Using MPI-2

Pagei

Using MPI-2

Pageii

Scientific and Engineering Computation
Janusz Kowalik, editor

Data-Parallel Programming on MIMD Computers,
Philip J. Hatcher and Michael J. Quinn, 1991

Unstructured Scientific Computation on Scalable Multiprocessors,
edited by Piyush Mehrotra, Joel Saltz, and Robert Voigt, 1992

Parallel Computational Fluid Dynamics. Implementation and Results,
edited by Horst D. Simon, 1992

Enterprise Integration Modeling: Proceedings of the First International Conference,
edited by Charles J. Petrie, Jr., 1992

The High Performance Fortran Handbook,
CharlesH. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr. and Mary E. Zosel, 1994

PVM: Parallel Virtual Machine-A Users Guide and Tutorial for Network Parallel Computing,
Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy Sunderam, 1994

Practical Parallel Programming,
Gregory V. Wilson, 1995

Enabling Technologies for Petaflops Computing,
Thomas Sterling, Paul Messina, and Paul H. Smith, 1995

An Introduction to High-Performance Scientific Computing,
Lloyd D. Fosdick, Elizabeth R. Jessup, Carolyn J. C. Schauble, and Gitta Domik, 1995

Parallel Programming Using C++,
edited by Gregory V. Wilson and Paul Lu, 1996

Using PLAPACK: Parallel Linear Algebra Package,
Robert A. van de Geijn, 1997

Fortran 95 Handbook,
Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, Jerrold L. Wagener, 1997

MPI—The Compl ete Reference: Volume 1, The MPI Core,
Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra, 1998

MPI—The Compl ete Reference: Volume 2, The MPI-2 Extensions,
William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir, 1998

A Programmer's Guide to ZPL,
Lawrence Snyder, 1999

How to Build a Beowulf,
Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F. Savarese, 1999

Using MPI: Portable Parallel Programming with the Message-Passing Interface, second edition,
William Gropp, Ewing Lusk, and Anthony Skjellum, 1999

Using MPI-2: Advanced Features of the Message-Passing Interface,
William Gropp, Ewing Lusk, and Rajeev Thakur, 1999

Using MPI-2

Advanced Features of the M essage-Passing I nterface

William Gropp
Ewing Lusk
Rajeev Thakur

The MIT Press
Cambridge, Massachusetts
London, England

© 1999 Massachusetts I nstitute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including

photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.
Thisbook was set in 1Ex by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Gropp, William.

Using MPI-2: advanced features of the message-passing interface /
William Gropp, Ewing Lusk, Rajeev Thakur.

p. cm.—(Scientific and engineering computation)

Includes bibliographical references and index.

ISBN 0-262-057133-1 (pb.: ak. paper)

1. Parallel programming (Computer science). 2. Parallel computers—
Programming. 3. Computer interfaces. |. Lusk, Ewing. 1. Thakur,
Rajeev. Il1. Title. 1V. Series.

QA76.642.G762 1999

005.2'75—dc21 99-042972

CIP

Page v

To Christopher Gropp, Brigid Lusk, and Pratibha and Sharad Thakur

Page vii

Contents
Series Foreword XV
Preface Xvii
1 1
Introduction
1.1 Background 1
1.1.1 Ancient History 1
1.1.2 The MPI Forum 2
1.1.3 The MPI-2 Forum 3
1.2 What's New in MPI-2? 4
1.2.1 Parallel 1/O)
1.2.2 Remote Memory Operations 6
1.2.3 Dynamic Process Management 7
1.2.4 Odds and Ends 7
1.3 Reading This Book 9
2 1
Getting Started with MPI-2
2.1 Portable Process Startup 11
2.2 Parale 1/0 12
2.2.1 Non-Parallel 1/0 from an MPI Program 13

2.2.2 Non-MPI Paralel 1/0 from an MPI Program 15

2.2.3 MPI 1/O to Separate Files
2.2.4 Pardlel MPI I/OtoaSingle File

2.2.5 Fortran 90 Version

2.2.6 Reading the File with a Different Number of Processes

2.2.7 C++ Version

2.2.8 Other Waysto Writeto a Shared File
2.3 Remote Memory Access

2.3.1 The Basic Idea: Memory Windows

2.3.2 RMA Version of cpi
2.4 Dynamic Process Management

2.4.1 Spawning Processes

2.4.2 Paralel cp: A Simple System Utility

2.5 Morelnfoon!| nf o

2.5.1 Motivation, Description, and Rationale

2.5.2 An Example from Parallel 1/0

2.5.3 An Example from Dynamic Process Management
2.6 Summary

3
Perallel 1/0

3.1 Introduction

3.2 Using MPI for Simple 1/0
3.2.1 Using Individual File Pointers
3.2.2 Using Explicit Offsets

3.2.3 Writing to aFile

Page viii

3.3 Noncontiguous Accesses and Collective I/0

3.3.1 Noncontiguous Accesses

3.3.2 Collective |/O

3.4 Accessing Arrays Stored in Files

3.4.1 Distributed Arrays

3.4.2 A Word of Warning about Darray

3.4.3 Subarray Datatype Constructor

3.4.4 Local Array with Ghost Area

3.4.5 Irregularly Distributed Arrays

3.5 Nonblocking 1/0 and Split Collective I/0

3.6 Shared File Pointers

3.7 Passing Hints to the Implementation

3.8 Consistency Semantics

3.8.1 Simple Cases

3.8.2 Accessing a Common File Opened with MPI _ COVM _WORLD

3.8.3 Accessing a Common File Opened with MPI _ COVM_SELF

3.8.4 General Recommendation

3.9 File Interoperability

3.9.1 File Structure

3.9.2 File Data Representation

3.9.3 Use of Datatypes for Portability

3.9.4 User-Defined Data Representations

3.10 Achieving High /O Performance with MPI

3.10.1 The Four "Levels' of Access

3.10.2 Performance Results

3.10.3 Upshot Graphs

3.11 An Astrophysics Example

3.11.1 ASTRO3D 1/0O Requirements

3.11.2 Implementing the 1/0O with MPI

3.11.3 Header |ssues

3.12 Summary

4
Understanding Synchronization

4.1 Introduction

4.2 Synchronization in Message Passing

4.3 Comparison with Shared Memory

4.3.1VolatileVariables

4.3.2 Write Ordering

4.3.3 Comments

5
Introduction to Remote Memory Operations

5.1 Introduction

5.2 Contrast with Message Passing

5.3 Memory Windows

5.3.1 Hints on Choosing Window Parameters

5.3.2 Relationship to Other Approaches

100

101

101

105

106

112

112

114

116

118

119

119

119

127

129

130

131

133

135

136

139

141

142

Page ix

5.4 Moving Data

5.4.1 Reasons for Using Displacement Units

5.4.2 Cautionsin Using Displacement Units

5.4.3 Displacement Sizesin Fortran

5.5 Completing Data Transfers

5.6 Examples of RMA Operations

5.6.1 Mesh Ghost Cell Communication

5.6.2 Combining Communication and Computation

5.7 Pitfallsin Accessing Memory

5.7.1 Atomicity of Memory Operations

5.7.2 Memory Coherency

5.7.3 Some Simple Rulesfor RMA

5.7.4 Overlapping Windows

5.7.5 Compiler Optimizations

5.8 Performance Tuning for RMA Operations

5.8.1 Optionsfor MPl _W n_creat e

5.8.2 Optionsfor MPI _W n_f ence

6
Advanced Remote Memory Access

6.1 Introduction

6.2 Lock and Unlock

6.2.1 Implementing Blocking, Independent RMA Operations

6.3 Allocating Memory for MPI Windows

6.3.1 Using VPl _Al | oc_nmemfrom C/C++

142

146

147

148

148

150

150

164

169

169

171

171

173

173

175

175

17

181

181

181

183

184

184

Page x

6.3.2Using VPl _Al | oc_nemfrom Fortran
6.4 Global Arrays

6.4.1 Create and Free

6.4.2 Put and Get

6.4.3 Accumulate
6.5 Another Version of NXTVAL

6.5.1 The Nonblocking Lock

6.5.2 A Nonscalable Implementation of NXTVAL

6.5.3 Window Attributes

6.5.4 A Scalable Implementation of NXTVAL
6.6 An RMA Mutex
6.7 The Rest of Global Arrays

6.7.1 Read and Increment

6.7.2 Mutual Exclusion for Global Arrays

6.7.3 Comments on the MPI Version of Global Arrays

6.8 Differences between RMA and Shared Memory
6.9 Managing a Distributed Data Structure
6.9.1 A Shared-Memory Distributed List Implementation
6.9.2 An MPI Implementation of a Distributed List
6.9.3 Handling Dynamically Changing Distributed Data Structures
6.9.4 An MPI Implementation of a Dynamic Distributed List
6.10 Compiler Optimization and Passive Targets

6.11 Scalable Synchronization

185

185

188

192

194

194

197

197

201

204

208

210

210

210

212

212

215

215

216

220

224

225

228

Page xi

6.11.1 Exposure Epochs

6.11.2 The Ghost-Point Exchange Revisited

6.11.3 Performance Optimizations for Scalable Synchronization

6.12 Summary

7
Dynamic Process Management

7.1 Introduction

7.2 Creating New MPI Processes

7.2.1 Intercommunicators

7.2.2 Matrix-Vector Multiplication Example

7.2.3 Intercommunicator Collective Operations

7.2.4 Intercommunicator Point-to-Point Communication

7.2.5 Finding the Number of Available Processes

7.2.6 Passing Command-Line Arguments to Spawned Programs

7.3 Connecting MPI Processes

7.3.1 Visualizing the Computation in an MPI Program

7.3.2 Accepting Connections from Other Programs

7.3.3 Comparison with Sockets

7.3.4 Moving Data between Groups of Processes

7.3.5 Name Publishing

7.4 Design of the MPI Dynamic Process Routines

7.4.1 Goals for MPI Dynamic Process Management

229

229

231

232

233

233

233

234

235

238

239

242

245

245

247

249

251

253

254

258

258

7.4.2 What MPI Did Not Standardize

8
Using MPI with Threads

8.1 Thread Basics and |ssues

8.1.1 Thread Safety

8.1.2 Threads and Processes

8.2 MPI and Threads

8.3 Yet Another Version of NXTVAL

8.4 Implementing Nonblocking Collective Operations

8.5 Mixed-Model Programming: MPI for SMP Clusters

9
Advanced Features

9.1 Defining New File Data Representations
9.2 External Interface Functions

9.2.1 Decoding Datatypes

9.2.2 Generalized Requests

9.2.3 Adding New Error Codes and Classes
9.3 Mixed-Language Programming
9.4 Attribute Caching
9.5 Error Handling

9.5.1 Error Handlers

9.5.2 Error Codes and Classes
9.6 Topics Not Covered in This Book

10
Conclusions

10.1 New Classes of Parallel Programs

260

261

261

262

263

263

266

268

269

273

273

275

277

279

285

289

292

295

295

297

298

301

301

Page xii

10.2 MPI-2 Implementation Status

10.2.1 Vendor Implementations

10.2.2 Free, Portable Implementations

10.2.3 Layering

10.3 Where Does MPI Go from Here?

10.3.1 More Remote Memory Operations

10.3.2 More on Threads

10.3.3 More Language Bindings

10.3.4 Interoperability of MPI Implementations

10.3.5 Redl-Time MPI

10.4 Final Words

A
Summary of MPI-2 Routines and Their Arguments

B
MPI Resources on the World Wide Web

C
Surprises, Questions, and Problemsin MPI

D
Standardizing External Startup with npi exec

References

Subject Index

Function and Term Index

301

301

302

302

302

303

303

304

304

304

304

307

355

357

361

365

373

379

Page xiii

Page xv

Series Foreword

The world of modern computing potentially offers many helpful methods and tools to scientists and engineers, but the fast pace
of change in computer hardware, software, and algorithms often makes practical use of the newest computing technology
difficult. The Scientific and Engineering Computation series focuses on rapid advances in computing technologies, with the
aim of facilitating transfer of these technologies to applicationsin science and engineering. It will include books on theories,
methods, and original applicationsin such areas as parallelism, large-scale simulations, time-critical computing, computer-
aided design and engineering, use of computers in manufacturing, visualization of scientific data, and human-machine interface
technology.

The seriesisintended to help scientists and engineers understand the current world of advanced computation and to anticipate
future developments that will affect their computing environments and open up new capabilities and modes of computation.

This book describes how to use advanced features of the Message-Passing Interface (MPI), acommunication library
specification for both parallel computers and workstation networks. MPI has been developed as a community standard for
message passing and related operations. Its adoption by both users and implementers has provided the parallel -programming
community with the portability and features needed to develop application programs and parallel libraries that will tap the
power of today's (and tomorrow's) high-performance computers.

JANUSZ S. KOWALIK

Page xvii

Preface

MPI (Message-Passing Interface) is a standard library interface for writing parallel programs. MPI was developed in two
phases by an open forum of parallel computer vendors, library writers, and application developers. The first phase took placein
1993-1994 and culminated in the first release of the MPI standard, which we call MPI-1. A number of important topicsin
parallel computing had been deliberately left out of MPI-1 in order to speed its release, and the MPI Forum began meeting
again in 1995 to address these topics, as well as to make minor corrections and clarifications to MPI-1 that had been discovered
to be necessary. The MPI-2 Standard was released in the summer of 1997. The official Standard documents for MPI-1 (the
current version as updated by the MPI-2 forum is 1.2) and MPI-2 are available on the Web at http://www.mpi-forum.org. More
polished versions of the standard documents are published by MIT Pressin the two volumes of MPI—The Complete Reference
[27, 79].

These official documents and the books that describe them are organized so that they will be useful as reference works. The
structure of the presentation is according to the chapters of the standard, which in turn reflects the subcommittee structure of
the MPI Forum.

In 1994, two of the present authors, together with Anthony Skjellum, wrote Using MPI: Portable Programming with the
Message-Passing Interface [31], a quite differently structured book on MPI-1, taking a more tutorial approach to the material.
A second edition [32] of that book has now appeared as a companion to this one, covering the most recent additions and
clarifications to the material of MPI-1, and bringing it up to date in various other ways as well. This book takes the same
tutorial, example-driven approach to its material that Using MPI does, applying it to the topics of MPI-2. These topicsinclude
paralel 1/0, dynamic process management, remote memory operations, and external interfaces.

About This Book

Following the pattern set in Using MPI, we do not follow the order of chaptersin the MPI-2 Standard, nor do we follow the
order of material within a chapter asin the Standard. Instead, we have organized the material in each chapter according to the
complexity of the programs we use as examples, starting with simple examples and moving to more complex ones. We do
assume that the reader is familiar with at |east the simpler aspects of MPI-1. It is not necessary to have read Using MPI, but it
wouldn't hurt.

http://www.mpi-forum.org/

Page xviii

We begin in Chapter 1 with an overview of the current situation in parallel computing, many aspects of which have changed in
the past five years. We summarize the new topics covered in MPI-2 and their relationship to the current and (what we see as)
the near-future parallel computing environment.

MPI-2 isnot "MPI-1, only more complicated." There are ssimple and useful parts of MPI-2, and in Chapter 2 we introduce them
with simple examples of parallel 1/0, dynamic process management, and remote memory operations.

In Chapter 3 we dig deeper into parallel 1/0, perhaps the "missing feature” most requested by users of MPI-1. We describe the
paralel 1/0 features of MPI, how to use them in a graduated series of examples, and how they can be used to get high
performance, particularly on today's parallel/high-performance file systems.

In Chapter 4 we explore some of the issues of synchronization between senders and receivers of data. We examine in detail
what happens (and what must happen) when data is moved between processes. This sets the stage for explaining the design of
MPI's remote memory operations in the following chapters.

Chapters 5 and 6 cover MPI's approach to remote memory operations. This can be regarded as the MPI approach to shared
memory, since shared-memory and remote-memory operations have much in common. At the same time they are different,
since access to the remote memory is through MPI function calls, not some kind of language-supported construct (such asa
global pointer or array). This difference arises because MPI isintended to be portable to distributed-memory machines, even
heterogeneous clusters.

Because remote memory access operations are different in many ways from message passing, the discussion of remote memory
access is divided into two chapters. Chapter 5 covers the basics of remote memory access and a simple synchronization model.
Chapter 6 covers more general types of remote memory access and more complex synchronization models.

Chapter 7 covers MPI's relatively straightforward approach to dynamic process management, including both spawning new
processes and dynamically connecting to running MPI programs.

The recent rise of the importance of small to medium-size SMPs (shared-memory multiprocessors) means that the interaction
of MPI with threads is now far more important than at the time of MPI-1. MPI-2 does not define a standard interface to thread
libraries because such an interface already exists, namely, the POSIX threads interface [42]. MPI instead provides a number of
features designed to facilitate the use of multithreaded MPI programs. We describe these features in Chapter 8.

In Chapter 9 we describe some advanced features of MPI-2 that are particularly useful to library writers. These features include
defining new file data representa-

Page xix

tions, using MPI's externa interface functions to build layered libraries, support for mixed-language programming, attribute
caching, and error handling.

In Chapter 10 we summarize our journey through the new types of parallel programs enabled by MPI-2, comment on the
current status of MPI-2 implementations, and speculate on future directions for MPI.

Appendix A contains the C, C++, and Fortran bindings for all the MPI-2 functions.

Appendix B describes how to obtain supplementary material for this book, including complete source code for the examples,
and related MPI materias that are available viaanonymousf t p and on the World Wide Web.

In Appendix C we discuss some of the surprises, questions, and problemsin MPI, including what we view as some
shortcomingsin the MPI-2 Standard asiit is now. We can't be too critical (because we shared in its creation!), but experience
and reflection have caused us to reexamine certain topics.

Appendix D covers the MPI program launcher, npi exec, which the MPI-2 Standard recommends that all implementations

support. The availability of a standard interface for running MPI programs further increases the protability of MPI applications,
and we hope that this material will encourage MPI users to expect and demand npi exec from the suppliers of MPI

implementations.

In addition to the normal subject index, there is an index for the usage examples and definitions of the MPI-2 functions,
constants, and terms used in this book.

Wetry to beimpartia in the use of C, Fortran, and C++ in the book's examples. The MPI Standard has tried to keep the syntax
of itscallssimilar in C and Fortran; for C++ the differences are inevitably alittle greater, although the MPI Forum adopted a
conservative approach to the C++ bindings rather than a compl ete object library. When we need to refer to an MPI function
without regard to language, we use the C version just because it isalittle easier to read in running text.

This book is not areference manual, in which MPI functions would be grouped according to functionality and completely
defined. Instead we present MPI functions informally, in the context of example programs. Precise definitions are given in
volume 2 of MPI—The Complete Reference [27] and in the MPI-2 Standard [59]. Nonethel ess, to increase the usefulness of this
book to someone working with MPI, we have provided the calling sequences in C, Fortran, and C++ for each MPI-2 function
that we discuss. These listings can be found set off in boxes located near where the functions are introduced. C bindings are
givenin ANSI C style. Arguments that can be of several types (typically message buffers) are defined asvoi d* in C. Inthe
Fortran boxes, such arguments are marked as being of type <t ype>. This means that one of the appropriate Fortran data types

should be used. To

Page xx

find the "binding box" for agiven MPI routine, one should use the appropriate bold-face reference in the Function and Term
Index: C for C, 90 for Fortran, and C++ for C++. Another place to find thisinformation isin Appendix A, which listsall MPI
functions in alphabetical order for each language.

Acknowledgments

We thank all those who participated in the MPI-2 Forum. These are the people who created MPI-2, discussed awide variety of
topics (many not included here) with seriousness, intelligence, and wit, and thus shaped our ideas on these areas of parallel
computing. The following people (besides ourselves) attended the MPI Forum meetings at one time or another during the
formulation of MPI-2: Greg Astfalk, Robert Babb, Ed Benson, Rajesh Bordawekar, Pete Bradley, Peter Brennan, Ron
Brightwell, Macigl Brodowicz, Eric Brunner, Greg Burns, Margaret Cahir, Pang Chen, Ying Chen, Albert Cheng, Y ong Cho,
Joel Clark, Lyndon Clarke, Laurie Costello, Dennis Cottel, Jim Cownie, Zhengian Cui, Suresh Damodaran-Kamal, Raja
Daoud, Judith Devaney, David DiNucci, Doug Doefler, Jack Dongarra, Terry Dontje, Nathan Doss, Anne Elster, Mark Fallon,
Karl Feind, Sam Fineberg, Craig Fischberg, Stephen Fleischman, |an Foster, Hubertus Franke, Richard Frost, Al Geist, Robert
George, David Greenberg, John Hagedorn, Kei Harada, Ledlie Hart, Shane Hebert, Rolf Hempel, Tom Henderson, Alex Ho,
Hans-Christian Hoppe, Steven Huss-Lederman, Joefon Jann, Terry Jones, Carl Kesselman, Koichi Konishi, Susan Kraus, Steve
Kubica, Steve Landherr, Mario Lauria, Mark Law, Juan Leon, Lloyd Lewins, Ziyang Lu, Andrew Lumsdaine, Bob Madahar,
Peter Madams, John May, Oliver McBryan, Brian McCandless, Tyce McLarty, Thom McMahon, Harish Nag, Nick Nevin,
Jarek Nieplocha, Bill Nitzberg, Ron Oldfield, Peter Ossadnik, Steve Otto, Peter Pacheco, Y oonho Park, Perry Partow, Pratap
Pattnaik, Elsie Pierce, Paul Pierce, Heidi Poxon, Jean-Pierre Prost, Boris Protopopov, James Pruyve, Rolf Rabenseifner, Joe
Rieken, Peter Rigsbee, Tom Robey, Anna Rounbehler, Nobutoshi Sagawa, Arindam Saha, Eric Salo, Darren Sanders, William
Saphir, Eric Sharakan, Andrew Sherman, Fred Shirley, Lance Shuler, A. Gordon Smith, Marc Snir, lan Stockdale, David
Taylor, Stephen Taylor, Greg Tensa, Marydell Tholburn, Dick Treumann, Simon Tsang, Manuel Ujaldon, David Walker,
Jerrell Watts, Klaus Wolf, Parkson Wong, and Dave Wright. We also acknowledge the valuable input from many persons
around the world who participated in MPI Forum discussions via e-mail.

