be able to access the window object.

The first two arguments of MPI_Win_create are the address and length (in bytes) of the window (in local memory) that the 
calling process is exposing to put/get operations by other processes. Here it is the single integer n on process 0 and no
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/* Compute pi by numerical integration, RMA version */
#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{
    int n, myid, numprocs, i;
    double PI25DT = 3.141592653589793238462643;
    double mypi, pi, h, sum, x;
    MPI_Win nwin, piwin;

    MPI_Init(&argc,&argv);
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD,&myid);

    if (myid == 0) {
        MPI_Win_create(&n, sizeof(int), 1, MPI_INFO_NULL,
                       MPI_COMM_WORLD, &nwin);
        MPI_Win_create(&pi, sizeof(double), 1, MPI_INFO_NULL,
                       MPI_COMM_WORLD, &piwin);
    }
    else {
        MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL,
                       MPI_COMM_WORLD, &nwin);
        MPI_Win_create(MPI_BOTTOM, 0, 1, MPI_INFO_NULL,
                       MPI_COMM_WORLD, &piwin);
    }

Figure 2.12
cpi: setting up the RMA windows

memory at all on the other processes, signified by a length of 0. We use MPI_BOTTOM as the address because it is a valid 
address and we wish to emphasize that these processes are not contributing any local windows to the window object being 
created.

The next argument is a displacement unit used to specify offsets into memory in windows. Here each window object contains 
only one variable, which we will access with a displacement of 0, so the displacement unit is not really important. We specify 1 
(byte). The fourth argument is an MPI_Info argument, which can be used to optimize the performance of RMA operations in 
certain situations. Here we use MPI_INFO_NULL. See Chapter 5 for more on the use of displacement units and the 
MPI_Info argument. The fifth argument is a communicator, which specifies
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the set of processes that will have access to the memory being contributed to the window object. The MPI implementation will 
return an MPI_Win object as the last argument.

After the first call to MPI_Win_create, each process has access to the data in nwin (consisting of the single integer n) via 
put and get operations for storing and reading, and the accumulate operation for updating. Note that we did not have to acquire 
or set aside special memory for the window; we just used the ordinary program variable n on process 0. It is possible, and 
sometimes preferable, to acquire such special memory with MPI_Alloc_mem, but we will not do so here. See Chapter 6 for 
further information on MPI_Alloc_mem.

The second call to MPI_Win_create in each process is similar to the first, and creates a window object piwin giving each 
process access to the variable pi on process 0, where the total value of π will be accumulated.

Now that the window objects have been created, let us consider the rest of the program, shown in Figure 2.13. It is a loop in 
which each iteration begins with process 0 asking the user for a number of intervals and continues with the parallel 
computation and printing of the approximation of π by process 0. The loop terminates when the user enters a 0.



The processes of nonzero rank will get the value of n directly from the window object without any explicit action on the part of 
process 0 to send it to them. But before we can call MPI_Get or any other RMA communication function, we must call a 
special synchronization function, MPI_Win_fence, to start what is known as an RMA access epoch. We would like to 
emphasize that the function MPI_Barrier cannot be used to achieve the synchronization necessary for remote memory 
operations. MPI provides special mechanisms—three of them—for synchronizing remote memory operations. We consider the 
simplest of them, MPI_Win_fence, here. The other two mechanisms are discussed in Chapter 6.

The fence operation is invoked by the function MPI_Win_fence. It has two arguments. The first is an "assertion" argument 
permitting certain optimizations; 0 is always a valid assertion value, and so we use it here for simplicity. The second argument 
is the window the fence operation is being performed on. MPI_Win_fence can be thought of as a barrier (across all the 
processes in the communicator used to create the window object) that separates a set of local operations on the window from 
the remote operations on the window or (not illustrated here) separates two sets of remote operations. Here,

MPI_Win_fence(0, nwin);
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    while (1) {
        if (myid == 0) {
            printf("Enter the number of intervals: (0 quits) ");
            fflush(stdout);
            scanf("%d",&n);
            pi = 0.0;
        }
        MPI_Win_fence(0, nwin);

        if (myid != 0)
            MPI_Get(&n, 1, MPI_INT, 0, 0, 1, MPI_INT, nwin);
        MPI_Win_fence(0, nwin);

        if (n == 0)
            break;
        else {
            h   = 1.0 / (double) n;
            sum = 0.0;
            for (i = myid + 1; i <= n; i += numprocs) {
                x = h * ((double)i - 0.5);
                sum += (4.0 / (1.0 + x*x));
            }
            mypi = h * sum;
            MPI_Win_fence( 0, piwin);

            MPI_Accumulate(&mypi, 1, MPI_DOUBLE, 0, 0, 1, MPI_DOUBLE,
                           MPI_SUM, piwin);
            MPI_Win_fence(0, piwin);

            if (myid == 0)
                printf("pi is approximately %. 16f, Error is %. 16f/n",
                       pi, fabs(pi - PI25DT));
        }
    }
    MPI_Win_free(&nwin);
    MPI_Win_free(&piwin);
    MPI_Finalize();
    return 0;
}

Figure 2.13
cpi: main loop
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separates the assignment of the value of n read from the terminal from the operations that follow, which are remote operations. 
The get operation, performed by all the processes except process 0, is

MPI_Get(&n, 1, MPI_INT, 0, 0, 1, MPI_INT, nwin);

The easiest way to think of this argument list is as that of a receive/send pair, in which the arguments for both send and receive 
are specified in a single call on a single process. The get is like a receive, so the receive buffer is specified first, in the normal 
MPI style, by the triple &n, 1, MPI_INT, in the usual (address, count, datatype) format used for receive buffers. The next 
argument is the rank of the target process, the process whose memory we are accessing. Here it is 0 because all processes 
except 0 are accessing the memory of process 0. The next three arguments define the "send buffer" in the window, again in the 
MPI style of (address, count, datatype). Here the address is given as a displacement into the remote memory on the target 
process. In this case it is 0 because there is only one value in the window, and therefore its displacement from the beginning of 
the window is 0. The last argument is the window object.

The remote memory operations only initiate data movement. We are not guaranteed that when MPI_Get returns, the data has 
been fetched into the variable n. In other words, MPI_Get is a nonblocking operation. To ensure that the operation is 
complete, we need to call MPI_Win_fence again.

The next few lines in the code compute a partial sum mypi in each process, including process 0. We obtain an approximation 
of π by having each process update the value pi in the window object by adding its value of mypi to it. First we call another 
MPI_Win_fence, this time on the piwin window object, to start another RMA access epoch. Then we perform an 
accumulate operation operation using

MPI_Accumulate(&mypi, 1, MPI_DOUBLE, 0, 0, 1, MPI_DOUBLE,
               MPI_SUM, piwin);

The first three arguments specify the local value being used to do the update, in the usual (address, count, datatype) form. The 
fourth argument is the rank of the target process, and the subsequent three arguments represent the value being updated, in the 
form (displacement, count, datatype). Then comes the operation used to do the update. This argument is similar to the op 
argument to MPI_Reduce, the difference being that only the predefined MPI reduction operations can be used in 
MPI_Accumulate; user-defined reduction operations cannot be used. In this example, each process needs to add its value of 
mypi to pi; therefore, we
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Table 2.6
C bindings for the RMA functions used in the cpi example

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
              MPI_Comm comm, MPI_Win *win)

int MPI_Win_fence(int assert, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
              int target_rank, MPI_Aint target_disp, int target_count,
              MPI_Datatype target_datatype, MPI_Win win)

int MPI_Accumulate(void *origin_addr, int origin_count,
             MPI_Datatype origin_datatype, int target_rank,
             MPI_Aint target_disp, int target_count,
             MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Win_free(MPI_Win *win)

use the operation MPI_SUM. The final argument is the window object on which the update is being performed, here piwin.



Since MPI_Accumulate is a nonblocking function, we call MPI_Win_fence to complete the operation. We then print the 
answer from process 0. Note that if process 0 did not use MPI_Accumulate but instead simply used pi += mypi, the 
program would be wrong and would produce incorrect results. This is discussed in more detail in Chapter 5.

The program finishes by freeing the window objects it has created, with MPI_Win_free, which takes as argument the 
address of the window object being freed. MPI_Win_free is a collective operation on the same communicator that was used 
to create the window object in the first place.

C bindings for the RMA functions used in this example are given in Table 2.6.

2.4—
Dynamic Process Management

In the process model used in MPI_1, there is a fixed number of processes throughout an MPI computation. This is a 
conceptually simple model because it puts all of the complexity of interaction with the operating system (which must be 
involved in the creation of processes) completely outside the scope of the MPI application program. When MPI_Init returns, 
all the processes have been started, MPI_COMM_WORLD is
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fixed once and for all, and every process can communicate with every other process by using MPI_COMM_WORLD. All 
communicators subsequently created have groups that are subgroups of the group of MPI_COMM_WORLD.

Although this situation makes life easier for MPI implementers, some MPI applications need more flexibility. Part of the 
interest in a more dynamic approach to process management came from the PVM [24] community, where process startup under 
application control is commonplace (although not as portable as other parts of PVM that don't have to interact with job 
schedulers and process managers). Some applications have a genuine need to compute at run time—perhaps after some initial 
calculations—how many processes should be created to work on the problem at hand. Some applications consist of two MPI 
programs separately started, which need to connect to one another after each has formed its own separate MPI_COMM_WORLD.

Before we begin with a simple example, we would like to point out that the dynamic process routines make good use of MPI 
intercommunicators, a form of communicator that connects two groups of processes. As we will see in Chapter 7, 
intercommunicators provide a natural way to describe the spawned processes and their parent(s). However, to keep our first 
example simple, we will convert the intercommunicator that is created when new processes are started into a more familiar 
intracommunicator, using MPI_Intercomm_merge (merge the two groups in an intercommunicator into one and return a 
"normal" intracommunicator).

2.4.1—
Spawning Processes

In MPI-2, process are created by using the function MPI_Comm_spawn. The key features of MPI_Comm_spawn are the 
following:

• It is a collective operation over the spawning processes (called the parents) and also collective with the calls to MPI_Init in 
the processes that are spawned (called the children).

• It returns an intercommunicator in which, from the point of view of the parents, the local group contains the parents and the 
remote group contains the children.

• The new processes have their own MPI_COMM_WORLD.

• The function MPI_Comm_parent, called from the children, returns an intercommunicator containing the children as the 
local group and the parents as the remote group.

These features are illustrated in Figure 2.14.
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Figure 2.14
Spawning processes. Ovals are intracommunicators containing several processes.

2.4.2—
Parallel cp:
A Simple System Utility

Let us consider an example in which processes are created dynamically: a simple utility program that does a parallel copy, that 
is, copies a file from the local disk of a machine to the local disks of other machines. Such a utility could be needed for the 
following reason. Before a process can be started on a given machine, an executable file must be present on the machine. In 
many cases, this requirement is satisfied because a shared file system, such as NFS, makes a single copy of the executable file 
available to all the machines. In other cases there may be no shared file system and the executable may need to be copied into a 
specific directory or to /tmp on a (possibly large) set of machines, as a prerequisite to starting an MPI application. Even with 
shared file-systems, we may want to copy the executable to local disks in a scalable way to reduce the time it takes to access 
the executable. We may even want to do this inside mpiexec.

How can MPI help? The main way is by providing us with MPI_Bcast to send the file from the root (the process that can 
read the file) to the other processes. A good implementation can provide a scalable MPI_Bcast, at least on switched 
networks, by using algorithms such as a spanning tree. We should also be able to achieve extra parallelism through pipelining, 
as we explain below.

We hypothesize a parallel-computing environment in which we have a "Beowulf" system (a cluster of machines) without a 
shared file system. Let us suppose that our login- and compile-server is called dion and the "compute" nodes are called
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Figure 2.15
Multiple levels of parallelism in pcp

belmont0, belmont1, and so on. We expect to frequently have to copy a file (such as a recently compiled executable) 
from dion to the local file systems of some subset of the belmonts. We would like it to look like the ordinary Unix cp 
command, but function as a parallel copy. That is, if we say

pcp 0-63 mandelslave /tmp/mandelslave

we want the file mandelslave to be copied from its local place on dion to the /tmp directory on the first 64 belmonts. 
The pcp program is one of a set of similar parallel versions of familiar Unix commands described in [28].

Figure 2.15 shows our pcp program in action. Process 0 is reading the input file and broadcasting it, one block at a time, to all 
the other processes, who are writing it to local disk. This program has three forms of parallelism.

• All of the processes are doing file I/O in parallel.

• Much of the message passing takes place in parallel (assuming that our MPI implementation implements MPI_Bcast in a 
scalable way). For example, the message from process 1 to process 3 is being transmitted concurrently with the message from 
process 2 to process 5.

• By breaking the file into blocks, we also achieve pipeline parallelism. This type of parallelism arises, for example, from the 
concurrency of the message from process
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0 to process 1 with the message from process 1 to process 3. Enabling pipeline parallelism is one of the reasons that 
MPI_Bcast is not a synchronizing operation; multiple broadcasts can be occurring in parallel.

In this example, even process 0, which is reading the file, makes a copy of it. This approach makes sense if the file has just 
been compiled on one file system but now is to be copied to a uniform place in the local file system on each machine. An 
alternative semantics for pcp would be to assume that the file is already in place on process 0 and, therefore, process 0 does 
not write the output file.

The code for the beginning of the master part of the pcp program is shown in Figure 2.16. The first step is to parse the 
expression for the machines to copy the file to and create a file containing those machine names. Let us assume that the 
function makehostlist parses the first argument and writes out a hostfile (whose name is given by the second argument) 
that can be understood by our implementation of MPI_Comm_spawn. The number of slaves specified is returned as the third 
argument of makehostlist. We then pass the name of this file to MPI_Comm_spawn via info, in order to create pcp 
slaves on each of the target machines. Therefore the call

makehostlist( argv[1], "targets", &num_hosts );

writes out a file called targets containing the appropriate host names. We need to pass this information to the system that 
starts up new processes. Since job scheduling and process startup systems have not been standardized, there is no standard MPI 
format for this information. Instead, this information is passed to MPI_Comm_spawn via an info object. We cover this in more 
detail in Section 2.5. For now, we show how MPI_Info is used to give information to an MPI call. We create an MPI_Info 
object containing "targets" as the value of the reserved key (for use with MPI_Comm_spawn) file. This info key 
simply tells MPI_Comm_spawn to look in the file targets for information, in a format specific to the MPI implementation, 
about how to perform the operation. We assume here that the file may contain the names of the processors to spawn processes 
on. The info key soft is also used to allow MPI_Comm_spawn to return successfully even if it was unable to start all of the 
requested processes. Next, the call

MPI_Comm_spawn( "pcp_slave", MPI_ARGV_NULL, num_hosts, hostinfo,
                0, MPI_COMM_SELF, &pcpslaves,
                MPI_ERRCODES_IGNORE );

creates the slaves. For simplicity we leave out error checking at this point, passing MPI_ERRCODES_IGNORE instead of an 
array for returning the error codes.
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/* pcp from the Scalable Unix Tools, in MPI */
#include "mpi.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define BUFSIZE   256*1024
#define CMDSIZE   80
int main( int argc, char *argv[] )
{
    int      num_hosts, mystatus, allstatus, done, numread;
    int      infd, outfd;
    char     outfilename[MAXPATHLEN], controlmsg[CMDSIZE];
    char     buf[BUFSIZE];
    char     soft_limit[20];
    MPI_Info hostinfo;
    MPI_Comm pcpslaves, all_processes;

    MPI_Init( &argc, &argv );

    makehostlist( argv[1], "targets", &num_hosts );
    MPI_Info_create( &hostinfo );
    MPI_Info_set( hostinfo, "file", "targets" );
    sprintf( soft_limit, "0:%d", num_hosts );
    MPI_Info_set( hostinfo, "soft", soft_limit );
    MPI_Comm_spawn( "pcp_slave", MPI_ARGV_NULL, num_hosts,
                    hostinfo, 0, MPI_COMM_SELF, &pcpslaves,
                    MPI_ERRCODES_IGNORE );
    MPI_Info_free( &hostinfo );
    MPI_Intercomm_merge( pcpslaves, 0, &all-processes );

Figure 2.16
Beginning of master part of parallel copy program
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We immediately convert the intercommunicator pcpslaves that contains both the calling process and the processes created 
by MPI_Comm_spawn into an intracommunicator with MPI_Intercomm_merge. The output intracommunicator, 
all_processes, will be used for all subsequent communication between the slaves and the master.

The code for the middle of the master part of the pcp program is shown in Figure 2.17. We attempt to open the input file, and 
if we fail, we broadcast a message to the slaves telling them to exit immediately. If we succeed, we broadcast a "ready" 
message instead.

Next we broadcast the name of the output file, and all processes attempt to open it. To test whether the file opened successfully, 
we use an MPI_Allreduce with MPI_MIN as the operation. Thus, if any process fails to open the output file, all processes 
will know (since allstatus will be set to -1). In this case all processes call MPI_Finalize and exit. If all processes 
receive a 0in allstatus (MPI_Allreduce ensures that all processes get the same result), then all files have been 
successfully opened. (If we replaced MPI_MIN as the operation in the MPI_Allreduce of the mystatus variable with 
MPI_MINLOC, we could indicate the rank of the failed process as well.)

The first part of the slave code is shown in Figure 2.18. This code is quite similar to the code for the master, except that the 
slaves need to call MPI_Comm_get_parent to establish contact with process 0, and slaves do no argument processing and 
print no messages.



At the end of the sections of code for both master and slave that we have looked at so far, all processes have successfully 
opened the necessary files. The second part of the master code is shown in Figure 2.19. It simply reads the file a block at a time 
and broadcasts the blocks to the slaves. Note that before sending each block it sends the length as well. This approach handles 
the (possibly) short block at the end and the end-of-file condition, since all processes in an MPI_Bcast (the root that is 
sending and the other processes that are receiving) must specify the same buffer length.1 An alternative approach would be to 
use a structure containing an int field for the length of the data and a fixed-sized array of char for the buffer; a single 
MPI_Bcast would send both the numread value and the data read. Only in the last MPI_Bcast call would more data be 
sent (and ignored) than was needed. The second part of the slave code, which matches this structure, is shown in Figure 2.20. 
At the end, all processes free the intercommunicator created by MPI_Comm_spawn

1 This is unlike the send/receive case, where the sender specifies the length of data but the receiver specifies the maximum 
buffer length, providing the MPI_Status argument to determine the actual size received.

Page 43

strcpy( outfilename, argv[3] );
if ( (infd = open( argv[2], O_RDONLY ) ) == -1 ) {
    fprintf( stderr, "input %s does not exist\n", argv[2] );
    sprintf( controlmsg, "exit" );
    MPI_Bcast( controlmsg, CMDSIZE, MPI_CHAR, 0, all_processes );
    MPI_Finalize();
    return -1 ;
}
else {
    sprintf( controlmsg, "ready" );
    MPI_Bcast( controlmsg, CMDSIZE, MPI_CHAR, 0, all_processes );
}

MPI_Bcast( outfilename, MAXPATHLEN, MPI_CHAR, 0,
           all_processes );
if ( (outfd = open( outfilename, O_CREAT|O_WRONLY|O_TRUNC,
                    S_IRWXU ) ) == -1 )
    mystatus = -1;
else
    mystatus = 0;
MPI_Allreduce( &mystatus, &allstatus, 1, MPI_INT, MPI_MIN,
               all_processes );
if ( allstatus == -1 ) {
    fprintf( stderr, "Output file %s could not be opened\n",
             outfilename );
    MPI_Finalize();
    return 1 ;
}

Figure 2.17
Middle of master part of parallel copy program
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/* pcp from the Scalable Unix Tools, in MPI */
#include "mpi.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define BUFSIZE    256*1024
#define CMDSIZE    80
int main( int argc, char *argv[] )
{
    int      mystatus, allstatus, done, numread;
    char     outfilename[MAXPATHLEN], controlmsg[CMDSIZE];
    int      outfd;



    char     buf[BUFSIZE];
    MPI_Comm slavecomm, all_processes;

    MPI_Init( &argc, &argv );

    MPI_Comm_get_parent( &slavecomm );
    MPI_Intercomm_merge( slavecomm, 1, &all_processes );
    MPI_Bcast( controlmsg, CMDSIZE, MPI_CHAR, 0,
               all_processes );
    if ( strcmp( controlmsg, "exit" ) == 0 ) {
        MPI_Finalize();
        return 1;
    }

    MPI_Bcast( outfilename, MAXPATHLEN, MPI_CHAR, 0,
               all_processes );
    if ( (outfd = open( outfilename, O_CREAT|O_WRONLY|O_TRUNC,
                        S_IRWXU ) ) == -1 )
        mystatus = -1;
    else
        mystatus = 0;
    MPI_Allreduce( &mystatus, &allstatus, 1, MPI_INT, MPI_MIN,
                   all_processes );
    if ( allstatus == -1 ) {
        MPI_Finalize();
        return -1;
    }

Figure 2.18
First part of slave for parallel copy program
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     /* at this point all files have been successfully opened */
     done = 0;
     while (!done) {
         numread = read( infd, buf, BUFSIZE );
         MPI_Bcast( &numread, 1, MPI_INT, 0, all_processes );
         if ( numread > 0 ) {
             MPI_Bcast( buf, numread, MPI_BYTE, 0, all_processes );
             write( outfd, buf, numread );
         }
         else {
             close( outfd );
             done = 1;
        }
    }
    MPI_Comm_free( &pcpslaves );
    MPI_Comm_free( &all_processes );
    MPI_Finalize();
    return 0;
}

Figure 2.19
End of master part of parallel copy program

and the merged intracommunicator before exiting.

The primary difference between MPI's spawn function and that of earlier message-passing systems is the collective nature of 
the operation. In MPI, a group of processes collectively creates another group of processes, and all of them synchronize (via 
MPI_Comm_spawn in the parents and MPI_Init in the children), thus preventing race conditions and allowing the 
necessary communication infrastructure to be set up before any of the calls return.



We defer to Chapter 7 the rest of the dynamic process management features of MPI-2. These include details on how to use all 
of the features of MPI_Comm_spawn, as well as how to form communicators connecting two MPI programs that are already 
running.

C bindings for the dynamic process management functions used in the parallel copy example are given in Table 2.7.
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      /* at this point all files have been successfully opened */

      done = 0;
      while ( !done ) {
          MPI_Bcast( &numread, 1, MPI_INT, 0, all_processes );
          if ( numread > 0 ) {
              MPI_Bcast( buf, numread, MPI_BYTE, 0, all_processes );
              write( outfd, buf, numread );
          }
          else {
              close( outfd );
              done = 1;
          }
    }
    MPI_Comm_free( &slavecomm );
    MPI_Comm_free( &all_processes );
    MPI_Finalize();
    return 0;
}

Figure 2.20
End of slave part of parallel copy program

Table 2.7
C bindings for the functions used in the parallel copy example

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs,
             MPI_Info info, int root, MPI_Comm comm,
             MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Comm_get_parent(MPI_Comm *parent)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high,
               MPI_Comm *newintracomm)
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2.5—
More Info on Info

In the preceding sections we have several times seen info as an argument in a long parameter list but skipped over the details, 
often by passing MPI_INFO_NULL as that argument. In this section we explain the concept of info and give examples of its 
use in parallel I/O and dynamic process management.

2.5.1—
Motivation, Description, and Rationale

MPI-2 contains some complex functions with potentially long and unwieldy argument lists. In addition, some functions interact 
with external objects such as the operating system or file system in ways that are unlikely to be uniform across the wide range 
of platforms on which MPI programs are expected to run. In order to preserve at least some measure of portability for MPI 
programs, some arguments need to be optional.



The answer to all of these problems is the info object. The info object is an opaque object (of type MPI_Info in C, MPI::
Info in C++, and integer in Fortran) that provides a flexible mechanism for dealing with complex, optional, or nonportable 
options on certain MPI-2 function calls. In some ways it is a general "mini-database" of (key, value) pairs. MPI provides 
functions to create and delete info objects, to access and update an info object by adding and deleting these pairs, and to access 
the pairs either by key or by number in sequence. Both keys and values are character strings.

This type of functionality (managing sets of strings) doesn't seem to have much to do with message passing; what is it doing as 
part of the MPI standard? The MPI Forum felt that no existing library provided the flexibility needed, was available on all 
platforms, and was language neutral. Therefore it had to specify one of its own. We will see how it is used with some examples 
related to the programs discussed earlier in this chapter; a more through description is given in other chapters where info is 
used.

2.5.2—
An Example from Parallel I/O

Several parallel file systems can benefit from ''hints" given to the file system about how the application program will interact 
with the file system. These hints contain information known to the programmer or user that may be difficult or impossible for 
the file system to figure out by itself and that may allow the file system to perform useful optimizations in handling the 
application's I/O requests. For example, optimizations may be possible if the file system knows that the file will be read
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only once and in a sequential fashion. This hint can be given to the file system via the info object as follows.

MPI_Info myinfo;
MPI_File myfile;
MPI_Comm mycomm;

MPI_Info_create(&myinfo);
MPI_Info_set(myinfo, "access_style", "read_once, sequential");
MPI_File_open(mycomm, "myfile", MPI_MODE_RDONLY, myinfo,
              &myfile);
MPI_Info_free(&myinfo);

Note that one can free the info object after it has been used in the call to MPI_File_open; the info object belongs to the user, 
not the system, and its content is extracted by the system when it is used as an argument in an MPI call.

The key access_style is a reserved key in MPI, and the values for it are also reserved. An MPI implementation is free to 
ignore this hint, but if it recognizes access_style, it should also recognize the values specified in the MPI Standard. It can 
also recognize additional values not defined in the Standard. The Standard contains all the reserved keys for the info object and 
describes their possible values. Implementations are allowed to recognize other keys and values as well, at some risk to the 
portability of programs that use them.

2.5.3—
An Example from Dynamic Process Management

In our parallel copy example in Section 2.4, we used an info object to pass information on the processors to spawn the new 
processes on, without discussing the details of the use of the info routines. We assumed that somehow the implementation 
could find the executable and make a reasonable choice of working directory for the program to run in. We also used a special 
info key, file, to provide an implementation-specific list of processors to spawn processes on.

The info object passed to MPI_Comm_spawn can provide more information. For example, suppose we want the slaves in our 
parallel copy example to be run on host nome.mcs.anl.gov, the executable program slave should be looked for in 
directory /home/kosh/progs, and each slave process should have /home/kosh/tmp as its working directory when it is 
started. Then we would use

integer spawninfo, ierr
integer slavecomm, numslaves
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Table 2.8
C bindings for the info functions used in this chapter

int MPI_Info_create(MPI_Info *info)

int MPI_Info_set(MPI_Info info, char *key, char *value)

int MPI_Info_free(MPI_Info *info)

Table 2.9
Fortran bindings for the info functions used in this chapter

MPI_INFO_CREATE(info, ierror)
           integer info, ierror

MPI_INFO_SET(info, key, value, ierror)
           integer info, ierror
           character*(*) key, value

MPI_INFO_FREE(info, ierror)
           integer info, ierror

numslaves = 10
call MPI_INFO_CREATE(spawninfo, ierr)
call MPI_INFO_SET(spawninfo, 'host', 'nome.mcs.anl.gov', ierr)
call MPI_INFO_SET(spawninfo, 'path', '/home/kosh/progs', ierr)
call MPI_INFO_SET(spawninfo, 'wdir', '/home/kosh/tmp', ierr)
call MPI_COMM_SPAWN('slave', MPI_ARGV_NULL, numslaves, &
                    spawninfo, 0, MPI_COMM_WORLD, &
                    slavecomm, MPI_ERRCODES_IGNORE, ierr)
call MPI_INFO_FREE(spawninfo, ierr)

(We have rewritten this part of the example in Fortran just to provide an example of the info routines and the 
MPI_Comm_Spawn in Fortran.) The keys host, path, and wdir are reserved; there are other reserved keys, which we 
will describe in Chapter 7.

C and Fortran bindings for the info functions used above are given in Tables 2.8 and 2.9. We return to info, including the C++ 
versions of the info routines, in Section 3.7.
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2.6—
Summary

In this chapter we have presented a quick overview of MPI-2. We have walked through some simple example programs in the 
areas of parallel I/O, remote memory access, and dynamic process management. Along the way we have touched on the C++ 
bindings and the use of Fortran 90, collective operations on intercommunicators, and the info object. Readers should now have 
an idea of some of the new capabilities provided by MPI-2. In the following chapters we will examine these and other MPI-2 
features in greater detail, so that users will be able to apply these capabilities in more complex MPI applications.
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3—
Parallel I/O

In this chapter we demonstrate the parallel I/O capabilities of MPI-2, sometimes referred to as MPI-IO. We begin with simple 
example programs that demonstrate the basic use of MPI for I/O and then move on to programs that demonstrate various 
advanced I/O features of MPI. We also explain how the I/O features of MPI must be used in order to achieve high performance.

3.1—
Introduction

As we discussed in Section 2.2, many parallel applications perform I/O either by having each process write to a separate file or 
by having all processes send their data to one process that gathers all the data and writes it to a single file. Application 
developers have chosen these approaches because of historical limitations in the I/O capabilities of many parallel systems: 
either parallel I/O from multiple processes to a common file was not supported, or, if supported, the performance was poor. On 
modern parallel systems, however, these limitations no longer exist. With sufficient and appropriately configured I/O hardware 
and modern parallel/high-performance file systems, such as IBM's PIOFS and GPFS, SGI's XFS, HP's HFS, and NEC's SFS, 
one can achieve both high performance and the convenience of a single file by having multiple processes directly access a 
common file. The I/O interface in MPI is specifically designed to support such accesses and to enable implementations to 
deliver high performance for such accesses. The interface supports various features—such as noncontiguous accesses, 
collective I/O, and hints—that research projects in parallel I/O have demonstrated to be essential for high performance [4, 5, 
10, 13, 16, 17, 19, 26, 41, 48, 52, 64, 65, 69, 73, 74, 77, 82, 83].

We note that the I/O functions in MPI are for unformatted binary file I/O—similar to the Unix I/O functions read and write 
or the C library functions fread and fwrite. MPI does not have any functions for formatted text I/O equivalent to 
fprintf and fscanf in C. For formatted text output, one can use tools such as the Parallel Print Function [55].

3.2—
Using MPI for Simple I/O

We presented some simple I/O programs in Chapter 2. Let us begin this chapter with another simple example: a parallel 
program in which processes need to read data from a common file. Let us assume that there are n processes, each needing to 
read (1/n)th of the file as shown in Figure 3.1.
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Figure 3.1
Each process needs to read a chunk of data from a common file

3.2.1—
Using Individual File Pointers

Figure 3.2 shows one way of writing such a program with MPI. It has the usual functions one would expect for I/O: an open, a 
seek, a read, and a close. Let us look at each of the functions closely. MPI_File_open is the function for opening a file. The 
first argument to this function is a communicator that indicates the group of processes that need to access the file and that are 
calling this function. We use MPI_COMM_WORLD as the communicator because all processes in this example need to open and 
thereafter access a common file called /pfs/datafile. The file name is passed as the second argument to 
MPI_File_open.



The MPI Standard does not specify the format of file names; instead, implementations have the freedom to define the format 
they support. One can expect that implementations will support familiar naming conventions. For example, implementations 
running in Unix environments can be expected to support the usual Unix file-naming conventions. In this example and many 
other examples in this chapter, we use the file name /pfs/datafile (for no particular reason). This name refers to a file 
called datafile stored in the directory /pfs. Readers can replace this file name with a file name of their choice. The 
directory name can be expected to be optional in most implementations—if not specified, the implementation will use a default 
directory such as the directory from where the program is run.

The third argument to MPI_File_open specifies the mode of access; we use MPI_MODE_RDONLY because this program 
only reads from the file. The fourth argument, called the info argument, allows the user to pass hints to the implementation. In 
this simple example, we don't pass any hints; instead, we pass a null info argument, MPI_INFO_NULL. In Section 3.7 we will 
consider in detail the issue of passing hints to the implementation. MPI_File_open returns a file handle in the last argument. 
This file handle is to be used for future operations on the open file.

All I/O functions return an integer error code. For simplicity, we don't check error codes in any of the examples in this chapter; 
we assume that the functions return successfully. We defer the discussion of error handling to Chapter 9.
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/* read from a common file using individual file pointers */
#include "mpi.h"

#define FILESIZE (1024 * 1024)

int main (int argc, char **argv)
{
    int *buf, rank, nprocs, nints, bufsize;
    MPI_File fh;
    MPI_Status status;

    MPI_Init(&argc,&argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

    bufsize = FILESIZE/nprocs;
    buf = (int *) malloc (bufsize);
    nints = bufsize/sizeof (int);

    MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
                   MPI_INFO_NULL, &fh);
    MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);
    MPI_File_read(fh, buf, nints, MPI_INT, &status);
    MPI_File_close(&fh);

    free (buf);
    MPI_Finalize();
    return 0;
}

Figure 3.2
C program to perform the I/O needed in Figure 3.1 using individual file pointers
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After opening the file, each process moves its local file pointer, called individual file pointer in MPI, to the location in the file 
from which the process needs to read data. We use the function MPI_File_seek for this purpose. The first argument to 
MPI_File_seek is the file handle returned by MPI_File_open. The second argument specifies the offset in the file to 
seek to, and the third argument MPI_SEEK_SET specifies that the offset must be calculated from the head of the file. File 
offsets in C are of an implementation-defined type called MPI_Offset. The implementation will define MPI_Offset to be 
an integer type of size large enough to represent the largest file size supported by the implementation (for example, longor 
long long). We specify the offset to MPI_File_seek as a product of the rank of the process and the amount of data (in 
bytes) to be read by each process. (The offset to MPI_File_seek in this example must be specified as a number of bytes 
because we are using what is known as the default file view. We will consider the issue of file views in detail in Section 3.3.)

We use the function MPI_File_read for reading data. On each process, this function reads data from the current location of 
the process's individual file pointer for the open file. The first argument to MPI_File_read is the file handle. The second 
argument is the address of the buffer in memory into which data must be read. The next two arguments specify the amount of 
data to be read. Since the data is of type integer, we specify it as a count of the number of integers to be read. The final 
argument is a status argument, which is the same as the status argument in MPI communication functions, such as MPI_Recv. 
One can determine the amount of data actually read by using the functions MPI_Get_countor MPI_Get_elements on 
the status object returned by MPI_File_read, but we don't bother to do so in this example. MPI_File_read increments 
the individual file pointer on each process by the amount of data read by that process. Finally, we close the file using the 
function MPI_File_close.

The five functions, MPI_File_open, MPI_File_seek, MPI_File_read, MPI_File_write, and 
MPI_File_close, are actually sufficient to write any I/O program. In addition, these functions are quite similar in 
functionality to their Unix counterparts. The other I/O functions in MPI are for performance, portability, and convenience. 
Although these five functions can be used as a quick start to using MPI for I/O and for easily porting Unix I/O programs to 
MPI, we strongly recommend that users not stop here. For real benefits with using MPI for I/O, one must use its special 
features, such as support for noncontiguous accesses and collective I/O, described in the rest of this chapter.

The C, Fortran, and C++ bindings for the five basic I/O functions in MPI are given in Tables 3.1, 3.2, and 3.3. Note that 
MPI_File_read and MPI_File_-
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Table 3.1
C bindings for the five basic I/O functions in MPI

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,
               MPI_File *fh)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
               MPI_Status *status)

int MPI_File_write(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
                MPI_Status *status)

int MPI_File_close(MPI_File *fh)

write (and other functions in this chapter that take a status argument) have two bindings in C++. This is because MPI allows 
the user to indicate that the status argument is not to be filled in. Unlike in C and Fortran where the user provides a special 
parameter, MPI_STATUS_IGNORE, in C++ the same is achieved by having two bindings for a function: one with the status 
argument and one without.



3.2.2—
Using Explicit Offsets

MPI_File_read and MPI_File_write are called individual-file-pointer functions because they use the current location 
of the individual file pointer of each process as the location from where to read/write data. MPI also provides another set of 
functions, called explicit-offset functions (MPI_File_read_at and MPI_File_write_at), which don't use the 
individual file pointer. In these functions, the file offset is passed directly as an argument to the function. A separate seek is 
therefore not needed. If multiple threads of a process are accessing the same file, the explicit-offset functions, rather than the 
individual-file-pointer functions, must be used for thread safety.

Figure 3.3 shows how the same example of Figure 3.1 can be implemented by using MPI_File_read_at instead of 
MPI_File_read. We use Fortran this time in order to show how the I/O functions in MPI can be used from Fortran. Other 
than a difference in programming language, the only difference in this example is that MPI_File_seek is not called; instead, 
the offset is passed as an argument to MPI_File_read_at. We also check how much data was actually read by using 
MPI_Get_count on the status object returned by MPI_File_read_at. The individual file
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Table 3.2
Fortran bindings for the five basic I/O functions in MPI

MPI_FILE_OPEN(comm, filename, amode, info, fh, ierror)
            character*(*) filename
            integer comm, amode, info, fh, ierror

MPI_FILE_SEEK(fh, offset, whence, ierror)
            integer fh, whence, ierror
            integer(kind=MPI_OFFSET_KIND) offset

MPI_FILE_READ(fh, buf, count, datatype, status, ierror)
            <type> buf(*)
            integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror

MPI_FILE_WRITE(fh, buf, count, datatype, status, ierror)
            <type> buf(*)
            integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror

MPI_FILE_CLOSE(fh, ierror)
            integer fh, ierror

Table 3.3
C++ bindings for the five basic I/O functions in MPI

MPI::File MPI::File::Open(const MPI::Intracomm& comm, const char* filename,
              int amode, const MPI::Info& info)

void MPI::File::Seek(MPI::Offset offset, int whence)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
                MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype,
                MPI::Status& status)

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype)



void MPI::File::Close()
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! read from a common file using explicit offsets
PROGRAM main
    include 'mpif.h'

    integer FILESIZE, MAX_BUFSIZE, INTSIZE
    parameter (FILESIZE=1048576, MAX_BUFSIZE=1048576, INTSIZE=4)
    integer buf (MAX_BUFSIZE), rank, ierr, fh, nprocs, nints
    integer status (MPI_STATUS_SIZE), count
    integer (kind=MPI_OFFSET_KIND) offset

    call MPI_INIT(ierr)
    call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
    call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

    call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
                        MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)
    nints = FILESIZE/(nprocs*INTSIZE)
    offset = rank * nints * INTSIZE
    call MPI_FILE_READ_AT(fh, offset, buf, nints, MPI_INTEGER, &
                           status, ierr)
    call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)
    print *, 'process ', rank, 'read ', count, 'integers'

    call MPI_FILE_CLOSE(fh, ierr)
    call MPI_FINALIZE(ierr)
END PROGRAM main

Figure 3.3
Fortran program to perform the I/O needed in Figure 3.1 using explicit offsets

pointer is neither used nor incremented by the explicit-offset functions.

File offsets are of type integer (kind=MPI_OFFSET_KIND) in Fortran. MPI_OFFSET_KIND is a constant defined by 
the MPI implementation in the include file mpif.h and in the Fortran-90 module mpi. MPI_OFFSET_KIND defines an 
integer of size large enough to represent the maximum file size supported by the implementation.

Notice how we have passed the file offset to MPI_File_read_at in Fortran. We did not pass the expression 
rank*nints*INTSIZE directly to the function. Instead we defined a variable offset of type 
integer (kind=MPI_OFFSET_KIND), assigned the value of the expression to it, and then passed offset as a 
parameter to MPI_File_read_at. We did so because, in the absence of function prototypes, if we
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Table 3.4
C bindings for the explicit-offset functions

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
               MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
               MPI_Datatype datatype, MPI_Status *status)



Table 3.5
Fortran bindings for the explicit-offset functions

MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status, ierror)
           <type> buf(*)
           integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror
           integer(kind=MPI_OFFSET_KIND) offset

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status, ierror)
           <type> buf(*)
           integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror
           integer(kind=MPI_OFFSET_KIND) offset

passed the expression directly to the function, the compiler would pass it as an argument of type integer. The MPI 
implementation expects an argument of type integer (kind=MPI_OFFSET_KIND), which could be (and often is) of size 
larger than integer. For example, on many machines integers are of size four bytes, whereas file offsets may be defined to 
be of size eight bytes in order to support large files. In such cases, passing an integer expression as the offset parameter in 
Fortran would result in a runtime error that is hard to debug. Many users make this mistake; for example, they directly pass 0 as 
the offset. The problem can be avoided either by passing only variables of the correct type 
(integer (kind=MPI_OFFSET_KIND)) to functions that take file offsets or displacements as arguments or by using the 
Fortran-90 module "mpi" that has the MPI function prototypes (that is, by replacing "include 'mpif.h'" by 
"use mpi").

C, Fortran, and C++ bindings for the explicit-offset functions are given in Tables 3.4, 3.5, and 3.6.
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Table 3.6
C++ bindings for the explicit-offset functions

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,
                const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,
                const MPI::Datatype& datatype)

void MPI::File::Write_at(MPI::Offset offset, void* buf, int count,
                const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_at(MPI::Offset offset, void* buf, int count,
                const MPI::Datatype& datatype)

3.2.3—
Writing to a File

In the above example, if we wanted to write to the file instead of reading, we would simply replace MPI_File_read with 
MPI_File_write in Figure 3.2 and MPI_File_read_at with MPI_File_write_at in Figure 3.3. In addition, in 
both programs, we would need replace the flag MPI_MODE_RDONLY that was passed to MPI_File_open with the two flags 
MPI_MODE_CREATE and MPI_MODE_WRONLY. MPI_MODE_CREATE is necessary to create the file if it doesn't already 
exist. MPI_MODE_WRONLY indicates that the file is being opened for writing only. In C, we can pass two (or more) flags by 
using the bitwise-or operator as follows: MPI_MODE_CREATE | MPI_MODE_WRONLY. In Fortran, we can use the addition 
operation: MPI_MODE_CREATE + MPI_MODE_WRONLY. The flag MPI_MODE_RDWR must be used if the file is being 
opened for both reading and writing.



We note that to create a file with MPI_File_open, most implementations would require that the directory containing the file 
(specified in the file name) exist before the call to MPI_File_open. (The Unix open function also requires this.) Users can 
create the directory, for example, with the Unix command mkdir before running the program.

3.3—
Noncontiguous Accesses and Collective I/O

In the preceding section we saw how to use MPI for a simple example where the I/O request of each process is contiguous. I/O 
of this kind can also be done equally well with regular Unix I/O functions. In many real parallel applications, however, each
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process needs to access lots of small pieces of data located noncontiguously in the file [4, 17, 65, 77, 78, 85]. One way to 
access noncontiguous data is to use a separate function call to read/write each small contiguous piece, as in Unix I/O. Because 
of high I/O latency, however, accessing small amounts of data at a time is very expensive. A great advantage of MPI over Unix 
I/O is the ability in MPI to access noncontiguous data with a single function call. Combined with that is the ability to 
specify—with the help of a class of read/write functions called collective I/O functions—that a group of processes need to 
access a common file at about the same time. By using these two features, the user can provide the implementation with the 
entire (noncontiguous) access information of a process as well as information about which set of processes are accessing the 
file simultaneously. The implementation can use this information to perform certain optimizations that can improve 
performance significantly. These optimizations typically involve merging several small accesses and making few large requests 
to the file system [87].

3.3.1—
Noncontiguous Accesses

Let us first see how MPI supports noncontiguous accesses in the file. MPI has a notion of a file view, which we did not explain 
in the two example programs so far, but it was implicitly used nonetheless. A file view in MPI defines which portion of a file is 
''visible" to a process. A read or write function can access data only from the visible portion of the file; all other data will be 
skipped. When a file is first opened, the entire file is visible to the process, and MPI treats the file as consisting of all bytes (not 
integers, floating-point numbers, etc.). The user can read any byte or write to any byte in the file. The individual file pointer of 
each process and also the shared file pointer (discussed in Section 3.6) are set to offset 0 when the file is opened.

It is possible and often desirable to change a process's file view by using the function MPI_File_set_view. This may be 
done for two reasons:

• To indicate the type of data that the process is going to access, for example, integers or floating-point numbers, rather than 
just bytes. This is particularly necessary for file portability, that is, if the user wants to access the file later on from a different 
machine with a different data representation. We will consider this issue further in Section 3.9.

• To indicate which parts of the file should be skipped, that is, to specify noncontiguous accesses in the file.

For accessing data using the individual file pointer or explicit offsets, each process can specify a different view if it needs to. 
For accessing data with the shared file
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pointer, however, all processes must specify the same view (see Section 3.6). The function for setting the file view is 
MPI_File_set_view; the view can be changed any number of times during the program.

MPI datatypes, both basic and derived, are used to specify file views. File views are specified by a triplet: displacement, etype, 
and filetype. The displacement indicates the number of bytes (always bytes!) to be skipped from the start of the file. It can be 
used, for example, to skip reading the header portion of a file if the file contains a header. The etype is the basic unit of data 
access. It can be any MPI basic or derived datatype. All file accesses are performed in units of etype (no less). All offsets in the 
file (for example, file-pointer locations, offsets passed to the explicit-offset functions) are specified in terms of the number of 
etypes. For example, if the etype is set to MPI_INT, the individual and shared file pointers can be moved by a number of 
integers, rather than bytes.



The filetype is an MPI basic or derived datatype that specifies which portion of the file is visible to the process and of what 
type is the data. The filetype must be either the same as the etype or must be a derived datatype constructed out of etypes.1 The 
file view of a process begins from the displacement and consists of multiple contiguous copies of the filetype. This is similar to 
the use of the datatype argument in the MPI_Send function, with the additional displacement.

When a file is first opened, the displacement is 0, and the etype and filetype are both MPI_BYTE. This is known as the default 
file view. The two programs we considered in the preceding section (Figures 3.2 and 3.3) use the default file view.

Figure 3.4 shows an example of a file view consisting of a displacement of five integers, an etype of MPI_INT, and a filetype 
consisting of two integers followed by a gap of four integers. The figure shows how the file is "tiled" with this filetype. Once 
this view is set, only the shaded portions of the file will be read/written by any read/write function; the blank unshaded portions 
will be skipped. Figure 3.5 shows the corresponding C code for setting this view. We first create a contiguous derived datatype 
consisting of two integers. We then set a gap of four integers at the end of this datatype, by using the function 
MPI_Type_create_resized with a lower bound of zero and an extent of 6 * sizeof(int). (The MPI-2 Standard 
states that this is the new preferred way of setting the upper bound of a datatype. The old MPI-1 way of doing the same by 
using MPI_Type_struct with an explicit MPI_UB marker has been deprecated [32].) We commit the resized datatype, and

1 A restriction on filetypes is that a filetype must specify only monotonically nondecreasing offsets in the file. For example, a 
derived datatype that specifies offsets in the order {2, 6, 5, 7, 4} cannot be used as a valid filetype. We consider this issue further 
in Section 3.4.5.
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Figure 3.4
Example of file view

Table 3.7
C bindings for MPI_File_set_view and MPI_Type_create_resized

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
                MPI_Datatype filetype, char *datarep, MPI_Info info)

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb,
              MPI_Aint extent, MPI_Datatype *newtype)

the committed datatype is used as the filetype. The etype is MPI_INT, and the displacement is 5 * sizeof (int).

The arguments passed to MPI_File_set_view are the file handle, displacement, etype, filetype, data representation, and 
info (hints). We consider data representation and hints in Sections 3.9 and 3.7, respectively. Here we set the data representation 
to the default value native, which means the data representation in the file is the same as in memory, and we pass 
MPI_INFO_NULL as the info argument.

When this program is run, the single MPI_File_write call will result in 1,000 integers written to the file in a noncontiguous 
fashion as defined by the file view: an initial gap of size equal to five integers, then two integers of data, then a gap of size four 
integers, followed again by two integers of data, then a gap of size four integers, and so forth. File views thus provide a 
powerful way of specifying noncontiguous accesses in the file. Any noncontiguous access pattern can be specified because any 
MPI derived datatype can be used to define the file view.



C, Fortran, and C++ bindings for MPI_File_set_view and MPI_Type_create_resized are given in Tables 3.7, 3.8, 
and 3.9.
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MPI_Aint lb, extent;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;
MPI_File fh;
int buf[1000];

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
              MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0;
extent = 6 * sizeof(int);
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);

disp = 5 * sizeof(int);    /* assume displacement in this file view
                              is of size equal to 5 integers */
etype = MPI_INT;

MPI_File_set_view(fh, disp, etype, filetype, "native",
                  MPI_INFO_NULL);
MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

Figure 3.5
C code to set the view shown in Figure 3.4.

Table 3.8
Fortran bindings for MPI_File_set_view and MPI_Type_create_resized

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info, ierror)
            integer fh, etype, filetype, info, ierror
            character* (*) datarep
            integer(kind=MPI_OFFSET_KIND) disp

MPI_TYPE_CREATE_RESIZED(oldtype, lb, extent, newtype, ierror)
           integer oldtype, newtype, ierror
           integer(kind=MPI_ADDRESS_KIND) lb, extent
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Table 3.9
C++ bindings for MPI_File_set_view and MPI_Type_create_resized

void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,
               const MPI::Datatype& filetype, const char datarep[],
               const MPI::Info& info)

MPI::Datatype MPI::Datatype::Resized(const MPI::Datatype& oldtype,
             const MPI::Aint lb, const MPI::Aint extent)



Figure 3.6
Each process needs to read blocks of data from the file, the blocks being distributed in a

round-robin (block-cyclic) manner among processes.

3.3.2—
Collective I/O

Now let us consider the use of collective I/O functions together with noncontiguous accesses. We use a different example, 
shown in Figure 3.6. The difference between this example and the first example we considered in this chapter (Figure 3.1) is 
that each process in this case reads smaller blocks of data distributed in a round-robin (block-cyclic) manner in the file. With 
Unix I/O, the only way to read this data would be to read each block separately, because the Unix read function allows the 
user to access only a single contiguous piece of data at a time. One can also do the same with MPI (by using the default file 
view), but one can do better. Instead of making several read calls, one can define the noncontiguous file view of each process 
in order to read data with a single function, and one can use a collective read function to specify that all processes need to read 
data. The corresponding code is given in Figure 3.7. A good MPI implementation will be able to deliver much better 
performance if the user expresses the I/O in the program in this manner, rather than if the user performed Unix-style I/O. Let's 
go through this program in detail.

The constant FILESIZE specifies the size of the file in bytes. INTS_PER_BLK specifies the size of each of the blocks that a 
process needs to read; the size is specified as the number of integers in the block. Each process needs to read several of these 
blocks distributed in a cyclic fashion in the file. We open the file using MPI_File_-
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/* noncontiguous access with a single collective I/O function */
#include "mpi.h"

#define FILESIZE      1048576
#define INTS_PER_BLK  16

int main(int argc, char **argv)
{
    int *buf, rank, nprocs, nints, bufsize;
    MPI_File fh;
    MPI_Datatype filetype;

    MPI_Init(&argc,&argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

    bufsize = FILESIZE/nprocs;
    buf = (int *) malloc(bufsize);
    nints = bufsize/sizeof(int);

    MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
                  MPI_INFO_NULL, &fh);

    MPI_Type_vector(nints/INTS_PER_BLK, INTS_PER_BLK,
                    INTS_PER_BLK*nprocs, MPI_INT, &filetype);
    MPI_Type_commit(&filetype);
    MPI_File_set_view(fh, INTS_PER_BLK*sizeof(int)*rank, MPI_INT,
                      filetype, "native", MPI_INFO_NULL);

    MPI_File_read_all(fh, buf, nints, MPI_INT, MPI_STATUS_IGNORE);
    MPI_File_close(&fh);

    MPI_Type_free(&filetype);
    free(buf);
    MPI_Finalize();
    return 0;
}



Figure 3.7
C program to perform the I/O needed in Figure 3.6. Each process reads noncontiguous data with
a single collective read function.
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Figure 3.8
The file views created by the program in Figure 3.7

open and specify MPI_COMM_WORLD as the communicator, because all processes access a common file /pfs/datafile. 
Next we construct the file view. For specifying the filetype, we create a derived datatype of type "vector" by using the function 
MPI_Type_vector. The first argument to this function is the number of blocks each process needs to read. The second 
argument is the number of integers in each block. The third argument is the number of integers between the starting elements of 
two consecutive blocks that a process needs to read. The fourth argument is the type of each data item—MPI_INT in this case. 
The newly created vector datatype is returned in the fifth argument. We commit this datatype and then use it as the filetype 
argument for MPI_File_set_view. The etype is MPI_INT. Note how we use the displacement argument of 
MPI_File_set_view to specify the file offset from where the view of each process begins. The displacement is specified 
(in bytes, always) as the product of the size of the block and the rank of the process. As a result, the file view of each process is 
a vector datatype starting from the displacement, as illustrated in Figure 3.8.

I/O is performed by using the collective version of MPI_File_read, called MPI_File_read_all. Notice that there is no 
difference in the parameter list of MPI_File_read and MPI_File_read_all. The only difference is that 
MPI_File_read_all is defined to be a collective I/O function, as suggested by the _all in its name. Collective means that 
the function must be called by every process in the communicator that was passed to the MPI_File_open function with 
which the file was opened. This communicator information is implicitly contained in the file handle passed to 
MPI_File_read_all. MPI_File_read, on the other hand, may be called independently by any subset of processes 
and is therefore known as an independent I/O function.

When a process calls an independent I/O function, the implementation has no idea what other processes might do and must 
therefore satisfy the request of each process individually. When a process calls a collective I/O function, however, the
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Table 3.10
C bindings for MPI_File_read_all and MPI_File_write_all

int MPI_File_read_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
               MPI_Status *status)

int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
               MPI_Status *status)



Table 3.11
Fortran bindings for MPI_File_read_all and MPI_File_write_all

MPI_FILE_READ_ALL(fh, buf, count, datatype, status, ierror)
            <type> buf(*)
            integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status, ierror)
            <type> buf(*)
            integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror

implementation knows exactly which other processes will also call the same collective I/O function, each process providing its 
own access information. The implementation may, therefore, choose to wait for all those processes to reach the function, in 
order to analyze the access requests of different processes and service the combined request efficiently. Although the request of 
one process may consist of numerous small noncontiguous pieces the combined request of all processes may be large and 
contiguous, as in Figure 3.6. Optimization of this kind is broadly referred to as collective I/O [19, 48, 73, 87], and it can 
improve performance significantly. Therefore, the user should, when possible, use the collective I/O functions instead of 
independent I/O functions. We consider this issue further in Section 3.10.

C, Fortran, and C++ bindings for MPI_File_read_all and MPI_File_write_all are given in Tables 3.10, 3.11, and 
3.12. Collective versions also exist for the explicit-offset functions, MPI_File_read_at and MPI_File_write_at.

3.4—
Accessing Arrays Stored in Files

In this section we demonstrate how MPI makes it easy to access subarrays and distributed arrays (both regularly and irregularly 
distributed) stored in files. I/O of this kind is very commonly needed in parallel programs.
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Table 3.12
C++ bindings for MPI_File_read_all and MPI_File_write_all

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype& datatype,
                MPI::Status& status)

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Write_all(const void* buf, int count,
               const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_all(const void* buf, int count,
               const MPI::Datatype& datatype)

Many parallel programs have one or more multidimensional arrays distributed among processes in some manner. Each array 
must be read from or written to a file in which the storage order corresponds to that of the global array in either row-major 
order (as in C programs) or column-major order (as in Fortran programs). Figure 3.9 shows such an example. A two-
dimensional array of size m rows and n columns is distributed among six processes arranged as a 2 × 3 logical grid. The array 
must be written to a common file containing the global array in row-major (C) order. Clearly the local array of each process is 
not located contiguously in the file: each row of the local array of a process is separated by rows of the local arrays of other 
processes. MPI provides a convenient way of describing I/O of this kind and performing it with a single I/O function call. If the 
user uses the collective I/O functions, the MPI implementation may also be able to deliver high performance for this kind of 
access, even though the accesses are noncontiguous.

Two new datatype constructors, called darray and subarray, are defined in MPI-2. These functions facilitate the creation of 
derived datatypes describing the location of a local array within a linearized global array. These datatypes can be used as the 
filetype to describe the noncontiguous file-access pattern when performing I/O for distributed arrays. Let's first see how the 
array in Figure 3.9 can be written by using the darray datatype, and then we will do the same by using the subarray datatype.



3.4.1—
Distributed Arrays

Figure 3.10 shows the program for writing the array shown in Figure 3.9 by using the darray datatype constructor. The only 
difference between this program and the others we have seen in this chapter so far is the way in which the filetype is con-
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Figure 3.9
A 2D array of size m rows and n columns is distributed among
six processes arranged as a 2 × 3 logical grid. The array is to be

written to a common file containing the global array in row-major
order (as in C).

structed. The darray datatype constructor provides an easy way to create a derived datatype describing the location of the local 
array of a process within a linearized multidimensional global array for common regular distributions. The distributions 
supported are the array distributions defined in High Performance Fortran (HPF), namely, block, cyclic, and the general block-
cyclic or cyclic(k) distribution [47].

The array can have any number of dimensions, and each dimension can be distributed in any of the above ways, or the 
dimension can be replicated (that is, not distributed). The input to the darray constructor consists of the array size and 
distribution information and the rank of the process whose local array is the one to be described. The output is a derived 
datatype describing the layout of the local array of that process within the linearized global array for the specified distribution. 
It is possible to create such a derived datatype by using other MPI datatype constructors, but it is more difficult. Therefore, 
these new datatype constructors were added in MPI-2 as convenience functions.

The first argument to MPI_Type_create_darray is the number of processes over which the array is distributed, six in this 
case. The second argument is the rank of the process whose local array is the one to be described, which in this case is the 
process calling the function. The third argument is the number of dimensions of the global array (and also the local array). The 
fourth argument is an array
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gsizes[0] = m;   /* no. of rows in global array */
gsizes[1] = n;   /* no. of columns in global array*/

distribs[0] = MPI_DISTRIBUTE_BLOCK;  /* block distribution */
distribs[1] = MPI_DISTRIBUTE_BLOCK;  /* block distribution */

dargs[0] = MPI_DISTRIBUTE_DFLT_DARG; /* default block size */
dargs[1] = MPI_DISTRIBUTE_DFLT_DARG; /* default block size */

psizes[0] = 2;  /* no. of processes in vertical dimension
                   of process grid */
psizes[1] = 3;  /* no. of processes in horizontal dimension
                   of process grid */

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Type_create_darray(6, rank, 2, gsizes, distribs, dargs,
                       psizes, MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
              MPI_MODE_CREATE | MPI_MODE_WRONLY,
              MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
                  MPI_INFO_NULL);

local_array_size = num_local_rows * num_local_cols;
MPI_File_write_all(fh, local_array, local_array_size,
                   MPI_FLOAT, &status);

MPI_File_close(&fh);

Figure 3.10
C program for writing the distributed array of Figure 3.9 to a common file using a ''darray"
datatype as the filetype
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that specifies the size of the global array in each dimension. The fifth argument is an array specifying the way in which the 
global array is distributed in each dimension. In this example, we specify a block distribution using 
MPI_DISTRIBUTE_BLOCK. The sixth argument specifies the distribution parameter for each dimension, that is, the k in a 
cyclic(k) distribution. For block and cyclic distributions, which don't need this parameter, this argument is specified as 
MPI_DISTRIBUTE_DFLT_DARG. The seventh argument is an array specifying the number of processes along each 
dimension of the logical process grid over which the array is distributed. The process grid is always assumed to have the same 
number of dimensions as the global array. If the array is not distributed along a particular dimension, the number of processes 
for that dimension must be specified as 1. For example, a 100 × 100 array can be distributed over 4 processes arranged as a 2 × 
2 grid, or 1 × 4 grid, or 4 × 1 grid. The ordering of processes in the grid is always assumed to be row-major, as in the case of 
virtual Cartesian process topologies in MPI-1 [32]. If a program assumes a different ordering of processes, one cannot use the 
darray constructor but instead must use subarray or other derived datatype constructors. We discuss this issue further in Section 
3.4.2.

The eighth argument to MPI_Type_create_darray specifies the storage order of the local array in memory and also of 
the global array in the file. It can be specified as either MPI_ORDER_C or MPI_ORDER_FORTRAN, which correspond to row-
major ordering as in C or column-major ordering as in Fortran. The ninth argument is the datatype describing the type of each 
array element, which in this example is MPI_FLOAT. The function returns in the last argument a derived datatype that 
describes the layout of the local array of the specified process within the linearized global array for the specified distribution. 
We commit this datatype and set the file view using this datatype as the filetype. For maximum performance, we call the 
collective write function MPI_File_write_all and not an independent write function. Note that the count and datatype 
passed to MPI_File_write_all describe the memory layout of the local array. In this example we assume that the local 
array is contiguously allocated in memory. We therefore specify the datatype as MPI_FLOAT and the count as the number of 
elements in the local array. In Section 3.4.4, we will consider an example in which the local array is noncontiguous in memory 
and see how to construct a derived datatype that describes the memory layout.



3.4.2—
A Word of Warning about Darray

Although the darray datatype is very convenient to use, one must be careful about using it because it assumes a very specific 
definition of data distribution—the exact definition of the distributions in HPF [47]. This assumption matters particularly
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when in a block distribution the size of the array in any dimension is not evenly divisible by the number of processes in that 
dimension. In such a case, HPF defines the block size to be obtained by a ceiling division of the array size and the number of 
processes.2 If one assumes a different definition in a program, such as floor division (which is regular integer division, for 
example,  = 1), one cannot use the darray constructor because the resulting datatype will not match the distribution. 
Furthermore, darray assumes that the ordering of processes in the logical grid is always row-major as in the virtual Cartesian 
process topologies of MPI-1 (see Figure 3.9). If a program follows a different ordering, such as column-major, the datatype 
returned by darray will be incorrect for that program.

If one follows a different definition of distribution or a different process-grid ordering, one can use the subarray datatype 
instead. For this datatype, the location (starting coordinates) of the local array in the global array must be specified explicitly. 
The subarray datatype, however, will work only for block distributions, not cyclic or cyclic(k) distributions (because one 
cannot specify a stride in any dimension). In cases where subarray is also not applicable, one can create the derived datatype 
explicitly by using some of the general constructors defined in MPI-1, such as indexed or struct. Any data layout can be 
specified by (recursively) using the MPI-1 constructors; it's just easier to use darray or subarray wherever it works.

3.4.3—
Subarray Datatype Constructor

The subarray datatype constructor can be used to create a derived datatype that describes the layout of a subarray within a 
linearized array. One describes the subarray by its starting coordinates and size in each dimension. The example of Figure 3.9 
can also be written by using subarray instead of darray, because the local array of each process is effectively a subarray of the 
global array. Figure 3.11 shows the "subarray version" of the program in Figure 3.10. This program is a bit more complicated 
than the darray version because we have to specify the subarray explicitly. In darray, the subarray is implicitly specified by 
specifying the data distribution.

We use the MPI-1 process-topology function MPI_Cart_create to create a virtual Cartesian process grid. We do this 
purely for convenience: it allows us to find the coordinates of each process within the two-dimensional grid (with the function 
MPI_Cart_coords) and use these coordinates to calculate the global indices of the first element of the local array of each 
process.