Our interactions with the many users of MPICH have been the source of ideas,

Page xxi

examples, and code fragments. Other members of the MPICH group at Argonne have made critical contributions to MPICH
and other MPI-related tools that we have used in the preparation of this book. Particular thanks go to Debbie Swider for her
enthusiastic and insightful work on MPICH implementation and interaction with users, and to Omer Zaki and Anthony Chan
for their work on Upshot and Jumpshot, the performance visualization tools we use with MPICH.

Wethank PALLAS GmbH, particularly Hans-Christian Hoppe and Thomas Kentemich, for testing some of the MPI-2 code
examplesin this book on the Fujitsu MPI implementation.

Gail Pieper, technical writer in the Mathematics and Computer Science Division at Argonne, was our indispensable guidein
matters of style and usage and vastly improved the readability of our prose.

Page 1

]__
I ntroduction

When the MPI Standard was first released in 1994, its ultimate significance was unknown. Although the Standard was the
result of a consensus among parallel computer vendors, computer scientists, and application developers, no one knew to what
extent implementations would appear or how many parallel applications would rely on it.

Now the situation has clarified. All parallel computing vendors supply their users with MPI implementations, and there are
freely available implementations that both compete with vendor implementations on their platforms and supply MPI solutions
for heterogeneous networks. Applications large and small have been ported to MPI, and new applications are being written.
MPI's goa of stimulating the development of parallel libraries by enabling them to be portable has been realized, and an
increasing number of applications become parallel purely through the use of parallel libraries.

This book is about how to use MPI-2, the collection of advanced features that were added to MPI by the second MPI Forum. In
this chapter we review in more detail the origins of both MPI-1 and MPI-2. We give an overview of what new functionality has
been added to MPI by the release of the MPI-2 Standard. We conclude with a summary of the goals of this book and its
organization.

1.1—
Background

We present here abrief history of MPI, since some aspects of MPI can be better understood in the context of its development.
An excellent description of the history of MPI can also be found in [36].

11.1—
Ancient History

In the early 1990s, high-performance computing was in the process of converting from the vector machines that had dominated
scientific computing in the 1980s to massively parallel processors (MPPs) such asthe IBM SP-1, the Thinking Machines CM-
5, and the Intel Paragon. In addition, people were beginning to use networks of desktop workstations as parallel computers.
Both the MPPs and the workstation networks shared the message-passing model of parallel computation, but programs were
not portable. The MPP vendors competed with one another on the syntax of their message-passing libraries. Portable libraries,
such as PVM [24], p4 [8], and TCGM SG [35], appeared from the research community and became widely used on workstation
networks. Some of them allowed portability to MPPs as well, but

Page 2

there was no unified, common syntax that would enable a program to run in all the parallel environments that were suitable for
it from the hardware point of view.

1.1.2—
The MPI Forum

Starting with aworkshop in 1992, the MPI Forum was formally organized at Supercomputing '92. MPI succeeded because the
effort attracted a broad spectrum of the parallel computing community. Vendors sent their best technical people. The authors of
portable libraries participated, and applications programmers were represented as well. The MPI Forum met every six weeks
starting in January 1993 and released MPI in the summer of 1994,

To complete itswork in atimely manner, the Forum strictly circumscribed its topics. It developed a standard for the strict
message-passing model, in which all data transfer is a cooperative operation among participating processes. It was assumed
that the number of processes was fixed and that processes were started by some (unspecified) mechanism external to MPI. I/O
was ignored, and language bindings were limited to C and Fortran 77. Within these limits, however, the Forum delved deeply,
producing a very full-featured message-passing library. In addition to creating a portable syntax for familiar message-passing
functions, MPI introduced (or substantially extended the development of) a number of new concepts, such as derived datatypes,
contexts, and communicators. MPI constituted a major advance over all existing message-passing libraries in terms of features,
precise semantics, and the potential for highly optimized implementations.

In the year following its release, MPI was taken up enthusiastically by users, and a 1995 survey by the Ohio Supercomputer
Center showed that even its more esoteric features found users. The MPICH portable implementation [30], layered on top of
existing vendor systems, was available immediately, since it had evolved along with the standard. Other portable
implementations appeared, particularly LAM [7], and then vendor implementations in short order, some of them leveraging
MPICH. Thefirst edition of Using MPI [31] appeared in the fall of 1994, and we like to think that it helped win usersto the
new Standard.

But the very success of MPI-1 drew attention to what was not there. PVM users missed dynamic process creation, and several
users needed parallel 1/0. The success of the Cray shmem library on the Cray T3D and the active-message library on the CM-5
made users aware of the advantages of "one-sided" operationsin agorithm design. The MPI Forum would have to go back to
work.

Page 3

1.1.3—
The MPI-2 Forum

The modern history of MPI beginsin the spring of 1995, when the Forum resumed its meeting schedule, with both veterans of
MPI-1 and about an equal number of new participants. In the previous three years, much had changed in parallel computing,
and these changes would accelerate during the two years the M PI-2 Forum would meet.

On the hardware front, a consolidation of M PP vendors occurred, with Thinking Machines Corp., Meiko, and Intel al leaving
the marketplace. New entries such as Convex (now absorbed into Hewlett-Packard) and SGI (now having absorbed Cray
Research) championed a shared-memory model of parallel computation although they supported MPI (passing messages
through shared memory), and many applications found that the message-passing model was still well suited for extracting peak
performance on shared-memory (really NUMA) hardware. Small-scal e shared-memory multiprocessors (SMPs) became
available from workstation vendors and even PC manufacturers. Fast commodity-priced networks, driven by the PC
marketplace, became so inexpensive that clusters of PCs combined with inexpensive networks, started to appear as "home-
brew" parallel supercomputers. A new federal program, the Accelerated Strategic Computing Initiative (ASCI), funded the
development of the largest parallel computers ever built, with thousands of processors. ASCI planned for its huge applications
to use MPI.

On the software front, MPI, as represented by MPI-1, became ubiquitous as the application programming interface (API) for
the message-passing model. The model itself remained healthy. Even on flat shared-memory and NUMA (honuniform memory
access) machines, users found the message-passing model a good way to control cache behavior and thus performance. The
perceived complexity of programming with the message-passing model was alleviated by two developments. The first was the
convenience of the MPI interface itself, once programmers became more comfortable with it as the result of both experience
and tutorial presentations. The second was the appearance of libraries that hide much of the MPI-level complexity from the
application programmer. Examples are PETSc [3], ScaLAPACK [12], and PLAPACK [94]. This second development is
especialy satisfying because it was an explicit design goal for the MPI Forum to encourage the development of libraries by
including features that libraries particularly needed.

At the same time, non-message-passing models have been explored. Some of these may be beneficial if actually adopted as
portable standards; others may still require interaction with MPI to achieve scalability. Here we briefly summarize two
promising, but quite different approaches.

Page 4

Explicit multithreading is the use of an API that manipulates threads (see [32] for definitions within a single address space.
This approach may be sufficient on systems that can devote alarge number of CPUs to servicing a single process, but
interprocess communication will still need to be used on scalable systems. The MPI API has been designed to be thread safe.
However, not al implementations are thread safe. An MPI-2 feature isto allow applications to request and MPI
implementations to report their level of thread safety (see Chapter 8).

In some cases the compiler generates the thread parallelism. In such cases the application or library uses only the MPI API, and
additional parallelism is uncovered by the compiler and expressed in the code it generates. Some compilers do this unaided;
others respond to directives in the form of specific commentsin the code.

OpenMP is a proposed standard for compiler directives for expressing parallelism, with particular emphasis on |oop-level
parallelism. Both C [68] and Fortran [67] versions exist.

Thus the MPI-2 Forum met during time of great dynamism in parallel programming models. What did the Forum do, and what
did it come up with?

12—
What's New in MPI-2?

The MPI-2 Forum began meeting in March of 1995. Since the MPI-1 Forum was judged to have been a successful effort, the
new Forum procedures were kept the same as for MPI-1. Anyone was welcome to attend the Forum meetings, which were held
every six weeks. Minutes of the meetings were posted to the Forum mailing lists, and chapter drafts were circulated publicly
for comments between meetings. At meetings, subcommittees for various chapters met and hammered out details, and the final
version of the standard was the result of multiple votes by the entire Forum.

Thefirst action of the Forum was to correct errors and clarify a number of issues that had caused misunderstandingsin the
original document of July 1994, which was retroactively labeled MPI-1.0. These minor modifications, encapsulated as MPI-
1.1, werereleased in May 1995. Corrections and clarifications, to MPI-1 topics continued during the next two years, and the
MPI-2 document contains MPI-1.2 as a chapter (Chapter 3) of the MPI-2 release, which is the current version of the MPI
standard. MPI-1.2 also contains a number of topics that belong in spirit to the MPI-1 discussion, although they were added by
the MPI-2 Forum.

Page 5

MPI-2 hasthree "large," completely new areas, which represent extensions of the MPI programming model substantially
beyond the strict message-passing model represented by MPI-1. These areas are parallel 1/0, remote memory operations, and
dynamic process management. In addition, MPI-2 introduces a number of features designed to make all of MPI more robust
and convenient to use, such as external interface specifications, C++ and Fortran-90 bindings, support for threads, and mixed-
language programming.

1.2.1—
Parallel 1/0

The paralel I/O part of MPI-2, sometimes just called MPI-10, originated independently of the Forum activities, as an effort
within IBM to explore the analogy between input/output and message passing. After all, one can think of writing to afile as
anal ogous to sending a message to the file system and reading from afile as receiving a message from it. Furthermore, any
paralel 1/0 systemislikely to need collective operations, ways of defining noncontiguous data layouts both in memory and in
files, and nonblocking operations. In other words, it will need a number of concepts that have already been satisfactorily
specified and implemented in MPI. The first study of the MPI-10 ideawas carried out at IBM Research [71]. The effort was
expanded to include a group at NASA Ames, and the resulting specification appeared in [15]. After that, an open e-mail
discussion group was formed, and this group released a series of proposals, culminating in [90]. At that point the group merged
with the MPI Forum, and I/O became a part of MPI-2. The I/O specification evolved further over the course of the Forum
meetings, until MPI-2 was finalized in July 1997.

In general, 1/0 in MPI-2 can be thought of as Unix 1/0 plus quite alot more. That is, MPI does include analogues of the basic
operations of open, cl ose, seek, read, andw i te. Theargumentsfor these functions are similar to those of the

corresponding Unix /O operations, making an initial port of existing programsto MPI relatively straightforward. The purpose
of paralel I/0in MPI, however, is to achieve much higher performance than the Unix API can deliver, and serious users of
MPI must avail themselves of the more advanced features, which include

* noncontiguous access in both memory and file,
* collective 1/O operations,

* use of explicit offsetsto avoid separate seeks,
* both individual and shared file pointers,

* nonblocking 1/0,

* portable and customized data representations, and

Page 6
* hintsfor the implementation and file system.

We will explorein detail in Chapter 3 exactly how to exploit these features. We will find out there just how the 1/0 API
defined by MPI enables optimizations that the Unix I/O API precludes.

122—
Remote Memory Operations

The hallmark of the message-passing model is that datais moved from the address space of one process to that of another by
means of a cooperative operation such asasend/ r ecei ve pair. This restriction sharply distinguishes the message-passing

model from the shared-memory model, in which processes have access to a common pool of memory and can simply perform
ordinary memory operations (load from, store into) on some set of addresses.

In MPI-2, an API is defined that provides elements of the shared-memory model in an MPI environment. These are called
MPI's "one-sided" or "remote memory" operations. Their design was governed by the need to

» balance efficiency and portability across several classes of architectures, including shared-memory multiprocessors (SMPs),
nonuniform memory access (NUMA) machines, distributed-memory massively parallel processors (MPPs), SMP clusters, and
even heterogeneous networks;

* retain the "look and feel" of MPI-1;
» deal with subtle memory behavior issues, such as cache coherence and sequentia consistency; and
* separate synchronization from data movement to enhance performance.

The resulting design is based on the idea of remote memory access windows: portions of each process's address space that it
explicitly exposes to remote memory operations by other processes defined by an MPI communicator. Then the one-sided
operations put, get, and accumul ate can store into, load from, and update, respectively, the windows exposed by other
processes. All remote memory operations are nonblocking, and synchronization operations are necessary to ensure their
completion. A variety of such synchronizations operations are provided, some for simplicity, some for precise control, and
some for their analogy with shared-memory synchronization operations. In Chapter 4, we explore some of the issues of
synchronization between senders and receivers of data. Chapters 5 and 6 describe the remote memory operations of MPI-2in
detail.

Page 7

1.2.3—
Dynamic Process Management

The third major departure from the programming model defined by MPI-1 is the ability of an MPI process to participate in the
creation of new MPI processes or to establish communication with MPI processes that have been started separately. The main
issues faced in designing an API for dynamic process management are

» maintaining simplicity and flexibility;

* interacting with the operating system, the resource manager, and the process manager in a complex system software
environment; and

« avoiding race conditions that compromise correctness.

The key to correctness is to make the dynamic process management operations collective, both among the processes doing the
creation of new processes and among the new processes being created. The resulting sets of processes are represented in an
intercommunicator. Intercommunicators (communicators containing two groups of processes rather than one) are an esoteric
feature of MPI-1, but are fundamental for the MPI-2 dynamic process operations. The two families of operations defined in
MPI-2, both based on intercommunicators, are creating of new sets of processes, called spawning, and establishing
communications with pre-existing MPI programs, called connecting. The latter capability allows applications to have parallel-
client/parallel-server structures of processes. Details of the dynamic process management operations can be found in Chapter 7.

1.2.4—
Odds and Ends

Besides the above "big three," the MPI-2 specification covers a number of issues that were not discussed in MPI-1.
Extended Collective Operations

Extended collective operations in MPI-2 are analogous to the collective operations of MPI-1, but are defined for use on
intercommunicators. (In MPI-1, collective operations are restricted to intracommunicators.) MPI-2 also extends the MPI-1
intracommunicator collective operations to allow an "in place" option, in which the send and receive buffers are the same.

C++ and Fortran 90

In MPI-1, the only languages considered were C and Fortran, where Fortran was construed as Fortran 77. In MPI-2, all
functions (including MPI-1 functions) have C++ bindings, and Fortran means Fortran 90 (or Fortran 95 [1]). For C++, the MPI-
2 Forum chose a"minimal™ approach in which the C++ versions of MPI functions are quite similar to the C versions, with
classes defined

Page 8

for most of the MPI objects (suchas MPI : : Request for the C MPI _Request . Most MPI functions are member functions
of MPI classes (easy to do because MPI has an object-oriented design), and others are in the MPI namespace.

MPI can't take advantage of some Fortran-90 features, such as array sections, and some MPI functions, particularly ones like
MPI - Send that use a"choice" argument, can run afoul of Fortran's compile-time type checking for argumentsto routines. This
isusualy harmless but can cause warning messages. However, the use of choice arguments does not match the letter of the
Fortran standard; some Fortran compilers may require the use of a compiler option to relax this restriction in the Fortran
language.l "Basic" and "extended" levels of support for Fortran 90 are provided in MPI-2. Essentially, basic support requires
that mpi f . h bevalid in both fixed-and free-form format, and "extended" support includes an MPI module and some new
functions that use parameterized types. Since these language extensions apply to all of MPI, not just MPI-2, they are covered in
detail in the second edition of Using MPI [32] rather than in this book.

L anguage I nter oper ability

Language interoperability is anew feature in MPI-2. MPI-2 defines features, both by defining new functions and by specifying
the behavior of implementations, that enable mixed-language programming, an areaignored by MPI-1.

External Interfaces

The external interfaces part of MPlI makes it easy for libraries to extend MPI by accessing aspects of the implementation that
are opaque in MPI-1. It aidsin the construction of integrated tools, such as debuggers and performance anayzers, and is
already being used in the early implementations of the MPI-2 1/O functionality [88].

Threads

MPI-1, other than designing a thread-safe interface, ignored the issue of threads. In MPI-2, threads are recognized as a potential
part of an MPI programming environment. Users can inquire of an implementation at run time what

1 Because Fortran uses compile-time data-type matching rather than run-time data-type matching, it isinvalid to make two calls
to the same routine in which two different data types are used in the same argument position. This affects the "choice" arguments
in the MPI Standard. For example, calling MPI - Send with afirst argument of typei nt eger and then with afirst argument of
typer eal isinvalidin Fortran 77. In Fortran 90, when using the extended Fortran support, it is possible to allow arguments of
different types by specifying the appropriate interfaces in the MPI module. However, this requires a different interface for each
type and is not a practical approach for Fortran 90 derived types. MPI does provide for data-type checking, but does so at run
time through a separate argument, the MPI datatype argument.

Page 9

itslevel of thread-safety is. In cases where the implementation supports multiple levels of thread-safety, users can select the
level that meets the application's needs while still providing the highest possible performance.

1.3—
Reading This Book

This book is not a complete reference book for MPI-2. We |eave that to the Standard itself [59] and to the two volumes of
MPI—The Complete Reference [27, 79]. This book, like its companion Using MPI focusing on MPI-1, is organized around
using the concepts of MPI-2 in application programs. Hence we take an iterative approach. In the preceding section we
presented avery high level overview of the contents of MPI-2. In the next chapter we demonstrate the use of several of these
concepts in simple example programs. Then in the following chapters we go into each of the mgjor areas of MPI-2 in detail.
We start with the parallel 1/0 capabilities of MPI in Chapter 3, since that has proven to be the single most desired part of MPI-
2. In Chapter 4 we explore some of the issues of synchronization between senders and receivers of data. The complexity and
importance of remote memory operations deserve two chapters, Chapters 5 and 6. The next chapter, Chapter 7, is on dynamic
process management. We follow that with a chapter on MPI and threads, Chapter 8, since the mixture of multithreading and
message passing is likely to become awidely used programming model. In Chapter 9 we consider some advanced features of
MPI-2 that are particularly useful to library writers. We conclude in Chapter 10 with an assessment of possible future directions
for MPI.

In each chapter we focus on example programs to illustrate MPI asit is actually used. Some miscellaneous minor topics will
just appear where the example at hand seems to be a good fit for them. To find a discussion on a given topic, you can consult
either the subject index or the function and term index, which is organized by MPI function name.

Finally, you may wish to consult the companion volume, Using MPI: Portable Parallel Programming with the Message-
passing Interface [32]. Some topics considered by the MPI-2 Forum are small extensions to MPI-1 topics and are covered in
the second edition (1999) of Using MPI. Although we have tried to make this volume self-contained, some of the examples
have their originsin the examples of Using MPI.

Now, let's get started!

Page 11

-

Getting Started with MPI-2

In this chapter we demonstrate what MPI-2 "looks like," while deferring the detailsto later chapters. We use relatively simple
examples to give aflavor of the new capabilities provided by MPI-2. We focus on the main areas of paralel 1/0, remote

memory operations, and dynamic process management, but along the way demonstrate MPI in its new language bindings, C++
and Fortran 90, and touch on a few new features of MPI-2 as they come up.

21—
Portable Process Startup

One small but useful new feature of MPI-2 is the recommendation of a standard method for starting MPI programs. The
simplest version of thisis

npi exec -n 16 nyprog

to run the program nmy pr og with 16 processes.

Strictly speaking, how one starts MPI programs is outside the scope of the MPI specification, which says how to write MPI
programs, not how to run them. MPI programs are expected to run in such awide variety of computing environments, with
different operating systems, job schedulers, process managers, and so forth, that standardizing on a multiple-process startup
mechanism is impossible. Nonethel ess, users who move their programs from one machine to another would like to be able to
move their run scripts as well. Severa current MPI implementations use npi r un to start MPI jobs. Since the npi r un

programs are different from one implementation to another and expect different arguments, this has led to confusion, especially
when multiple MPI implementations are installed on the same machine.

In light of al these considerations, the MPI Forum took the following approach, which appearsin severa other placesin the
MPI-2 Standard as well. It recommended to implementers that npi exec be one of the methods for starting an MPI program,

and then specified the formats of some of the arguments, which are optional. What it does say isthat if an implementation
supports startup of MPI jobs with nmpi exec and uses the keywords for arguments that are described in the Standard, then the

arguments must have the meanings specified in the Standard. That is,

npi exec -n 32 nyprog

should start 32 MPI processes with 32 as the size of MPI _ COVM_WORL D, and not do something else. The name npi exec was
chosen so as to avoid conflict with the various currently established meanings of npi r un.

Page 12

Besidesthe- n <nunpr ocs> argument, npi exec has asmall number of other arguments whose behavior is specified by
MPI. In each case, the format is areserved keyword preceded by a hyphen and followed (after whitespace) by avalue. The
other keywordsare- soft, -host, -arch, -wdir, -path,and-fil e.They aremost simply explained by
examples.

npi exec -n 32 -soft 16 nyprog

means that if 32 processes can't be started, because of scheduling constraints, for example, then start 16 instead. (The request
for 32 processesis a"soft" request.)

npi exec -n 4 -host denali -wdir /honme/me/outfiles myprog

means to start 4 processes (by default, arequest for a given number of processesis "hard") on the specified host machine
("denali" is presumed to be a machine name known to npi exec) and have them start with their working directories set to /

hone/ me/ outfil es.

npi exec -n 12 -soft 1:12 -arch sparc-solaris \
-path /hone/ me/ sunprogs myprog

saysto try for 12 processes, but run any number up to 12 if 12 cannot be run, on a sparc-solaris machine, and look for mypr og
in the path / horre/ me/ sunpr ogs, presumably the directory where the user compiles for that architecture. And finally,

npi exec -file nyfile

tellsnmpi exec tolook innyf i | e for instructions on what to do. The format of myf i | e isleft to the implementation. More
details on npi exec, including how to start multiple processes with different executables, can be found in Appendix D.

22—
Parallel I/O

Parallel 1/0 in MPI starts with functions familiar to users of standard "language” 1/0 or libraries. MPI also has additional
features necessary for performance and portability. In this section we focus on the MPI counterparts of opening and closing
files and reading and writing contiguous blocks of data from/to them. At thislevel the main feature we show is how MPI can
conveniently express parallelism in these operations. We give several variations of a simple example in which processes write a
single array of integersto afile.