2 The ceiling division of two integers i and j is defined as  = (i + j – 1)/j. For example,  = 2. Therefore, a block 
distribution of an array of size 5 on 4 processes is defined as 2 elements on processes 0 and 1, 1 element on process 2, and 0 
elements on process 3.
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gsizes[0] = m;  /* no. of rows in global array */
gsizes[1] = n;  /* no. of columns in global array*/

psizes[0] = 2;  /* no. of processes in vertical dimension
                   of process grid */
psizes[1] = 3;  /* no. of processes in horizontal dimension
                   of process grid */

lsizes[0] = m/psizes[0];   /* no. of rows in local array */
lsizes[1] = n/psizes[1];   /* no. of columns in local array */

dims[0] = 2;
dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);



MPI_Cart_coords(comm, rank, 2, coords);

/* global indices of the first element of the local array */
start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,
                         MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
              MPI_MODE_CREATE | MPI_MODE_WRONLY,
              MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
                  MPI_INFO_NULL);

local_array_size = lsizes[0] * lsizes[1];
MPI_File_write_all(fh, local_array, local_array_size,
                   MPI_FLOAT, &status);

MPI_File_close(&fh);

Figure 3.11
C program for writing the distributed array of Figure 3.9 to a common file using a "subarray"
datatype as the filetype
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The first argument to MPI_Type_create_subarray is the number of dimensions of the array. The second argument is the 
size of the array in each dimension. The third argument is the size of the subarray in each dimension. The fourth argument 
specifies the starting coordinates of the subarray in each dimension of the array. The starting coordinates are always specified 
assuming that the array is indexed beginning from zero (even for Fortran arrays). For example, if a Fortran program contains an 
array A(1:100, 1:100) and one wants to specify the subarray B(4:50, 10:60), then the starting coordinates of B 
must be specified as (3,9). In other words, the C convention is always used. (Some convention is needed because Fortran 
allows arrays to be defined starting from any number, for example, X(50:100, 60:120).)

In the program in Figure 3.11, we calculate the starting index of the local array of a process in the global array as a function of 
the coordinates of the process in the process grid. For this we use the MPI-1 virtual-process-topology functions, 
MPI_Cart_create and MPI_Cart_coord. MPI_Cart_create creates the specified 2 × 3 logical process grid and 
returns a new communicator. MPI_Cart_coord returns the coordinates of a process in the process grid. The coordinates are 
as shown in Figure 3.9. We multiply the coordinates of the process by the size of the local array in each dimension to obtain the 
starting location of the process's local array in the global array.

The fifth argument to MPI_Type_create_subarray is the same as the order argument in 
MPI_Type_create_darray: it specifies the array storage order in memory and file. The sixth argument is the type of 
each element in the array, which could be any MPI basic or derived datatype. The function returns in the last argument a 
derived datatype corresponding to the layout of the subarray in the global array. We use this datatype as the filetype in 
MPI_File_set_view. In this example, the array is contiguously allocated in memory. Therefore, in the 
MPI_File_write_all call, we specify the memory datatype as MPI_FLOAT and the count as the number of floats in the 
local array.

C, Fortran, and C++ bindings for the darray and subarray datatype constructors are given in Tables 3.13, 3.14, and 3.15.

3.4.4—
Local Array with Ghost Area

In many applications with distributed arrays, the local array is allocated with a few extra rows and columns in each dimension. 
This extra area, which is not really part of the local array, is often referred to as a ghost area. (For examples of the use of ghost 
areas, see Chapter 4 of [32] and Chapter 5 of this book.) The ghost area is used to store rows or columns belonging to 
neighboring processes that have been
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Table 3.13
C bindings for darray and subarray datatype constructors

int MPI_Type_create_darray(int size, int rank, int ndims, int array_of_gsizes[],
              int array_of_distribs[], int array_of_dargs[], int array_of_psizes[],
              int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_subarray(int ndims, int array_of_sizes[],
              int array_of_subsizes[], int array_of_starts[], int order,
              MPI_Datatype oldtype, MPI_Datatype *newtype)

Table 3.14
Fortran bindings for darray and subarray datatype constructors

MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes,
           array_of_distribs, array_of_dargs, array_of_psizes, order, oldtype,
           newtype, ierror)
           integer size, rank, ndims, array_of_gsizes(*), array_of_distribs(*),
                array_of_dargs(*), array_of_psizes(*), order, oldtype, newtype,
                ierror

MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, array_of_subsizes,
           array_of_starts, order, oldtype, newtype, ierror)
           integer ndims, array_of_sizes(*), array_of_subsizes(*),
                array_of_starts(*), order, oldtype, newtype, ierror

Table 3.15
C++ bindings for darray and subarray datatype constructors

MPI::Datatype MPI::Datatype::Create_darray(int size, int rank, int ndims,
             const int array_of_gsizes[], const int array_of_distribs[],
             const int array_of_dargs[], const int array_of_psizes[], int order) const

MPI::Datatype MPI::Datatype::Create_subarray(int ndims,
             const int array_of_sizes[], const int array_of_subsizes[],
             const int array_of_starts[], int order) const
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Figure 3.12
A local array of size (100, 100) is actually allocated

as a (108, 108) array to provide a "ghost" area
along the boundaries for storing off-process elements.
The real data is stored starting from index (4, 4). The

local array is therefore noncontiguous in memory.



communicated via interprocess communication. These rows and columns are stored in the ghost area, and not in a separate 
buffer, in order to make the computational part of the code compact, convenient, and cache friendly and to avoid splitting any 
"do loops" that loop across the rows or columns of the local array. Figure 3.12 illustrates the idea of a ghost area.

If a local array has a ghost area around it, the local data is not located contiguously in memory. In the case of C arrays, for 
example, the rows of the local array in memory are separated by a few elements of ghost area. When such an array is written to 
a file, one usually does not want the ghost area to be written to the file since the data corresponding to that area will be written 
by another process. Instead of writing each row of the local array with a separate function, resulting in many I/O function calls, 
we can describe this noncontiguous memory layout in terms of an MPI derived datatype and specify this derived datatype as 
the datatype argument to a single MPI_File_write_all function. The entire data transfer, which is noncontiguous in both 
memory and file, can therefore be performed with a single function.

As Figure 3.12 illustrates, the local array is effectively a subarray of a larger array that includes the ghost area. Therefore, we 
can use a subarray datatype to describe the layout of the local array in the allocated memory space. The code for doing this is 
given in Figure 3.13.

Assume that the ghost area is of size four elements on each side in each dimension; in other words, there are four extra rows 
and columns on each side of the local array. We first create the filetype using a subarray datatype, open the file, and set the
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gsizes[0] = m;    gsizes[1] = n;
/* no. of rows and columns in global array*/
psizes[0] = 2;    psizes[1] = 3;
/* no. of processes in vertical and horizontal dimensions
   of process grid */
lsizes[0] = m/psizes[0];   /* no. of rows in local array */
lsizes[1] = n/psizes[1];   /* no. of columns in local array */
dims[0] = 2; dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);
MPI_Cart_coords(comm, rank, 2, coords);
/* global indices of the first element of the local array */
start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];
MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,
                         MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);
MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
              MPI_MODE_CREATE | MPI_MODE_WRONLY,
              MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
                  MPI_INFO_NULL);
/* create a derived datatype that describes the layout of the local
   array in the memory buffer that includes the ghost area. This is
   another subarray datatype! */
memsizes[0] = lsizes[0] + 8; /* no. of rows in allocated array */
memsizes[1] = lsizes[1] + 8; /* no. of columns in allocated array */
start_indices[0] = start_indices[1] = 4;
/* indices of the first element of the local array in the
   allocated array */
MPI_Type_create_subarray(2, memsizes, lsizes, start_indices,
                         MPI_ORDER_C, MPI_FLOAT, &memtype);
MPI_Type_commit(&memtype);
MPI_File_write_all(fh, local_array, 1, memtype, &status);
MPI_File_close(&fh);

Figure 3.13
C program for writing a distributed array that is also noncontiguous in memory because of a ghost area
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Figure 3.14
Example of irregular file access. Each process has a local data array and a local map array.

Each element of the map array indicates the location in the file of the corresponding element
in the data array.

view to this type. This portion of the code is identical to the previous program in Figure 3.11. Then we create another subarray 
datatype to describe the memory layout of the local array. For this, we specify the size of the allocated array as the local array 
size plus eight in each dimension (four on each side). The starting location of the local array in the allocated array is (4,4), 
assuming zero-based indexing as required. We commit the resulting datatype returned by MPI_Type_create_subarray 
and use it as the datatype argument in MPI_File_write_all. (Recall that this argument describes memory layout, not file 
layout; the file layout is specified by the file view.) Since the entire local array is described by this datatype, we specify the 
count argument of MPI_File_write_all as 1.

3.4.5—
Irregularly Distributed Arrays

MPI can also be used for accessing irregularly distributed arrays—by specifying the filetype appropriately. If combined with 
the use of collective I/O functions, an MPI implementation may even be able to deliver high performance for such accesses, 
which are normally considered difficult to optimize. An irregular distribution is one that cannot be expressed mathematically 
by a compact formula, unlike a block or cyclic distribution. Therefore, another array—called a map array—that specifies the 
mapping of each element of the local array to the global array is needed. An example of a map array is the output of a graph 
partitioner that partitions an unstructured mesh among processes based on some load-balancing criteria.

Let's consider an example in which an irregularly distributed array is to be written to a common file containing the global array 
in canonical order, as shown in Figure 3.14. Figure 3.15 shows the Fortran subroutine for performing this I/O. The main 
difference between this program and the ones we considered above for regularly distributed arrays is the construction of the 
datatype to be used as the filetype.
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SUBROUTINE write_irreg_array(buf, map, bufsize)
    use mpi

    integer bufsize
    double precision buf(bufsize)
    integer map(bufsize), fh, filetype, status(MPI_STATUS_SIZE)
    integer (kind=MPI_OFFSET_KIND) disp
    integer i, ierr

    call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
                       MPI_MODE_CREATE + MPI_MODE_RDWR, &
                       MPI_INFO_NULL, fh, ierr)

    call MPI_TYPE_CREATE_INDEXED_BLOCK(bufsize, 1, map, &
                          MPI_DOUBLE_PRECISION, filetype, ierr)
    call MPI_TYPE_COMMIT(filetype, ierr)
    disp = 0
    call MPI_FILE_SET_VIEW(fh, disp, MPI_DOUBLE_PRECISION, &
                           filetype, 'native', MPI_INFO_NULL, ierr)

    call MPI_FILE_WRITE_ALL(fh, buf, bufsize, &
                            MPI_DOUBLE_PRECISION, status, ierr)



    call MPI_FILE_CLOSE(fh, ierr)

    return
END SUBROUTINE write_irreg_array

Figure 3.15
Fortran program for writing an irregularly distributed array

We note that the MPI Standard specifies that the filetype used by any process must specify only monotonically nondecreasing 
offsets in the file (see Section 9.1.1 in [59]). For example, a derived datatype that specifies offsets in the order 
{2, 6, 5, 7, 4} cannot be used as a valid filetype. No such restriction exists on the datatype used to describe data layout 
in memory; it can specify memory offsets in any order. Therefore, the filetype created for an irregular distribution must always 
specify monotonically nondecreasing offsets. If the entries in the map array are not in nondecreasing order, the map array must 
first be reordered into nondecreasing order before it is used to create the filetype. The datatype describing the memory layout 
must be correspondingly permuted so that the desired distribution is still
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Table 3.16
C binding for MPI_Type_create_indexed_block

int MPI_Type_create_indexed_block(int count, int blocklength,
              int array_of_displacements[], MPI_Datatype oldtype,
              MPI_Datatype *newtype)

Table 3.17
Fortran binding for MPI_Type_create_indexed_block

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength,
           array_of_displacements, oldtype, newtype, ierror)
           integer count, blocklength, array_of_displacements(*), oldtype,
                newtype, ierror

specified correctly.

Let us assume for simplicity that, in the program in Figure 3.15, the map array is already in monotonically nondecreasing order. 
We can therefore directly use the map array as an index into the file and use an indexed datatype as the filetype. Let us assume 
further that the map array specifies the location in units of local-array elements—double-precision numbers in this case—and 
not in bytes. We use the datatype constructor MPI_Type_create_indexed_block, a new constructor defined in MPI-2, 
to create the indexed datatype. It is the same as the datatype constructor MPI_Type_indexed defined in MPI-1, except that 
it uses a constant blocklength for all blocks. We pass as the first argument to MPI_Type_create_indexed_block the 
number of elements in the local data array. The second argument is the number of elements in each block, which we set to 1. 
The third argument is an array specifying the displacement of each block in the datatype; we pass the map array as this 
argument. The fourth argument is the type of each element, MPI_DOUBLE_PRECISION in this case. The function returns the 
resulting derived datatype in the fifth argument. We commit this datatype and use it as the filetype in MPI_File_set_view. 
We use a single collective write function, MPI_File_write_all, to write the entire array.

C, Fortran, and C++ bindings for MPI_Type_create_indexed_block are given in Tables 3.16, 3.17, and 3.18.
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Table 3.18
C++ binding for MPI_Type_create_indexed_block

MPI::Datatype MPI::Datatype::Create_indexed_block(int count,
             int blocklength, const int array_of_displacements[]) const

3.5—
Nonblocking I/O and Split Collective I/O

MPI supports nonblocking versions of all independent read/write functions. The mechanism MPI provides for nonblocking I/O 
is similar to that for nonblocking communication. The nonblocking I/O functions are all named MPI_File_ixxx, for 
example, MPI_File_iread and MPI_File_iwrite_at, similar to the names MPI_Isend and MPI_Irecv. The 
nonblocking I/O functions return an MPI_Request object, as do the nonblocking communication functions. One can use the 
usual MPI test/wait functions (MPI_Test, MPI_Wait, MPI_Testany, etc.) on the returned request object to test or wait 
for the completion of nonblocking I/O operations. By using nonblocking I/O functions, one can potentially overlap I/O with 
other computation/communication in the program, for example as shown below.

MPI_Request request;

MPI_File_iwrite_at(fh, offset, buf, count, datatype, &request);
for (i=0; i<1000; i++) {
    /* perform computation */
}
MPI_Wait(&request, &status);

How well I/O can be overlapped depends of course on the quality of the implementation.

For collective I/O, MPI supports only a restricted form of nonblocking I/O, called split collective I/O. To use split collective I/
O, the user must call a ''begin" function (for example, MPI_File_read_all_begin) to start the collective I/O operation 
and an "end" function (for example, MPI_File_read_all_end) to complete the operation. The restriction is that the user 
can have only one split collective I/O operation active at a time on any given file handle. In other words, the user cannot issue 
two begin functions on the same file handle without calling an end function to complete the first begin. Since this restriction 
exists, a split collective begin does not return an MPI_Request object or any other object. A split collective end, by 
definition, matches the previously called split collective begin on that file
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Table 3.19
C bindings for MPI_File_iwrite_at, MPI_File_write_all_begin, and MPI_File_write_all_end

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
               MPI_Datatype datatype, MPI_Request *request)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
               MPI_Datatype datatype)

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)



Table 3.20
Fortran bindings for MPI_File_iwrite_at, MPI_File_write_all_begin, and MPI_File_write_all_end

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request, ierror)
           <type> buf(*)
           integer fh, count, datatype, request, ierror
           integer(kind=MPI_OFFSET_KIND) offset

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype, ierror)
           <type> buf(*)
           integer fh, count, datatype, ierror

MPI_FILE_WRITE_ALL_END(fh, buf, status, ierror)
           <type> buf(*)
           integer fh, status(MPI_STATUS_SIZE), ierror

handle. The MPI standard allows an implementation to perform the collective I/O operation entirely during the begin function, 
or entirely during the end function, or in the "background," between the begin and end functions.

An example of using split collective I/O is as follows:

MPI_File_write_all_begin(fh, buf, count, datatype);
for (i=0; i<1000; i++) {
    /* perform computation */
}
MPI_File_write_all_end(fh, buf, &status);

C, Fortran, and C++ bindings for MPI_File_iwrite_at, MPI_File_write_all_begin, and 
MPI_File_write_all_end are given in Tables 3.19, 3.20, and 3.21.
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Table 3.21
C++ binding for MPI_File_iwrite_at, MPI_File_write_all_begin, and MPI_File_write_all_end

MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf,
             int count, const MPI::Datatype& datatype)

void MPI::File::Write_all_begin(const void* buf, int count,
               const MPI::Datatype& datatype)

void MPI::File::Write_all_end(const void* buf, MPI::Status& status)

void MPI::File::Write_all_end(const void* buf)

3.6—
Shared File Pointers

Thus far, we have seen two ways of specifying to MPI the location in the file from where data must be read/written: individual 
file pointers and explicit offsets. MPI also supports a third way of specifying the location: via the shared file pointer. The 
shared file pointer is a file pointer whose value is shared among the processes belonging to the communicator passed to 
MPI_File_open. MPI provides functions, MPI_File_read_shared and MPI_File_write_shared, that read/write 
data starting from the current location of the shared file pointer. After a call to one of these functions, the shared file pointer is 
updated by the amount of data read/written. The next call to one of these functions from any process in the group will result in 
data being read/written from the new location of the shared file pointer. Contrast this with individual file pointers: a read/write 
operation on one process using the individual file pointer has no effect on the individual file pointer on any other process.



A process can explicitly move the shared file pointer (in units of etypes) by using the function MPI_File_seek_shared. 
MPI requires that all processes specify the same file view when using the shared file pointer. This restriction does not exist for 
individual file pointers and explicit offsets. Examples of applications where shared file pointers are useful are work sharing and 
writing log files.

Figure 3.16 shows a C++ example in which all processes need to write to a common log file and the order in which the writes 
appear in the file does not matter. We simply use the shared-file-pointer function MPI_File_write_shared. Therefore, 
we do not need to calculate file offsets. C, Fortran, and C++ bindings for MPI_File_write_shared are given in Tables 
3.22, 3.23, and 3.24.

Nonblocking versions of the shared-file-pointer functions also exist, called MPI_-
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// writing to a common file using the shared file pointer
#include "mpi.h"

int main(int argc, char *argv[])
{
    int buf [1000];
    MPI::File fh;

    MPI::Init();

    MPI::File fh = MPI::File::Open(MPI::COMM_WORLD, "/pfs/datafile",
                                   MPI::MODE_RDONLY, MPI::INFO_NULL);
    fh.Write_shared(buf, 1000, MPI_INT);
    fh.Close();

    MPI::Finalize();
    return 0;
}

Figure 3.16
A C++ example that uses the shared file pointer

Table 3.22
C binding for MPI_File_write_shared

int MPI_File_write_shared(MPI_File fh, void *buf, int count,
               MPI_Datatype datatype, MPI_Status *status)

Table 3.23
Fortran binding for MPI_File_write_shared

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status, ierror)
            <type> buf(*)
            integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror

Table 3.24
C++ binding for MPI_File_write_shared

void MPI::File::Write_shared(const void* buf, int count,
               const MPI::Datatype& datatype)

void MPI::File::Write_shared(const void* buf, int count,
               const MPI::Datatype& datatype, MPI::Status& status)
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File_iread_shared and MPI_File_iwrite_shared. The collective I/O functions that use shared file pointers are 
called MPI_File_read_ordered and MPI_File_write_ordered. With these functions, data will be read or written 
in the file as if the shared file pointer was accessed in order of process rank, hence the name "ordered." For example, in the case 
of MPI_File_write_ordered, process 0's data will appear first in the file, followed by process 1's data, and so on. Note 
that the implementation can still perform this I/O in parallel: since the function is collective, the implementation can determine 
the sizes of the requests of all processes, calculate the offsets in the file corresponding to a rank ordering of the writes, and then 
perform all the writes concurrently. As in the case of individual file pointers and explicit offsets, split collective versions are 
available, for example, MPI_File_read_ordered_begin and MPI_File_read_ordered_end.

3.7—
Passing Hints to the Implementation

MPI provides users the option to pass "hints" to the implementation. For I/O, this can be done via the info argument to the 
functions MPI_File_open, MPI_File_set_view, and MPI_File_set_info. In all programs so far, we have 
passed MPI_INFO_NULL as the info argument because we did not want to pass any hints. There are, however, many instances 
where one might want to pass hints. Examples of hints include the number of disks to stripe a file across, the striping unit, 
access pattern information, and file permissions. We briefly introduced the info argument in Chapter 2. Here we will see how 
info is used for I/O.

Recall that info is an opaque MPI object of type MPI_Info in C, MPI::Info in C++, and integer in Fortran. Any 
number of (key, value) pairs can be added to an info object. When the info object is passed to an I/O function, such as 
MPI_File_open, MPI_File_set_view, or MPI_File_set_info, each (key, value) pair serves as a hint associated 
with the file handle passed to the function. For example, if a key is striping_unit and the value is 65536, the user is 
requesting a striping unit of 65536 (64 Kbytes). Keys and values are both specified as character strings. MPI has reserved a set 
of keys whose meanings are defined in the Standard; an implementation is free to define additional keys whose meanings are 
implementation specific. All hints are optional: a user need not provide any hints, and even if hints are provided, an 
implementation is free to ignore them. Hints do not change the semantics of a program, but they may help an implementation 
improve performance.

Figure 3.17 shows a simple program in which various hints are set, both predefined
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hints and hints specific to our implementation of the I/O functions in MPI, called ROMIO [84, 87, 88, 89]. The function 
MPI_Info_create creates an info object. MPI_Info_set adds (key, value) pairs to the info object. MPI_Info_set is 
called several times in the program, each time to add a different (key, value) pair to the info object. The first four hints are 
predefined hints in MPI; the next six are ROMIO specific. Note that this program can be run with any MPI implementation: if 
an implementation does not understand a particular hint, it will just ignore the hint.

The key striping_factor specifies the number of I/O devices (for example, disks) across which the file should be striped. 
striping_unit specifies the number of consecutive bytes of a file that are stored on a particular I/O device when a file is 
striped across I/O devices. The striping_factor and striping_unit hints are useful only if specified at the time the 
file is created in an MPI_File_open call with the mode MPI_MODE_CREATE. The key cb_buffer_size specifies the 
size of the temporary buffer that the implementation can use on each process when performing collective I/O. The key 
cb_nodes specifies the number of processes that should actually perform disk accesses during collective I/O.

The key start_iodevice is a ROMIO-specific hint that specifies the I/O device from which file striping should begin. The 
keys ind_rd_buffer_size and ind_wr_buffer_size specify the size of the temporary buffer ROMIO uses for data 
sieving, which is an optimization ROMIO performs in the case of noncontiguous, independent accesses. We demonstrate the 
utility of these two hints in Section 3.10.3. The keys direct_read and direct_write are hints ROMIO accepts on 
SGI's XFS file system as directives from the user to use direct I/O (an XFS optimization) wherever possible.

Hints can be specified when the file is opened with MPI_File_open, or when setting the file view with 
MPI_File_set_view, or explicitly with the function MPI_File_set_info.



Querying the Values of Hints

One can also query the values of hints being used by the implementation, if any, as shown in the code in Figure 3.18. 
MPI_File_get_info returns a new info object containing the hints currently being used for the specified file. In this 
example, it contains the default values of hints being used. MPI_Info_get_nkeys returns the number of keys associated 
with the info object. We loop over the number of keys and, for each iteration of the loop, retrieve one key with the function 
MPI_Info_get_nthkey and its associated value with MPI_Info_get. Since MPI_File_get_info returns a new 
info object, we must free it using MPI_Info_free.
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MPI_File fh; MPI_Info info;

MPI_Info_create(&info);

/* FOLLOWING HINTS ARE PREDEFINED IN MPI */

/* no. of I/O devices across which the file should be striped */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

/* buffer size for collective I/O */
MPI_Info_set(info, "cb_buffer_size", "8388608");

/* no. of processes that should perform disk accesses
   during collective I/O */
MPI_Info_set(info, "cb_nodes", "4");

/* FOLLOWING ARE ADDITIONAL HINTS SUPPORTED BY ROMIO */

/* the I/O-device from which to start striping the file */
MPI_Info_set(info, "start_iodevice", "2");

/* buffer size for data sieving in independent reads */
MPI_Info_set(info, "ind_rd_buffer_size", "2097152");

/* buffer size for data sieving in independent writes */
MPI_Info_set(info, "ind_wr_buffer_size", "1048576");

/* use direct I/O on SGI's XFS file system
   (platform-specific hints) */
MPI_Info_set(info, "direct_read", "true");
MPI_Info_set(info, "direct_write", "true");

/* NOW OPEN THE FILE WITH THIS INFO OBJECT */
MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
              MPI_MODE_CREATE | MPI_MODE_RDWR, info, &fh);

MPI_Info_free(&info);  /* free the info object */

Figure 3.17
Example of passing hints to the implementation
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/* query the default values of hints being used */
#include "mpi.h"
#include <stdio.h>

int main(int argc, char **argv)
{
    int i, nkeys, flag, rank;
    MPI_File fh;
    MPI_Info info_used;
    char key[MPI_MAX_INFO_KEY], value[MPI_MAX_INFO_VAL];

    MPI_Init(&argc,&argv);
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
                  MPI_MODE_CREATE | MPI_MODE_RDWR,
                  MPI_INFO_NULL, &fh);

    MPI_File_get_info(fh, &info_used);
    MPI_Info_get_nkeys(info_used, &nkeys);

    for (i=0; i<nkeys; i++) {
        MPI_Info_get_nthkey(info_used, i, key);
        MPI_Info_get(info_used, key, MPI_MAX_INFO_VAL,
                     value, &flag);
        printf("Process %d, Default: key = %s, value = %s\n",
               rank, key, value);
    }

    MPI_File_Close(&fh);
    MPI_Info_free(&info_used);

    MPI_Finalize();
    return 0;
}

Figure 3.18
Querying the values of hints being used by the implementation
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Table 3.25
C bindings for the info functions used in Figures 3.17 and 3.18

int MPI_Info_create(MPI_Info *info)

int MPI_Info_set(MPI_Info info, char *key, char *value)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value, int *flag)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

int MPI_Info_free(MPI_Info *info)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)



Note that we have defined key and value as character strings of length MPI_MAX_INFO_KEY and MPI_MAX_INFO_VAL, 
respectively. These two MPI constants specify the maximum lengths of info key and value strings supported by the 
implementation. In C and C++, the length specified by these constants includes the null terminating character. Therefore, there 
is no need to allocate a character buffer of size (MPI_MAX_INFO_KEY+1) or (MPI_MAX_INFO_VAL+1). In Fortran, 
there is no null terminating character; therefore, the values of the constants MPI_MAX_INFO_KEY and 
MPI_MAX_INFO_VAL in Fortran are one less than in C.

Tables 3.25, 3.26, and 3.27 give the C, Fortran, and C++ bindings for the info functions used in Figures 3.17 and 3.18. We refer 
readers to the MPI Standard for a complete list of the info keys predefined in MPI [27].

3.8—
Consistency Semantics

MPI's consistency semantics for I/O specify the results when multiple processes perform I/O. Several scenarios are possible. 
We consider the common ones and explain them with the help of examples. We refer readers to the MPI Standard for a 
complete specification of the consistency semantics [27].

3.8.1—
Simple Cases

There are two scenarios where consistency is not an issue. They are:
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Table 3.26
Fortran bindings for the info functions used in Figures 3.17 and 3.18

MPI_INFO_CREATE(info, ierror)
           integer info, ierror

MPI_INFO_SET(info, key, value, ierror)
           integer info, ierror
           character*(*) key, value

MPI_INFO_GET(info, key, valuelen, value, flag, ierror)
           integer info, valuelen, ierror
           character*(*) key, value
           logical flag

MPI_INFO_GET_NKEYS(info, nkeys, ierror)
           integer info, nkeys, ierror

MPI_INFO_GET_NTHKEY(info, n, key, ierror)
           integer info, n, ierror
           character*(*) key

MPI_INFO_FREE(info, ierror)
           integer info, ierror

MPI_FILE_GET_INFO(fh, info_used, ierror)
            integer fh, info_used, ierror



Table 3.27
C++ bindings for the info functions used in Figures 3.17 and 3.18

MPI::Info MPI::Info::Create()

void MPI::Info::Set(const char* key, const char* value)

bool MPI::Info::Get(const char* key, int valuelen, char* value) const

int MPI::Info::Get_nkeys() const

void MPI::Info::Get_nthkey(int n, char* key) const

void MPI::Info::Free()

MPI::Info MPI::File::Get_info() const
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1. Read-only access: If all processes are only reading from files and not performing any writes, each process will see exactly 
the data that is present in the file. This is true regardless of which communicator was used to open the file 
(MPI_COMM_SELF, MPI_COMM_WORLD, or some other).

2. Separate files: If each process accesses a separate file (that is, no file is shared among processes), MPI guarantees that the 
data written by a process can be read back by the same process at any time after the write.

It gets more interesting when multiple processes access a common file and at least one process writes to the file. From the 
perspective of consistency semantics, a lot depends on which communicator was used to open the file. In general, MPI 
guarantees stronger consistency semantics if the communicator correctly specifies every process that is accessing the file (for 
example, MPI_COMM_WORLD) and weaker consistency semantics if the communicator specifies only a subset of the processes 
accessing the common file (for example, MPI_COMM_SELF). In either case, the user can take steps to guarantee consistency 
when MPI does not automatically guarantee consistency, as we shall see below.

3.8.2—
Accessing a Common File Opened with MPI_COMM_WORLD

Let us first consider the case where all processes access a common file and specify the communicator as MPI_COMM_WORLD 
when they open the file, and at least one process needs to write to the file. The simplest case of such access is when each 
process accesses a separate portion of the file, that is, there are no overlapping regions (bytes) in the file between the accesses 
of any two processes. In such cases, MPI automatically guarantees that a process can read back the data it wrote without any 
extra synchronization. An example is shown below:

Process 0 Process 1

MPI_File_open(MPI_COMM_WORLD, ''file", . . ., &fh1) MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh2)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, . . .) MPI_File_write_at(fh2, 100, buf, 100, MPI_BUTE, . . .)

MPI_File_read_at(fh1, 0, buf, 100, MPI_BYTE, . . .) MPI_File_read_at(fh2, 100, buf, 100, MPI_BYTE, . . .)

Here, two processes open a common file with MPI_COMM_WORLD. Each process writes 100 bytes to different locations in the 
file and reads back only the data it just wrote. MPI guarantees that the data will be read correctly.

Now let's consider the same example but with a difference: let's assume that each process needs to read the data just written by 
the other process. In other words, the accesses of the two processes overlap in the file. With respect to consistency semantics, 
the situation now is dramatically different. When the accesses (or portions of the accesses) of any two processes overlap in the 
file, MPI does not
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guarantee that the data will automatically be read correctly. The user must take some extra steps to ensure correctness. There 
are three choices:

1. Set atomicity to true: Before the write on each process, change the file-access mode to atomic by using the function 
MPI_File_set_atomicity as follows.

Process 0 Process 1

MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh1) MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh2)

MPI_File_set_atomicity(fh1, 1) MPI_File_set_atomicity(fh2, 1)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, . . .) MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, . . .)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, . . .) MPI_File_read_at(fh2, 0, buf, 100, MPI_BYTE, . . .)

In the atomic mode, MPI guarantees that the data written by one process can be read immediately by another process. This is 
not guaranteed in the nonatomic mode, which is the default mode when the file is opened. In the above program, a barrier is 
used after the writes to ensure that each process has completed its write before the read is issued from the other process.

2. Close the file and reopen it: Another way to read the data correctly is to close the file after the write, reopen it, and then read 
the data written by the other process, as shown below.

Process 0 Process 1

MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh1) MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh2)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, . . .) MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, . . .)

MPI_File_close(&fh1) MPI_File_close(&fh2)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh1) MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh2)

MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, . . .) MPI_File_read_at(fh2, 0, buf, 100, MPI_BYTE, . . .)

By doing so, we ensure that there are no overlapping operations on the file handles returned from one collective open. The 
reads are performed with a different set of file handles that did not exist when the writes were performed. A barrier is used in 
this program for a similar reason as above: to ensure that each process has completed its close before the other process reopens 
the file.

3. Ensure that no "write sequence" on any process is concurrent with any sequence (read or write) on another process: This is 
a more complicated way of ensuring correctness. The words sequence and write sequence have a specific meaning in this 
context. A sequence is defined as a set of file operations bracketed by any pair of the functions MPI_File_sync,3 
MPI_File_open, and MPI_File_close. A

3 The function MPI_File_sync explicitly synchronizes any cached file data with that on the storage device; 
MPI_File_open and MPI_File_close also have the same effect.
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sequence is called a write sequence if any of the data-access operations in the sequence are write operations. For example, the 
following three sets of operations are all sequences, and the first two are write sequences: sync–write–read–sync, open–write–
write–close, and sync–read–read–close. It is important to note that the first and last operations must be a sync, open, or close 
for the set of operations to be called a sequence. MPI guarantees that the data written by a process can be read by another 
process if the user arranges the program such that a write sequence on one process is not concurrent (in time) with any 
sequence (read or write) on any other process.

Figure 3.19 shows how to apply this rule to the above example where each process needs to read the data just written by the 
other process. To ensure that no write sequence on a process is concurrent with any sequence on the other process, we have to 
add sync functions to create a write sequence and use a barrier to separate them (in time) from the write sequence on the other 
process. We choose to let the write on process 0 occur first; we could have chosen the other way around. We add a sync after 
the write on process 0 in order to create the sequence open–write_at–sync. Since MPI_File_sync is collective over the 
communicator with which the file was opened, namely, MPI_COMM_WORLD, the function must also be called on process 1. 
Then we call a barrier to separate this write sequence from the write sequence on process 1. Since the write sequence on 
process 1 must begin after this barrier, we first have to create a sequence by calling a sync on process 1 immediately after the 
barrier. Then we do the write, followed by another sync to complete the sequence. Because of the collective nature of 
MPI_File_sync, the function must be called on process 0 as well. Next we call a barrier to separate the write sequence on 
process 1 from the read sequence on process 0. Since the read sequence on process 0 must start after the barrier, we add a sync 
after the barrier, followed by the read. If we did not add this sync, the read sequence would start from the sync that is just 
before the barrier and, therefore, would not be time-separated from the write sequence on process 1. The sync after the barrier 
on process 1 is needed because it is collective with the corresponding sync on process 0. It is not needed for consistency 
semantics because the read sequence on process 1 that starts from just before the barrier is already nonconcurrent with the 
previous write sequence on process 0.

We note that if the program had used the collective versions of the read/write functions, namely, 
MPI_File_write_at_all and MPI_File_read_at_all, we could not have used this method for achieving 
consistency. The reason is that since it is erroneous to separate collective operations among processes by inserting barriers in 
between, there is no way to make the write sequence on one process nonconcurrent
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Process 0 Process 1

MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh1) MPI_File_open(MPI_COMM_WORLD, "file", . . ., &fh2)

MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, . . .) 
MPI_File_sync(fh1)

MPI_File_sync(fh2) (needed for collective operation)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(fh1) (needed for collective operation) MPI_File_sync(fh2)
MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, . . .)

MPI_File_sync(fh1) (needed for collective operation) MPI_File_sync(fh2)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(fh1)
MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, . . .)
MPI_File_close(&fh1)

MPI_File_sync(fh2) (needed for collective operation) 
MPI_File_read_at(fh2, 0, buf, 100, MPI_BYTE, . . .) 
MPI_File_close(&fh2)

Figure 3.19
Two processes open a common file with MPI_COMM_WORLD and use the default nonatomic mode of access. Each process
writes to the file and then needs to read the data just written by the other process. The syncs and barriers are needed for
the data to be correctly written and read.

with any other sequence on the other process. Therefore, in cases where multiple collective operations overlap, only the first 
two options for achieving consistency are available, namely, setting atomicity or closing and then reopening the file.

3.8.3—
Accessing a Common File Opened with MPI_COMM_SELF



Now let's consider the case where all processes access a common file but specify MPI_COMM_SELF as the communicator 
when they open it. (It's legal to do so, but we don't recommend it in general.) In this case, there is only one way to achieve 
consistency: the user must take steps to ensure that no write sequence on any process is concurrent with any sequence (read or 
write) on any other process. This is needed even if there are no overlapping accesses among processes, that is, even if each 
process accesses separate parts of the file. Changing the file-access mode to atomic does not help in this case.

Therefore, for our example where one process needs to read the data written by the other process, the only way to do it 
correctly when the file is opened with MPI_COMM_SELF is as shown in Figure 3.20. This is similar to Figure 3.19, the only 
difference being the communicator passed to MPI_File_open. Because of MPI_COMM_SELF, all collective operations, 
such as MPI_File_sync, effectively become local operations. Therefore, the syncs that were needed in Figure 3.19 for 
matching the corresponding collective sync on the other process are not needed here. Only those syncs needed for consistency 
semantics, that is, for creating sequences, are needed.
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Process 0 Process 1

MPI_File_open(MPI_COMM_SELF, "file", . . ., &fh1)
MPI_File_write_at(fh1, 0, buf, 100, MPI_BYTE, . . .)
MPI_File_sync(fh1)

MPI_File_open(MPI_COMM_SELF, "file", . . ., &fh2)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

 MPI_File_sync(fh2)
MPI_File_write_at(fh2, 100, buf, 100, MPI_BYTE, . . .)
MPI_File_sync(fh2)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(fh1)
MPI_File_read_at(fh1, 100, buf, 100, MPI_BYTE, . . .)
MPI_File_close(&fh1)

MPI_File_read_at(fh2, 0, buf, 100, MPI_BYTE, . . .)
MPI_File_close(&fh2)

Figure 3.20
The example in Figure 3.19 when the file is opened with MPI_COMM_SELF

Table 3.28
C bindings for MPI_File_set_atomicity and MPI_File_sync

int MPI_File_set_atomicity(MPI_File fh, int flag)

int MPI_File_sync(MPI_File fh)

3.8.4—
General Recommendation

Although it is legal for multiple processes to access a common file by opening it with MPI_COMM_SELF as the communicator, 
it is not advisable to do so. Users should strive to specify the right communicator to MPI_File_open—one that specifies all 
the processes that need to access the open file. Doing so not only provides the benefit of the stronger consistency semantics that 
MPI guarantees in such cases, but it can also result in higher performance. For example, one can then use the collective I/O 
functions, which allow the implementation to perform collective optimizations.

Tables 3.28, 3.29, and 3.30 give the C, Fortran, and C++ bindings for the two functions introduced in this section, 
MPI_File_set_atomicity and MPI_File_sync.

3.9—
File Interoperability

Unlike messages, files are persistent entities; they remain after the program ends. Therefore, some questions must be answered 
about MPI files, such as:
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Table 3.29
Fortran bindings for MPI_File_set_atomicity and MPI_File_sync

MPI_FILE_SET_ATOMICITY(fh, flag, ierror)
            integer fh, ierror
            logical flag

MPI_FILE_SYNC(fh, ierror)
           integer fh, ierror

Table 3.30
C++ bindings for MPI_File_set_atomicity and MPI_File_sync

void MPI::File::Set_atomicity(bool flag)

void MPI::File::Sync()

• Are MPI files any different from the files normally created by the file system? In other words, can an MPI file be read by a 
non-MPI program?

• How can MPI files created on one machine be moved to another machine?

• How can MPI files written on one machine be read on another machine with a different data representation?

We answer these questions in this section.

3.9.1—
File Structure

MPI files contain no more information about the application than what the application explicitly stores in the files. In other 
words, MPI files are not self-describing in any way; they are just like ordinary files in content.

For performance reasons, MPI does not specify how an implementation should physically create files, although logically an 
MPI program will always see the file as a linear sequence of bytes. For example, an implementation is free to store a file 
physically in a compressed format or divide the file into smaller files stored on the local disks of different machines or in some 
other way, as long as the user is able to access the file as a linear sequence of bytes from an MPI program.

If files created by an MPI implementation are different from regular files in the underlying file system, the MPI Standard 
requires that the implementation provide a utility for users to convert an MPI file into a linear sequence of bytes. It must also 
provide utilities to perform familiar file operations, such as copying, deleting, and moving. Therefore, it is always possible to 
access the data written by an
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MPI program from a non-MPI program—by converting the MPI file into a linear sequence of bytes if necessary.

In many implementations, including ours (ROMIO [84, 87, 88, 89]), the files created are no different from the files created by 
the underlying file system. Therefore, for files created by such implementations, one can directly use the regular file-system 
commands, such as cp, rm, mv, ls, and one also can directly access the files from a non-MPI program.

3.9.2—
File Data Representation

Since different machines have different binary data representations—byte ordering, sizes of datatypes, etc.—files created on 
one machine may not be directly portable to other machines, unless these differences are accounted for. MPI provides users the 
option of creating portable files that can be read on other machines. This is done via the datarep parameter to 
MPI_File_set_view.



In all the examples we have considered so far in this chapter, we have used native as the value for the datarep parameter 
to MPI_File_set_view. This parameter specifies the data representation used to store various datatypes (integers, floating-
point numbers) in the file. MPI supports multiple data representations. Three types of data representations are predefined in 
MPI, called native, internal, and external32. Implementations are free to support additional representations. MPI 
also allows users to define new data representations and add them to an MPI implementation at run time (by providing the 
necessary conversion functions, see Section 9.1).

In the native representation, data is stored in the file as it is in memory; no data conversion is performed. This is the default 
data representation. Since there is no data conversion, there is no loss in I/O performance or data precision. This representation 
cannot be used in heterogeneous environments where the processes accessing a file have different data representations in 
memory. Similarly, a file created with this representation cannot be read on a machine with a different data representation. In 
other words, files created with the native representation are not portable.

The internal representation is an implementation-defined representation that may provide some (implementation-defined) 
degree of file portability. For example, an MPI implementation can define an internal representation that is portable to any 
machine where that MPI implementation is supported. A different MPI implementation may or may not be able to read the file.

The external32 representation is a specific data representation defined in MPI. It is basically a 32-bit big-endian IEEE 
format, with the sizes of all basic data-
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types specified by MPI. For a complete specification of external32, see the MPI Standard [27]. A file written with 
external32 can be read with any MPI implementation on any machine. Since using external32 may require the 
implementation to perform data conversion, however, it may result in lower I/O performance and some loss in data precision. 
Therefore, this representation should be used only if file portability is needed.

Note that an implementation may choose to use external32 as the internal representation.

3.9.3—
Use of Datatypes for Portability

Although internal and external32 data representations enable file portability, portability is possible only if the user 
specifies the correct datatypes, and not MPI_BYTE. to the read/write functions and to MPI_File_set_view. This allows 
the implementation to know what kind of datatype is being accessed and therefore perform the necessary type conversions. For 
example, to write an array of 100 integers, you should specify count=100 and datatype=MPI_INT to the write function. 
You should not specify it as count=400 and datatype=MPI_BYTE as you would with the Unix I/O interface.

Care must also be taken in constructing file views with derived datatypes because some derived-datatype constructors, such as 
MPI_Type_struct, take displacements in bytes. For constructing derived datatypes to be used in file views, these byte 
displacements must be specified in terms of their values for the file data representation, not for the data representation in 
memory. The function MPI_File_get_type_extent is provided for this purpose. It returns the extent of a datatype in the 
file data representation selected. Similarly, the initial displacement in the file view (the disp argument to 
MPI_File_set_view), which is also specified in bytes, must be specified in terms of its value for the file data 
representation.

We note that the datatypes passed as arguments to read/write functions specify the data layout in memory. They must always 
be constructed using displacements corresponding to displacements in the memory data representation.

Let us now revisit the example of Figure 3.4 in which a process needs to access noncontiguous data located in a file as follows: 
an initial displacement of five integers, followed by groups of two contiguous integers separated by gaps of four integers. We 
saw in Figure 3.5 how to set the view for this example for a nonportable file using the native data representation. Now let's 
do the same for a portable file using external32. The code is shown in Figure 3.21.

When a file is first opened, the default data representation is native. To change the data representation to external32, we 
have to call the function MPI_File_-
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MPI_Aint lb, extent, extent_in_file;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;
MPI_File fh;
int buf[1000];

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
              MPI_MODE_CREATE | MPI_MODE_RDWR,
              MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_BYTE, MPI_BYTE, "external32",
                  MPI_INFO_NULL);
MPI_File_get_type_extent(fh, MPI_INT, &extent_in_file);

MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0;
extent = 6 * extent_in_file;
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);

disp = 5 * extent_in_file;
etype = MPI_INT;

MPI_File_set_view(fh, disp, etype, filetype, "external32",
                  MPI_INFO_NULL);
MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

Figure 3.21
Writing portable files

set_view. But in this example, we run into a small problem. To create the derived datatype to be used as the filetype, we 
need to know the extent of an integer in the external32 data representation. We can, of course, look up the value in the MPI 
Standard, but we would like to find it at run time using the function specifically provided for the purpose, namely, 
MPI_File_get_type_extent. The problem is that this function takes a file handle (and not a data representation) as 
argument, which means that the data representation for the file must be set before calling this function. Hence, we need to call 
MPI_File_set_view twice: once just to set the data representation to external32 (with dummy values for 
displacement, etype, and filetype) and once again with the real displacement, etype, and filetype after the extent of an integer in 
the file has been determined by using MPI_File_get_type_-
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Table 3.31
C binding for MPI_File_get_type_extent

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
                MPI_Aint *extent)

Table 3.32
Fortran binding for MPI_File_get_type_extent

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent, ierror)
           integer fh, datatype, ierror
           integer(kind=MPI_ADDRESS_KIND) extent

Table 3.33
C++ binding for MPI_File_get_type_extent

MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype) const



extent.4 Instead of using sizeof(int) as in Figure 3.4, we use extent_in_file to calculate disp and to create the 
filetype. The file created by this program can be read with any MPI implementation on any machine.

C, Fortran, and C++ bindings for MPI_File_get_type_extent are given in Tables 3.31, 3.32, and 3.33.

3.9.4—
User-Defined Data Representations

MPI also allows the user to define new data representations and register them with the MPI implementation. The user must 
provide the necessary conversion functions, which the implementation will use to convert from memory to file format and vice 
versa. This provides a powerful method for users to write data in a representation that an MPI implementation may not support 
by default. This is an advanced feature of MPI; we explain it with the help of an example in Chapter 9.

4 This could have been avoided if MPI had a function that took a data-representation string and a communicator as arguments 
(instead of a file handle) and returned the extent of a datatype in that representation. Alas, since MPI has no such function, we 
have to do it in this roundabout fashion.
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3.10—
Achieving High I/O Performance with MPI

In this section we describe how MPI must be used in order to achieve high I/O performance. The I/O in an application can be 
written with MPI in many different ways, with different performance implications. We examine the different ways of writing 
an I/O application with MPI and see how these choices affect performance.

3.10.1—
The Four ''Levels" of Access

Any application has a particular "I/O access pattern" based on its I/O needs. The same I/O access pattern, however, can be 
presented to the I/O system in different ways, depending on which I/O functions the application uses and how. We classify the 
different ways of expressing I/O access patterns in MPI into four "levels," level 0 through level 3 [86]. We explain this 
classification with the help of a simple example, accessing a distributed array from a file, which is a common access pattern in 
parallel applications. The principle applies to other access patterns as well.

Consider a two-dimensional array distributed among 16 processes in a (block, block) fashion as shown in Figure 3.22. The 
array is stored in a file corresponding to the global array in row-major order, and each process needs to read its local array from 
the file. The data distribution among processes and the array storage order in the file are such that the file contains the first row 
of the local array of process 0, followed by the first row of the local array of process 1, the first row of the local array of 
process 2, the first row of the local array of process 3, then the second row of the local array of process 0, the second row of the 
local array of process 1, and so on. In other words, the local array of each process is located noncontiguously in the file.

Figure 3.23 shows four ways in which a user can express this access pattern in MPI. In level 0, each process does Unix-style 
accesses—one independent read request for each row in the local array. Level 1 is similar to level 0 except that it uses 
collective I/O functions, which indicate to the implementation that all processes that together opened the file will call this 
function, each with its own access information. Independent I/O functions, on the other hand, convey no information about 
what other processes will do. In level 2, each process creates a derived datatype to describe the noncontiguous access pattern, 
defines a file view, and calls independent I/O functions. Level 3 is similar to level 2 except that it uses collective I/O functions.

The four levels represent increasing amounts of data per request, as illustrated
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Figure 3.22
Distributed-array access

in Figure 3.24.5 The more the amount of data per request, the greater is the opportunity for the implementation to deliver higher 
performance. Users must therefore strive to express their I/O requests as level 3 rather than level 0. How good the performance 
is at each level depends, of course, on how well the implementation takes advantage of the extra access information at each 
level.

If an application needs to access only large, contiguous pieces of data, level 0 is equivalent to level 2, and level 1 is equivalent 
to level 3. Users need not create derived datatypes in such cases, as level-0 requests themselves will likely perform well. Most 
real parallel applications, however, do not fall into this category. Several studies of I/O access patterns in parallel applications 
[4, 17, 65, 77, 78, 85] have shown that each process in a parallel program may need to access a number of relatively small, 
noncontiguous portions of a file. From a performance perspective, it is critical that this access pattern be expressed in the I/O 
interface, as it enables

5 In this figure, levels 1 and 2 represent the same amount of data per request, but, in general, when the number of noncontiguous 
accesses per process is greater than the number of processes, level 2 represents more data than level 1.
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MPI_File_open( . . ., "filename", . . ., &fh)
for (i=0; i<n_local_rows; i++) {
    MPI_File_seek(fh, . . .)
    MPI_File_read(fh, row[i], . . .)
}
MPI_File_close(&fh)

MPI_File_open(MPI_COMM_WORLD, "filename", . . ., &fh)
for (i=0; i<n_local_rows; i++) {
    MPI_File_seek(fh, . . .)
    MPI_File_read_all(fh, row[i], . . .)
}
MPI_File_close(&fh)

Level 0
(many independent, contiguous requests)

Level 1
(many collective, contiguous requests)

MPI_Type_create_subarray( . . ., &subarray, . . .)
MPI_Type_commit(&subarray)
MPI_File_open( . . ., "filename", . . ., &fh)
MPI_File_set_view(fh, . . ., subarray, . . .)
MPI_File_read(fh, local_array, . . .)
MPI_File_close(&fh)

MPI_Type_create_subarray( . . ., &subarray, . . .)
MPI_Type_commit(&subarray)
MPI_File_open(MPI_COMM_WORLD, "filename", . . ., &fh)
MPI_File_set_view(fh, . . ., subarray, . . .)
MPI_File_read_all(fh, local_array, . . .)
MPI_File_close(&fh)



Level 2
(single independent, noncontiguous request)

Level 3
(single collective, noncontiguous request)

Figure 3.23
Pseudo-code that shows four ways of accessing the data in Figure 3.22 with MPI

Figure 3.24
The four levels representing increasing amounts of data per request
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gsizes[0] = num_global_rows;
gsizes[1] = num_global_cols;
distribs[0] = distribs[1] = MPI_DISTRIBUTE_BLOCK;
dargs[0] = dargs[1] = MPI_DISTRIBUTE_DFLT_DARG;
psizes[0] = psizes[1] = 4;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Type_create_darray(16, rank, 2, gsizes, distribs, dargs, psizes,
                       MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);
local_array_size = num_local_rows * num_local_cols;
MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
              MPI_INFO_NULL, &fh);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
                  MPI_INFO_NULL);
MPI_File_read_all(fh, local_array, local_array_size,
                  MPI_FLOAT, &status);
MPI_File_close(&fh);

Figure 3.25
Detailed code for the distributed-array example of Figure 3.22 using a level-3 request

the implementation to optimize the I/O request. The optimizations typically allow the physical I/O to take place in large, 
contiguous chunks, with higher performance, even though the user's request may be noncontiguous.

For example, our implementation, ROMIO, performs an optimization called data sieving for level-2 requests. The basic idea is 
as follows: instead of reading noncontiguous data with lots of separate read calls to the file system, ROMIO reads large chunks 
from the file and extracts, in memory, the data that is really needed. For level-3 requests, ROMIO performs collective I/O: it 
analyzes the requests of different processes, merges the requests as much as possible, and makes large parallel reads/writes for 
the combined request. Details of both these optimizations can be found in [87].



Users, therefore, must ensure that they describe noncontiguous access patterns in terms of a file view and then call a single I/O 
function; they must not try to access each contiguous portion separately as in Unix I/O. Figure 3.25 shows the detailed code for 
creating a derived datatype, defining a file view, and making a level-3 I/O request for the distributed-array example of Figure 
3.22. It is similar to the example in Figure 3.10.

We note that the MPI standard does not require an implementation to perform any of these optimizations. Nevertheless, even if 
an implementation does not per-
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form any optimization and instead translates level-3 requests into several level-0 requests to the file system, the performance 
would be no worse than if the user directly made level-0 requests. Therefore, there is no reason not to use level-3 requests (or 
level-2 requests where level-3 requests are not possible).

3.10.2—
Performance Results

We present some performance results that show how the choice of level of request affects performance. We wrote the 
distributed-array access example using level-0, level-2, and level-3 requests and ran the three versions portably on five 
different parallel machines—HP Exemplar, SGI Origin2000, IBM SP, Intel Paragon, and NEC SX-4—using ROMIO. (For this 
particular application, level-1 requests do not contain sufficient information for any useful optimizations, and ROMIO 
therefore internally translates level-1 requests into level-0 requests.) These machines cover almost the entire spectrum of state-
of-the-art high-performance systems, and they represent distributed-memory, shared-memory, and parallel vector architectures. 
They also represent a wide variation in I/O architecture, from the "traditional" parallel file systems on distributed-memory 
machines such as the SP and Paragon, to the so-called high-performance file systems on shared-memory machines such as the 
Origin2000, Exemplar, and SX-4. We used the native file systems on each machine: HFS on the Exemplar, XFS on the 
Origin2000, PIOFS on the SP, PFS on the Paragon, and SFS on the SX-4.

We note that the machines had varying amounts of I/O hardware. Some of the differences in performance results among the 
machines are due to these variations. Our goal in this experiment was to compare the performance of the different levels of 
requests on a given machine, rather than comparing the performance of different machines.

Figures 3.26 and 3.27 show the read and write bandwidths for distributed-array access. The performance with level-0 requests 
was, in general, very poor because level-0 requests result in too many small read/write calls. For level-2 requests—for which 
ROMIO performs data sieving—the read bandwidth improved over level-0 requests by a factor ranging from 2.6 on the HP 
Exemplar to 453 on the NEC SX-4. Similarly, the write bandwidth improved by a factor ranging from 2.3 on the HP Exemplar 
to 121 on the NEC SX-4. The performance improved considerably with level-3 requests because ROMIO performs collective I/
O in this case. The read bandwidth improved by a factor of as much as 793 over level-0 requests (NEC SX-4) and as much as 
14 over level-2 requests (Intel Paragon). Similarly, with level-3 requests, the write performance improved by a factor of as 
much as 721 over level-0
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Figure 3.26
Read performance of distributed array access (array size 512×512×512 integers = 512 Mbytes)

requests (NEC SX-4) and as much as 40 over level-2 requests (HP Exemplar). It is clearly advantageous to use level-3 requests 
rather than any other kind of request.

3.10.3—
Upshot Graphs

We present some Upshot plots that illustrate the reduction in time obtained by using level-2 and level-3 requests instead of 
level-0 requests for writing a three-dimensional distributed array of size 128 × 128 × 128 on 32 processors on the Intel Paragon 
at Caltech. We instrumented the ROMIO source code to measure the time taken for each file-system call made by ROMIO and 
also for the computation and communication required for collective I/O. The instrumented code created trace files, which we 
visualized using a performance-visualization tool called Upshot [38].

Figure 3.28 shows the Upshot plot for level-0 requests, where each process makes a separate write function call to write each 
row of its local array. The numerous small bands represent the numerous writes in the program, as a result of which the total 
time taken is about 125 seconds. The large white portions are actually lots of writes clustered together, which become visible 
when you zoom in to the region using Upshot.
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Figure 3.27
Write performance of distributed array access (array size 512×512×512 integers =

512 Mbytes)

Figure 3.29 shows the Upshot plot for level-2 requests, for which ROMIO performs performs data sieving. In this case it 
performed data sieving in blocks of 4 Mbytes at a time. As mentioned in Section 3.7, we can vary this block size via the 
ROMIO-specific hint ind_wr_buffer_size. Notice that the total time has decreased to about 16 seconds compared with 
125 seconds for level-0 requests. For writing with data sieving, each process must perform a read-modify-write and also lock 
the region of the file being written. Because of the need for file locking and a buffer size of 4 Mbytes, many processes remain 
idle waiting to acquire locks. Therefore, only a few write operations take place concurrently. It should be possible to increase 
parallelism, however, by decreasing the size of the buffer used for data sieving. Figure 3.30 shows the results for a buffer size 
of 512 Kbytes. Since more I/O operations take place in parallel, the total time decreased to 10.5 seconds. A further reduction in 
buffer size to 64 Kbytes (Figure 3.31) resulted in even greater parallelism, but the I/O time increased because of the smaller 
granularity of each I/O operation. The performance of data sieving can thus be tuned by varying the size of the buffer used for 
data sieving, which can be done via the hints mechanism in MPI.
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Figure 3.28
Writing a 128 × 128 × 128 distributed array on the Intel Paragon using level-0 requests

(Unix-style independent writes). Elapsed time = 125 seconds.
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Figure 3.29
Writing a 128 × 128 × 128 distributed array on the Intel Paragon using level-2 requests,

with the buffer size for data sieving = 4 Mbytes. Elapsed time = 16 seconds.
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Figure 3.30
Writing a 128 × 128 × 128 distributed array on the Intel Paragon using level-2 requests,

with the buffer size for data sieving = 512 Kbytes. Elapsed time = 10.5 seconds.
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Figure 3.31
Writing a 128 × 128 × 128 distributed array on the Intel Paragon using level-2 requests,

with the buffer size for data sieving = 64 Kbytes. Elapsed time = 20 seconds.
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Figure 3.32 shows the Upshot plot for level-3 requests, for which ROMIO performs collective I/O. The total time decreased to 
about 2.75 seconds, which means that level-3 requests were about 45 times faster than level-0 requests and about four times 
faster than the best performance with level-2 requests. The reason for the improvement is that the numerous writes of each 
process were coalesced into a single write at the expense of some extra computation (to figure how to merge the requests) and 
interprocess communication. With collective I/O, the actual write time was only a small fraction of the total I/O time; for 
example, file open took longer than the write.

3.11—
An Astrophysics Example

As an example, we consider an astrophysics application from the University of Chicago, called ASTRO3D. This application 
studies the mechanism by which intergalactic gases condense to form new stars. We describe how to perform the I/O needed by 
this application using MPI. Details of the application and its I/O requirements can be found in [85].

3.11.1—
ASTRO3D I/O Requirements



The application uses several three-dimensional arrays that are distributed among processes using a block distribution in all 
three dimensions. The arrays fit entirely in memory. Every few iterations, some of the arrays must be written to files for three 
purposes: data analysis, checkpointing (for later restart), and visualization. The storage order of data in all files is required to be 
the same as it would be if the program were run with a single process. In other words, the arrays must be stored in column-
major order of the global array. There are two reasons for this requirement. The developers of the application want to be able to 
restart the program with a different number of processes from the program that created the restart file [53]. They also want to 
analyze and visualize the data with sequential (uniprocess) tools on regular workstations [53]. The easiest way to achieve these 
goals is to write the data to a single file in some canonical order. The alternative way of writing to separate files and 
postprocessing them is clumsy and inconvenient.

The data in the data-analysis and restart files is organized as follows. Each file begins with a small ''header" consisting of six 
floating-point variables that have the same values on all processes. Following this header are six arrays appended one after 
another in the same file. The visualization data is stored in four separate files, each of which has a six-variable header followed 
by a single array. Every few
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Figure 3.32
Writing a 128 × 128 × 128 distributed array on the Intel Paragon using level-3 requests.

Elapsed time = 2.75 seconds.
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iterations, the application writes out new data-analysis and visualization files and overwrites the previously written restart file.

3.11.2—
Implementing the I/O with MPI

We describe how to write the restart file using MPI; the data-analysis file is identical, and the visualization file is 
similar—actually simpler, as it has only one array.

Figure 3.33 shows the code for writing the restart file. We first write the six-variable header (assume that the six variables have 
already been collected into a single buffer called header). Since all processes have the same values for the header, any one 
process can write it. We choose to let process 0 write the header. Now we need to define the file view in a way that the header 
is automatically skipped and the arrays can be written with a single function call each. We create a darray datatype for use as 
the filetype, similar to the one in the program in Figure 3.10. We fill in various one-dimensional arrays, which are used as 
parameters to the darray datatype constructor. gsizes contains the size of the global array in each dimension. distribs 
specifies that the distribution is a block distribution in each dimension. dargs specifies the default distribution argument. We set 
all entries in psizes to zero for use in the function MPI_Dims_create. MPI_Dims_create creates a logical process grid 
of the specified number of dimensions. If psizes specifies a nonzero value in any dimension, MPI_Dims_create will use 
that value as the number of processes in that dimension. We want MPI_Dims_create to calculate the number of processes 
in each dimension; therefore, we pass a zero-filled psizes.

MPI_Type_create_darray returns a datatype, which we first commit and then use as the filetype to 
MPI_File_set_view. The displacement is specified as the size of the header in bytes, namely, six times the size of a 
floating-point number. This will cause the header portion of the file to be skipped in subsequent writes. The etype is specified 
as MPI_FLOAT. Recall that the file view is defined as a tiling of the file, starting at the displacement, followed by multiple 
copies of the filetype appended contiguously one after another. Therefore, with this view, we can simply write all six arrays 
with six calls to MPI_File_write_all. local_array_size is the size of the local array in terms of the number of 
floating-point numbers. After each write, the individual file pointer on each process is automatically incremented by the 
number of etypes written, skipping all holes. The file pointer will therefore point to the offset in the file where the write of the 
next array from this process should begin. Consequently, no explicit file-pointer manipulation is needed.

We note that we have used the darray datatype and MPI_Dims_create for simplicity. All the warnings about darray 
mentioned in Section 3.4.2 apply here. If an application does not follow the same definition of data distribution or logical-
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MPI_File_open(MPI_COMM_WORLD, "/pfs/restartfile",
               MPI_MODE_CREATE | MPI_MODE_WRONLY,
               MPI_INFO_NULL, &fh);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0)
    MPI_File_write(fh, header, 6, MPI_FLOAT, &status);

for (i=0; i<3; i++) {
    gsizes[i] = global_size_in_each_dim;
    distribs[i] = MPI_DISTRIBUTE_BLOCK;
    dargs[i] = MPI_DISTRIBUTE_DFLT_DARG;
    psizes[i] = 0;
}
MPI_Dims_create(nprocs, 3, psizes);
MPI_Type_create_darray(nprocs, rank, 3, gsizes, distribs, dargs,
                        psizes, MPI_ORDER_FORTRAN, MPI_FLOAT,
                        &filetype);
MPI_Type_commit(&filetype);

MPI_File_set_view(fh, 6*size of (float), MPI_FLOAT, filetype,
                   "native", MPI_INFO_NULL);



MPI_File_write_all(fh, array1, local_array-size, MPI_FLOAT,
                    MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array2, local_array_size, MPI_FLOAT,
                    MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array3, local_array_size, MPI_FLOAT,
                    MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array4, local_array_size, MPI_FLOAT,
                    MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array5, local_array_size, MPI_FLOAT,
                    MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array6, local_array_size, MPI_FLOAT,
                    MPI_STATUS_IGNORE);
MPI_File_close(&fh);

Figure 3.33
Writing the restart file in ASTRO3D
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process ordering as the darray datatype, one must not use darray but must use subarray instead.

3.11.3—
Header Issues

As mentioned above, the header in this application consists of six variables with the same values on all processes. It is 
customary in most applications to write such a header at the start of the file. For performance reasons, however, it may be 
better to write the header at the end of the file. High-performance file systems typically stripe files across multiple disks in 
units of 64 Kbytes or some such number. By storing a small header at the start of a file and large arrays following it, accesses 
to data in the large arrays are not likely to be aligned to disk blocks or striping units. These skewed accesses may result in loss 
of performance. A better alternative (although somewhat counterintuitive) is to store the large arrays first and store the header 
at the end of the file. With such a storage order, accesses to the large array are more likely to be aligned with file-system 
boundaries, and the performance is likely to be better.