Page 13

| ‘ LEFTE LR

Progeases

dd i

| file

Figure2.1
Sequential 1/0O from a parallel program

221—
Non-Parallel 1/0 from an MPI Program

MPI-1 does not have any explicit support for parallel 1/0. Therefore, MPI applications devel oped over the past few years have
had to do their 1/0 by relying on the features provided by the underlying operating system, typically Unix. The most
straightforward way of doing thisisjust to have one process do all I/O. Let us start our sequence of example programs in this
section by illustrating this technique, diagrammed in Figure 2.1. We assume that the set of processes have a distributed array of
integers to be written to afile. For smplicity, we assume that each process has 100 integers of the array, whose total length
thus depends on how many processes there are. In the figure, the circles represent processes; the upper rectangles represent the
block of 100 integersin each process's memory; and the lower rectangle represents the file to be written. A program to write
such an array is shown in Figure 2.2. The program begins with each process initializing its portion of the array. All processes
but process 0 send their section to process 0. Process O first writes its own section and then receives the contributions from the
other processesin turn (the rank is specified in MPl _Recv) and writes them to thefile.

Thisis often the first way 1/0O isdonein aparallel program that has been converted from a sequential program, since no
changes are made to the 1/0O part of the program. (Note that in Figure 2.2, if nunpr ocs is 1, no MPl communication

operations are performed.) There are a number of other reasonswhy 1/O in aparallel program may be done this way.
* The parallel machine on which the program is running may support 1/O only from one process.

* One can use sophisticated 1/0 libraries, perhaps written as part of a high-level data-management layer, that do not have
parallel 1/0 capability.

» Theresulting single file is convenient for handling outside the program (by mv, cp, or f t p, for example).

Page 14

/* exanple of sequential Unix wite into a common file */
#i ncl ude "npi.h"

#i ncl ude <stdi o. h>

#defi ne BUFSI ZE 100

int main(int argc, char *argv[])

{
int i, myrank, nunprocs, buf[BUFSI ZE];
MPI _St at us st at us;
FILE *nyfile;

MPI _Init(&argc, &argv);
MPI _Conm r ank(MPI _COVWM WORLD, &nyrank);
MPI _Comm si ze(MPI _COVM WORLD, &nunpr ocs);
for (i=0; i<BUFSIZE;, i++)
buf[i] = myrank * BUFSI ZE + i;
if (myrank !'= 0)
MPI _Send(buf, BUFSIZE, MPI _INT, 0, 99, MPI_COWM WORLD);
el se {
nyfile = fopen("testfile", "w');
fwrite(buf, sizeof(int), BUFSIZE, nyfile);

for (i=1; i<nunprocs; i++) {

MPI _Recv(buf, BUFSIZE, MPI _INT, i, 99, MPI_COVW WORLD,
&st at us) ;
fwite(buf, sizeof(int), BUFSIZE, nyfile);
}
fclose(nyfile);
}
MPI _Finalize();
return O;
}
Figure 2.2

Code for sequential 1/O from a parallel program

Page 15

PRSI Y

PrOCEsses

files

Figure 2.3
Parallel 1/0 to multiple files

* Performance may be enhanced because the process doing the I/O may be able to assemble large blocks of data. (In Figure 2.2,
if process 0 had enough buffer space, it could have accumulated the data from other processes into asingle buffer for one large
write operation.)

The reason for not doing I/O thisway isasingle, but important one;

» Thelack of parallelism limits performance and scalability, particularly if the underlying file system permits parallel physical 1/
O.

222—
Non-MPI Parallel 1/0 from an MPI Program

In order to address the lack of parallelism, the next step in the migration of a sequential program to a parallel oneisto have
each process write to a separate file, thus enabling parallel data transfer, as shown in Figure 2.3. Such a program is shown in
Figure 2.4. Here each process functions completely independently of the others with respect to 1/0. Thus, each program is
sequential with respect to I/0 and can use language 1/0. Each process opensits own file, writesto it, and closes it. We have
ensured that the files are separate by appending each process's rank to the name of its output file.

The advantage of this approach isthat the I/O operations can now take place in parallel and can still use sequential 1/0 libraries
if that is desirable. The primary disadvantage is that the result of running the program is a set of filesinstead of asinglefile.
This has multiple disadvantages:

» Thefiles may have to be joined together before being used as input to another application.

* It may be required that the application that reads these files be a parallel program itself and be started with the exact same
number of processes.

* It may be difficult to keep track of this set of files as a group, for moving them, copying them, or sending them across a
network.

Page 16

/* exanple of parallel Unix wite into separate files */
#i ncl ude "npi.h"

#i ncl ude <stdio. h>

#defi ne BUFSI ZE 100

int main(int argc, char *argv[])
{
int i, myrank, buf[BUFSIZE];
char fil enane[128];
FI LE *nyfile;

MPlI _Init(&argc, &argv);
MPI _Conm r ank(MPI _COMM WORLD, &nyr ank);
for (i=0; i<BUFSIZE;, i++)

buf[i] = myrank * BUFSI ZE + i;
sprintf(filenane, "testfile. %", myrank);
myfile = fopen(fil enane, "WwW');
fwrite(buf, sizeof(int), BUFSIZE, nyfile);
fclose(nyfile);
MPI _Finalize();
return O;

}

Figure 2.4
Non-MPI parallel 1/0 to multiple files

The performance may also suffer because individual processes may find their datato be in small contiguous chunks, causing
many |/O operations with smaller dataitems. This may hurt performance more than can be compensated for by the parallelism.
We will investigate this topic more deeply in Chapter 3.

22.3—
MPI 1/0 to Separate Files

Asour first MPI I/O program we will simply translate the program of Figure 2.4 so that all of the I/O operations are done with
MPI. We do this to show how familiar I/O operations look in MPI. This program has the same advantages and disadvantages as
the preceding version. Let us consider the differences between the programs shown in Figures 2.4 and 2.5 one by one; there are
only four.

First, the declaration FI LE has been replaced by MPI _Fi | e asthetype of myfi | e. Notethat nyfi | e isnow avariable of
type MPl _Fi | e, rather than a pointer to an object of type FI LE. The MPI function corresponding to f open is (not
surprisingly)

Page 17

/* exanple of parallel MPI wite into separate files */
#i ncl ude "npi.h"

#i ncl ude <stdio. h>

#defi ne BUFSI ZE 100

int main(int argc, char *argv[])
{
int i, myrank, buf[BUFSIZE];
char filenane[128];
MPI _File nyfile;

MPlI _Init(&argc, &argv);
MPI _Conmm r ank(MPI _COMM WORLD, &mnyr ank) ;
for (i=0; i<BUFSIZE; i++)
buf[i] = myrank * BUFSI ZE + i;
sprintf(filenane, "testfile. %", mnyrank);
MPl _Fil e_open(MPI _COW SELF, filenane,
MPI _MODE_WRONLY | MPI _MODE_CREATE,

MPlI _I NFO_NULL, é&nyfile);
MPI File wite(nyfile, buf, BUFSIZE, MPI I NT,
VPl _STATUS_| GNORE) ;
MPI _File close(&wyfile);
MPI _Finalize();
return O;

}

Figure 2.5
MPI 1/O to separate files

caled MPl _Fi | e_open. Let us consider the argumentsin the call

MPI _Fi |l e_open(MPI _COW SELF, fil enane,
MPl _MODE_CREATE | MPI _MODE_WRONLY,
MPI _I NFO_NULL, &nyfile);

one by one. Thefirst argument is acommunicator. In away, thisis the most significant new component of I/O in MPI. Filesin
MPI are opened by a collection of processesidentified by an MPI communicator. This ensures that those processes operating
on afiletogether know which other processes are also operating on the file and can communicate with one another. Here, since
each processis opening its own file for its own exclusive useg, it uses the communicator MPI _ COMM SELF.

Page 18

The second argument is a string representing the name of thefile, asin f open. The third argument is the mode in which the

fileis opened. Hereit is being both created (or overwritten if it exists) and will only be written to by this program. The
constants VPl _MODE_CREATE and MPI _MODE_WRONLY represent bit flags that are or'd together in C, much asthey arein

the Unix system call open.

The fourth argument, MPI _| NFO_NULL here, is a predefined constant representing a dummy value for thei nf o argument to
MPI _Fi | e_open. Wewill describe the MPI _I nf o object later in this chapter in Section 2.5. In our program we don't need
any of its capabilities;, hencewe pass MPl _| NFO NULL to MPl _Fi | e_open. Asthelast argument, we pass the address of
the VPl _Fi | e variable, which the MPI _Fi | e_open will fill in for us. Aswith al MPI functionsin C, MPl _Fi | e_open
returns as the value of the function areturn code, which we hope is MPI _SUCCESS. In our examplesin this section, we do not
check error codes, for smplicity.

The next function, which actually does the I/O in this program, is

MPI _File wite(nyfile, buf, BUFSIZE, MPI _I NT,
MPI _STATUS_| GNORE) ;

Here we see the analogy between 1/0 and message passing that was alluded to in Chapter 1. The data to be written is described
by the (address, count, datatype) method used to describe messagesin MPI-1. Thisway of describing a buffer to be written (or
read) gives the same two advantages as it does in message passing: it alows arbitrary distributions of noncontiguous datain
memory to be written with asingle call, and it expresses the datatype, rather than just the length, of the data to be written, so
that meaningful transformations can be done on it asit isread or written, for heterogeneous environments. Here we just have a
contiguous buffer of BUFSI ZE integers, starting at address buf . Thefinal argumentto MPl _Fil e_wri t e isa"status"
argument, of the same type asreturned by MPl _Recv. We shall seeits use below. In this case we choose to ignore its value.
MPI-2 specifies that the special value MPI _STATUS | GNORE can be passed to any MPI function in place of a status
argument, to tell the MPI implementation not to bother filling in the status information because the user intends to ignore it.
This technique can slightly improve performance when status information is not needed.

Finally, the function
MPI _File close(&yfile);

closesthefile. The address of nyf i | e is passed rather than the variable itself because the MPI implementation will replace its
value with the constant MPI _FI LE_NULL. Thus the user can detect invalid file objects.

Page 19

/* exanple of parallel MPI wite into a single file */
#i ncl ude "npi.h"

#i ncl ude <stdi o. h>

#define BUFSI ZE 100

int main(int argc, char *argv[])
{
int i, myrank, buf[BUFSIZE];
MPI _File thefile;

MPI _Init(&argc, &argv);
MPI _Comm r ank(MPI _COMM WORLD, &nyr ank) ;
for (i=0; i<BUFSIZE;, i++)
buf[i] = myrank * BUFSI ZE + i;
MPl _Fil e_open(MPI _COMW WORLD, "testfile",
MPI _MODE_CREATE | MPl _MODE_WRONLY,
MPI _| NFO_NULL, &thefile);
MPI _File_set_viewm(thefile, nyrank * BUFSIZE * si zeof (int),
MPI _INT, MPI _INT, "native", MPI_INFO NULL);
MPI File wite(thefile, buf, BUFSIZE, MPI _INT,
VPl _STATUS_| GNORE) ;
MPl _File_close(& hefile);
MPI _Finalize();
return O;

}

Figure 2.6
MPI I/Oto asinglefile

2.24—
Parallel MPI 1/0Otoa SingleFile

We now modify our example so that the processes share asingle file instead of writing to separate files, thus eliminating the
disadvantages of having multiple files while retaining the performance advantages of parallelism. We will still not be doing
anything that absolutely cannot be done through language or library 1/0 on most file systems, but we will begin to see the "MPI
way" of sharing afile among processes. The new version of the program is shown in Figure 2.6.

Thefirst difference between this program and that of Figure 2.5 isin the first argument of the MPI _Fi | e_open statement.
Here we specify MPI _ COVM WORL D instead of MPI _ COMM_SELF, to indicate that all the processes are opening asingle file
together. Thisis a collective operation on the communicator, so all participating processes

Page 20

memary

POCCRSCS

|-I I\'

Figure 2.7
Parallel I/0 to asinglefile

must makethe MPl _Fi | e_open call, although only asinglefile is being opened.

Our plan for the way this file will be written is to give each process access to a part of it, as shown in Figure 2.7. The part of the
filethat is seen by asingle processis called the file view and is set for each processby acal toMPl _Fil e_set _vi ew.In

our example here, the call looks like

MPlI _File set viewm(thefile, nmyrank * BUFSI ZE * si zeof (int),
MPI I NT, MPI _INT, "native", MPl _| NFO NULL);

Thefirst argument identifies the file. The second argument is the displacement (in bytes) into the file where the process's view
of thefileisto start. Here we multiply the size of the datato be written (BUFSI ZE * si zeof (i nt)) by therank of the

process, so that each process's view starts at the appropriate place in thefile. Thisargument is of anew type MPI _Of f set ,
which on systems that support large files can be expected to be a 64-bit integer. See Section 2.2.6 for further discussion.

The next argument is called the etype of the view; it specifies the unit of datain thefile. HereitisMPI _| NT, since we will
always be writing some number of MPI _| NTs to thisfile. The next argument, called the filetype, is avery flexible way of

describing noncontiguous views in the file. In our smple case here, where there are no noncontiguous units to be written, we
can just use the etype, MPI _| NT. In general, etype and filetype can be any MPI predefined or derived datatype. See Chapter 3

for details.

The next argument is a character string denoting the data representation to be used in thefile. The nat i ve representation

specifies that dataisto be represented in the file exactly asit isin memory. This preserves precision and resultsin no
performance loss from conversion overhead. Other representations arei nt er nal and ext er nal 32, which enable various

degrees of file portability across machines with different architectures and thus different data representations. The final
argument

Page 21

Table2.1
C bindings for the I/O functions used in Figure 2.6

int MPI _File_open(MPI _Comm comm char *filenane, int anode, MPI _Info info,
MPI _File *fh)

int MPI_File set viem{(MPI _File fh, MPI_Ofset disp, MPI_Datatype etype,
MPI _Datatype filetype, char *datarep, MPl _Info info)

int MPI_File wite(MPlI _File fh, void *buf, int count, MPl _Datatype datatype,
MPl _Status *status)

int MPl_File_close(MPlI_File *fh)

isani nf o object asin MPl _Fi | e_open. Hereagain it isto be ignored, as dictated by specifying MPl _1 NFO_NULL for this
argument.

Now that each process has its own view, the actual write operation

MPI _File wite (thefile, buf, BUFSIZE, MPI _INT,
MPlI _STATUS_| GNORE) ;

is exactly the same asin our previous version of this program. But because the VPl _Fi | e_open specified
MPI _ COVM WORLDin its communicator argument, andthe MPl _Fi | e_set _vi ewgave each process a different view of the
file, the write operations proceed in parallel and al go into the same file in the appropriate places.

Why didwenot needacal toMPl _Fi | e_set _vi ewinthe previous example? The reason is that the default view isthat of a
linear byte stream, with displacement 0 and both etype and filetype set to MPI _BYTE. Thisis compatible with the way we used
the filein our previous example.

C bindingsfor the 1/O functionsin MPI that we have used so far aregivenin Table 2.1.

225—
Fortran 90 Version

Fortran now officially means Fortran 90 (or Fortran 95 [1]). This has some impact on the Fortran bindings for MPI functions.
We defer the details to Chapter 9, but demonstrate here some of the differences by rewriting the program shown in Figure 2.6
in Fortran. The MPI-2 Standard identifies two levels of Fortran support: basic and extended. Here we illustrate programming

with basic support, which merely requires that the npi f . h fileincluded in Fortran programs be valid in both free-source and
fixed-source format, in other words, that it contain valid syntax

Page 22

Table2.2
Fortran bindings for the 1/0O functions used in Figure 2.8

MPI _FILE OPEN(comm filenane, anode, info, fh, ierror)

character*(*) fil enane
i nteger conm anode, info, fh, ierror

MPI _FILE SET VIEWTfh, disp, etype, filetype, datarep, info, ierror)
integer fh, etype, filetype, info, ierror
character*(*) datarep
i nt eger (ki nd=MPI _OFFSET_KI ND) di sp

MPI _FILE WRI TE(f h, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror

MPI _FILE CLOSE(fh, ierror)
integer fh, ierror

for Fortran-90 compilers as well as for Fortran-77 compilers. Extended support requires the use of an MPI "module,” in which
theline

include 'npif.h'
isreplaced by
use npi

We aso use "Fortran-90 style" comment indicators. The new program is shown Figure 2.8. Note that the type MPI _COf f set in
C isrepresented in Fortran by the type | NTEGER(ki nd=MPI _ OFFSET_KI ND) . Fortran bindings for the /O functions used
in Figure 2.8 aregiven in Table 2.2.

2.2.6—
Reading the File with a Different Number of Processes

One advantage of doing parallel 1/0 to asinglefileisthat it is straightforward to read the file in parallel with a different
number of processes. Thisisimportant in the case of scientific applications, for example, where aparallel program may write a
restart file, which is then read at startup by the same program, but possibly utilizing a different number of processes. If we have
written asingle file with no internal structure reflecting the number of processes that wrote the file, then it is not necessary to
restart the run with the same number of processes as before. In

Page 23

I exanple of parallel MPI wite into a single file, in Fortran

PROGRAM nai n
I Fortran 90 users can (and shoul d) use
! use npi
! instead of include "npif.h" if their MPI inplenentation provides a
I npi nodul e.
i

ncl ude 'npif.h'

integer ierr, i, nyrank, BUFSIZE, thefile
par anet er (BUFSI ZE=100)

i nt eger buf (BUFSI ZE)

i nt eger (ki nd=MPI _OFFSET_KI ND) di sp

call MPI _INIT(ierr)
call MPl _COVM RANK(MPI _COW WORLD, nyrank, ierr)

do i = 0, BUFSIZE
buf (i) = myrank * BUFSI ZE + i
enddo
call MPI_FILE_OPEN(MPI _COMM WORLD, 'testfile', &
MPI _MODE WRONLY + MPI _MODE CREATE, &
MPI _I NFO NULL, thefile, ierr)
! assunme 4-byte integers
disp = nyrank * BUFSIZE * 4
call MPI _FILE SET_VIEWthefile, disp, MI _INTEGER &
MPl _| NTECER, 'native', &
MPlI _I NFO_NULL, ierr)
call MPI _FILE WRITE(t hefile, buf, BUFSIZE, Ml _| NTEGER &
MPI _STATUS | GNORE, ierr)
call MPI_FILE CLOSE(thefile, ierr)
call MPI _FI NALI ZE(ierr)

END PROGRAM nai n

Figure 2.8
MPI I/O to asinglefilein Fortran

Page 24

Table2.3
C bindings for some more 1/0 functions

int MPl_File_get_size(MPlI _File fh, MPI_Ofset *size)

int MPI_File read(MPI _File fh, void *buf, int count, MPI _Datatype datatype,
MPI _Status *status)

Figure 2.9 we show a program to read the file we have been writing in our previous examples. This program is independent of
the number of processes that run it. The total size of the file is obtained, and then the views of the various processes are set so
that they each have approximately the same amount to read.

One new MPI function is demonstrated here: MPI _Fi | e_get _si ze. Thefirst argument is an open file, and the second isthe

address of afield to store the size of the file in bytes. Since many systems can now handle files whose sizes are too big to be
represented in a 32-bit integer, MPI definesatype, MPI _COF f set , that islarge enough to contain afile size. It is the type used

for arguments to MPI functions that refer to displacementsin files. In C, one can expect ittobeal ong or|l ong | ong—at

any rate atype that can participate in integer arithmetic, asit is here, when we compute the displacement used in
MPI _Fil e _set vi ew. Otherwise, the program used to read the fileis very similar to the one that writesiit.

One difference between writing and reading is that one doesn't always know exactly how much datawill be read. Here,
although we could compute it, we let every processissue the same MPI _Fi | e_r ead call and pass the address of areal
MPI - St at us instead of MPI _ STATUS | GNORE. Then, just asin the case of an MPI _Recv, we can use

MPI _Get _count tofind out how many occurrences of a given datatype were read. If it isless than the number of items
requested, then end-of-file has been reached.

C bindings for the new functions used in this example are given in Table 2.3.

22.7—
C++ Version

The MPI Forum faced a number of choices when it came time to provide C++ bindings for the MPI-1 and MPI-2 functions.
The simplest choice would be to make them identical to the C bindings. Thiswould be a disappointment to C++ programmers,
however. MPI is object-oriented in design, and it seemed a shame not to express this design in C++ syntax, which could be
done without changing the basic structure of MPI. Another choice would be to define a complete class library that might look
quite different from MPI's C bindings.

Page 25

/* parallel MPI read with arbitrary number of processes*/
#i ncl ude "npi.h"

#i ncl ude <stdio. h>

int main(int argc, char *argv[])

{
i nt nyrank, nunprocs, bufsize, *buf, count;
MPI _File thefile;
MPI _St at us st at us;
MPI _OFfset filesize;
MPl _Init(&argc, &argv);
MPI _Comm r ank(MPI _COVMM WORLD, &mnyr ank) ;
MPI _Conm si ze(MPI _COVMM WORLD, &nunpr ocs);
MPI _Fi |l e_open(MPI _COVMM WORLD, "testfile", MPI_MODE_RDONLY,
MPl I NFO NULL, &t hefile);
MPl _File_get_size(thefile, & ilesize); /* in bytes */
filesize = filesize / sizeof(int); /* in nunber of ints */
bufsize = filesize / nunprocs + 1; /* local number to read */
buf = (int *) malloc (bufsize * sizeof(int));
MPI _File_set_view(thefile, nyrank * bufsize * sizeof(int),
MPl _INT, MPI _INT, "native", MPI_|INFO NULL):
MPI _File_read(thefile, buf, bufsize, MPI_INT, &status);
MPl _Get _count (&status, MPI _INT, &count);
printf("process % read % ints\n", nyrank, count);
MPl _File_close(& hefile);
MPI _Finalize();
return O;
}
Figure 2.9

Reading the file with a different number of processes

Page 26

Although the last choice was explored, and one instance was explored in detail [80], in the end the Forum adopted the middle
road. The C++ bindings for MPI can almost be deduced from the C bindings, and there is roughly a one-to-one correspondence
between C++ functions and C functions. The main features of the C++ bindings are as follows.

* Most MPI "objects," such as groups, communicators, files, requests, and statuses, are C++ objects.

« If an MPI function is naturally associated with an object, then it becomes a method on that object. For example, MPI _Send
(. . .,conm becomesamethod onitscommunicator: comm Send(. . .).

* Objects that are not components of other objects exist in an MPI name space. For example, MPI _ COMM_WORL D becomes
MPI : : COVM_WORLD and a constant like MPI _| NFO_NULL becomes MPI : : | NFO_NULL.

 Functions that normally create objects return the object as areturn value instead of returning an error code, asthey doin C.
For example, MPI : : Fi | e: : Open returns an object of type MPI : : Fi | e.

* Functionsthat in C return avaluein one of their arguments return it instead as the value of the function. For example, corm
Get _r ank returnsthe rank of the calling process in the communicator comm.

» The C++ style of handling errors can be used. Although the default error handler remains MPI : : ERRORS_ARE_FATAL inC
++, the user can set the default error handler to MPI : : ERRORS THROW EXCEPTI ONS In this case the C++ exception
mechanism will throw an object of type MPI : : Except i on.

Weillustrate some of the features of the C++ bindings by rewriting the previous program in C++. The new program is shown
in Figure 2.10. Note that we have used the way C++ can defer defining types, along with the C++ MPI feature that functions
can return values or objects. Hence instead of

i nt nyrank;
MPI _Conm r ank(MPI _COMM WORLD, &myr ank);

we have

int nyrank = MPI:: COM WORLD. Get _rank();

The C++ bindings for basic MPI functions found in nearly all MPI programs are shown in Table 2.4. Note that the new
Cet _r ank has no arguments instead of the two that the C version, MPl _Get _r ank, has because it isamethod on a

Page 27

/'l exanple of parallel MPI read fromsingle file, in C++
#i ncl ude <i ostream h>
#i ncl ude "npi.h"

int main(int argc, char *argv[])
{
int bufsize, *buf, count;
char filenane[128];
MPI : : St at us st atus;

MPl::lnit();
int myrank = MPI:: COVW WORLD. Get _rank();
i nt nunprocs = MPI:: COMW WORLD. Get _si ze();
MPl::File thefile = MPI::File::Open(MPI:: COWM WORLD, "testfile",
MPI : : MODE_RDONLY,
MPI ;@ I NFO_NULL) ;
MPl::Offset filesize = thefile.Get_size(); // in bytes
filesize = filesize |/ sizeof(int); /1 in nunber of ints
buf si ze = filesize / nunprocs + 1; /1 local nunber to read
buf = (int *) malloc (bufsize * sizeof(int));
thefile.Set_view(nyrank * bufsize * sizeof(int),
MPI _INT, MPI_INT, "native", MPlI::INFO NULL);

thefil e. Read(buf, bufsize, MPI _INT, &status);

count = status. Get_count (MPl _I NT);

cout << "process " << nyrank << " read " << count <<
<< endl;

thefile.d ose();

MPI :: Finalize();

return O;

ints"

}

Figure 2.10
C++ version of the examplein Figure 2.9

Table2.4
C++ bindings for basic MPI functions

void MPl::Init(int& argc, char**& argv)
void MPl::lnit()
int MPI::Comm: Get_size() const

int MPI::Comm: Get_rank() const

void MPI::Finalize()

Table2.5
C++ bindings for some I/O functions

MPI::File MPI::File::Open(const MPlI::Intracomm& comm const char* fil enane,
i nt ampbde, const MPl::Info& info)

MPlI::OFfset MPI::File::Get_size const

void MPl::File::Set_viewm MPl::Offset disp, const MI::Datatype& etype,
const MPI::Datatype& filetype, const char* datarep,
const MPI::Info& info)

void MPlI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
MPI : : St at us& st at us)

void MPlI::File::Read(void* buf, int count, const MPI::Datatype& datatype)
void MPI::File::d ose
communicator and returns the rank asits value. Note also that there are two versionsof MPI : : | ni t . The onewith no

arguments corresponds to the new freedom in MPI-2 to pass (NULL, NULL) to the C function MPI _I ni t instead of
(&argc, &argv).

Page 28

The C++ bindings for the I/O functions used in our example are shown in Table 2.5. We seethat MPI : : Fi | e: : Open returns

an object of type MPI : : Fi | e, and Read is called as a method on this object.

2.2.8—
Other Ways to Writeto a Shared File

In Section 2.2.4 weused MPI _Fi | e_set _vi ewto show how multiple processes can be instructed to share asinglefile. Asis
common throughout MPI, there are

Page 29

multiple ways to achieve the sameresult. MPl _Fi | e_seek allows multiple processes to position themselves at a specific

byte offset in afile (move the process's file pointer) before reading or writing. Thisis alower-level approach than using file
views and is similar to the Unix function 1seek. An example that uses this approach is given in Section 3.2. For efficiency

and thread-safety, a seek and read operation can be combined in asingle function, MPl _Fi | e_read_at ; similarly, thereis
anMPl _File_wite_at.Finaly, another file pointer, caled the shared file pointer, is shared among processes belonging to
the communicator passed to MPl _Fi | e_open. FunctionssuchasMPl _Fi | e_wri t e_shar ed access datafrom the current

location of the shared file pointer and increment the shared file pointer by the amount of data accessed. This functionality is
useful, for example, when all processes are writing event records to a common log file.

23—
Remote Memory Access

In this section we discuss how MPI-2 generalizes the strict message-passing model of MPI-1 and provides direct access by one
process to parts of the memory of another process. These operations, referred to as get, put, and accumulate, are called remote
memory access (RMA) operationsin MPI. We will walk through a simple example that uses the MPI-2 remote memory access
operations.

The most characteristic feature of the message-passing model of parallel computation is that datais moved from one process's
address space to another's only by a cooperative pair of send/receive operations, one executed by each process. The same
operations that move the data also perform the necessary synchronization; in other words, when a receive operation completes,
the datais available for use in the receiving process.

MPI-2 does not provide areal shared-memory model; nonethel ess, the remote memory operations of MPI-2 provide much of
the flexibility of shared memory. Data movement can beinitiated entirely by the action of one process; hence these operations
are also referred to as one sided. In addition, the synchronization needed to ensure that a data-movement operation is complete
is decoupled from the (one-sided) initiation of that operation. In Chapters 5 and 6 we will see that MPI-2's remote memory
access operations comprise a small but powerful set of data-movement operations and a relatively complex set of
synchronization operations. In this chapter we will deal only with the simplest form of synchronization.

It isimportant to realize that the RMA operations come with no particular guarantee of performance superior to that of send
and receive. In particular, they

Page 30

have been designed to work both on shared-memory machines and in environments without any shared-memory hardware at
all, such as networks of workstations using TCP/IP as an underlying communication mechanism. Their main utility isin the
flexibility they provide for the design of algorithms. The resulting programs will be portable to al MPI implementations and
presumably will be efficient on platforms that do provide hardware support for access to the memory of other processes.

2.31—
The Basic | dea:
Memory Windows

In strict message passing, the send/receive buffers specified by MPI datatypes represent those portions of a process's address
space that are exported to other processes (in the case of send operations) or available to be written into by other processes (in
the case of receive operations). In MPI-2, this notion of "communication memory" is generalized to the notion of aremote
memory access window. Each process can designate portions of its address space as available to other processes for both read
and write access. The read and write operations performed by other processes are called get and put remote memory access
operations. A third type of operation is called accumulate. This refers to the update of a remote memory location, for example,
by adding avaluetoit.

The word window in MPI-2 refers to the portion of a single process's memory that it contributes to a distributed object called a
window object. Thus, awindow object is made up of multiple windows, each of which consists of all the local memory areas
exposed to the other processes by a collective window-creation function. A collection of processes can have multiple window
objects, and the windows contributed to a window object by a set of processes may vary from process to process. In Figure
2.11 we show awindow object made up of windows contributed by two processes. The put and get operations that move data
to and from the remote memory of another process are nonblocking; a separate synchronization operation is needed to ensure
their completion. To see how thisworks, let us consider a simple example.

23.2—
RMA Version of cpi

In this section we rewrite the cpi example that appearsin Chapter 3 of Using MPI [32]. This program calculates the value of Tt

by numerical integration. In the original version there are two types of communication. Process O prompts the user for a
number of intervalsto use in the integration and uses MPI _Bcast to send this number to the other processes. Each process

then computes a partial sum, and the total sum is obtained by adding the partial sumswith an MPI _Reduce operation.

Page 31
—_— - Lascal addddress spaces
. | T Ciet
il EI’I.II |
Address space of Process Aubidiress space of Process | BMA windows
Figure2.11

Remote memory access window on two processes. The shaded area covers a single window
object made up of two windows.

In the one-sided version of this program, process O will store the value it reads from the user into its part of an RMA window
object, where the other processes can simply get it. After the partial sum calculations, all processes will add their contributions
to avalue in another window object, using accumulate. Synchronization will be carried out by the simplest of the window
synchronization operations, the fence.

Figure 2.12 shows the beginning of the program, including setting up the window objects. In this simple example, each window
object consists only of a single number in the memory of process 0. Window objects are represented by variables of type
MPI _W nin C. We need two window objects because window objects are made up of variables of a single datatype, and we

have an integer n and adouble pi that all processes will access separately. Let uslook at the first window creation call done on
process 0.

MPI _Wn _create (&n, sizeof(int), 1, MPI _| NFO NULL,
MPI _COVM WORLD, &nwi n);

This is matched on the other processes by

MPI _Wn_create(MPl _BOTTOM 0, 1, MPI_I NFO _NULL,
MPI _COVM WORLD, &nwi n);

The call on process 0 needs to be matched on the other processes, even though they are not contributing any memory to the
window object, because MPI _W n_cr eat e isacollective operation over the communicator specified in its last argument.

This communicator designates which processes will be able to access the window object.

Thefirst two arguments of MPI _W n_cr eat e arethe address and length (in bytes) of the window (in local memory) that the
calling process is exposing to put/get operations by other processes. Here it is the single integer n on process 0 and no

Page 32

/* Conmpute pi by nunerical integration, RMA version */
#i ncl ude "npi.h"

#i ncl ude <nat h. h>

int main(int argc, char *argv[])

{
int n, nyid, nunprocs, i;
doubl e PI25DT = 3.141592653589793238462643;
doubl e nypi, pi, h, sum x;
MPI _Wn nwin, piwn;
MPI I nit(&argc, &rgv);
MPI _Comm si ze(MPI _COVM WORLD, & unpr ocs) ;
WPl _Comm r ank(MPI _COVM WORLD, &nyi d) ;
if (nmyid == 0) {
MPI _Wn_create(&n, sizeof(int), 1, MPI _I NFO NULL,
MPI _COVM WORLD, &nwi n);
MPI _Wn_create(&pi, sizeof(double), 1, MPI_I NFO NULL,
MPI _COVM WORLD, &piwin);
}
el se {
MPI _Wn_create(MPI _BOTTOM O, 1, MPI_I NFO _NULL,
MPI _COVM WORLD, &nwi n);
MPI _Wn_create(MPI _BOTTOM O, 1, MPI_I NFO NULL,
MPI _COVM WORLD, &pi win);
}
Figure2.12

cpi : setting up the RMA windows

memory at al on the other processes, signified by alength of 0. We use MPI _BOTTOMas the address because it isavalid

address and we wish to emphasize that these processes are not contributing any local windows to the window object being
created.

The next argument is a displacement unit used to specify offsets into memory in windows. Here each window object contains
only one variable, which we will access with a displacement of 0, so the displacement unit is not really important. We specify 1
(byte). The fourth argument isan MPI _| nf o argument, which can be used to optimize the performance of RMA operationsin

certain situations. Here we use MPI _| NFO_NULL. See Chapter 5 for more on the use of displacement units and the
MPI _| nf o argument. The fifth argument is a communicator, which specifies

Page 33

the set of processes that will have access to the memory being contributed to the window object. The MPI implementation will
return an MPl _W n object as the last argument.

After thefirst call to MPl _W n_cr eat e, each process has access to the datain nwi n (consisting of the single integer n) via

put and get operations for storing and reading, and the accumulate operation for updating. Note that we did not have to acquire
or set aside specia memory for the window; we just used the ordinary program variable n on process 0. It is possible, and
sometimes preferable, to acquire such special memory with MPI _Al | oc_nmem but we will not do so here. See Chapter 6 for

further informationon MPI _Al | oc_nem

The second call to MPI _W n_cr eat e in each processis similar to the first, and creates awindow object pi wi n giving each
process access to the variable pi on process 0, where the total value of Ttwill be accumulated.

Now that the window objects have been created, let us consider the rest of the program, shown in Figure 2.13. Itisaloopin
which each iteration begins with process 0 asking the user for a number of intervals and continues with the parallel
computation and printing of the approximation of 1tby process 0. The loop terminates when the user entersa 0.

The processes of nonzero rank will get the value of n directly from the window object without any explicit action on the part of
process 0 to send it to them. But before we can call MPl _Get or any other RMA communication function, we must call a
special synchronization function, MPl _W n_f ence, to start what is known as an RMA access epoch. We would like to
emphasize that the function MPl _Bar ri er cannot be used to achieve the synchronization necessary for remote memory

operations. MPI provides special mechanisms—three of them—for synchronizing remote memory operations. We consider the
simplest of them, MPI _W n_f ence, here. The other two mechanisms are discussed in Chapter 6.

The fence operation is invoked by the function MPI _W n_f ence. It hastwo arguments. The first is an "assertion" argument

permitting certain optimizations; O is always a valid assertion value, and so we use it here for simplicity. The second argument
is the window the fence operation is being performed on. MPI _W n_f ence can be thought of asabarrier (across al the

processes in the communicator used to create the window object) that separates a set of local operations on the window from
the remote operations on the window or (not illustrated here) separates two sets of remote operations. Here,

MPI _Wn_fence(0, nwn);

Page 34
while (1) {
if (nmyid == 0) {
printf("Enter the nunmber of intervals: (0 quits) ");
fflush(stdout);
scanf (" %", &n) ;
pi = 0.0;
}
MPI _Wn_fence(0, nw n);

if (myid !'= 0)
MPI _CGet(&n, 1, MPI_INT, O, O, 1, MPI_INT, nwn);
MPI _Wn_fence(0, nwi n);

if (n==0)
br eak;

el se {
h = 1.0 / (double) n;
sum = 0. 0;

for (i = nmyid+ 1; i <=n; i += nunprocs) {
x = h * ((double)i - 0.5);
sum+= (4.0 / (1.0 + x*Xx));

}

mypi = h * sum

MPI _Wn_fence(O, piwn);

MPI _Accumrul ate(&ypi, 1, MPI_DOUBLE, 0, 0, 1, MPI_DOUBLE,
MPI _SUM piwin);
MPI _Wn_fence(0, piwn);

if (nyid == 0)
printf("pi is approximately % 16f, Error is % 16f/n",
pi, fabs(pi - PI25DT));
}

}
MPI _Wn_free(&w n);
MPI _W n_free(&piw n);
MPlI _Finalize();
return O;

}

Figure 2.13
cpi : mainloop

Page 35

separates the assignment of the value of n read from the terminal from the operations that follow, which are remote operations.
The get operation, performed by all the processes except process O, is

MPl _Get(&n, 1, MPI INT, 0, O, 1, MPI _INT, nwin);

The easiest way to think of thisargument list is as that of areceive/send pair, in which the arguments for both send and receive
are specified in asingle call on asingle process. The get is like areceive, so the receive buffer is specified first, in the normal
MPI style, by thetriple&n, 1, MPI _I NT, intheusual (address, count, datatype) format used for receive buffers. The next

argument is the rank of the target process, the process whose memory we are accessing. Here it is 0 because all processes
except 0 are accessing the memory of process 0. The next three arguments define the "send buffer" in the window, again in the
MPI style of (address, count, datatype). Here the address is given as a displacement into the remote memory on the target
process. In this caseit is 0 because there is only one value in the window, and therefore its displacement from the beginning of
the window is 0. The last argument is the window object.

The remote memory operations only initiate data movement. We are not guaranteed that when MPI _Cet returns, the data has
been fetched into the variable n. In other words, MPl _ Get isanonblocking operation. To ensure that the operation is
complete, we needto call MPI _W n_f ence again.

The next few linesin the code compute a partial sum nypi in each process, including process 0. We obtain an approximation
of Ttby having each process update the value pi in the window object by adding its value of nypi toit. First we call another
MPI _W n_f ence, thistime on the pi wi n window object, to start another RMA access epoch. Then we perform an
accumulate operation operation using

MPI _Accunul at e(&rypi, 1, MPI_DOUBLE, 0, 0, 1, MPI _DOUBLE,
MPI _SUM piwn);

Thefirst three arguments specify the local value being used to do the update, in the usual (address, count, datatype) form. The
fourth argument is the rank of the target process, and the subsequent three arguments represent the value being updated, in the
form (displacement, count, datatype). Then comes the operation used to do the update. This argument is similar to the op

argument to MPl _Reduce, the difference being that only the predefined MPI reduction operations can be used in
MPI _Accurul at e; user-defined reduction operations cannot be used. In this example, each process needs to add its value of
nypi topi ; therefore, we

Page 36

Table2.6

C bindings for the RMA functions used in the cpi example

int MPI_Wn_create(void *base, MPI _Aint size, int disp_unit, MPI _Info info,
MPI _Comm comm MPI_Wn *win)

int MPI_Wn _fence(int assert, MPI_Wn win)

int MPI _Get(void *origin_addr, int origin_count, MPl _Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI _Dat at ype target _datatype, MPI_Wn w n)

int MPI _Accunul ate(void *origin_addr, int origin_count,
WPl _Dat atype origin_datatype, int target_rank,
MPI _Aint target_disp, int target_count,
WPl _Dat atype target _datatype, MPI _Op op, MPI_Wn wn)

int MPI_Wn_free(MPI _Wn *w n)

use the operation MPlI _SUM The final argument is the window object on which the update is being performed, here pi wi n.

Since MPI _Accumnul at e isanonblocking function, we call MPl _W n_f ence to complete the operation. We then print the
answer from process 0. Note that if process O did not use MPl _Accurmul at e but instead smply used pi += mypi , the
program would be wrong and would produce incorrect results. Thisis discussed in more detail in Chapter 5.

The program finishes by freeing the window objectsit has created, with MPl _W n_f r ee, which takes as argument the
address of the window object being freed. MPl _W n_f r ee isacollective operation on the same communicator that was used
to create the window object in the first place.

C bindings for the RMA functions used in this example are given in Table 2.6.

24—
Dynamic Process M anagement

In the process model used in MPI_1, thereis afixed number of processes throughout an MPI computation. Thisisa
conceptually ssmple model becauseit puts all of the complexity of interaction with the operating system (which must be
involved in the creation of processes) completely outside the scope of the MPI application program. When MPI _| ni t returns,

all the processes have been started, MPI _COVM WORLDis

Page 37

fixed once and for all, and every process can communicate with every other process by using VPl _ COVM WORLD. All
communicators subsequently created have groups that are subgroups of the group of MPI _ COVM WORLD.

Although this situation makes life easier for MPI implementers, some MPI applications need more flexibility. Part of the
interest in a more dynamic approach to process management came from the PVM [24] community, where process startup under
application control is commonplace (although not as portable as other parts of PV M that don't have to interact with job
schedulers and process managers). Some applications have a genuine need to compute at run time—perhaps after some initial
calculations—how many processes should be created to work on the problem at hand. Some applications consist of two MPI
programs separately started, which need to connect to one another after each has formed its own separate MPI _ COMM WORLD.

Before we begin with a simple example, we would like to point out that the dynamic process routines make good use of MPI
intercommunicators, aform of communicator that connects two groups of processes. Aswe will seein Chapter 7,
intercommunicators provide a natural way to describe the spawned processes and their parent(s). However, to keep our first
example simple, we will convert the intercommunicator that is created when new processes are started into a more familiar
intracommunicator, using MPl _| nt er comm_ner ge (merge the two groupsin an intercommunicator into one and return a

"normal™ intracommunicator).

241—
Spawning Processes

In MPI-2, process are created by using the function MPI _Conmm_spawn. The key features of MPI _Conm_spawn are the
following:

* Itisacoallective operation over the spawning processes (called the parents) and also collective with thecallsto MPl _I ni t in
the processes that are spawned (called the children).

* It returns an intercommunicator in which, from the point of view of the parents, the local group contains the parents and the
remote group contains the children.

» The new processes have their own MPI _COVM WORLD.

» The function MPI _Comm par ent , called from the children, returns an intercommunicator containing the children as the
local group and the parents as the remote group.

These features areillustrated in Figure 2.14.

Page 38

In the parents I thee children
,-'"' ™ o W,
b oy
MPL_Conyn_spawn MPI_Inin
|I'Ill.3l's:1'lrl1llll.lllil.':‘lll'.il'
Rewrmned by MPI_Comm_spawn Retumned by MPI_Comm_parent
Figure2.14
Spawning processes. Ovals are intracommunicators containing several processes.
24.2—
Paralle cp:

A Simple System Utility

Let us consider an example in which processes are created dynamically: asimple utility program that does a parallel copy, that
is, copies afile from the local disk of a machine to the local disks of other machines. Such a utility could be needed for the
following reason. Before a process can be started on a given machine, an executable file must be present on the machine. In
many cases, this requirement is satisfied because a shared file system, such as NFS, makes a single copy of the executable file
available to all the machines. In other cases there may be no shared file system and the executable may need to be copied into a
specific directory or to/ t np on a(possibly large) set of machines, as a prerequisite to starting an MPI application. Even with
shared file-systems, we may want to copy the executable to local disksin a scalable way to reduce the time it takes to access
the executable. We may even want to do thisinside npi exec.

How can MPI help? The main way is by providing uswith MPl _Bcast to send the file from the root (the process that can
read the file) to the other processes. A good implementation can provide a scalable MPI _Bcast , at least on switched
networks, by using algorithms such as a spanning tree. We should also be able to achieve extra parallelism through pipelining,
aswe explain below.

We hypothesize a parallel-computing environment in which we have a"Beowulf" system (a cluster of machines) without a
shared file system. Let us suppose that our login- and compile-server is called dion and the "compute” nodes are called

Page 39

Figure 2.15
Multiple levels of paradlelismin pcp

bel nmont 0, bel nont 1, and so on. We expect to frequently have to copy afile (such as arecently compiled executable)
from di on to thelocal file systems of some subset of the bel mont s. Wewould like it to ook like the ordinary Unix cp
command, but function asa paralel copy. That is, if we say

pcp 0-63 nandel sl ave /tnp/ mandel sl ave

we want the file mandel sl ave to be copied from itslocal place on di on tothe/ t np directory on thefirst 64 bel nont s.
The pcp program is one of a set of similar parallel versions of familiar Unix commands described in [28].