Figure 3.34 shows the code for writing the ASTRO3D restart file with the header at the end of the file. For writing the six 
arrays, the only difference in the specification of the file view compared with the previous program is that the displacement is 
specified as zero because there is no header to skip. The arrays are then written one after another with 
MPI_File_write_all. To write the header at the end of the file, we create a new file view in which we specify the 
displacement as the size of the six arrays (global size) in bytes and the etype and filetype both as MPI_FLOAT. With this view, 
all six arrays will be skipped, and the header will be written contiguously after the arrays. Process 0 writes the header.

Reading the Header

When the header needs to be read from a file, for example during a restart, the read can be implemented in one of the following 
ways:

• Process 0 can read the header and broadcast it to all other processes.

• All processes can read the header directly by using a collective read function, such as MPI_File_read_all.

• All processes can read the header directly by using an independent read function, such as MPI_File_read.

Since headers are usually small, the read-broadcast method is usually the best method to use. In the case of collective reads, the 
implementation may analyze the request and then choose to implement it using a read-broadcast. Analyzing the request 
involves interprocess communication, and hence overhead, which can be
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MPI_File_open(MPI_COMM_WORLD, "/pfs/restartfile",
              MPI_MODE_CREATE | MPI_MODE_WRONLY,
              MPI_INFO_NULL, &fh);

for (i=0; i<3; i++) {
    gsizes[i] = global_size_in_each_dim;
    distribs[i] = MPI_DISTRIBUTE_BLOCK;
    dargs[i] = MPI_DISTRIBUTE_DFLT_DARG;
    psizes[i] = 0;
}
MPI_Dims_create(nprocs, 3, psizes);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Type_create_darray(nprocs, rank, 3, gsizes, distribs, dargs,
                       psizes, MPI_ORDER_FORTRAN, MPI_FLOAT,
                       &filetype);
MPI_Type_commit(&filetype);
MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
                  MPI_INFO_NULL);
MPI_File_write_all(fh, array1, local_array_size, MPI_FLOAT,
                   MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array2, local_array_size, MPI_FLOAT,
                   MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array3, local_array_size, MPI_FLOAT,
                   MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array4, local_array_size, MPI_FLOAT,
                   MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array5, local_array_size, MPI_FLOAT,
                   MPI_STATUS_IGNORE);
MPI_File_write_all(fh, array6, local_array_size, MPI_FLOAT,
                   MPI_STATUS_IGNORE);
global_array_size = gsizes[0]*gsizes[1]*gsizes[2];
MPI_File_set_view(fh, 6*global_array_size*sizeof(float), MPI_FLOAT,
                  MPI_FLOAT, "native", MPI_INFO_NULL);
if (rank == 0)
    MPI_File_write(fh, header, 6, MPI_FLOAT, &status);

MPI_File_close(&fh);

Figure 3.34
Writing the ASTRO3D restart file with the header at the end of the file rather than at the beginning
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avoided if the user does the read-broadcast directly. The third option, independent reads from each process, will result in too 
many small I/O requests.

3.12—
Summary

The I/O interface in MPI provides many features that can help users achieve high I/O performance in parallel applications. The 
most important of these features are the ability for users to specify noncontiguous data layouts in memory and file using MPI 
datatypes, the ability to specify the group of processes participating in collective I/O operations, and the ability to pass hints to 
the implementation. To achieve high I/O performance with MPI, users must use these features. In particular, in applications 
with noncontiguous access patterns, users must strive to express the I/O in terms of level-3 requests (noncontiguous, 
collective), rather than level-0 requests (Unix-style).

For further information on parallel I/O in general, we refer readers to [20, 21, 43, 49]. We also recommend the Parallel I/O 
Archive on the World Wide Web at http://www.cs.dartmouth.edu/pario, which contains links to a number of research projects 
in the area, a comprehensive bibliography, and other useful information.

http://www.cs.dartmouth.edu/pario
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4—
Understanding Synchronization

Parallel programming involves more than just transferring data between two processes. The receiver of the data must know 
when the data is available. In the message-passing programming model, these two operations (data transfer and indicating that 
the data is available) are tightly connected. This is not true of some other parallel programming models. In addition, the fact 
that these two steps are combined in message passing can have unexpected performance consequences. In this chapter we will 
explore some of the issues of synchronization between senders and receivers of data, both for message passing and shared 
memory, before venturing away from the message-passing model in Chapter 5.

4.1—
Introduction

In this short chapter, we will not introduce any new MPI routines. Instead, we will look in more detail at what happens—and 
what must happen—when data is moved between processes. In Section 4.2, we present another view of the ghost-cell-exchange 
problem, where we consider not just the individual point-to-point messages, but the performance effect of interactions between 
the delivery of messages. In Section 4.3, we change gears and look briefly at the shared-memory programming model and 
address some of the issues in writing correct shared-memory programs. These two sections will motivate the design of MPI's 
remote memory access routines, introduced in the next chapter.

4.2—
Synchronization in Message Passing

A common use of message passing is to exchange ghost point values on a grid or mesh that is distributed among processes. We 
have discussed such an example in Chapter 4 of Using MPI [32]. We will revisit this example to illustrate performance 
problems caused by unintended synchronization and discuss how to improve the performance of this example using only MPI-
1 point-to-point message passing.

For concreteness, consider the 4 × 3 array of meshes (on twelve processes) shown in Figure 4.1. Each process must exchange 
data with its neighbors; two of the processes have four neighbors, six have three neighbors, and four have two neighbors.

The simplest code to send the ghost points between the processes is shown in Figure 4.2. As we showed in Chapter 4 of Using 
MPI [32], this code can perform poorly or even deadlock because the MPI_Send calls can block, each waiting for another 
process to issue the matching receive. Variations of this code that order

Page 120

Figure 4.1
4 × 3 array of meshes. Open circles are ghost
cells; arrows indicate data exchanges needed

to fill ghost cells.



the send and receive pairs, for example, first sending down and then receiving from above, also have poor performance because 
most of the sends will block, except for the processes at the very bottom. These have no process to send to and hence will issue 
their receives, matching the send for the process immediately above them. In a very real sense, the code in Figure 4.2 has so 
much synchronization that it will deadlock (a sort of interlocking synchronization).

To eliminate the possibility of deadlock or serialization, one should use nonblocking operations. Often, the easiest strategy is to 
replace the MPI_Recv operations with the nonblocking version, MPI_Irecv, as shown in Figure 4.3. This code will work, 
but in practice its performance may be significantly poorer than you might expect. To understand why, we use a simple 
performance model.

Let us assume that a process can receive from several senders at the same time, but that the total rate at which it can receive 
data is fixed. That is, if one process can send it data at 100 MBytes/sec, then two processes can send data at only 50 MBytes/
sec each. This is a very reasonable model; it assumes that the rate at which a process can receive data is controlled by the 
receiving process's ability to move data from its interconnection network with other processes into memory. To simplify the 
analysis, let us assume that it takes one time period to send the ghost-cell data from one process to a neighboring process for an 
entire edge. Since there are four edges, it should take four steps to send all of the ghost cell data.

Figures 4.4 through 4.9 show what might happen given the timing model that

Page 121

do i=1,n_neighbors
    call MPI_SEND(edge (1,i), len, MPI_REAL,&
                   nbr (i), tag, comm, ierr)
enddo
do i=1,n_neighbors
    call MPI_RECV(inedge(1,i), len, MPI_REAL,&
                  nbr(i), tag, comm, status, ierr)
enddo

Figure 4.2
Sending ghost-point values in a way that is straightforward, but performs poorly and may even deadlock

do i=1,n_neighbors
    call MPI_IRECV (inedge (1,i), len, MPI_REAL, nbr(i), tag,&
                    comm, requests(i), ierr)
enddo
do i=1,n_neighbors
    call MPI_SEND (edge (1,i), len, MPI_REAL, nbr(i), tag,&
                   comm, ierr)
enddo
call MPI_WAITALL (n_neighbors, requests, statuses, ierr)

Figure 4.3
Code to send ghost-point values using nonblocking receives

has receivers controlling the rate at which data may be delivered. In the first step, shown in Figure 4.4, most of the processes 
are sending down to the neighbor below. However, the bottom row of processes have no neighbor below, and so they begin to 
send to another neighbor on the right or above, depending on the location. The processes that are the destinations for these 
messages must share their memory bandwidth among the different senders.

In Figure 4.5 we begin to see the consequences of using MPI_Send. MPI_Send cannot return until the message has been 
moved from the user's buffer. Because several processes in Figure 4.4 are the targets of two MPI_Send operations, these sends 
can run only at half speed each, and so do not complete in a single step. We see these data transfers continuing in Figure 4.5.

At the end of the fourth step, the communication could be complete if full use has been made of every process's interconnect. 
Because of the synchronization requirements of MPI_Send, however, some communication steps did not take place at full 
speed, and we are not yet done. In fact, two more steps are required, as shown
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Figure 4.4
Step 1. All processes send to first neighbor; three processes are

each targets of two sends.

Figure 4.5
Step 2. Some sends to first neighbors are still continuing.
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Figure 4.6
Step 3. One process is now receiving only at 1/3 of peak rate.



Figure 4.7
Step 4. Two processes have become completely idle.
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Figure 4.8
Step 5. Eight processes are idle!

in Figures 4.8 and 4.9. For simplicity in exposition, in the case where there are three processes sending to a single process, we 
have ''rounded down" the performance of transfers into that process (on the top center). Making this more precise changes the 
predictions of the timing model slightly, but does not change the qualitative behavior.

We can validate our theoretical analysis by running this program and examining its performance with a tool such as Upshot 
[38, 46]. An Upshot view of one iteration of this program, run on an IBM SP, is shown in Figure 4.10. We can see from Figure 
4.10 that processes five and six, the two processes in the interior of the mesh, are the last to send, and processes one and two 
are the last to receive, just as our model predicts. Furthermore, the time to send an edge (shown as a black bar in Figure 4.10) is 
not the same for each process; rather, there are roughly two different times. The longer time is roughly twice a long as the short 
send time; this can be seen in a histogram of the MPI_Send times (Figure 4.11). The source of this loss of performance is our 
insistence that the communication operations complete in a certain order. In this example, we do not need to send the ghost-
point values in any particular order, but by choosing MPI_Send to send the data, we have, without really thinking about it, 
specified a certain order for the motion of data. As we have seen in Figures 4.4 through 4.9, this order of operations causes 
conflicts for shared resources (in this case, the resource for receiving data), causing a loss in performance.
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Figure 4.9
Step 6. Communication finally completes, delayed by excessive

synchronization. Only four processes are busy during the last
step.

Figure 4.10
Upshot view of one iteration
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Figure 4.11
Histogram of send times

To fix this problem, we need to relax our requirement of a particular order of execution. We can replace the MPI_Send calls 
with MPI_Isend as shown in Figure 4.12. Now, all of the sends may proceed; a sophisticated MPI implementation will 
ensure that all of the MPI_Isend operations effectively share the available memory resources, and the data transfer will take 
four time steps. When we do this, Upshot does indeed show us a more balanced view, as shown in Figure 4.13.

This approach is an example of a general technique for high-performance programming called deferred synchronization. By 
waiting until the last possible moment to require that an operation (such as an MPI_Isend) be completed, we give the system 
the greatest opportunity to order operations for best performance.
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do i=1,n_neighbors
    call MPI_IRECV(inedge(1,i), len, MPI_REAL, nbr(i), tag, &
                   comm, requests(i), ierr)
enddo
do i=1,n_neighbors
    call MPI_ISEND(edge(1,i), len, MPI_REAL, nbr(i), tag, &
                   comm, requests(n_neighbors+i), ierr)
enddo
call MPI_WAITALL(2*n_neighbors, requests, statuses, ierr)

Figure 4.12
Better version of code to exchange ghost points



Figure 4.13
Upshot view of exchange with nonblocking operations

4.3—
Comparison with Shared Memory

In shared-memory programming, data transfer between two threads of control (you can think of threads as processes sharing 
memory if you are unfamiliar with threads) is often described as being as simple as reading from a variable or writing to a 
variable. This is almost true. Consider the two threads that are counting up to 10 with a shared counter variable i (i starts at 
zero) and a private (nonshared) variable j, using the code in Figure 4.14.

What can we say about the values of j that the two threads might print out? We are tempted to say that the sum of the values of 
j printed by the two processes would equal 10, since i has been incremented ten times. But this isn't the only result that can 
happen. Many values for the sum of the j values that are greater
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int j = 0;
while (i < 10) {
    i = i + 1;
    j = j + 1;
}
print ("j = %d\n", j );

Figure 4.14
Code to increment i until it reaches 10

thread 1 thread 2

read i (value 0) into register r1 read i (value 0) into register r1

increment r1 and j increment r1 (value 1) and j

store r1 into i  

read i (value 1) into r1  

increment r1 and j  

store r1 into i  

read i (value 2) into r1  

increment r1 and j  

store r1 into i  

 store r1 into i (value 1)

Figure 4.15
One possible sequence of operations for the first few steps of the code in 4.14

than ten are possible, and in fact the value of j on a single thread may exceed ten!

The reason is that as the two threads read and write to the shared variable i, the value set by one thread can be overwritten by 
the other thread. For example, consider the sequence of operations shown in Figure 4.15.

At the end of the sequence of operations in Figure 4.15, the value of i is one, but the value of j on thread 1 is three! This is a 
well-known and understood problem. The solution is to ensure that only one thread at a time can modify a variable and that a 
thread does not read a variable until the value in the variable is guaranteed to be ready to be read. In other words, the read-
modify-write of i must be made atomic.



Consider the following modification. We use a shared variable token to alternate the threads: the value of token is 1 to start, 
the value of myid is the number of the executing thread (either 1 or 2), and the value of otherid is the number of the other 
thread (either 2 or 1, respectively). The code is shown in Figure 4.16.
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This code is more likely to produce the correct value, but it too isn't guaranteed. There are two problems: volatile variables and 
write ordering.

4.3.1—
Volatile Variables

First, the compiler may decide that token can be placed into a register. That is, the compiler may read the value of token 
from memory, place it into a register. and then refer to the value in that register rather than re-reading the value from memory. 
In that case, any change to the value of token that is made by the other thread will not be seen by the first thread. To fix this 
problem, at least in C and C++, we can declare token as volatile:

volatile int token;

Note that we really need to declare i as volatile as well. Some Fortran compilers accept a similar extension, for example,

integer token
volatile token

(in many Fortran 77 compilers) or

integer, volatile :: token

(in some Fortran 90 compilers). The Fortran 2000 draft standard includes volatile. This tells the compiler that the value of 
this variable may be changed by another agent, such as another thread, and ensures that the compiler won't reuse a value that 
has been put in a register.

However, note that declaring a variable as volatile will cause the compiler to reload it into register before every use. In 
some programs, this can result in a significant loss of performance.

int j = 0;
while (i < 10) {
    while (token != myid) ;
    i = i + 1;
    token = otherid;
    j = j + 1;
}
print ("j = %d\n", j );

Figure 4.16
Code to increment i until it reaches 10 using a flag
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4.3.2—
Write Ordering

The second problem is more subtle. There is no reason why the compiler can't choose to implement

i     = i + 1
token = otherid

as

token = otherid
i     = i + 1



As far as the compiler is concerned, the results are the same since the language doesn't say anything about multiple threads of 
execution, and since such reorderings can be important for performance in other contexts. Furthermore, even if the compiler 
didn't reorder the statements, modern microprocessors may reorder writes to memory. That is, the hardware may decide to 
write to memory in a different order than the compiler asked for, again to improve performance.

The concept of sequential consistency [50] is used to describe a parallel execution where the results are the same as if the 
statements were executed by a single process (hence the sequential) according to some interleaving (without reordering) of the 
statements from each process. The above compiler optimization or hardware reordering violates sequential consistency. The 
slightly weaker processor consistency describes the intent of the code fragment above: on any processor, the writes (and reads) 
occur in the order shown in the program. A discussion of several different consistency models, including much weaker ones 
than these, is found in [25].

Avoiding the problems of write reordering requires great care. For example, to ensure that the value of i has been written to 
memory before the value of token is modified in Figure 4.16, many systems require that a write synchronization instruction be 
issued. Unfortunately, neither C nor Fortran has a portable way to write this (in some C compilers, you can issue assembly 
language instructions with a directive such as asm(wsync), but this is not portable). As a result, correct shared-memory 
programming often requires calling special routines to ensure that operations are properly synchronized.

A third problem has to do with performance rather than correctness. The solution proposed above requires each thread to do the 
same amount of work. In many cases, we prefer for each thread to be able to work at its own pace.

The most common solution is to all three of these problems is to use locks. Only one thread may hold the lock at any time, and 
the implementation of a lock is
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int j = 0;
while (i < 10) {
    lock();
    i = i + 1;
    unlock();
    j = j + 1;
}
print ("j = %d\n", j );

Figure 4.17
Code to increment i until it reaches 10 using locks

guaranteed to avoid all of the problems that we've discussed. An example is shown in Figure 4.17.

There are other solutions, including semaphores and monitors. Another approach is to carefully implement abstractions such as 
queues, stacks, and lists in such a way that all operations on those data structures behave correctly even when multiple 
processes (or threads) are accessing them (see, for example, [54, 93, 60]). Unfortunately, the efficient implementation of these 
operations often requires assembly language programming.

4.3.3—
Comments

One advantage of shared memory is that, other than the issues that we've raised above, no special programming is needed—a 
program may access data anywhere simply by referring to it. There is another advantage: even when tools such as lock()/
unlock() must be used to guarantee that data has been transferred, a single such operation may be used for any number of 
data transfers. In other words, in shared-memory programming, the steps of transferring the data and synchronizing access to 
the data have been separated. A single synchronization step may "complete" an arbitrary number of data transfers.

This analysis leads us to the next two chapters, in which we study the MPI approach to separating data transfer from 
synchronization. In Chapter 5, we consider a simple barrier-style synchronization model. In Chapter 6, we look at two more 
complex synchronization models.
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5—
Introduction to Remote Memory Operations

Two principal approaches exist for communicating data between cooperating processes: message passing and direct access to 
the memory in the remote process. MPI-1 provides a powerful and complete interface for the message-passing approach. The 
remote memory operations of MPI-2 provide a way to directly access memory in another process, through operations that put 
data to, get data from, or update data at a remote process. Unlike message passing, the program running on the remote process 
does not need to call any routines to match the put or get operations. Thus, remote memory operations can offer both greater 
performance (when there is sufficient support in hardware for the operations) and greater functionality, simplifying some kinds 
of parallel programming.

The MPI-2 remote memory operations grew out of several approaches for parallel programming based on remote memory 
operations,1 just as MPI-1 standardized message passing by drawing on experiences with research systems and commercial 
message-passing systems,

Perhaps the most important of the research systems is bulk synchronous parallel, often abbreviated as BSP [39, 76, 92]. In the 
BSP style of parallel programming, programs are divided into sections, one where there is no communication between the 
processes, and one where there is only communication; the sections are separated by barriers. Communication of data between 
processes is handled by remote memory operations that put or get data, and these operations are all nonblocking (in the MPI 
sense). Completion of these operations is handled by a single communication barrier, hence the term "bulk synchronous."

Several commercial systems have been delivered with remote memory operations. The most significant is undoubtedly the 
Cray shmem [18] interface introduced with the Cray T3D. There were earlier commercial remote memory programming 
systems, for example, CMMD Version 3 on the Thinking Machines CM-5. IBM has introduced LAPI [75] for distributed-
memory systems such as the IBM SP. All of these systems have demonstrated that a remote memory programming model both 
can be expressive in terms of supporting complex parallel applications and can offer high performance, particularly when 
supported by fast hardware such as on the Cray T3D and T3E.

A related development has been in the use of remote memory operations to provide faster (particularly lower latency) "user-
space" networking as an alternative to TCP/IP. A number of successful research systems, including U-Net [96], demon-

1 These are also called one-sided operations because only one of the two processes is directly involved, from the programmer's 
standpoint, in the operation.
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strated the potential of this approach. Recently, an industry group has proposed VIA [95], or Virtual Interface Architecture, as 
an industry standard model for network interfaces that directly support remote memory operations.

All of the above contributed to the design of the MPI-2 remote memory programming model. In addition, the MPI-2 design 
makes the remote memory operations have the same "look and feel" as other MPI routines, including permitting the use of 
datatypes and allowing collective operations on any communicator, not just MPI_COMM_WORLD (which is a restriction of 
many of the prior systems). Finally, the MPI model is designed to be implementable on a wide range of systems, from 
workstation networks with no special hardware for remote memory operations to tightly coupled parallel computers with fast, 
fully coherent shared-memory hardware.

The MPI-2 remote memory operations must be distinguished from the shared-memory programming model. In the usual shared-
memory model, there is a single address space, shared by multiple threads of execution. References to memory, regardless of 
location, are accomplished simply by referencing variables. A major advantage of this model is that programs can be written by 
using familiar variable reference and assignment statements; new syntax or routines are not required. However, the model has 
several disadvantages. The most obvious is that supporting this model efficiently requires special hardware. A less obvious 
problem is that simultaneous access by several different threads to the same memory location can lead to hard-to-find errors; 
correcting this problem requires providing a way to control or synchronize access to shared data as we saw in Section 4.3. The 
approach used in shared-memory models uses some combination of sophisticated compilers and special routines to provide, for 
example, locks to synchronize access to shared variables.



This chapter introduces the MPI remote memory model. Rather than covering all of the functions in each category, as the MPI-
2 Standard [58] and the MPI Complete Reference [27] do, this chapter introduces functions as they are needed to illustrate their 
use. Specifically, we cover here the routines used to initiate remote memory operations and the simplest of the three methods 
provided by MPI for completing remote memory operations.

The following chapter continues the discussion of more general models of memory access and completes the coverage of the 
remote memory access routines.
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5.1—
Introduction

The message-passing model provides a cooperative way of moving data from one process to another: one process performs a 
send, and the destination process performs a receive. Only when the receive completes does the destination process have the 
data. This approach has a number of important properties. One is that changes in the memory of the receiver can happen only 
when the receiver allows them (by calling one of the MPI receive routines) and only in the memory locations that are specified 
as the receive buffer in those routines. Thus, it is clear from the program both what memory locations can be modified by 
another process (often called a remote process) and at what points in the program this can happen. These properties can aid in 
ensuring that the program is correct and in debugging it if it isn't.

The requirement of message passing that data transfers be cooperative has its disadvantages as well. There are two main areas 
of limitation: expressiveness (the ease with which programs may be written) and performance.

While in principle any parallel program can be written using message passing, in practice some programs are much harder to 
write than others. The requirement that every send be matched with a receive demands careful planning and can add 
complexity to a code. It is difficult to provide with message passing a way for one process to access or modify data held by 
another process, since both processes must cooperate to perform the operation. An example is a single counter (for example, a 
counter of the number of errors seen) that is shared by many processes. How can a process add a value to this counter? With 
message passing, it must send a message to the process that ''owns" the counter, asking that process to update the value. That 
process in turn must check for these messages. This greatly complicates the program, particularly if the MPI implementation is 
single threaded or does not want to use a thread solely to update this value (as in Section 8.3).

In addition, as we saw in Section 4.2, the cooperative nature of message passing introduces an order into the delivery of data; in 
some cases, the order isn't important to the application. Enforcing the order has performance costs, in terms of both the effect 
described in Section 4.2 and of extra overhead in implementing message matching.

MPI-2 introduces a new approach for moving data from one process to another that eliminates the drawbacks of message 
passing while retaining many of the advantages. This approach, called remote memory access (RMA), provides a way to move 
data from one process to another with a single routine that specifies both where the data is coming from and where it is going 
to. An RMA operation is a
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kind of combined send and receive; the calling process specifies both the send buffer and the receive buffer. Because a single 
call is used, these routines are also called one-sided communication routines.

Using the RMA approach involves three main steps:

1. Define the memory of the process that can be used for RMA operations, preserving the advantage of limiting what memory 
can be modified by a remote process. This is accomplished by defining a memory window and creating a new MPI object, the 
MPI window object MPI_Win. See Section 5.3 for details.

2. Specify the data to be moved and where to move it. The MPI routines that may be used are MPI_Put, MPI-Get, and 
MPI_Accumulate. See Section 5.4 for details.

3. Specify how we know that the data is available. In other words, what is the RMA equivalent to the completion of a receive? 
There are three different ways to accomplish this in MPI. The simplest, which corresponds to the simplest BSP and shmem 
models, is described in Section 5.5 and is the only method described in this chapter. The others are described in the next 
chapter.



Section 5.2 contrasts message passing with remote memory access. The MPI functions introduced are described in more detail 
in the following three sections (Sections 5.3 through 5.5). Section 5.6 contains two examples: an alternative to the Poisson 
problem described in Chapter 4 of Using MPI [32], and a dense matrix-vector multiply. The chapter closes with some 
discussion of memory coherence and RMA performance issues.

5.2—
Contrast with Message Passing

Before going into the details of remote memory operations, we begin with a simple RMA example and compare it with point-to-
point message passing. In this example, unlike the example for computing π in Section 2.3, we will concentrate on the RMA 
routines most closely related to MPI_Send and MPI_Recv. This example emphasizes the similarities between RMA and 
message-passing operations. Later we will see how to use RMA in situations where a message-passing solution is much more 
difficult.

To see the similarities between RMA and message passing, let us consider sending data from one process to another. 
Specifically, process 0 is sending n ints in outbuf to the variable inbuf in process 1.
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/* Create communicator for separate context for processes
   0 and 1 */
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_split( MPI_COMM_WORLD, rank <= 1, rank, &comm );

/* Only processes 0 and 1 execute the rest of this */
if (rank > 1) return;

/* Process 0 sends and Process 1 receives */
if (rank == 0) {
    MPI_Isend( outbuf, n, MPI_INT, 1, 0, comm, &request );
}
else if (rank == 1) {
    MPI_Irecv( inbuf, n, MPI_INT, 0, 0, comm, &request );
}
/* Allow other operations to proceed (communication or
   computation) */
. . .
/* Complete the operation */
MPI_Wait( &request, &status );

/* Free communicator */
MPI_Comm_free( &comm );

Figure 5.1
Example code for sending data from one process to another with nonblocking message passing

Figures 5.1 and 5.2 show the correspondence between the message-passing operations and remote memory operations. For 
example, the memory window object serves a role similar to that of a communicator in message passing. MPI_Put, like 
MPI_Isend, initiates a data transfer. MPI_Win_fence completes the data transfer initiated by MPI_Put, much as 
MPI_Wait completes the transfer initiated by MPI_Isend.

These figures also show some of the differences. Note that this example uses no remote memory operation corresponding to 
MPI_Irecv; instead, the destination of the data is specified as arguments to the window creation on process 1. There is also 
an MPI_Win_fence call before the MPI_Put call. These differences will be covered below. An alternative version of Figure 
5.2 is possible that uses MPI_Get on process 1 instead of MPI_Put on process 0. In this case, there is an RMA routine 
corresponding to MPI_Irecv, but not to MPI_Isend.
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/* Create memory window for separate context for processes
   0 and 1 */
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_split( MPI_COMM_WORLD, rank <= 1, rank, &comm );
if (rank == 0) {
    MPI_Win_create( NULL, 0, sizeof(int),
                    MPI_INFO_NULL, comm, &win );
}
else if (rank == 1 ) {
    MPI_Win_create( inbuf, n * sizeof(int), sizeof(int),
                    MPI_INFO_NULL, comm, &win );
}
/* Only processes 0 and 1 execute the rest of this */
if (rank > 1) return;

/* Process 0 puts into process 1 */
MPI_Win_fence( 0, win );
if (rank == 0)
    MPI_Put( outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win );

/* Allow other operations to proceed (communication or
   computation) */
. . .

/* Complete the operation */
MPI_Win_fence( 0, win );

/* Free the window */
MPI_Win_free( &win );

Figure 5.2
Example code for sending data from one process to another with remote memory operations
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A more subtle issue that has been passed over here has to do with when a program may access variables that are also used in 
RMA operations. With message passing, the rules are (relatively) natural and easy to follow: between the beginning of the 
message-passing operation and the end of the operation, whether it is a send or a receive, the buffer for the data should not be 
accessed.2 With shared memory and RMA, the rules are more complex because of the one-sided nature of the operation: when 
can data in the process that is not directly involved (via an MPI_Put or MPI_Get call) in the data transfer be used? While the 
general rules are somewhat complex, there are simple rules that will ensure a correct program; some of these are presented in 
Section 5.7.

This example makes remote memory operations look more complex than message passing. The reason is that the operation is 
"sending data from one process to another." Message passing is very natural for this operation, whereas RMA is not the most 
natural approach, although it can be implemented with RMA. We will see later other operations that are more natural with 
RMA.

In addition, this example has used a collective routine (MPI_Win_fence) to complete the remote memory operations. This 
provides a very simple RMA model, but it is not the most general. A method that does not involve collective completion 
operations is described in the next chapter.

5.3—
Memory Windows



The first step in using RMA is to define the memory that will be available for remote memory operations. The memory in a 
process that can be accessed by another process through the use of the RMA routines is called a memory window into the 
process. It is called a window because MPI limits what part of a process's memory is accessible to other processes. That is, just 
as MPI_Recv limits where a message can be received (in the buffer specified by arguments to MPI_Recv), a memory 
window limits where data may be written (with MPI_Put or MPI_Accumulate) or read from (with MPI_Get). A 
memory window is local memory (memory in the calling MPI process) that is made available to RMA operations. It is a 
contiguous section of memory, described as base address plus size in bytes.

The routine MPI_Win_create is used to tell MPI what memory windows are available. Following the analogy with the 
message-passing operations, in addition

2 This applies even to reading from a buffer used for sends, even though many MPI programmers are unaware of this 
requirement in the MPI Standard (see Section 3.7.2, Communication Initiation, in [56]).
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to specifying where data may be stored or read, we need also specify which MPI processes have access to that data. Since one 
of the reasons for using the RMA interface is to allow several different processes to access (read, set, or update) a memory 
location, the most natural way to describe the processes that can access a memory window is with an MPI group.

Since an MPI group is involved, it is not surprising that the MPI group used is the group of an MPI (intra)communicator. Since 
a communicator is involved, it isn't surprising that the operation to create the memory windows is collective over the 
communicator.

This is enough to define the memory that forms the local memory window and the processes that can access that memory 
window (also called window or local window). Two additional arguments must be provided. The first is the displacement unit. 
This is used to simplify accesses with a single datatype, particularly in heterogeneous applications. Typical values are either 1 
(all accesses are in terms of byte offsets) or the size of a data item (e.g., sizeof(double)). Sections 5.4.1 through 5.4.3 
covers this argument in more detail.

The second required argument is an info argument that can be used to improve performance. This is covered in more detail in 
Section 5.8. It is always correct to use MPI_INFO_NULL for this argument.

The value returned is called an MPI window object, which represents the collection of windows defined by the collective 
MPI_Win_create call. This window object must be passed to all RMA routines that perform RMA operations. The window 
object serves the same role for RMA operations that the MPI communicator does for message-passing operations. The bindings 
for MPI_Win_create are shown in Tables 5.1, 5.2, and 5.3.

A Note on Terminology

A window refers to a region of memory within a single process. The output MPI_Win object from a MPI_Win_create is 
called a "window object" and describes the collection of windows that are the input to the MPI_Win_create call. It might 
have been easier if the individual regions of memory were called something like facets or panes (as in window panes), but that 
is not what was chosen in the MPI Standard. Instead, the term "window object" is always used for the object returned by a call 
to MPI_Win_create, and the term "window" for the local memory region.

When a window object is no longer needed, it should be freed with a call to MPI_Win_free. This is a collective call; all of 
the processes that formed the original window must call MPI_Win_free collectively. MPI_Win_free should be called
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Table 5.1
C bindings for memory window routines

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
              MPI_Comm comm, MPI_Win *win)

int MPI_Win_free(MPI_Win *win)

Table 5.2
Fortran bindings for memory window routines

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win, ierror)
           <type> base(*)
           integer(kind=MPI_ADDRESS_KIND) size
           integer disp_unit, info, comm, win, ierror

MPI_WIN_FREE(win, ierror)
           integer win, ierror

Table 5.3
C++ bindings for memory window routines

MPI::Win MPI::Win::Create(const void* base, Aint size, int disp_unit,
             const Info& info, const Intracomm& comm)

void MPI::Win::Free()

only when all RMA operations are complete; the completion of RMA operations is described in Section 5.5 and in Sections 6.2 
and 6.11. As with the other routines that free an MPI opaque object, the address of the object is passed; on return, it will be set 
to MPI_WIN_NULL.

5.3.1—
Hints on Choosing Window Parameters

This section covers some suggestions for picking the parameters for MPI_Win_create. Choices related to performance are 
covered separately in Section 5.8. The use of the displacement unit for heterogeneous RMA communication is covered in 
Section 5.4.1.

Local Window and Displacement Unit

Often, the local window should be chosen as a single array, declared or allocated in the calling program. The size of
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the window should be the size of the array. If the local window is a simple type, such as double in C or 
DOUBLE PRECISION in Fortran, then the displacement should be the size of that type. Otherwise, a displacement of one 
should be used.

Info

The info argument is used only to provide performance-tuning options. A value of MPI_INFO_NULL is always valid. See 
Section 5.8.1 for an info value that can be used when only MPI_Win_fence is used to complete RMA operations.

5.3.2—
Relationship to Other Approaches



Other (non-MPI) RMA approaches use a function similar to MPI_Win_create to make a local memory area available for 
RMA operations. In BSP [39], the routine BSP_push_reg (reg is short for "register") is similar to MPI_Win_create 
called over MPI_COMM_WORLD, and BSP_pop_reg is similar to MPI_Win_free.

In Cray shmem [18], the single program model is exploited; variables that are statically declared (e.g., most variables in 
Fortran) are guaranteed (by the Cray compiler and the loader) to have the same local address. Thus, a program can use the 
address of a local variable as the address of that same variable (in the single program model) in another process. In this case, no 
special routines are needed to indicate what local memory is available for RMA operations; all memory is "preregistered." 
Accessing dynamically allocated memory requires communicating the addresses between the processes; in this case, the 
programmer is responsible for keeping track of the location of a remote memory area (remote memory window in MPI terms). 
In MPI, this is handled for the programmer by MPI through MPI_Win_create.

In IBM's LAPI [75], memory is allocated specifically for RMA operations. This roughly combines MPI_Alloc_mem (see 
Section 6.3) with MPI_Win_create.

5.4—
Moving Data

Now that we've identified the memory that can participate in remote memory operations, we need to specify how to move data 
between two processes. MPI provides three routines that specify what data to move: MPI_Put to put data into a remote 
memory window, MPI_Get to get data from a remote memory window, and MPI_Accumulate to update data in a remote 
window. MPI_Put is like "store to remote memory" or "write to remote memory."

The specification of the data to put is identical to that in an MPI_Send: buffer address, count, and datatype. The data can be 
anywhere in memory; it does not
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Figure 5.3
Windows, put, and get. Process 0 gets data from A on process 1. Process 1 puts data
into B on process 0. The window object is made up of the array B on process 0 and

the array A on process 1.

need to be in a window. This is called the origin address; origin here refers to the process making the call, not the source of the 
data.



The specification of where to put the data on the remote node is slightly different from that of where the data comes from. The 
destination of the data is always relative to the memory window on the destination process. Thus, instead of a buffer address, 
the location to put the data is specified with the triple of offset in window, count, and datatype. The offset argument is 
combined with the displacement unit that was specified when the window was created (the disp_unit parameter to 
MPI_Win_create) to determine exactly where the data will be placed (see Section 5.4.1). The remote process is specified 
with a relative rank in the window object, just as the destination of an MPI_Send is specified with a relative rank in a 
communicator. The relationship between window objects, local windows, and RMA operations is shown in Figure 5.3. A more 
detailed diagram of an MPI_Put operation is shown in Figure 5.4.

We've said that MPI_Put is like a combined send and receive. This isn't quite correct. It is more like a combined nonblocking 
send and nonblocking receive. That is, MPI_Put is a nonblocking communication routine. There is no blocking version
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Figure 5.4
Illustration of an MPI put operation. Note that the data sent is not in the

local window.

of MPI_Put. This is a deliberate choice in MPI, and it is worth spending some time to explain why the RMA communication 
routines are nonblocking.

One of the benefits of nonblocking RMA operations is that they allow many data motion operations to be completed with a 
single operation (the MPI_Win_fence that we've seen in the examples in Section 5.2). One of the contributions to the latency 
of point-to-point message passing is the need to complete each message-passing operation separately (even when using 
multiple completion operations, such as MPI_Waitall, the MPI implementation must be prepared to complete each 
individually with MPI_Wait). Separating the initiation of data motion from the completion of that data motion is important in 
achieving high performance, as we have seen in Chapter 4. With the MPI RMA operations, any number of MPI_Put 
operations can be completed efficiently by a single MPI_Win_fence call.

Section 6.2.1 shows how to implement a kind of blocking put operation. There could also be a buffered put (the analogue of 
MPI_Bsend); again, this is easy for an application programmer to do and isn't needed. The BSP bsp_put routine is in fact a 
buffered put; the BSP counterpart to MPI_Put is BSP_hpput (hp for "high performance"). The Cray shmemput is 
nonblocking in the same way MPI_Put is.

A counterpart to MPI_Put is the routine MPI_Get, which gets data from the remote process and returns that data to the 
calling process. This takes the same
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Table 5.4
C bindings for RMA put and get routines

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
              int target_rank, MPI_Aint target_disp, int target_count,
              MPI_Datatype target_datatype, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
              int target_rank, MPI_Aint target_disp, int target_count,
              MPI_Datatype target_datatype, MPI_Win win)

Table 5.5
Fortran bindings for RMA put and get routines

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
             target_count, target_datatype, win, ierror)
             <type> origin_addr(*)
             integer(kind=MPI_ADDRESS_KIND) target_disp
             integer origin_count, origin_datatype, target_rank, target_count,
                  target_datatype, win, ierror

MPI_GET(origin_addr, origin_count, origin_datatype,target_rank, target_disp,
             target_count, target_datatype, win, ierror)
             <type> origin_addr(*)
             integer(kind=MPI_ADDRESS_KIND) target_disp
             integer origin_count, origin_datatype, target_rank, target_count,
                  target_datatype, win, ierror

Table 5.6
C++ bindings for RMA put and get routines

void MPI::Win::Put(const void* origin_addr, int origin_count,
              const Datatype& origin_datatype, int target_rank, Aint target_disp,
              int target_count, const Datatype& target_datatype) const

void MPI::Win::Get(void *origin_addr, int
              origin_count, const MPI::Datatype& origin_datatype,
              int target_rank, MPI::Aint target_disp, int target_count,
              const MPI::Datatype& target_datatype) const
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arguments as MPI_Put, but the data moves in the opposite direction. The bindings for MPI_Put and MPI_Get are shown in 
Tables 5.4, 5.5, and 5.6.

5.4.1—
Reasons for Using Displacement Units

We will see that there are two reasons why MPI memory windows have a displacement unit. (rather than defining everything in 
terms of byte displacements). One reason is clarity in programming (byte offsets can be confusing), and the second is 
correctness for heterogeneous systems. To understand both of these, consider the following task: put four ints into a remote 
window, starting at the 11th int (10th numbering from zero). Let the remote window be created on process three with this 
code:

int A[20];
disp_unit = 1;  /* displacements in bytes */
MPI_Win_create( A, 20*sizeof(int), disp_unit, . . ., &win );



Then, to store into A[10] through A[13], process 1 would call

target_offset = 10 * sizeof(int);
MPI_Put ( B, 4, MPI_INT, 3, target_offset, 4, MPI_INT, win );

Because process 3 specified a displacement unit in bytes (disp_unit = 1), the target_offset used by process 1 must 
be computed in bytes.

If, instead, process 3 creates the window explicitly as an array of integers with

int A[20];
disp_unit = sizeof (int) ; /* displacements in ints */
MPI_Win_create( A, 20*sizeof(int), disp_unit, . . ., &win );

then process 1 can put data into A[10] through A[13] with

target_offset = 10;
MPI_Put ( B, 4, MPI_INT, 3, target_offset, 4, MPI_INT, win );

Certainly the second approach is more convenient for RMA communication operations. However, it is essential when the MPI 
processes use different data representations, such as in a heterogeneous cluster of workstations. For example, in the above case, 
let us assume that process 1 uses 4-byte integers and process 3 uses 8-byte integers. In the first case, the use of a byte offset 
displacement unit leads to the wrong action: process 1 is specifying a byte offset of 10*sizeof(int), but the size of an 
int on process 1 is 4 bytes, leading to an offset of 40 bytes. But on
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Figure 5.5
Data size offset computation

process 3, with its 8-byte integers, this refers to A[5] (5*sizeof(int)). Using displacement units in terms of the local 
type at the time the window object is created ensures that programs will be portable to heterogeneous environments. Figure 5.5 
shows how an MPI_Put operation can move data to the correct location, even when the two processes have different data 
lengths, when the displacement unit is set to the size of the data item (an integer in this case) rather than a single byte.

Given this, why ever use a displacement unit of 1 (byte displacement)? One case is with a window that contains several 
different data types. For example, a sparse matrix is often represented as three separate arrays: two of type integer and one of 
type double precision. If these arrays were in a single window (for example, they were allocated in a single Fortran common 
block), it would be easiest to use byte displacements to access the individual elements.3 However, if byte displacements are 
used, the application is not portable to heterogeneous systems where the basic datatypes have different lengths.

5.4.2—
Cautions in Using Displacement Units

Note that the location in a remote memory window that is accessed by an RMA operation depends on combining the offset 
specified on the origin process with the displacement unit that was specified on the target process. This is a potential source of 
error: the displacement unit used is not the one specified in the MPI_Win_create call on the process that is originating the 
RMA (e.g., MPI_Put) call.



3 We say easiest because Fortran defines the ratio of sizes of numeric types; thus a displacement size of type integer could also 
be used, even with the double-precision entries.
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Table 5.7
Fortran binding for finding the size of a variable

MPI_SIZEOF(x,size,ierror)
            <type> x
            integer size, ierror

To avoid potential problems in understanding RMA code, the displacement units should either be one for all processes in the 
window or the size of the same basic type.

5.4.3—
Displacement Sizes in Fortran

Fortran has no counterpart to the C sizeof operator. In order to get the size of a datatype to be used in computing a 
displacement, the function MPI_Type_size may be used with MPI predefined datatypes such as MPI_REAL and 
MPI_INTEGER. In Fortran 90, the MPI routine MPI_Sizeof can also be used. This routine takes as input a variable of any 
numeric intrinsic type and returns the size in bytes of that type. The variable may be a scalar or an array; the size returned is the 
size of a single element of that type. This routine may be used only when using the mpi module. The binding for 
MPI_Sizeof is shown in Table 5.7.

5.5—
Completing Data Transfers

MPI provides many different ways to complete data transfers. This section discusses a simple barrier-like method. Other 
methods are described in Chapter 6.

In many computations, data exchange happens in phases; computation occurs between communication phases. In the MPI 
RMA model described in this chapter, these phases are separated with MPI_Win_fence. MPI_Win_fence is collective 
over all processes in the group associated with the window object passed to MPI_Win_fence. MPI_Win_fence completes 
any RMA operations that started since the last call to MPI_Win_fence and ensures that any local stores to the memory 
window will be visible to RMA operations (i.e., code like a(10) = 3 where a is part of the local window) before any RMA 
operations that follow the MPI_Win_fence call. A good rule for using MPI_Win_fence is to ensure that between any pair 
of successive MPI_Win_fence calls, there may be either local stores (assignments to variables in the process) to the (local) 
memory window or RMA put or accumulate operations (or neither), but not both local stores and RMA put or accumulate 
operations. If
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Table 5.8
C binding for window fence

int MPI_Win_fence(int assert, MPI_Win win)

Table 5.9
Fortran binding for window fence

MPI_WIN_FENCE(assert, win, ierror)
           integer assert, win, ierror

Table 5.10
C++ binding for window fence

void MPI::Win::Fence(int assert) const



there are no RMA put operations between a pair of MPI_Win_fence calls, there may be both load and RMA get operations 
on the memory window.

Programming remote memory operations using MPI_Win_fence is much like the BSP model or SGI/Cray shmem 
programming model. It is the least like shared memory. It is most suitable for ''data parallel" applications, where each process 
is performing operations on a shared, distributed data structure.

MPI_Win_fence has an additional argument (beyond the window), named assert, that provides information about the 
fence that can be used by some MPI implementations to provide better performance. A value of zero for the assert argument 
is always valid. Other values are described in Section 5.8.2. The bindings for MPI_Win_fence are shown in Tables 5.8, 5.9, 
and 5.10.

One common use of MPI_Win_fence is to alternate between RMA accesses to a memory window and accesses by local 
loads and stores from the local process. When used this way, MPI_Win_fence can be thought of a "toggling" between the 
two kinds of accesses. However, MPI_Win_fence is more general. MPI_Win_fence separates RMA accesses (particularly 
MPI_Put and MPI_Accumulate) from non-RMA accesses that store data into any local window. The assert argument 
can be used to indicate exactly what kind of operations MPI_Win_fence is separating; this is covered in detail in Section 
5.8.2.

The code fragment in Figure 5.6 shows an example of using MPI_Win_fence to complete RMA operations and to separate 
RMA operations from local loads and stores. Note that in this example, MPI_Win_fence is not a toggle between RMA and 
local accesses. To be more specific, when using MPI_Win_fence for RMA
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synchronization, all RMA operations must be bracketed by MPI_Win_fence calls; an MPI_Win_fence is needed both to 
start and to complete any RMA operation.

5.6—
Examples of RMA Operations

In this section we present two examples that use RMA operations. The first is a ghost-cell update, similar to those used for 
finite difference, finite volume, and finite element computations. The second computes a matrix-vector product using a 
distributed dense matrix and vector.

5.6.1—
Mesh Ghost Cell Communication

This section provides an alternative approach to the Poisson problem, a simple partial differential equation, described in 
Section 4.1 of [32]. In that chapter, the problem is solved with a finite difference method, using MPI's point-to-point 
communication routines to communicate data between processes. The reader is referred to that section for details of the Poisson 
problem. We will briefly review the operations that are needed to implement a finite difference method on a mesh that is 
distributed among processes.

In solving partial differential equations, the solution often is approximated on a mesh of points that is distributed among the 
processes. In the simplest case, shown in Figure 5.7, the mesh is regular, and it is partitioned among the processes with a 
simple, one-dimensional decomposition. In more complex cases, the decomposition among processes can be multidimensional, 
and the grid itself can be irregular. We will start with the simple decomposition. To compute the discretization at every point 
on the part of the mesh that is local to the process, we need the value of the neighboring points; these are called the ghost cells 
or ghost points. An example is illustrated in Figure 5.8.

We will declare the local part of the distributed mesh with

double precision a(0:nx+1, s–1:e+1)



We let a(i,j) stand for a(xi,yj), where the coordinates of a mesh point are given by (xi,yj). As discussed in Using MPI [32], 
this follows the natural representation of a mesh but is different from the "matrix" interpretation of a two-dimensional array. 
See Appendix E in Using MPI for more details. The declaration of a represents a slice of the mesh, where each process has 
rows (that is, ranges of the mesh in the y-coordinate) s to e (for start to end), and there are nx columns (ranges of the mesh in 
the x-coordinate), plus a column for the boundary conditions on the left and right.
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MPI_Win_create( A, . . ., &win ) ;
MPI_Win_fence( 0, win ) ;
if (rank == 0) {
    /* Process 0 puts data into many local windows */
    MPI_Put( . . . , win ) ;
    MPI_Put( . . . , win ) ;
}
/* This fence completes the MPI_Put operations initiated
   by process 0 */
MPI_Win_fence( 0, win ) ;

/* All processes initiate access to some window to extract data */
MPI_Get( . . . , win ) ;
/* The following fence completes the MPI_Get operations */
MPI_Win_fence( 0, win ) ;

/* After the fence, processes can load and store
   into A, the local window */
A[rank] = 4;
printf( "A[%d] = %d\n", 0, A[0] ) ;
MPI_Win_fence( 0, win ) ;

/* We need a fence between stores and RMA operations */
MPI_Put( . . . , win ) ;
/* The following fence completes the preceding Put */
MPI_Win_fence( 0, win ) ;

Figure 5.6
An example using MPI_Win_fence to separate RMA operations from local load/stores and to
complete RMA operations
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Figure 5.7
1-D decomposition of the domain. Gray circles represent
boundary condition cells; black circles are cells interior
to the physical domain. A sample computational stencil

is shown.

Figure 5.8
The computational domain, with ghost points, for one of

the processes
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subroutine exchng1( a, nx, s, e, comm1d, &
                    bottom_nbr, top_nbr )
use mpi
integer nx, s, e
double precision a(0:nx+1,s-1:e+1)
integer comm1d, bottom_nbr, top_nbr
integer status_array(MPI_STATUS_SIZE,4), ierr, req(4)

call MPI_IRECV( &
     a(1,s-1), nx, MPI_DOUBLE_PRECISION, bottom_nbr, 0, &
     comm1d, req(1), ierr )
call MPI_ISEND( &
     a(1,e), nx, MPI_DOUBLE_PRECISION, top_nbr, 0, &
     comm1d, req(3), ierr )
call MPI_IRECV( &
     a(1,e+1), nx, MPI_DOUBLE_PRECISION, top_nbr, 1, &
     comm1d, req(2), ierr )
call MPI_ISEND( &
     a(1,s), nx, MPI_DOUBLE_PRECISION, bottom_nbr, 1, &
     comm1d, req(4), ierr )

call MPI_WAITALL( 4, req, status_array, ierr )
return
end

Figure 5.9
Code using point-to-point message passing to exchange ghost cell values

The algorithm for communicating the neighbor information to the ghost cells can be summarized as follows:

1. Initiate send a(*,e) in the local process to a(*,s-1) in the top neighbor.

2. Initiate send a(*,s) in the local process to a(*,e+1) in the bottom neighbor.



3. Complete all data transfers.

An implementation of this algorithm that uses point-to-point message passing is shown in Figure 5.9. To convert this to use 
remote memory operations, it is quite obvious that the pairs of MPI_Irecv and MPI_Isend can be combined into either 
MPI_Put or MPI_Get operations. The third step of the algorithm requires a simple MPI_Win_fence call, replacing the 
MPI_Waitall in Figure 5.9.
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To use the RMA routines, we must first define an MPI window object in which the data will be moved (with either MPI_Put 
or MPI_Get). The following code creates a window where each local window is the (local part of the) mesh, including the 
ghost cells:

integer sizedouble, ierr, win
double precision A(0:nx+1,s-1:e+1)

call MPI_TYPE_SIZE( MPI_DOUBLE_PRECISION, sizedouble, ierr )
call MPI_WIN_CREATE( A, (nx+2)*(e-s+3)*sizedouble, sizedouble, &
                     MPI_INFO_NULL, MPI_COMM_WORLD, win, ierr )

The code to use RMA to exchange ghost-cell values is shown in Figure 5.10. The displacements at the targets are offset by one; 
this is necessary to skip the first ghost cell on the left. It corresponds to a(0,s-1) and a(0,e+1) which is used to store the 
boundary conditions and does not need to be transferred (note that the point-to-point version in Figure 5.9 sent and received 
with a(1,*)). Note that we can store into A both with MPI_Put and read values from A; we don't need separate windows for 
the different parts of A. However, if we wanted to both store into A with statements such as A(i,j) = . . . and with MPI_Put, 
we must either separate the stores into the local window and the MPI_Put operations with a MPI_Win_fence or put the 
parts of A that we access with MPI_Put into separate MPI window objects.

The RMA code in Figure 5.10 is very similar to the point-to-point version in Figure 5.9. We have replaced two send-receive 
pairs with two MPI_Put operations, and we have replaced the MPI_Waitall on four requests with a simple 
MPI_Win_fence. The major difference is that there is an MPI_Win_fence at the beginning of the code to indicate that 
local stores to A must complete and that RMA operations can now take place.

Determining the Target Displacement

In the example above, the first MPI_Put call appears to take the leftmost edge of the mesh on the calling process and put it 
into the rightmost ghost edge of the destination (or target) process. But does it? In the example, the displacement for the target 
window (right_ghost_disp) is computed by using the local process's window. In other words, the code computes the 
location of the right ghost cells on process left_nbr using the calling process's parameters. As Figure 5.11 shows, this 
strategy can lead to errors if each process does not have an identically sized mesh. In our example, if the values of s and e are 
not the same on all processes, the wrong value of right_ghost_disp will be computed.
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subroutine exchng1( a, nx, s, e, win, &
                    bottom_nbr, top_nbr )
use mpi
integer nx, s, e
double precision a(0:nx+1,s-1:e+1)
integer win, bottom_nbr, top_nbr
integer ierr
integer(kind=MPI_ADDRESS_KIND) bottom_ghost_disp, top_ghost_disp

call MPI_WIN_FENCE( 0, win, ierr )
! Put bottom edge into bottom neighbor's top ghost cells
! See text about top_ghost_disp
top_ghost_disp = 1 + (nx+2)*(e-s+2)
call MPI_PUT( a(1,s), nx, MPI_DOUBLE_PRECISION, &
              bottom_nbr, top_ghost_disp, nx, &
              MPI_DOUBLE_PRECISION, win, ierr )



! Put top edge into top neighbor's bottom ghost cells
bottom_ghost_disp = 1
call MPI_PUT( a(1,e), nx, MPI_DOUBLE_PRECISION, &
              top_nbr, bottom_ghost_disp, nx, &
              MPI_DOUBLE_PRECISION, win, ierr )
call MPI_WIN_FENCE( 0, win, ierr )
return
end

Figure 5.10
Code using RMA to exchange ghost cell values

To obtain the correct target displacement for the ghost cells on the right edge of the neighbor's mesh, it may be necessary to 
communicate this information to the process that is performing the MPI_Put operation. The easiest way to do this is with 
point-to-point message passing: as part of the process of setting up the windows and preparing to communicate, every process 
sends to its right neighbor the value to use for the target displacement in the MPI_Put. This code is shown in Figure 5.12. The 
one in the expression for my_top_ghost_disp puts the displacement at the first ghost point in the mesh (skipping the mesh 
point representing the boundary).

An alternative approach is to communicate the mesh parameters s and e; then the appropriate displacements can be computed. 
We have shown the communication of the displacements to illustrate the general case and the care that must be taken when 
communicating data of type MPI_Aint or MPI_ADDRESS_KIND integers.
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Figure 5.11
Illustration of the different target displacements needed when each local

mesh is of a different size

integer sizedouble, ierr, win
integer my_top_ghost_disp
integer top_ghost_disp_int
integer (kind=MPI_ADDRESS_KIND) top_ghost_disp
double precision A(0:nx+1,s-1:e+1)

call MPI_TYPE_SIZE( MPI_DOUBLE_PRECISION, sizedouble, ierr )
call MPI_WIN_CREATE( A, (nx+2)*(e-s+3)*sizedouble, sizedouble, &
                     MPI_INFO_NULL, MPI_COMM_WORLD, win, ierr )
! Compute the displacement into my top ghost cells
my_top_ghost_disp = 1 + (nx+2)*(e-s+2)
call MPI_SEND( my_top_ghost_disp, 1, MPI_INTEGER, right_nbr, &
               0, MPI_COMM_WORLD, ierr )
call MPI_RECV( top_ghost_disp_int, 1, MPI_INTEGER, left_nbr, &



               0, MPI_COMM_WORLD, status, ierr )
! Since INTEGER may not be the same as an MPI_ADDRESS_KIND integer
top_ghost_disp = top_ghost_disp_int

Figure 5.12
Code to send to neighboring processes the displacement values to be used in MPI_Put operations
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Table 5.11
C binding for routine to return the MPI datatype corresponding to a Fortran integer with r digits and for the routine to return a 
datatype of a particular size

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

More on the Target Displacement

The type of the target displacement is INTEGER (kind=MPI_ADDRESS_KIND) in Fortran, MPI_Aint in C, and MPI::
Aint in C++. Unfortunately, no native MPI datatype corresponds to the type MPI_Aint or INTEGER 
(kind=MPI_ADDRESS_KIND). In many cases, as shown above, one can use an INTEGER in Fortran or an int or long in 
C and C++ to communicate target displacements between processes. Care must be taken, however, to pass the correct type of 
integer in the call to MPI_Put. This is especially important in Fortran when not using the MPI module, since type mismatches 
will not be caught by the compiler.

The following code shows how to create a datatype that may be used to send values of type 
INTEGER (kind=MPI_ADDRESS_KIND) for Fortran:

integer (kind=MPI_ADDRESS_KIND) sample
integer address_type, r, ierr

r = DIGITS(sample)
call MPI_TYPE_CREATE_F90_INTEGER( r, address_type, ierr )

The function DIGITS is a Fortran intrinsic function that provides the number of digits in a variable. The MPI routine 
MPI_Type_create_f90_integer returns the predefined MPI datatype that has the specified number of digits. Since this 
is a predefined MPI datatype, you must not free the datatype nor commit it with MPI_Type_commit. The bindings for 
MPI_Type_create_f90_integer are shown in Tables 5.11, 5.12, and 5.13.

In C and C++, MPI_Type_match_size can be used to return a predefined MPI datatype with a specific size. This function 
takes two input arguments: the typeclass of the datatype, which may have values 
MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER, and MPI_TYPECLASS_COMPLEX, and the size (in bytes) of 
the desired variable. The output value is a reference to a predefined MPI datatype. This datatype must not be freed. For 
example, to find an MPI datatype in C++ that corresponds to MPI::Aint, the following code may be used:
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Table 5.12
Fortran binding for routine to return the MPI datatype corresponding to a Fortran integer with r digits and for the routine to 
return a datatype of a particular size

MPI_TYPE_CREATE_F90_INTEGER(r, newtype, ierror)
           integer r, newtype, ierror

MPI_TYPE_MATCH_SIZE(typeclass, size, type, ierror)
          integer typeclass, size, type, ierror



Table 5.13
C++ binding for routine to return the MPI datatype corresponding to a Fortran integer with r digits and to return a datatype of 
a particular size

MPI::Datatype MPI::Datatype::Create_f90_integer(int r)

MPI::Datatype MPI::Datatype::Match_size(int typeclass, int size)

newtype = MPI::Datatype::Match_size( MPI::TYPECLASS_INTEGER,
                                     sizeof(MPI::Aint )

In a heterogeneous environment, neither MPI_Type_create_f90_integer nor MPI_Type_match_size should be 
used because systems of different type may return different MPI datatypes. In that case, your best bet is to find an integer type 
whose size is at least as large as as the size of char * and use that integer type when sending displacements. Alternatively, if 
the C or C++ implementation supports the long long type, you can use that, taking advantage of the rule in C that sizeof
(long long) is at least as large as the size of any other integer type, and is almost always large enough to hold a pointer. 
The MPI datatype that corresponds with long long is MPI_LONG_LONG_INT4 (in C++, MPI:LONG_LONG). Make sure 
that you send a variable of the correct type. MPI_LONG_LONG_INT should not be used to send data declared as MPI_Aint 
because long long may be longer than an MPI_Aint.

An Alternative to Sending Displacements

In the example above, we had to send the displacement value needed for the MPI_Put operation for the ghost cells on the top 
edge because the displacement needed at the origin process (the process calling MPI_Put), in the general case, might not be 
easy to calculate. There is

4 MPI_LONG_LONG is used in [79] but is not in the Standard, except in the I/O chapter where the external32 format is being 
defined. MPI implementations are likely to accept both, butMPI_LONG_LONG_INT is a more portable choice, because that 
MPI datatype is part of MPI-1.
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subroutine exchng1( a, nx, s, e, win, &
                    bottom_nbr, top_nbr )
use mpi
integer nx, s, e
double precision a(0:nx+1,s-1:e+1)
integer win, bottom_nbr, top_nbr
integer ierr

call MPI_WIN_FENCE( 0, win, ierr )
! Get top edge from top neighbor's first column
call MPI_GET( a(1,e+1), nx, MPI_DOUBLE_PRECISION, &
              top_nbr, nx + 1, nx, MPI_DOUBLE_PRECISION, win, ierr )
! Put bottom edge into bottom neighbor's ghost cells
call MPI_PUT( a(1,e), nx, MPI_DOUBLE_PRECISION, &
              bottom_nbr, 1, nx, MPI_DOUBLE_PRECISION, win, ierr )
call MPI_WIN_FENCE( 0, win, ierr )

return
end

Figure 5.13
Alternative code for exchanging ghost cells that mixes puts and gets

an alternative to this approach. Instead of putting data into ghost cells only on remote processes, we can put data into the ghost 
cells of the process on the top, starting at a displacement of one, and we can get the ghost cells for our part of the grid on the 
bottom edge by getting grid data from the first column of the process on the bottom. That is, for the ghost values, we can put 
into the bottommost row (displacement of one), and for the top ghost cells, we get from the first row (displacement of (nx+2)
+1 double-precision values). The routine that we use to get the data is MPI_Get, and the code for this is shown in Figure 5.13.



Note that we can use both MPI_Put and MPI_Get operations on the window. We can do this because the memory locations 
being accessed as targets of the MPI_Put and MPI_Get operations do not overlap (see Section 5.7.3 and Section 4.7 of [27]). 
Also note that there is no explicit reference to the left_nbr in the above code: the "get from right neighbor" replaces the 
"put to left neighbor."

Playing with the Displacement Unit

In our example, we used a displacement unit of sizedouble, the number of bytes in a DOUBLE PRECISION data item. This is 
the most obvious choice, but there are others. One choice is to make the dis-
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placement unit the size of an entire row5 of A, rather than a single element of A. If the window is defined with a displacement 
unit of (nx+2)*sizedouble, then the offset that is used in MPI_Put is just the row number. In other words, instead of 
(nx+2)*(m+1), we can use simply m+1. If we do this, however, we must send an extra element, not just the interior part (e.
g., we must send nx+1 values starting from a(0,m) rather than nx values starting from a(1,m). Even the need to send nx+1 
elements instead of nx elements can be avoided by a careful definition of the local window; we leave that as an exercise for the 
reader.

Using Datatypes

The simple one-dimensional decomposition is not scalable to a large number of processes. In that case, it is important to use a 
higher-dimensional decomposition. In the case of our two-dimensional mesh, we might declare the local mesh as

double precision a(sx-1:ex+1,sy-1:sy+1)

This includes ghost cells on all four sides. When sending the top and bottom row of ghost cells, we can use essentially the same 
code as before. However, for the left and right edges, the data is not contiguous in memory. This is a perfect place to use MPI 
datatypes, specifically the MPI_Type_vector routine to construct a datatype for columns of the local mesh. The code to 
construct the window object and the datatypes for the columns is shown in Figures 5.14 and 5.15. Just as in the previous cases, 
we also need to send the offsets to be used as the target displacements and the strides needed for the target datatypes (if every 
local mesh has exactly the same size, we can dispense with this step; we include it to show what is needed in the general case).

With the window object and datatype for a row defined, we can now write the code to fill the ghost cells on all four sides (this 
is assuming a five-point stencil). The code is shown in Figure 5.16. In a Fortran 90 environment, the variables describing the 
displacements and datatypes to use for the neighbors could be placed in a derived type, much as a C programmer would put 
them into a structure.