Figure 2.15 shows our pcp program in action. Process 0 is reading the input file and broadcasting it, one block at atime, to all
the other processes, who are writing it to local disk. This program has three forms of parallelism.

* All of the processes are doing file 1/O in parallel.

» Much of the message passing takes place in parallel (assuming that our MPI implementation implements MPl _Bcast ina

scalable way). For example, the message from process 1 to process 3 is being transmitted concurrently with the message from
process 2 to process 5.

* By breaking the file into blocks, we also achieve pipeline parallelism. This type of parallelism arises, for example, from the
concurrency of the message from process

Page 40

0 to process 1 with the message from process 1 to process 3. Enabling pipeline parallelism is one of the reasons that
MPI _Bcast isnot asynchronizing operation; multiple broadcasts can be occurring in parall€l.

In this example, even process 0, which is reading the file, makes a copy of it. This approach makes sense if the file has just
been compiled on one file system but now is to be copied to a uniform place in the local file system on each machine. An
aternative semantics for pcp would be to assume that the file is already in place on process 0 and, therefore, process 0 does

not write the output file.

The code for the beginning of the master part of the pcp program is shown in Figure 2.16. The first step isto parse the

expression for the machines to copy the file to and create a file containing those machine names. Let us assume that the
function makehost | i st parsesthe first argument and writes out a hostfile (whose name is given by the second argument)

that can be understood by our implementation of MPI _Cormm_s pawn. The number of slaves specified is returned as the third
argument of makehost | i st. Wethen pass the name of thisfileto MPl _Conm _spawn viai nf o, in order to create pcp
dlaves on each of the target machines. Therefore the call

makehostlist(argv[1l], "targets", &ium hosts);

writes out afilecalledt ar get s containing the appropriate host names. We need to pass this information to the system that

starts up new processes. Since job scheduling and process startup systems have not been standardized, there is no standard MPI
format for thisinformation. Instead, thisinformation is passed to MPI _Conmm _spawn via an info object. We cover thisin more

detail in Section 2.5. For now, we show how MPI _| nf o is used to give information to an MPI call. We create an MPI_Info
object containing " t ar get s" asthe value of the reserved key (for use with MPI _Comm spawn) f i | e. Thisinfo key
simply tellsMPl _Conm _spawn to look in the file targets for information, in aformat specific to the MPI implementation,

about how to perform the operation. We assume here that the file may contain the names of the processors to spawn processes
on. Theinfokey sof t isasousedto alow MPI _Conmm spawn to return successfully even if it was unable to start all of the

requested processes. Next, the call

MPI _Comm spawn("pcp_slave", MPI _ARGV_NULL, num hosts, hosti nfo,
0, MPI_COW SELF, &pcpsl aves,
MPI _ERRCODES | GNORE) ;

creates the slaves. For smplicity we leave out error checking at this point, passing MPI _ ERRCODES | GNORE instead of an
array for returning the error codes.

Page 41

/* pcp fromthe Scal able Unix Tools, in MPI */
#i nclude "npi.h"

#i ncl ude <stdio. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat.h>

#i nclude <fcntl. h>

#define BUFSIZE 256*1024

#define CMDSI ZE 80

int main(int argc, char *argv[])

{

i nt num hosts, mystatus, allstatus, done, nunread;

i nt infd, outfd;

char out fil ename[MAXPATHLEN], control nsg[CVMDSI ZE] ;

char buf [BUFSI ZE] ;

char soft_limt[20];

MPI _Info hostinfo;

MPI _Comm pcpsl aves, all _processes;

MPl _Init(&argc, &argv);

makehostlist(argv[1l], "targets", &uum hosts);

MPI _Info_create(&hostinfo);

MPI _Info_set(hostinfo, "file", "targets");

sprintf(soft _limt, "0:%l", numhosts);

MPI _Info_set(hostinfo, "soft", soft limt);

MPl _Conm spawn("pcp_slave", Ml _ARGV_NULL, num hosts,

hostinfo, 0, MPI _COW SELF, &pcpsl aves,
MPI _ERRCCDES | GNORE) ;

MPI _Info_free(&hostinfo);

MPI _Interconm nerge(pcpslaves, 0, &all-processes);
Figure 2.16

Beginning of master part of parallel copy program

Page 42

Weimmediately convert the intercommunicator pcpsl aves that contains both the calling process and the processes created
by MPI _Comm_spawn into an intracommunicator with MPl _| nt er comm_rrer ge. The output intracommunicator,
al | _processes, will be used for all subsequent communication between the slaves and the master.

The code for the middle of the master part of the pcp program is shown in Figure 2.17. We attempt to open the input file, and
if wefail, we broadcast a message to the slavestelling them to exit immediately. If we succeed, we broadcast a "ready”
message instead.

Next we broadcast the name of the output file, and al processes attempt to open it. To test whether the file opened successfully,
weusean VPl _Al | r educe with MPl _M N asthe operation. Thus, if any process fails to open the output file, all processes

will know (sinceal | st at us will besetto- 1). Inthiscaseal processescall MPl _Fi nal i ze and exit. If all processes
receiveaOinal | status (MPI _Al | reduce ensuresthat al processes get the same result), then all files have been
successfully opened. (If wereplaced MPI _M N as the operation inthe MPl _Al | r educe of the mystatus variable with
MPI _M NLCC, we could indicate the rank of the failed process as well.)

Thefirst part of the slave code is shown in Figure 2.18. This code is quite similar to the code for the master, except that the
slaves need to call MPI _Comm _get _par ent to establish contact with process 0, and slaves do no argument processing and

print no messages.

At the end of the sections of code for both master and slave that we have looked at so far, all processes have successfully

opened the necessary files. The second part of the master code is shown in Figure 2.19. It simply reads the file ablock at atime
and broadcasts the blocks to the slaves. Note that before sending each block it sends the length as well. This approach handles

the (possibly) short block at the end and the end-of-file condition, since all processesin an MPl _Bcast (theroot that is

sending and the other processes that are receiving) must specify the same buffer length.1 An alternative approach would be to

use a structure containing an i nt field for the length of the data and a fixed-sized array of char for the buffer; asingle

MPI _Bcast would send both the nunr ead value and the dataread. Only inthelast MPl _Bcast call would more data be

sent (and ignored) than was needed. The second part of the slave code, which matches this structure, is shown in Figure 2.20.
At the end, all processes free the intercommunicator created by MPI _Conmm_spawn

1 Thisisunlike the send/receive case, where the sender specifies the length of data but the receiver specifies the maximum
buf f er length, providing the MPl _St at us argument to determine the actual size received.

strcpy(outfilename, argv[3]);

if ((infd = open(argv[2], ORDONLY)) == -1) {
fprintf(stderr, "input % does not exist\n", argv[2]);
sprintf(control nmsg, "exit");

control nsg, CMVMDSI ZE, MPI _CHAR, 0, all_processes);

sprintf(control nsg, "ready");

control nsg, CMVMDSI ZE, MPI _CHAR, 0, all _processes);

WPl _Bcast (
MPl _Finalize();
return -1 ;
}
el se {
VPl _Bcast (
}

MPI _Bcast (outfilename, MAXPATHLEN, MPI _CHAR, 0,

all
open(outfilename, O _CREAT| O WRONLY| O_TRUNC,

if ((outfd =

nyst at us
el se

nystatus =
MPI _Al | reduce(

if (allstatus

processes);

SIRMKU)) == -1)
_1,

0;
&nystatus, &allstatus, 1, MPI_INT, MPI_MN,
al |l _processes);

= 1) {

fprintf(stderr, "Qutput file % could not be opened\n",
outfilename);
MPl _Finalize();

return 1 ;

}

Figure2.17

Middle of master part of parallel copy program

/* pcp fromthe Scal able Uni x Tools, in MPI */

#i ncl ude "npi.h"

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>

#i ncl ude <fcntl. h>

#def i ne BUFSI ZE
#def i ne CMVDSI ZE

256*1024
80

int main(int argc, char *argv[])

{

i nt nmystatus, allstatus, done, nunread;
char out fil ename[MAXPATHLEN], contr ol nsg[CVDSI ZE] ;
i nt out f d;

Page 43

Page 44

char buf [BUFSI ZE] ;
MPI _Comm sl avecomm al | _processes;

MPI Init(&argc, &argv);

MPI _Comm get _parent (&sl avecomm);
MPlI _I ntercomm nerge(slaveconm 1, &all_processes);
MPI _Bcast(control nsg, CMDSIZE, MPI _CHAR, O,

all _processes);

if (strcnp(controlmeg, "exit") == 0) {
MPI _Finalize();
return 1;

}

MPI _Bcast (outfil ename, MAXPATHLEN, MPI _CHAR, O,
al | _processes);
if ((outfd = open(outfilename, O CREAT| O WRONLY| O _TRUNC,
SIRKKU)) == -1)

nyst at us -1;
el se
nmystatus = 0O;
MPI _All reduce(&nmystatus, &allstatus, 1, MPI _INT, MPI_MN,

al | _processes);

if (allstatus == -1) {
MPI _Finalize();
return -1;
}
Figure 2.18

First part of lave for parallel copy program

/* at this point all files have been successfully opened */
done = 0;
while (!done) {
nunread = read(infd, buf, BUFSIZE);
MPI _Bcast(&nunread, 1, MPI _INT, O, all_processes);
if (nummead > 0) {
MPI _Bcast(buf, nunread, MPI_BYTE, O, all_processes);
wite(outfd, buf, nunmread);
}
el se {
close(outfd);
done = 1;
}
}
MPI _Comm free(&pcpsl aves);
MPI _Comm free(&all _processes);
MPl _Finalize();
return O;

}

Figure 2.19
End of master part of parallel copy program

and the merged intracommunicator before exiting.

Page 45

The primary difference between MPI's spawn function and that of earlier message-passing systemsis the collective nature of
the operation. In MPI, agroup of processes collectively creates another group of processes, and all of them synchronize (via

MPI _Comm spawn inthe parentsand MPI _I ni t in the children), thus preventing race conditions and allowing the

necessary communication infrastructure to be set up before any of the calls return.

We defer to Chapter 7 the rest of the dynamic process management features of MPI-2. These include details on how to use all
of the features of MPI _Conm_spawn, aswell as how to form communicators connecting two MPI programs that are already
running.

C bindings for the dynamic process management functions used in the parallel copy example are given in Table 2.7.

Page 46
/* at this point all files have been successfully opened */
done = 0;
while (!'done) {
MPI _Bcast(&nunread, 1, MPI _INT, 0, all_processes);
if (nummead > 0) {
MPI _Bcast (buf, nunread, MPI _BYTE, 0, all _processes);
wite(outfd, buf, nunread);
}
el se {
close(outfd);
done = 1;
}
}
MPI _Comm free(&slavecomm);
MPI _Conm free(&all _processes);
MPI _Finalize();
return O;
}
Figure 2.20
End of dave part of parallel copy program
Table2.7
C bindings for the functions used in the parallel copy example
int MPI _Comm spawn(char *conmand, char *argv[], int maxprocs,
MPl _Info info, int root, MPI_Conm comm
MPI _Comm *intercomm int array_of errcodes[])
i nt MPI _Conm get parent (MPl _Conm *par ent)
int MPlI _Interconm nerge(MPl _Conmintercomm int high,
MPI _Conm *newi nt raconm)
Page 47

2.5—
Morelnfoon | nf o

In the preceding sections we have several times seen info as an argument in along parameter list but skipped over the details,
often by passing MPI _| NFO_NULL as that argument. In this section we explain the concept of info and give examples of its
usein paralel 1/0 and dynamic process management.

251—
Motivation, Description, and Rationale

MPI-2 contains some complex functions with potentially long and unwieldy argument lists. In addition, some functions interact
with external objects such as the operating system or file system in ways that are unlikely to be uniform across the wide range
of platforms on which MPI programs are expected to run. In order to preserve at |east some measure of portability for MPI
programs, some arguments need to be optional.

The answer to all of these problemsisthe info object. Theinfo object is an opaque object (of typeMPl _I nfo inC, MPI : :

I nf oinC++,andi nt eger in Fortran) that provides a flexible mechanism for dealing with complex, optional, or nonportable
options on certain MPI-2 function calls. In some ways it is ageneral "mini-database” of (key, value) pairs. MPI provides
functions to create and delete info objects, to access and update an info object by adding and deleting these pairs, and to access
the pairs either by key or by number in sequence. Both keys and values are character strings.

Thistype of functionality (managing sets of strings) doesn't seem to have much to do with message passing; what isit doing as
part of the MPI standard? The MPI Forum felt that no existing library provided the flexibility needed, was available on all
platforms, and was language neutral. Therefore it had to specify one of its own. We will see how it is used with some examples
related to the programs discussed earlier in this chapter; a more through description is given in other chapters whereinfo is
used.

252—
An Example from Parallel 1/0

Several parallel file systems can benefit from "hints" given to the file system about how the application program will interact
with the file system. These hints contain information known to the programmer or user that may be difficult or impossible for
the file system to figure out by itself and that may allow the file system to perform useful optimizationsin handling the
application's 1/0 requests. For example, optimizations may be possible if the file system knows that the file will be read

Page 48
only once and in a sequential fashion. This hint can be given to the file system viathe info object as follows.
MPI _I nfo nyinfo;
MPI _File nyfile;
MPI _Conmm nmyconm

MPI | nfo_create(&myinfo);

MPI I nfo_set(nyinfo, "access_style", "read once, sequential");
MPI _Fil e_open(nyconm "nyfile", MPI_MODE _RDONLY, nyinfo,
&nyfile);

MPI _I nfo_free(&nyinfo);

Note that one can free the info object after it has been used in the call to MPl _Fi | e_open; theinfo object belongs to the user,
not the system, and its content is extracted by the system when it is used as an argument in an MPI call.

Thekey access_styl eisareserved key in MPI, and the values for it are also reserved. An MPI implementation is free to
ignore this hint, but if it recognizesaccess_st yl e, it should a so recognize the values specified in the MPI Standard. It can

also recognize additional values not defined in the Standard. The Standard contains al the reserved keys for the info object and
describes their possible values. Implementations are allowed to recognize other keys and values as well, at somerisk to the
portability of programs that use them.

253—
An Example from Dynamic Process Management

In our parallel copy examplein Section 2.4, we used an info object to pass information on the processors to spawn the new
processes on, without discussing the details of the use of the info routines. We assumed that somehow the implementation
could find the executable and make a reasonabl e choice of working directory for the program to run in. We also used a special
info key, f i | e, to provide an implementation-specific list of processorsto spawn processes on.

Theinfo object passed to MPI _Conmm_s pawn can provide more information. For example, suppose we want the slavesin our
parallel copy example to be run on host none. nts. anl . gov, the executable program s| ave should be looked for in
directory / home/ kosh/ pr ogs, and each slave process should have/ hone/ kosh/ t np asitsworking directory when it is
started. Then we would use

i nt eger spawninfo, ierr
i nt eger slaveconm nunsl aves

Page 49

Table2.8
C bindings for the info functions used in this chapter

int MPI _Info_create(MPl _Info *info)
int MPI Info set(MPl _Info info, char *key, char *val ue)

int MPI Info free(MPI _Info *info)

Table2.9
Fortran bindings for the info functions used in this chapter

MPl _| NFO_CREATE(i nfo, ierror)
integer info, ierror

MPlI _I NFO_SET(i nfo, key, value, ierror)
integer info, ierror
character*(*) key, value

MPI | NFO FREE(i nfo, ierror)
integer info, ierror

nunsl aves = 10
call MPI _I NFO_CREATE(spawni nfo, ierr)
call MPI _|I NFO SET(spawni nfo, 'host', 'none.nts.anl.gov', ierr)
call MPI _I NFO _SET(spawni nfo, 'path', '/honme/kosh/progs', ierr)
call MPI _I NFO _SET(spawninfo, 'wdir', '/hone/kosh/tnp', ierr)
call MPI _COW SPAWN(' sl ave', MPI _ARGV_NULL, nunslaves, &
spawni nfo, 0, MPI_COW WORLD, &
sl avecomm MPI _ERRCODES | GNORE, ierr)
call MPI _| NFO FREE(spawni nfo, ierr)

(We have rewritten this part of the example in Fortran just to provide an example of the info routines and the
MPI _Conmm Spawn in Fortran.) Thekeyshost, pat h, andwdi r arereserved; there are other reserved keys, which we

will describe in Chapter 7.

C and Fortran bindings for the info functions used above are given in Tables 2.8 and 2.9. We return to info, including the C++
versions of theinfo routines, in Section 3.7.

Page 50

2.6—
Summary

In this chapter we have presented a quick overview of MPI-2. We have walked through some simple example programsin the
areas of paralel 1/0, remote memory access, and dynamic process management. Along the way we have touched on the C++
bindings and the use of Fortran 90, collective operations on intercommunicators, and the info object. Readers should now have
an idea of some of the new capabilities provided by MPI-2. In the following chapters we will examine these and other MPI-2
features in greater detail, so that users will be able to apply these capabilitiesin more complex MPI applications.

Page 51

3
Parallel I/0

In this chapter we demonstrate the parallel 1/0 capabilities of MPI-2, sometimes referred to as MPI-10. We begin with simple
example programs that demonstrate the basic use of MPI for 1/0 and then move on to programs that demonstrate various
advanced I/O features of MPI. We also explain how the 1/0 features of MPI must be used in order to achieve high performance.

31—
Introduction

Aswe discussed in Section 2.2, many parallel applications perform 1/0O either by having each process write to a separate file or
by having all processes send their datato one process that gathers al the data and writesit to asingle file. Application

devel opers have chosen these approaches because of historical limitationsin the 1/0O capabilities of many parallel systems:
either parallel 1/0 from multiple processes to a common file was not supported, or, if supported, the performance was poor. On
modern parallel systems, however, these limitations no longer exist. With sufficient and appropriately configured I/O hardware
and modern parallel/high-performance file systems, such as IBM's PIOFS and GPFS, SGI's XFS, HP's HFS, and NEC's SFS,
one can achieve both high performance and the convenience of a single file by having multiple processes directly access a
common file. The I/O interface in MPI is specifically designed to support such accesses and to enable implementations to
deliver high performance for such accesses. The interface supports various features—such as noncontiguous accesses,
collective I/O, and hints—that research projectsin paralel 1/0 have demonstrated to be essential for high performance [4, 5,
10, 13, 16, 17, 19, 26, 41, 48, 52, 64, 65, 69, 73, 74, 77, 82, 83].

We note that the I/O functionsin MPI are for unformatted binary file I/O—similar to the Unix I/O functionsr ead andwr i t e
or the C library functionsf r ead and f wr i t e. MPI does not have any functions for formatted text 1/0 equivalent to
fprintf andfscanf inC. For formatted text output, one can use tools such as the Parallel Print Function [55].

3.2—
Using MPI for Simplel/O

We presented some simple I/O programs in Chapter 2. Let us begin this chapter with another simple example: a parallel
program in which processes need to read data from a common file. Let us assume that there are n processes, each needing to
read (1/n)th of the file as shown in Figure 3.1.

Page 52

FILE

- !
¥ ‘ ¥ ¥
PO Pl P2 Pin-1}

Figure3.1
Each process needs to read a chunk of datafrom acommon file

3.2.1—
Using Individual File Pointers

Figure 3.2 shows one way of writing such a program with MPI. It has the usual functions one would expect for 1/O: an open, a
seek, aread, and aclose. Let uslook at each of the functions closely. MPl _Fi | e_open isthe function for opening afile. The

first argument to this function is a communicator that indicates the group of processes that need to access the file and that are
calling this function. We use MPI _ COMM_WORL D as the communi cator because all processes in this example need to open and

thereafter access acommon file called / pf s/ dat af i | e. Thefile nameis passed as the second argument to
MPI _Fil e_open.

The MPI Standard does not specify the format of file names; instead, implementations have the freedom to define the format
they support. One can expect that implementations will support familiar naming conventions. For example, implementations
running in Unix environments can be expected to support the usual Unix file-naming conventions. In this example and many
other examples in this chapter, we use the file name/ pf s/ dat af i | e (for no particular reason). This name refersto afile

caled dat af i | e stored in the directory / pf s. Readers can replace this file name with a file name of their choice. The

directory name can be expected to be optional in most implementations—if not specified, the implementation will use a default
directory such as the directory from where the program is run.

Thethird argument to MPl _Fi | e_open specifies the mode of access; we use VPl _ MODE RDONLY because this program

only reads from the file. The fourth argument, called the info argument, allows the user to pass hints to the implementation. In
this simple example, we don't pass any hints; instead, we pass anull info argument, MPI _ | NFO_NULL. In Section 3.7 we will

consider in detail the issue of passing hints to the implementation. MPl _Fi | e_open returns afile handle in the last argument.
Thisfile handleisto be used for future operations on the open file.

All /O functions return an integer error code. For simplicity, we don't check error codes in any of the examples in this chapter;
we assume that the functions return successfully. We defer the discussion of error handling to Chapter 9.
Page 53

/* read froma commn file using individual file pointers */
#i nclude "npi.h"

#define FILESI ZE (1024 * 1024)

int main (int argc, char **argv)

{
int *buf, rank, nprocs, nints, bufsize;
MPI _File fh;
MPI _St at us st at us;
MPI _Init(&argc, &rgv);
MPI _Comm r ank(MPI _COVM WORLD, &rank);
MPI _Conmm si ze(MPI _COVMM WORLD, &nprocs);
buf si ze = FI LESI ZE/ npr ocs;
buf = (int *) malloc (bufsize);
nints = bufsize/sizeof (int);
MPI _Fil e_open(MPI _COW WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
MPI _I NFO_NULL, &fh);
MPI _Fil e_seek(fh, rank*bufsize, MPI_SEEK SET);
MPI _File_read(fh, buf, nints, MPI _INT, &status);
MPI _File close(&h);
free (buf);
MPI _Finalize();
return O;
}
Figure 3.2

C program to perform the 1/0 needed in Figure 3.1 using individual file pointers

Page 54

After opening the file, each process movesitslocal file pointer, called individual file pointer in MPI, to the location in the file
from which the process needs to read data. We use the function MPl _Fi | e_seek for this purpose. The first argument to

MPI _Fi | e_seek isthefile handlereturned by MPl _Fi | e_open. The second argument specifies the offset in the file to
seek to, and the third argument MPI _ SEEK _SET specifies that the offset must be calculated from the head of thefile. File
offsetsin C are of an implementation-defined type called MPI _ O f set . Theimplementation will define MPI _OF f set to be
an integer type of size large enough to represent the largest file size supported by the implementation (for example, | ongor

| ong | ong). We specify the offset to MPl _Fi | e_seek asaproduct of the rank of the process and the amount of data (in
bytes) to be read by each process. (The offset to MPI _Fi | e_seek in thisexample must be specified as a number of bytes
because we are using what is known as the default file view. We will consider the issue of file viewsin detail in Section 3.3.)

We use the function MPI _Fi | e_r ead for reading data. On each process, this function reads data from the current location of
the process'sindividual file pointer for the open file. Thefirst argument to MPI _Fi | e_r ead isthefile handle. The second

argument is the address of the buffer in memory into which data must be read. The next two arguments specify the amount of
datato beread. Since the datais of type integer, we specify it as a count of the number of integersto be read. The fina
argument is a status argument, which is the same as the status argument in MPI communication functions, such as MPl _Recv.

One can determine the amount of data actually read by using the functions MPl _Get _count or MPl _Get _el enent s on
the status object returned by MPlI _Fi | e_r ead, but we don't bother to do so in this example. MPl _Fi | e_r ead increments

theindividual file pointer on each process by the amount of data read by that process. Finally, we close the file using the
function MPl _Fi | e_cl ose.

Thefivefunctions, MPI _Fil e open, MPI _File seek, MPI _File read, MPI _File wite,and
MPI _Fi |l e_cl ose, are actually sufficient to write any I/O program. In addition, these functions are quite similar in

functionality to their Unix counterparts. The other I/O functionsin MPI are for performance, portability, and convenience.
Although these five functions can be used as a quick start to using MPI for 1/0 and for easily porting Unix 1/O programs to
MPI, we strongly recommend that users not stop here. For real benefits with using MPI for 1/0O, one must use its special
features, such as support for noncontiguous accesses and collective 1/0, described in the rest of this chapter.

The C, Fortran, and C++ bindings for the five basic I/O functionsin MPI are given in Tables 3.1, 3.2, and 3.3. Note that
MPI _File readandMPl _File_-

Page 55
Table3.1
C bindings for the five basic 1/O functionsin MPI

int MPI _File open(MPlI _Comm comm char *filenane, int anode, MPI _Info info,
MPI _File *fh)

int MPI _File_seek(MPI _File fh, MPI_Ofset offset, int whence)

int MPI_File read(MPI _File fh, void *buf, int count, MPI _Datatype datatype,
MPl _Status *status)

int MPl_File wite(MPI _File fh, void *buf, int count, MPI_Datatype datatype,
MPI _Status *status)

int MPl_File_close(MPl_File *fh)

wr i t e (and other functionsin this chapter that take a status argument) have two bindingsin C++. Thisis because MPI alows

the user to indicate that the status argument is not to be filled in. Unlike in C and Fortran where the user provides a specia
parameter, MPl _ STATUS | GNORE, in C++ the same is achieved by having two bindings for a function: one with the status
argument and one without.

3.2.2—
Using Explicit Offsets

MPI _File readandMPl _Fil e_writ e arecaledindividual-file-pointer functions because they use the current location

of the individual file pointer of each process as the location from where to read/write data. MPI also provides another set of
functions, called explicit-offset functions(MPl _Fil e_read_at andMPI _Fil e_write_at),whichdon't usethe

individual file pointer. In these functions, the file offset is passed directly as an argument to the function. A separate seek is
therefore not needed. If multiple threads of a process are accessing the same file, the explicit-offset functions, rather than the
individual-file-pointer functions, must be used for thread safety.

Figure 3.3 shows how the same example of Figure 3.1 can be implemented by using MPl _Fi | e_r ead_at instead of

MPI _Fi | e_r ead. We use Fortran thistime in order to show how the I/O functionsin MPI can be used from Fortran. Other
than a difference in programming language, the only differencein this exampleisthat MPl _Fi | e_seek isnot caled; instead,
the offset is passed as an argument to MPl _Fi | e_r ead_at . We aso check how much data was actually read by using

MPI _CGet _count on the status object returned by MPI _Fi | e_r ead_at . Theindividua file

Page 56

Table3.2
Fortran bindings for the five basic I/O functionsin MPI

MPI _FILE OPEN(comm fil enane, anmode, info, fh, ierror)
character*(*) fil enane
i nteger comm anode, info, fh, ierror

MPI _FI LE SEEK(fh, offset, whence, ierror)
i nteger fh, whence, ierror
i nt eger (ki nd=MPI _OFFSET_KI ND) of f set

MPI _FI LE READ(fh, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror

MPI _FILE WRI TE(f h, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror

MPl _FI LE_CLOSE(fh, ierror)
integer fh, ierror

Table3.3
C++ bindings for the five basic I/O functionsin MPI

MPlI::File MPI::File::Open(const MPI::Intracomm& conm const char* fil enane,
i nt anode, const MPI::Info& info)

void MPI::File::Seek(MPl:: O fset offset, int whence)

void MPlI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
WPl : : Stat us& st at us)

void MPl::File::Read(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Wite(void* buf, int count, const MPI:: Datatype& datatype,
MPI :: St at us& st at us)

void MPl::File::Wite(void* buf, int count, const MPI::Datatype& datatype)

void MPlI::File::d ose()

Page 57

| read froma common file using explicit offsets
PROGRAM nai n
i nclude 'npif.h'

i nteger FILESIZE, MAX_BUFSI ZE, | NTSI ZE

par anet er (FlI LESI ZE=1048576, MAX BUFSI ZE=1048576, | NTSI ZE=4)
i nt eger buf (MAX BUFSI ZE), rank, ierr, fh, nprocs, nints

i nteger status (MPI_STATUS Sl ZE), count

i nteger (kind=MPlI _OFFSET_KI ND) of f set

call MPI _INIT(ierr)
call MPI _COVM RANK(MPI _COW WORLD, rank, ierr)
call MPI _COW SI ZE(MPI _COVM WORLD, nprocs, ierr)

call MPI _FILE OPEN(MPI _COMM WORLD, '/pfs/datafile', &
MPI _MODE _RDONLY, MPI _INFO_NULL, fh, ierr)
nints = FILESI ZE/ (nprocs*| NTSI ZE)
offset = rank * nints * | NTSIZE
call MPI _FILE READ AT(fh, offset, buf, nints, MPI _| NTEGER &
status, ierr)
call MPI _GET_COUNT(status, Ml _I NTEGER, count, ierr)

print *, 'process ', rank, 'read ', count, 'integers'

call MPlI _FILE CLOSE(fh, ierr)
call MPI _FI NALI ZE(i err)
END PROGRAM mai n

Figure 3.3
Fortran program to perform the 1/0O needed in Figure 3.1 using explicit offsets

pointer is neither used nor incremented by the explicit-offset functions.

File offsets are of typei nt eger (ki nd=MPI _OFFSET_KI ND) in Fortran. MPl _OFFSET_KI NDis a constant defined by
the MPI implementation in the include file npi f . h and in the Fortran-90 module npi . MPI _OFFSET_KI ND defines an
integer of size large enough to represent the maximum file size supported by the implementation.

Notice how we have passed the file offset to MPl _Fi | e_r ead_at in Fortran. We did not pass the expression
rank*ni nt s* | NTSI ZE directly to the function. Instead we defined avariable of f set of type

i nteger (ki nd=MPI _OFFSET_KI ND) , assigned the value of the expression to it, and then passed of f set asa
parameter to MPl _Fi | e_r ead_at . Wedid so because, in the absence of function prototypes, if we

Page 58

Table 3.4
C bindings for the explicit-offset functions

int MPIl_File read _at(MPI _File fh, MPI _Ofset offset, void *buf, int count,
MPI _Dat at ype datatype, Ml _Status *status)

int MPl_File wite_at(MPI _File fh, MPI_Ofset offset, void *buf, int count,
MPI _Dat at ype dat atype, MPI_Status *status)

Table3.5
Fortran bindings for the explicit-offset functions

MPI _FI LE_READ AT(fh, offset, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror
i nt eger (ki nd=MPI _OFFSET_KI ND) of f set

MPI _FILE WRI TE_AT(fh, offset, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror
i nt eger (ki nd=MPI _OFFSET_KI ND) of f set

passed the expression directly to the function, the compiler would pass it as an argument of typei nt eger . The MPI
implementation expects an argument of typei nt eger (ki nd=MPI _OFFSET_KI ND) , which could be (and often is) of size
larger thani nt eger . For example, on many machines integers are of size four bytes, whereas file offsets may be defined to

be of size eight bytesin order to support large files. In such cases, passing an integer expression as the offset parameter in
Fortran would result in aruntime error that is hard to debug. Many users make this mistake; for example, they directly pass 0 as
the offset. The problem can be avoided either by passing only variables of the correct type

(i nteger (kind=MPI _OFFSET_KI ND)) to functionsthat take file offsets or displacements as arguments or by using the

Fortran-90 module " npi " that has the MPI function prototypes (that is, by replacing™ i ncl ude ' npif. h'" by
"use mpi").

C, Fortran, and C++ bindings for the explicit-offset functions are given in Tables 3.4, 3.5, and 3.6.

Page 59

Table 3.6
C++ bindings for the explicit-offset functions

void MPl::File::Read at (Ml ::Ofset offset, void* buf, int count,
const MPI:: Dat atype& datatype, MPl::Status& status)

void MPl::File::Read_at (Ml :: Ofset offset, void* buf, int count,
const MPI:: Dat at ype& dat at ype)

void MPl::File::Wite_at(Ml::Ofset offset, void* buf, int count,
const MPI:: Dat atype& datatype, MPI:: Statusé& status)

void MPl::File::Wite_at(MPl::Ofset offset, void* buf, int count,
const MPI:: Dat at ype& dat at ype)

3.2.3—
Writing to aFile

In the above example, if we wanted to write to the file instead of reading, we would simply replace MPl _Fi | e_r ead with
MPI _File witeinFigure3.2and MPl _Fil e_read_at withMPl _Fil e_write_at inFigure3.3. Inaddition, in
both programs, we would need replace the flag MPI _ MODE_RDONLY that was passed to MPl _Fi | e_open with the two flags
MPI _MODE_CREATE and MPI _MODE_WRONLY. MPI _MODE_CREATE is necessary to create thefileif it doesn't already
exist. MPI _MODE_WRONLY indicates that the file is being opened for writing only. In C, we can pass two (or more) flags by
using the bitwise-or operator asfollows: MPl _MODE_CREATE | MPI _MODE_WRONLY. In Fortran, we can use the addition
operation: MPI _ MODE_CREATE + MPI _MODE WVRONLY. Theflag MPl _ MODE RDWR must be used if the file is being
opened for both reading and writing.

We note that to create afilewith MPl _Fi | e_open, most implementations would require that the directory containing the file
(specified in the file name) exist before the call to MPI _Fi | e_open. (The Unix open function also requires this.) Users can
create the directory, for example, with the Unix command nkdi r before running the program.

3.3—
Noncontiguous Accesses and Collective | /O

In the preceding section we saw how to use MPI for a simple example where the 1/O request of each processis contiguous. 1/0O
of thiskind can also be done equally well with regular Unix 1/0 functions. In many real parallel applications, however, each

Page 60

process needs to access lots of small pieces of datalocated noncontiguously in thefile[4, 17, 65, 77, 78, 85]. One way to
access noncontiguous data is to use a separate function call to read/write each small contiguous piece, asin Unix 1/0. Because
of high /O latency, however, accessing small amounts of dataat atimeisvery expensive. A great advantage of MPI over Unix
1/0O isthe ability in MPI to access noncontiguous data with a single function call. Combined with that is the ability to
specify—with the help of a class of read/write functions called collective /O functions—that a group of processes need to
access a common file at about the same time. By using these two features, the user can provide the implementation with the
entire (noncontiguous) access information of a process as well asinformation about which set of processes are accessing the
file smultaneously. The implementation can use this information to perform certain optimizations that can improve
performance significantly. These optimizations typically involve merging several small accesses and making few large requests
to the file system [87].

33.1—
Noncontiguous Accesses

Let usfirst see how MPI supports noncontiguous accesses in the file. MPI has a notion of afile view, which we did not explain
in the two example programs so far, but it was implicitly used nonetheless. A file view in MPI defines which portion of afileis
"visible" to aprocess. A read or write function can access data only from the visible portion of thefile; al other datawill be
skipped. When afileisfirst opened, the entire file is visible to the process, and MPI treats the file as consisting of al bytes (not
integers, floating-point numbers, etc.). The user can read any byte or write to any byte in the file. The individua file pointer of
each process and a so the shared file pointer (discussed in Section 3.6) are set to offset 0 when the file is opened.

It is possible and often desirable to change a processs file view by using the function MPl _Fi | e_set _vi ew. Thismay be
done for two reasons.

 Toindicate the type of datathat the processis going to access, for example, integers or floating-point numbers, rather than
just bytes. Thisis particularly necessary for file portability, that is, if the user wants to access the file later on from a different
machine with a different data representation. We will consider thisissue further in Section 3.9.

» Toindicate which parts of the file should be skipped, that is, to specify noncontiguous accesses in thefile.

For accessing data using the individual file pointer or explicit offsets, each process can specify adifferent view if it needsto.
For accessing data with the shared file

Page 61

pointer, however, all processes must specify the same view (see Section 3.6). The function for setting the file view is
MPI _Fil e_set _vi ew; theview can be changed any number of times during the program.

MPI datatypes, both basic and derived, are used to specify file views. File views are specified by atriplet: displacement, etype,
and filetype. The displacement indicates the number of bytes (always bytes!) to be skipped from the start of the file. It can be
used, for example, to skip reading the header portion of afileif the file contains a header. The etype is the basic unit of data
access. It can be any MPI basic or derived datatype. All file accesses are performed in units of etype (no less). All offsetsin the
file (for example, file-pointer locations, offsets passed to the explicit-offset functions) are specified in terms of the number of
etypes. For example, if the etypeis set to MPl _| NT, theindividual and shared file pointers can be moved by a number of

integers, rather than bytes.

Thefiletypeisan MPI basic or derived datatype that specifies which portion of the fileis visible to the process and of what
type isthe data. The filetype must be either the same as the etype or must be a derived datatype constructed out of etypes.1 The
file view of aprocess begins from the displacement and consists of multiple contiguous copies of the filetype. Thisissimilar to
the use of the datatype argument in the MPl _Send function, with the additional displacement.

When afileisfirst opened, the displacement is 0, and the etype and filetype are both MPI _BYTE. Thisis known as the default
file view. The two programs we considered in the preceding section (Figures 3.2 and 3.3) use the default file view.

Figure 3.4 shows an example of afile view consisting of a displacement of five integers, an etype of MPI _I NT, and afiletype
consisting of two integers followed by a gap of four integers. The figure shows how thefileis "tiled" with this filetype. Once
thisview is set, only the shaded portions of the file will be read/written by any read/write function; the blank unshaded portions
will be skipped. Figure 3.5 shows the corresponding C code for setting this view. We first create a contiguous derived datatype
consisting of two integers. We then set a gap of four integers at the end of this datatype, by using the function

MPI _Type_creat e_resi zed with alower bound of zero and an extentof 6 * si zeof (i nt) . (The MPI-2 Standard

states that thisis the new preferred way of setting the upper bound of a datatype. The old MPI-1 way of doing the same by
using MPI _Type_struct with an explicit MPl _UB marker has been deprecated [32].) We commit the resized datatype, and

1 A restriction on filetypesis that afiletype must specify only monotonically nondecreasing offsets in the file. For example, a
derived datatype that specifies offsetsin the order {2, 6, 5, 7, 4} cannot be used as avalid filetype. We consider thisissue further

in Section 3.4.5.
Page 62
l_ erype = MFL_INT
l | | | _-__"] Nty = a comtiguos type of 2 MIF_ENTs. nesired e have an extent of 6 MPL_INTS
head of lile
i FILE
L HEEEEEEEEEEEEEEEEEEEEEEN
-a—‘l""l;'ll'l'l;""::‘"ﬂ -h-J-‘ . filetype — - - fileiype o Tilenype e filetype = and s on
aflsen 1 ollset 2
affscr 0
Figure 3.4
Example of file view
Table3.7

Chindingsfor MPl _Fil e_set _vi ewand MPl _Type_create_resi zed

int MPI_File set viem{(MPI _File fh, MPI_Ofset disp, Ml _Datatype etype,
MPI _Datatype filetype, char *datarep, MPl _Info info)

int MPl_Type_create_resized(Ml _Datatype ol dtype, MPI_Aint I|b,
MPI _Aint extent, MPlI _Datatype *newt ype)

the committed datatype is used as the filetype. The etypeis MPl _| NT, and the displacementis5 * si zeof (int).

Thearguments passed to MPl _Fi | e_set _vi ewarethefile handle, displacement, etype, filetype, data representation, and
info (hints). We consider data representation and hintsin Sections 3.9 and 3.7, respectively. Here we set the data representation
to the default value nat i ve, which means the data representation in the file is the same as in memory, and we pass

MPI _| NFO_NULL astheinfo argument.

When this programisrun, thesingle MPl _Fi | e_wri t e call will result in 1,000 integers written to the file in a noncontiguous
fashion as defined by the file view: an initial gap of size equal to five integers, then two integers of data, then agap of size four
integers, followed again by two integers of data, then a gap of size four integers, and so forth. File views thus provide a
powerful way of specifying honcontiguous accesses in the file. Any noncontiguous access pattern can be specified because any
MPI derived datatype can be used to define the file view.

C, Fortran, and C++ bindingsfor MPl _Fi | e_set _vi ewand VPl _Type_create_resi zed aregivenin Tables 3.7, 3.8,
and 3.9.

Page 63
MPI _Aint |b, extent;
MPI _Dat atype etype, filetype, contig;
MPI _OFfset disp;
MPI _File fh;
i nt buf[21000];
MPI _Fil e_open(MPI _COMWM WORLD, "/pfs/datafile",
MPl _MODE_CREATE | MPI _MODE_RDWR, MPI _| NFO_NULL, &fh);
MPI _Type_contiguous(2, MPI | NT, &contig);
Ib = 0O;
extent = 6 * sizeof(int);
MPI _Type create_resized(contig, |b, extent, & iletype);
MPI _Type _commit (&f il etype);
disp = 5 * sizeof(int); /* assune displacenent in this file view
is of size equal to 5 integers */
etype = MPI _I NT;
MPI _File_set_view(fh, disp, etype, filetype, "native",
MPI _I NFO_NULL) ;

MPl _File wite(fh, buf, 1000, MPI _INT, MPI_STATUS | GNORE);
Figure 3.5
C code to set the view shown in Figure 3.4.
Table3.8
Fortran bindingsfor Ml _Fil e_set vi ewand MPl _Type create_resi zed
MPI _FILE SET_VIEWfh, disp, etype, filetype, datarep, info, ierror)

integer fh, etype, filetype, info, ierror

character* (*) datarep

i nt eger (ki nd=MPI _OFFSET_KI ND) di sp
MPI _TYPE CREATE RESI ZEDX ol dtype, | b, extent, newtype, ierror)

i nteger ol dtype, newtype, ierror
i nt eger (ki nd=MPI _ADDRESS KI ND) | b, extent
Page 64

Table3.9
C++ bindingsfor MPl _Fi |l e_set _vi ewand MPl _Type_create_resi zed

void MPI::File::Set_viem(MPl::Offset disp, const MPI::Datatype& etype,
const MPI::Datatype& fil etype, const char datarep[],
const MPI:: I nfo& info)

MPI : : Dat at ype MPI:: Dat atype: : Resi zed(const MPI:: Dat at ype& ol dt ype,
const MPI::Aint Ib, const MPl::Aint extent)

L ! l ! I | I | I R

] Pl P2 Pin-1} P Pl P2

Figure 3.6
Each process needs to read blocks of data from the file, the blocks being distributed in a
round-robin (block-cyclic) manner among processes.

3.3.2—
Collective |/O

Now let us consider the use of collective I/O functions together with noncontiguous accesses. We use a different example,

shown in Figure 3.6. The difference between this example and the first example we considered in this chapter (Figure 3.1) is
that each processin this case reads smaller blocks of data distributed in a round-robin (block-cyclic) manner in the file. With
Unix 1/0O, the only way to read this data would be to read each block separately, because the Unix r ead function allows the

user to access only a single contiguous piece of data at atime. One can also do the same with MPI (by using the default file
view), but one can do better. Instead of making several read calls, one can define the noncontiguous file view of each process
in order to read data with a single function, and one can use a collective read function to specify that all processes need to read
data. The corresponding code is given in Figure 3.7. A good MPI implementation will be able to deliver much better
performance if the user expresses the I/O in the program in this manner, rather than if the user performed Unix-style 1/0. Let's
go through this program in detail.

The constant FI LESI ZE specifiesthe size of thefilein bytes. | NTS_PER_BLK specifies the size of each of the blocks that a

process needs to read; the size is specified as the number of integers in the block. Each process needs to read severa of these
blocks distributed in acyclic fashion in the file. We open thefileusingMPl _Fil e_-

Page 65

/* noncontiguous access with a single collective I/0O function */
#i ncl ude "npi.h"

#def i ne FI LESI ZE 1048576
#define |NTS PER BLK 16

int main(int argc, char **argv)

{
int *buf, rank, nprocs, nints, bufsize;
MPI _File fh;
MPlI _Dat atype fil etype;

MPI _Init(&argc, &rgv);
MPI _Comm r ank(MPI _COVM WORLD, &r ank);
MPI _Conm si ze(MPI _COVM WORLD, &nprocs);

buf si ze = FI LESI ZE/ npr ocs;
buf = (int *) mall oc(bufsize);
nints = bufsize/sizeof (int);

MPl _Fil e_open(MPI _COMW WORLD, "/pfs/datafile", MPI_MODE_RDONLY,
MPI I NFO_NULL, &fh);

MPI _Type_vector(nints/ I NTS_PER BLK, |NTS_PER BLK,
I NTS_PER BLK*nprocs, MPI_INT, &filetype);
MPI _Type conmit (& il etype);
MPI _File_set_viewfh, INTS_PER BLK*sizeof (int)*rank, MPI _INT,
filetype, "native", MPI _| NFO_NULL);

MPI _File_read_all (fh, buf, nints, MPI_INT, MPl_STATUS | GNORE);
MPI _File_close(&fh);

MPI _Type_free(&filetype);
free(buf);

MPI _Finalize();

return O;

Figure 3.7
C program to perform the I/O needed in Figure 3.6. Each process reads noncontiguous data with
asingle collective read function.