Performance Issues

Using MPI datatypes is certainly the clearest and simplest approach and offers the possibility of good performance. In practice, 
unfortunately, many MPI implementations do not provide high performance when using derived

5 Recall that we have defined a row of the array a as a row of the mesh, that is, the elements corresponding to constant y value. 
Readers who are used to the matrix interpretation of two-dimensional arrays are reminded that the jth row of the mesh, 
corresponding to yj, is a(:,j), which in the matrix interpretation of a, is a column. We use the mesh interpretation because no 
matrices are involved in our example.
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integer win, sizedouble, ierr
integer (kind=MPI_ADDRESS_KIND) right_ghost_disp, &
        left_ghost_disp, top_ghost_disp
integer my_right_ghost_disp, my_left_ghost_disp, &
        my_top_ghost_disp, right_ghost_disp_int, &
        left_ghost_disp_int, top_ghost_disp_int
double precision a(sx-1:ex+1,sy-1:ey+1)

! nx is the number of (non-ghost) values in x, ny in y
nx = ex - sx + 1
ny = ey - sy + 1
call MPI_TYPE_SIZE( MPI_DOUBLE_PRECISION, sizedouble, ierr )
call MPI_WIN_CREATE( a, (ex-sx+3)*(ey-sy+3)*sizedouble, &
                     sizedouble, MPI_INFO_NULL, MPI_COMM_WORLD, &
                     win, ierr )
! Exchange information on the offsets
! Compute the displacement into my right ghost cells
my_right_ghost_disp = 2*(nx+2)-1
call MPI_SEND( my_right_ghost_disp, 1, MPI_INTEGER, right_nbr, &
               0, MPI_COMM_WORLD, ierr )
call MPI_RECV( right_ghost_disp_int, 1, MPI_INTEGER, left_nbr, &
               0, MPI_COMM_WORLD, status, ierr )
! Compute the displacement into my top ghost cells
my_top_ghost_disp = (nx + 2)*(ny + 1) + 1
call MPI_SEND( my_top_ghost_disp, 1, MPI_INTEGER, top_nbr, &
               0, MPI_COMM_WORLD, ierr )
call MPI_RECV( top_ghost_disp_int, 1, MPI_INTEGER, bottom_nbr, &
               0, MPI_COMM_WORLD, status, ierr )
! Compute the displacement into my left ghost cells
my_left_ghost_disp = nx + 2
call MPI_SEND( my_left_ghost_disp, 1, MPI_INTEGER, left_nbr, &
               0, MPI_COMM_WORLD, ierr )
call MPI_RECV( left_ghost_disp_int, 1, MPI_INTEGER, right_nbr, &
               0, MPI_COMM_WORLD, status, ierr )
! Just in case INTEGER is not the same as MPI_ADDRESS_KIND integer
right_ghost_disp  = right_ghost_disp_int
top_ghost_disp    = top_ghost_disp_int
left_ghost_disp   = left_ghost_disp_int

Figure 5.14
Code to exchange displacement values in preparation for using MPI_Put in the example in Figure 5.16
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integer coltype, left_coltype, right_coltype

! Vector type used on origin
call MPI_TYPE_VECTOR( 1, ny, nx+2, MPI_DOUBLE_PRECISION, &
                      coltype, ierr )
call MPI_TYPE_COMMIT( coltype, ierr )

! Exchange stride information needed to build the left and right
! coltypes
call MPI_SENDRECV( nx, 1, MPI_INTEGER, left_nbr, 2, &
                   right_nx, 1, MPI_INTEGER, right_nbr, 2, &
                   MPI_COMM_WORLD, status, ierr )
call MPI_SENDRECV( nx, 1, MPI_INTEGER, right_nbr, 3, &
                   left_nx, 1, MPI_INTEGER, left_nbr, 3, &
                   MPI_COMM_WORLD, status, ierr )
call MPI_TYPE_VECTOR( 1, ny, left_nx + 2, MPI_DOUBLE_PRECISION, &
                      left_coltype, ierr )
call MPI_TYPE_COMMIT( left_coltype, ierr )



call MPI_TYPE_VECTOR( 1, ny, right_nx + 2, MPI_DOUBLE_PRECISION, &
                      right_coltype, ierr )
call MPI_TYPE_COMMIT( right_coltype, ierr )

Figure 5.15
Code to create vector datatypes to be used at the origin and at the targets in the example in Figure 5.16

datatypes for communication [33]. If the highest performance is required, it may be necessary to avoid the use of derived 
datatypes. In this case, there are two approaches.

The first is to move the data into a buffer, collecting the data from a row in A into contiguous memory locations. For example, 
to move the top row of A into a buffer on the neighboring process, the code in Figure 5.17 code could be used. This approach 
replaces the single MPI_Put call that uses the coltype datatype. Note that it uses a different window object, winbuf, from 
that used to move columns of A. This requires a separate set of MPI_Win_fence calls.

An alternative is to put all of the ghost cells into contiguous memory locations, even the ones that were moved into columns of 
A. That is, rather than put the ghost cells in A, we put them into a different array, aghost. This array has 2*nx+2*ny elements. 
We can create the window with the following code:

integer winbuf, ierr
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subroutine exchng2( a, sx, ex, sy, ey, win, &
     left_nbr, right_nbr, top_nbr, bot_nbr, &
     right_ghost_disp, left_ghost_disp, &
     top_ghost_disp, coltype, right_coltype, left_coltype )
use mpi
integer sx, ex, sy, ey, win, ierr
integer left_nbr, right_nbr, top_nbr, bot_nbr
integer coltype, right_coltype, left_coltype
double precision a(sx-1:ex+1,sy-1:ey+1)
integer (kind=MPI_ADDRESS_KIND) right_ghost_disp, &
        left_ghost_disp, top_ghost_disp, bot_ghost_disp
integer nx

nx = ex - sx + 1

call MPI_WIN_FENCE( 0, win, ierr )
! Put bottom edge into bottom neighbor's top ghost cells
call MPI_PUT( a(sx,sy), nx, MPI_DOUBLE_PRECISION, bot_nbr, &
              top_ghost_disp, nx, MPI_DOUBLE_PRECISION, &
              win, ierr )
! Put top edge into top neighbor's bottom ghost cells
bot_ghost_disp = 1
call MPI_PUT( a(sx,ey), nx, MPI_DOUBLE_PRECISION, top_nbr, &
              bot_ghost_disp, nx, MPI_DOUBLE_PRECISION, &
              win, ierr )
! Put right edge into right neighbor's left ghost cells
call MPI_PUT( a(ex,sy), 1, coltype, &
              right_nbr, left_ghost_disp, 1, right_coltype, &
              win, ierr )
! Put left edge into the left neighbor's right ghost cells
call MPI_PUT( a(sx,sy), 1, coltype, &
              left_nbr, right_ghost_disp, 1, left_coltype, &
              win, ierr )
call MPI_WIN_FENCE( 0, win, ierr )
return
end

Figure 5.16
Code to exchange ghost values for a two-dimensional decomposition of the mesh
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! Create a special window for the ghost cells
call MPI_WIN_CREATE( abuf, . . ., winbuf, ierr )
. . .
ny = ey - sy + 1
do i=1,ny
     buf(i) = a(1,i-sy+1)
enddo
call MPI_WIN_FENCE( 0, winbuf, ierr )
call MPI_PUT( buf, ny, MPI_DOUBLE_PRECISION, top_nbr, &
              0, ny, MPI_DOUBLE_PRECISION, winbuf, ierr )
. . . similar code for the bottom edge
call MPI_WIN_FENCE( 0, winbuf, ierr )
. . . code to unpack the data in the local memory to the ghost
. . . cells

Figure 5.17
Code to move ghost cell data without using derived datatypes but using a second window object

double precision aghost(MAX_GHOST)

nx = ex - sx + 1
ny = ey - sy + 1
! MAX GHOST must be at least 2*nx + 2*ny
call MPI_TYPE_SIZE( MPI_DOUBLE_PRECISION, sizedouble, ierr )
call MPI_WIN_CREATE( aghost, (2*nx+2*ny)*sizedouble, &
                     sizedouble, MPI_INFO_NULL, &
                     MPI_COMM_WORLD, winbuf, ierr )

Figure 5.18 shows the corresponding code to collect data into buffer arrays and then move it with MPI_Put. Note that two 
separate local buffer arrays, buf1 and buf2, are used. Recall that RMA data movement operations (MPI_Put here) are all 
nonblocking in the MPI sense. That is, the data buffer must not be modified until the operation completes. Thus, just as 
separate buffers are needed for MPI_Isend, they are needed for the MPI_Put calls here.

For unstructured grid problems, a slight variation of the separate ghost array is to put all of the ''ghost" points at the end of the 
local array.

5.6.2—
Combining Communication and Computation

In many applications, a common step is to receive data and then combine that data with other local data with a simple 
operation, such as addition. We saw a simple
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call MPI_WIN_FENCE( 0, winbuf, ierr )
! Put bottom edge into bottom neighbor's ghost cells
nx = ex - sx + 1
call MPI_PUT( a(sx,sy), nx, MPI_DOUBLE_PRECISION, &
              bottom_nbr, 0, nx, MPI_DOUBLE_PRECISION, winbuf, ierr )
! Put top edge into top neighbor's ghost cells
call MPI_PUT( a(sx,ey), nx, MPI_DOUBLE_PRECISION, &
              top_nbr, nx, nx, MPI_DOUBLE_PRECISION, winbuf, ierr )
! Put left edge into left neighbor's ghost cells
ny = ey - sy + 1
do i=sy,ey
    buf1(i-sy+1) = a(sx,i)
enddo
call MPI_PUT( buf1, ny, MPI_DOUBLE_PRECISION, &
              left_nbr, 2*nx, ny, MPI_DOUBLE_PRECISION, &
              winbuf, ierr )
! Put right edge into right neighbor's ghost cells



do i=sy,ey
    buf2(i-sy+1) = a(ex,i)
enddo
call MPI_PUT( buf2, ny, MPI_DOUBLE_PRECISION, &
              right_nbr, 2*nx+ny, ny, MPI_DOUBLE_PRECISION, &
              winbuf, ierr )
call MPI_WIN_FENCE( 0, winbuf, ierr )
. . . use data in aghost . . .

Figure 5.18
Code to exchange ghost cell information in a 2-d decomposition without using derived datatypes

example of this in Section 2.3.2, where π was computed using RMA routines. In this section, we consider a slightly more 
elaborate example: forming a matrix-vector product with the matrix and the vector distributed across two processes.

We can write this as follows, with the lines indicating the division of data among the two processes.

We can expand this to show the four separate matrix-vector multiplications:
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Assume that process 0 has w0, v0, and the first block column of A: A00 and A10 and that process 1 has w1, v1, and the second 
block column of A: A01 and A11. Process 0 can thus compute  and  process 1 can compute 

 The temporary  stands for the result on the jth process of multiplying the ith block of the 
matrix times the ith block of the vector. The computation of w is then

where the superscript on t indicates which process computed the value.

If this was implemented with message passing, the natural approach would look something like the following for process 0, and 
where there are only two processes.

double t[2][VEC_SIZE], buf[VEC_SIZE], w[VEC_SIZE];

. . . each process computes  for i = 0,1.
if (rank == 0) {

    // Send  to process 1
    req[0] = MPI::COMM_WORLD. Isend(t[1], n, MPI::DOUBLE, 1, 0);
    // Receive  from process 1 into buf
    req[1] = MPI::COMM_WORLD.Irecv(buf, n, MPI::DOUBLE, 1, 0);
    // We can also use req[0].Waitall() or
    // even MPI::REQUEST_NULL.Waitall().
    MPI::Request::Waitall( 2, req );
    for (i=0; i<n; i++) w[i] = t[0][i] + buf[i];
}

We have seen how to replace the message-passing part of this code with RMA operations. However, this involves moving the 
data in t[] twice: once from process 1 to process 0, ending up in the temporary vector buf, and then once more as it is loaded 
and added to t[0] in the for-loop. This can be inefficient. Each time data is moved, the opportunity is lost to do some 
computing. It would be better to move the data in t and immediately add it to s to form w.



MPI-2 provides a way to accomplish a move and combine as a single operation. The routine MPI_Accumulate allows data 
to be moved and combined, at the destination, using any of the predefined MPI reduction operations, such as MPI_SUM. The 
arguments to MPI_Accumulate have the same form as for MPI_Put, with the addition of an MPI_Op op argument. The 
bindings for MPI_Accumulate are shown in Tables 5.14, 5.15, and 5.16.
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Table 5.14
C bindings for RMA accumulate routine

int MPI_Accumulate(void *origin_addr, int origin_count,
             MPI_Datatype origin_datatype, int target_rank,
             MPI_Aint target_disp, int target_count,
             MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

Table 5.15
Fortran bindings for RMA accumulate routine

MPI_ACCUMULATE(origin_addr, origin_count,origin_datatype, target_rank,
          target_disp, target_count,target_datatype, op, win, ierror)
          <type> origin_addr(*)
          integer(kind=MPI_ADDRESS_KIND) target_disp
          integer origin_count, origin_datatype, target_rank, target_count,
               target_datatype, op, win, ierror

Table 5.16
C++ bindings for RMA accumulate routine

void MPI::Win::Accumulate(const void* origin_addr, int origin_count,
              const MPI::Datatype& origin_datatype, int target_rank,
              Aint target_disp,int target_count,
              const Datatype& target_datatype, const Op& op) const

Using MPI_Accumulate, we can replace the message passing and remove the for-loop, as shown in the following code 
(again, this is for process 0):

MPI::Win win;
// Create a window with w
win = MPI::Win_create ( w, n*sizeof(double), sizeof(double),
                        MPI::INFO_NULL, MPI::COMM_WORLD );
if (rank == 0) {

    // compute  in w and  in buf
    . . .
    // Add this value to w on the remote process
    win. Fence( 0 );
    win.Accumulate( buf, n, MPI::DOUBLE, 1, 0, n, MPI::DOUBLE,
                    MPI::SUM );
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    win.Fence( 0 );
}

MPI_Accumulate is not quite as general as the MPI_1 collective computation routines 
(MPI_Reduce, MPI_Allreduce, MPI_Reduce_scatter, and MPI_Scan) because only the predefined reduction 
operations, such as MPI_SUM and MPI_LAND, are allowed. User-defined operations may not be used with 
MPI_Accumulate. This restriction was made by the MPI Forum to allow and encourage more efficient implementations of 
MPI_Accumulate. In addition, there are restrictions on the datatype arguments. It is always correct to use the basic MPI 
datatypes.

Concurrent Updates Using Accumulate

Now consider the case where there are more than two processes. If there are p processes, then the result wi on the ith process is 
computed from the local contribution Aiivi and p – 1 contributions from the other p – 1 processes. With message passing6 (e.g., 
MPI_Isend and MPI_Irecv), or the RMA routines MPI_Put, and MPI_Get, one buffer is needed to receive data from 
each process that is contributing data. With MPI_Accumulate, each process can contribute directly to the result vector w, as 
shown below:

double t [MAX_RANK] [MAX_VEC];
MPI::Win win;
// Create a window with w
win = MPI::Win_create( w, n*sizeof(double), sizeof(double),
                       MPI::INFO_NULL, MPI::COMM_WORLD );

// compute  in t[i] and  in w
. . .
// Add this value to w on the remote process
win.Fence( 0 );
for (i=0; i<p; i++) {
    if (i != myrank)
        win.Accumulate( t[i], n, MPI::DOUBLE, i,
                        0, n, MPI::DOUBLE, MPI::SUM );
}
win.Fence( 0 );

A special operation allowed for MPI_Accumulate is MPI_REPLACE. The effect of this operation is to replace the value at 
the target with the value provided on the origin process. We do not need this operation for this example, but it can come

6 See Section 7.3.2 in Using MPI [32] for how this can be implemented with MPI_Reduce_scatter.
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in handy. In addition, it emphasizes that the MPI_Accumulate function is the only one of the three RMA operations that 
may be used to update the same locations in a memory window with multiple calls without separating the calls with an 
MPI_Win_fence (or other window synchronization routine). The next section helps us understand the reason for this, as well 
as the rules for when a memory location may be accessed with RMA operations and when with local loads and stores.

5.7—
Pitfalls in Accessing Memory

In order to understand the rules for access to data in memory windows, that is, when can one use an RMA operation and when 
a local load or store, it is necessary to consider in more detail what might happen when data in memory is referenced. The 
issues here are quite subtle; it is important to remember that the MPI Standard is designed to be implementable on a wide range 
of hardware platforms, even those that do not have any hardware support for shared- or remote memory operations. 
Understanding the reasons for the rules in this section often requires thinking of things that can go wrong, as in the examples in 
Section 4.3.

5.7.1—
Atomicity of Memory Operations



When can a program access a variable with local load or store? That is, when can the operations for using a value in a variable 
(load) or assigning a value in a variable (store) be used without interfering with RMA operations? Consider the code in Figure 
5.19. What is the value of b[2] at the end of the code?

A number of possibilities arise. The most obvious is that b[2] is either the value 1/3 or 12.0. But that assumes that either b
[2] = 1./3. or that the MPI_Put for b[2] succeeds completely, that is, that either one of the operations to store a value 
into b[2] succeeds, and the other does not. Unfortunately, that may not be what happens within the computer (this also applies 
to shared-memory programming, by the way). For example, assume that the hardware moves only four bytes at a time and that 
a double is eight bytes long. Then putting a value into b[2] will require two separate operations by the computer hardware. In 
the code in Figure 5.19, there are four possibilities for the result, not two, depending on the order in which each of the two parts 
of b[2] are stored. These four possibilities are shown in Figure 5.20.

This example may seem a little contrived, since many computers will guarantee to store even an eight-byte double or 
DOUBLE PRECISION in a single operation. But
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    /* This code is erroneous */
double b[10];

for (i=0; i<10; i++) b[i] = rank * 10.0 + i;

MPI_Win_create( b, 10*sizeof(double), sizeof(double),
                MPI_INFO_NULL, MPI_COMM_WORLD, &win );
MPI_Win_fence( 0, win );
if (rank == 0) {
  b[2] = 1./3.;
}
else if (rank == 1) {
  /* Store my value of b into process 0's window, which is
     process 0's array b */
  MPI_Put( b, 10, MPI_DOUBLE, 0, 0, 10, MPI_DOUBLE, win );
}
MPI_Win_fence( 0, win );

Figure 5.19
Example of conflicting put and store operations. This code is erroneous.

Figure 5.20
The four possible results for b[2] in Figure 5.19. The dashed boxes show possible,

but incorrect, results. The box on the top left contains 1/3 (as a floating-point value)
and is the value stored by process 0 in the example in Figure 5.19. The box on the top

right contains 12 (also in floating point) and is the value MPI_Put by process 1.
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even for double-precision complex values, two operations may be required. And for a structure, of course, a number of 
operations will be required.

This illustrates an important point: Operations in a programming language that appear to be a single operation, such as a store 
to a variable, an increment (e.g., i++ in C), or an array operation (e.g., A = 0 for an array A in Fortran, may not be a single 
operation in the hardware. Operations that are performed as a single operation, without any possibility of another operation 
modifying the result of the operation, are called atomic, because they are the smallest, indivisible operations.

5.7.2—
Memory Coherency

Some computer systems do not even provide memory systems that are fully coherent. For example, data in cache (representing 
a copy of data in memory) that is updated may not cause data in memory or in another cache (representing the same memory 
address) to be updated before some other process references the same memory locations. Such systems are said to not have 
coherent memory caches. Most computers today do provide coherent caches, but there are performance implications, and some 
special high-performance systems may trade memory coherency for greater performance. The MPI RMA is designed to work 
with both memory coherent and incoherent systems; this promotes maximum portability but does introduce some restrictions to 
allow relatively efficient implementation even when there is no hardware support for coherent memory.

5.7.3—
Some Simple Rules for RMA

We have seen that maintaining the consistency of memory when two different agents may modify a word can be difficult. On 
some systems, sophisticated hardware is used to ensure that updates are atomic and memory is coherent and to give the 
expected results. However, MPI is designed so that RMA can be used even when such hardware support is not available. In 
order to accomplish this, certain rules must be followed when using the RMA operations. A complete description is given in 
the MPI-2 Standard, Section 6.7, and in [27], Section 4.7. In this section, we provide rules that are sufficient for writing correct 
code, but may be slightly stricter than required.

Also, as is clear from above, reading from memory with either local loads or MPI_Get is less restrictive that writing to 
memory with either local stores or MPI_Put and MPI_Accumulate. For that reason, we divide the cases to consider into 
whether the memory window merely is accessed (that is, MPI_Get and load) or is modified (that is, 
MPI_Put, MPI_Accumulate, or store).
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Overlapping Put and Accumulate Operations

The targets of two MPI_Put operations in the same destination window must not overlap. This rule prevents problems such as 
the one illustrated in Figure 5.19 (but involving two put operations rather than a put and a local store).

Note that MPI_Accumulate allows (and even encourages) overlapping operations. There are a few restrictions here as well. 
When the targets overlap, both the basic MPI datatype (for example, MPI_INT) and the operation (for example, MPI_SUM) 
must be the same.

It is possible to make remote memory stores to overlapping locations by using the operation 
MPI_REPLACE in MPI_Accumulate. Note, however, that if two MPI_Accumulate operations are accessing the same 
locations in the target window, MPI does not specify in which order they make their replacements. For example, if two 
processes are making calls like this

MPI_Accumulate( a, 2, MPI_DOUBLE, . . ., MPI_REPLACE );

then at the target, the location at displacement 0 may get the value from one process and the location at displacement 1 may get 
its value from the other process. MPI guarantees only that the updates don't break a basic datatype.7 Put and accumulate 
operations between two MPI_Win_fence calls must not overlap under any circumstances.

Local Stores and RMA Updates



Stores into the local window and MPI_Put or MPI_Accumulate operations into that window must be separated by an 
MPI_Win_fence call.

Local Loads and RMA Get

Local loads and MPI_Get operations may access any part of the window that has not been updated by an RMA update 
(MPI_Put or MPI_Accumulate) or local store operation.

The Easy Rule

The simplest rule is as follows:

1. Do not overlap accesses on windows (except for MPI_Accumulate).

2. Separate non-RMA access from RMA access with MPI_Win_fence.

This is stricter than required by MPI, but it is often easy to accomplish.

So far, we have referred only to MPI_Win_fence as the routine to use in separating RMA updates, accesses, local loads, and 
local stores. In the next chapter, we will

7 The MPI Standard refers to "locations" and says that the results may vary only as much as computer arithmetics are not 
commutative or associative. This suggests the interpretation that we have used here, but the actual text is unclear.
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introduce some additional MPI routines that may be used to separate the accesses. In those cases, these same rules apply.

5.7.4—
Overlapping Windows

It is possible to have several MPI window objects whose local windows overlap. The rules in MPI for using these windows are 
very restrictive; see item 3, page 132, in [27], Section 4.7 (Semantics and Correctness). The restrictions were made by the MPI 
Forum to allow for relatively efficient implementations on systems without hardware support for shared-memory coherency. 
Because of the performance issues and the complexities of the rules for correct use, we recommend avoiding the use of 
overlapping windows.8

5.7.5—
Compiler Optimizations

As we saw in Section 4.3, when one process modifies data in another process, there is a risk that, because the compiler has 
placed the variable into a register, the modified result won't be seen by the target process. The simplest fix for this in C and C+
+ (and in many Fortran implementations) is to declare the variable that is given to MPI_Win_create as the local memory 
window as volatile.9 For example, in the grid example, we might use

integer sizedouble, ierr, win
double precision, volatile :: a(0:nx+1,s-1:e+1)

call MPI_TYPE_SIZE( MPI_DOUBLE_PRECISION, sizedouble, ierr )
call MPI_WIN_CREATE( a, (nx+2)*(e-s+3)*sizedouble, sizedouble, &
                     MPI_INFO_NULL, MPI_COMM_WORLD, win, ierr )

In addition, if the array A is then passed to other routines, it may be necessary to declare it as volatile in those routines as 
well.

The approach of using volatile has its drawbacks, however. Most important, it forces the compiler to reload any element of 
the variable from memory rather than using a previously loaded value that is already in a register. This can cause a significant 
loss in performance. Fortunately, there is a work-around. The key is that the MPI RMA operations (that are completed by 
MPI_Win_fence) can update the local window any time between the two MPI_Win_fence calls that separate them



8 These rules are the reason that there is no MPI_Win_dup, since a duplicated window object would involve overlapping 
memory windows.
9 We will see shortly that for C/C++ and MPI_Win_fence synchronization, volatile is not necessary.
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from other operations. Thus, a correct MPI program cannot rely on the updates happening before the MPI_Win_fence that 
completes the RMA operations. For C and C++ this is enough: since the local window is an argument to the 
MPI_Win_create routine that returned the window object, and the window object is an input to MPI_Win_fence, the C 
or C++ compiler must take into account the possibility that MPI_Win_fence will access the local window through a pointer 
stored in the window object. Thus, we do not need volatile in C or C++ when using MPI_Win_fence synchronization. 
Note that we are not saying that MPI_Win_fence actually performs the updates, only that it could do so. The C/C++ 
compilers must assume the same, and therefore reload the value of any part of the local memory window that is in the register 
after the call to MPI_Win_fence.

The situation is different in Fortran. Fortran pointers are much more restrictive (to allow the compiler more flexibility in 
generating code), and in this case the Fortran compiler will not conclude that MPI_Win_fence might update the variable 
provided to MPI_Win_create as the local memory window. There is a simple fix that the programmer can use. Consider the 
routine

subroutine MPE_WIN_FENCE( base, assert, win, ierr )
use mpi
double precision base(*)
integer assert, win, ierr
call MPI_WIN_FENCE( assert, win, ierr )
end

If we call this routine from our Fortran program instead of just MPI_Win_fence, passing it the same array (as base) that we 
used with MPI_Win_create, then the Fortran compiler will assume that we might have changed the variable base (the 
local window), particularly if we define MPE_Win_fence with the following interface definition:

INTERFACE MPE_WIN_FENCE
    subroutine MPE_WIN_FENCE( base, assert, win, ierr )
    double precision, intent(inout) :: base(*)
    integer, intent(in) :: assert, win
    integer, intent(out) :: ierr
    end subroutine MPE_WIN_FENCE
END INTERFACE
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5.8—
Performance Tuning for RMA Operations

MPI-2 provides a number of ways to aid an MPI implementation in performing RMA operations efficiently. This section 
discusses how to specify special cases to MPI_Win_create and MPI_Win_fence to allow the MPI implementation to 
optimize the RMA operations.

5.8.1—
Options for MPI_Win_create

The MPI_Win_create call has an info argument that can be used to provide hints to the MPI implementation. There is one 
predefined hint: the info key no_locks, if set to true, states that this local window is never used with locks (see Section 6.2 
for a discussion of locks). None of the examples in this chapter use locks. This hint may be used with any RMA code that uses 
only MPI_Win_fence for synchronization.

The following example shows how to use no_locks with the info argument to MPI_Win_create.



MPI_Info info;
MPI_Info_create ( &info );
MPI_Info_set( info, "no_locks", "true" );
MPI_Win_create( . . ., info, . . . );
MPI_Info_free( &info );

MPI implementations may ignore the no_locks key; however, it never hurts to provide this info value when creating a 
window object when locks are not used.

The MPI-2 Standard, in an ''advice to users," mentions that MPI_Win_free internally requires a barrier to ensure that all 
operations, from any source, have completed. This applies in general, but not if every process involved in creating a window 
sets no_locks to true. Thus, while MPI_Win_free is collective over all of the processes in the group that formed the 
window object, it need not be a barrier.

Choice of Local Window

The memory in a computer is organized into a hierarchy of elements, each with its own size. At the very top of the hierarchy 
are registers that hold a single word (often 32 or 64 bits) of data. The next level of hierarchy is usually one or more levels of 
cache. Each level of cache is made up of cache lines. Each cache line is 4 to 128 (or more) bytes in length. Below the cache 
memory are memory pages, which are typically 4K to 16K bytes (but may be larger) in size. Data motion in a computer usually 
happens in units of these natural sizes. For example, data is moved between memory and cache in units of the cache line size.
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Figure 5.21
Alignments of data items. Part (a) shows how a basic datatypes such as int and double

fit into a cache line. Part (b) shows how cache lines fit into a memory page.

In addition, each larger item is aligned to begin at the start of the next smallest item. That is, a page always starts at the 
beginning of a cache line, and a cache line always starts at the beginning of a memory word. Another way to say this is that a 
smaller item never crosses a boundary between two larger items. This is shown in Figure 5.21. Note that the sizes and 
alignments are all nested.

Some MPI implementations will be more efficient if the base address is aligned on one of these boundaries; aligning on a page 
boundary will guarantee that the base address is also aligned on word and cache boundaries. It may also help if the size of the 
local window is an exact multiple of the page size. This applies particularly to systems without hardware support for shared 
memory.

On some Unix systems, C users may use memalign instead of malloc to get good data alignments for dynamically allocated 
data. The page size can be determined with the Unix function getpagesize.10 One Unix system provides the function 
valloc, which returns memory aligned with the system page size.

Another option is to allocate the memory used for the local memory window with MPI_Alloc_mem and MPI_Free_mem. 
Because these routines are required for memory used with RMA lock and unlock routines, we discuss both the 
MPI_Alloc_mem and MPI_Free_mem routines with lock and unlock in the next chapter.



10 getpagesize returns the system page size, which may be different from the page size used by the hardware. However, the 
system page size is likely to be a good size to use because the system will want to size and align pages for efficient operation.
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5.8.2—
Options for MPI_Win_fence

MPI_Win_fence provides a very general collective RMA synchronization, which makes it relatively simple to use. In the 
general case, each call to MPI_Win_fence will complete any RMA operations that were started since the last call to 
MPI_Win_fence. In addition, MPI_Win_fence must ensure that any local load and store operations are also complete 
before any RMA operations that follow the MPI_Win_fence call access the memory window. Ensuring that everything is in 
order is potentially expensive; for example, it may require flushing caches or making a copy of the memory window. To allow 
an implementation to optimize for cases where such operations are unnecessary because of the structure of the user's code, the 
MPI_Win_fence call has an argument, assert, that allows the user to provide information to MPI about how much work 
MPI_Win_fence may need to perform. The assert argument can contain any combination of the following four values; 
they can be combined using bitwise or (|) in C and C++ and integer addition in Fortran.

MPI_MODE_NOSTORE. The local window was not updated by local stores (or local get or receive calls) since the last call to 
MPI_Win_fence. This refers to operations that occurred before the fence call.

MPI_MODE_NOSTORE may be used, for example, for the ghost cells in a mesh computation, where the local window that 
contains the ghost cells is read only with local loads. This works only if the ghost cells are all that is exposed, or if the entire 
array is used as read only and writes are done to another array.

Consider the case where the data is read from the array b, the corresponding window is called win_b, and the data is 
computed in the array a; a is not in a memory window (or not in an overlapping memory window, as discussed in Section 
5.7.4). Since there are no stores to b between the two calls to MPI_Win_fence, the MPI_MODE_NOSTORE assertion may be 
used on the second call to MPI_Win_fence. This is shown below:

MPI_Win_create( b, n*sizeof(double), sizeof(double),
                MPI_INFO_NULL, MPI_COMM_WORLD, &win_b );

. . .
MPI_Win_fence( 0, win_b );
MPI_Put( buf, m, MPI_DOUBLE, nbr, 0, m, MPI_DOUBLE, win_b );
. . . update array a using information in array b
. . . EXCEPT for any ghost cells
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MPI_Win_fence( MPI_MODE_NOSTORE, win_b );
. . . update the parts of a that depend on the ghost cells
. . . in b

MPI_MODE_NOPUT. The local window will not be updated by put or accumulate calls between this fence call and the next 
fence call.

This basically says that no changes will be made by remote processes to the local window before the next fence call. The local 
process can modify the data in the local memory window using stores. Another name for this mode could have been "no RMA 
update."

This flag can help implementations that do not have hardware support for memory coherency, by informing them that the 
memory window will not be changed by any RMA operations (this includes hardware where a cache-flush might otherwise be 
required to maintain correct operations).



MPI_MODE_NOPRECEDE. The fence will not complete any sequence of RMA calls made by the process calling 
MPI_Win_fence. If this assertion is given by any process in the window group, then it must be given by all processes in the 
group. Thus, no RMA calls can be made by any process in the group of the window, on this window object, since the last 
MPI_Win_fence call. This refers to the operations that occurred before the fence call. It used to state that no process in the 
window object's group made any RMA calls on this window. In other words, there isn't anything to complete. Another name 
for this mode could have been "no RMA completion."

MPI_MODE_NOSUCCEED. No RMA calls will be made on this window between this fence call and the next fence call. If the 
assertion is given by any process in the window group, then it must be given by all processes in the group. This is used to 
indicate that following this fence, no RMA calls will be made by any process in this window object's group before the next 
fence call. Another name for this mode could have been "no RMA start."

The C++ names of these modes have the form MPI::MODE_NOSTORE and so on.

These assert flags may be combined where it makes sense. As an example, the code in Figure 5.10 can be augmented with all 
four of the assertion values:

call MPI_WIN_FENCE( MPI_MODE_NOPRECEDE, win, ierr )
! Put bottom edge into bottom neighbor's top ghost cells
top_ghost_disp = 1 + (nx+2)*(e-s+2)
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call MPI_PUT( a(1,s), nx, MPI_DOUBLE_PRECISION, &
              bottom_nbr, top_ghost_disp, nx, &
              MPI_DOUBLE_PRECISION, win, ierr )
! Put top edge into top neighbor's bottom ghost cells
bottom_ghost_disp = 1
call MPI_PUT( a(1,e), nx, MPI_DOUBLE_PRECISION, &
              top_nbr, bottom_ghost_disp, nx, &
              MPI_DOUBLE_PRECISION, win, ierr )
call MPI_WIN_FENCE( MPI_MODE_NOSTORE + MPI_MODE_NOPUT + &
                    MPI_MODE_NOSUCCEED, win, ierr )

The first MPI_Win_fence call does not complete any RMA operations, and so MPI_MODE_NOPRECEDE may be used. Note 
that the window may have been updated by local stores; in fact, it almost certainly was, so MPI_MODE_NOSTORE must not be 
used in the first fence call.

The second fence call completes only RMA operations. Thus, MPI_MODE_NOSTORE can be used. Since no RMA calls follow 
the fence, we can use MPI_MODE_NOSUCCEED. MPI_MODE_NOPUT is redundant here because MPI_MODE_NOSUCCEED 
states that there are no RMA calls of any kind between this fence call and the next one. MPI_MODE_NOPUT could be used 
where MPI_Get operations were being made between two fence calls but no MPI_Put or MPI_Accumulate operations.

Almost every use of MPI_Win_fence can specify some assert values. It is good practice to specify assert values because it 
allows the MPI implementation to optimize the performance of MPI_Win_fence and because it forces the programmer to 
examine closely how the MPI RMA operations are being used. Such examination will help detect any erroneous use of RMA 
that violates the rules set forth in Section 5.7.
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6—
Advanced Remote Memory Access

This chapter introduces two new mechanisms for synchronizing and completing remote memory access (RMA) operations. The 
first mechanism is called locks; locks allow one process to access a window in another process without the target process 
making any RMA calls, providing for truly one-sided operations. The second mechanism is a scalable, noncollective alternative 
to MPI_Win_fence.

6.1—
Introduction

In the preceding chapter, we introduced MPI's remote memory access operations. One requirement of the RMA routines in that 
chapter was the need for all processes that created a window object to call MPI_Win_fence to separate RMA operations 
from local loads and stores and to complete RMA operations. In other words, while the individual MPI_Put, MPI_Get, and 
MPI_Accumulate operations are one sided and are called by a single process (instead of the two processes required to use 
send-receive-style message passing), we required a collective operation MPI_Win_fence to complete the RMA operations. 
In this chapter, we will relax this requirement in two different ways.

6.2—
Lock and Unlock

In Chapter 5, both the origin and target processes of an RMA operation must call the MPI_Win_fence to complete the RMA 
call (along with all of the processes that are in the window object's group). This is called active target synchronization, because 
the target is actively involved in the process. In many cases, however, a process may want to access data in a remote (target) 
process without that process being required to call any MPI routines. This is called passive target synchronization. In MPI, 
passive target synchronization is accomplished by using MPI_Win_lock and MPI_Win_unlock at the origin process.

To perform a passive target RMA operation, you use MPI_Put, MPI_Get, and/or MPI_Accumulate, just as when using 
active target synchronization. However, instead of surrounding the RMA calls with calls to MPI_Win_fence, you begin the 
sequence of RMA calls with MPI_Win_lock and end the sequence of RMA calls with MPI_Win_unlock. The lock and 
unlock operations apply only to a specific remote window (specified by a rank), not the entire window object (that is, not all 
ranks); the specific window is indicated by a rank in the group of the window object. These two calls define an access epoch: 
between MPI_Win_lock and MPI_Win_unlock, a
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Table 6.1
C binding for locks

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

Table 6.2
Fortran binding for locks

MPI_WIN_LOCK(lock_type, rank, assert, win, ierror)
           integer lock_type, rank, assert, win, ierror

MPI_WIN_UNLOCK(rank, win, ierror)
           integer rank, win, ierror



Table 6.3
C++ binding for locks

void MPI::Win::Lock(int lock_type, int rank, int assert) const

void MPI::Win::Unlock(int rank) const

process may access the memory window of a remote process. The bindings for MPI_Win_lock and MPI_Win_unlock are 
shown in Tables 6.1, 6.2, and 6.3.

The name lock is an unfortunate one, as these MPI operations do not behave the way shared-memory locks do. Instead, they are 
really "begin passive target access" and "end passive target access." Specifically, when referring to a remote window, all that 
the MPI_Win_lock and MPI_Win_unlock pair says is that the RMA operations between them will be complete when 
MPI_Win_unlock returns, and, depending on the lock type (see below), they may occur atomically with respect to other 
accesses to the same remote memory window. We will discuss this in more detail in Section 6.5. Only when referring to the 
local window (that is, when the rank in the lock call is the rank of the calling process in the window object's group) do these 
routines behave like conventional locks. That is because, when using passive target synchronization, you must use 
MPI_Win_lock and MPI_Win_unlock around accesses to your own local window to ensure that RMA operations from 
other processes do not modify the data unexpectedly.
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int MPE_Blocking_put( void *buf, int count, MPI_Datatype dtype,
                      int target_rank, MPI_Aint target_offset,
                      int target_count, MPI_Datatype target_dtype,
                      MPI_Win win )

{
    int err;

    MPI_Win_lock( MPI_LOCK_SHARED, target_rank, O, win );
    err = MPI_Put( buf, count, dtype, target_rank, target_offset,
                   target_count, target_dtype, win );
    MPI_Win_unlock( target_rank, win );
    return err;
}

Figure 6.1
Blocking, independent (passive target) put operation

6.2.1—
Implementing Blocking, Independent RMA Operations

The most elementary use of lock and unlock is to create a blocking version of the RMA data-movement commands that do not 
require the target to make any MPI calls. To do this, we simply surround the RMA call with lock and unlock. Figure 6.1 shows 
an implementation of a blocking put operation.

The use of MPI_LOCK_SHARED allows several RMA operations to act on the same window (not just window object) at the 
same time. If it is necessary to ensure that only one RMA operation at a time can act on the target window, 
MPI_LOCK_EXCLUSIVE must be used. This guarantees that no other RMA operation has any access, either put, get, or 
accumulate, to the window at the target process.

Put another way, MPI_LOCK_SHARED is used when the purpose of the lock is simply to allow one or more RMA operation to 
complete, independently of any action by the target or other process. When it is essential to guarantee atomic (undivided) 
access to a window on a particular process, MPI_LOCK_EXCLUSIVE must be used. We will see in Section 6.5 an example 
where MPI_LOCK_EXCLUSIVE is required.



Note that when MPI_LOCK_SHARED is used, the user must ensure that no concurrent operations modify the same or 
overlapping parts of the window, with the exception of multiple MPI_Accumulate calls that all use the same type signatures 
and same operation (these are the same restrictions on MPI_Accumulate as in the previous chapter). MPI_LOCK_SHARED 
should be used primarily with MPI_Get when there is no chance that a MPI_Put or MPI_Accumulate operation will be 
changing
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the contents of the window.

Locks in MPI protect only the window at a specific rank within a window object. This feature improves scalability: a 
distributed data structure is thus protected by separate locks on each process.

6.3—
Allocating Memory for MPI Windows

In Chapter 5, any variable or memory location could be used as the local window for RMA operations. Passive target 
operations, however, can be more difficult to implement. Realizing this, the MPI Standard allows implementations to restrict 
the use of passive target RMA (that is, using MPI_Win_lock and MPI_Win_unlock) to memory windows that have been 
allocated with MPI_Alloc_mem. This routine allocates size bytes of memory and returns a pointer to the allocated memory 
in baseptr.

6.3.1—
Using MPI_Alloc_mem from C/C++

The C version of MPI_Alloc_mem uses the type void * for the returned type, even though the actual parameter that must 
be passed is the address of a pointer. This choice of binding makes it easier to pass the address of a pointer to a particular 
datatype. For example, the following code allocates 10 doubles:

double *d_ptr;
MPI_Alloc_mem( 10 * sizeof(double), MPI_INFO_NULL, &d_ptr );

If the last formal argument was typed as void ** the third actual argument would need to be cast to that type:

MPI_Alloc_mem( 10, MPI_INFO_NULL, (void **)&d_ptr )

The MPI Forum felt that the convenience of avoiding the extra cast outweighed the potential confusion in the binding, since 
returning a pointer to an int, for example, requires an argument of type 
int **. The same approach is used by MPI_Buffer_detach, which also returns a pointer, and in the copy callback 
function used in attribute caching (see Section 9.4).

The info argument is provided to allow the user to specify, for example, different locations or properties for the allocated 
memory. For example, on a distributed-shared-memory machine such as an SGI Origin2000, specifying the node that should 
contain the shared memory might offer performance advantages. The null value, MPI_INFO_NULL, is always valid and will 
be the only value that we will use in
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our examples. There are no predefined info keys for use with MPI_Alloc_mem; implementations define the keys that they 
support.

To free memory allocated with MPI_Alloc_mem, one must use the routine MPI_Free_mem. The bindings for the memory 
allocation routines are shown in Tables 6.4, 6.5, and 6.6.

6.3.2—
Using MPI_Alloc_mem from Fortran



Fortran doesn't have pointers of the same kind that C and C++ do. However, some Fortran implementations provide an 
extension, often referred to as "Cray pointers" or "integer pointers," that may be used. A "Cray pointer" is very much like a C 
pointer rather than a Fortran 90 pointer. In the declaration, a ''Cray pointer" is named, and the Fortran variable that the pointer 
will point at is also named. The space for this second variable is not allocated. In the following example, the pointer is p and 
the variable it points to is u(0:50,0:20).

double precision u
pointer (p, u(0:50,0:20))
integer (kind=MPI_ADDRESS_KIND) size
integer sizeofdouble, ierror
! careful with size (must be MPI_ADDRESS_KIND)
call MPI_SIZEOF(u, sizeofdouble, ierror)
size = 51 * 21 * sizeofdouble
call MPI_ALLOC_MEM( size, MPI_INFO_NULL, p, ierror )
. . .
. . . program may now refer to u, including passing it
. . . to MPI_WIN_CREATE
. . .
call MPI_FREE_MEM( u, ierror ) ! not p!

Note that in MPI_Free_mem, the variable that the pointer points at, not the pointer itself, is passed.

If "Cray pointers" are not available, then the best approach is often to use a C program to allocate the array with 
MPI_Alloc_mem and then pass this array as an argument to a Fortran routine.

6.4—
Global Arrays

As an example of how an existing high-level library for one-sided operations can be implemented using the standard MPI one-
sided operations, we consider the Global
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Table 6.4
C bindings for memory allocation and deallocation routines. The pointer is returned in baseptr in MPI_Alloc_mem; see 
text.

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr )

int MPI_Free_mem(void *baseptr)

Table 6.5
Fortran bindings for memory allocation and deallocation routines.

MPI_ALLOC_MEM(size, info, baseptr, ierror)
          integer info, ierror
          integer (kind=MPI_ADDRESS_KIND) size, baseptr

MPI_FREE_MEM(base, ierror)
           <type> base(*)
           integer ierror

Table 6.6
C++ bindings for memory allocation and deallocation routines

void *MPI::Alloc_mem(Aint size,const Info &info)

void MPI::Free_mem(void *base)



Arrays library [62, 63].

The Global Arrays library is a collection of routines that allows the user to define and manipulate an array that is distributed 
across all processes of a parallel program. In the versions 1 and 2 of the Global Arrays library, the global array had two 
dimensions, whose individual elements could be of integer, double precision, or double complex. Version 3 
of the Global Arrays library allows for arrays with more than two dimensions. The Global Arrays library is large and powerful; 
in addition to operations for writing to and reading from any part of a global array, it provides a range of operations from linear 
algebra, including GA_DIAG for solving the generalized eigenvalue problem, GA_LU_SOLVE for solving a system of linear 
equations by LU factorization, and GA_DGEMM for performing matrix-matrix multiplies.

In this section we will describe an implementation of a small subset of a library similar to the Global Arrays library. Our simple 
subset has the following routines:

ga_create Creates a new global array.
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ga_free Frees a global array.

ga_put Puts data into an arbitrary 2-dimensional subsection of a global array.

ga_get Gets data from an arbitrary 2-dimensional subsection of a global array.

ga_acc Accumulates data into an arbitrary 2-dimensional subsection of a global array. Unlike MPI_Accumulate, the entire 
accumulation is atomic.

ga_read_inc Reads data from the (i,j) element of a global array of integers, returns that value, and increments the (i,j) 
element by a given increment. This is a fetch-and-add operation.

ga_create_mutexes Creates mutex variables that can be used for mutual exclusion.

ga_lock Locks a mutex (see below).

ga_unlock Unlocks a mutex.

ga_destroy_mutexes Frees the mutex variables created with ga_create_mutexes.

The major differences between our library and the Global Arrays library, beyond offering far fewer capabilities, are the simpler 
distribution of the global array among processes (to simplify the code that we present) and the more general datatypes and 
process groups. The latter come essentially "for free" by exploiting the datatypes and groups in MPI.

Most of these operations are fairly obvious. The ga_create and ga_free are needed to manage the global array itself. The 
routines ga_put, ga_get, and ga_acc are similar to MPI_Put, MPI_Get, and MPI_Accumulate. The remaining 
five routines introduce new functionality that we describe briefly here and in more detail below. The operation ga_read_inc 
provides a basic operation for implementing shared data structures. The remaining four routines provide for mutexes: these are 
variables that allow one process to ensure that it has exclusive access to a shared resource (such as a memory window). Mutex 
is short for "mutual exclusion."

One reason for considering such a large set of operations is that the presence of some operations, particularly ga_read_inc, 
introduces some complications into the implementation of the others.
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Let's begin with an overview of the design. We use a pointer to a structure, called GA,1 which contains information about the 
global array. For simplicity in the examples, we require that the array have two dimensions and that the array be decomposed 
into groups of columns as shown in Figure 6.2. We also assume Fortran ordering and indexes that start from one. Thus, the 
local rectangles on each process are stored in contiguous memory locations.

This immediately gives us most of the members of the data pointed at by GA: we need an MPI window object to contain the 
global array and some ints to hold the sizes of the array and how it is decomposed among the processes. It is also useful to 
know the MPI datatype that corresponds to the data type for the array and the size of an element of this data type. For cases 
where the datatype is MPI_INTEGER, MPI_DOUBLE_PRECISION, or MPI_DOUBLE_COMPLEX, this matches the 
original Global Arrays library. In our version, we can allow any contiguous datatype (we will use the size, not the extent, of the 
datatype in our example code, again for simplicity). The ga–>lock_win element is explained in Section 6.7.1. The contents 
of a GA are shown in the header file in Figure 6.3. The implementation of our GA library is in C; a Fortran interface may be 
provided by using tools such as bfort [34].

6.4.1—
Create and Free

Now that we have all of the members of GA, we can describe the code to create and free a new global array.

The code for ga_create is shown in Figure 6.4. The routine MPE_Mutex_create is used to initialize a special 
synchronization operation and is explained in Section 6.6.

The code to free a global array is shown in Figure 6.5. This code uses a window attribute to discover the base address of the 
window. Window attributes are much like communicator attributes; the function to access window attributes, 
MPI_Win_get_attr, is much like its communicator counterpart (MPI_Attr_get in MPI 1; MPI_Comm_get_attr in 
MPI 2). Three predefined window attributes are set; these are MPI_WIN_BASE for the base address of the local window, 
MPI_WIN_SIZE for the size (in bytes) of the local memory window, and MPI_WIN_DISP_UNIT for the displacement unit 
chosen when the window object was created. In addition, users can create their own window object keyvals and attributes (see 
Section 6.5.3). The bindings for MPI_Win_get_attr are shown in Tables 6.7, 6.8, and 6.9.

1 We use a pointer to the structure instead of the structure itself so that the users alway see the pointer. This improves modularity 
and makes it easier to modify the implementation without forcing the users to rebuild all their code.
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Figure 6.2
Decomposition of a global two-dimensional array. The rectangle given by coordinates
(ilo,jlo) to (ihigh,jhigh) shows a typical region that can be accessed or

modified with the global array routines. Vertical dashed lines show the decomposition
of the global array across 14 processes. The global array has dimensions dim1 by dim2.



/* We make GA a pointer to this structure so that users always
   have a pointer, never the actual structure */
typedef struct _GA {
    MPI_Win      ga_Win;
    MPI_Win      lock_win;
    /* Datatype and size */
    MPI_Datatype dtype;
    int          dtype_size;
    /* sizes of the global array */
    int          dim1, dim2, chunk2;
} *GA;

Figure 6.3
Header file for global arrays. Additional information, such as the address and size of the local memory window, could be
stored here as well.

Table 6.7
C binding for routine to access window attributes

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val, int *flag)
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#include "ga.h"
int ga_create( MPI_Comm comm, int dim1, int dim2,
               MPI_Datatype dtype, GA *ga )
{
    GA       new_ga;
    int      size, chunk2, sizeoftype;
    MPI_Aint local_size;
    void     *ga_win_ptr;

    /* Get a new structure */
    new_ga = (GA)malloc( sizeof(struct _GA) );
    if (!new_ga) return 0;

    /* Determine size of GA memory */
    MPI_Comm_size( comm, &size );
    chunk2 = dim2 / size;
    /* Require size to exactly divide dim2 */
    if ((dim2 % size) != 0) MPI_Abort( comm, 1 );
    MPI_Type_size( dtype, &sizeoftype );
    local_size = dim1 * chunk2 * sizeoftype;

    /* Allocate memory my ga_win and create window */
    MPI_Alloc_mem( local_size, MPI_INFO_NULL, &ga_win_ptr );

    MPI_Win_create( ga_win_ptr, local_size, sizeoftype,
                    MPI_INFO_NULL, comm, &new_ga–>ga_win );

    /* Create critical section window */
    MPE_Mutex_create( comm, size, &new_ga–>lock_win );

    /* Save other data and return */
    new_ga–>dtype      = dtype;
    new_ga–>dtype_size = sizeoftype;
    new_ga–>dim1       = dim1;
    new_ga–>dim2       = dim2;
    new_ga–>chunk2     = chunk2;
    *ga                = new_ga;

    return 1;
}



Figure 6.4
Code to create a global array
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Table 6.8
Fortran binding for routine to access window attributes

MPI_WIN_GET_ATTR(win, win_keyval, attribute_val, flag, ierror)
           integer win, win_keyval, ierror
           integer(kind=MPI_ADDRESS_KIND) attribute_val
           logical flag

Table 6.9
C++ binding for routine to access window attributes

bool MPI::Win::Get_attr(const Win& win, int win_keyval,
              void* attribute_val) const

#include "ga.h"
int ga_free( GA ga )
{
    int flag;
    void *ga_win_ptr;

    MPI_Win_get_attr( ga–>ga_win, MPI_WIN_BASE, &ga_win_ptr,
                       &flag );
    if (!flag) return 1;
    MPI_Win_free( &ga–>ga_win );
    MPE_Mutex_free( &ga–>lock_win );
    MPI_Free_mem( ga_win_ptr );

    free (ga);
    return 0;
}

Figure 6.5
Code to free a global array
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An alternative to using a GA structure is to use the MPI window object, specifically ga_win, and use window attributes to 
store the rest of the data. We will see an example of this approach in Section 6.5.

6.4.2—
Put and Get

The routines for ga_put and ga_get are relatively simple. The code for ga_put is shown in Figure 6.6; ga_get is very 
similar. The basic algorithm is as follows:

1. Determine the rank of process holding the leftmost column to update ga_put) or get (ga_get).

2. Begin an access epoch for that rank.

3. For each column of data to be updated or fetched from that target process, perform the RMA (put or get) operation.

4. Complete the RMA.

5. Continue to the next rank until the last specified column (jhigh) has been reached.



For simplicity, these routines put or get one column of data at a time; a more sophisticated implementation would check for 
special cases such as entire columns or use an MPI datatype created with MPI_Type_vector to access all of the required 
columns on a remote process with a single RMA call. Using an MPI datatype eliminates the for loop and replaces a set of 
MPI_Put or MPI_Get operations with a single MPI_Put or MPI_Get.

These routines have two tricky parts. The first is the computation of the address of the buffer to pass to the RMA routines. The 
code presented here assumes that a char * pointer is in bytes (this is common but not universal and is not required by the C 
standard). The other tricky part is the calls to MPE_Mutex_lock and MPE_Mutex_unlock. These routines establish a 
critical section (mutex is short for "mutual exclusion") and are necessary to ensure proper operation when ga_acc and 
ga_read_inc are used. We will see how to implement these routines below in Section 6.6. We will call these mutex locks or 
mutual exclusion locks to emphasize that they are different from the locks provided by MPI_Win_lock.

In these examples, an assert argument of MPI_MODE_NOCHECK is provided to MPI_Win_lock. This value may be used 
when it is known that no other process will attempt to call MPI_Win_lock on the same window object and process. In our 
case, because of the call to MPE_Mutex_lock, we know that no other process can
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#include "ga.h"
int ga_put( GA ga, int ilo, int ihigh, int jlo, int jhigh,
             void *buf )
{
    int      jcur, jfirst, jlast, j, rank;
    MPI_Aint disp;

    jcur = jlo;
    while (jcur <= jhigh) {
        rank   = (jcur - 1) /ga–>chunk2;
        jfirst = rank * ga–>chunk2 + 1;
        jlast  = (rank + 1) * ga–>chunk2;
        if (jlast > jhigh) jlast = jhigh;

        MPE_Mutex_lock( rank, ga–>lock_win );

        /* Using lock_shared allows get accesses to proceed */
        MPI_Win_lock( MPI_LOCK_SHARED, rank, MPI_MODE_NOCHECK,
                       ga–>ga_win );
        for (j=jcur; j<=jlast; j++) {
            disp = (j - jfirst) * ga–>dim1 + (ilo - 1);
            MPI_Put( buf, ihigh - ilo + 1, ga–>dtype,
                      rank, disp, ihigh - ilo + 1, ga–>dtype,
                      ga–>ga_win );
            buf = (void *) ( ((char *) buf) +
                             (ihigh - ilo + 1) * ga–>dtype_size );
        }
        MPI_Win_unlock( rank, ga–>ga_win );

        MPE_Mutex_unlock( rank, ga–>lock_win );
        jcur = jlast + 1;
    }
    return 0;
}

Figure 6.6
The code for ga_put
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call MPI_Win_lock for this process and window. The MPI_Win_lock and MPI_Win_unlock calls in this case are used 
only to complete the RMA operations between them.

6.4.3—
Accumulate

The global array version of accumulate, ga_acc, is a bit more interesting. In the Global Arrays library, ga_acc is both one 
sided and atomic. By atomic, we mean that the action is indivisible; if there are multiple accumulate operations to the same part 
of a global array, all elements contributed by a single ga_acc operation are accumulated before another ga_acc operation is 
allowed to modify any of the same elements of the global array. To implement this, we first acquire all of the mutual exclusion 
locks that we are going to need and then perform the accumulate operations. We can release the mutual exclusion locks as we 
complete the accumulate operations in each window. The code for ga_acc is shown in Figure 6.7.

It is often dangerous for a routine to depend on acquiring several mutexes, as ga_acc does here. In the general case, if there 
are several processes each of which needs several mutexes, each process may acquire one of the mutexes needed by the others 
and then wait forever for one of the other mutexes. This is the dining philosophers problem, where processes are replaced by 
philosophers and mutexes by forks, with each philosopher needing two forks to eat; if each philosopher siezes a fork, the 
philosophers starve, each waiting for another the relinquish a fork.

The current code does not suffer from this problem because the mutexes are acquired in strict rank-increasing order: if a 
process requires several mutexes, it either acquires all that it needs, or blocks because a process has gotten the mutex ahead of 
it. If it has blocked, it cannot interfere with the success of the process that already holds the mutex. However, if we made major 
changes to our library, such as providing more general decompositions of the global array among the processes, this algorithm 
would have to be reevaluated.

To implement the remaining parts of our simple global array library, we will need to discuss the implementation of mutexes. 
We will use a fetch-and-add operation to implement a mutex.

6.5—
Another Version of NXTVAL

In Using MPI [32], Section 7.1.2, we introduced the NXTVAL routine. This routine provided a shared counter; any process 
could request a value from this counter, which was then incremented. This is a "fetch-and-add" operation, a common build-

Page 195

#include "ga.h"
int ga_acc(GA ga, int ilo, int ihigh, int jlo, int jhigh, void *buf)
{
    int      jcur, jfirst, jlast, j, rank, rank_first, rank_last;
    MPI_Aint disp;

    /* In order to ensure that the entire update is atomic, we must
       first mutex-lock all of the windows that we will access */
    rank_first = (jlo - 1) / ga–>chunk2;
    rank_last  = (jhigh - 1) / ga–>chunk2;
    for (rank = rank_first; rank <= rank_last; rank++) {
        MPE_Mutex_lock( rank, ga–>lock_win );
    }

    jcur = jlo;
    while (jcur <= jhigh) {
        rank   = (jcur - 1) /ga–>chunk2;
        jfirst = rank * ga–>chunk2 + 1;
        jlast  = (rank + 1) * ga–>chunk2;
        if (jlast > jhigh) jlast = jhigh;

        MPI_Win_lock( MPI_LOCK_SHARED, rank, MPI_MODE_NOCHECK,
                       ga–>ga_win );
        for (j=jcur; j<=jlast; j++) {



            disp = (j - jfirst) * ga–>dim1 + (ilo - 1);
            MPI_Accumulate( buf, ihigh - ilo + 1, ga–>dtype,
                     rank, disp, ihigh - ilo + 1, ga–>dtype,
                     MPI_SUM, ga–>ga_win );
            buf = (void *) ( ((char *)buf) +
                     (ihigh - ilo + 1) * ga–>dtype_size );
        }
        MPI_Win_unlock( rank, ga–>ga_win );

        MPE_Mutex_unlock( rank, ga–>lock_win );
        jcur = jlast + 1;
    }
    return 0;
}

Figure 6.7
Code for global array accumulate. Note that all target processes are locked with MPE_Mutex_lock before any is updated.
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ing block for certain types of distributed algorithms. The versions presented in UsingMPI used point-to-point message passing 
and required either a separate process or thread or periodic polling by one process. In this section, we will see how to 
implement a fetch-and-add operation using RMA.

Our first attempt might look something like the following:

/* This code is erroneous */
int one = 1;
MPI_Win_create ( . . ., &win );
. . .
MPI_Win_lock( MPI_LOCK_EXCLUSIVE, 0, 0, win );
MPI_Get ( &value, 1, MPI_INT, 0, 0, 1, MPI_INT, win );
MPI_Accumulate( &one, 1, MPI_INT,
                 0, 0, 1, MPI_INT, MPI_SUM, win );
MPI_Win_unlock ( 0, win );

However, this would not be correct. There are two problems. First, the MPI Standard explicitly prohibits accessing (with 
MPI_Get or a local load) and updating (with either MPI_Put or MPI_Accumulate) the same location in the same access 
epoch (the time between two MPI_Win_fence calls or MPI_Win_lock and MPI_Win_unlock). Even if the MPI 
Standard permitted overlapping accesses by MPI_Accumulate and MPI_Get, these functions are nonblocking and can 
complete in any order as long as they complete by the time MPI_Win_unlock returns. The MPI Standard does not specify an 
order in which RMA operations must complete.

In some implementations, these operations may complete in the order that they appear, particularly on loosely coupled systems 
with no shared-memory hardware support. On other systems, enforcing an ordering may be expensive, and hence the MPI 
Forum decided not to require it (also see Section 4.3.2). For applications such as the ghost-point exchange in Section 5.6.1, 
ordering is not required, and, as mentioned in Section 4.2, enforcing an ordering can reduce performance. However, for 
operations such as fetch and add, the lack of ordered operations is inconvenient. Specifically, the lack of ordering means that 
loosening the access restrictions to allow overlapping access from the same origin process isn't sufficient to allow us to use the 
above code to implement fetch and add.

Because of the very weak synchronization provided by MPI_Win_lock and MPI_Win_lock and the restrictions on 
overlapping access to memory windows by RMA operations, it turns out to be surprisingly hard to implement a fetch and add 
operation using the MPI RMA operations. We will present two solutions, but first we will start with another approach that 
doesn't work. Understanding why it
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doesn't work will provide a better understanding of MPI_Win_lock and MPI_Win_unlock.

We will present the solutions as part of an MPI extension library we call MPE. These functions are not part of the MPI standard 
but are designed to utilize any MPI implementation.

6.5.1—
The Nonblocking Lock

An obvious approach for implementing fetch and add is to use two locks: one is used to complete the MPI_Get and, in a 
separate step, the MPI_Accumulate operations, and the other is used to establish a critical section. Only one process is 
allowed to be ''in" the critical section at any time; in shared-memory code it is common to use locks to implement critical 
sections. Thus, at first glance, it looks like we could use a window object where rank 0 contained a single integer that was 
accessed with MPI_Get and MPI_Accumulate, and where a lock on rank 1 was used solely to provide the critical section. 
The code for NXTVAL might then look like that in Figure 6.8.

But this code will not work because MPI_Win_lock, except when called with the target rank the same as the rank of the 
calling process, may be nonblocking. That is, just as the MPI_Put, MPI_Get, and MPI_Accumulate operations are 
nonblocking, so may MPI_Win_lock be nonblocking. All the MPI_Win_lock call does is to establish an access epoch, 
indicating that RMA calls on the specified window object and rank may be made, until the matching MPI_Win_unlock. If 
the lock type is MPI_LOCK_EXCLUSIVE, it also ensures that the RMA operations are performed atomically with respect to 
other processes at the target.

Note that when MPI_Win_lock is called with the rank of the calling process (so the lock is being acquired for the local 
memory window), the MPI Standard specifies that MPI_Win_lock must block until the lock is acquired. This is because, 
when using passive target RMA operations, you must call MPI_Win_lock and MPI_Win_unlock around any local loads 
and stores. Since the local loads and stores may happen at any time, the MPI_Win_lock call in this particular case must block 
until the lock is acquired. But in all other cases, MPI_Win_lock may be nonblocking.