Page 66

Pi¥'s view

. I . e I]

Pl7s view

P2's view

Figure 3.8
Thefile views created by the program in Figure 3.7

open and specify MPI _COVM_ WORL D as the communicator, because all processes access acommon file/ pf s/ dat afi | e.

Next we construct the file view. For specifying the filetype, we create a derived datatype of type "vector" by using the function
MPI _Type_vect or. Thefirst argument to this function is the number of blocks each process needsto read. The second

argument is the number of integers in each block. The third argument is the number of integers between the starting el ements of
two consecutive blocks that a process needs to read. The fourth argument is the type of each dataitem—MPl _| NT in this case.

The newly created vector datatype is returned in the fifth argument. We commit this datatype and then use it as the filetype
argument for VPl _Fi | e_set _vi ew. Theetypeis MPI _| NT. Note how we use the displacement argument of

MPI _Fi | e_set _vi ewto specify the file offset from where the view of each process begins. The displacement is specified

(in bytes, always) as the product of the size of the block and the rank of the process. As aresult, the file view of each processis
avector datatype starting from the displacement, asillustrated in Figure 3.8.

I/O is performed by using the collective version of MPl _Fi | e_r ead, called MPl _Fi | e_r ead_al | . Notice that thereisno
difference in the parameter list of MPI _Fi | e_read and MPl _Fi | e_read_al | . Theonly difference is that

MPI _File read all isdefinedto beacollective l/O function, as suggested by the _al | inits name. Collective means that
the function must be called by every processin the communicator that was passed to the MPl _Fi | e_open function with

which the file was opened. This communicator information isimplicitly contained in the file handle passed to
MPI _File read_all. MPI _Fil e_read,ontheother hand, may be called independently by any subset of processes

and is therefore known as an independent 1/0 function.

When a process calls an independent 1/0 function, the implementation has no idea what other processes might do and must
therefore satisfy the request of each process individually. When a process calls a collective 1/0 function, however, the

Page 67
Table 3.10
Cbindingsfor MPl _File_read_all andMPl _File wite_all

int MPI_File read_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
MPl _Status *stat us)

int MPI_File wite all(MPI_File fh, void *buf, int count, MPlI _Datatype datatype,
MPI _Status *status)

Table3.11
Fortran bindingsfor MPl _Fil e_read_all andMPI _File_wite_all

MPI _FILE READ ALL(fh, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror

MPI _FILE WRI TE_ALL(fh, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror

implementation knows exactly which other processes will also call the same collective I/O function, each process providing its
own access information. The implementation may, therefore, choose to wait for all those processes to reach the function, in
order to analyze the access requests of different processes and service the combined request efficiently. Although the request of
one process may consist of numerous small noncontiguous pieces the combined request of all processes may be large and
contiguous, as in Figure 3.6. Optimization of thiskind is broadly referred to as collective I/0 [19, 48, 73, 87], and it can
improve performance significantly. Therefore, the user should, when possible, use the collective /0O functions instead of
independent 1/0 functions. We consider thisissue further in Section 3.10.

C, Fortran, and C++ bindingsfor MPl _File read_all andMPI _File wite_ all aregiveninTables3.10, 3.11, and
3.12. Collective versions also exist for the explicit-offset functions, MPI _Fil e_read_at andMPl _File wite_at.

3.4—
Accessing Arrays Stored in Files

In this section we demonstrate how MPI makes it easy to access subarrays and distributed arrays (both regularly and irregularly
distributed) stored in files. 1/0 of thiskind is very commonly needed in parallel programs.

Page 68

Table3.12
C++ bindingsfor MPl _File_read_all andMPl _File_wite_all

void MPl::File::Read_all (void* buf, int count, const MI::Datatype& datatype,
WPl : : Stat us& st at us)

void MPl::File::Read_all (void* buf, int count, const MI::Datatype& datatype)

void MPl::File::Wite_all(const void* buf, int count,
const MPI:: Datatype& datatype, MPIl:: Statusé& status)

void MPl::File::Wite_all(const void* buf, int count,
const MPI:: Dat at ype& dat at ype)

Many parallel programs have one or more multidimensional arrays distributed among processes in some manner. Each array
must be read from or written to afile in which the storage order corresponds to that of the global array in either row-major
order (asin C programs) or column-major order (asin Fortran programs). Figure 3.9 shows such an example. A two-
dimensional array of size mrows and n columnsiis distributed among six processes arranged asa 2 x 3 logica grid. The array
must be written to a common file containing the global array in row-major (C) order. Clearly the local array of each processis
not located contiguously in the file: each row of the local array of a processis separated by rows of the local arrays of other
processes. MPI provides a convenient way of describing /O of this kind and performing it with asingle 1/0 function cal. If the
user uses the collective 1/0 functions, the MPI implementation may aso be able to deliver high performance for this kind of
access, even though the accesses are noncontiguous.

Two new datatype constructors, called darray and subarray, are defined in MPI-2. These functions facilitate the creation of
derived datatypes describing the location of alocal array within alinearized global array. These datatypes can be used as the
filetype to describe the noncontiguous file-access pattern when performing /0O for distributed arrays. Let's first see how the
array in Figure 3.9 can be written by using the darray datatype, and then we will do the same by using the subarray datatype.

34.1—
Distributed Arrays

Figure 3.10 shows the program for writing the array shown in Figure 3.9 by using the darray datatype constructor. The only
difference between this program and the others we have seen in this chapter so far is the way in which the filetypeis con-

- i columns

PO Il
o ||1|'1'|\, = {lfll:lj \.'151”".1‘- l|],|]

L
FOWS

3 i P4

coords =107 ' coords=i{1.1)

P2

coords = (0,2)

PS5

coords = (1.2}

200 array distributed on a 2 x 3 process gd

Figure 3.9

order (asin C).

A 2D array of sizemrows and n columnsis distributed among
six processes arranged asa 2 x 3 logical grid. The array isto be
written to acommon file containing the global array in row-major

Page 69

structed. The darray datatype constructor provides an easy way to create a derived datatype describing the location of the local

array of aprocess within alinearized multidimensional global array for common regular distributions. The distributions

supported are the array distributions defined in High Performance Fortran (HPF), namely, block, cyclic, and the general block-
cyclic or cyclic(k) distribution [47].

The array can have any number of dimensions, and each dimension can be distributed in any of the above ways, or the
dimension can be replicated (that is, not distributed). The input to the darray constructor consists of the array size and
distribution information and the rank of the process whose local array is the one to be described. The output is a derived

datatype describing the layout of the local array of that process within the linearized global array for the specified distribution.
It is possible to create such a derived datatype by using other MPI datatype constructors, but it is more difficult. Therefore,
these new datatype constructors were added in MPI-2 as convenience functions.

Thefirst argument to MPl _Type_cr eat e_dar r ay isthe number of processes over which the array is distributed, six in this

case. The second argument is the rank of the process whose local array is the one to be described, which in this case isthe
process calling the function. The third argument is the number of dimensions of the global array (and also the local array). The

fourth argument is an array

Page 70

gsi zes[0] m /* no. of rows in global array */

gsi zes[1] n; /* no. of colums in global array*/
distribs[0] = MPI _DI STRIBUTE_BLOCK; /* block distribution */
distribs[1] = MPI_DI STRIBUTE BLOCK; /* bl ock distribution */
dargs[0] = MPI _DI STRI BUTE_DFLT_DARG, /* default bl ock size */
dargs[1] = MPI _DI STRI BUTE_DFLT DARG /* default block size */
psizes[0] = 2; /* no. of processes in vertical dinension

of process grid */
psizes[1l] = 3; /* no. of processes in horizontal dinension

of process grid */

MPI _Conmm r ank(MPI _COVMM WORLD, &rank);
MPI _Type_create_darray(6, rank, 2, gsizes, distribs, dargs,

psi zes, MPI _ORDER C, MPI _FLOAT, &filetype);
MPI _Type_commit (&f il etype);

MPI _Fil e_open(MPI _COW WORLD, "/pfs/datafile",
MPI _MODE_CREATE | MPI _MODE_WRONLY,
MPl I NFO NULL, &fh);

MPI _File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI I NFO NULL) ;

| ocal _array_size = numlocal _rows * numlocal cols;
MPI _File wite_all(fh, local _array, |ocal _array_size,
WPl _FLOAT, &status);

MPI _File close(&f h);

Figure 3.10
C program for writing the distributed array of Figure 3.9 to acommon file using a "darray"
datatype as the filetype

Page 71

that specifies the size of the global array in each dimension. The fifth argument is an array specifying the way in which the
global array is distributed in each dimension. In this example, we specify a block distribution using

MPI DI STRI BUTE_BLOCK. The sixth argument specifies the distribution parameter for each dimension, that is, thekina
cyclic(k) distribution. For block and cyclic distributions, which don't need this parameter, this argument is specified as

MPI _DI STRI BUTE_DFLT_DARG. The seventh argument is an array specifying the number of processes along each
dimension of the logical process grid over which the array is distributed. The process grid is always assumed to have the same
number of dimensions as the global array. If the array is not distributed along a particular dimension, the number of processes
for that dimension must be specified as 1. For example, 2100 x 100 array can be distributed over 4 processes arranged as a 2 x
2grid, or 1 x 4 grid, or 4 x 1 grid. The ordering of processesin the grid is always assumed to be row-major, as in the case of
virtual Cartesian process topologiesin MPI-1 [32]. If a program assumes a different ordering of processes, one cannot use the
darray constructor but instead must use subarray or other derived datatype constructors. We discuss this issue further in Section
3.4.2.

The eighth argument to MPl _Type_cr eat e_dar r ay specifies the storage order of the local array in memory and also of
the global array in thefile. It can be specified as either MPI _ ORDER_C or MPI _ ORDER_FORTRAN, which correspond to row-

major ordering asin C or column-major ordering asin Fortran. The ninth argument is the datatype describing the type of each
array element, which in this exampleis MPI _FLQOAT. The function returnsin the last argument a derived datatype that

describes the layout of the local array of the specified process within the linearized global array for the specified distribution.
We commit this datatype and set the file view using this datatype as the filetype. For maximum performance, we call the
collectivewritefunction MPl _Fil e_write_al | and not an independent write function. Note that the count and datatype

passedtoMPl _Fil e wite_all describethe memory layout of the local array. In this example we assume that the local
array is contiguously allocated in memory. We therefore specify the datatype as MPI _FLOAT and the count as the number of

elementsin the local array. In Section 3.4.4, we will consider an example in which the local array is noncontiguous in memory
and see how to construct a derived datatype that describes the memory layout.

3.4.2—
A Word of Warning about Darray

Although the darray datatype is very convenient to use, one must be careful about using it because it assumes a very specific
definition of data distribution—the exact definition of the distributions in HPF [47]. This assumption matters particularly

Page 72

when in ablock distribution the size of the array in any dimension is not evenly divisible by the number of processesin that
dimension. In such a case, HPF defines the block size to be obtained by a ceiling division of the array size and the number of
processes.? If one assumes a different definition in a program, such as floor division (which is regular integer division, for

example, |5/4] = 1), one cannot use the darray constructor because the resulting datatype will not match the distribution.

Furthermore, darray assumes that the ordering of processesin the logical grid is aways row-major asin the virtual Cartesian
process topologies of MPI-1 (see Figure 3.9). If a program follows a different ordering, such as column-major, the datatype
returned by darray will be incorrect for that program.

If one follows a different definition of distribution or a different process-grid ordering, one can use the subarray datatype
instead. For this datatype, the location (starting coordinates) of the local array in the global array must be specified explicitly.
The subarray datatype, however, will work only for block distributions, not cyclic or cyclic(k) distributions (because one
cannot specify a stride in any dimension). In cases where subarray is also not applicable, one can create the derived datatype
explicitly by using some of the general constructors defined in MPI-1, such asindexed or struct. Any data layout can be
specified by (recursively) using the MPI-1 constructors; it's just easier to use darray or subarray wherever it works.

3.4.3—
Subarray Datatype Constructor

The subarray datatype constructor can be used to create a derived datatype that describes the layout of a subarray within a
linearized array. One describes the subarray by its starting coordinates and size in each dimension. The example of Figure 3.9
can aso be written by using subarray instead of darray, because the local array of each processis effectively a subarray of the
global array. Figure 3.11 shows the "subarray version" of the program in Figure 3.10. This program is a bit more complicated
than the darray version because we have to specify the subarray explicitly. In darray, the subarray isimplicitly specified by
specifying the data distribution.

We use the MPI-1 process-topology function MPlI _Cart _cr eat e to create avirtual Cartesian process grid. We do this

purely for convenience: it allows us to find the coordinates of each process within the two-dimensional grid (with the function
MPI _Cart _coords) and use these coordinates to calculate the global indices of the first element of the local array of each

process.

2 The ceiling division of two integersi and j is defined as llﬁ] =(i +j —1)/j. For example, [5,".*.1] = 2. Therefore, ablock
distribution of an array of size’5 on 4 processesis defined as 2 elements on processes 0 and 1, 1 element on process 2, and 0
elements on process 3.

Page 73

gsizes[0] = m [/* no. of rows in global array */
gsizes[1] =n; [/* no. of columms in global array*/
psizes[0] = 2; /* no. of processes in vertical dinension

of process grid */
psizes[1l] = 3; [/* no. of processes in horizontal dinension

of process grid */
| sizes[0] = nipsizes[O0]; /* no. of rows in local array */
| sizes[1] = n/psizes[1]; /* no. of colums in local array */
dinms[0] = 2;
dinms[1] = 3;

periods[0] = periods[1l] = 1;
MPI _Cart_create(MPI _COMM WORLD, 2, dins, periods, 0, &onmm;
MPI _Conm r ank(comm &rank);

MPI _Cart_coords(comm rank, 2, coords);

/* global indices of the first elenent of the local array */
start _indi ces[0] coords[0] * |sizes[O0];
start_indi ces[1] coords[1] * |sizes[1];

MPI _Type_create_subarray(2, gsizes, |sizes, start_indices,
MPI _ORDER C, MPI _FLOAT, &filetype);
MPI _Type_commit (&f il etype);

MPI _Fil e_open(MPI _COW WORLD, "/pfs/datafile",
MPl _MODE_CREATE | MPI _MODE_WRONLY,
MPI | NFO NULL, &fh);
MPI _File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI I NFO NULL) ;

| ocal _array_size = Isizes[0] * Isizes[1];
MPI _File wite_all(fh, local _array, |ocal _array_size,
WPl _FLOAT, &status);

MPI _File close(&fh);

Figure 3.11
C program for writing the distributed array of Figure 3.9 to a common file using a " subarray"
datatype as the filetype

Page 74

Thefirst argument to MPl _Type_cr eat e_subar r ay isthe number of dimensions of the array. The second argument is the

size of the array in each dimension. The third argument is the size of the subarray in each dimension. The fourth argument
specifies the starting coordinates of the subarray in each dimension of the array. The starting coordinates are always specified
assuming that the array isindexed beginning from zero (even for Fortran arrays). For example, if a Fortran program contains an
array A(1: 100, 1:100) and onewantsto specify the subarray B(4: 50, 10: 60) , then the starting coordinates of B

must be specified as (3, 9) . In other words, the C convention is always used. (Some convention is needed because Fortran
alows arrays to be defined starting from any number, for example, X(50: 100, 60: 120) .)

In the program in Figure 3.11, we calculate the starting index of the local array of a processin the global array as a function of
the coordinates of the processin the process grid. For this we use the MPI-1 virtua -process-topology functions,
MPlI _Cart _createandMPl _Cart _coord. MPI _Cart _cr eat e createsthe specified 2 x 3 logical process grid and

returns a new communicator. MPl _Cart _coor d returns the coordinates of a process in the process grid. The coordinates are

as shown in Figure 3.9. We multiply the coordinates of the process by the size of the local array in each dimension to obtain the
starting location of the process'slocal array in the global array.

Thefifth argument to MPI _Type_cr eat e_subarr ay isthe sameastheor der argumentin

MPI _Type_create_darray: itspecifiesthe array storage order in memory and file. The sixth argument is the type of
each element in the array, which could be any MPI basic or derived datatype. The function returnsin the last argument a
derived datatype corresponding to the layout of the subarray in the global array. We use this datatype as the filetype in

MPI _Fi |l e_set _vi ew. Inthisexample, the array is contiguously allocated in memory. Therefore, in the

MPI _File wite_ all call,wespecify the memory datatype as MPl _FLQOAT and the count as the number of floatsin the
local array.

C, Fortran, and C++ bindings for the darray and subarray datatype constructors are given in Tables 3.13, 3.14, and 3.15.

3.4.4—
Local Array with Ghost Area

In many applications with distributed arrays, the local array is allocated with afew extrarows and columns in each dimension.
This extraarea, which is not really part of thelocal array, is often referred to as a ghost area. (For examples of the use of ghost
areas, see Chapter 4 of [32] and Chapter 5 of this book.) The ghost areais used to store rows or columns belonging to
neighboring processes that have been

Page 75

Table 3.13
C bhindings for darray and subarray datatype constructors

int MPl_Type_create_darray(int size, int rank, int ndins, int array_of_gsizes[],
int array_of _distribs[], int array_of dargs[], int array_of psizes[],
int order, MPI_Datatype ol dtype, MPI_Datatype *new ype)

int MPl_Type_create_subarray(int ndins, int array_of _sizes[],
int array_of _subsizes[], int array_of _starts[], int order,
VPl _Dat at ype ol dtype, MPl _Dat atype *new ype)

Table3.14
Fortran bindings for darray and subarray datatype constructors

MPI _TYPE_CREATE_DARRAY(si ze, rank, ndinms, array_of _gsizes,
array_of _distribs, array_of_dargs, array_of _psizes, order, ol dtype,
newt ype, ierror)
i nteger size, rank, ndins, array_of gsizes(*), array_of distribs(*),
array_of _dargs(*), array_of_psizes(*), order, oldtype, newype,
ierror

MPI _TYPE_CREATE_SUBARRAY(ndi ns, array_of _sizes, array_of _subsizes,
array_of starts, order, oldtype, newtype, ierror)
i nteger ndins, array_of_sizes(*), array_of_subsizes(*),
array_of starts(*), order, oldtype, newtype, ierror

Table3.15
C++ bindings for darray and subarray datatype constructors

WPl : : Dat at ype MPI::Datatype::Create_darray(int size, int rank, int ndins,
const int array_of gsizes[], const int array_of _distribs[],
const int array_of dargs[], const int array_ of psizes[], int order) const

WPl : : Dat at ype MPI:: Datatype:: Create_subarray(int ndins,
const int array_of _sizes[], const int array_of _subsizes[],
const int array_of _starts[], int order) const

Page 76
{00 (0,007}

I{_-l_.'-n (4,103}

st—t——t— [ozal data
| _| o phestares for storing

off-process elements
(1034) i Itl.‘.lfli}_
{1070 (107, 107)
Figure 3.12

A local array of size (100, 100) is actually allocated
asa (108, 108) array to provide a"ghost" area

along the boundaries for storing off-process elements.
Thered datais stored starting from index (4, 4). The

local array is therefore noncontiguous in memory.

communicated via interprocess communication. These rows and columns are stored in the ghost area, and not in a separate
buffer, in order to make the computational part of the code compact, convenient, and cache friendly and to avoid splitting any
"do loops' that loop across the rows or columns of the local array. Figure 3.12 illustrates the idea of a ghost area.

If alocal array has aghost area around it, the local datais not located contiguously in memory. In the case of C arrays, for
example, the rows of the local array in memory are separated by a few elements of ghost area. When such an array is written to
afile, one usually does not want the ghost area to be written to the file since the data corresponding to that areawill be written
by another process. Instead of writing each row of the local array with a separate function, resulting in many /O function calls,
we can describe this noncontiguous memory layout in terms of an MPI derived datatype and specify this derived datatype as
the datatype argument to asingle MPI _Fi l e_wri te_al | function. The entire data transfer, which is noncontiguous in both

memory and file, can therefore be performed with a single function.

AsFigure 3.12 illustrates, the local array is effectively a subarray of alarger array that includes the ghost area. Therefore, we
can use asubarray datatype to describe the layout of the local array in the allocated memory space. The code for doing thisis
givenin Figure 3.13.