6.5.2—
A Nonscalable Implementation of NXTVAL

How can we implement a fetch-and-add operation using RMA? Here is one simple algorithm. The value of the counter is the 
sum of the contributions from each process. Since a process always knows the sum of its own contributions, a process needs 
only get the contributions from all other processes and add that to its own.
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/* Erroneous code */
int MPE_Counter_nxtval( MPI_Win counter_win, int *value )
{
    int one = 1;

    /* Acquire access to the counter */
    MPI_Win_lock( MPI_LOCK_EXCLUSIVE, 1, 0, counter_win );

    /* Once we get the lock, we can fetch the counter value */
    MPI_Win_lock( MPI_LOCK_SHARED, 0, MPI_MODE_NOCHECK, counter_win );
    MPI_Get( value, 1, MPI_INT, 0, 0, 1, MPI_INT, counter_win );
    MPI_Win_unlock( 0, counter_win );

    /* And update the value */
    MPI_Win_lock( MPI_LOCK_SHARED, 0, MPI_MODE_NOCHECK, counter_win );
    MPI_Accumulate( &one, 1, MPI_INT, 1, 0, 1, MPI_INT, MPI_SUM,
                     counter_win );
    MPI_Win_unlock( 0, counter_win );

    /* Release the counter */
    MPI_Win_unlock( 1, counter_win );
    return 0;



}

Figure 6.8
An (erroneous) attempt to implement NXTVAL using two locks

This suggests that instead of a single integer for the counter, we use an array that has one element for each participating 
process. We will use an array of integers on the process with rank 0. The ith element of this array will contain the contribution 
of the process with rank i to the counter. The algorithm for the process at rank i is then as follows:

1. Lock the window at rank zero.

2. Get all elements of the array except for the ith element (our rank).

3. Increment the ith element.

4. Unlock the window.
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Table 6.10
C routine for accessing the group of a window object

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

Table 6.11
Fortran routine for accessing the group of a window object

MPI_WIN_GET_GROUP(win, group, ierror)
           integer win, group, ierror

Table 6.12
C++ routine for accessing the group of a window object

MPI::Group MPI::Win::Get_group() const

5. Sum the elements in the array (except for the ith element); add the number of times this routine has been called (that is, the 
sum of contributions to the counter by this process).

This code is shown in Figure 6.9.

In this implementation of NXTVAL, we have chosen to store the additional information (myval_p, the pointer to the 
contributions from the local process to the counter) that we need in the window object itself. This approach allows us to 
illustrate how information may be cached on a window object. An alternative approach would be to define a mutex object that 
would contain fields for the window object, the size of the window object's group, the rank of the process in that group, and the 
sum of the contributions to the counter from this process.

To determine the number of processes in the window object's group, and the rank of the calling process in this group, we can 
access the window object's group with MPI_Win_get_group. This call returns a group that is the same as the group of the 
communicator that was used in creating the window object. Once we have this group, we can find the size and rank of the 
calling process by using MPI_Group_size and MPI_Group_rank, respectively. We free the group with 
MPI_Group_free. This example does not include the code to create the window object or initialize the window memory. 
Bindings for MPI_Win_get_group are shown in Tables 6.10, 6.11, and 6.12.
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extern int MPE_COUNTER_KEYVAL;
int MPE_Counter_nxtval( MPI_Win counter_win, int *value )
{
    MPI_Group group;
    int       rank, size, myval, flag, i, *val, one = 1;
    MPI_Aint *myval_p;

    MPI_Win_get_group( counter_win, &group );
    MPI_Group_rank( group, &rank );
    MPI_Group_size( group, &size );
    MPI_Group_free( &group );
    MPI_Win_get_attr( counter_win, MPE_COUNTER_KEYVAL, &myval_p,
                       &flag );
    myval = *myval_p;

    val = (int *)malloc ( size * sizeof(int) );
    MPI_Win_lock( MPI_LOCK_EXCLUSIVE, 0, 0, counter_win );
    for (i=0; i<size; i++) {
        if (i == rank)
            MPI_Accumulate( &one, 1, MPI_INT, 0, i, 1, MPI_INT,
                             MPI_SUM, counter_win );
        else
            MPI_Get( &val[i], 1, MPI_INT, 0, i, 1, MPI_INT,
                      counter_win );
    }
    MPI_Win_unlock( 0, counter_win );
    /* Add to our contribution */
    *myval_p = *myval_p + 1;

    /* Compute the overall value.
       Storing *myval_p into val[rank] and starting *value at zero
       would eliminate the if test */
    *value = myval;
    for (i=0; i<size; i++) {
        if (i != rank) *value = *value + val[i];
    }
    free ( val );
    return 0;
}

Figure 6.9
A nonscalable version of NXTVAL
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Table 6.13
C bindings for window object attribute routines (see Table 6.7 for MPI_Win_get_attr)

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,
              MPI_Win_delete_attr_function *win_delete_attr_fn, int *win_keyval,
              void *extra_state)

int MPI_Win_free_keyval(int *win_keyval)

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

6.5.3—
Window Attributes



One complication in the code in Figure 6.9 is the need to store the local contribution to the counter. In this code, we have stored 
this value in the counter window itself, using a window attribute. Window attributes are very similar to communicator 
attributes (see Section 9.4 and Using MPI [32], Section 6.2). Attributes allow information to be cached on a window object 
according to a keyval. The functions for window attributes are shown in Tables 6.13, 6.14, and 6.15.

With these functions, we can create a keyval (MPE_COUNTER_KEYVAL in our example) that is known only to the NXTVAL 
routines. We allocate an int to hold the local contribution to the counter and store the pointer to this value as the attribute 
associated with MPE_COUNTER_KEYVAL.

The code to create the MPI_Win for NXTVAL is shown in Figure 6.10. Note that we have used MPI_Alloc_mem to create 
the counter memory.

A Curious Feature

The MPI_Win_create_keyval routine contains a MPI_Win_copy_attr_fn. However, there is no circumstance when 
this routine would be called. For communicators and datatypes, the respective duplicate functions MPI_Comm_dup, MPI::
Comm::Clone, and MPI_Type_dup) are the only functions that cause a keyval's copy function to be invoked. But as we 
have mentioned before, the rules for overlapping accesses make any kind of "duplicate window" operation nearly useless. 
Thus, as the MPI Standard is currently written, the copy function provided when creating a keyval for a window object has no 
purpose.

If the MPI Standard were to be extended, it is possible that a MPI_Win_dup function could be defined, perhaps by loosening 
the restrictions on overlapping access to memory windows or by having MPI_Win_dup allocate new memory windows. In 
that case, a copy function would become important. By providing the copy func-
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Table 6.14
Fortran bindings for window object attribute routines (see Table 6.8 for MPI_Win_get_attr)

MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn, win_delete_attr_fn, win_keyval,
           extra_state, ierror)
           external win_copy_attr_fn, win_delete_attr_fn
           integer win_keyval, ierror
           integer(kind=MPI_ADDRESS_KIND)extra_state

MPI_WIN_FREE_KEYVAL(win_keyval, ierror)
           integer win_keyval, ierror

MPI_WIN_SET_ATTR(win, win_keyval, attribute_val, ierror)
           integer win, win_keyval, ierror
           integer(kind=MPI_ADDRESS_KIND) attribute_val

MPI_WIN_DELETE_ATTR(win, win_keyval, ierror)
           integer win, win_keyval, ierror

tion argument now, the MPI Forum has ensured that future extensions are not constrained.

Improving the NXTVAL Routine

One of the drawbacks of attaching all of the local data to a window object rather than a separate structure is that a user could 
erroneously delete the counter with MPI_Win_free rather than MPE_Counter_free. We can turn this drawback into an 
advantage by using the MPI_Win_delete_fn argument of the keyval. When the window object for the counter is freed, we 
want all of the memory that we have allocated to be freed. The code to do this is shown in Figure 6.11. With this code, a 
separate MPE_Counter_delete routine is



Table 6.15
C++ bindings for window object attribute routines (see Table 6.9 for MPI::Win::Get_attr)

int MPI::Win::Create_keyval(MPI::Win::Copy_attr_function* win_copy_attr_fn,
              MPI::Win::Delete_attr_function* win_delete_attr_fn,
              void* extra_state)

void MPI::Win::Free_keyval(int& win_keyval)

void MPI::Win::Set_attr(int win_keyval, const void* attribute_val)

void MPI::Win::Delete_attr(int win_keyval)
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extern int MPE_COUNTER_KEYVAL;

void MPE_Counter_create( MPI_Comm old_comm, MPI_Win *counter_win )
{
    int size, rank, *counter_mem, i, *myval_p;

    MPI_Comm_rank(old_comm, &rank);
    MPI_Comm_size(old_comm, &size);

    if (rank == 0) {
        MPI_Alloc_mem( size * sizeof(int), MPI_INFO_NULL,
                       &counter_mem );
        for (i=0; i<size; i++) counter_mem[i] = 0;
        MPI_Win_create( counter_mem, size * sizeof(int), sizeof(int),
                        MPI_INFO_NULL, old_comm, counter_win );

    }
    else {
        MPI_Win_create( NULL, 0, 1, MPI_INFO_NULL, old_comm,
                        counter_win );
    }
    /* Create my local counter */
    if (MPE_COUNTER_KEYVAL == MPI_KEYVAL_INVALID) {
        MPI_Win_create_keyval( MPI_WIN_NULL_COPY_FN,
                               MPI_WIN_NULL_DELETE_FN,
                               &MPE_COUNTER_KEYVAL, NULL );
    }
    myval_p = (int *)malloc( sizeof(int) );
    MPI_Win_set_attr( *counter_win, MPE_COUNTER_KEYVAL, myval_p );
}

Figure 6.10
Code to create the window object and counter memory used for NXTVAL
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int MPE_Counter_attr_delete( MPI_Win counter_win, int keyval,
                             void *attr_val, void *extra_state )
{
    int counter_flag, *counter_mem, *myval_p = (int *)attr_val;

    MPI_Win_get_attr( counter_win, MPI_WIN_BASE,
                      &counter_mem, &counter_flag );

    /* Free the memory used by the counter and local value */
    if (counter_flag && counter_mem)
        MPI_Free_mem( counter_mem );
    free( myval_p );

    return MPI_SUCCESS;
}

Figure 6.11
Routine to free memory allocated in NXTVAL, using the delete function on the keyval MPE_COUNTER_KEYVAL

unnecessary; the user may simply use MPI_Win_free on the counter window.

Another improvement is to replace the for loop of MPI_Get calls with a single MPI_Get using a datatype created with 
MPI_Type_indexed. The code in Figure 6.12 shows the use of the block_length argument to MPI_Type_indexed 
to define an efficient datatype for this transfer. The first block is of length rank (the number of members before the location 
that is accumulated into with MPI_Accumulate. The second block contains the number of remaining members after that 
location. Note that blens[0] will be zero for rank = 0 and blens[1] will be zero for rank = size - 1.

6.5.4—
A Scalable Implementation of NXTVAL

Our implementation of NXTVAL is correct but not scalable: for p processes, we need to read or modify p locations in remote 
memory and perform p – 1 local additions. This strategy is acceptable for small numbers of processes but is unworkable when 
the number of processes reaches hundreds or thousands. To develop a scalable implementation of NXTVAL, we look at the task 
of forming the sum of the contributions from each process. The most obvious way to improve the scalability is to use a tree, 
where the internal nodes of the tree hold the sums of the contributions of their children.

We can develop the algorithm recursively. Figure 6.13 shows the trees needed for
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int blens[2], disps[2];
MPI_Datatype get_type;

blens[0] = rank;
disps[0] = 0;
blens[1] = size - rank - 1;
disps[1] = rank + 1;
MPI_Type_indexed( 2, blens, disps, MPI_INT, &get_type );
MPI_Type_commit( &get_type );
 . . .
/* The following code replaces the RMA accesses in
   MPE_Counter_nxtval */
MPI_Win_lock( MPI_LOCK_EXCLUSIVE, 0, 0, counter_win );
MPI_Accumulate( &one, 1, MPI_INT, 0, rank, 1, MPI_INT,
                MPI_SUM, counter_win );
MPI_Get( &val[0], 1, get_type, 0, 0, 1, get_type, counter_win );
MPI_Win_unlock( 0, counter_win );

Figure 6.12
Using an indexed datatype to reduce the number of RMA calls



two processes (a) and four processes (b). The trees are stored in the local window on a single process; for concreteness in the 
discussion of the algorithm, we will assume that the tree is stored as an array that is contained in the local memory window on 
process 0. We describe below how the tree is represented in the array. In Figure 6.13(a), we can see that for process 1 to 
compute the value, it need only get the value that process 0 has contributed. Adding that to its own value gives it the value of 
the counter. By using MPI_Accumulate to add its component to the its element in the tree (the right child), process 1 
ensures that process 0 will get the correct value for the counter the next time process 0 executes a fetch and increment.

In Figure 6.13(b), the tree for four processes shows where the scalability comes from: Process 1 needs to read only two nodes 
(the right child of the root and its own sibling, process 0) and increment one node (the parent of processes 0 and 1). These 
operations are shown with black (MPI_Get) and grey (MPI_Accumulate) boxes.

The full algorithm follows. The root of each subtree contains the sum of the values of each leaf. This is applied recursively. 
Then to get the value of the counter, we need only get the values of the two children. Of the two children, one child will be an 
ancestor of the process and the other will not be an ancestor. For the child
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Figure 6.13
Fetch and increment trees for 2 processes (a)

and 4 processes (b), where process 1 is
performing the fetch and increment. In both

cases, the black boxes are read with MPI_Get
and the grey boxes are incremented with

MPI_Accumulate. The root box (shown with
slanted lines) is neither read nor updated. The

numbers under the leaf boxes indicate the number
of the process that contributes to that leaf.

Figure 6.14
Example showing scalable implementation of fetch and increment. Black boxes are read with
MPI_Get; grey boxes are incremented with MPI_Accumulate. The RMA accesses used

by process 5 are shown.

that is not an ancestor, we read its value with MPI_Get. For the child that is an ancestor, we get the value by recursively 
applying this algorithm to that child, and use MPI_Accumulate to increment the value of that child. Thus, to compute the 
sum, we need only add up the contributions from the sibling of the node, its parents, and the parent's siblings. This is shown in 
Figure 6.14. The code requires only a single lock and unlock, and for p processes, uses 2p – 2 words of memory and requires 
that log2p words be fetched with MPI_Get, log2p words be incremented with MPI_Accumulate, and log2p local additions 
be made.

Our code, particularly to set up the counter, is now more complex. We store the tree in an array, following these rules:

1. The root is at index zero.



2. For any node, the left child is at index (node + 1) and the right child is at index (node + 2m–l–1), where the tree has m levels 
and the node is on level l. The
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Figure 6.15
Example showing how the tree in Figure 6.14 is mapped into an array. The numbers in the boxes

are the indexes into the array.

levels are defined recursively: the level of the children of a node is one greater than the level of a node, and the level of the root 
is zero. The level of the tree is given by , when there are p processes.

This mapping of the tree onto an array for the tree in Figure 6.14 is shown in Figure 6.15. That tree has five levels, numbered 
from zero to four.

For a process of rank i, we thus need to access only the nodes on the path from the root to the leaf representing that process. We 
place these indices into two integer arrays: get_idx holds the indices of the entries that we need to get, and acc_idx holds 
the indices of the entries that we need to add one to. The code to determine these values is shown in Figure 6.16. For Fortran 
programmers, the expression mask <<= 1 means "shift left by one" and is equivalent to the Fortran code 
mask = mask * 2.

Since we have these arrays, we can build datatypes with them that allow us to use a single MPI_Get and MPI_Accumulate 
call as follows:

MPI_Type_create_indexed_block( level, 1, get_idx, MPI_INT,
                               &get_type );
MPI_Type_create_indexed_block( level, 1, acc_idx, MPI_INT,
                               &acc_type );
MPI_Type_commit( &get_type );
MPI_Type_commit( &acc_type );

The code that we have shown applies only when the number of processes is a power of two. The modifications to allow this 
code to work with any number of processes are straightforward and left to the reader.
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/* Get the largest power of two smaller than size */
mask = 1;
while (mask < size) mask <<= 1;
mask >>= 1;

/* Find the path to the leaf from the root */
level = 0;
idx   = 0;
while (mask > 1) {
    if (rank < mask) {
         /* Go left */
         get_idx[level] = idx + mask;
         acc_idx[level] = idx + 1;
         idx = idx + 1;
    }
    else {
         /* Go Right */



         rank           = rank - mask;
         get_idx[level] = idx + 1;
         acc_idx[level] = idx + mask;
         idx = idx + mask;
    }
    level ++;
    mask <<= 1;
}

Figure 6.16
Code to find the path through the tree for the counter value

6.6—
An RMA Mutex

For many operations, it is important to be able to establish a critical section or mutual exclusion among the processes. With a 
small modification to the MPE_Counter_nxtval routine, we can implement such an operation. We change 
MPE_Counter_nxtval so that the value added to the counter is the third argument to the routine, rather than always being 
one. This simply means changing the first parameter in the call to MPI_Accumulate to point to the value to add, and 
changing

*myval_p = *myval_p + 1;

to
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*myval_p = *myval_p + increment;

Call this new routine MPE_Counter_inc_simple. With this simple change, we can implement a simple mutex as follows:

void MPE_Mutex_lock_simple( MPI_Win win )
{
    int value;
    MPE_Counter_inc_simple( win, &value, 1 );
    while (value != 0) {
        MPE_Counter_inc_simple( win, &value, -1 );
        MPE_Counter_inc_simple( win, &value, 1 );
    }
}

What this does is continually try to add one to the counter. If the value returned was zero, it returns. Now, any other attempt to 
acquire a mutex on the same window (window object and rank) will return one (or greater, if several processes are trying to 
acquire the mutex). Otherwise, it subtracts one from the counter (ignoring the returned value) and calls 
MPE_Counter_inc_simple to get the current value and add one to the counter. The routine to unlock the mutex is even 
simpler; we need only decrement the counter:

void MPE_Mutex_unlock_simple( MPI_Win win )
{
    int value;
    MPE_Counter_inc_simple( win, &value, -1 );
}

These implementations are very simple and have their drawbacks. But they are correct and reliable. The implementation of fast, 
fair, and scalable mutexes and other shared data structures is a major area of study; see [2, 60, 93] for some examples of the 
issues that arise in different environments.



For the Global Arrays library, we need a slightly more general version of these mutex routines. We need a separate mutex for 
each process in the window. Where we used process 0 to hold the fetch-and-add tree in MPE_Counter_nxtval, we 
generalize this to use a separate tree on each process of the window; this provides a separate fetch-and-add counter on each 
process. We define a new routine MPE_Counter_inc by adding a rank argument that indicates which process to perform a 
fetch-and-add on, and define a MPE_Mutex_lock and MPE_Mutex_unlock that also take a rank argument as the first 
argument; the window that is used for the fetch-and-increment
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is the second argument. Finally, we are ready to define MPE_Mutex_create. This routine creates a window object that 
contains a fetch-and-increment tree at the first size processes in the window, where size is the second argument and the 
communicator used to create the window object is the first argument. MPE_Mutex_create returns the new window object 
as the third argument.

6.7—
The Rest of Global Arrays

Now that we have a scalable fetch and increment and a mutex routine, we can complete our implementation of our simplified 
Global Arrays library.

6.7.1—
Read and Increment

The ga_read_inc is a fetch and increment operation. We have seen in Section 6.5 that we cannot simply use 
MPI_Get and MPI_Accumulate to implement a fetch and increment. In addition, our solution used multiple memory 
locations for a single counter. Obviously, we cannot use this approach for a global array with many elements. Our solution is to 
use the MPE_Mutex_lock and MPE_Mutex_unlock to establish a critical section around any access to the global array, 
whether by ga_put, ga_get, or ga_acc. The window object ga–>lock_win holds the window used to implement the 
mutual exclusion; this is the sole purpose of this window object. Note that if we did not allow ga_read_inc to modify an 
arbitrary member of the global array and did not require atomicity of the ga_acc operation, we would not need the second 
MPI window object ga–>lock_win. The code for ga_read_inc is shown in Figure 6.17. The only interesting part of this 
code is the computation for the rank of the process holding the designated element and the displacement of that element in the 
local window (see Using MPI [32], Appendix E, for a discussion about the computation).

Another approach is to use a single mutex for all accesses to the global array, rather than having one for each local window 
(that is, there are as many locks as there were processes in the communicator with which the window object was created). The 
approach that we are taking is more scalable, since nonoverlapping operations on different processes can occur concurrently.

6.7.2—
Mutual Exclusion for Global Arrays

Like many libraries that provide shared objects, the Global Arrays library provides routines to create, use, and destroy mutexes 
for mutual exclusion. Once these mutexes are created, they can be used to lock and unlock access to data or code.
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#include "ga.h"
int ga_read_inc( GA ga, int i, int j, int inc )
{
    int buf, rank;
    MPI_Aint disp;

    rank = (j - 1) / ga–>chunk2;

    /* disp depends on the displacement unit being sizeof(int) */
    disp = (j - 1 - (rank * ga–>chunk2)) * ga–>dim1 + i - 1;

    MPE_Mutex_lock( rank, ga–>lock_win );

    MPI_Win_lock( MPI_LOCK_SHARED, rank, MPI_MODE_NOCHECK,



                  ga–>ga_win );
    MPI_Get( &buf, 1, MPI_INT, disp, 1, MPI_INT, rank, ga–>ga_win );
    MPI_Win_unlock( rank, ga–>ga_win );

   MPI_Win_lock( MPI_LOCK_SHARED, rank, MPI_MODE_NOCHECK,
                 ga–>ga_win );
   MPI_Accumulate( &inc, 1, MPI_INT,
                   disp, 1, MPI_INT, rank, MPI_SUM, ga–>ga_win );
   MPI_Win_unlock( rank, ga–>ga_win );

   MPE_Mutex_unlock( rank, ga–>lock_win );

   return buf;
}

Figure 6.17
Code for read and increment, using the MPE mutex routines
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The implementation of these mutexes is based on the MPE_Mutex_lock introduced in the preceding section.

To provide the best scalability, we place only one mutex per local window. If the number of requested mutexes is larger than 
the size of MPI_COMM_WORLD, we create enough window objects to provide one mutex per process per window object. This 
code, as well as the code to lock a particular mutex, is shown in Figure 6.18.

6.7.3—
Comments on the MPI Version of Global Arrays

The absence of a read-modify-write operation or of ordered RMA operations makes the implementation of a Global Array 
library less straightforward than it would be if MPI RMA provided those operations. Furthermore, it is not clear yet whether the 
MPI RMA operations will be implemented efficiently enough to provide a fast enough implementation of libraries such as 
Global Arrays, particularly when mutual exclusion is needed. In addition, operations such as fetch and increment, while very 
valuable, are not the most powerful [37]; operations such as compare and swap provide more powerful building blocks. This is 
one area where enhancements to the MPI Standard may be necessary.

6.8—
Differences between RMA and Shared Memory

To understand the similarities and differences between RMA and shared-memory programming, it is helpful to contrast MPI 
window objects with shared-memory approaches that involve separate processes (rather than separate threads in a single 
process). There are two widely used and relatively portable models in Unix. One uses mmap (memory map) and fork (create a 
new process), and the other uses shmget (shared memory get) and shmat (shared memory attach).2 In both cases, the shared 
memory is a new region of memory, not one that exists in the application already. In other words, it is similar to requiring that 
all shared memory be allocated with MPI_Alloc_mem.

The most significant difference, however, is in how the memory is accessed. There are no separate routines to put/get/
accumulate with this shared memory; it is part of the address space of the process and can be accessed with the normal 
language facilities. For example, Figure 6.19 shows one way for a process to create a 4kByte

2 None of these approaches is entirely portable. The version shown in Figure 6.19 relies on using mmap without a real file; 
versions that use shmat often run into limits on the amount of available shared memory and race conditions in managing shared-
memory segments.
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#include "ga.h"
/* Instead of using a static variable, we could attach these to
   a communicator, using a communicator attribute */
static MPI_Win *GA_mutex_wins = 0;
static int      GA_mutex_nwins = 0;

int ga_create_mutexes( int num )
{
    int size, nwin, i;

    MPI_Comm_size( MPI_COMM_WORLD, &size );

    nwin = (num + size - 1) / size;

    GA_mutex_wins = (MPI_Win *)malloc( nwin * sizeof(MPI_Win) );
    if (!GA_mutex_wins) return 1;

    for (i=0; i<nwin; i++) {
        if (num < size) size = num;
        MPE_Mutex_create( MPI_COMM_WORLD, size, &GA_mutex_wins [i] );
        num -= size;
    }

    GA_mutex_nwins = nwin;
    return 0;
}

void ga_lock( int n )
{
    int size, rank, win_num;

    MPI_Comm_size( MPI_COMM_WORLD, &size );
    win_num = n / size;
    rank    = n % size;
    MPE_Mutex_lock( rank, GA_mutex_wins [win_num] );
}

Figure 6.18
Code for mutex creation and locking a mutex
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int     *memloc;
int     *shared_int, fd, am_parent;

fd = open("/dev/zero", O_RDWR);
memloc = (int *) mmap ( (caddr_t)0, 4096,
                         PROT_READ|PROT_WRITE|PROT_EXEC,
                         MAP_SHARED, fd, (off_t) 0);
shared_int = memloc;
*shared_int = 12;
am_parent = fork();
if (am_parent) {
    /* parent code */
}
else {
    /* child code */
    printf( "The shared integer is %d", *shared_int );
    *shared_int += 1;
}

Figure 6.19
Creating two process that communicate with shared memory



shared-memory region with mmap, use fork to create a second process, and have both processes access an int in this shared 
region.

The figure illustrates the differences between shared memory and the MPI RMA model. In MPI, no shared memory is visible to 
the user. Rather, with MPI_Put, MPI_Get, or MPI_Accumulate, the user can access memory in a defined memory 
window object in another process. This approach is both more general (it provides more flexibility over the memory that is 
accessible) and more limited (the user must use special routines to access memory).

In addition, MPI addresses the issue of data-access synchronization. Consider the following small change to the code in Figure 
6.19, in which the initial assignment *shared_int = 12 is moved into the parent code part of the if:

am_parent = fork();
if (am_parent) {
    /* parent code */
    *shared_int = 12;
}
else {
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    /* child code */
    printf( "The shared integer is %d", *shared_int );
    *shared_int += 1;
}

What value is printed out now? The answer is either 0 or 12, depending on exactly how fast the parent and the child run. This 
is a classic race condition, where the answer depends on a race between two threads of control (the two processes, in this case). 
To avoid this, one must add routines that ensure that data is available when needed. Many Unix implementations provide 
semop (semaphore operation) for this; they may also provide vendor-specific mutual-exclusion operations. In MPI, data 
synchronization is accomplished by completing an RMA routine using, for example, 
MPI_Win_fence or MPI_Win_unlock.

6.9—
Managing a Distributed Data Structure

To understand more clearly the differences between the MPI RMA model and shared memory, particularly the use of pointers 
in shared memory, let us look at the implementation of a list containing character keys and values that is distributed among all 
the processes in an MPI communicator. We first describe a shared-memory implementation of a routine that searches for a 
given key and returns the corresponding value. We then show what must be changed to implement the same operations using 
MPI RMA. We follow this by adding the ability to allow some processes to insert elements in the list while others may be 
searching the list, again showing both shared-memory and RMA implementations.

6.9.1—
A Shared-Memory Distributed List Implementation

In this section, we consider a list distributed among processes as shown in Figure 6.20. We also assume that the list is 
unchanging (i.e., that the list was constructed in an earlier phase of the program). For this section, the only operation on the list 
is thus a search through the list for a particular element. We describe the routine FindElm that searches through the list.

A shared-memory implementation is relatively simple. We start with a simple list element defined by the structure ListElm, 
shown in Figure 6.21. We also include a pointer to the head of the list and code to initialize the head to point to an empty 
element (this will simplify some code when we add the ability to modify the list). We assume that all processes can access the 
head pointer, as well as the character
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Figure 6.20
A example of a list distributed among four processes

typedef struct _listelm {
    struct _listelm *next;
    char *key, *value; } ListElm;
ListElm headval = { 0, 0, 0 };
static ListElm *head = &headval;

Figure 6.21
Definition of a list element and list pointer for the
shared-memory implementation of a distributed list.
These definitions are stored in the include file
list.h.

strings pointed at by the key and value fields in each list element (because they are all stored in shared memory).

The code to find an element in the list that matches a particular key is then quite simple, as shown in Figure 6.22. C 
programmers might reduce the code to three lines by replacing the while loop with a for loop that handles the initialization, 
test, and advancement to the next list element, but the form here is easier for Fortran programmers to follow and, more 
important, will be easier to compare with the MPI RMA version that we consider next.

6.9.2—
An MPI Implementation of a Distributed List

In MPI, we cannot directly access the list elements on other processes. Instead, we must use RMA operations to access them. In 
addition, we cannot use a simple pointer to identify a list element. In the distributed case, we need to know
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#include "list.h"

char *FindElm( const char *key )
{
    ListElm *ptr;

    ptr = head–>next;
    while (ptr) {
        if (strcmp( ptr–>key, key ) == 0)
            return ptr–>value;
        ptr = ptr–>next;
    }
    return 0;
}



Figure 6.22
Shared-memory version of FindElm for a static list

1. the rank of the process that holds the element, and

2. the displacement within the window of the element.

Thus, instead of using a pointer (ListELM *) to access elements, we define a structure RemotePointer, shown in Figure 
6.23. This structure also includes a local_pointer field. If the list element is on the local process, this field is the address 
of the list element and is used only on that process. It is not required, since the address of an element on a local process can be 
computed from the displacement, but having this data precomputed can improve the performance of the RMA implementation 
of FindElm. The header file that contains the definition of RemotePointer also contains a definition of a list element that 
replaces the pointer to the next list element (struct _listelm *next in the shared-memory case) with a 
RemotePointer. In addition, the list elements themselves contain character arrays for the key and value rather than 
pointers to key and value strings. These could also have been implemented by using RemotePointer to point to the 
storage locations in a memory window, but for many applications, it is both simpler and more efficient (in time if not in 
memory) to store these directly within the list element.3

The head of this list is slightly different, even though it looks nearly the same as the shared-memory case in Figure 6.21. In the 
shared-memory case, there was one head variable that every process could access directly. In the MPI RMA case, there

3 The same efficiency argument often holds in the shared-memory case as well, but for simplicity we have used the simplest and 
most general form in this case.
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#define MAX_KEY_SIZE 64
#define MAX_VALUE_SIZE 256

typedef struct {
    MPI_Aint disp;             /* Displacement in window */
    int      owner_rank;       /* Rank (process) */
    void     *local_pointer;   /* Local address of data pointed
                                  at (if data local) */
    } RemotePointer;
typedef struct {
    RemotePointer next;
    /* For simplicity, we make the key and value stay within the
       structure. In a more general case, they too could use
       RemotePointer */
    char          key[MAX_KEY_SIZE],
                  value[MAX_VALUE_SIZE];
    } ListElm;

/* The head starts on process 0 at displacement 0 */
static RemotePointer head = {0,0,0};

MPI_Datatype ListElm_type;

Figure 6.23
Header file Dlist.h for distributed list code. The local_pointer field is declared as void *
to provide a general "remote pointer;" however, in the code in these examples, we could also have used
ListElm *local_pointer.

are no shared variables; each process has (direct) access only to its own variables. In the RMA case, each process has its own 
head variable. This is defined as a RemotePointer that points at displacement zero on process zero. Thus, the RMA 
version of the distributed list always starts on process zero.



The last part of Dlist.h is an MPI datatype that will be used to access a list element (ListElm). Since a ListElm contains 
a remote pointer as well as character arrays, we use an MPI datatype to access a ListElm on a remote process. Not shown 
here is the list element that head points to; this is a ListElm on process 0 with displacement 0, and with 
key = "\relax0".

The code to construct this datatype is fairly simple. The only problem is how to handle the MPI_Aint field in the 
RemotePointer because there is no predefined MPI datatype corresponding to MPI_Aint, as discussed in Section 5.6.1 
(we do not need to transfer the void *local_pointer field, of course). We can use the
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function MPI_Type_match_size as we did in Section 5.6.1 to find the corresponding MPI datatype. An alternative that 
maintains portability is to use a tool such as GNU autoconf [51] to determine the appropriate datatype.

The rest of the ListElm_type datatype is constructed with the following code:

/* Create a type for the RemotePointer */
blens[0] = 1;
displs[0] = 0;
MPI_Type_match_size( MPI_TYPECLASS_INTEGER, sizeof(MPI_Aint),
                     &dtypes[0] );
blens[1] = 1;
MPI_Get_address( &head.disp, &disp_base );
MPI_Get_address( &head.owner_rank, &displs[1] );
displs[1] = displs[1] - disp_base;
dtypes[1] = MPI_INT;
MPI_Type_create_struct( 2, blens, displs, dtypes, &rempointer );

/* Create the datatype for ListElm */
dtypes[0] = rempointer;  blens[0] = 1;
dtypes[1] = MPI_CHAR;    blens[1] = MAX_KEY_SIZE;
dtypes[2] = MPI_CHAR;    blens[2] = MAX_VALUE_SIZE;
MPI_Type_create_struct( 3, blens, displs, dtypes,
                        &ListElm_type );
MPI_Type_free( &rempointer );
MPI_Type_commit( &ListElm_type );

This example takes advantage of the fact that in MPI, an object may be freed once the user no longer needs it explicitly. Any 
reference to the object by another MPI operation (in this case, the datatype ListElm_type) ensures that the object itself is 
not deleted until all references to it are freed (in this case, until ListElm_type is deleted).

With these preliminaries, we are ready to describe the RMA version of FindElm. The code in Figure 6.24 parallels the shared-
memory code, but with some important differences.

• Because we must use a MPI_Win_lock/MPI_Win_unlock to complete any MPI_Get operation, we get an entire list 
element, including the key and value, in a single operation, rather than first checking the key and then obtaining either the 
value (if the key matched) or the next pointer (if the key did not match). We
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also make a copy of the list element that we will look at. This is more efficient that using multiple lock/get/unlock operations.

• We get the remote list element into a local_copy. This local_copy is declared static so that we can return it as the 
value found by FindElm. This is a simple approach, but cannot be used if there are multiple threads per process.

• In the case where the data is local, we use the local_pointer field of the RemotePointer rather than either using 
MPI_Get on the local process or computing the local pointer from the window base and displacement.

• The end of the list is indicated by an owner_rank of –1. We use this rather than using a window displacement of zero 
(disp in RemotePointer) because a displacement of zero is a valid location.

6.9.3—
Handling Dynamically Changing Distributed Data Structures

How does our code change if the list can be updated and searched at the same time? Just as before, we start with shared-
memory code. Since the list can be updated by one thread while another thread is searching it, we may need to establish a 
critical section around the list. We start by defining an InsertElm routine that may be used to insert an element into the list; 
this code is shown in Figure 6.25. We assume that the list is sorted by key; the insert routine inserts the element into the correct 
location in the list. The code is straightforward; the while loop finds the pointer to the list elements before (lastptr) 
and after (ptr) the element to be inserted (here is where having head point to a first element helps; there is no special code for 
handling the head. No element is inserted if key is found. Note that a mutex lock is used around access to the list to prevent 
concurrent inserts from corrupting the list data structures. We do not define the routines lock_mutex and unlock_mutex; 
we simply assume that they exist for the shared-memory case. In addition, the function DupString is used to allocate space 
(in shared memory) for a string and copy the argument to that space; the implementation of this simple function is not shown. 
Finally, we assume that malloc may be used to allocate shared memory.

A DeleteElm routine has a similar form, with the code first finding the element (based on key) to remove, then linking 
around it and freeing the storage used by the deleted list element.

The FindElm routine for a dynamic list is slightly different from the static list version shown in Figure 6.22. In particular, if 
elements can be deleted as well as inserted, we cannot simply return the value element from a list entry, since that storage could 
be freed by another process executing DeleteElm. Instead, we make a copy of the value before returning it. Of course, this 
requires that the user free
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#include "Dlist.h"

char *FindElm( MPI_Win win, const char *key )
{
    static ListElm local_copy;
    ListElm        *local_copy_ptr;
    RemotePointer  ptr;
    int            my_rank;
    MPI_Group      win_group;

    /* my_rank could also be precomputed, of course */
    MPI_Win_get_group( win, &win_group );
    MPI_Group_rank( win_group, &my_rank );
    MPI_Group_free( &win_group );

    ptr = head;
    while (ptr.owner_rank >= 0) {
        /* Make sure we have the data */
        if (ptr.owner_rank != my_rank) {
            MPI_Win_lock( MPI_LOCK_SHARED, ptr.owner_rank, 0, win );
            MPI_Get( &local_copy, 1, ListElm_type,
                     ptr.owner_rank, ptr.disp, 1, ListElm_type, win );



            MPI_Win_unlock( ptr.owner_rank, win );
            local_copy_ptr = &local_copy;
        }
        else
            local_copy_ptr = (ListElm *)(ptr.local_pointer);

        if (strcmp( local_copy_ptr–>key, key ) == 0)
            return local_copy_ptr–>value;
        ptr = local_copy_ptr–>next;
    }
    /* Did not find key */
    return 0;
}

Figure 6.24
Code to find an element in an unchanging distributed list using RMA. Note that this code is not thread safe
because it uses a static variable (local_copy).
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#include "list.h"

extern char *DupString( const char * );

void InsertElm( const char *key, const char *value )
{
    ListElm *ptr, *last_ptr, *new_ptr;
    int     compare;

    /* Lock list, find insertion point, and insert element */
    lock_mutex();

    last_ptr = head;
    ptr      = head–>next;
    while (ptr) {
        compare = strcmp( ptr–>key, key );
        if (compare == 0) {
            /* Duplicate key. Ignore */
            unlock_mutex(); return; }
        if (compare > 0) {
            break;
        }
        last_ptr = ptr;
        ptr      = ptr–>next;
    }

    /* Create new element */
    if ( !(new_ptr = (ListElm *)malloc( sizeof(ListElm) )) )
        abort();
    new_ptr–>key   = DupString( key );
    new_ptr–>value = DupString( value );
    new_ptr–>next  = ptr;
    last_ptr–>next = new_ptr;

    unlock_mutex();
}

Figure 6.25
Shared-memory code to insert an element into a list
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#include "list.h"
extern char *DupString( const char * );

char *FindElm( const char *key )
{
    ListElm *ptr;
    char    *local_value;
    int     compare;

    lock_mutex( );
    ptr = head–>next;
    while (ptr) {
        compare = strcmp( ptr–>key, key );
        if (compare == 0) {
            local_value = DupString( ptr–>value );
            unlock_mutex( );
            return local_value;
        }
        else if (compare > 0)
            break;
        ptr = ptr–>next;
    }
    unlock_mutex( );
    return 0;
}

Figure 6.26
Shared-memory routine to find an element in a list that may be modified by other
processes

the result returned by FindElm when it is no longer needed. The other change is the addition of lock_mutex and 
unlock_mutex calls to ensure that the list is not modified by another process while FindElm is searching through the list. 
The code for the shared-memory version of FindElm for dynamic lists is shown in Figure 6.26.4

These two shared-memory codes are fairly simple, but they illustrate one of the more subtle issues in writing parallel programs. 
In both InsertElm and FindElm, a

4 If write ordering is enforced, that is, stores to memory occur in the order they are written and are not reordered by the compiler 
or the memory system hardware (see Section 4.3.2), we may be able to avoid locks in the FindElm routine by carefully 
ordering the updates to the list elements inInsertElm. However, such code is fragile because write ordering is not a 
requirement of C, C++, or Fortran, and code that runs on one system may fail on another.
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single mutex lock is used to protect the list. As a result, only one process at a time can use the list. This restriction makes this 
code nonscalable: as more processes are added, the program may not run faster. Note that if there is no DeleteElm, only an 
InsertElm, we do not need to use a mutex around the FindElm routine because we can ensure that the list is always valid 
(this is why the last pointer operation is the assignment to last_ptr–>next in InsertElm).

6.9.4—
An MPI Implementation of a Dynamic Distributed List

The RMA version of the dynamic list routines is very similar to the shared-memory version, with the same changes that we 
made for a static list (that is, we read the entire list element into a copy).

Our first task is to provide a way to dynamically allocate memory to be used by InsertElm. Since MPI provides no routines 
to allocate memory from a local memory window, we must write our own. Fortunately, we have chosen to use fixed-sized list 
elements, so we can use a simple list allocator. The following code shows the initial list element allocation and window 
creation.



ListElm *avail;
MPI_Alloc_mem( MAX_LOCAL_LIST * sizeof(ListElm),
               MPI_INFO_NULL, &avail );
for (i=0; i<MAX_LOCAL_LIST; i++) {
    avail[i].next.local_pointer = avail + i + 1;
    avail[i].next.disp          = i;
    }
avail[MAX_LOCAL_LIST-1].next.local_pointer = 0;
MPI_Win_create( avail, MAX_LOCAL_LIST * sizeof(ListElm),
                sizeof(ListElm), . . . );

With this code, allocating an element simply requires using avail and resetting avail to avail–>next.
local_pointer. We use avail[i].next.disp to hold the displacement in the local window of that item (not the next 
item) while in the avail list.

The major change in FindElm is the use of MPE_Mutex_lock and MPE_Mutex_unlock to provide the mutex needed to 
safely read the list, just as lock_mutex and unlock_mutex were used in the shared-memory version. These use a separate 
window object, winlock, which is created with MPE_Mutex_create. Similarly, InsertElm also requires a mutex to 
modify the list safely. In the RMA versions, shown in Figures 6.27, 6.28, and 6.29, a single mutex is used. As this is not 
scalable, we could use an approach similar to the one used in the Global Arrays library earlier
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in this chapter—one mutex per process. This allows multiple processes to access the list at the same time, as long as they are 
accessing parts of the list that are on different processes. Care must be taken to avoid a deadly embrace if this approach is used, 
since it may be necessary to acquire several locks. Note that because we are using MPE_Mutex_lock to ensure exclusive 
access to the memory window, we can use the assert value MPI_MODE_NOCHECK in the call to MPI_Win_lock.

There are some important differences between the RMA versions as well. In the static (unchanging) list version of FindElm 
(Figure 6.24), the MPI_Win_lock and MPI_Win_unlock calls surround only the MPI_Get call (in order to provide an 
access epoch and to complete the MPI_Get call). In the dynamic list case shown in Figure 6.27, the lock must surround both 
remote and local accesses to the memory, because in the case where a remote process updates the local window, the update 
may not become visible to the local process until it begins an access epoch. In the static case, there were no updates, and hence 
no local access epochs were necessary.

The code for inserting an element, shown in Figures 6.28 and 6.29, has more differences with its shared-memory counterpart 
than FindElm does. Most important, the RMA version of InsertElm reads an entire element and saves the previous 
element (in local_copy_last), with RemotePointer last_ptr the RMA pointer to the previous element. When an 
element is inserted, we replace the entire list element, not just the RemotePointer next field in it. This is done to keep the 
example code simple. Note that by using a displacement unit of sizeof(ListElm), we simplify the displacement 
calculations but lose the flexibility in making updates to specific parts of a ListElm.

6.10—
Compiler Optimization and Passive Targets

In Section 5.7.5 we discussed the danger that a value updated in memory may be ignored because the compiler is using a copy 
placed in a register. The same issues apply to passive target synchronization. Fortran programmers should consider either using 
a volatile statement, where available, or passing the local memory window to a dummy or near-dummy routine (e.g., an 
MPE_Win_lock that takes the local window, as well as the window object, as an argument). However, C and C++ 
programmers don't need to use volatile, at least when the lock type is MPI_LOCK_EXCLUSIVE, since accesses to the 
local window still require using MPI_Win_lock and MPI_Win_unlock.
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#include "Dlist.h"
extern char *DupString( const char * );
extern MPI_Win winlock;

char *FindElm( MPI_Win win, const char *key )
{
    ListElm        local_copy, *local_copy_ptr;
    char           *local_value = 0;
    RemotePointer  ptr;
    int            my_rank;
    MPI_Group      win_group;

    /* my_rank could also be precomputed, of course */
    MPI_Win_get_group( win, &win_group );
    MPI_Group_rank( win_group, &my_rank );
    MPI_Group_free( &win_group );

    MPE_Mutex_lock( 0, winlock );
    ptr = head;

    while (ptr.owner_rank >= 0) {
        /* Make sure we have the data */
        MPI_Win_lock( MPI_LOCK_SHARED, ptr.owner_rank,
                      MPI_MODE_NOCHECK, win );
        if (ptr.owner_rank != my_rank) {
            MPI_Get( &local_copy, 1, ListElm_type,
                     ptr.owner_rank, ptr.disp, 1, ListElm_type, win );
            local_copy_ptr = &local_copy;
        }
        else
            local_copy_ptr = (ListElm *)(ptr.local_pointer);
        MPI_Win_unlock( ptr.owner_rank, win );

        if (strcmp( local_copy_ptr–>key, key ) == 0) {
            local_value = DupString( local_copy_ptr–>value );
            break;
        }
        ptr = local_copy_ptr–>next;
    }
    MPE_Mutex_unlock( 0, winlock );
    return local_value;
}

Figure 6.27
An RMA routine to find an element in a list that may be modified by other processes
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#include "Dlist.h"
ListElm *avail;
extern MPI_Win winlock;

void InsertElm( MPI_Win win, const char *key, const char *value )
{
    ListElm        local_copy, local_copy_last, *new_local_ptr;
    MPI_Aint       new_local_ptr_disp;
    RemotePointer  last_ptr, ptr;
    int            compare, my_rank;
    MPI_Group      win_group;

  /* my_rank could also be precomputed, of course */
     MPI_Win_get_group( win, &win_group );
     MPI_Group_rank( win_group, &my_rank );



     MPI_Group_free( &win_group );

     /* Lock list, find insertion point, and insert element */
     MPE_Mutex_lock( 0, winlock );

     ptr = head;
     while (ptr.owner_rank >= 0) {
         /* This code could use local_pointer as FindElm does, but this
            shorter version is used to reduce the size of the example */
         MPI_Win_lock( MPI_LOCK_SHARED, ptr.owner_rank,
                       MPI_MODE_NOCHECK, win );
         MPI_Get( &local_copy, 1, ListElm_type,
                  ptr.owner_rank, ptr.disp, 1,
                  ListElm_type, win );
         MPI_Win_unlock( ptr.owner_rank, win );

         compare = strcmp( local_copy.key, key );
         if (compare == 0) {   /* duplicate entry. Do nothing */
             MPE_Mutex_unlock( 0, winlock ); return; }
         if (compare > 0) {
             break;
         }
         /* Save entire list element that "last_ptr" points to */
         local_copy_last     = local_copy;
         last_ptr            = ptr;
         ptr                 = local_copy.next;
}

Figure 6.28
An RMA routine to insert an element in a list that may be modified by other processes: code to find
the insert location
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   /* Create new element. The new element must be allocated from
      the local memory window. Note that each process has its own
      list of available list elements */
   if (! (new_local_ptr = avail) ) MPI_Abort( MPI_COMM_WORLD, 1 );
   avail = (ListElm *)avail–>next.local_pointer;
   strcpy( new_local_ptr–>key, key );
   strcpy( new_local_ptr–>value, value );

   new_local_ptr_disp = new_local_ptr–>next.disp;
   new_local_ptr–>next = local_copy_last.next;
   /* Set the remote pointer field of the previous entry to point to
      the new entry */
   local_copy_last.next.owner_rank    = my_rank;
   local_copy_last.next.disp          = new_local_ptr_disp;
   local_copy_last.next.local_pointer =
           (my_rank == last_ptr.owner_rank) ? new_local_ptr : 0;

   MPI_Win_lock( MPI_LOCK_SHARED, last_ptr.owner_rank,
                 MPI_MODE_NOCHECK, win );
   MPI_Put( &local_copy_last, 1, ListElm_type,
            last_ptr.owner_rank, last_ptr.disp, 1, ListElm_type, win );
   MPI_Win_unlock( ptr.owner_rank, win );

   MPE_Mutex_unlock( 0, winlock );
}

Figure 6.29
An RMA routine to insert an element in a list that may be modified by other processes: code to insert the
element into the proper location



6.11—
Scalable Synchronization

A third approach may be used to synchronize MPI RMA operations. This approach is a more scalable version of 
MPI_Win_fence. Like MPI_Win_fence, it is an active target synchronization method. Unlike MPI_Win_fence, 
however, the approach is not collective over the group of the window object. Instead, these routines are called only for the 
processes that are origins, targets, or both for RMA operations.

From the grid ghost-point exchange used in Chapter 5 to introduce the RMA operations, it should be clear that collective 
synchronization is stronger than necessary. A process can continue past the ghost-point exchange once two things have 
happened: the RMA operations to the neighbors (that is, with the neighbors as targets) have completed, and any RMA 
operations targeting this process have also completed. The third MPI synchronization approach allows us to express this
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Table 6.16
C routines for scalable active target synchronization

int MPI_Win_start(MPI_Group to_group, int assert, MPI_Win win)

int MPI_Win_complete(MPI_Win win)

int MPI_Win_post(MPI_Group from_group, int assert, MPI_Win win)

int MPI_Win_wait(MPI_Win win)

degree of synchronization.

6.11.1—
Exposure Epochs

To understand this approach, we first introduce the concept of an exposure epoch. This is the period of time when a local 
window may be the target of RMA operations. In other words, it is the time when the local window is exposed to changes made 
by other processes. This is the counterpart to the access epoch first mentioned in Section 6.2. The routine MPI_Win_post 
begins an exposure epoch and MPI_Win_wait ends an exposure epoch for the local window. These calls take as an argument 
the window object whose local window is being exposed. In addition, MPI_Win_post takes an MPI group as an argument. 
This is the group of processes that will be making RMA operations with this local window as the target. We emphasize this in 
the argument list by using the name from_group for this group: it is the group from which RMA calls will be coming.

An access epoch is simply the period of time when a process is making RMA calls on a window object. Most of this chapter 
has discussed the use of MPI_Win_lock and MPI_Win_unlock to establish an access epoch for passive target 
synchronization. For active target synchronization, an access epoch is started with MPI_Win_start and completed with 
MPI_Win_complete. Just like MPI_Win_post, MPI_Win_start takes an MPI group as an argument; this group 
indicates the processes that will be targets of RMA calls made by this process. We emphasize this by using the name 
to_group in the argument list: it is the group to which RMA calls are being made. The bindings for all four routines are 
shown in Tables 6.16, 6.17, and 6.18.

6.11.2—
The Ghost-Point Exchange Revisited

We can rewrite the ghost-point exchange code from Section 5.6.1 by replacing the MPI_Win_fence calls that surround the 
RMA operations with combinations of MPI_Win_start, MPI_Win_post, MPI_Win_wait, and 
MPI_Win_complete. There
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Table 6.17
Fortran routines for scalable active target synchronization

MPI_WIN_START(to_group, assert, win, ierror)
           integer to_group, assert, win, ierror

MPI_WIN_COMPLETE(win, ierror)
          integer win, ierror

MPI_WIN_POST(from_group, assert, win, ierror)
           integer from_group, assert, win, ierror

MPI_WIN_WAIT(win, ierror)
          integer win, ierror

Table 6.18
C++ routines for scalable active target synchronization

void MPI::Win::Start(const MPI::Group& to_group, int assert) const

void MPI::Win::Complete(void) const

void MPI::Win::Post(const MPI::Group& from_group, int assert) const

void MPI::Win::Wait(void) const

are two parts to this. First, we must construct the groups for the MPI_Win_start and MPI_Win_post calls. In the code in 
Figure 5.10, the targets (neighbors) for the MPI_Put operations are top_nbr and bottom_nbr.

The code to create the group is simply

MPI_Win_get_group( win, &group );
ranks[0] = bottom_nbr;
ranks[1] = top_nbr;
MPI_Group_incl( group, 2, ranks, &nbr_group );
MPI_Group_free( &group );

(This code ignores the possibility that either bottom_nbr or top_nbr is MPI_PROC_NULL; in that case, the size of the 
group nbr_group must be reduced.) Because the ghost points are exchanged, this group is also the group of processes that 
are the origin processes for MPI_Put calls that target this process. Thus, the to_group of MPI_Win_start and the 
from_group of MPI_Win_post are the same in this case.
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Second, we replace the MPI_Win_fence that precedes the RMA operations in Figure 5.10 with

MPI_Win_post( nbr_group, 0, win );
MPI_Win_start( nbr_group, 0, win );

and we replace the MPI_Win_fence that follows the RMA operations with

MPI_Win_complete( win );
MPI_Win_wait( win );

6.11.3—
Performance Optimizations for Scalable Synchronization



The two calls that are used to initiate scalable synchronization for RMA (MPI_Win_start and MPI_Win_post) take an 
assert argument. This assert value can be used by an MPI implementation to provide improved performance in the same 
way that the assert argument to MPI_Win_fence can be used (see Section 5.8.2).

Three assert values may be used with MPI_Win_post. Recall that MPI_Win_post begins an exposure epoch for the 
local window; thus, assert values that tell the implementation about changes to the local window before or after the 
MPI_Win_post call may be helpful. The three assert values are the following:

MPI_MODE_NOSTORE: The local window was not updated by local stores (or local get or receive calls) since the last call to 
MPI_Win_complete.

MPI_MODE_NOPUT: The local window will not be updated by put or accumulate calls between this MPI_Win_post call 
and the matching MPI_Win_complete call.

MPI_MODE_NOCHECK: The matching MPI_Win_start calls have not been issued by any process that is an origin of RMA 
operations that have this process as the target. In addition, those MPI_Win_start calls must also specify 
MPI_MODE_NOCHECK as their assert value.

The only assert value defined for MPI_Win_start is MPI_MODE_NOCHECK, which can be used only when the matching 
MPI_Win_post calls on the target processes have already been called and have specified MPI_MODE_NOCHECK as part of 
their assert argument.

Unlike the MPI_Win_fence case, these assert values are less likely to be useful. For example, many programs will perform 
stores to the local window before beginning an exposure epoch with MPI_Win_post (eliminating MPI_MODE_NOSTORE as 
a valid assert value). Using MPI_Get instead of MPI_Put or MPI_Accumulate by the origin processes would allow 
MPI_MODE_NOPUT to be used as an assert value, but that is
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not a good reason to prefer MPI_Get over MPI_Put. The assert value MPI_MODE_NOCHECK requires some outside 
synchronization to ensure that the conditions for its use are met; these are similar to those needed for a ready-send (such as 
MPI_Rsend).

The info key no_locks may be used with a MPI_Win_create call if MPI_Win_lock and MPI_Win_unlock are never 
used with the created window object. Just as for programs that use MPI_Win_fence to complete RMA operations, this can 
be an important optimization.

6.12—
Summary

This chapter has covered two major topics: passive target RMA and scalable synchronization. The majority of the chapter has 
focused on passive target RMA: remote access without active cooperation by the target process. This provides a true one-sided 
operation, compared with the active target RMA introduced in Chapter 5 that relies on all processes, both origin and target, 
calling MPI_Win_fence. The passive target synchronization, using MPI_Win_lock and MPI_Win_unlock to define an 
access epoch, is designed to allow the widest portability and performance by an MPI implementation.

However, the looseness of the synchronization (the nonblocking lock) makes other operations more awkward, particularly read-
modify-write operations. We showed how to implement one of the most basic read-modify-write operations, a fetch-and-add, 
in several ways, including one that is relatively simple and another that is scalable but more complex. With a fetch-and-add, 
many important distributed data structures, such as queues, stacks, and lists, can be implemented. We used our implementation 
of fetch-and-add in two examples: a distributed array library and a distributed list. The distributed list example also allowed us 
to compare a shared-memory implementation with MPI RMA; this example will help users who wish to port an application to a 
distributed-memory system using MPI.



The third form of RMA synchronization defined by the MPI Standard is another form of active target synchronization, but one 
that identifies the target and origin processes for any RMA operation. This allows an MPI implementation to provide a 
synchronization mechanism that is as scalable as the application. We illustrated this by revisiting the ghost-point-exchange 
example introduced in Chapter 5, replacing calls to MPI_Win_fence with the scalable synchronization routines 
MPI_Win_post, MPI_Win_start, MPI_Win_complete, and MPI_Win_wait.
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7—
Dynamic Process Management

In this chapter we describe the MPI approach to the creation of new MPI processes by MPI processes. We also describe how 
separately started MPI applications can establish contact and exchange MPI messages with one another.

7.1—
Introduction

The MPI-1 Standard does not say anything about how processes are started. Process startup takes place outside an MPI 
program, and an MPI process calls MPI_Comm_size to find out how many processes were started and calls 
MPI_Comm_rank to find out which one it is. The number of processes is thus fixed no later than when MPI_Init returns.

MPI users asked that the MPI Forum revisit this issue for several reasons. The first was that workstation-network users 
migrating from PVM [24] to MPI were accustomed to using PVM's capabilities for process management. A second reason was 
that important classes of message-passing applications, such as client-server systems and task-farming jobs, require dynamic 
process control. A third reason was that with such extensions, it might be possible to write parts of the parallel-computing 
environment in MPI itself.

This chapter begins by discussing the MPI approach to creating new processes, continuing the discussion of 
MPI_Comm_spawn, begun in Section 2.4, with a new example. We also review communication between groups in an 
intercommunicator, both point to point (defined in MPI-1 but rarely used) and collective (new in MPI-2). Section 7.3 discusses 
how to connect two MPI programs, using the example of a computational program and a visualization program. The chapter 
concludes by discussing some of the reasons for the particular design of the MPI dynamic process routines.

7.2—
Creating New MPI Processes

The basics of MPI_Comm_spawn were introduced in Section 2.4, where we used the parallel copy example to illustrate how 
to spawn processes from an MPI program. Recall that MPI_Comm_spawn creates an intercommunicator containing as its two 
groups the spawning processes and the spawned processes. In this section we explore MPI_Comm_spawn in more detail by 
revisiting the matrix-vector multiplication program from Chapter 3 of Using MPI [32]. This program was presented there as an 
example of the ''master-slave" paradigm. We will adapt it to use a variable
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Figure 7.1
Message passing with an intercommunicator

number of slaves, which are not started until after the master decides how many slave processes there should be.

7.2.1—
Intercommunicators

Before we plunge into this example, it might be a good idea to review the concept of MPI intercommunicators. 
Intercommunicators are a relatively obscure part of MPI-1, but play a more prominent role in MPI-2, where they turn out to be 
just what is needed to express some of the new ideas. This is particularly true in the area of dynamic process management. A 
"normal" MPI communicator is, strictly speaking, an intracommunicator. It consists of a context and a group of processes. The 
distinguishing feature of an intercommunicator is that it has associated with it two groups of processes, referred to (from the 
point of view of a specific process) as the local group (the group containing the process) and the remote group. Processes are 
identified by rank in group, as usual, but a message sent to a process with a particular rank using an intercommunicator always 
goes to the process with that rank in the remote group. Figure 7.1 shows a message sent from process 0 (in its local group) to 
process 1. Since it is sent in an intercommunicator, it goes to the process with rank 1 in the remote group. This behavior of 
point-to-point operations is specified in MPI-1. MPI-1 does not specify the behavior of collective operations on 
intercommunicators, but MPI-2 does. As in the point-to-point case, communications take place between the two groups. 
Indeed, we will see an example of an intercommunicator collective operation in our matrix-vector multiplication example.
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7.2.2—
Matrix-Vector Multiplication Example

Our matrix-vector multiplication example uses the same algorithm employed in Chapter 3 of Using MPI [32]. Instead of having 
all processes started outside the program, however, we will start only the master process and have it start the slaves with 
MPI_Comm_spawn. This means that the most obvious difference between this version and the MPI-1 version is that the 
master and the slaves are each separate main programs.1 First let us consider the beginning of the code for the master process, 
shown in Figure 7.2.

We expect to start this program with

mpiexec -n 1 master

The program multiplies the matrix a by the vector b and stores the result in c. The parallelism comes from performing the dot 
products of the rows of a with b in parallel. We assume that there are more rows of a than there are processes, so that each 
process will do many dot products. For this example, we do not assume that all processes execute at the same speed; hence we 
adopt a self-scheduling algorithm for load-balancing purposes. The master process sends rows, one by one, to the slave 
processes, and when a slave finishes with a row, it sends the result (the dot product) back to the master. If more rows remain to 
be done, the master sends a row to the slave that just completed a row. From the master's point of view, work is handed out to 
whichever slave has become idle. From the slave's point of view, it receives a job, works on that job, and sends the result back 
to the master, simultaneously requesting a new task. The master itself does not compute any dot products. In this way all the 
slaves are kept busy, even if they work at different speeds.

This algorithm is not a particularly good way to parallelize matrix-vector multiplication, but it demonstrates self-scheduling 
algorithms well. The algorithm is the same one used in Using MPI, but here we do not determine the number of slaves until 
after the master has started, in order to illustrate both MPI_Comm_spawn and the use of MPI_Bcast on an 
intercommunicator, both of which are new in MPI-2. The first part of the master program is shown in Figure 7.2. The only 
variables new for this version are the intercommunicator slavecomm, which will be constructed by MPI_Comm_spawn, and 
the variable numslaves, which holds the number of slaves.

In general, a program of this type would do some sort of calculation to determine how many slaves to spawn. As we will see in 
Section 7.2.5, it can also obtain advice

1 The MPI-1 Standard supports the multiple-instruction multiple-data (MIMD) model as well, but MPI-1 programs are often 
written using the single-program multiple-data (SPMD) model.
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! Matrix-vector multiply, with spawning of slaves
PROGRAM main
      use mpi
      integer MAX_ROWS, MAX_COLS
      parameter (MAX_ROWS = 1000, MAX_COLS = 1000)
      double precision a(MAX_ROWS,MAX_COLS), b(MAX_COLS), c(MAX_ROWS)
      double precision buffer (MAX_COLS), ans
      integer slavecomm

      integer ierr, status (MPI_STATUS_SIZE)
      integer i, j, numsent, sender, numslaves
      integer anstype, rows, cols

      call MPI_INIT(ierr)
!     master decides how many slaves to spawn, say 10
      numslaves = 10
      call MPI_COMM_SPAWN('slave', MPI_ARGV_NULL, numslaves, &
                   MPI_INFO_NULL, 0, MPI_COMM_WORLD, &
                   slavecomm, MPI_ERRCODES_IGNORE, ierr)
!     master initializes and then dispatches
      rows   = 100
      cols   = 100
!     initialize a and b
      do 20 j = 1,cols
         b(j) = 1
         do 10 i = 1,rows
            a(i,j) = i
 10      continue
 20   continue
      numsent = 0
!     send b to each slave
      call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, MPI_ROOT, &
                     slavecomm, ierr)

Figure 7.2
First part of master for matrix-vector multiplication

Page 237

from the system on how many slaves it can spawn. To simplify this example, we assume that the master somehow decides to 
create ten slaves, and so we simply set numslaves equal to 10. The call that creates the slaves and the corresponding 
intercommunicator is

call MPI_COMM_SPAWN('slave', MPI_ARGV_NULL, numslaves, &
               MPI_INFO_NULL, 0, MPI_COMM_WORLD, &
               slavecomm, MPI_ERRCODES_IGNORE, ierr)

(The Fortran version of) MPI_Comm_spawn has nine arguments. The first is the executable file to be run by the new 
processes. The second argument is an array of strings to represent the "command line" arguments to the executable. Here, since 
we are not passing the slaves any command-line arguments, we use the predefined constant MPI_ARGV_NULL. The third 
argument is the number of slaves to start. Extra information (such as what machines to start the slave processes on), and 
perhaps even site-specific hints to the job scheduler, can be given in the fourth argument, the info argument. Here, we just 
pass the predefined constant MPI_INFO_NULL and defer to Section 7.2.5 a fuller discussion of its use with 
MPI_Comm_spawn. The call to MPI_Comm_spawn is collective (over the communicator specified in the sixth argument), 
and the first four arguments need not be presented at all of the processes (although they must, of course, be syntactically 
correct), but will be interpreted only at the "root" process, specified in the fifth argument. Here we specify 0, since there is only 
one master process. The sixth argument is the communicator over which this call is collective, here MPI_COMM_WORLD.2



Next come the output arguments. The seventh argument, here slavecomm, will be set to be the intercommunicator containing 
both the master (in the local group) and the slaves (in the remote group). The next argument is an array of error codes, one for 
each new process to be created, but we can (and here do) pass the special constant MPI_ERRCODES_IGNORE instead, to 
indicate that we are not going to check the individual error codes. The overall error code (the last argument in Fortran or the 
function value returned in C) can be checked to see whether MPI_Comm_spawn was successful as a whole or not. If it is 
MPI_SUCCESS, then all processes were successfully created, and all potential communication, both with and among the new 
processes, is enabled.

The bindings for MPI_Comm_spawn and MPI_Comm_get_parent are shown in Tables 7.1, 7.2, and 7.3. Note that, in the 
C++ bindings, there are two versions of MPI::Intracomm::Spawn, one with the array_of_errcodes last argument 
and one

2 Since there is only one process, we could also have used MPI_COMM_SELF.
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Table 7.1
C bindings for process creation

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs,
            MPI_Info info, int root, MPI_Comm comm,
            MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Comm_get_parent(MPI_Comm *parent)

Table 7.2
Fortran bindings for process creation

MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm, intercomm,
          array_of_errcodes, ierror)
          character*(*) command, argv(*)
          integer info, maxprocs, root, comm, intercomm,
               array_of_errcodes(*), ierror

MPI_COMM_GET_PARENT(parent, ierror)
          integer parent, ierror

without. The one without this argument corresponds to calling MPI_Comm_spawn with MPI_ERRCODES_IGNORE as the 
last argument in C.

7.2.3—
Intercommunicator Collective Operations

Next the master initializes the matrix a and the vector b and uses the collective operation MPI_Bcast to send b to the slaves. 
In MPI-1, collective operations were not defined for intercommunicators such as slavecomm, but MPI-2 defines the behavior 
of collective operations on intercommunicators. For MPI_Bcast, the broadcast occurs from the root in the local group to all 
the processes in the remote group, which in this case are the slaves. Because there are two groups, the root process indicates 
itself by using the special value MPI_ROOT. The processes receiving the broadcast specify the rank of the root in the other 
group, just as they would if there were a single group. (Here, where the local group has only one member, the effect is not 
different from the case in which all processes are in the same (intra)communicator, but in general an intercommunicator 
MPI_Bcast is quite different from an intracommunicator MPI_Bcast.) If there is more than one process in the group that 
contains the root, those processes specify MPI_PROC_NULL as the root value. This is illustrated in Figure 7.3.

Note that (at this point) we don't have an intracommunicator containing the mas-
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Table 7.3
C++ bindings for process creation

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,
             const char* argv[], int maxprocs, const MPI::Info& info, int root,
             int array_of_errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,
             const char* argv[], int maxprocs, const MPI::Info& info,
             int root) const

MPI::Intercomm MPI::Comm::Get_parent()

Figure 7.3
Intercommunicator broadcast. The argument used as the root field is given inside the box
representing each process. In this example, process 2 in the group on the left is broadcasting

to every process in the group on the right.

ter and the slaves; we could create one with the MPI-1 function MPI_Intercomm_merge as we did in Section 2.4.2, but it 
will not be necessary in this example.

7.2.4—
Intercommunicator Point-to-Point Communication

The rest of the master code is shown in Figure 7.4. It is very similar to the nonspawn version of the code (Figure 3.7 in Using 
MPI [32]). The major difference is that the ranks of the slaves go from 0 to numslaves–1, since the master is addressing 
them, not in MPI_COMM_WORLD, but in the remote group of the intercommunicator slavecomm. The master sends all the 
slaves a row to work with, receives answers from the slaves, and then sends out new rows until all rows are done. Then it sends 
a message with tag 0 to each slave to tell it that the computation is over. Finally, the master prints the vector c, which is the 
product of a and b.
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!     send a row to each slave; tag with row number
      do 40 i = 1,min(numslaves,rows)
         do 30 j = 1,cols
            buffer(j) = a(i,j)
 30      continue
         call MPI_SEND(buffer, cols, MPI_DOUBLE_PRECISION, i-1, &
                       i, slavecomm, ierr)
         numsent = numsent+1
 40   continue
      do 70 i = 1,rows
         call MPI_RECV(ans, 1, MPI_DOUBLE_PRECISION, &
                       MPI_ANY_SOURCE, MPI_ANY_TAG, &
                       slavecomm, status, ierr)
         sender     = status(MPI_SOURCE)



         anstype    = status(MPI_TAG)           ! row is tag value
         c(anstype) = ans
         if (numsent .lt. rows) then            ! send another row
            do 50 j = 1,cols
               buffer(j) = a(numsent+1,j)
 50         continue
            call MPI_SEND(buffer, cols, MPI_DOUBLE_PRECISION, &
                          sender, numsent+1, slavecomm, ierr)
            numsent = numsent+1
         else
            call MPI_SEND(buffer, 0, MPI_DOUBLE_PRECISION, sender, &
                          0, slavecomm, ierr)
         endif
 70   continue

!     print the answer
      do 80 i = 1,rows
         print *, "c(", i, ") = ", c(i)
 80   continue
      call MPI_COMM_FREE(slavecomm, ierr)
      call MPI_FINALIZE(ierr)
END PROGRAM main

Figure 7.4
Second part of master for matrix-vector multiply
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! slave program for matrix-vector multiplication
PROGRAM main
      use mpi
      integer MAX_COLS
      parameter (MAX_COLS = 1000)
      double precision b(MAX_COLS)
      double precision buffer(MAX_COLS), ans

      integer i, ierr, status(MPI_STATUS_SIZE)
      integer row, cols, rows, rank
      integer parentcomm

      call MPI_INIT(ierr)
      call MPI_COMM_GET_PARENT(parentcomm, ierr)
!     the master is now rank 0 in the remote group of the
!     parent intercommunicator.
!     slaves receive b, then compute dot products until
!     done message received
      rows = 100
      cols = 100
      call MPI_BCAST(b, cols, MPI_DOUBLE_PRECISION, 0, &
                     parentcomm, ierr)
      call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
      if (rank .ge. rows) go to 200 ! skip if more processes than work
 90   call MPI_RECV(buffer, cols, MPI_DOUBLE_PRECISION, 0, &
                    MPI_ANY_TAG, parentcomm, status, ierr)
      if (status(MPI_TAG) .eq. 0) then
         go to 200
      else
         row = status(MPI_TAG)
         ans = 0.0
         do 100 i = 1,cols
            ans = ans+buffer(i)*b(i)
 100     continue
         call MPI_SEND(ans, 1, MPI_DOUBLE_PRECISION, 0, row, &
                       parentcomm, ierr)



         go to 90
      endif
 200  continue
      call MPI_COMM_FREE(parentcomm, ierr)
      call MPI_FINALIZE(ierr)
END PROGRAM main

Figure 7.5
Slave part of matrix-vector multiply
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The code for the slaves is shown in Figure 7.5. It is very similar to the slave part of the original version (Figure 3.8 in Using 
MPI [32]). The new feature here is that after MPI_Init, the slaves can communicate with one another, through their 
MPI_COMM_WORLD, which contains all processes spawned with the same MPI_Comm_spawn call, but not with the 
master. In this example, the slave processes do not communicate with each other; they need communicate only with the master. 
To obtain a communicator containing the master, the slaves do

call MPI_COMM_GET_PARENT(parentcomm, ierr)

This returns in parentcomm the intercommunicator created by the collective call to MPI_Comm_spawn in the master and 
MPI_Init in the slaves. The local group of this communicator (from the slaves' point of view) is the same as the group of 
their MPI_COMM_WORLD. The remote group is the set of processes that collectively called MPI_Comm_spawn, which in this 
case consists of just the master. The slaves address the master as rank 0 in parentcomm during the exchange of rows and dot 
products. When the slaves get the "all done" message (tag=0), they call MPI_Finalize and exit.

7.2.5—
Finding the Number of Available Processes

The MPI Forum spent some time and effort debating whether it was possible to incorporate into the MPI Standard an interface 
to a job scheduler. It turned out that the variety of schedulers and their interfaces, coupled with the great variety in the types of 
requests that users wanted to make of their resource managers, made this too difficult. Therefore, MPI's dynamic process 
management defers to some other possible library any interaction with the scheduler. The one feature remaining from this 
discussion that did enter the Standard (although only as an optional feature) is MPI_UNIVERSE_SIZE, an attribute of 
MPI_COMM_WORLD. The term "optional" here means that an MPI implementation need not provide a value for the attribute; 
but if such a value is provided, it works as follows. MPI_UNIVERSE_SIZE provides to the MPI application information on 
how many processes can usefully be run. The application can then use this information to determine how many "additional" 
processes can usefully be spawned. The value of MPI_UNIVERSE_SIZE, even if provided, is not a hard limit; rather, it is a 
"best guess" by the implementation of how many processes could exist.

The implementation is free to determine the value of the attribute MPI_UNIVERSE_SIZE however it wishes. It could come 
from an environment variable set either by the user or by the system. It could come from runtime interaction with a job 
scheduler, or it could be set by the process manager. One logical approach is to
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have MPI_UNIVERSE_SIZE set by mpiexec. That is, in an environment with both a scheduler and a process manager,3

mpiexec -n 1 -universe_size 10 matvec-master

could perform three functions:

• request 10 ''slots" from the job scheduler,

• request from the process manager that 1 process running matvec_master be started, and

• arrange for the value of MPI_UNIVERSE_SIZE to be set to 10.

Then the matvec_master program would know that 9 more processes could be started without requiring additional 
interaction with the scheduler.



Now let us consider the use of MPI_UNIVERSE_SIZE with MPI_Comm_spawn. The beginning of matvec_master 
modified to use MPI_UNIVERSE_SIZE is shown in Figure 7.6. Features of the program not in our earlier 
MPI_Comm_spawn examples are the following:

• It uses MPI_UNIVERSE_SIZE to decide how many processes to spawn.

• It checks the error codes from the attempts to spawn processes.

Let us step through this program. We call MPI_Comm_get_attr to see whether the attribute MPI_UNIVERSE_SIZE has 
been set. If it has, we spawn as many processes as the value of MPI_UNIVERSE_SIZE tells us are available. Since the master 
process counts as one process, we spawn one less than the value of the attribute itself. On the other hand, if there is no such 
attribute (universe_size_flag = 0), then we take a more conservative approach. We create an MPI_Info object and 
use it to describe a "soft" request for any number of processes between one and ten. (See Section 2.5 for details on 
MPI_Info.) Here we use the predefined info key soft and specify a range of numbers of processes using the same form as 
for the -soft argument to mpiexec. We also pass an array of error codes to be filled in, and check for success.

Recall that MPI_Comm_spawn returns an intercommunicator (slavecomm in this case) in which the remote group consists 
of the newly spawned processes. We use MPI_Comm_remote_size to find out the size of this group, which is the number 
of slaves.

3 The argument -universe_size is not a standard argument for mpiexec; it is shown here as an example that some 
implementations may provide. Other possibilities for specifying the value of MPI_UNIVERSE_SIZE include an environment 
variable or configuration parameter.
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integer softinfo
integer (kind=MPI_ADDRESS_KIND) universe_size
logical universe_size_flag
integer numslaves, i, errcodes(10)

call MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE, &
              universe_size, universe_size_flag, ierr)
if (universe_size_flag) then
    call MPI_COMM_SPAWN('slave', MPI_ARGV_NULL, universe_size-1, &
                    MPI_INFO_NULL, 0, MPI_COMM_WORLD, &
                    slavecomm, errcodes, ierr)
else
    call MPI_INFO_CREATE(softinfo, ierr)
    call MPI_INFO_SET(softinfo, 'soft', '1:10', ierr)
    call MPI_COMM_SPAWN('slave', MPI_ARGV_NULL, 10, &
                    softinfo, 0, MPI_COMM_WORLD, &
                    slavecomm, errcodes, ierr)
    call MPI_INFO_FREE(softinfo, ierr)
endif
call MPI_COMM_REMOTE_SIZE(slavecomm, numslaves, ierr)
do i=1, 10
    if (errcodes(i) .ne. MPI_SUCCESS) then
        print *, 'slave ', i, ' did not start'
    endif
enddo
print *, 'number of slaves = ', numslaves

Figure 7.6
Modification of the master part of the matrix-vector program to use MPI_UNIVERSE_SIZE to specify the
number of available processes



In C and C++, the value returned by MPI_Comm_get_attr is a pointer to an integer containing the value, rather than the 
value itself. This is the same as for the other predefined attributes such as MPI_TAB_UB. The code for accessing the value of 
MPI_UNIVERSE_SIZE from C follows:

int *universe_size_ptr, universe_size_flag;
. . .
MPI_Comm_get_attr( MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
                   &universe_size_ptr, &universe_size_flag );
if (universe_size_flag) {
    printf( "Number of processes available is %d\n",

Page 245

char            *slave_argv[2];
. . .
slave_argv[0] = argv[3];
slave_argv[1] = NULL;
MPI_Comm_spawn( "pcp_slave", slave_argv, num_hosts, hostinfo,
                0, MPI_COMM_SELF, &pcpslaves,
                MPI_ERRCODES_IGNORE );

Figure 7.7
Passing command-line arguments to spawned processes

             *universe_size_ptr );
}

7.2.6—
Passing Command-Line Arguments to Spawned Programs

In our examples so far, we have used MPI_ARGV_NULL to indicated that the spawned programs are called with no command-
line arguments. It is often helpful to pass command-line parameters to the spawned programs. For example, in the parallel copy 
example in Section 2.4.2, instead of using MPI_Bcast to send the name of the output file to each slave, we could have started 
the processes with a single command-line argument containing the name of the output file. The change to the master program 
(Figure 2.16) is shown in Figure 7.7.

The argv argument to MPI_Comm_spawn is different from the argv parameter in a C/C++ main in two ways: it does not 
contain the name of the program (the value of argv[0] in main), and it is null terminated (rather than using an argc 
parameter containing the argument count, as main does). In Fortran, the code is similar. An array of character is used; an 
entirely blank string indicates the end of the list.

What if we would like to pass separate command-line arguments to each of the new processes? MPI offers a separate function, 
MPI_Comm_spawn_multiple, for this purpose as well as for starting processes that use different executable files. The 
bindings are shown in Tables 7.4, 7.5, and 7.6. Basically, the first four arguments specifying the command name, argument 
vector, number of processes, and info have become arrays of size count, which is the first argument.

7.3—
Connecting MPI Processes

Some applications are naturally constructed from several separate programs. One example used in Using MPI [32] and in the 
MPI Standard is that of a climate
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Table 7.4
Spawning multiple executables in C

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
            char **array_of_argv[], int array_of_maxprocs[],
            MPI_Info array_of_info[], int root, MPI_Comm comm,
            MPI_Comm *intercomm, int array_of_errcodes[])

Table 7.5
Spawning multiple executables in Fortran

MPI_COMM_SPAWN_MULTIPLE(count, array_of_commands, array_of_argv,
          array_of_maxprocs, array_of_info, root, comm, intercomm,
          array_of_errcodes, ierror)
          integer count, array_of_info(*), array_of_maxprocs(*), root,
               Comm, intercomm, array_of_errcodes(*), ierror
          character*(*) array_of_commands(*), array_of_argv(count, *)

Table 7.6
Spawning multiple executables in C++

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,
             const char* array_of_commands[], const char** array_of_argv[],
             const int array_of_maxprocs[], const MPI::Info array_of_info[],
             int root, int array_of_errcodes[])

simulation constructed from two programs: a simulation of the ocean and a simulation of the atmosphere. In fact, this example 
was used in Using MPI to discuss intercommunicators. Another popular example is one that connects a visualization program 
to a simulation program. We will consider this example below.

One advantage of the approach in this section is that the choice of visualization program can be made at run time; this is 
different from having the simulation program spawn the visualization program. The approach also can work when complexities 
of the runtime environment make it difficult to start the visualization process either with mpiexec or with 
MPI_Comm_spawn.

Much of discussion in the MPI Standard on connecting MPI processes talks about clients and servers. While many of the 
concepts and issues are shared with traditional client/server models, there are also a number of differences. We prefer to think 
of the MPI model as a peer-to-peer model where one process accepts
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connections and the other process requests the connection. Because the MPI model for connecting processes does not address 
traditional client/server issues such as fault tolerance, we prefer to avoid the terms "client" and "server".

7.3.1—
Visualizing the Computation in an MPI Program

Often when running a simulation, it is useful to be able to visualize the progress of the simulation, perhaps by using three-
dimensional graphics to draw the current state of the solution on the mesh being used to approximate the problem. As our 
example of interconnecting two MPI programs we enhance the Poisson solver described in Chapter 5 to connect with a 
visualization program.

We modify the Poisson program as follows:

1. The program creates a port and accepts a connection on that port. A port is nothing but a name that another program can use 
to connect to the program that created the port. As you would expect, the result of connecting to another MPI program is an 
intercommunicator connecting the two programs.



2. At each iteration, the Poisson solver sends the current solution to the visualization program using intercommunicator 
communication operations.

Our first version assumes that the visualization program is actually a single process. In fact, the visualization program is very 
simple, as is shown in Figure 7.8. At each iteration, the program receives the iteration number, using a point-to-point 
intercommunicator operation, and the mesh itself, using MPI_Gatherv in an intercommunicator collective operation. The 
code to initialize the arguments needed by MPI_Gatherv uses MPI_Gather (also in intercommunicator form) to receive 
the amount of data that each process in the server will send to this program. The actual graphics drawing is done by the routine 
DrawMesh.

The routine MPI_Comm_connect establishes the connection to the other program. Because we choose to have the 
visualization program connect to the computation program, the visualization program is the client of the computation program 
(the processes that call MPI_Comm_connect are always the clients). The input arguments to MPI_Comm_connect are the 
port name, an info value, the rank of a "lead" or root process, and an intracommunicator. We will discuss the port name 
below; it is simply a character string, although its value is determined by the MPI implementation. In this version of the 
example, we read the port name from standard input.

Enhancements to this program could run the visualization routine in a separate thread, allowing the user to rotate, scale, and 
otherwise interact with the data
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#include "mpi.h"
#define MAX_PROCS 128
#define MAX_MESH 512*512
int main( int argc, char *argv[] )
{
    MPI_Comm server;
    int      it, i, nprocs, rcounts[MAX_PROCS], rdispls[MAX_PROCS];
    double   mesh[MAX_MESH];
    char     port_name[MPI_MAX_PORT_NAME];

    MPI_Init( 0, 0 );

    gets( port_name ); /* we assume only one process
                          in MPI_COMM_WORLD */
    MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
                      &server );
    MPI_Comm_remote_size( server, &nprocs );

    /* Get the number of data values from each process */
    MPI_Gather( MPI_BOTTOM, 0, MPI_DATATYPE_NULL,
                rcounts, 1, MPI_INT, MPI_ROOT, server );
    /* Compute the mesh displacements */
    rdispls[0] = 0;
    for (i=0; i<nprocs-1; i++)
        rdispls[i+1] = rdispls[i] + rcounts[i];

    while (1) {
        MPI_Recv( &it, 1, MPI_INT, 0, 0, server, MPI_STATUS_IGNORE );
        if (it < 0) break;
        MPI_Gatherv( MPI_BOTTOM, 0, MPI_DATATYPE_NULL,
                     mesh, rcounts, rdispls, MPI_DOUBLE,
                     MPI_ROOT, server );
        DrawMesh( mesh );
        }
    MPI_Comm_disconnect( &server );
    MPI_Finalize();
    return 0;
}



Figure 7.8
Visualization program
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visually, while the code shown here updates the data each time a new iteration becomes available. Of course, the code uses the 
appropriate facilities (such as a thread mutex) to ensure that the drawing routine always has a consistent data set and not a 
mixture of several iterations.

7.3.2—
Accepting Connections from Other Programs

We must modify the program that computes the approximations to the Poisson problem to accept the connection from the 
visualization program and send to it the data to be visualized. The changes are shown in Figure 7.9. The first item to note is that 
these changes are all additions; the original program is unchanged. For example, if the program was using MPI_COMM_WORLD 
before, it continues to use the same communicator for the computational part of the code. The second item to note is that this 
program is in Fortran, while our visualization client program is in C. MPI-2 provides for language interoperability, including 
the ability of programs in different languages to send messages to each other.

The changes to the program come in three places. The first place creates a port that the client program to connect to. To do this, 
we call MPI_Open_port, which returns a port name. As usual, an info value may be used to request implementation-
specific behavior when requesting a port; in this case, we use MPI_INFO_NULL to get the default behavior. A port name is 
simply a character string, and we print it out. It is this printed value that the client program must provide to 
MPI_Comm_connect and that is read with the gets statement in Figure 7.8.

Once the port is open, the program allows another MPI program to connect to it by calling MPI_Comm_accept. This is a 
collective call over all processes in the input communicator (the fourth argument), with the input arguments (such as the port 
name) valid at the specified root, which is process 0 in this case. An info argument is provided here as well to allow for 
implementation-specific customization. This is a blocking collective call that returns an intercommunicator.

The middle part of the code sends data to the client process, starting with information on the decomposition of the data in the 
computational process and continuing with the iteration count and current result within the iteration loop. These 
communication operations match the communication calls in the visualization client.

The final part of the program closes the port and disconnects from the client by calling MPI_Close_port and 
MPI_Comm_disconnect. The MPI_Close_port call frees up port; after the MPI_Close_port call, the port name 
returned by MPI_Open_port is no longer valid.
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character*(MPI_MAX_PORT_NAME) port_name
integer    client
. . .
if (myid .eq. 0) then
    call MPI_OPEN_PORT( MPI_INFO_NULL, port_name, ierr )
    print *, port_name
endif
call MPI_COMM_ACCEPT( port_name, MPI_INFO_NULL, 0, &
                      MPI_COMM_WORLD, client, ierr );
! Send the information needed to send the mesh
call MPI_GATHER( mesh_size, 1, MPI_INTEGER, &
                 MPI_BOTTOM, 0, MPI_DATATYPE_NULL, &
                 0, client, ierr )
. . . .
! For each iteration, send the local part of the mesh
if (myid .eq. 0) then
    call MPI_SEND( it, 1, MPI_INTEGER, 0, 0, client, ierr )
endif
call MPI_GATHERV( mesh, mesh_size, MPI_DOUBLE_PRECISION, &
                  MPI_BOTTOM, 0, 0, &
                  MPI_DATATYPE_NULL, 0, client, ierr )



. . .
! Disconnect from client before exiting
if (myid .eq. 0) then
    call MPI_CLOSE_PORT( port_name, ierr )
endif
call MPI_COMM_DISCONNECT( client, ierr )
call MPI_FINALIZE( ierr )

Figure 7.9
Modifications to Poisson example to accept connections from the visualization program and to
send data to it
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Table 7.7
C bindings for client/server functions

int MPI_Open_port(MPI_Info info, char *port_name)

int MPI_Close_port(char *port_name)

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
            MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
            MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_disconnect(MPI_Comm *comm)

The call to MPI_Comm_disconnect ensures that all communication on the communicator has completed before returning; 
this is the difference between this function and MPI_Comm_free.

The bindings for the routines used in these examples are in Tables 7.7, 7.8, and 7.9.

If the server needs to manage multiple connections at once, it must use a separate thread (see Chapter 8) for each 
MPI_Comm_accept call. The client need not be changed. Using a thread also allows the server to handle the case of no 
connections, as we will see in the next chapter.

7.3.3—
Comparison with Sockets

The MPI routines for connecting two groups of processes follow a simple model that is similar to the Unix sockets model (see 
[81] for a description of sockets). A comparison with that model illustrates some of the differences as well as the motivation for 
the design. The correspondences are shown below:

MPI_Open_port. The socket routines socket, bind, and listen provide a similar function. At the end of bind, a port 
specified by an IP address and a port number is defined. The listen call prepares the port to receive connection requests. 
One major difference is that the port number is an input value for bind, whereas it is part of the output value (as part of the 
port_name) for MPI_Open_port.

MPI_Comm_accept. The socket routine accept establishes the connection and returns a new socket.
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Table 7.8
Fortran bindings for client/server

MPI_OPEN_PORT(info, port_name, ierror)
          character*(*) port_name
          integer info, ierror

MPI_CLOSE_PORT(port_name, ierror)
           character*(*) port_name
           integer ierror

MPI_COMM_ACCEPT(port_name, info, root, comm, newcomm, ierror)
          character*(*) port_name
          integer info, root, comm, newcomm, ierror

MPI_COMM_CONNECT(port_name, info, root, comm, newcomm, ierror)
          character*(*) port_name
          integer info, root, comm, newcomm, ierror

MPI_COMM_DISCONNECT(comm, ierror)
          integer comm, ierror

Table 7.9
C++ bindings for client/server functions

void MPI::Open_port(const MPI::Info& info, char* port_name)

void MPI::Close_port(const char* port_name)

MPI::Intercomm MPI::Intracomm::Accept(const char* port_name,
             const MPI::Info& info, int root) const

MPI::Intercomm MPI::Intracomm::Connect(const char* port_name,
             const MPI::Info& info, int root) const

void MPI::Comm::Disconnect()
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MPI_Comm_connect. The socket routines socket and connect are used to connect to a port.

The differences between these approaches are also important. The most important is that the socket interface establishes a 
connection between two processes (or threads), whereas the MPI interface connects two groups of processes. In addition, the 
socket interface provides very fine control on the connection mechanism. For example, the socket operations can be placed into 
a nonblocking mode (with an fcntl call on the socket file descriptor). Because Unix file descriptors are used, an application 
can use select or poll to manage multiple listen (that is, MPI_ Comm_accept) operations within a single process 
(or thread).

Early discussions in the MPI Forum considered nonblocking versions of the dynamic process routines (see [29] for one 
proposal). However, the Forum decided that nonblocking collective operations introduce too many complexities and instead 
recommended the use of separate threads that make blocking calls. In fact, it is often preferable to use threads and the blocking 
versions of the sockets on those Unix systems that support threads, as this provides a simpler programming model.

Other features of the socket interface, such as control over timeouts, can be accomplished through implementation-specific 
info options. For example, an implementation could provide the info key timeout with value in milliseconds; passing an 
info object containing this key to MPI_Comm_accept would allow the implementation to timeout the connection attempt.



7.3.4—
Moving Data between Groups of Processes

If the data is large, the visualization program itself may need to be parallel (for example, an MPI version of POV-Ray [70]). In 
this case, we need to send a data structure that is distributed in one way on one group of processes to a different distribution on 
another group of processes.

For simplicity, we will consider the case of two different one-dimensional decompositions as illustrated in Figure 7.10. Each 
process on the left must send data to one or more processes on the right. This could be written as a collection of 
intercommunicator point-to-point operations (using nonblocking send and receive operations to ensure that the operations don't 
cause deadlock or sequentialization), but we will illustrate an alternative approach using the intercommunicator collective 
routine MPI_Alltoallv.

The routine MPI_Alltoallv is a more flexible version of the routine MPI_Alltoall. In the intracommunicator form, 
each process sends different data to every other process. In the intercommunicator version, each process in one group
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Figure 7.10
Data transfers between the simulation program (4 processes) and the visualization
program (3 processes). Solid lines indicate the decomposition of the mesh among

processes. Arrows indicate the transfers that take place. Dashed lines show the
division of the mesh in terms of the other group of processes.

sends different data to every other process in the other group. In our case, every process is not sending to every other process. 
For those processes to which no data is being sent, we simply set the sendcount for those destinations to zero. The code in 
Figure 7.11 computes the sendcounts and sdispls arguments for MPI_Alltoallv, where the calling process has rows 
s to e of the mesh, and the decomposition on the visualization server is given by the array m, where m(i) is the number of 
rows on process i.

MPI_Alltoallv may be preferable to individual send and receive operations when MPI is being used over a wide-area 
network. For example, the visualization program may be running on a local graphics workstation while the computational 
program may be running on a remote supercomputer. Using MPI_Alltoallv allows an MPI implementation to better 
optimize the movement of data between the two systems, because the entire data motion is concisely described by the 
arguments to MPI_Alltoallv.

7.3.5—
Name Publishing

In the example above, the port name is moved between the server and the client by using print to print the name onto 
standard output and gets to read the name from standard input. This is completely general but more than a little awkward. 
Fortunately, MPI-2 provides a partial solution. We can think of the

print *, port_name

step as publishing the port name to the outside world. Similarly, the
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r_s = 1
displ = 0
do i=0, viz_numprocs-1
    if (s .ge. r_s + m(i)) then
        sendcounts(i) = 0
        sdispls(i) = 0
    elseif (e .lt. r_s) then
        sendcounts(i) = 0
        sdispls(i) = 0
    else
        sendcounts(i) = min( e - s + 1, r_s + m(i) - s) * nx
        sdispls(i)    = displ
        displ         = displ + sendcounts(i)
    endif
    r_s = r_s + m(i)
enddo

Figure 7.11
Code to compute arguments for MPI_Alltoallv

gets( port_name );

call in the client is asking the user to look up the port name. MPI-2 provides an alternative to printing and reading that is called 
a name service. In the MPI-2 approach, a program may associate a port name with a private name chosen by the programmer. 
This private name is called the service name. A port name is associated with a service name by calling the routine 
MPI_Publish_name; the association may be removed by calling MPI_Unpublish_name.

A process that needs a particular port name may look it up by passing the service name to MPI_Lookup_name. Since the 
service name is defined by the programmer rather than the MPI implementation (or runtime system), the service name may be 
hard-coded into the application.

Figure 7.12 shows the changes that must be made to the visualization and simulation programs to allow them to use the MPI 
name publishing routines rather than print and gets. The bindings for the name service routines are given in Tables 7.10, 
7.11, and 7.12.

Name publishing has a number of limitations. The most important limitation is that since the service names are chosen by the 
programmer, it is always possible for two programmers to choose the same service name for two different applications. There 
is no perfect solution to this problem, but a number of approaches
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Visualization Program:

MPI_Lookup_name( "Poisson", MPI_INFO_NULL, port_name );
MPI_Comm_connect( port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
                  &server );

Simulation Program:



character*(MPI_MAX_PORT_NAME) port_name
integer  client
. . .
if (myid .eq. 0) then
    call MPI_OPEN_PORT( MPI_INFO_NULL, port_name, ierr )
    call MPI_PUBLISH_NAME( 'Poisson', MPI_INFO_NULL, &
                           port_name, ierr )
endif
call MPI_COMM_ACCEPT( port_name, MPI_INFO_NULL, 0, &
                      MPI_COMM_WORLD, client, ierr );
. . .
if (myid .eq. 0) then
    call MPI_UNPUBLISH_NAME( 'Poisson', MPI_INFO_NULL, &
                             port_name, ierr )
    call MPI_CLOSE_PORT( port_name, ierr )
endif

Figure 7.12
Code changes to the example in Figures 7.8 and 7.9 to use name publishing

Table 7.10
C bindings for name publishing

int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)
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Table 7.11
Fortran bindings for name publishing

MPI_PUBLISH_NAME(service_name, info, port_name, ierror)
           integer info, ierror
           character*(*) service_name, port_name

MPI_UNPUBLISH_NAME(service_name, info, port_name, ierror)
           integer info, ierror
           character*(*) service_name, port_name

MPI_LOOKUP_NAME(service_name, info, port_name, ierror)
          character*(*) service_name, port_name
          integer info, ierror

Table 7.12
C++ bindings for name publishing

void MPI::Publish_name(const char* service_name, const MPI::Info& info,
               const char* port_name)

void MPI::Unpublish_name(const char* service_name, const MPI::Info& info,
              const char* port_name)

void MPI::Lookup_name(const char* service_name, const MPI::Info& info,
              char* port_name)



can be used to reduce the chance for trouble. One approach that is used by commercial distributed-computing systems such as 
DCE [23] is to provide a central clearing house for service names. The programmer requests a service name and is given a 
name that is guaranteed to be unique (at least within the domain that the distributed-computing system is running over, which is 
all that is required). The downsides to this approach are that the names are often long strings of seemingly random characters 
and that a central registry of names must be maintained, even as the domain of available computers changes. Furthermore, each 
user of the client and server must acquire their own service names.

A simpler but slightly less robust approach is for the service name to include the user's login name (this allows multiple users to 
use the same program without having their service names collide). For example, instead of using "Poisson" as the service 
name for the visualization client, we might use the code
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sprintf( service_name, "Poisson-%s", cuserid( NULL ) );

The routine cuserid returns the name of user associated with the calling process. There is no direct Fortran equivalent, but it 
is usually possible to access this information through an implementation-specific way (if necessary, calling a C routine to 
perform the operation).

Another limitation of the name-service routines is that an MPI implementation is not required to provide a usable name service. 
That is, the routines MPI_Publish_name, MPI_Unpublish_name, and MPI_Lookup_name must be provided, but 
they can return failure for all operations.4

7.4—
Design of the MPI Dynamic Process Routines

Programmers that are used to the simple Unix command rsh or Unix function fork can find the MPI approach to dynamic 
process management complex. This section explains some of the reasons for the MPI approach.

7.4.1—
Goals for MPI Dynamic Process Management

The design of the MPI dynamic process routines maintains the properties that have made MPI successful: portability, 
determinism, scalability, and performance. In addition, it exploits the power of MPI communicators (particularly 
intercommunicators) to accomplish this with only three new functions: MPI_Comm_spawn, and MPI_Comm_get_parent.

Portability

The most basic requirement is that users be able to write portable applications that can run in a variety of job-scheduling/
process-management environments. This seemingly simple requirement is in fact one of the most demanding. Job scheduling 
and process management environments are very different in different systems. For example, many programmers are familiar 
with clusters of workstations, which offer a wide variety of flexible and powerful options. But many high-performance systems 
provide fewer features, trading flexibility for performance. For instance, a number of massively parallel processors (MPPs) 
allow either one process per node (e.g., SGI/Cray T3D and T3E) or one process per node when using the high-performance 
interconnect (IBM SP). Furthermore, to optimize communication, some high-performance systems take advantage of the fact 
that the collection

4 By default, errors are fatal; therefore, checking the return value from these routines requires changing the error handler for 
MPI_COMM_WORLD.
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of processes is unchanging. Changes to the communication layout are expensive and may require collective operations (this is 
in fact what a parallel job-startup program does on some MPPs). Finally, the division of labor between a job scheduler and a 
process starter, while natural, is not universal. The MPI model assumes only that a new collection of processes can be started 
and connected together and to the parent processes. This capability is close to what most environments, even on MPPs, require 
to start an MPI-1 job, and the MPI Forum felt that this would be portable.

Determinism

The semantics of dynamic process creation must be carefully designed to avoid race conditions. In MPI, every process is a 
member of at least one communicator. The collection of processes in a communicator must be unchanging. If it isn't, collective 
operations (such as MPI_Allreduce) no longer have well-defined meanings. Adding processes to an MPI "job" requires the 
creation of a new communicator. Removing processes requires freeing the communicators, window objects, and MPI file 
objects that contain the exiting processes. The requirement of determinism dictated the use of communicators and collective 
operations in creating processes. Note that the "two-party" approach used in many systems that create one process at a time can 
be implemented in MPI by simply using MPI_COMM_SELF as the communicator for the spawning process and using a soft 
spawn of one process in MPI_Comm_spawn. The MPI approach permits this use, but also allows for scalably spawning large 
numbers of processes that are provided with efficient interprocess communications.

Scalability and Performance

One of the ways in which MPI achieves scalability and performance is through the use of collective operations that concisely 
describe an operation that involves large numbers of processes. Rather than create new processes through individual requests to 
a job manager and process creator, MPI allows the programmer to make a single request for a large number of processes that 
will belong to a single group (one of the two groups in the intercommunicator returned by MPI_Comm_spawn).

In summary, when trying to understand the design choices for the MPI dynamic process routines, it is important to think not of 
what can be done on a few workstations running some variety of Unix but what would be required for a supercomputer that 
provides only a batch-scheduling interface and only one process per node. The MPI design allows a program to run on either 
system without change (other than the path name for the program).
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7.4.2—
What MPI Did Not Standardize

We have noted that several features are dependent on the MPI implementation. The MPI Forum spent a great deal of time 
discussing these, but in the end concluded that there was no approach that was both general enough to maintain the portability 
of MPI and powerful enough to provide a useful facility for users of MPI. This was particularly true for the interface to the job 
scheduler and process manager.

Many job schedulers provide a rich command language for specifying the resources to be used for a job. These may include 
specific software releases, hardware (cache size or CPU speed), and even priorities (for example, a processor with set A of 
capabilities or, if that is not available, then one with set B). Some research systems have provided limited subsets of these 
capabilities, and the MPI Forum considered following their lead. In the end, however, the Forum felt that any specific choice 
was worse than no choice at all. Instead, the Forum invented the MPI_Info argument as a general hook for providing 
implementation-specific information to MPI_Comm_spawn. This general "hints" mechanism for providing a portable way to 
specify implementation-specific information was so useful that it was applied to the I/O and RMA routines as well.

Although it is unfortunate that the MPI Forum could not standardize the job-manager and process-startup interface, it is exactly 
the same situation that users face for file names. While users of Unix systems may feel that file names are standard, there 
remain important differences with other operating systems. For example, with Windows, valid characters are different, 
directory-separator character is different, and Unix has no ''drive" letter. Even within Unix, different file-system 
implementations offer different performance and correctness properties; specifying the file name can select completely 
different file system environments.
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8—
Using MPI with Threads

Threads form an important programming model that separates a process into a single address space and one or more threads of 
control. Threads provide a natural programming model for symmetric multiprocessors; they are also an effective way to hide 
latency in high-latency operations. MPI-1 was designed to work well with threads; MPI-2 adds features to improve the ability 
of MPI implementations to deliver high performance to both single-threaded and multithreaded programs.

We first cover what threads are and why they are useful. Section 8.2 describes how MPI interacts with threads. In Section 8.3, 
we revisit the NXTVAL routine, this time implemented using threads with MPI. Threads are often used to create nonblocking 
operations from blocking ones; we show how to do this with MPI in Section 8.4. We conclude with some comments on mixed-
model programming (MPI and threads together).

8.1—
Thread Basics and Issues

Throughout this book we have referred constantly to processes as the entities that communicate with one another. A process 
may be defined loosely as an address space together with a current state consisting of a program counter, register values, and a 
subroutine call stack. The fact that a process has only one program counter means that it is doing only one thing at a time; we 
call such a process single threaded. Multiple processes may be executed on a single processor through timesharing, so in some 
sense the processor is doing more than one thing at a time, but the process isn't.

Both vendors and users have experimented with a generalization of this situation in which processes have multiple program 
counters (with associated register values and stacks) sharing the process's address space. The (program counter, register set, 
stack) triple is called a thread and is very much like a process in its own right except that it does not have an address space of 
its own.

The motivation for threads is to allow a concurrent programming model within a single process, with very rapid switching of 
control of the CPU from one thread to another possible because little or no memory management is involved.

Individual threads are not visible outside a process. Therefore, MPI communication among multithreaded processes does not 
address individual threads; the threads of a process can perform MPI operations on behalf of their processes. Using threads in 
conjunction with message passing can be extremely convenient, for several reasons:
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• Threads provide a natural implementation of nonblocking communication operations. A thread can be created to do a 
blocking receive operation. As long as this blocks only the thread and not the process, it has the effect of a nonblocking 
receive. The same applies to sends.

• Threads can increase the convenience and efficiency of the implementation of collective operations.

• Threads are becoming the parallel programming model of choice for "symmetric multiprocessing" shared-memory machines.

• Threads can help improve performance by helping to make highly latent systems more "latency tolerant."

8.1.1—
Thread Safety

In order for threads to be used in conjunction with a message-passing library, however, the library must be designed to work 
well with threads. This property is called thread safety. Thread safety means that multiple threads can be executing message-
passing library calls without interfering with one another. Thread unsafety occurs when the message-passing system is 
expected to hold certain parts of the process state and it is impossible to hold that process state for more than one thread at a 
time. For example, some libraries use the concept of "the most recently received message" to avoid passing a status argument 
stored on the process's stack. That is, user code will look something like



recv(msg, type);
src = get_src();
len = get_len();

This approach works in the single-threaded case, but in the multithreaded case, several receives may be in progress 
simultaneously, and when get_src is called, it may not be clear for which message the source is supposed to be returned. 
MPI solves this particular problem by returning the source as part of the status object, which normally resides on the stack of a 
specific thread. This problem of a resource that is owned by the message-passing library instead of by the user thread can arise 
in the case of other data structures as well, such as message buffers, error fields, or "current" contexts. MPI has been carefully 
engineered to be thread safe in its semantics, and implementers are encouraged to provide thread-safe implementations, so that 
MPI can work hand in hand with thread libraries.

For an application to use MPI with threads, it isn't enough that the implementation of MPI be thread-safe. The thread library 
must be aware of the MPI implementation to the extent that execution of a blocking operation will cause the
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current thread to yield control to another thread in the process rather than cause the process to block. When a message arrives, a 
thread waiting for it should be made runnable again. Furthermore, when a system call is made, the operating system should 
block only the thread that made the call, not all threads, or much of the flexibility of user-level threads is lost.

The issue of threads has been widely discussed and implemented in slightly different ways by various vendors. Fortunately, the 
POSIX standard [42], also known as Pthreads, seems likely to become the most widely used definition for threads.

Threads are also becoming a widely used programming paradigm for shared-memory multiprocessors, which are now 
appearing from a number of vendors. MPI can be used to program networks of such machines precisely because it is designed 
to be thread safe. (A higher-level paradigm for programming with the thread model is monitors, discussed in [6].) Threads may 
also be used by a compiler to provide parallelism with little or no direct involvement by the programmer. The OpenMP [67] 
programming model is one example of a popular thread-based programming model for shared-memory multiprocessors.

8.1.2—
Threads and Processes

Thread systems where the operating system (the kernel) is not involved in managing the individual threads are called user 
threads. User threads tend to be faster than kernel threads (that is, the time that it takes to switch between threads within the 
same process is typically smaller with user threads), but often have the restriction that some system calls will block all threads 
in the process containing the thread that made the system call, not just the calling thread. Such system calls include 
read, write, recv, and send. This tradeoff in performance versus generality can make it difficult to write truly 
portable multithreaded programs, since the application cannot assume that the entire process will not be blocked when a thread 
calls a library routine. The POSIX thread (Pthreads) specification does not specify whether the threads are user or kernel; it is 
up to the threads implementation.

8.2—
MPI and Threads

The MPI-1 Standard was designed to be thread-safe: with the exception of MPI_Probe and MPI_Iprobe, there is no global 
state or notion of "current value" in the MPI specification (see Section 5.2.3 in Using MPI [32]). Thread-safe implementations 
of MPI-1 have been developed [91] and have confirmed that the MPI-1 design is thread-safe. In MPI-2, the I/O routines that 
contain explicit offsets (e.g., MPI_-
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File_read_at) provide a thread-safe alternative to use of a separate seek operation. In other words, MPI_File_seek has 
the same thread-safety issues as MPI_Probe; MPI-2 does, however, provide a thread-safe alternative to using 
MPI_File_seek through the explicit offset versions of the I/O routines.

The MPI-2 Standard benefited from experiences in using threads and building thread-safe MPI implementations. For example, 
the portability problems experienced by multithreaded applications because of the differences between the capabilities of user 
and kernel threads led the MPI Forum to require that MPI calls block only the calling thread. This still doesn't address the issue 
of user versus kernel threads, but if the application uses MPI for all interprocess communication and I/O and makes no explicit 
system calls, a multithreaded MPI application (assuming that the MPI implementation provides the necessary level of thread 
support as defined below) is portable, even if the thread system provides only user threads.

The MPI Forum also required that correct MPI programs not attempt to have multiple threads complete the same nonblocking 
MPI operation. For example, it is invalid to start a nonblocking MPI operation in one thread and then allow several threads to 
call MPI_Wait or MPI_Test on the request object. It is permissible, of course, to have one thread start a nonblocking MPI 
operation and have a different thread complete it, as long as there is no possibility that two threads will try to complete (or test) 
the same operation. This restriction allows MPI implementations to provide high performance in operations involving request 
objects because the implementation can rely on the fact that only one (user-defined) thread will ever operate on the request.

Another issue has been the performance tradeoffs between multithreaded and single-threaded code. While having multiple 
threads enables an application to use multiple processors or to perform alternate work while a high-latency operation—such as 
I/O—proceeds, multithreaded code also requires operations to guard against inconsistent updates to the same memory location 
from different threads (see Section 4.3). These additional operations, particularly if they involve software locks or system calls, 
can be quite expensive. Some vendors have provided both single-threaded and multithreaded libraries, but then an application 
(and even more so, a library) is faced with the question: have I been linked with the right library? If not, the application will 
still run but will suffer occasional and mysterious errors.

These experiences are most clearly shown in the new MPI-2 function to initialize an MPI program: MPI_Init_thread. This 
function, in addition to the argc and argv arguments of MPI_Init, requests a level of thread support, and returns the level 
of thread support that was granted. Here are the kinds of thread support, in order of increasing generality:
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Table 8.1
C binding for initializing MPI with threads

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Table 8.2
Fortran binding for initializing MPI with threads

MPI_INIT_THREAD(required, provided, ierror)
            integer required, provided, ierror

MPI_THREAD_SINGLE: Only one (user) thread

MPI_THREAD_FUNNELED: Many user threads, but only the main thread may make MPI calls

MPI_THREAD_SERIALIZED: Many user threads may make MPI calls, but only one thread at a time does so (the user must 
guarantee this)

MPI_THREAD_MULTIPLE: Free for all. Any thread may make MPI calls at any time.

All values are integers and are ordered so that the more general value is greater than all of the more restrictive levels of support.



The bindings for MPI_Init_thread are shown in Tables 8.1, 8.2, and 8.3. An MPI implementation is permitted to return 
any of these values as the value of provided. For example, an MPI implementation that is not thread safe will always return 
MPI_THREAD_SINGLE. On the other hand, an MPI implementation could be provided in several different versions, using the 
value of required to determine which to choose (through dynamic linking of the libraries), and reporting the value 
provided. This allows the MPI implementer and the MPI user to choose whether to pay any performance penalty that might 
come with a fully multithreaded MPI implementation.

The function MPI_Init_thread can be used instead of MPI_Init. That is, while an MPI-1 program starts with 
MPI_Init and ends with MPI_Finalize, an MPI-2 program can start either with MPI_Init or MPI_Init_thread. 
Regardless of whether MPI_Init or MPI_Init_thread is called, the MPI program must end with a call to 
MPI_Finalize (there is no "MPI_Finalize_thread"). In addition, the MPI-2 Standard requires that the thread in 
each process that called MPI_Init or MPI_Init_thread, which MPI calls the main thread, also be the (only) thread in 
that process that calls MPI_Finalize.
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Table 8.3
C++ bindings for initializing MPI with threads. The returned value is the level of thread support provided.

int MPI::Init_thread(int &argc, char **&argv, int required)

int MPI::Init_thread(int required)

Note that the value of required does not need to have the same value on each process that is calling MPI_Init_thread. 
An MPI implementation may choose to give the same value of provided, of course. We will see below an example where 
different levels of thread support may be chosen.

The most thread-friendly level of support is MPI_THREAD_MULTIPLE. When this level of support is provided, MPI routines 
may be used in any combination of threads. Such an MPI implementation is called thread compliant.

MPI_Init can initialize MPI to any level of thread support; command-line arguments to mpiexec or environment variables 
may affect the level of thread support.

There are no MPI routines to create a thread; that task is left to other tools, which may be compilers or libraries. In the next 
section, we show an example where the new thread is created by using a Pthreads library call. In an OpenMP program, the 
compiler may create the additional threads. By leaving the exact method of thread creation to other standards, MPI ensures that 
programs may use any thread approach that is available (as long as it is consistent with the MPI implementation).

8.3—
Yet Another Version of NXTVAL

One example that we have used is that of a "next value" routine that increments a counter and returns the value. In Using MPI 
[32], we used this example in Section 7.1 to illustrate the use of MPI_Comm_split, ready sends, and multiple completions. 
In Section 6.5 of this book, we developed a version that used remote memory access. In this section we consider a solution to 
the same problem that uses threads.

Specifically, we will dedicate a thread to providing the counter. This thread will use a blocking receive to wait for requests for 
a new value and will simply return the data with a blocking send.

The code in Figure 8.1 is reasonably simple. Only a few items need mentioning. The process with rank zero creates the thread 
in init_counter. Any process, including the one with rank zero, may then call counter_nxtval to fetch the current



Page 267

void *counter_routine( MPI_Comm *counter_comm_p )
{
    int incr, ival = 0;
    MPI_Status status;
    while (1) {
        MPI_Recv( &incr, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
                  *counter_comm_p, &status );
        if (status.MPI_TAG == 1) return;
        MPI_Send( &ival, 1, MPI_INT, status.MPI_SOURCE, 0,
                  *counter_comm_p );
        ival += incr;
    }
}
/* We discuss how to eliminate this global var in the text */
static pthread_t thread_id;
void init_counter( MPI_Comm comm, MPI_Comm *counter_comm_p )
{
    int rank;
    MPI_Comm_dup( comm, counter_comm_p );
    MPI_Comm_rank( comm, &rank );
    if (rank == 0)
        pthread_create( &thread_id, NULL, counter_routine,
                        counter_comm_p );
}
/* Any process can all this to fetch and increment by value */
void counter_nxtval( MPI_Comm counter_comm, int incr, int *value )
{
    MPI_Send(&incr, 0, MPI_INT, 0, 1, counter_comm);
    MPI_Recv(value, 1, MPI_INT, 0, 0, counter_comm, MPI_STATUS_IGNORE);
}
/* Every process in counter_comm(including rank 0!)
   must call stop counter */
void stop_counter( MPI_Comm *counter_comm_p );
{
    int rank;
    MPI_Barrier( *counter_comm_p );
    MPI_Comm_rank( *counter_comm_p, &rank );
    if (rank == 0) {
        MPI_Send( MPI_BOTTOM, 0, MPI_INT, 0, 1, *counter_comm_p );
        pthread_join( thread_id, NULL );
    }
    MPI_Comm_free( counter_comm_p );
}

Figure 8.1
Version of nxtval using threads
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value and increment it by the value of incr. The stop_counter routine uses a MPI_Barrier first to ensure that no 
process is still trying to use the counter. The process with rank zero then sends a message to itself, but this message is received 
in counter_routine, which is running in a separate thread. Receiving that message causes counter_routine to exit, 
thereby terminating that thread. The pthread_join call in stop_counter causes the process that created the thread to 
wait until the thread finishes.

This code depends on the MPI guarantee that a blocking MPI call blocks only the calling thread, not all of the threads in the 
process. Without this requirement, a thread-safe implementation of MPI would have little value. This does require the 
MPI_THREAD_MULTIPLE mode. However, only one process needs this level of thread support. If no other processes are 
using threads, they could specify MPI_THREAD_SINGLE as the required level of thread support.



The variable thread_id is global in Figure 8.1. This prevents more than one counter from being active at any time in any 
single process. However, we all know that global variables are bad. Fortunately, MPI provides a convenient way to attach this 
variable to the output communicator, counter_comm_p, through the use of attributes. Attributes are covered in more detail 
in Using MPI [32] in Section 6.2.1.

8.4—
Implementing Nonblocking Collective Operations

The nxtval code in Figure 8.1 demonstrates how to implement what is sometimes called an "hrecv" (from the Intel NX 
library) or "interrupt-driven receive" by using a blocking receive operation and threads. In fact, most nonblocking operations 
can be viewed as if they were implemented as a blocking operation in a separate thread. One reason that nonblocking collective 
operations were not included in MPI-2 is that they can be implemented by calling the matching blocking collective operation 
using a separate thread.1

An example of blocking collective operation whose nonblocking version we'd like to have is MPI_Comm_accept. Because 
MPI_Comm_accept is not a nonblocking operation, it cannot be cancelled. This means that an MPI program that calls 
MPI_Comm_accept cannot continue until the MPI_Comm_accept returns. To handle this,

1 We've brushed under the rug a number of difficulties with nonblocking collective operations, such as what happens if the same 
process has several outstanding collective operations on the same communicator (which is not valid in MPI) and what a request 
object would look like. But for many of the purposes for which users wish to use nonblocking collective operations, using a 
separate thread and the blocking version of the operation is adequate.
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integer exit_msg, server
parameter (exit_msg = -1)
. . .
call MPI_COMM_CONNECT( port_name, MPI_INFO_NULL, 0, &
                       MPI_COMM_SELF, server, ierr )
call MPI_BCAST( exit_msg, 1, MPI_INTEGER, MPI_ROOT, &
                server, ierr )
call MPI_COMM_DISCONNECT( server, ierr )

Figure 8.2
Code to connect and terminate a connection

a program that uses MPI_Comm_accept to allow, but not require, another MPI program to attach to it should make a 
"dummy" connect request to satisfy the MPI_Comm_accept. For example, in Section 7.3.2, we showed a program that 
allowed a visualization program to connect to it to allow the visualization program to draw data as it was being computed.

But what if we do not want to require the visualization program to connect before proceeding with the computation? We can 
start by placing the MPI_Comm_accept into a separate thread. This allows the program to continue even while the 
MPI_Comm_accept is waiting.

However, the program cannot exit until the MPI_Comm_accept completes. The easiest way to handle this situation is to have 
the same program connect to itself to complete the connection, as shown in Figure 8.2.

To allow for this case, we also change the initial connect and accept code so that the first communication is an integer that 
indicates either a normal (e.g., visualization client) connection or an exit message. We use an intercommunicator broadcast to 
ensure that all of the participating processes receive the message.

8.5—
Mixed-Model Programming:
MPI for SMP Clusters

One of the most popular computer architectures is a cluster of symmetric multiprocessors (SMPs). Another popular architecture 
is the nonuniform memory-access (NUMA) shared-memory computer. On both of these kinds of architectures, the approach of 
combining message-passing with shared-memory techniques (such as threads) can provide an effective programming model. 
This approach is often called mixed-model programming.



MPI was designed to encourage mixed-model programming. The thread-safe
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Table 8.4
C routines to discover the level of thread support

int MPI_Query_thread(int *provided)

int MPI_Is_thread_main(int *flag)

Table 8.5
Fortran routines to discover the level of thread support

MPI_QUERY_THREAD(provided, ierror)
           integer provided, ierror

MPI_IS_THREAD_MAIN(flag, ierror)
           logical flag
           integer ierror

design has made it relatively easy to use MPI with programs that use either implicit, compiler-based parallelism or explicit, 
user-programmed parallelism. In this model, the most common MPI thread mode is MPI_THREAD_FUNNELED: only one 
thread performs MPI calls. The other threads are used only for compute tasks. Using MPI with this model is very simple: in 
fact, it often amounts to nothing more than using a compiler switch to enable the automatic generation by the compiler of 
multithreaded code for loops. In other cases (e.g., when using OpenMP [67, 68]), a few changes or annotations to the code 
must be made to enable the thread-based parallelization of loops.

However, if library routines might be called by some of the compute threads, additional care must be exercised. In the 
MPI_THREAD_FUNNELED model, a library routine that is called by a thread may wish to ensure that it be allowed to perform 
MPI calls. It can discover the level of thread support by calling MPI_Query_thread, which returns the level of thread 
support that has been provided. If the level is MPI_THREAD_FUNNELED, only the "main" thread may make MPI calls. A 
thread can determine whether it is the main thread by calling MPI_Is_thread_main, which returns a logical value 
indicating whether the calling thread is the same thread that called MPI_Init or MPI_Init_thread. The bindings for 
these calls are given in Tables 8.4, 8.5, and 8.6.

Figure 8.3 shows how a library routine could determine that it has an adequate level of thread support. This code takes 
advantage of the ordering of the values of the levels of thread support to simplify the tests. Note that MPI_Query_thread
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Table 8.6
C++ routines to discover the level of thread support

int MPI::Query_thread()

bool MPI::Is_thread_main()



int thread_level, thread_is_main;

MPI_Query_thread( &thread_level );
MPI_Is_thread_main( &thread_is_main );
if (thread_level > MPI_THREAD_FUNNELED | |
   (thread_level == MPI_THREAD_FUNNELED && thread_is_main)) {
   . . . we may make MPI calls
}
else {
    printf( "Error! Routine makes MPI calls\n\
This thread does not support them\n");
    return 1;
}
. . .

Figure 8.3
Code to test for the necessary level of thread support. Note that if the thread_level is
MPI_THREAD_SERIALIZED, the user must ensure that no other thread makes MPI calls
when this library may be making MPI calls.

and MPI_Is_thread_main may be used even when MPI is initialized with MPI_Init instead of MPI_Init_thread.

Using MPI Programs with OpenMP

Some systems for thread-based parallelism, such as OpenMP [67, 68], allow the user to control the number of threads with 
environment variables. Unfortunately, MPI does not require that the environment variables (or argc and argv) be propagated 
to every process by the MPI implementation. Therefore, instead of using the environment variables directly, you must 
specifically set the number of threads to use. Since many MPI implementations start the process with rank 0 in 
MPI_COMM_WORLD with the user's environment, the code in Figure 8.4 can be used. The routine omp_get_num_threads 
will return the number of threads, in case you wish to check that the requested number of threads was provided.
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MPI_Comm_rank( MPI_COMM_WORLD, &rank );
if (rank == 0) {
    nthreads_str = getenv( "OMP_NUM_THREADS" );
    if (nthreads_str)
        nthreads = atoi( nthreads_str );
    else
        nthreads = 1;
}
MPI_Bcast( &nthreads, 1, MPI_INT, 0, MPI_COMM_WORLD );
omp_set_num_threads( nthreads );

Figure 8.4
Code to set the number of OpenMP threads from within an MPI program.
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9—
Advanced Features

In this chapter we consider some advanced features of MPI-2 that are particularly useful to library writers.

9.1—
Defining New File Data Representations

We mentioned in Chapter 3 that users can define new file data representations and register them with the MPI implementation. 
We explain this feature with the help of a simple example.



Let's define a new file data format called int64 in which integers are of length 8 bytes and stored in little-endian format. Let's 
assume that we are running the program on a machine in which integers are of length 4 bytes and in big-endian order. In other 
words, both the size of integers and the byte order are different in the native representation and in the file. For simplicity, we 
consider only one datatype, namely, integers, and assume that the program uses only integers. Other datatypes can be handled 
similarly.

We can create this new data format and register it with the MPI implementation using the function 
MPI_Register_datarep as follows:

MPI_Register_datarep("int64", read_conv_fn, write_conv_fn,
                     dtype_file_extent_fn, NULL);

where int64 is the name of the new data representation, and read_conv_fn, write_conv_fn, and 
dtype_file_extent_fn are pointers to functions that we must provide. The implementation will use read_conv_fn 
and write_conv_fn to convert data from file format to native format and vice versa. The implementation will use 
dtype_file_extent_fn to determine the extent of a datatype in the new data representation. The final parameter is an 
extra-state parameter, which the implementation will pass to the conversion functions and the extent function each time it calls 
them. This parameter allows the user to pass additional information to those functions. We just pass a null parameter here. 
After the new data representation is registered in this way, we can use it any time in the rest of the program by passing int64 
as the datarep argument to MPI_File_set_view.

For the int64 format, we can define dtype_file_extent_fn simply as

int dtype_file_extent_fn(MPI_Datatype datatype,
                         MPI_Aint *file_extent,
                         void *extra_state)
{
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    if (datatype == MPI_INT) return 8;
    else return MPI_ERR_TYPE;
}

The MPI Standard specifies that the implementation will pass to dtype_file_extent_fn only basic (predefined) 
datatypes used by the user. Even if the user uses derived datatypes in the program, the implementation will pass only the 
constituent basic datatypes of that derived datatype, not the derived datatype itself. For our example, therefore, we need only 
implement this function to handle the integer datatype. For any other datatype, we return error.

For reading integers stored in a file in int64 format on a machine with 4-byte integers in big-endian order, we can define the 
read conversion function as follows:

int read_conv_fn(void *userbuf, MPI_Datatype datatype,
                 int count, void *filebuf, MPI_Offset position,
                 void *extra_state)
{
    int i;

    if (datatype != MPI_INT) return MPI_ERR_TYPE;
    byte_swap((long long *) filebuf, count);
    for (i=0; i<count; i++)
        ((int *) userbuf) [position + i] =
                              ((long long *) filebuf) [i];
    return MPI_SUCCESS;
}



Here we have assumed that long long is an 8-byte integer. The MPI implementation will call this function from within any 
MPI function that does a file read. Before calling this function, the implementation will read count items of type datatype 
(integers in this case) from the file and store them contiguously in the buffer filebuf. To read the correct amount of data, the 
implementation will use dtype_file_extent_fn to determine the extent of an integer in the int64 format. The read 
conversion function must copy these count integers that are in int64 format in filebuf into native format in userbuf. 
The data must be stored starting from an offset in userbuf specified by the position parameter. This parameter is 
provided for the following reason: if there isn't enough memory for the implementation to allocate a filebuf large enough to 
store all the data to be read, the implementation can allocate a smaller filebuf, read the data in parts, and call 
read_conv_fn with different values for position each time.
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In read_conv_fn, we return an error if the datatype passed is not MPI_INT, because the Standard specifies that the 
implementation will pass to this function only the datatypes used by the user. (Unlike for dtype_file_extent_fn, the 
conversion functions will be passed a derived datatype if the user uses a derived datatype.) We implement read_conv_fn by 
first calling a function byte_swap that does the byte swapping necessary to convert each 8-byte integer in an array of n 
integers from little-endian to big-endian; the implementation of byte_swap is left to the reader.

The write conversion function is implemented similarly. We first copy count number of 4-byte integers starting from the offset 
position in userbuf into filebuf by appropriate type-casting. We then call the byte-swapping routine.

int write_conv_fn(void *userbuf, MPI_Datatype datatype,
                  int count, void *filebuf, MPI_Offset position,
                  void *extra_state)
{
    int i;

    if (datatype != MPI_INT) return MPI_ERR_TYPE;
    for (i=0; i<count; i++)
        ((long long *) filebuf) [i] =
                           ((int *) userbuf) [position + i];
    byte_swap((long long *) filebuf, count);
    return MPI_SUCCESS;
}

The C, Fortran, and C++ bindings for MPI_Register_datarep are given in Tables 9.1, 9.2, and 9.3.

9.2—
External Interface Functions

MPI-2 defines a set of functions, called external interface functions, that enable users to do certain things that would otherwise 
require access to the source code of an MPI implementation. These functions include functions for decoding datatypes, creating 
request objects for new nonblocking operations (called generalized requests), filling in the status object, and adding new 
error codes and classes. The external interface functions are useful to library writers. They can be used, for example, to layer 
the MPI-2 I/O functions on top of any MPI-1 implementation that also supports the MPI-2 external interface functions. Our 
implementation of the
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Table 9.1
C binding for MPI_Register_datarep. MPI_Datarep_conversion_function and 
MPI_Datarep_extent_function are not MPI functions; they show the calling sequences for the callback functions 
passed to MPI_Register_datarep.

int MPI_Register_datarep(char *datarep,
              MPI_Datarep_conversion_function *read_conversion_fn,
              MPI_Datarep_conversion_function *write_conversion_fn,
              MPI_Datarep_extent_function *dtype_file_extent_fn,
              void *extra_state)

typedef int MPI_Datarep_conversion_function(void *userbuf,
               MPI_Datatype datatype, int count, void *filebuf,
               MPI_Offset position, void *extra_state)

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
               MPI_Aint *file_extent, void *extra_state)

Table 9.2
Fortran binding for MPI_Register_datarep. read_conversion_function and dtype_file_extent_fn are 
not MPI functions; they show the calling sequences for the callback functions passed to 
MPI_Register_datarep. write_conversion_function has the same argument list as 
read_conversion_function.

MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
           dtype_file_extent_fn, extra_state, ierror)
           character*(*) datarep
           external read_conversion_fn, write_conversion_fn,
                dtype_file_extent_fn
           integer(kind=MPI_ADDRESS_KIND) extra_state
           integer ierror

subroutine READ_CONVERSION_FUNCTION(userbuf, datatype, count,
             filebuf, position, extra_state, ierror)
             <type> userbuf(*), filebuf(*)
             integer count, datatype, ierror
             integer(kind=MPI_OFFSET_KIND) position
             integer(kind=MPI_ADDRESS_KIND) extra_state

subroutine DTYPE_FILE_EXTENT_FN(datatype, extent, extra_state, ierror)
             integer datatype, ierror
             integer(kind=MPI_ADDRESS_KIND) extent, extra_state
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Table 9.3
C++ binding for MPI_Register_datarep. The bindings for the callback functions are similar to the C case in Table 9.1.

void MPI::Register_datarep(const char* datarep,
              MPI::Datarep_conversion_function* read_conversion_fn,
              MPI::Datarep_conversion_function* write_conversion_fn,
              MPI::Datarep_extent_function* dtype_file_extent_fn,
              void* extra_state)

MPI-2 I/O functions (ROMIO) uses this feature and therefore works with multiple MPI-1 implementations [88].



9.2.1—
Decoding Datatypes

An MPI datatype is an opaque object that describes data layout. In many cases, such as for layering the MPI-2 I/O functions, it 
is necessary to know what a datatype represents. With purely MPI-1 functionality it is not possible to do so unless one has 
access to the internal representation of datatypes in the implementation. Such an approach is clearly nonportable. MPI-2, 
therefore, has defined a mechanism by which users can portably decode a datatype. Two functions are provided for this 
purpose: MPI_Type_get_envelope and MPI_Type_get_contents. To see how these functions can be used, let's 
write a simple program to determine whether a given datatype is a derived datatype of type hvector and, if so, print the count, 
blocklength, and stride that was used to create this hvector type. This program is shown in Figure 9.1.

We first call the function MPI_Type_get_envelope to determine whether the given datatype is of type hvector. The first 
argument to this function is the datatype itself. The function returns in the last argument a constant, called combiner, that 
indicates the kind of datatype. For example, it returns MPI_COMBINER_NAMED if the datatype is a predefined (basic) 
datatype, MPI_COMBINER_INDEXED if it is an indexed datatype, and so on. For derived datatypes, however, it is not 
sufficient just to know the kind of datatype; we also need to know how that derived datatype was constructed. The three 
arguments, nints, nadds, and ntypes, are output parameters that help us in this regard. nints tells us how many integer 
parameters were used in the constructor function that created datatype, nadds tells us how many address-sized parameters 
were used, and ntypes tells us how many datatypes were used. We use these values to allocate buffers of the right size and 
pass them to the function MPI_Type_get_contents in order to retrieve all the parameters that
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#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

void is_type_hvector(MPI_Datatype datatype)
{
    int nints, nadds, ntypes, combiner, *ints;
    MPI_Aint *adds;
    MPI_Datatype *types;

    MPI_Type_get_envelope(datatype, &nints, &nadds, &ntypes,
                          &combiner);

    if (combiner != MPI_COMBINER_HVECTOR)
        printf("not type_hvector\n");
    else {
        printf("is type_hvector\n");
        ints = (int *) malloc(nints*sizeof(int));
        adds = (MPI_Aint *) malloc(nadds*sizeof(MPI_Aint));
        types = (MPI_Datatype *) malloc(ntypes*sizeof(MPI_Datatype));

        MPI_Type_get_contents(datatype, nints, nadds, ntypes,
                              ints, adds, types);
        printf("count = %d, blocklength = %d, stride = %ld\n",
               ints[0], ints[1], adds[0]);
        free(ints);
        free(adds);
        free(types);
    }
}

Figure 9.1
Code that checks if a given datatype is of type hvector and, if so, prints the count, blocklength, and stride
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Table 9.4
C bindings for MPI_Type_get_envelope and MPI_get_contents

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
              int *num_addresses, int *num_datatypes, int *combiner)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,
              int max_addresses, int max_datatypes, int array_of_integers[],
              MPI_Aint array_of_addresses[], MPI_Datatype array_of_datatypes[])

were used to create datatype.

For an hvector datatype in our example program, MPI_Type_get_envelope returns 
combiner=MPI_COMBINER_HVECTOR, nints=2, nadds=1, and ntypes=1. We allocate three arrays, called 
ints, adds, and types, of sizes nints, nadds, and ntypes, respectively. We next call 
MPI_Type_get_contents with datatype as the first parameter; then the three values nints, nadds, and ntypes; 
and finally the three arrays ints, adds, and types. The implementation will fill these arrays with the parameters that were 
used in the construction of datatype. For each kind of derived datatype (contiguous, vector, indexed, etc.), the MPI Standard 
specifies exactly how these arrays are filled. For an hvector datatype, ints[0] and ints[1] contain the count and 
blocklength that were passed to the hvector constructor function, adds[0] contains the stride, and types[0] contains a 
datatype equivalent to the datatype passed to the hvector constructor.

We can recursively call MPI_Type_get_envelope and MPI_Type_get_contents on the returned datatype until we 
reach a basic datatype. In this way, recursively constructed datatypes can be recursively decoded.

We note that MPI_Type_get_contents must be called only for derived datatypes. It is erroneous to call this function for a 
basic datatype, and, in fact, there is no reason to do so. One can determine the type of a basic datatype by simply doing a 
comparison check, such as "if (datatype == MPI_INT)." One cannot use a C switch statement, however, because 
MPI_INT, MPI_DOUBLE, and so forth are not necessarily compile-time constants.

C, Fortran, and C++ bindings for the datatype decoding functions are given in Tables 9.4, 9.5, and 9.6.

9.2.2—
Generalized Requests

MPI enables users to define new nonblocking operations, create MPI_Request objects for them, and use any of the usual 
MPI functions, such as MPI_Test, MPI_-

Page 280

Table 9.5
Fortran bindings for MPI_Type_get_envelope and MPI_Type_get_contents

MPI_TYPE_GET_ENVELOPE(datatype, num_integers, num_addresses,
           num_datatypes, combiner, ierror)
           integer datatype, num_integers, num_addresses, num_datatypes,
                combiner, ierror

MPI_TYPE_GET_CONTENTS(datatype, max_integers, max_addresses,
           max_datatypes, array_of_integers, array_of_addresses,
           array_of_datatypes, ierror)
           integer datatype, max_integers, max_addresses, max_datatypes,
                array_of_integers(*), array_of_datatypes(*), ierror
           integer(kind=MPI_ADDRESS_KIND) array_of_addresses(*)



Table 9.6
C++ bindings for MPI_Type_get_envelope and MPI_Type_get_contents

void MPI::Datatype::Get_envelope(int& num_integers, int& num_addresses,
              int& num_datatypes, int& combiner) const

void MPI::Datatype::Get_contents(int max_integers, int max_addresses,
              int max_datatypes, int array_of_integers[],
              MPI::Aint array_of_addresses[],
              MPI::Datatype array_of_datatypes[]) const

Wait, or their variants, to test or wait for the completion of these operations. Such requests are called generalized requests.

To understand how generalized requests can be used, let's consider the example of implementing the nonblocking write 
function MPI_File_iwrite on top of its blocking version, MPI_File_write, using a thread. We have split the code into 
two figures: Figure 9.2 contains the function MPI_File_iwrite, and Figure 9.3 contains other functions used in Figure 9.2.

Implementing MPI_File_iwrite

In the implementation of MPI_File_iwrite we first allocate a structure called params and fill it with various parameters 
that we want to pass to the thread function write_thread and to the callback functions associated with the generalized 
request (explained below). We directly fill into this structure the parameters fh, buf, and count that were passed to 
MPI_File_iwrite. We do not store the original datatype directly because the user may free the data-
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#include "mpi.h"
#include <pthread.h>

typedef struct {
    MPI_File fh;
    void *buf;
    int count;
    MPI_Datatype *datatype;
    MPI_Request *request;
    MPI_Status *status;
} params_struct;

void *write_thread(void *ptr);

int MPI_File_iwrite(MPI_File fh, void *buf, int count,
                    MPI_Datatype datatype, MPI_Request *request)
{
    pthread_t thread;
    params_struct *params;
    MPI_Status *status;

    status = (MPI_Status *) malloc(sizeof(MPI_Status));
    params = (params_struct *) malloc(sizeof(params_struct));
    params–>fh = fh;
    params–>buf = buf;
    params–>count = count;
    params–>status = status;
    MPI_Type_dup(datatype, params–>datatype);

    MPI_Grequest_start(query_fn, free_fn, cancel_fn,
                       (void *) params, request);
    params–>request = request;
    pthread_create(&thread, NULL, write_thread, (void *) params);
    return MPI_SUCCESS;
}



Figure 9.2
Implementing MPI_File_iwrite on top of MPI_File_write using generalized requests and threads.
The functions write_thread, query_fn, free_fn, and cancel_fn are defined in Figure 9.3.
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void *write_thread(void *ptr)
{
    params_struct *params;

    params = (params_struct *) ptr;
    MPI_File_write(params–>fh, params–>buf, params–>count,
                   *(params–>datatype), params–>status);
    MPI_Grequest_complete(*(params–>request));
    return 0;
}

int query_fn(void *extra_state, MPI_Status *status)
{
    params_struct *params;
    int count;

    params = (params_struct *) extra_state;
    MPI_Get_elements(params–>status, *(params–>datatype), &count);
    MPI_Status_set_elements(status, *(params–>datatype), count);
    MPI_Status_set_cancelled(status, 0);
    return MPI_SUCCESS;
}

int free_fn(void *extra_state)
{
    free(((params_struct *) extra_state)–>status);
    MPI_Type_free(((params_struct *) extra_state)–>datatype);
    free(extra_state);
    return MPI_SUCCESS;
}

int cancel_fn(void *extra_state, int complete)
{
    return MPI_SUCCESS;
}

Figure 9.3
Definitions of functions used in the code in Figure 9.2
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type immediately after MPI_File_iwrite returns.1 We instead create a duplicate of the datatype using MPI_Type_dup 
and store this duplicate. We also dynamically allocate a status object and store a pointer to it in the params structure. 
We do so because we need to pass this status object around the various callback functions: we will use it as the status argument 
to MPI_File_write, and we will query its contents in order to fill the corresponding status object for the generalized 
request. The status object, therefore, must remain allocated until the generalized request is freed.

The function to create a generalized request is MPI_Grequest_start. The name is somewhat misleading: this function 
does not actually start any operation; it just creates a new request object that can be associated with the new nonblocking 
operation being defined. We must start the nonblocking operation separately, and we do so by using the POSIX [42] function 
pthread_create, which creates a new thread.2



The first three arguments to MPI_Grequest_start are callback functions that we must provide. The MPI implementation 
will use these callback functions when MPI_Test, MPI_Wait, MPI_Cancel, and other such MPI functions are called 
on the generalized request. We explain below how we have implemented these callback functions. The fourth argument to 
MPI_Grequest_start is an extra-state argument, which the implementation does not use itself but simply passes to the 
callback functions each time they are called. We pass the params structure as this argument. The implementation returns a 
request object, called generalized request, as the fifth argument. To the user, this generalized request is like any other 
request object returned by a nonblocking MPI function. Any of the usual functions, such as MPI_Test or MPI_Wait, can be 
called on this object. The implementation will invoke the callback functions to implement test, wait, and other operations on 
the generalized request.

We start the nonblocking write with a call to pthread_create, which creates a new thread within the process. The ID of 
the newly created thread is returned in the first argument. The second argument specifies the attributes for the new thread; we 
just pass a null argument, which means that the default thread attributes will be used. The third argument specifies the function 
that the thread will execute. In this

1 MPI allows the user to free an MPI object after the routine that begins a nonblocking operation; the MPI implementation 
internally retains all necessary information about the object until the nonblocking operation completes.
2 Note that if we used the thread to call a blocking system routine, such as write, we would need to ensure that the thread was a 
kernel thread, as discussed in Chapter 8. Since we will use an MPI call for the I/O, MPI guarantees that calling the MPI blocking 
routine will block only the thread, not the process.
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example, the function is write_thread. The final argument is the parameter that the thread will pass to the function 
write_thread; we pass the params structure as this argument. Since write_thread is run as a separate thread, 
pthread_create returns without waiting for write_thread to complete. As a result, the function MPI_File_iwrite 
returns with the write operation initiated but not completed, that is, as a nonblocking write operation.

• write_thread. In the function write_thread, we simply call the blocking version (MPI_File_write) of the 
nonblocking function being implemented. The parameters passed to this function are extracted from the params structure. 
Since this is a blocking function, it returns only after the write has completed. After it returns, we call the function 
MPI_Grequest_complete to inform the implementation that the operation associated with the generalized request has 
completed. Only after MPI_Grequest_complete has been called will the implementation return flag=true when the 
user calls MPI_Test on the request. Similarly, MPI_Wait will return only after MPI_Grequest_complete has been 
called.

Let's now see how we have implemented the three callback functions passed to MPI_Grequest_start.

• query_fn. The MPI implementation will call query_fn to fill the status object for the request. This will occur, for 
example, when MPI_Test or MPI_Wait are called on the request. The implementation will pass to query_fn the params 
structure that we passed as the extra_state argument to MPI_Grequest_start. The second argument passed to 
query_fn is a status object that we must fill. To fill the status object, we use the functions MPI_Status_set_elements 
and MPI_Status_set_cancelled, which also are external interface functions defined in MPI-2.

Recall that the params structure contains a status object that was filled by MPI_File_write in the function 
write_thread. We use the MPI-1 function MPI_Get_elements to retrieve the number of basic elements that were 
written by MPI_File_write. We then use MPI_Status_set_elements to enter the same value in the status object 
passed by the MPI implementation to query_fn. Note that there is no function like MPI_Status_set_count in MPI for 
setting the value to be returned when MPI_Get_count is called on the status object. This is because the implementation can 
calculate the count from the number of basic elements that we have specified using MPI_Status_set_elements.

We also need to specify in the status object if the request had been successfully cancelled in response to an MPI_Cancel 
called by the user. The user can check whether the cancellation was successful by using the function 
MPI_Test_cancelled.
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In this simple example, we do not support cancellation of requests; therefore, we simply pass 0 as the second argument to 
MPI_Status_set_cancelled.

• free_fn. The MPI implementation will invoke the callback function free_fn to free all resources allocated by the user 
for implementing the generalized request. free_fn will be invoked when the generalized request is freed, for example, with 
MPI_Test, MPI_Wait, or MPI_Request_free. The implementation also passes to free_fn the extra_state 
argument (params structure) that we passed to MPI_Grequest_start. In the free_fn, we free the data structures that 
we allocated in the implementation of MPI_File_iwrite, namely, the status object and the duplicated datatype stored in 
the params structure and then the params structure itself.

• cancel_fn. The MPI implementation will invoke the callback function cancel_fn when the user attempts to cancel the 
nonblocking operation using MPI_Cancel. The implementation will pass complete=true to cancel_fn if 
MPI_Grequest_complete has already been called on the request (by the separate thread executing the function 
write_thread); otherwise, it will pass complete=false. This lets us know whether the nonblocking operation has 
already completed and therefore cannot be cancelled. In this simple example, however, we do not support cancellation anyway. 
Therefore, we simply return MPI_SUCCESS.

Note that in order to know whether the request was successfully cancelled, the user must call MPI_Test_cancelled. 
Calling MPI_Test_cancelled will cause the implementation to invoke the query_fn in which we set the cancelled field 
of the status object to 0, indicating that the request was not cancelled.

We stress the fact that the mechanism for generalized requests in MPI does not start nonblocking operations, nor does it cause 
them to progress or complete. The user must use some other mechanism (for example, threads) to take care of initiation, 
progress, and completion of the operation. MPI needs to be informed only of the completion of the generalized request (by 
calling MPI_Grequest_complete).

C, Fortran, and C++ bindings for the MPI functions for generalized requests and for filling the status object are given in Tables 
9.7, 9.8, and 9.9.

9.2.3—
Adding New Error Codes and Classes

A layered library, such as an implementation of the MPI-2 I/O functions on top of an MPI-1 implementation, may need to add 
new error codes and classes to the ones already defined by the MPI implementation. These would allow the user to call the 
usual MPI-1 functions on error code and classes, namely, MPI_Error_class to
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Table 9.7
C bindings for the MPI functions for generalized requests and for filling the status object. 
MPI_Grequest_query_function, MPI_Grequest_free_function, and 
MPI_Grequest_cancel_function are not MPI functions; they show the calling sequences for the callback functions 
passed to MPI_Grequest_start.

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
              MPI_Grequest_free_function *free_fn,
              MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
              MPI_Request *request)

typedef int MPI_Grequest_query_function(void *extra_state,MPI_Status *status)

typedef int MPI_Grequest_free_function(void *extra_state)

typedef int MPI_Grequest_cancel_function(void *extra_state, int complete)



int MPI_Grequest_complete(MPI_Request request)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,
              int count)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

determine the error class to which an error code belongs and MPI_Error_string to retrieve a text string associated with the 
error code. MPI provides three functions for adding new error codes and classes: 
MPI_Add_error_class, MPI_Add_error_code, and MPI_Add_error_string. As an example, let's see how a 
layered library of the MPI-2 I/O functionality can add the I/O error class MPI_ERR_AMODE, an error code associated with this 
class, and the corresponding error strings to the MPI implementation. The program fragment is shown in Figure 9.4.

Note that an error class indicates a particular kind of error in general. Multiple error codes, corresponding to more specific 
errors, can be associated with an error class. In this example, we define a new error class, MPI_ERR_AMODE, and a specific 
error code, MPI0_ERR_AMODE_COMB, associated with this class. We use MPI0_, and not MPI_, for the error code because 
error codes are not predefined in MPI; only error classes are. We have defined the error code and class as external variables 
because they need to be used in other parts of the layered I/O library.

We use the function MPI_Add_error_class to create a new error class called MPI_ERR_AMODE. The MPI 
implementation assigns a value to the new error class; we cannot directly assign a value to it ourselves. We use the function 
MPI_Add_-

Page 287

Table 9.8
Fortran bindings for MPI_Grequest_start and MPI_Grequest_complete. query_fn, free_fn, and 
cancel_fn are not MPI functions; they show the calling sequences for the callback functions passed to 
MPI_Grequest_start.

MPI_GREQUEST_START(query_fn, free_fn, cancel_fn, extra_state, request, ierror)
          integer request, ierror
          external query_fn, free_fn, cancel_fn
          integer (kind=MPI_ADDRESS_KIND) extra_state

subroutine QUERY_FN(extra_state, status, ierror)
             integer status(MPI_STATUS_SIZE), ierror
             integer(kind=MPI_ADDRESS_KIND) extra_state

subroutine FREE_FN(extra_state,ierror)
              integer ierror
              integer(kind=MPI_ADDRESS_KIND) extra_state

subroutine CANCEL_FN(extra_state, complete, ierror)
             integer ierror
             integer(kind=MPI_ADDRESS_KIND) extra_state
             logical complete

MPI_GREQUEST_COMPLETE(request, ierror)
          integer request, ierror

MPI_STATUS_SET_ELEMENTS(status, datatype, count, ierror)
           integer status(MPI_STATUS_SIZE), datatype, count, ierror



MPI_STATUS_SET_CANCELLED(status, flag, ierror)
           integer status(MPI_STATUS_SIZE), ierror
           logical flag
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Table 9.9
C++ bindings for MPI_Grequest_start and MPI_Grequest_complete. The bindings for the callback functions are 
similar to the C case in Table 9.7.

MPI::Grequest MPI::Grequest::Start(
              const MPI::Grequest::Query_function query_fn,
              const MPI::Grequest::Free_function free_fn,
              const MPI::Grequest::Cancel_function cancel_fn, void *extra_state)

void MPI::Grequest::Complete()

void MPI::Status::Set_elements(const MPI::Datatype& datatype, int count)

void MPI::Status::Set_cancelled(bool flag)

extern int MPI_ERR_AMODE;          /* error class */
extern int MPI0_ERR_AMODE_COMB;    /* error code */

MPI_Add_error_class(&MPI_ERR_AMODE);
MPI_Add_error_code(MPI_ERR_AMODE, &MPIO_ERR_AMODE_COMB);
MPI_Add_error_string(MPI_ERR_AMODE,
 "Error related to the amode passed to MPI_File_open");
MPI_Add_error_string(MPIO_ERR_AMODE_COMB,
 "MPI_MODE_RDWR and MPI_MODE_RDONLY cannot be specified together");

Figure 9.4
Adding new error codes and classes to an MPI implementation. In this example, a layered library of the
MPI-2 I/O functionality adds the error class MPI_ERR_AMODE, an error code associated with this
class, and the corresponding error strings to the MPI implementation.

error_code to create a new error code, MPIO_ERR_AMODE_COMB, associated with the error class MPI_ERR_AMODE. The 
implementation assigns a value to this error code. Next we use the function MPI_Add_error_string to associate a text 
string with the new error class and error code. Note that the string associated with the error class indicates a general error about 
amode, whereas the string associated with the error code indicates a very specific error. After the new error code and class have 
been added in this fashion, users can use the functions MPI_Error_class and MPI_Error_string on the new error 
code and class.

C, Fortran, and C++ bindings for MPI_Add_error_class, MPI_Add_error_code, and MPI_Add_error_string 
are given in Tables 9.10, 9.11, and 9.12.
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Table 9.10
C bindings for the functions for adding new error codes and classes

int MPI_Add_error_class(int *errorclass)

int MPI_Add_error_code(int errorclass, int *errorcode)

int MPI_Add_error_string(int errorcode, char *string)



Table 9.11
Fortran bindings for the functions for adding new error codes and classes

MPI_ADD_ERROR_CLASS(errorclass, ierror)
           integer errorclass, ierror

MPI_ADD_ERROR_CODE(errorclass, errorcode, ierror)
           integer errorclass, errorcode, ierror

MPI_ADD_ERROR_STRING(errorcode, string, ierror)
           integer errorcode, ierror
           character*(*) string

Table 9.12
C++ bindings for the functions for adding new error codes and classes

int MPI::Add_error_class()

int MPI::Add_error_code(int errorclass)

void MPI::Add_error_string(int errorcode, const char* string)

9.3—
Mixed-Language Programming

Library writers often write a library in one language (for example, C) and provide interfaces to it (called wrappers) from other 
languages (for example, Fortran and C++). MPI provides features that make it possible for a program written in one language 
to call MPI functions implemented in another language. The three languages that MPI supports are C, Fortran, and C++. MPI 
also allows programs written in different languages to send messages to one another; we considered such an example in 
Chapter 7.

Let us consider the example of implementing the Fortran interface for the MPI function MPI_File_write on top of its C 
implementation. The code is shown in
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#include "mpi.h"

void mpi_file_write_(MPI_Fint *fh, void *buf, int *count,
                     MPI_Fint *datatype, MPI_Fint *status,
                     MPI_Fint *err)

{
    MPI_File fh_c;
    MPI_Datatype datatype_c;
    MPI_Status status_c;

    fh_c = MPI_File_f2c(*fh);
    datatype_c = MPI_Type_f2c(*datatype);
    *err = (MPI_Fint) MPI_File_write(fh_c, buf, *count, datatype_c,
                                     &status_c);
    MPI_Status_c2f(&status_c, status);
}

Figure 9.5
Implementing the Fortran interface for MPI_File_write



Figure 9.5. When a user compiles a Fortran program containing a call to the ''external" function MPI_File_write, the 
compiler creates an object file in which this function is named according to some convention followed by the compiler. For 
example, some compilers convert the function name to all lower-case letters and append an underscore at the end, some 
compilers add a double underscore at the end, some don't add an underscore, and some convert the function name to all capital 
letters. For the Fortran program to link correctly, we must define the name of the C wrapper function according to the 
convention followed by the Fortran compiler. Let's assume that the Fortran compiler converts the function name to lower case 
and adds an underscore. Therefore, we name the wrapper function mpi_file_write_.

The argument list to this function takes into account the fact that parameters to functions in Fortran are passed by reference (as 
addresses) and that handles to MPI objects in Fortran are defined to be of type integer. Since an integer in Fortran may not 
be of the same size as an integer in C, MPI provides a datatype called MPI_Fint in C and C++, which represents an integer of 
the same size as a Fortran integer. Therefore, all arguments to mpi_file_write_ other than the user's buffer are of type 
MPI_Fint*.

Before we can call the C function MPI_File_write, the Fortran handles to MPI objects must be converted to C handles. 
MPI provides handle conversion functions
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Table 9.13
Bindings for the conversion functions used in Figure 9.5

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)

to convert from C handles to Fortran handles and vice versa. We use MPI_File_f2c to convert the Fortran file handle to a C 
file handle and MPI_Type_f2c to convert the Fortran datatype handle to a C datatype handle. Then we call the C function 
MPI_File_write and pass it the C file handle and the C datatype. Since status is an output parameter, we define a new C 
status object and pass it to the function. After the function returns, we call MPI_Status_c2f, which copies all the 
information contained in the C status object into the Fortran status object passed by the user. Note that MPI_Status_c2f is 
slightly different from handle conversion functions such as MPI_File_c2f, because status objects are explicitly allocated by 
the user and are not system objects. Handle conversion functions merely convert handles between languages, whereas 
MPI_Status_c2f actually copies all the information contained in a C status object (a structure of type MPI_Status) into 
a user-supplied Fortran status object (an integer array of size MPI_STATUS_SIZE).

The MPI Standard specifies that datatypes defined in any language can be used in any other language after the handles have 
been converted appropriately using MPI_Type_f2c or MPI_Type_c2f (see Section 2.2.6 of [27]). For example, if the 
Fortran call to MPI_File_write specifies the datatype MPI_COMPLEX, the Fortran wrapper function can pass this datatype 
to the C function MPI_File_write after handle conversion with MPI_Type_f2c.

Similar handle conversion functions are provided for all other MPI objects, namely, groups, communicators, requests, window 
objects, info, and op. All handle conversion functions are defined in C only; they do not have Fortran and C++ bindings. 
Handles can be passed from C to C++ by using overloaded C++ operators called from C++ code. No provision exists in MPI 
for direct access to C++ objects from C and for direct access to C or C++ objects from Fortran.

The bindings for the conversion functions used in Figure 9.5 are given in Table 9.13.
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9.4—
Attribute Caching

MPI allows users to cache user-defined information on certain MPI objects, such as communicators, datatypes, and windows. 
This feature of MPI is particularly useful to library writers. MPI-1 supports this feature on communicators only. MPI-2 
extended attribute caching to datatypes and windows. Let us consider an example in which a library needs to decode a derived 
datatype and create a "flattened" version of the datatype consisting of a list of offsets and lengths for use later in the program. 
Flattening of datatypes is needed, for example, in a layered library that implements the MPI-2 I/O functionality. Storing this 
flattened information on the datatype itself by using attribute caching is very handy here because of the following reasons:

• The flattened information can be easily accessed whenever the datatype is passed to the library.

• When the user frees the datatype using MPI_Type_free, the MPI implementation also frees the flattened information 
using the delete function that was provided when the flattened information was cached as an attribute on the datatype. If the 
flattened information is instead stored in some other way, such as in a table or list indexed by the datatype handle, one cannot 
ensure that the flattened information will be freed when the user frees the datatype. If the flattened information is not freed 
when the user frees the datatype and if the MPI implementation reuses the same datatype handle for a newly created derived 
datatype, there is a danger of the library using the old flattened information for the new datatype. Attribute caching eliminates 
this problem.

Figures 9.6 and 9.7 show the code for caching a flattened version of a datatype as an attribute on the datatype. To store the 
flattened information, we use a structure of type flat_struct, which contains an array of offsets, an array of lengths, the 
number of entries (n) in these two arrays, and a reference count to avoid creating multiple copies of this structure when the 
datatype is duplicated using MPI_Type_dup. We do not show the actual code for flattening a datatype; it can be written along 
the lines of Figure 9.1 by using the functions MPI_Type_get_envelope and MPI_Type_get_contents recursively.

We use the function MPI_Type_create_keyval to create a new attribute key that, together with an associated value, can 
be cached on a datatype. The first two parameters to MPI_Type_create_keyval are callback functions—a copy function 
and a delete function—that we must provide. They are described below. MPI returns in the third argument a key that we can 
use to cache an attribute value
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#include "mpi.h"

typedef struct {
    MPI_Aint *offsets;
    int *lengths;
    int n;  /*no. of entries in the offsets and lengths arrays*/
    int ref_count; /* reference count */
} flat_struct;

void Flatten_datatype(MPI_Datatype datatype)
{
    flat_struct *flat_dtype;
    int key;

    flat_dtype = (flat_struct *) malloc(sizeof(flat_struct));
    flat_dtype–>ref_count = 1;

    /* code for allocating memory for the arrays "offsets" and
       "lengths" and for flattening the datatype and filling in the
       offsets and lengths arrays goes here */

    MPI_Type_create_keyval(Copy_fn, Delete_fn, &key, (void *) 0);
    MPI_Type_set_attr(datatype, key, flat_dtype);
}



Figure 9.6
Using attribute caching on datatypes to cache a flattened version of a datatype on the datatype itself.
The copy and delete functions for the attribute key are defined in Figure 9.7.

on the datatype. The fourth argument is an extra-state argument, which MPI will simply pass on to the callback functions. We 
use the function MPI_Type_set_attr to store this key on the datatype and associate the flattened datatype as the value of 
this key. Attribute values are address-sized integers; therefore, we store a pointer to the flattened datatype as the attribute value.

The copy and delete callback functions for the attribute key are defined in Figure 9.7. MPI will call the copy function when the 
datatype is duplicated using MPI_Type_dup. In the copy function, we merely increment the reference count by one. We also 
set the flag parameter to 1 to indicate that we want this attribute to be cached on the duplicated datatype. If flag is set to 0, 
the attribute will be deleted from the duplicated datatype. In the attr_val_out parameter, we must return the attribute value 
associated with this key on the duplicated datatype. In
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int Copy_fn(MPI_Datatype datatype, int key, void *extra_state,
            void *attr_val_in, void *attr_val_out, int *flag)
{
    ((flat_struct *) attr_val_in–>ref_count += 1;
    *((flat_struct **) attr_val_out) = (flat_struct *) attr_val_in;
    *flag = 1;
    return MPI_SUCCESS;
}

int Delete_fn(MPI_Datatype datatype, int key, void *attr_val,
              void *extra_state)
{
    flat_struct *flat_dtype;

    flat_dtype = (flat_struct *) attr_val;
    flat_dtype–>ref_count -=1;
    if (flat_dtype–>ref_count == 0) {
        free(flat_dtype–>offsets);
        free(flat_dtype–>lengths);
        free(flat_dtype);
    }
    return MPI_SUCCESS;
}

Figure 9.7
Definitions of the copy and delete functions used in Figure 9.6

this case, the value is the same as the value on the original datatype, namely, a pointer to the flattened datatype structure, which 
MPI passes in the attr_val_in parameter.

Although both attr_val_in and attr_val_out are of type void*, they are defined differently. attr_val_in is the 
value itself, which is an address-sized variable and therefore of type void*. attr_val_out, however, is an output 
parameter; MPI will pass the address of the new attribute value as this parameter. attr_val_out is therefore an address of 
an address-sized variable, which is also defined as void*. Since attr_val_out is the address of the new attribute value 
and attr_val_in is the input value itself, we cannot simply do

attr_val_out = attr_val_in;

Instead we do

*((flat_struct **) attr_val_out) = (flat_struct *) attr_val_in;
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Table 9.14
C bindings for the attribute caching functions used in Section 9.4. MPI_Type_copy_attr_function and 
MPI_Type_delete_attr_function are not MPI functions; they show the calling sequences for the callback functions 
passed to MPI_Type_create_keyval.

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,
              MPI_Type_delete_attr_function *type_delete_attr_fn,
              int *type_keyval, void *extra_state)

typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype, int type_keyval,
             void *extra_state, void *attribute_val_in, void *attribute_val_out,
               int *flag)

typedef int MPI_Type_delete_attr_function(MPI_Datatype type, int type_keyval,
               void *attribute_val, void *extra_state)

int MPI_Type_set_attr(MPI_Datatype type, int type_keyval, void *attribute_val)

MPI will call the delete function when the datatype is freed using MPI_Type_free. In the delete function, we decrement the 
reference count. If the count is zero after decrementing, we free the memory allocated for the flattened datatype.

C, Fortran, and C++ bindings for the attribute caching functions used in this example are given in Tables 9.14, 9.15, and 9.16.

For cases where no special copy or delete functions are needed, MPI provides "do-nothing" functions. These are 
MPI_COMM_NULL_COPY_FN and MPI_COMM_NULL_DELETE_FN for communicator attributes, 
MPI_TYPE_NULL_COPY_FN and MPI_TYPE_NULL_DELETE_FN for datatype attributes, and 
MPI_WIN_NULL_COPY_FN and MPI_WIN_NULL_DELETE_FN for window object attributes.

9.5—
Error Handling

In this section we describe MPI's support for handling errors in programs.

9.5.1—
Error Handlers

MPI associates an error handler function with each communicator, window object, and file handle. If an error occurs in an MPI 
function, the implementation will invoke the associated error handler. The default error handler for communicators and window 
objects is MPI_ERRORS_ARE_FATAL, whereas for file handles it is MPI_ERRORS_RETURN. In other words, if the default 
error handlers are set and an error

Page 296

Table 9.15
Fortran bindings for the attribute caching functions used in Section 9.4. type_copy_attr_fn and 
type_delete_attr_fn are not MPI functions; they show the calling sequences for the callback functions passed to 
MPI_Type_create_keyval.

MPI_TYPE_CREATE_KEYVAL(type_copy_attr_fn, type_delete_attr_fn,
           type_keyval, extra_state, ierror)
           external type_copy_attr_fn, type_delete_attr_fn
           integer type_keyval, ierror
           integer(king=MPI_ADDRESS_KIND) extra_state



subroutine TYPE_COPY_ATTR_FN(oldtype, type_keyval, extra_state,
             attribute_val_in, attribute_val_out, flag, ierror)
             integer oldtype, type_keyval, ierror
             integer(kind=MPI_ADDRESS_KIND) extra_state, attribute_val_in,
                  attribute_val_out
             logical flag

subroutine TYPE_DELETE_ATTR_FN(type, type_keyval, attribute_val,
             extra_state, ierror)
             integer type, type_keyval, ierror
             integer(kind=MPI_ADDRESS_KIND) attribute_val, extra_state

MPI_TYPE_SET_ATTR(type, type_keyval, attribute_val, ierror)
           integer type, type_keyval, ierror
           integer(kind=MPI_ADDRESS_KIND) attribute_val

Table 9.16
C++ bindings for the attribute caching functions used in Section 9.4. The bindings for the callback functions are similar to the 
C case in Table 9.14.

int MPI::Datatype::Create_keyval(
              MPI::Datatype::Copy_attr_function*type_copy_attr_fn,
              MPI::Datatype::Delete_attr_function* type_delete_attr_fn,
              void* extra_state)

void MPI::Datatype::Set_attr(int type_keyval, const void* attribute_val)
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occurs in a non-I/O function, the program will abort, whereas if an error occurs in an I/O function, the implementation will try 
to continue execution by returning an appropriate error code.

MPI provides functions to create a new error handler, to associate it with a communicator, window object, or file handle, and to 
explicitly invoke an error handler. Let's consider the case of file handles. The function for creating a new error handler that can 
be associated with a file handle is MPI_File_create_errhandler; the function for associating an error handler with a 
file handle is MPI_File_set_errhandler; and the function for explicitly invoking the error handler associated with a 
file handle is MPI_File_call_errhandler. Similar functions exist for communicators and window objects.

The default error handler for all files can be changed by calling MPI_File_set_errhandler with a null file handle, 
MPI_FILE_NULL, before any file is opened in the program. This method (of passing a null handle), however, cannot be used 
for communicators and window objects. The default error handler for all communicators can be changed by changing the error 
handler associated with MPI_COMM_WORLD immediately after MPI is initialized. Newly created communicators will inherit 
the new error handler from the "parent" communicator. There is no way to change the default error handler for all window 
objects; it must be changed explicitly for each window object by using MPI_Win_set_errhandler.

9.5.2—
Error Codes and Classes

Almost all MPI functions in C and Fortran return an error code. In C, the error code is the return value of the MPI function; in 
Fortran, it is the ierror argument to the function. If the function returns successfully, the error code is set to 
MPI_SUCCESS; if not, an implementation-defined error code is returned. Error codes can be mapped onto standard MPI error 
classes by using the function MPI_Error_class. The function MPI_Error_string can be used to obtain a text string 
corresponding to the error code. The error classes defined in MPI for I/O and remote memory operations are listed in Tables 
9.17 and 9.18, respectively. Other error classes defined in MPI-2—for dynamic process management, info functions, and some 
miscellaneous functions—are listed in Table 9.19. The error classes defined in MPI-1 are given in Chapter 7 of Using MPI [32].



For example, consider the following program fragment. For demonstration purposes, we use both methods of printing an error 
message: via error classes and via error strings.

errcode = MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
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                        MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
if (errcode != MPI_SUCCESS) {
    MPI_Error_class(errcode, &errclass);
    if (errclass == MPI_ERR_NO_SUCH_FILE)
        printf("File does not exist\n");
    else {
        MPI_Error_string(errcode, str, &len);
        printf("%s\n", str);
    }
}

The C++ functions do not return error codes. If an error occurs in non-I/O functions, the default error handler MPI::
ERRORS_ARE_FATAL causes the program to abort. In the case of errors in I/O functions, the default I/O error handler MPI::
ERRORS_RETURN simply returns control to the calling function; there is no provision for the user to retrieve the error code. 
To catch errors, users must change the error handler to MPI::ERRORS_THROW_EXCEPTIONS, which uses the C++ 
exception mechanism to signal an error by throwing an MPI::Exception object.

9.6—
Topics Not Covered in This Book

MPI-2 has additional routines that we have not covered in this book. They include the following.

• Routines to add and retrieve printable names to MPI objects: MPI_Comm_set_name, MPI_Comm_get_name, 
MPI_Win_set_name, MPI_Win_set_name, MPI_Type_set_name,and MPI_Win_get_name.

• A routine to create an MPI connection out of an existing non-MPI connection: MPI_Comm_Join

• Additional routines for I/O, including: MPI_File_get_amode, MPI_File_get_atomicity, 
MPI_File_get_byte_offset, MPI_File_get_group, MPI_File_get_position, 
MPI_File_get_position_shared, MPI_File_get_view, MPI_File_iread_at, 
MPI_File_preallocate, MPI_File_read_all_begin, MPI_File_read_all_end, 
MPI_File_read_at_all_begin, MPI_File_read_at_all_end, MPI_File_set_size, 
MPI_File_write_at_all_begin, MPI_File_write_at_all_end, MPI_File_write_ordered_begin, 
and MPI_File_write_ordered_end.
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Table 9.17
Error classes for I/O

MPI_ERR_FILE Invalid file handle

MPI_ERR_NOT_SAME Collective argument not identical on all processes or collective 
routines called in a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to MPI_File_open

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to MPI_File_set_view

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on a file that supports 
sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist

MPI_ERR_FILE_EXISTS File exists



MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)

MPI_ERR_ACCESS Permission denied

MPI_ERR_NO_SPACE Not enough space

MPI_ERR_QUOTA Quota exceeded

MPI_ERR_READ_ONLY Read-only file or file system

MPI_ERR_FILE_IN_USE File operation could not be completed because the file is currently 
open by some process

MPI_ERR_DUP_DATAREP Conversion functions could not be registered because a data 
representation identifier that was already defined was passed to 
MPI_Register_datarep

MPI_ERR_CONVERSION An error occurred in a user-supplied data conversion function

MPI_ERR_IO Other I/O error

Table 9.18
Error classes for RMA operations

 

MPI_ERR_WIN Invalid win argument

MPI_ERR_BASE Invalid base argument

MPI_ERR_SIZE Invalid size argument

MPI_ERR_DISP Invalid disp argument

MPI_ERR_LOCKTYPE Invalid locktype argument

MPI_ERR_ASSERT Invalid assert argument

MPI_ERR_RMA_CONFLICT Conflicting accesses to window

MPI_ERR_RMA_SYNC Wrong synchronization of RMA calls
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Table 9.19
Other error classes defined in MPI-2

 

Dynamic Process Management

MPI_ERR_SPAWN Unable to spawn specified number of processes

MPI_ERR_PORT Named port does not exist or has been closed

MPI_ERR_SERVICE An attempt to unpublish a name that has not been published or has 
already been unpublished

MPI_ERR_NAME Service name has not been published

Info Functions

MPI_ERR_INFO_KEY Size of info key exceeds MPI_MAX_INFO_KEY

MPI_ERR_INFO_VALUE Size of info value exceeds MPI_MAX_INFO_VAL

MPI_ERR_INFO_NOKEY Key not defined in info object

Miscellaneous

MPI_ERR_KEYVAL Invalid attribute key

MPI_ERR_NO_MEM Out of memory in MPI_Alloc_mem



• Additional routines for manipulating info objects: MPI_Info_delete, MPI_Info_dup, and 
MPI_Info_get_valuelen.

• Routines to pack and unpack from a specified external data representation: MPI_Pack_external and 
MPI_Unpack_external.

Although these routines did not find a natural place in our book, they may be just what you need. For example, the routines for 
naming MPI objects can allow an MPI-aware debugger to print more detailed information about an MPI object. We encourage 
you to consider these routines when developing an application.
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10—
Conclusions

In this chapter we summarize our journey through the new types of parallel programs that are enabled by MPI-2, comment on 
the current status of MPI-2 implementations, and speculate on future directions for MPI.

10.1—
New Classes of Parallel Programs

By providing a standard message-passing interface, MPI-1 made it possible for the parallel programs of its time to become 
portable. Many message-passing programs, particularly in the area of scientific computing, were already in production use. 
Over a relatively short period, most of them were converted to MPI and thus achieved portability. New message-passing 
applications were developed that used MPI from the very beginning.

MPI confers portability in both ''space" and "time." An MPI application can be run on multiple parallel computers or developed 
on one and run in production mode on another (space portability). Perhaps even more important, an MPI application can be 
moved from one generation of machines to the next (time portability). This property has proven to be extremely important as 
the set of parallel computer vendors and types of parallel machines have undergone rapid change.

The MPI-2 Standard greatly extends the range of programs that can be written portably from their inception. Programs that 
require high-performance I/O, programs with dynamically changing numbers of processes, programs that use loose 
synchronization and remote memory access, and libraries that extend MPI itself are all starting to be written, and, because of 
MPI, they can be written portably.

10.2—
MPI-2 Implementation Status

MPI-2 is larger and more complex than MPI-1, and implementation is proceeding more slowly. Nonetheless, as this book is 
being written (in the summer of 1999), one complete MPI-2 implementation already exists and several others are under 
development.

10.2.1—
Vendor Implementations

Fujitsu offers a complete MPI-2 implementation, done by PALLAS. Compaq (formerly Digital), Fujitsu, HP, IBM, NEC, SGI, 
Sun, and others are in the process of providing MPI-2 functionality, in most cases starting with parallel I/O. The current release 
of HP's MPI includes some of the remote memory access functions, as
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well the MPI-2 thread functions and multithreading of MPI calls. The Edinburgh Parallel Computing Center has developed a 
nearly complete implementation of the remote-memory functions for the Cray/SGI T3D [9]. Compaq has demonstrated one-
sided operations but has not yet released them. We expect to see more and more parts of MPI-2 appear in each of these 
companies' MPI products as time goes by.

10.2.2—
Free, Portable Implementations

The most widely used publicly available MPI implementations are LAM [7] and MPICH [30]. These MPI implementations are 
particularly popular on heterogeneous workstation networks and "Beowulf" clusters, where no vendor implementation is 
available. MPICH is also used on massively parallel processors where it competes with vendor MPI implementations.

Both LAM and MPICH are moving in the direction of MPI-2. Both already offer the parallel I/O part of MPI-2 (see Section 
10.2.3) and the C++ bindings for MPI-1. LAM also has the dynamic process management functionality and part of the remote 
memory operations. As of this writing, MPICH is undergoing an internal redesign (see Appendix B of Using MPI [32]) in 
preparation for the addition of full MPI-2 functionality.

10.2.3—
Layering

For some areas of MPI-2, it is possible for a third party to supply part of the MPI library in such a way that it uses any 
underlying MPI-1 implementation. We discussed this approach in Chapter 9 for implementing the MPI-2 I/O functionality. 
This approach has been used in at least three different implementations of the MPI-2 I/O functions: our portable 
implementation, ROMIO [88]; the portable implementation PMPIO from NASA Ames Research Center [22]; and the 
implementation on top of HPSS from Lawrence Livermore National Laboratory [45]. A group at the University of Notre Dame 
has implemented the MPI-1 C++ bindings [66] as wrappers for the C versions of the MPI-1 functions.

10.3—
Where Does MPI Go from Here?

It is not known yet whether there will be an "MPI-3." Standardizing the basic message-passing operations (MPI-1) has been a 
great success. The benefits of standardizing the significant extensions to the message-passing model represented by MPI-2 
have yet to be realized. More experience is needed with the development

Page 303

of applications that utilize the wide range of capabilities provided by MPI-2. We can expect these applications to appear as 
more and more MPI-2 implementations are released.

MPI-2 is certainly not the end of the line. As parallel computing hardware and software environments continue to evolve, the 
need for standardization in a number of areas will become apparent. Indeed, the most important benefit of MPI may turn out to 
be that it has raised expectations among application developers that vendors, users, and computer scientists can truly cooperate 
in the development of community standards that provide portability in both space and time. There are many areas where such 
cooperation would benefit the entire community. In some of these areas efforts are already under way. Others remain research 
areas with standardization still premature but possible in the future. In this section we briefly discuss some of these areas. 
Discussions that took place in the MPI Forum on several of these topics can be found in the MPI Forum's "Journal of 
Development," where ideas that were considered noteworthy but not ready for standardization were recorded [57].

10.3.1—
More Remote Memory Operations

The MPI Forum debated a much larger list of RMA operations than the set that was eventually voted into the Standard. As 
discussed in Chapter 6, experience may show that the Forum's drive for economy went too far, and some of the operations that 
were voted out should have remained in. One test that should be applied to potential MPI-style remote-memory operations is 
that it should be straightforward to translate existing successful remote memory access libraries to their MPI counterparts. 
Examples are the Cray shmem library [18] and the Global Arrays library [63]. MPI remote memory operations should also 
make it easy to implement concepts, such as monitors [40], that have proven useful from the theoretical as well as practical 
point of view for managing shared data.



10.3.2—
More on Threads

The MPI Forum also considered a more far-ranging set of functions for specifying explicit multithreading algorithms before 
settling on the narrow set of functions described in Chapter 8. As experience grows with multithreading and as both hardware 
and software environments provide more support for efficient multithreading, MPI may need to be extended in order to express 
algorithms that blend explicit (as opposed to automatic or compiler-directed) multithreading with MPI message-passing and 
remote-memory operations. Such an integrated environment would
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form a solid foundation for the next round of research on and experimentation with advanced programming models.

10.3.3—
More Language Bindings

Java is here to stay as a major programming language. Its use as a language for scientific applications is just beginning, but 
there is already an effort, called the Java Grande Forum [44], to improve Java's performance and usability for scientific 
applications. Part of this effort is to propose a set of Java bindings for MPI [11]. While much of the C++ binding effort in MPI-
2 can be carried over to Java, the new language presents its own set of problems (and opportunities!) with respect to MPI.

As parallel computing begins to be applied more and more in the business community, even as a way of speeding up old 
application systems, there may be interest in a COBOL binding.

10.3.4—
Interoperability of MPI Implementations

One feature that users asked for soon after multiple MPI implementations appeared was interoperability, the ability for 
different MPI implementations to communicate. Such a system would enable a single application to run on multiple parallel 
computers, using a different MPI implementation on each. Now nearing completion is an effort, called IMPI (Interoperable 
MPI), to define the necessary protocols so that an MPI implementation can communicate with other similarly enabled MPI 
implementations. A draft of the protocol specification is available [14].

10.3.5—
Real-Time MPI

During the MPI-2 Forum meetings, one group discussed the restrictions and extensions that would be necessary to adapt MPI 
for a number of different types of real-time environments. These deliberations were unfinished at the time the MPI-2 Standard 
was published, but the group continued to meet afterwards, calling itself the "MPI/RT Forum" [61]. The MPI/RT Forum has 
produced several versions of the MPI/RT specification [72].

10.4—
Final Words

In this book we have illustrated and discussed the features of MPI-2. These features extend the programming model provided 
by MPI-1 and position MPI as a standard for new kinds of parallel programs. Throughout the book we have taken
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the opportunity to discuss some of the subtler issues of the message-passing model and its extensions. We hope users find this 
guide helpful in their development of advanced MPI applications.
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A—
Summary of MPI-2 Routines and Their Arguments

This Appendix contains the bindings for the MPI-2 routines in C, Fortran, and C++.

A.1—
C Routines

This section describes the C routines from [58].

int MPI_Accumulate(void *origin_addr, int origin_count,
          MPI_Datatype origin_datatype, int target_rank,
          MPI_Aint target_disp, int target_count,
          MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

Accumulates data in the window of the target process using the specified operation

int MPI_Add_error_class(int *errorclass)

Creates a new error class and returns its value

int MPI_Add_error_code(int errorclass, int *error)

Creates a new error code associated with the specified error class and returns its value

int MPI_Add_error_string(int errorcode, char *string)

Associates an error string with an error code or class

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

Allocates memory that may be used for (potentially faster) RMA and message-passing operations

int MPI_Alltoallw(void *sendbuf, int sendcounts [], int sdispls [],
          MPI_Datatype sendtypes [], void *recvbuf, int recvcounts [],
          int rdispls [], MPI_Datatype recvtypes [], MPI_Comm comm)

Sends data from all to all processes, with variable counts, displacements, and datatypes

int MPI_Close_port(char *port_name)

Releases the network address represented by the specified port name

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
          MPI_Comm comm, MPI_Comm *newcomm)

Establishes communication with a client

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

Converts a C communicator handle to a Fortran communicator handle

int MPI_Comm_call_errhandler(MPI_Comm comm, int error)

Invokes the error handler associated with a communicator

(table continued on next page)
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int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
          MPI_Comm comm, MPI_Comm *newcomm)

Establishes communication with a server

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_fn *function,
          MPI_Errhandler *errhandler)

Creates an error handler that can be attached to communicators

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_-
          attr_fn, MPI_Comm_delete_attr_function *comm_delete_attr_fn,
          int *comm_keyval, void *extra_state)

Creates a new attribute key that can be cached on communicators

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

Deletes an attribute key cached on a communicator

int MPI_Comm_disconnect(MPI_Comm *comm)

Waits for all pending communication in the communicator to complete and then frees the communicator

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

Converts a Fortran communicator handle to a C communicator handle

int MPI_Comm_free_keyval(int *comm_keyval)

Frees an attribute key created with MPI_Comm_create_keyval

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void
          *attribute_val, int *flag)

Returns the value associated with an attribute key cached on a communicator

int MPI_Comm_get_errhandler(MPI_Comm comm,
          MPI_Errhandler *errhandler)

Returns the error handler currently associated with a communicator

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

Returns the name associated with a communicator

int MPI_Comm_get_parent(MPI_Comm *parent)

Returns the parent intercommunicator of a spawned process

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

Creates an intercommunicator from the union of two MPI processes that are connected by a socket

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void
          *attribute_val)

Sets the value for an attribute key cached on a communicator

(table continued on next page)
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int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

Attaches a new error handler to a communicator

int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)

Associates a name with a communicator

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs,
          MPI_Info info, int root, MPI_Comm comm,
          MPI_Comm *intercomm, int array_of_errcodes[])

Spawns new processes running an MPI program

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
          char **array_of_argv[], int array_of_maxprocs[],
          MPI_Info array_of_info[], int root, MPI_Comm comm,
          MPI_Comm *intercomm, int array_of_errcodes[])

Spawns new processes running different MPI programs

int MPI_Exscan(void *sendbuf, void *recvbuf, int count,
          MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

Performs a prefix reduction

MPI_Fint MPI_File_c2f(MPI_File file)

Converts a C file handle to a Fortran file handle

int MPI_File_call_errhandler(MPI_File fh, int error)

Invokes the error handler associated with a file

int MPI_File_close(MPI_File *fh)

Closes a file

int MPI_File_create_errhandler(MPI_File_errhandler_fn *function,
          MPI_Errhandler *errhandler)

Creates an error handler that can be attached to files

int MPI_File_delete(char *filename, MPI_Info info)

Deletes a file

MPI_File MPI_File_f2c(MPI_Fint file)

Converts a Fortran file handle to a C file handle

int MPI_File_get_amode(MPI_File fh, int *amode)

Returns the access mode of a file

int MPI_File_get_atomicity(MPI_File fh, int *flag)

Returns the current setting for atomicity of file accesses

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,
          MPI_Offset *disp)

Converts a view-relative file offset into an absolute byte offset

(table continued on next page)
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int MPI_File_get_errhandler(MPI_File file,
          MPI_Errhandler *errhandler)

Returns the error handler associated with a file

int MPI_File_get_group(MPI_File fh, MPI_Group *group)

Returns a duplicate of the group of the communicator used to open a file

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

Returns a new info object containing the hints currently associated with a file

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

Returns the current location of the individual file pointer

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

Returns the current location of the shared file pointer

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

Returns the size of a file in bytes

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
          MPI_Aint *extent)

Returns the extent of a datatype in the file data representation

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp,
          MPI_Datatype *etype, MPI_Datatype *filetype, char *datarep)

Returns the current file view

int MPI_File_iread(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Request *request)

Starts a nonblocking file read from the current location of the individual file pointer

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf,
          int count, MPI_Datatype datatype, MPI_Request *request)

Starts a nonblocking file read from the specified offset

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Request *request)

Starts a nonblocking file read from the current location of the shared file pointer

int MPI_File_iwrite(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Request *request)

Starts a nonblocking file write from the current location of the individual file pointer

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,
          int count, MPI_Datatype datatype, MPI_Request *request)

Starts a nonblocking file write from the specified offset

(table continued on next page)
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int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Request *request)

Starts a nonblocking file write from the current location of the shared file pointer

int MPI_File_open(MPI_Comm comm, char *filename, int amode,
          MPI_Info info, MPI_File *fh)

Opens a file

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

Preallocates disk space for a file

int MPI_File_read(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Reads from the current location of the individual file pointer

int MPI_File_read_all(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Collective read from the current location of the individual file pointer

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype)

Starts a split collective read from the current location of the individual file pointer

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

Completes a split collective read started with MPI_File_read_all_begin

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf,
          int count, MPI_Datatype datatype, MPI_Status *status)

Reads from the specified file offset

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,
          int count, MPI_Datatype datatype, MPI_Status *status)

Collective read from the specified file offset

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset,
          void *buf, int count, MPI_Datatype datatype)

Starts a split collective read from the specified file offset

int MPI_File_read_at_all_end(MPI_File fh, void *buf,
          MPI_Status *status)

Completes a split collective read started with MPI_File_read_at_all_begin

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Collective read using the shared file pointer

(table continued on next page)
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int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype)

Starts a split collective read using the shared file pointer

int MPI_File_read_ordered_end(MPI_File fh, void *buf,
          MPI_Status *status)

Completes a split collective read started with MPI_File_read_ordered_begin

int MPI_File_read_shared(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Reads from the current location of the shared file pointer

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

Moves the individual file pointer

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

Moves the shared file pointer

int MPI_File_set_atomicity(MPI_File fh, int flag)

Sets atomicity of file accesses

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

Attaches a new error handler to a file

int MPI_File_set_info(MPI_File fh, MPI_Info info)

Sets new values for the hints associated with a file

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

Sets the file size

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,
          MPI_Datatype etype, MPI_Datatype filetype, char *datarep,
          MPI_Info info)

Sets the file view

int MPI_File_sync(MPI_File fh)

Synchronizes any cached file data with that on the storage device

int MPI_File_write(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Writes from the current location of the individual file pointer

int MPI_File_write_all(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Collective write from the current location of the individual file pointer

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype)

Starts a split collective write from the current location of the individual file pointer

(table continued on next page)
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int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

Completes a split collective write started with MPI_File_write_all_begin

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf,
          int count, MPI_Datatype datatype, MPI_Status *status)

Writes from the specified file offset

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
          int count, MPI_Datatype datatype, MPI_Status *status)

Collective write from the specified file offset

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset,
          void *buf, int count, MPI_Datatype datatype)

Starts a split collective write from the specified file offset

int MPI_File_write_at_all_end(MPI_File fh, void *buf,
          MPI_Status *status)

Completes a split collective write started with MPI_File_write_at_all_begin

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Collective write using the shared file pointer

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype)

Starts a split collective write using the shared file pointer

int MPI_File_write_ordered_end(MPI_File fh, void *buf,
          MPI_Status *status)

Completes a split collective write started with MPI_File_write_ordered_begin

int MPI_File_write_shared(MPI_File fh, void *buf, int count,
          MPI_Datatype datatype, MPI_Status *status)

Writes from the current location of the shared file pointer

int MPI_Finalized(int *flag)

Indicates whether MPI_Finalize has completed

int MPI_Free_mem(void *base)

Frees memory allocated with MPI_Alloc_mem

int MPI_Get(void *origin_addr, int origin_count,
          MPI_Datatype origin_datatype, int target_rank,
          MPI_Aint target_disp, int target_count,
          MPI_Datatype target_datatype, MPI_Win win)

Starts a one-sided receive operation

(table continued on next page)
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int MPI_Get_address(void *location, MPI_Aint *address)

Returns the address of a location in memory

int MPI_Grequest_complete(MPI_Request request)

Informs MPI that the operations represented by a generalized request are complete

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
          MPI_Grequest_free_function *free_fn,
          MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
          MPI_Request *request)

Creates a new generalized request object

MPI_Fint MPI_Group_c2f(MPI_Group group)

Converts a C group handle to a Fortran group handle

MPI_Group MPI_Group_f2c(MPI_Fint group)

Converts a Fortran group handle to a C group handle

MPI_Fint MPI_Info_c2f(MPI_Info info)

Converts a C info handle to a Fortran info handle

int MPI_Info_create(MPI_Info *info)

Creates a new info object

int MPI_Info_delete(MPI_Info info, char *key)

Deletes a (key,value) pair from an info object

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

Returns a duplicate of an info object

MPI_Info MPI_Info_f2c(MPI_Fint info)

Converts a Fortran info handle to a C info handle

int MPI_Info_free(MPI_Info *info)

Frees an info object

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,
          int *flag)

Returns the value associated with an info key

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

Returns the number of keys currently defined in the info object

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

Returns the nth key defined in the info object

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,
          int *flag)

Returns the length of the value string associated with an info key

(table continued on next page)
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void Datatype::Pack_external(const char* datarep, const void* inbuf,
          int incount, void* outbuf, Aint outsize, Aint& position)
          const

Packs data into a contiguous buffer in external32 format

Aint Datatype::Pack_external_size(const char* datarep, int incount)
          const

Returns the amount of space needed to pack a datatype in external32 format

void Win::Post(const Group& group, int assert) const

Starts an RMA exposure epoch for the local window associated with a window object

void File::Preallocate(Offset size)

Preallocates disk space for a file

void Publish_name(const char* service_name, const Info& info,
          const char* port_name)

Publishes a (port_name, service_name) pair

void Win::Put(const void* origin_addr, int origin_count,
          const Datatype& origin_datatype, int target_rank,
          Aint target_disp, int target_count,
          const Datatype& target_datatype) const

Starts a one-sided send operation

int Query_thread()

Returns the current level of thread support

void File::Read(void* buf, int count, const Datatype& datatype)

Reads from the current location of the individual file pointer

void File::Read(void* buf, int count, const Datatype& datatype,
          Status& status)

Reads from the current location of the individual file pointer

void File::Read_all(void* buf, int count, const Datatype& datatype)

Collective read from the current location of the individual file pointer

void File::Read_all(void* buf, int count, const Datatype& datatype,
          Status& status)

Collective read from the current location of the individual file pointer

void File::Read_all_begin(void* buf, int count,
          const Datatype& datatype)

Starts a split collective read from the current location of the individual file pointer

void File::Read_all_end(void* buf)

Completes a split collective read started with MPI_File_read_all_begin

(table continued on next page)
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void File::Read_all_end(void* buf, Status& status)

Completes a split collective read started with MPI_File_read_all_begin

void File::Read_at(Offset offset, void* buf, int count,
          const Datatype& datatype)

Reads from the specified file offset

void File::Read_at(Offset offset, void* buf, int count,
          const Datatype& datatype, Status& status)

Reads from the specified file offset

void File::Read_at_all(Offset offset, void* buf, int count,
          const Datatype& datatype)

Collective read from the specified file offset

void File::Read_at_all(Offset offset, void* buf, int count,
          const Datatype& datatype, Status& status)

Collective read from the specified file offset

void File::Read_at_all_begin(Offset offset, void* buf, int count,
          const Datatype& datatype)

Starts a split collective read from the specified file offset

void File::Read_at_all_end(void* buf)

Completes a split collective read started with MPI_File_read_at_all_begin

void File::Read_at_all_end(void* buf, Status& status)

Completes a split collective read started with MPI_File_read_at_all_begin

void File::Read_ordered(void* buf, int count,
          const Datatype& datatype)

Collective read using the shared file pointer

void File::Read_ordered(void* buf, int count,
          const Datatype& datatype, Status& status)

Collective read using the shared file pointer

void File::Read_ordered_begin(void* buf, int count,
          const Datatype& datatype)

Starts a split collective read using the shared file pointer

void File::Read_ordered_end(void* buf)

Completes a split collective read started with MPI_File_read_ordered_begin

void File::Read_ordered_end(void* buf, Status& status)

Completes a split collective read started with MPI_File_read_ordered_begin

(table continued on next page)
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void File::Read_shared(void* buf, int count,
          const Datatype& datatype)

Reads from the current location of the shared file pointer

void File::Read_shared(void* buf, int count,
          const Datatype& datatype, Status& status)

Reads from the current location of the shared file pointer

void Register_datarep(const char* datarep,
          Datarep_conversion_function* read_conversion_fn,
          Datarep_conversion_function* write_conversion_fn,
          Datarep_extent_function* dtype_file_extent_fn,
          void* extra_state)

Adds a new file data representation to MPI

Datatype Datatype::Resized(const Aint lb, const Aint extent) const

Returns a new datatype with the specified lower bound and extent

void File::Seek(Offset offset, int whence)

Moves the individual file pointer

void File::Seek_shared(Offset offset, int whence)

Moves the shared file pointer

void Info::Set(const char* key, const char* value)

Adds a (key,value) pair to an info object

void File::Set_atomicity(bool flag)

Sets atomicity of file accesses

void Comm::Set_attr(int comm_keyval, const void* attribute_val)
          const

Sets the value for an attribute key cached on a communicator

void Datatype::Set_attr(int type_keyval, const void* attribute_val)

Sets the value for an attribute key cached on a datatype

void Win::Set_attr(int win_keyval, const void* attribute_val)

Sets the value for an attribute key cached on a window object

void Status::Set_cancelled(bool flag)

Sets the value to be returned by MPI_Test_cancelled

void Status::Set_elements(const Datatype& datatype, int count)

Sets the value to be returned by MPI_Get_elements

void Comm::Set_errhandler(const Errhandler& errhandler)

Attaches a new error handler to a communicator

(table continued on next page)
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void File::Set_errhandler(const Errhandler& errhandler)

Attaches a new error handler to a file

void Win::Set_errhandler(const Errhandler& errhandler)

Attaches a new error handler to a window object

void File::Set_info(const Info& info)

Sets new values for the hints associated with a file

void Comm::Set_name(const char* comm_name)

Associates a name with a communicator

void Datatype::Set_name(const char* type_name)

Associates a name with a datatype

void Win::Set_name(const char* win_name)

Associates a name with a window object

void File::Set_size(Offset size)

Sets the file size

void File::Set_view(Offset disp, const Datatype& etype,
          const Datatype& filetype, const char* datarep,
          const Info& info)

Sets the file view

Intercomm Intracomm::Spawn(const char* command, const char* argv[],
         int maxprocs, const Info& info, int root) const

Spawns new processes running an MPI program

Intercomm Intracomm::Spawn(const char* command, const char* argv[],
         int maxprocs, const Info& info, int root,
         int array_of_errcodes[]) const

Spawns new processes running an MPI program

Intercomm Intracomm::Spawn_multiple(int count,
         const char* array_of_commands[],
         const char** array_of_argv[],
         const int array_of_maxprocs[], const Info array_of_info[],
         int root)

Spawns new processes running different MPI programs

(table continued on next page)
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Intercomm Intracomm::Spawn_multiple(int count,
         const char* array_of_commands[],
         const char** array_of_argv[],
         const int array_of_maxprocs[], const Info array_of_info[],
         int root, int array_of_errcodes[])

Spawns new processes running different MPI programs

Grequest Grequest::Start(const Grequest::Query_function query_fn,
          const Grequest::Free_function free_fn,
          const Grequest::Cancel_function cancel_fn, void
          *extra_state)

Creates a new generalized request object

void Win::Start(const Group& group, int assert) const

Starts an RMA access epoch, enabling access only on windows at processes in the specified group

void File::Sync()

Synchronizes any cached file data with that on the storage device

bool Win::Test() const

Tests whether RMA operations on the window object exposed with MPI_Win_post have completed

void Win::Unlock(int rank) const

Completes an RMA access epoch started with MPI_Win_lock

void Datatype::Unpack_external(const char* datarep,
          const void* inbuf, Aint insize, Aint& position,
          void* outbuf, int outcount) const

Unpacks data stored contiguously in external32 format

void Unpublish_name(const char* service_name, const Info& info,
          const char* port_name)

Unpublishes a previously published service name

void Win::Wait() const

Completes an RMA exposure epoch started with MPI_Win_post

void File::Write(const void* buf, int count,
          const Datatype& datatype)

Writes from the current location of the individual file pointer

void File::Write(const void* buf, int count,
          const Datatype& datatype, Status& status)

Writes from the current location of the individual file pointer

(table continued on next page)
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(table continued from previous page)

void File::Write_all(const void* buf, int count,
          const Datatype& datatype)

Collective write from the current location of the individual file pointer

void File::Write_all(const void* buf, int count,
          const Datatype& datatype, Status& status)

Collective write from the current location of the individual file pointer

void File::Write_all_begin(const void* buf, int count,
          const Datatype& datatype)

Starts a split collective write from the current location of the individual file pointer

void File::Write_all_end(const void* buf)

Completes a split collective write started with MPI_File_write_all_begin

void File::Write_all_end(const void* buf, Status& status)

Completes a split collective write started with MPI_File_write_all_begin

void File::Write_at(Offset offset, const void* buf, int count,
          const Datatype& datatype)

Writes from the specified file offset

void File::Write_at(Offset offset, const void* buf, int count,
          const Datatype& datatype, Status& status)

Writes from the specified file offset

void File::Write_at_all(Offset offset, const void* buf, int count,
          const Datatype& datatype)

Collective write from the specified file offset

void File::Write_at_all(Offset offset, const void* buf, int count,
          const Datatype& datatype, Status& status)

Collective write from the specified file offset

void File::Write_at_all_begin(Offset offset, const void* buf,
          int count, const Datatype& datatype)

Starts a split collective write from the specified file offset

void File::Write_at_all_end(const void* buf)

Completes a split collective write started with MPI_File_write_at_all_begin

void File::Write_at_all_end(const void* buf, Status& status)

Completes a split collective write started with MPI_File_write_at_all_begin

void File::Write_ordered(const void* buf, int count,
          const Datatype& datatype)

Collective write using the shared file pointer

(table continued on next page)
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(table continued from previous page)

void File::Write_ordered(const void* buf, int count,
          const Datatype& datatype, Status& status)

Collective write using the shared file pointer

void File::Write_ordered_begin(const void* buf, int count,
          const Datatype& datatype)

Starts a split collective write using the shared file pointer

void File::Write_ordered_end(const void* buf)

Completes a split collective write started with MPI_File_write_ordered_begin

void File::Write_ordered_end(const void* buf, Status& status)

Completes a split collective write started with MPI_File_write_ordered_begin

void File::Write_shared(const void* buf, int count,
          const Datatype& datatype)

Writes from the current location of the shared file pointer

void File::Write_shared(const void* buf, int count,
          const Datatype& datatype, Status& status)

Writes from the current location of the shared file pointer
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B—
MPI Resources on the World Wide Web

Here we describe how to get access to MPI-related material on the Internet.

MPI Home Pages

Many MPI ''home pages" exist on the World Wide Web. The most important is the MPI Forum's home page, http://www.mpi-
forum.org. The page at http://www.mcs.anl.gov/mpi contains links to other home pages as well as links to tools, tutorials, 
implementations, and documentation on MPI.

Examples of MPI Programs

All of the examples used in this book are available on the Web at http://www.mcs.anl.gov/mpi/usingmpi2 or by anonymous 
ftp from ftp.mcs.anl.gov in directory pub/mpi/using2/examples. This directory is organized by book chapter. 
The file 'README' lists the files by chapter. A Unix 'tar' file (compressed) containing all the examples is available in 
'examples.tar.gz'. Instructions for unpacking this file are in the 'README' file.

MPI Implementations

The MPICH implementation, written by the authors of this book and others, is freely available and may be downloaded from 
the Web at http://www.mcs.anl.gov/mpi/mpich or by anonymous ftp from ftp.mcs.anl.gov. The 'README' file in 
directory 'pub/mpi' describes how to fetch and install the most recent version of MPICH. The MPICH distribution includes 
examples and test programs, as well as performance-measurement programs. Most of the test and performance programs may 
be used with any MPI implementation.

A list of implementations is maintained at http://www.mpi.nd.edu/MPI; this includes both freely available and commercial 
implementations.

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi/usingmpi2
http://www.mcs.anl.gov/mpi/mpich
http://www.mpi.nd.edu/MPI


The MPI Standard

The MPI Standard is available, in both PostScript and HTML forms, on the Web at http://www.mpi-forum.org. Errata for both 
MPI-1 and MPI-2 are also available there. In addition, archives of the MPI Forum, including e-mail discussions, meeting notes, 
and voting records, can be viewed there.

Discussion on MPI

A newsgroup, comp.parallel.mpi, is devoted to discussion of all aspects of MPI. Discussion of MPI-related issues also 
sometimes occurs in the more general group comp.parallel, devoted to parallel computers and computation.

A "frequently asked questions" (FAQ) page is available at

http://www.erc.msstate.edu/mpi/mpi-faq.html
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A great deal of information on parallel-programming projects and tools is available on the Web. We encourage you to 
investigate other sites on the Web for other resources on MPI and parallel computing.
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C—
Surprises, Questions, and Problems in MPI

This appendix describes some issues that have arisen since the MPI-2 Standard was completed. Most of these are relatively 
obscure but have been discovered (in most cases) by someone trying to use or implement MPI. We begin with the clear 
oversights, continue with features that have ambiguous or awkward definitions, and conclude with some common 
misunderstandings.

For the current status on these issues, check http://www.mpi-forum.org/docs/ for the errata for MPI-2.

C.1—
No MPI_Errhandler_f2c and MPI_Errhandler_c2f

The MPI Forum, when describing the functions to convert opaque handles between C and Fortran, overlooked error handlers. 
In MPI 2.0, there is no MPI_Errhandler_f2c or MPI_Errhandler_c2f. This should be corrected by the MPI Forum.

C.2—
No MPI_LONG_LONG in C

The MPI Standard specifies an MPI_LONG_LONG_INT type but no MPI_LONG_LONG. To make matters more confusing, in 
MPI-2.0, the unsigned long long type was added with MPI name MPI_UNSIGNED_LONG_LONG. Many MPI 
implementations support both MPI_LONG_LONG and MPI_LONG_LONG_INT, but as of MPI-2.0, the only standard-
conforming MPI datatype for a long long is MPI_LONG_LONG_INT.

C.3—
MPI_PROC_NULL in RMA

The value MPI_PROC_NULL may be used in point-to-point communications as a sort of no-op: the call is allowed, but no data 
is sent (in a send) or received (in a receive). The remote memory access routines do not specifically say whether 
MPI_PROC_NULL is valid for MPI_Put, MPI_Get, or MPI_Accumulate. E-mail discussions have supported the 
interpretation that MPI_PROC_NULL is allowed, but as of this writing, no final decision has been taken.

http://www.mpi-forum.org/
http://www.erc.msstate.edu/mpi/mpi-faq.html
http://www.mpi-forum.org/docs/


C.4—
MPI_Offset Argument for Derived Datatype Constructors

Since many systems support file sizes larger than the memory-address space (for example, 64-bit file sizes but 32-bit memory 
addresses), file offsets, displacements,
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and so forth, in MPI are of type MPI_Offset rather than MPI_Aint. However, in all derived-datatype constructor functions 
that take byte displacements as arguments, the displacement is of type MPI_Aint. Even the new datatype constructor 
functions defined in MPI-2—MPI_Type_create_hindexed, MPI_Type_create_hvector, and 
MPI_Type_create_struct—take displacements of type MPI_Aint. This means that on systems where MPI_Offset 
is larger than MPI_Aint, it is not possible to create a "large" derived datatype of type hindexed, hvector, or struct to describe 
the data layout in a "large" file.

Most applications, however, should still be able to access large files either by using smaller derived datatypes to "tile" the file 
(since the file view is defined in terms of a tiling) or by not using derived datatypes at all. The real solution is that the MPI 
Forum must change the bindings of the datatype constructors to use MPI_Offset instead of MPI_Aint.

C.5—
Use of MPI_Info_Set

One vendor has interpreted the MPI-2 Standard as restricting the valid keys in MPI_Info_set to those defined by the 
vendor. Unrecognized keys are ignored. The advantage of this approach is that it allows the user to determine from within a 
program which info keys the implementation supports. The disadvantage with this interpretation is that MPI_Info cannot be 
used to hold key/value pairs for other parts of the code, including layered software. For example, a library might use the MPI 
profiling interface to provide a replacement for MPI_File_set_view that looked at the info value for a key profiling:
trace-file-views before calling PMPI_File_set_view. With the interpretation that only keys defined by the MPI 
implementation may be set with MPI_Info_set, info cannot be used by layered software.

C.6—
Values for C++ Versions of MPI Constants

The MPI Forum, in an attempt to provide a more "C++ flavor" to the C++ bindings, defined versions of the MPI constants, 
such as MPI_SEEK_SET, as part of the MPI namespace: MPI::SEEK_SET. This seemed like a good idea at the time, but it 
has a serious problem. In C++, preprocessor definitions are independent of namespaces. Even if a module carefully uses 
namespaces, another include file can use #define to redefine a name. For example, SEEK_SET is defined in the header file 
<stdio.h>. This means that MPI::SEEK_SET cannot be used in a program that has
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included <stdio.h>, unless the application has been careful to #undef SEEK_SET before trying to use MPI::
SEEK_SET.

At the time this book was being written, the MPI Forum was still discussing how to work around this problem. Fundamentally, 
the problem is that the C++ preprocessor ignores namespaces, so a real fix would require a change to C++ (or to all C and C++ 
header files), not MPI. That isn't going to happen, so the MPI Forum will need to select an alternative that is less likely to cause 
problems, such as using mixed case (e.g., Seek_set) or lower case for the MPI C++ constants. To find out how this is 
resolved, check the errata page at http://www.mpi-forum.org.

C.7—
Lack of Ordering for RMA

As mentioned before in Section 6.5, all the RMA operations are nonblocking and unordered. That is, even between a pair of 
processes, RMA operations need not complete in the order in which they were issued.

http://www.mpi-forum.org/


C.8—
Thread Scoping Not Communicator Based

The components of truly modular software should be able to operate correctly independent of the other components in an 
application. In particular, it shouldn't be necessary for MPI_Init_thread to set the limits of thread availability; this could 
be done on a communicator-by-communicator basis, particularly since MPI uses communicators to separate all other operations 
(for example, messages on different communicators are noninterfering).

Nonetheless, in this area, MPI is still ahead of many other systems. For example, in one vendor's thread implementation, two 
libraries are provided: one with working mutual-exclusion routines and one where the mutual exclusion routines are provided, 
but as no-ops. That is, a multithreaded program can call the mutual-exclusion routines, but they won't actually provide for 
mutual exclusion. To make matters worse, the broken library is the one that the user will get by default (that is, without using 
special options). There is no easy and efficient way for an application to discover at run time whether the user has correctly 
linked with the working versions of mutual exclusion. At least in the MPI case, MPI_Query_thread will tell a library 
routine what level of thread support is present.
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C.9—
Confusion Caused by MPI Routine Names

In addition to routines that we have already mentioned (such as MPI_Win_lock), there are two sets of routines whose names 
frequently mislead MPI users. These are the "immediate" routines, for example, MPI_Isend, and the "test" routines, for 
example, MPI_Test.

The word "immediate," when applied to an MPI routine name for the "I" in names such as MPI_Isend and MPI_Irecv, 
does not mean that the operation is "immediate" in the sense of "takes no time." Rather, it means that the operation is 
nonblocking, and the completion of the routine is independent of any other process. But the routine could still take a significant 
amount of time.

For example, consider an MPI_Isend with a modest_sized message to send. If the MPI implementation is sure that the 
message can be delivered to the destination without requiring the destination process to take any action, perhaps because the 
MPI implementation is keeping careful track of available buffer space, then the MPI_Isend might not return until the 
message has been delivered.

The other misleading name is "test." In MPI, "test" really means "test and complete if possible." As a result, a test operation 
such as MPI_Test can also take a significant amount of time. For example, consider the MPI_Isend case again, but this 
time the message is too large to be delivered until the destination process sends an ok-to-send message. If a call to MPI_Test 
on the request for that send occurs after the ok-to-send is received, the MPI_Test may not return until the message has been 
delivered. This can take a significant amount of time; the MPI_Test call is only nonblocking, not instantaneous.
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D—
Standardizing External Startup with mpiexec



MPI-1 said nothing about how MPI programs were started. Hence, although MPI programs themselves were portable, scripts 
that invoked MPI programs were not. Several implementations used the name mpirun for a script or program that started MPI 
applications. This, however, only made things worse, because their arguments were not compatible, and users encountered the 
problem of accidentally trying to launch an application linked with one MPI implementation with the mpirun of another 
implementation. The MPI Forum responded with a standard definition for a launching command called mpiexec, first 
introduced in Chapter 2 of this book. This feature is not required of an MPI implementation in order for the implementation to 
claim conformance with the Standard, but if such a command exists it is expected to take the form defined by the Standard. 
Therefore, scripts that use mpiexec can be portable at least among those MPI implementations that implement it. The syntax 
of mpiexec is shown in Table D.1. Let us consider the example program pmandel for parallel Mandelbrot calculation and 
display that is described in Chapter 5 of Using MPI [32] and distributed with MPICH. The simplest way to start pmandel, 
assuming that we wish to run it with ten processes altogether, is

mpiexec -n 10 pmandel

It is also possible to pass command-line arguments to the program as follows:

mpiexec -n 10 pmandel -i cool.points -loop

or

mpiexec -n 10 pmandel -rmin -2 -rmax 2 -imin -2 -imax 2 +zoom

Note that MPI does not guarantee that command-line arguments will be propagated to all processes, although some 
implementations do provide this service. The most portable way to propagate command-line arguments is for process 0 to use 
MPI_Bcast to forward them to the other processes.

Table D.1
Options for mpiexec

mpiexec -n <numprocs> -soft <exp> -host <name> -arch <name>
        -wdir <dirname> -path <pathname> -file <filename>
        progname <program args>
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The other possible arguments to mpiexec (before the program name) are optional,1 both for users and for implementers, 
although if an implementation recognizes them, they must have the meanings specified in the Standard. Some of the arguments 
can be thought of as part of an interface to a job scheduler that allocates resources. We can specify that all processes be run on 
a specific machine, for example big-iron, with

mpiexec -n 10 -host big-iron pmandel

If we don't care which host or hosts the program runs on but need to request a given computer architecture or operating system 
(because the program was compiled for that environment), we can specify something like

mpiexec -n 10 -arch sparc-solaris pmandel

and expect mpiexec to perform such scheduling as necessary to find us ten Solaris workstations to run on.

Perhaps our application can usefully be run on various numbers of processes, depending on what is available. For example, 
suppose that we wish to run pmandel on any number of processes up to ten. Since the pmandel application requires at least 
two processes for its master-slave algorithm, we need at least two processes, but we are willing to accept any number up to the 
maximum of ten. We would use

mpiexec -n 10 -soft 2:10 pmandel

The -soft argument can be followed by several types of expression. For example,

mpiexec -n 1000 -soft 2:1000:2 pmandel



specifies an even number of processes (the third number is the stride, with a default value of one when the third value is 
omitted), and

mpiexec -n 1024 -soft 2,4,8,16,32,64,128,256,512,1024 pmandel

specifies a power of two as the number of processes, as some algorithms require.

Two other arguments are directed at the process manager rather than the job scheduler. The -path argument tells the process 
manager where to look for the executable to run, and -wdir tells the process manager to set the new process's working 
directory. This is particularly important if the program is going to perform file I/O. Thus

1 Even specifying the number of processes is optional; it may be taken from an environment variable, or default to one, or be 
defined in any other way by the implementation.
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mpiexec -n 10 -path /home/me/mpich/examples \
              -wdir /home/me/logfiles pmandel

tells mpiexec to look for pmandel in /home/me/mpich/examples and make /home/me/logfiles its working 
directory while running, presumably because it is going to write some logfiles.

Finally, there is a "catchall" argument, -file, to provide any further capabilities the implementation wishes to offer that are 
not covered by these arguments, such as memory requirements to be given to the job scheduler. The -file argument specifies 
a file name that contains information for mpiexec that is specific to each particular implementation of MPI. For example, if 
we say

mpiexec -n pmandel -file hosts pmandel

for MPICH, then mpiexec will look in file 'hosts' for a list of machines to run on.

D.1—
Starting Multiple Executables with mpiexec

The mpiexec command, as described above, starts the same executable on some number of hosts, with each having the same 
working directory. Only one set of program arguments can be specified. Since MPI programs need not be SPMD (that is, 
different processes can be executing different programs), we need a way to start multiple executables. This is also necessary 
when different processes are executing on different architectures (MPI programs can be heterogeneous). Even if we wish to 
start all processes with same program, we may want to pass them different arguments. One form of mpiexec for these cases 
uses colons to separate sets of arguments. Thus

mpiexec -n 5 ocean : -n 10 atmos

starts five copies of ocean and ten of atmos, and

mpiexec fasta infile1 : fasta infile2 : fasta infile3

starts three processes running fasta, each with a different first argument. Finally,

mpiexec -configfile myfile

causes mpiexec to look in 'myfile' for the command lines. For example, 'myfile' might contain
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-n 5 -arch solaris-i86 ocean
-n 10 -arch irix-02 atmos

This is needed if the parameters to the commands include colons.

D.2—
Another Way for MPI Processes to Start

Sometimes an application may not know until run time that it should be parallel at all. However, it may be difficult, if not 
impossible, to start MPI processes with mpiexec. For example, another application may be responsible for deciding whether 
this application should "become parallel." For such cases, the MPI-2 Standard recommends (but does not mandate) that any 
process, no matter how it is started, be able to become an MPI process (with an MPI_COMM_WORLD consisting only of itself) 
by simply calling MPI_Init. Then it could use the functions described in Chapter 7 to create or attach to other MPI 
processes. This capability is called singleton MPI_Init in the Standard (see Section 3.5.2 in [27] and 5.5.2 in [58]).

Why is this feature not a strict requirement in the MPI Standard? The Forum considered that it would be too great a restriction 
on implementers to require it. Most MPI-1 implementations require some sort of MPI "environment" to exist before even the 
first process is started. For example, there may need to be a daemon running on each host where MPI processes are to run. In 
this case, when a process not started by the daemon calls MPI_Init, it is allowed to fail, but the Standard encourages that 
MPI_Init itself start the daemon if possible and otherwise set up the MPI environment. This method may be much slower 
that starting MPI programs with either mpiexec or MPI_Comm_spawn.

Page 365

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. Fortran 95 Handbook. 
MIT Press, Cambridge, MA, 1997.

[2] F. Andre, D. Herman, and J.-P. Verjus. Synchronization of Parallel Programs. Scientific Computing Series. MIT Press, 
Cambridge, MA, 1985.

[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc home page. http://www.mcs.anl.gov/
petsc, 1999.

[4] Sandra Johnson Baylor and C. Eric Wu. Parallel I/O workload characteristics using Vesta. In R. Jain, J. Werth, and J. 
Browne, editors, Input/Output in Parallel and Distributed Computer Systems, chapter 7, pages 167–185. Kluwer Academic 
Publishers, 1996.

[5] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evaluation of primitives for parallel I/O. In 
Proceedings of Supercomputing '93, pages 452–461. IEEE Computer Society Press, November 1993.

[6] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Overbeek, James Patterson, and Rick 
Stevens. Portable Programs for Parallel Processors. Holt, Rinehart, and Winston, New York, NY, 1987.

[7] Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environment for MPI. In John W. Ross, editor, 
Proceedings of Supercomputing Symposium '94, pages 379–386. University of Toronto, 1994.

[8] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel programming system. Parallel Computing, 
20:547–564, April 1994.

[9] Kenneth Cameron, Lyndon J. Clarke, A. Gordon Smith, and Klaas Jan Wierenga. Using MPI on the Cray T3D. Edinburgh 
Parallel Computing Centre, June 1997. http://www.epcc.ed.ac.uk/t3dmpi/Product/Docs/user/ug-plain.html.

[10] Pei Cao, Edward Felten, Anna Karlin, and Kai Li. Implementation and performance of integrated application-controlled 
file caching, prefetching, and disk scheduling. ACM Transactions on Computer Systems, 14(4):311–343, November 1996.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.epcc.ed.ac.uk/t3dmpi/Product/Docs/user/ug-plain.html


[11] Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Geoffrey Fox. MPI for Java: Position document and 
draft API specification. Technical Report JGF-TR-03, Java Grande Forum, November 1998. http://www.npac.syr.edu/projects/
pcrc/reports/ MPIposition/position.ps.

[12] Jaeyoung Choi, Jack J. Dongarra, and David W. Walker. Parallel matrix transpose algorithms on distributed memory 
concurrent computers. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable Parallel Libraries 
Conference, pages 245–252. IEEE Computer Society Press, October 1993.

[13] Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy, Tarvinder Singh, and Rajeev 
Thakur. PASSION: Parallel and scalable software for input-output. Technical Report SCCS–636, NPAC, Syracuse University, 
September 1994. Also available as CRPC Technical Report CRPC–TR94483–S.

[14] IMPI Steering Committee. IMPI - interoperable message-passing interface, 1998. http://impi.nist.gov/IMPI/.

[15] Peter Corbett, Dror Feitelson, Yarson Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill Nitzberg, Bernard Traversat, 
and Parkson Wong. MPI-IO: A parallel I/O interface for MPI, version 0.2. Technical Report IBM Research Report RC 19841
(87784), IBM T. J. Watson Research Center, November 1994.

Page 366

[16] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM Transactions on Computer Systems, 14
(3):225–264, August 1996.

[17] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. Input-output characteristics of scalable parallel 
applications. In Proceedings of Supercomputing '95. ACM Press, December 1995.

[18] Cray Research. Application Programmer's Library Reference Manual, 2nd edition, November 1995. Publication SR-2165.

[19] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel I/O via a two-phase run-time 
access strategy. In Proceedings of the Workshop on I/O in Parallel Computer Systems at IPPS '93, pages 56–70, April 1993. 
Also published in Computer Architecture News, 21(5):31–38, December 1993.

[20] Juan Miguel del Rosario and Alok Choudhary. High performance I/O for parallel computers: Problems and prospects. 
Computer, 27(3):59–68, March 1994.

[21] Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, and Yarson Hsu. Parallel I/O subsystems in massively parallel 
supercomputers. IEEE Parallel and Distributed Technology, 3(3):33–47, Fall 1995.

[22] Samuel A. Fineberg, Parkson Wong, Bill Nitzberg, and Chris Kuszmaul. PMPIO—a portable implementation of MPI-IO. 
In Proceedings of the Sixth Symposium on the Frontiers of Massively Parallel Computation, pages 188–195. IEEE Computer 
Society Press, October 1996.

[23] Open Software Foundation. Introduction to OSF/DCE. Prentice Hall, Englewood Cliffs, NJ, 1992.

[24] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy Sunderam. PVM: Parallel Virtual 
Machine—A User's Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, MA, 1994.

[25] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy. Memory 
consistency and event ordering in scalable shared-memory multiprocessors. Proceedings of the 17th Annual International 
Symposium on Computer Architecture, published in ACM SIGARCH, 18(2):15–26, May 1990.

[26] Garth A. Gibson, Daniel Stodolsky, Pay W. Chang, William V. Courtright II, Chris G. Demetriou, Eka Ginting, Mark 
Holland, Qingming Ma, LeAnn Neal, R. Hugo Patterson, Jiawen Su, Rachad Youssef, and Jim Zelenka. The Scotch parallel 
storage systems. In Proceedings of 40th IEEE Computer Society International Conference (COMPCON 95), pages 403–410. 
IEEE Computer Society Press, Spring 1995.

[27] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir. 
MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

[28] William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In Proceedings of the Scalable High-
Performance Computing Conference, pages 56–62. IEEE Computer Society Press, 1994.

http://www.npac.syr.edu/projects/pcrc/reports/
http://www.npac.syr.edu/projects/pcrc/reports/
http://impi.nist.gov/IMPI/


[29] William Gropp and Ewing Lusk. Dynamic process management in an MPI setting. In Proceedings of the Seventh IEEE 
Symposium on Parallel and Distributed Processing, October 25–28, 1995, San Antonio, Texas, pages 530–534. IEEE 
Computer Society Press, 1995.

Page 367

[30] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the 
MPI Message-Passing Interface standard. Parallel Computing, 22(6):789–828, 1996.

[31] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message 
Passing Interface. MIT Press, Cambridge, MA, 1994.

[32] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message 
Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

[33] William Gropp, Ewing Lusk, and Debbie Swider. Improving the performance of MPI derived datatypes. In Anthony 
Skjellum, Purushotham V. Bangalore, and Yoginder S. Dandass, editors, Proceedings of the Third MPI Developer's and User's 
Conference, pages 25–30. MPI Software Technology Press, 1999.

[34] William D. Gropp. Users Manual for bfort: Producing Fortran Interfaces to C Source Code. Mathematics and Computer 
Science Division, Argonne National Laboratory, March 1995. Technical report ANL/MCS-TM 208.

[35] R. J. Harrison. Portable tools and applications for parallel computers. Intern. J. Quantum Chem., 40(847), 1991.

[36] Rolf Hempel and David W. Walker. The emergence of the MPI message passing standard for parallel computing. 
Computer Standards and Interfaces, 21:51–62, 1999.

[37] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124–
149, January 1991.

[38] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot. Technical Report ANL–91/15, 
Argonne National Laboratory, 1991.

[39] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. H. 
Bisseling. BSPlib: The BSP programming library. Parallel Computing, 24(14):1947–1980, December 1998.

[40] C. A. R. Hoare. Monitors: An operating system structuring concept. Comunications of the ACM, pages 549–557, October 
1974.

[41] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S. Blumenthal. PPFS: A high 
performance portable parallel file system. In Proceedings of the 9th ACM International Conference on Supercomputing, pages 
385–394. ACM Press, July 1995.

[42] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)–part 1: System application program interface (API) 
[C language], 1996 edition.

[43] Ravi Jain, John Werth, and James C. Browne, editors. Input/Output in Parallel and Distributed Computer Systems, 
volume 362 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1996.

[44] Jave Grande Forum. http://www.javagrande.org.

[45] Terry Jones, Richard Mark, Jeanne Martin, John May, Elsie Pierce, and Linda Stanberry. An MPI-IO interface to HPSS. In 
Proceedings of the Fifth NASA Goddard Conference on Mass Storage Systems, pages I:37–50, September 1996. Also available 
from http://esdis-it.gsfc.nasa.gov/MSST/conf1998.html.

http://www.javagrande.org/
http://esdis-it.gsfc.nasa.gov/MSST/conf1998.html


Page 368

[46] Edward Karrels and Ewing Lusk. Performance analysis of MPI programs. In Jack Dongarra and Bernard Tourancheau, 
editors, Proceedings of the Workshop on Environments and Tools For Parallel Scientific Computing, pages 195–200. SIAM 
Publications, 1994.

[47] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and Mary E. Zosel. The High Performance 
Fortran Handbook. MIT Press, Cambridge, MA, 1993.

[48] David Kotz. Disk-directed I/O for MIMD multiprocessors. ACM Transactions on Computer Systems, 15(1):41–74, 
February 1997.

[49] David Kotz and Ravi Jain. I/O in parallel and distributed systems. In Allen Kent and James G. Williams, editors, 
Encyclopedia of Computer Science and Technology, volume 40. Marcel Dekker, Inc., 1999.

[50] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE 
Transactions on Computers, C-28(9):690–691, September 1979.

[51] David MacKenzie and Ben Elliston. Autoconf: Creating Automatic Configuration Scripts. GNU, 2.1.3 edition, December 
1998. http://sourceware.cygnus.com/autoconf/autoconf_toc.html.

[52] Tara M. Madhyastha and Daniel A. Reed. Exploiting global input/output access pattern classification. In Proceedings of 
SC97: High Performance Networking and Computing. ACM Press, November 1997.

[53] Andrea Malagoli. Personal communication, 1996.

[54] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS–005–91, Columbia University, 
1991.

[55] John May. Parallel Print Function. http://www.llnl.gov/sccd/lc/ptcprint.

[56] Message Passing Interface Forum. MPI: A message-passing interface standard. http://www.mpi-forum.org.

[57] Message Passing Interface Forum. MPI-2 Journal of Development, 1997. http://www.mpi-forum.org/docs/mpi-20-jod.ps.Z.

[58] Message Passing Interface Forum. MPI2: A message passing interface standard. International Journal of High 
Performance Computing Applications, 12(1–2):1–299, 1998.

[59] Message Passing Interface Forum. MPI-2: Extensions to the message-passing interface, July 1997. http://www.mpi-forum.
org/docs/mpi2-report.html.

[60] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking concurrent queue 
algorithms. In Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing (PODC '96), pages 
267–275. ACM, May 1996.

[61] MPI/RT Forum. http://www.mpirt.org.

[62] J. Nieplocha and R. J. Harrison. Shared memory programming in metacomputing environments: The Global Array 
approach. The Journal of Supercomputing, 11(2):119–136, October 1997.

[63] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A portable ''shared-memory" programming model for 
distributed memory computers. In Proceedings, Supercomputing '94: Washington, DC, November 14–18, 1994, 
Supercomputing, pages 340–349. IEEE Computer Society Press, 1994.

http://sourceware.cygnus.com/autoconf/autoconf_toc.html
http://www.llnl.gov/sccd/lc/ptcprint
http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/mpi-20-jod.ps.Z
http://www.mpi-forum.org/docs/mpi2-report.html
http://www.mpi-forum.org/docs/mpi2-report.html
http://www.mpirt.org/


Page 369

[64] Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Computing, 23(4):447–476, June 1997.

[65] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and Michael Best. File-access characteristics of 
parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems, 7(10):1075–1089, October 1996.

[66] MPI-2 C++ bindings, 1999. http://www.mpi.nd.edu/research/mpi2c++.

[67] OpenMP Fortran Application Program Interface, Version 1.0. http://www.openmp.org, October 1997.

[68] OpenMP C and C++ Application Program Interface, Version 1.0. http://www.openmp.org, October 1998.

[69] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. Informed prefetching and caching. 
In Proceedings of the 15th Symposium on Operating System Principles, pages 79–95. ACM Press, December 1995.

[70] POV-RAY home page. http://www.povray.org.

[71] Jean-Pierre Prost, Marc Snir, Peter Corbett, and Dror Feitelson. MPI-IO, a message-passing interface for concurrent I/O. 
Technical Report RC 19712 (87394), IBM T.J. Watson Research Center, August 1994.

[72] Real-Time Message Passing Interface (MPI/RT) Forum. Document for the real-time Message Passing Interface (MPI/RT-
1.0) draft standard. http://www.mpirt.org/drafts.html, June 1999.

[73] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in Panda. In Proceedings of 
Supercomputing '95. ACM Press, December 1995.

[74] Kent E. Seamons. Panda: Fast Access to Persistent Arrays Using High Level Interfaces and Server Directed Input/Output. 
PhD thesis, University of Illinois at Urbana-Champaign, May 1996.

[75] Gautam Shah, Jarek Nieplocha, Jamshed Mirza, Chulho Kim, Robert Harrison, Rama K. Govindaraju, Kevin Gildea, Paul 
DiNicola, and Carl Bender. Performance and experience with LAPI—a new high-performance communication library for the 
IBM RS/6000 SP. In Proceedings of the 1st Merged International Parallel Processing Symposium and Symposium on Parallel 
and Distributed Processing (IPPS/SPDP-98), pages 260–266. IEEE Computer Society, March 30–April 3 1998.

[76] D. B. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and answers about BSP. Technical Report PRG-TR-
15-96, Oxford University Computing Laboratory, 1996.

[77] E. Smirni and D. A. Reed. Lessons from characterizing the input/output behavior of parallel scientific applications. 
Performance Evaluation: An International Journal, 33(1):27–44, June 1998.

[78] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. I/O requirements of scientific applications: An 
evolutionary view. In Proceedings of the Fifth IEEE International Symposium on High Performance Distributed Computing, 
pages 49–59. IEEE Computer Society Press, 1996.

Page 370

[79] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI—The Complete Reference: 
Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

[80] Jeffrey M. Squyres, Brian C. McCandless, and Andrew Lumsdaine. Object oriented MPI: A class library for the message 
passing interface. In Parallel Object-Oriented Methods and Applications (POOMA '96), Santa Fe, 1996.

[81] W. Richard Stevens. Unix Network Programming: Networking APIs: Sockets and XTI, volume 1. Prentice Hall, 
Englewood Cliffs, NJ, 2nd edition, 1998.

[82] Rajeev Thakur and Alok Choudhary. An extended two-phase method for accessing sections of out-of-core arrays. 
Scientific Programming, 5(4):301–317, Winter 1996.

[83] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivaramakrishna Kuditipudi. Passion: Optimized 
I/O for parallel applications. Computer, 29(6):70–78, June 1996.

http://www.mpi.nd.edu/research/mpi2c++
http://www.openmp.org/
http://www.openmp.org/
http://www.povray.org/
http://www.mpirt.org/drafts.html


[84] Rajeev Thakur, William Gropp, and Ewing Lusk. An abstract-device interface for implementing portable parallel-I/O 
interfaces. In Proceedings of the 6th Symposium on the Frontiers of Massively Parallel Computation, pages 180–187. IEEE 
Computer Society Press, October 1996.

[85] Rajeev Thakur, William Gropp, and Ewing Lusk. An experimental evaluation of the parallel I/O systems of the IBM SP 
and Intel Paragon using a production application. In Proceedings of the 3rd International Conference of the Austrian Center for 
Parallel Computation (ACPC) with Special Emphasis on Parallel Databases and Parallel I/O, pages 24–35. Lecture Notes in 
Computer Science 1127. Springer-Verlag, September 1996.

[86] Rajeev Thakur, William Gropp, and Ewing Lusk. A case for using MPI's derived datatypes to improve I/O performance. 
In Proceedings of SC98: High Performance Networking and Computing, November 1998.

[87] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective I/O in ROMIO. In Proceedings of the 7th 
Symposium on the Frontiers of Massively Parallel Computation, pages 182–189. IEEE Computer Society Press, February 1999.

[88] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably and with high performance. In 
Proceedings of the 6th Workshop on I/O in Parallel and Distributed Systems, pages 23–32. ACM Press, May 1999.

[89] Rajeev Thakur, Ewing Lusk, and William Gropp. Users guide for ROMIO: A high-performance, portable MPI-IO 
implementation. Technical Report ANL/MCS-TM-234, Mathematics and Computer Science Division, Argonne National 
Laboratory, Revised July 1998.

[90] The MPI-IO Committee. MPI-IO: A parallel file I/O interface for MPI, version 0.5, April 1996. http://parallel.nas.nasa.
gov/MPI-IO.

[91] Richard Treumann. Experiences in the implementation of a thread safe, threads based MPI for the IBM RS/6000 SP, 1998. 
http://www.research.ibm.com/actc/Tools/MPI_Threads.htm.

[92] L. G. Valiant. A bridging model for parallel computations. Communications of the ACM, 33(8):103–111, August 1990.

Page 371

[93] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the Fourteenth Annual ACM 
Symposium on Principles of Distributed Computing, pages 214–222, Ottawa, Ontario, Canada, August 1995.

[94] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. MIT Press, Cambridge, MA, 1997.

[95] VI Architecture. http://www.viarch.org.

[96] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels and. U-Net: A user-level network interface for 
parallel and distributed computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP), 
pages 40–53. ACM Press, December 1995.

Page 373

Subject Index

A

accept, 251

access epoch, 181, 196, 229

MPI_Win_lock, 197

access_style, 48

accumulate, 30, 31, 35

http://parallel.nas.nasa.gov/MPI-IO
http://parallel.nas.nasa.gov/MPI-IO
http://www.research.ibm.com/actc/Tools/MPI_Threads.htm
http://www.viarch.org/


active target, 181, 228

alignment

data, 176

API, 3

arrays

accessing from files, 67

distributed, 67

ASCI, 3

assert

MPI_Win_fence, 177

MPI_Win_lock, 192

MPI_Win_post, 231

MPI_Win_start, 231

ASTRO3D, 112

atomic mode, 92

atomic operations, 171

atomic update, 128

attribute

predefined, 188

window, 188

attribute caching, 292

autoconf, 219

B

basic Fortran support, 21

basic I/O functions, 54

Beowulf, 38, 302

bind, 251

block distribution, 69

block-cyclic distribution, 69

BSP, 133

bulk synchronous parallel, 133



C

C++ bindings

implementation of, 302

C++ constants, 358

C++ example, 24, 83, 166

cache coherence, 171

cache line, 175

cancel_fn, 285

cb_buffer_size, 86

cb_nodes, 86

child process, 37

children, 37

client, 246, 247

CM-5, 133

CMMD, 133

COBOL, 304

coherence, 169

coherence conflict

example, 169

coherent memory, 171

collective I/O, 64, 67, 81, 104

Compaq, 301

compiler optimizations, 173

configure, 219

connect, 253

consistency semantics, 89

constants

in C++, 358

cp, 97

Cray pointers, 185

Cray shmem library, 2



Cray T3D, 2, 133

critical section, 197

cyclic distribution, 69

cyclic(k) distribution, 69

D

darray, 68

darray datatype constructor, 68

data alignment, 176

data movement, 142

data parallel, 149

data representation, 20, 97

conversion functions, 273

external32, 97

internal, 97

native, 20, 97

user-defined, 100, 273

data sieving, 104

effect of varying buffer size, 107

data transfer

cooperative, 135

datatype constructor

darray, 68

subarray, 72

datatype decoding, 277

datatype flattening, 292

datatypes

performance with, 160

decoding datatypes, 277

default error handler, 297

deferred synchronization, 126

derived datatypes



MPI_Offset argument needed, 357

determinism, 259

dining philosophers, 194

direct_read, 86

direct_write, 86

Page 374

displacement, 61

displacement unit, 32, 146

distributed arrays, 68

distributed list example

dynamic, 220

static, 216

distributed mesh, 150

distribution

block, 69

block-cyclic, 69

cyclic, 69

cyclic(k), 69

irregular, 78

dtype_file_extent_fn, 273

dynamic process management, 7, 36, 233

design, 258

error classes, 297

performance, 259

scalability, 259

E

Edinburgh Parallel Computing Center, 302

end of file, 24

epoch

access, 181, 229

exposure, 229



error classes

dynamic process management, 297

I/O, 297, 299

info functions, 297

MPI-2, 300

MPI-2 miscellaneous, 297

RMA, 297, 299

error codes and classes

adding new, 285

error handler

default, 297

error handlers, 295

for conversion, 357

error handling, 295

C++, 298

etype, 20, 61

explicit offsets, 55

passing in Fortran, 57

explicit-offset functions, 55

exposure epoch, 229

extended Fortran support, 21

external interface functions

adding error codes and classes, 285

datatype decoding, 277

definition, 275

generalized requests, 279

external interfaces, 8

external32 data representation, 97

F

FAQ, 355

fcntl, 253



fence, 31

as toggle, 149

fetch and add, 194

file

displacement, 61

etype, 20, 61

filetype, 20, 61

view, 20

file, 40

file handle, 52

file interoperability, 95

file name

format of, 52

file pointer, 54

individual, 54

shared, 29, 83

file systems, 51

GFS, 51

HFS, 51

parallel, 51

PIOFS, 51

SFS, 51

XFS, 51

file view, 60

file-system commands, 97

filetype, 20, 61

FindElm

with RMA, 221, 226

with shared memory, 217

flattening datatypes, 292

fork, 212



Fortran 2000, 129

Fortran 90, 21

Fortran 95, 7

Fortran support

basic, 21

extended, 21

Fortran wrappers

implementation of, 290

free_fn, 285

Fujitsu, 301

Page 375

G

ga_acc, 195

ga_create, 190

ga_free, 191

ga_put, 193

ga_read_inc, 211

generalized requests, 279, 283

callback functions, 284

get, 30, 31, 137

ghost area, 74

ghost cell update, 150

ghost cells, 150

ghost point, 119, 150, 228

global array subset, 186

Global Arrays library, 186

GPFS, 51

H

handle conversion, 290

header in file

placement, 116



reading of, 116

heterogeneous

RMA, 147

HFS, 51

High Performance Fortran, 69

hints, 47, 85

history of MPI, 1

host, 48

HP, 301

HPSS, 302

hrecv, 268

I

I/O

access levels, 101

achieving high performance, 101

advantage of MPI over Unix, 60, 64

archive on the Web, 118

astrophysics example, 112

atomic mode, 92

collective, 64, 67, 81, 104

consistency semantics, 89

contiguous accesses, 52

error classes, 297

header in file, 116

independent, 66

nonatomic mode, 92

nonblocking, 81

noncontiguous accesses, 60

parallel, 12, 51

sequence, 92

split collective, 81



to a single file, 19

to separate files, 16

write sequence, 92

I/O functions

basic, 54

IBM, 301

IBM SP, 1, 133

IMPI, 304

implementations of MPI

free, 302

portable, 302

vendor, 301

ind_rd_buffer_size, 86

ind_wr_buffer_size, 86, 107

independent I/O, 66

individual file pointer, 54

individual-file-pointer functions, 55

info, 18, 47, 52, 85

RMA, 142

info functions

error classes, 297

InsertElm

with RMA, 227

with shared memory, 222

Intel NX, 268

Intel Paragon, 1

intercommunicator, 37, 234

internal data representation, 97

interoperability, 304

interrupt-driven receive, 268

intracommunicator, 37, 234



IP/TCP, 133

irregular distribution, 78

J

Java, 304

K

kernel thread, 263

keyval, 201

L

LAM, 2

language interoperability, 8, 249, 289

LAPI, 133

latency, 262

latency tolerance, 262

Lawrence Livermore National Laboratory, 302

library

configuring, 219

linearized array, 68

Page 376

listen, 251

load, 169

local group, 234

local store, 148

local window, 140, 141

lock, 130

definition, 181

nonblocking, 197

unfortunate name, 182

ls, 97

M

main thread, 265



map array, 78

massively parallel processors (MPPs), 1

matrix-vector multiplication, 235

sparse matrix, 150

memory allocation, 184

memory coherence, 169

memory map, 212

memory page, 175

memory window, 136, 139, 140

mesh communication

Upshot graphs, 125, 127

message passing

vs. RMA, 137

message-passing model, 1

MIMD, 235

mixed-language programming, 289

mixed-model programming, 269

mmap, 212

monitors, 263, 303

MPE, 197

MPI

resources on the Web, 355

MPI and OpenMP, 271

MPI Forum, 2

MPI history, 1

MPI implementations, 355

free, 302

portable, 302

vendor, 301

MPI-1.0, 4

MPI-1.1, 4



MPI-1.2, 4

MPI-2 Forum, 3, 4

MPI-3, 302

MPI-IO, 5, 51

MPI/RT, 304

MPI_File_iwrite

implementation of, 280

MPICH, 2

mpiexec, 11, 361

mpirun, 11, 361

multiple instruction multiple data, 235

multithreading, 4

mutex, 187, 208, 210

mutual exclusion, 187, 210

mv, 97

N

name service, 255

NASA Ames Research Center, 302

native data representation, 20, 97

NEC, 301

nested alignment, 176

network of workstations, 1

NFS, 38

no_locks, 175, 232

nonatomic mode, 92

nonblocking collective operation, 268

nonblocking I/O, 81

nonblocking lock, 197

nonuniform memory access, 3, 269

NUMA, 3, 269

NXTVAL, 194



with RMA (nonscalable), 200

with RMA (scalable), 204

with threads, 266

O

one-sided, 136

one-sided communication, 133

one-sided operations, 6, 29

OpenMP, 4, 263

OpenMP and MPI, 271

origin address, 143

P

p4, 1

PALLAS, 301

parallel computers, 1

parallel file systems, 51

parallel I/O, 12, 51

Parallel I/O Archive, 118

parent, 37

parent process, 37

passive target, 181

path, 48

peer to peer, 246

performance visualization, 106, 125, 127

PETSc, 3

pi

calculation of, 30

PIOFS, 51

pipeline parallelism, 39

pipelining, 38



Page 377

PLAPACK, 3

PMPIO, 302

poll, 253

port, 247

port name publishing, 254

portability, 258

datatypes for, 98

space, 301

time, 301

POV-Ray, 253

predefined attribute, 188

process startup, 11

processor consistency, 130

pthread_create, 267, 283

Pthreads, 263

publishing port name, 254

put, 30, 33, 137

PVM, 1, 37

Q

query_fn, 284

R

race condition, 215

read-modify-write, 128

read_conv_fn, 273

read_once, 48

real-time MPI, 304

receive

interrupt-driven, 268

remote group, 234

remote memory access, 29



remote memory operations, 6

introduction, 133

more needed?, 303

vs. shared-memory model, 134

remote process, 135

rm, 97

RMA, 29

error classes, 297

examples, 150

ghost cell updates, 150

heterogeneous, 147

rules, 171

steps, 135

vs. message passing, 136

RMA access epoch, 33

ROMIO, 86, 302

collective I/O, 104

data sieving, 104

files, 97

hints, 86

optimizations, 104

performance results, 105

Upshot graphs, 106

S

ScaLAPACK, 3

SEEK_SET, 358

select, 253

self-scheduling, 235

semop, 215

sequence, 92

sequential, 48



sequential consistency, 130

sequential I/O, 13

server, 246

service name, 255

SFS, 51

SGI, 301

SGI/Cray T3E, 133

shared file pointer, 29, 83

shared memory, 119

compared to RMA, 212

shared-file-pointer functions, 83

shmat, 212

shmem, 2, 133, 142

shmget, 212

single program multiple data, 235

singleton MPI_Init, 364

SMP, 3

socket, 251

sockets

comparison with MPI, 251

connecting processes, 251

soft, 243

sparse matrix, 150

spawn

soft, 243

spawning processes, 37

with multiple command lines, 245

with multiple executables, 245

split collective I/O, 81

SPMD, 235, 363

start_iodevice, 86



startup

command for, 361

with multiple executables, 363

stdio.h, 358

store, 169

striping_factor, 86

striping_unit, 85, 86

subarray, 68

subarray datatype constructor, 72

Sun Microsystems, 301

symmetric multiprocessing, 262, 269

synchronization

Page 378

deferred, 126

in message passing, 119

scalable, 231

SYSV shared memory, 212

T

target displacement, 154

TCGMSG, 1

TCP/IP, 133

Thinking Machines CM-5, 1, 133

thread

main, 265

thread compliance, 266

thread safety, 262

threads, 8, 303

definition, 261

standard, 263

user, 263

typeclass, 157



U

University of Notre Dame, 302

Upshot, 124

user threads, 263

user-space networking, 133

V

vector machines, 1

VIA, 134

view

file, 20

volatile variable, 129, 173, 225

W

wdir, 48

Web resources, 355

window, 30

definition, 140

keyval, 201

window attribute, 188, 201

window object, 30, 140

windows

overlapping, 173

workstations

network of, 1

World Wide Web, 355

write ordering, 130

write sequence, 92

write_conv_fn, 273

X

XFS, 51



Page 379

Function and Term Index

A

MPI_Accumulate, 35, C:36, C:167, f90:167

MPI::Add_error_class, C++:289

MPI_Add_error_class, 286, C:289, f90:289

MPI::Add_error_code, C++:289

MPI_Add_error_code, 286, C:289, f90:289

MPI::Add_error_string, C++:289

MPI_Add_error_string, 286, C:289, f90:289

MPI::Alloc_mem, C++:186

MPI_Alloc_mem, 33, 184, C:186, f90:186

MPI_Allreduce, 42

MPI_Alltoallv, 253

MPI_ARGV_NULL, 237

B

MPI_Bcast, 238

MPI_Buffer_detach, 184

MPI_BYTE, 45, 46

C

MPI_Cancel, 285

MPI_Cart_coord, 74

MPI_Cart_create, 72

MPI::Close_port, C++:252

MPI_Close_port, 249, C:251, f90:252

MPI_COMBINER_HVECTOR, 279

MPI_COMBINER_INDEXED, 277

MPI_COMBINER_NAMED, 277

MPI::Comm::Disconnect, C++:252

MPI::Comm::Get_parent, C++:239



MPI::Comm::Get_rank, C++:28

MPI::Comm::Get_size, C++:28

MPI_Comm_accept, 249, C:251, f90:252, 268

MPI_Comm_connect, 247, 249, C:251, f90:252, 268

MPI_Comm_disconnect, 249, C:251, f90:252, 269

MPI_Comm_free, 251

MPI_Comm_get_attr, 243

MPI_Comm_get_name, 298

MPI_Comm_get_parent, 42, C:46, C:238, f90:238

MPI_Comm_Join, 298

MPI_COMM_NULL_COPY_FN, 295

MPI_COMM_NULL_DELETE_FN, 295

MPI_Comm_parent, 37

MPI_Comm_remote_size, 243

MPI_COMM_SELF, 259

MPI_Comm_set_name, 298

MPI_Comm_spawn, 37, C:46, C:238, f90:238

MPI_Comm_spawn_multiple, 245, C:246, f90:246

MPI::COMM_WORLD, 26

MPE_Counter_attr_delete, 204

MPE_Counter_create, 202

MPE_Counter_inc, 209

D

MPI_Datarep_conversion_function, C:276

MPI_Datarep_extent_function, C:276

MPI::Datatype::Create_darray, C++:75

MPI::Datatype::Create_f90_integer, C++:158

MPI::Datatype::Create_indexed_block, C++:81

MPI::Datatype::Create_keyval, C++:296

MPI::Datatype::Create_subarray, C++:75

MPI::Datatype::Get_contents, C++:280



MPI::Datatype::Get_envelope, C++:280

MPI::Datatype::Match_size, C++:158

MPI::Datatype::Resized, C++:64

MPI::Datatype::Set_attr, C++:296

MPI_Dims_create, 114

MPI_DISTRIBUTE_BLOCK, 71

MPI_DISTRIBUTE_DFLT_DARG, 71

E

MPI_ERRCODES_IGNORE, 40, 237

MPI_Errhandler_c2f, 357

MPI_Errhandler_f2c, 357

MPI_Error_class, 297

MPI_Error_string, 297

MPI::ERRORS_ARE_FATAL, 298

MPI_ERRORS_ARE_FATAL, 295

MPI::ERRORS_RETURN, 298

MPI_ERRORS_RETURN, 295

MPI::ERRORS_THROW_EXCEPTIONS, 26, 298

MPI::Exception, 26, 298

F

MPI::File::Close, C++:28, C++:56

MPI::File::Get_info, C++:90

MPI::File::Get_size, C++:28

MPI::File::Get_type_extent, C++:100



Page 380

MPI::File::Iwrite_at, C++:83

MPI::File::Open, C++:28, C++:56

MPI::File::Read, C++:28, C++:56

MPI::File::Read_all, C++:68

MPI::File::Read_at, C++:59

MPI::File::Seek, C++:56

MPI::File::Set_atomicity, C++:96

MPI::File::Set_view, C++:28, C++:64

MPI::File::Sync, C++:96

MPI::File::Write, C++:56

MPI::File::Write_all, C++:68

MPI::File::Write_all_begin, C++:83

MPI::File::Write_all_end, C++:83

MPI::File::Write_at, C++:59

MPI::File::Write_shared, C++:84

MPI_File_call_errhandler, 297

MPI_File_close, C:21, f90:22, 54, C:55, f90:56, 92

MPI_File_create_errhandler, 297

MPI_File_f2c, 291, C:291

MPI_File_get_amode, 298

MPI_File_get_atomicity, 298

MPI_File_get_byte_offset, 298

MPI_File_get_group, 298

MPI_File_get_info, 86, C:89, f90:90

MPI_File_get_position, 298

MPI_File_get_position_shared, 298

MPI_File_get_size, 24, C:24

MPI_File_get_type_extent, 99, C:100, f90:100

MPI_File_get_view, 298

MPI_File_iread_at, 298



MPI_File_iread, 81

MPI_File_iread_shared, 85

MPI_File_iwrite_at, 81, 82, C:82, f90:82

MPI_File_iwrite, 280

MPI_File_iwrite_shared, 85

MPI_File, 16

MPI_FILE_NULL, 18

MPI_File_open, 17, C:21, f90:22, 52, C:55, f90:56, 92

MPI_File_preallocate, 298

MPI_File_read_all_begin, 298

MPI_File_read_all_end, 298

MPI_File_read_all, 66, C:67, f90:67

MPI_File_read_at_all_begin, 298

MPI_File_read_at_all_end, 298

MPI_File_read_at_all, 93

MPI_File_read_at, 29, 55, C:58, f90:58, 264

MPI_File_read, C:24, 54, C:55, f90:56

MPI_File_read_ordered_begin, 85

MPI_File_read_ordered_end, 85

MPI_File_read_ordered, 85

MPI_File_read_shared, 83

MPI_File_seek, 29, 54, C:55, f90:56, 264

MPI_File_seek_shared, 83

MPI_File_set_atomicity, C:95, f90:96

MPI_File_set_errhandler, 297

MPI_File_set_info, 85, 86

MPI_File_set_size, 298

MPI_File_set_view, 20, C:21, f90:22, 60, 62, C:62, f90:63, 66, 74, 80, 85, 97, 99, 114

MPI_File_sync, 92, C:95, f90:96

MPI_File_write_all_begin, 82, C:82, f90:82

MPI_File_write_all_end, 82, C:82, f90:82



MPI_File_write_all, 67, C:67, f90:67, 114, 116

MPI_File_write_at_all_begin, 298

MPI_File_write_at_all_end, 298

MPI_File_write_at_all, 93

MPI_File_write_at, 29, 55, C:58, f90:58

MPI_File_write, 18, C:21, f90:22, 54, C:55, f90:56, 284

MPI_File_write_ordered_begin, 298

MPI_File_write_ordered_end, 298

MPI_File_write_ordered, 85

MPI_File_write_shared, 29, 83, C:84, f90:84

MPI::Finalize, C++:28

MPI_Fint, 290

MPI::Free_mem, C++:186

MPI_Free_mem, C:186, f90:186

G

MPI_Get, 35, C:36, 137, 142, 144, C:145, f90:145

MPI::Grequest::Complete, C++:288

MPI::Grequest::Start, C++:288

MPI_Grequest_cancel_function, C:286

MPI_Grequest_complete, 284, C:286, f90:287

MPI_Grequest_free_function, C:286

MPI_Grequest_query_function, C:286

MPI_Grequest_start, 283, C:286, f90:287

MPI_Group_free, 199

MPI_Group_incl, 230

MPI_Group_rank, 199

MPI_Group_size, 199



Page 381

I

MPI::Info::Create, C++:90

MPI::Info::Free, C++:90

MPI::Info::Get, C++:90

MPI::Info::Get_nkeys, C++:90

MPI::Info::Get_nthkey, C++:90

MPI::Info::Set, C++:90

MPI_Info_create, 48, C:49, f90:49, 86, C:89, f90:90

MPI_Info_delete, 300

MPI_Info_dup, 300

MPI_Info_free, 48, C:49, f90:49, 86, C:89, f90:90

MPI_Info_get, 86, C:89, f90:90

MPI_Info_get_nkeys, 86, C:89, f90:90

MPI_Info_get_nthkey, 86, C:89, f90:90

MPI_Info_get_valuelen, 300

MPI_Info, 47

MPI::INFO_NULL, 26

MPI_INFO_NULL, 18, 52

MPI_Info_set, 48, C:49, f90:49, 86, C:89, f90:90, 358

MPI::Init, C++:28

MPI::Init_thread, C++:266

MPI_Init_thread, 264, C:265, f90:265, 359

MPI_Intercomm_merge, 42, C:46, 239

MPI::Intracomm::Accept, C++:252

MPI::Intracomm:Connect, C++:252

MPI::Intracomm::Spawn, C++:239

MPI::Intracomm:Spawn_multiple, C++:246

MPI::Is_thread_main, C++:271

MPI_Is_thread_main, C:270, f90:270, 271

MPI_Isend, 360



L

MPI_LOCK_EXCLUSIVE, 183, 225

MPI_LOCK_SHARED, 183, 221

MPI_LONG_LONG_INT, 158

MPI_LONG_LONG, 158, 357

MPI::Lookup_name, C++:257

MPI_Lookup_name, 255, C:256, f90:257

M

MPI_MAX_INFO_KEY, 89

MPI_MAX_INFO_VAL, 89

MPI_MIN, 42

MPI_MINLOC, 42

MPI_MODE_CREATE, 18, 59

MPI_MODE_NOCHECK, 192, 225, 231

MPI_MODE_NOPRECEDE, 178

MPI_MODE_NOPUT, 178, 231

MPI::MODE_NOSTORE, 178

MPI_MODE_NOSTORE, 177, 231

MPI_MODE_NOSUCCEED, 178

MPI_MODE_RDONLY, 48, 52

MPI_MODE_WRONLY, 18, 59

MPE_Mutex_lock, 209

MPE_Mutex_unlock, 209

O

MPI_OFFSET_KIND, 22, 57

MPI_Offset, 20, 54, 357

MPI::Open_port, C++:252

MPI_Open_port, 249, C:251, f90:252

MPI_ORDER_C, 71

MPI_ORDER_FORTRAN, 71



P

MPI_Pack_external, 300

MPI_Probe, 264

MPI_PROC_NULL, 230, 238, 357

MPI::Publish_name, C++:257

MPI_Publish_name, 255, C:256, f90:257

MPI_Put, 137, 142, C:145, f90:145

Q

MPI::Query_thread, C++:271

MPI_Query_thread, 270, C:270, f90:270, 359

R

MPI::Register_datarep, C++:277

MPI_Register_datarep, 273, C:276, f90:276

MPI_REPLACE, 168, 172

MPI_Request_free, 285

MPI_ROOT, 238

S

MPI::SEEK_SET, 358

MPI_SEEK_SET, 54, 358

MPI_Sizeof, 148, f90:148

MPI::Status::Set_cancelled, C++:288

MPI::Status::Set_elements, C++:288

MPI_Status_c2f, 291, C:291

MPI_STATUS_IGNORE, 18, 55, 115

MPI_Status_set_cancelled, 284, C:286, f90:287

MPI_Status_set_elements, 284, C:286, f90:287



Page 382

MPI_STATUS_SIZE, 291

T

MPI_Test_cancelled, 284

MPI_Test, 360

MPI_THREAD_FUNNELED, 265

MPI_THREAD_MULTIPLE, 265

MPI_THREAD_SERIALIZED, 265

MPI_THREAD_SINGLE, 265

MPI_Type_copy_attr_function, C:295

MPI_Type_create_darray, 69, C:75, f90:75, 114

MPI_Type_create_f90_integer, C:157, f90:158

MPI_Type_create_indexed_block, 80, C:80, f90:80, 207

MPI_Type_create_keyval, 292, C:295, f90:296

MPI_Type_create_resized, 61, C:62, f90:63

MPI_Type_create_subarray, 74, C:75, f90:75

MPI_Type_delete_attr_function, C:295

MPI_Type_dup, 293

MPI_Type_f2c, 291, C:291

MPI_Type_free, 292, 295

MPI_Type_get_contents, 277, C:279, f90:280

MPI_Type_get_envelope, 277, C:279, f90:280

MPI_Type_indexed, 204

MPI_Type_match_size, C:157, f90:158

MPI_TYPE_NULL_COPY_FN, 295

MPI_TYPE_NULL_DELETE_FN, 295

MPI_Type_set_attr, 293, C:295, f90:296

MPI_Type_set_name, 298

MPI_TYPECLASS_COMPLEX, 157

MPI_TYPECLASS_INTEGER, 157

MPI_TYPECLASS_REAL, 157



U

MPI_UNIVERSE_SIZE, 242, 243

MPI_Unpack_external, 300

MPI::Unpublish_name, C++:257

MPI_Unpublish_name, 255, C:256, f90:257

MPI_UNSIGNED_LONG_LONG, 357

W

MPI::Win::Accumulate, C++:167

MPI::Win::Complete, C++:230

MPI::Win::Create, C++:141

MPI::Win::Create_keyval, C++:202

MPI::Win::Delete_attr, C++:202

MPI::Win::Fence, C++:149

MPI::Win::Free, C++:141

MPI::Win::Free_keyval, C++:202

MPI::Win::Get, C++:145

MPI::Win::Get_attr, C++:191

MPI::Win::Get_group, C++:199

MPI::Win::Lock, C++:182

MPI::Win::Post, C++:230

MPI::Win::Put, C++:145

MPI::Win::Set_attr, C++:202

MPI::Win::Start, C++:230

MPI::Win::Unlock, C++:182

MPI::Win::Wait, C++:230

MPI_WIN_BASE, 188

MPI_Win_complete, 229, C:229, f90:230

MPI_Win_create_keyval, C:201, f90:202, 203

MPI_Win_create, 31, C:36, 139, C:141, f90:141

MPI_Win_delete_attr, C:201, f90:202



MPI_Win_delete_fn, 202

MPI_WIN_DISP_UNIT, 188

MPE_Win_fence, 174

MPI_Win_fence, 33, C:36, 137, 148, C:149, f90:149, 177

MPI_Win_free_keyval, C:201, f90:202

MPI_Win_free, 36, C:36, 140, C:141, f90:141

MPI_Win_get_attr, 188, C:189, f90:191

MPI_Win_get_group, 199, C:199, f90:199, 226

MPI_Win_get_name, 298

MPI_Win_lock, 181, C:182, f90:182, 197

MPI_Win, 31

MPI_WIN_NULL_COPY_FN, 203, 295

MPI_WIN_NULL_DELETE_FN, 203, 295

MPI_WIN_NULL, 141

MPI_Win_post, 229, C:229, f90:230

MPI_Win_set_attr, C:201, f90:202

MPI_Win_set_errhandler, 297

MPI_Win_set_name, 298

MPI_WIN_SIZE, 188

MPI_Win_start, 229, C:229, f90:230

MPI_Win_unlock, 181, C:182, f90:182

MPI_Win_wait, 229, C:229, f90:230