Assume that the ghost areais of size four elements on each side in each dimension; in other words, there are four extra rows
and columns on each side of the local array. We first create the filetype using a subarray datatype, open thefile, and set the

Page 77
gsi zes[0] = m gsi zes[1] = n;
/* no. of rows and columms in global array*/
psi zes[0] = 2; psi zes[1] = 3;

/* no. of processes in vertical and horizontal dinmensions

of process grid */
| sizes[0] = nipsizes[O0]; /* no. of rows in local array */
| sizes[1l] = n/psizes[1]; /* no. of colums in local array */
dims[0] = 2; dinms[1] = 3;
periods[0] = periods[1l] = 1;
MPlI _Cart_create(MPI _COMW WORLD, 2, dins, periods, 0, &onm;
MPI _Conm r ank(comm &r ank) ;
MPlI _Cart_coords(comm rank, 2, coords);
/* global indices of the first elenment of the local array */
start _indices[0] = coords[0] * |sizes[O0];
start_indices[1l] = coords[1] * |sizes[1];
MPI _Type_create_subarray(2, gsizes, |sizes, start_indices,

MPI _ORDER_C, MPI _FLOAT, &filetype);
MPI _Type _commit (& il etype);
MPI _Fil e_open(MPI _COVW WORLD, "/pfs/datafile",
MPl _MODE CREATE | MPI _MODE_WRONLY,
MPI | NFO NULL, &fh);
MPI _File_set_viewfh, 0, MPI_FLOAT, filetype, "native"
MPI I NFO_NULL) ;

/* create a derived datatype that describes the |ayout of the |oca

array in the menory buffer that includes the ghost area. This is

anot her subarray datatype! */

mensi zes[0] = Isizes[0] + 8; /* no. of rows in allocated array */
mensi zes[1] = Isizes[1] + 8; /* no. of colums in allocated array */
start_indices[0] = start_indices[1l] = 4;

/* indices of the first elenment of the local array in the
all ocated array */
MPI _Type_creat e_subarray(2, nensizes, |sizes, start_indices,
MPI _ORDER_C, MPI _FLOAT, &nmentype);
MPI _Type_conmi t (&rent ype);
MPI _File wite_all(fh, local _array, 1, nentype, &status);
MPI _File close(&f h);

Figure 3.13
C program for writing a distributed array that is also noncontiguous in memory because of a ghost area

Page 78

Process (s data sray Prowess 175 data amray Process 2°s data array
T] L T T T] 11 []
Process (Vs map array Process 1's map array Process 2's map array
Co T 3T s Tl 1 GEIETETel 7] O sTolEeT———"]
map areay describes ihe location of cach clement of data areay in the (common) file

Figure3.14

Example of irregular file access. Each process has alocal data array and alocal map array.
Each element of the map array indicates the location in the file of the corresponding element
in the data array.

view to thistype. This portion of the code isidentical to the previous program in Figure 3.11. Then we create another subarray
datatype to describe the memory layout of the local array. For this, we specify the size of the alocated array as the local array
size plus eight in each dimension (four on each side). The starting location of the local array in the allocated array is(4, 4) ,
assuming zero-based indexing as required. We commit the resulting datatype returned by MPI _Type_cr eat e_subarray
and use it as the datatype argument in MPl _Fi |l e_wri te_al | . (Recall that this argument describes memory layout, not file

layout; the file layout is specified by the file view.) Since the entire local array is described by this datatype, we specify the
count argument of MPI _File wite all asl.

3.45—
Irregularly Distributed Arrays

MPI can also be used for accessing irregularly distributed arrays—by specifying the filetype appropriately. If combined with
the use of collective I/O functions, an MPI implementation may even be able to deliver high performance for such accesses,
which are normally considered difficult to optimize. Anirregular distribution is one that cannot be expressed mathematically
by a compact formula, unlike a block or cyclic distribution. Therefore, another array—called a map array—that specifiesthe
mapping of each element of the local array to the global array is needed. An example of a map array is the output of a graph
partitioner that partitions an unstructured mesh among processes based on some load-balancing criteria.

Let's consider an example in which an irregularly distributed array is to be written to acommon file containing the global array
in canonical order, as shown in Figure 3.14. Figure 3.15 shows the Fortran subroutine for performing this1/0. The main
difference between this program and the ones we considered above for regularly distributed arrays is the construction of the
datatype to be used as the filetype.

Page 79

SUBROUTINE wite_ irreg_array(buf, map, bufsize)
use npi

i nteger bufsize

doubl e precision buf(bufsize)

i nteger map(bufsize), fh, filetype, status(M°l _STATUS Sl ZE)
i nteger (kind=MPlI _OFFSET_KI ND) disp

integer i, ierr

cal | MPI _FILE_OPEN(MPI _COWM WORLD, '/pfs/datafile, &
MPI _MODE_CREATE + MPI _MODE_RDWR, &
MPl I NFO NULL, fh, ierr)

cal | MPI _TYPE_CREATE_| NDEXED BLOCK(buf si ze, 1, map, &
MPI _DOUBLE_PRECI SION, filetype, ierr)
call MPI_TYPE_COW T(filetype, ierr)
disp =0
call MPI_FILE_SET_VIEWfh, disp, MPI_DOUBLE_PRECI SI ON, &
filetype, 'native', MPI_INFO_NULL, ierr)

call MPI _FILE WRI TE_ALL(fh, buf, bufsize, &
MPI _DOUBLE_PRECI SI ON, status, ierr)

call MPI _FILE CLOSE(fh, ierr)

return
END SUBROUTINE write irreg_array

Figure 3.15
Fortran program for writing an irregularly distributed array

We note that the MPI Standard specifies that the filetype used by any process must specify only monotonically nondecreasing
offsetsin the file (see Section 9.1.1in [59]). For example, a derived datatype that specifies offsetsin the order

{2, 6, 5, 7, 4} cannot beused asavalid filetype. No such restriction exists on the datatype used to describe data layout
in memory; it can specify memory offsetsin any order. Therefore, the filetype created for an irregular distribution must aways
specify monotonically nondecreasing offsets. If the entriesin the map array are not in nondecreasing order, the map array must
first be reordered into nondecreasing order beforeit is used to create the filetype. The datatype describing the memory layout
must be correspondingly permuted so that the desired distribution is still

Page 80

Table3.16
C binding for MPI _Type_cr eat e_i ndexed_bl ock

int MPI_Type_create_i ndexed_bl ock(int count, int blocklength,
int array_of _displacenments[], MPI_Datatype ol dtype,
MPI _Dat at ype *newt ype)

Table 3.17
Fortran binding for MPl _Type_cr eat e_i ndexed_bl ock

MPI _TYPE_CREATE_| NDEXED BLOCK(count, bl ockl engt h,
array_of _displacenents, ol dtype, newtype, ierror)
i nteger count, blocklength, array_of _displacenents(*), oldtype,
newt ype, ierror

specified correctly.

Let us assume for ssimplicity that, in the program in Figure 3.15, the map array is aready in monotonically nondecreasing order.
We can therefore directly use the map array as an index into the file and use an indexed datatype as the filetype. Let us assume
further that the map array specifies the location in units of local-array elements—double-precision numbersin this case—and
not in bytes. We use the datatype constructor MPl _Type_cr eat e_i ndexed_bl ock, anew constructor defined in MPI-2,
to create the indexed datatype. It is the same as the datatype constructor MPl _Type_i ndexed defined in MPI-1, except that
it uses a constant blocklength for all blocks. We pass as the first argument to MPl _Type_cr eat e_i ndexed_bl ock the

number of elementsin the local data array. The second argument is the number of elements in each block, which we set to 1.
The third argument is an array specifying the displacement of each block in the datatype; we pass the map array as this
argument. The fourth argument is the type of each element, MPI _ DOUBLE PRECI SI ONin this case. The function returns the

resulting derived datatype in the fifth argument. We commit this datatype and use it asthe filetypein MPl _Fi | e_set _vi ew.
We use asingle collective write function, VPl _Fil e_write_al |, towritetheentire array.

C, Fortran, and C++ bindingsfor MPl _Type_cr eat e_i ndexed_bl ock aregivenin Tables 3.16, 3.17, and 3.18.

Page 81

Table 3.18
C++ binding for MPl _Type_creat e_i ndexed_bl ock

VPl : : Dat at ype MPI:: Datatype:: Create_i ndexed_bl ock(int count,
i nt bl ocklength, const int array_of displacenents[]) const

35—
Nonblocking 1/0 and Split Collective /O

MPI supports nonblocking versions of all independent read/write functions. The mechanism MPI provides for nonblocking 1/0
issimilar to that for nonblocking communication. The nonblocking 1/O functions are all named MPlI _Fi | e_i xxXx, for

example MPl _File ireadandMPl _File iwite_at,smilartothenamesMPl | sendandMPl _Irecv. The
nonblocking I/O functions return an MPl _Request object, as do the nonblocking communication functions. One can use the
usual MPI test/wait functions (MPI _Test, MPI _Wait, MPI _Test any, etc.) on the returned request object to test or wait

for the completion of nonblocking 1/0 operations. By using nonblocking 1/O functions, one can potentially overlap 1/0 with
other computation/communication in the program, for example as shown below.

MPl _Request request;

MPI _File iwite_ at(fh, offset, buf, count, datatype, &request);
for (i=0; i<1000; i++) {
/* performconputation */

}
MPI _Wai t (& equest, &status);

How well I/O can be overlapped depends of course on the quality of the implementation.

For collective 1/0, MPI supports only arestricted form of nonblocking /O, called split collective 1/0. To use split collective |/
O, the user must call a"begin” function (for example, MPl _Fil e_read_al | _begi n) to start the collective I/O operation

and an "end" function (for example, VPl _Fi | e_read_al | _end) to complete the operation. The restriction is that the user

can have only one split collective 1/0 operation active at atime on any given file handle. In other words, the user cannot issue
two begin functions on the same file handle without calling an end function to complete the first begin. Since this restriction
exists, a split collective begin does not return an MPl _Request object or any other object. A split collective end, by

definition, matches the previously called split collective begin on that file

Page 82

Table3.19
CbindingsforMPl _File iwite_at, MPI_File wite_all_begin, andMPl _File wite_all _end

int MPI_File_iwite_at(MPI_File fh, MPI _Ofset offset, void *buf, int count,
MPI _Dat at ype dat atype, Ml _Request *request)

int MPI_File wite_all_begin(MPI _File fh, void *buf, int count,
MPI _Dat at ype dat at ype)

int MPI _File wite_ all _end(MPI _File fh, void *buf, MPI_Status *status)

Table3.20
Fortran bindingsfor MPl _File_iwite_at, MPI _File_wite_all_begin, andMPl _File wite_all_end

MPI _FILE IWRI TE AT(fh, offset, buf, count, datatype, request, ierror)
<type> buf (*)
i nteger fh, count, datatype, request, ierror
i nt eger (ki nd=MPI _OFFSET_KI ND) of f set

MPl _FI LE WRI TE_ALL_BEQ N(fh, buf, count, datatype, ierror)
<type> buf (*)
i nteger fh, count, datatype, ierror

MPI _FILE WRI TE_ALL_END(fh, buf, status, ierror)
<type> buf (*)
i nteger fh, status(MPl _STATUS SI ZE), ierror

handle. The MPI standard allows an implementation to perform the collective 1/O operation entirely during the begin function,
or entirely during the end function, or in the "background,” between the begin and end functions.

An example of using split collective 1/O is as follows:

MPI _File wite_all _begin(fh, buf, count, datatype);
for (i=0; i<1000; i++) {
/* perform conputation */

}
MPI _File wite_all _end(fh, buf, &status);

C, Fortran, and C++ bindingsfor MPl _File_iwite_at, MPI _File_wite_all_begin,and
MPI _File wite_all _endaregivenin Tables3.19, 3.20, and 3.21.

Page 83

Table3.21
C++bindingforMPl _File_ iwite_at, MPI _File wite_all_begin, andWPl _File wite_all_end

MPl:: Request MPlI::File::Ilwite at(MI::Ofset offset, const void* buf,
int count, const MPI::Datatype& datatype)

void MPI::File::Wite_all_begin(const void* buf, int count,
const MPI:: Dat at ype& dat at ype)

void MPI::File::Wite_all_end(const void* buf, M°l::Status& status)

void MPl::File::Wite_all_end(const void* buf)

3.6—
Shared File Pointers

Thus far, we have seen two ways of specifying to MPI the location in the file from where data must be read/written: individual
file pointers and explicit offsets. MPI also supports athird way of specifying the location: viathe shared file pointer. The
shared file pointer is afile pointer whose value is shared among the processes belonging to the communicator passed to

MPI _Fi | e_open. MPI providesfunctions, MPl _Fil e _read _sharedand MPl _Fil e_write_shar ed, that read/write
data starting from the current location of the shared file pointer. After acall to one of these functions, the shared file pointer is
updated by the amount of data read/written. The next call to one of these functions from any process in the group will result in
data being read/written from the new location of the shared file pointer. Contrast this with individual file pointers. a read/write
operation on one process using the individual file pointer has no effect on the individual file pointer on any other process.

A process can explicitly move the shared file pointer (in units of etypes) by using the function MPl _Fi | e_seek_shar ed.

MPI requiresthat all processes specify the same file view when using the shared file pointer. This restriction does not exist for
individua file pointers and explicit offsets. Examples of applications where shared file pointers are useful are work sharing and

writing log files.

Figure 3.16 shows a C++ example in which all processes need to write to acommon log file and the order in which the writes
appear in the file does not matter. We simply use the shared-file-pointer function MPl _Fi | e_wri t e_shar ed. Therefore,

we do not need to calculate file offsets. C, Fortran, and C++ bindingsfor MPl _Fi |l e_wri t e_shar ed aregivenin Tables

3.22, 3.23, and 3.24.

Nonblocking versions of the shared-file-pointer functions also exist, called MPI _ -

/1 witing to a common file using the shared file pointer
#i ncl ude "npi.h"

int main(int argc, char *argv[])

{
i nt buf [1000];
MPI::File fh;
MPlL::lnit();
MPI::File fh = MPl::File::Qpen(MPl:: COM WORLD, "/pfs/datafile",
MPI : : MODE_RDONLY, MPI:: 1 NFO_NULL);
fh.Wite_shared(buf, 1000, MPI _INT);
fh.dose();
MPI :: Finalize();
return O;
}
Figure 3.16

A C++ example that uses the shared file pointer

Table3.22
Cbinding for MPI _Fil e_write_shared

int MPI_File wite_shared(MPl _File fh, void *buf, int count,
WPl _Dat at ype dat atype, MPI_Status *status)

Table 3.23
Fortran binding for MPl _Fil e_write_shared

MPI _FI LE_ WRI TE_SHARED(f h, buf, count, datatype, status, ierror)
<type> buf (*)
i nteger fh, count, datatype, status(MPl_STATUS SIZE), ierror

Table3.24
C++ binding for MPl _Fil e_wite_shared

void MPI::File::Wite_shared(const void* buf, int count,
const MPI:: Dat at ype& dat at ype)

void MPI::File::Wite_shared(const void* buf, int count,
const MPI:: Dat atype& datatype, MPlI::Status& status)

Page 84

Page 85

File iread sharedandMPl _Fil e iwite_shared. Thecollective I/O functions that use shared file pointers are
caledMPl _File_read_orderedand MPl _Fil e_wite_ordered. With these functions, datawill be read or written

inthefile asif the shared file pointer was accessed in order of process rank, hence the name "ordered.” For example, in the case
of MPl _File_write_ordered, process0'sdatawill appear first in the file, followed by process 1's data, and so on. Note

that the implementation can still perform this I/O in parallel: since the function is collective, the implementation can determine
the sizes of the requests of all processes, calculate the offsets in the file corresponding to arank ordering of the writes, and then
perform all the writes concurrently. Asin the case of individual file pointers and explicit offsets, split collective versions are
available, for example, MPl _Fi | e_read_ordered_begi nand MPl _Fi | e_r ead_or der ed_end.

3.7—
Passing Hints to the mplementation

MPI provides users the option to pass "hints' to the implementation. For 1/0O, this can be done viathe i nf o argument to the
functionsMPl _Fi |l e_open, MPlI _File set view,andMPl _Fil e set info.Inal programsso far, we have
passed MPl _| NFO_NULL as the info argument because we did not want to pass any hints. There are, however, many instances

where one might want to pass hints. Examples of hints include the number of disksto stripe afile across, the striping unit,
access pattern information, and file permissions. We briefly introduced the info argument in Chapter 2. Here we will see how
infois used for 1/0O.

Recadll that info is an opaque MPI object of type MPl _I nfo inC, MPI : : | nf o inC++, andi nt eger in Fortran. Any
number of (key, value) pairs can be added to an info object. When the info object is passed to an 1/0 function, such as

MPI _File_open, MPI_File_set_vieworMPl _File_set_info,each(key, vaue) pair serves as a hint associated
with the file handle passed to the function. For example, if akey isst ri pi ng_uni t and the value is 65536, the user is

reguesting a striping unit of 65536 (64 Kbytes). Keys and values are both specified as character strings. MPI has reserved a set
of keys whose meanings are defined in the Standard; an implementation is free to define additiona keys whose meanings are
implementation specific. All hints are optional: a user need not provide any hints, and even if hints are provided, an
implementation is free to ignore them. Hints do not change the semantics of a program, but they may help an implementation
improve performance.

Figure 3.17 shows a simple program in which various hints are set, both predefined

Page 86

hints and hints specific to our implementation of the 1/0 functionsin MPI, called ROMIO [84, 87, 88, 89]. The function
MPI I nfo_creat e createsaninfo object. MPl _| nf o_set adds (key, value) pairsto theinfo object. MPI | nf 0_set is

called several timesin the program, each time to add a different (key, value) pair to the info object. The first four hints are
predefined hintsin MPI; the next six are ROMIO specific. Note that this program can be run with any MPI implementation: if
an implementation does not understand a particular hint, it will just ignore the hint.

Thekey stri pi ng_fact or specifiesthe number of 1/0 devices (for example, disks) across which the file should be striped.
striping_unit specifiesthe number of consecutive bytes of afile that are stored on a particular 1/0 device when afileis
striped across I/O devices. Thest ri pi ng_factor andstri pi ng_unit hintsareuseful only if specified at the time the
fileiscreated inan MPI _Fi | e_open cal with the mode MPI _MODE_CREATE. Thekey cb_buf f er _si ze specifiesthe

size of the temporary buffer that the implementation can use on each process when performing collective I/O. The key
cb_nodes specifies the number of processes that should actually perform disk accesses during collective I/O.

Thekey start i odevi ce isaROMIO-specific hint that specifies the 1/0 device from which file striping should begin. The
keysi nd_rd_buffer_sizeandi nd_w _buffer_si ze specify the size of the temporary buffer ROMIO uses for data

sieving, which is an optimization ROMIO performsin the case of nhoncontiguous, independent accesses. We demonstrate the
utility of these two hintsin Section 3.10.3. Thekeysdi rect _read and direct_write arehints ROMIO accepts on

SGI's XFSfile system as directives from the user to use direct I/O (an XFS optimization) wherever possible.

Hints can be specified when the file is opened with MPI _Fi | e_open, or when setting the file view with
MPI _File_set view,orexplicitly with the function MPl _Fi | e_set _i nf 0.

Querying the Values of Hints

One can aso query the values of hints being used by the implementation, if any, as shown in the code in Figure 3.18.
MPI _Fi | e_get _i nf o returns a new info object containing the hints currently being used for the specified file. In this

example, it contains the default values of hints being used. MPI _I nf o_get _nkeys returns the number of keys associated

with the info object. We loop over the number of keys and, for each iteration of the loop, retrieve one key with the function
MPI I nfo_get nt hkey anditsassociated valuewith MPl _| nf o_get . Since MPl _Fi | e_get i nf o returnsanew

info object, we must freeitusing MPl _I nfo_free.

Page 87
MPI File fh; MPI _Info info;
MPI I nfo_create(& nfo);
/* FOLLOWN NG HI NTS ARE PREDEFI NED I N MPI */

/* no. of 1/0O devices across which the file should be striped */
MPI I nfo_set(info, "striping factor", "4");

/* the striping unit in bytes */
MPI _I nfo_set(info, "striping_unit", "65536");

/[* buffer size for collective I/O */
MPlI _Info_set(info, "cb_buffer_size", "8388608");

/* no. of processes that shoul d perform di sk accesses
during collective /0O */
MPI I nfo_set(info, "cb_nodes", "4");

/* FOLLOWN NG ARE ADDI TI ONAL HI NTS SUPPORTED BY ROM O */

/* the 1/O device fromwhich to start striping the file */
MPI I nfo_set(info, "start_iodevice", "2");

/* buffer size for data sieving in independent reads */
MPI _I nfo_set(info, "ind_rd_buffer_size", "2097152");

/* buffer size for data sieving in independent wites */
MPI Info_set(info, "ind w_ buffer_size", "1048576");

/* use direct 1/Oon SA@'s XFS file system
(platformspecific hints) */

MPI I nfo_set(info, "direct_read", "true");

MPI I nfo_set(info, "direct_wite", "true");

/* NOWOPEN THE FILE WTH THI S | NFO OBJECT */
MPI _Fil e_open(MPI _COW WORLD, "/pfs/datafile",
MPI _MODE_CREATE | MPI _MODE_RDWR, info, &fh);

MPI _Info_free(& nfo); /* free the info object */

Figure 3.17
Example of passing hints to the implementation

Page 88

/* query the default values of hints being used */
#i nclude "npi.h"
#i ncl ude <stdio. h>

int main(int argc, char **argv)

{
int i, nkeys, flag, rank;
MPI _File fh;
MPI _Info info_used;
char key[MPI _MAX | NFO_KEY], val ue[MPI _MAX_ | NFO VAL];
MPI _Init(&argc, &rgv);
MPI _Comm r ank(MPI _COVM WORLD, &rank);
MPI _File open(MPI _COWM WORLD, "/pfs/datafile",
MPI _MODE_CREATE | MPI _MODE_RDWR,
MPl | NFO NULL, &fh);
MPI _File_get_info(fh, & nfo_used);
MPI I nfo_get _nkeys(info_used, &nkeys);
for (i=0; i<nkeys; i++) {
MPI _Info _get nthkey(info_used, i, key);
MPI _Info_get(info_used, key, MPI_MAX | NFO VAL,
val ue, &flag);
printf("Process %, Default: key = %, value = %\n",
rank, key, value);
}
MPI _File C ose(&fh);
MPI _Info free(& nfo_used);
MPl _Finalize();
return O;
}
Figure 3.18

Querying the values of hints being used by the implementation

Page 89
Table 3.25
C bindings for the info functions used in Figures 3.17 and 3.18
int MPl _Info_create(MPl _Info *info)
int MPI _Info_set(MPl _Info info, char *key, char *val ue)
int MPI _Info_get(MPl _Info info, char *key, int valuelen, char *value, int *flag)
int MPI _Info_get_nkeys(MPl _Info info, int *nkeys)
int MPI _Info_get nthkey(MPl Info info, int n, char *key)

int MPI _Info free(MPl_Info *info)

int MPI _File get_info(MPI_File fh, MPI _Info *info_used)

Note that we have defined key and value as character strings of length MPI _MAX_| NFO_KEY and MPI _MAX_| NFO_VAL,

respectively. These two MPI constants specify the maximum lengths of info key and value strings supported by the
implementation. In C and C++, the length specified by these constants includes the null terminating character. Therefore, there
isno need to allocate a character buffer of size (MPlI _ MAX | NFO_KEY+1) or (MPl _MAX | NFO VAL+1) . In Fortran,
there is no null terminating character; therefore, the values of the constants MPI _MAX_| NFO_KEY and

MPI _MAX | NFO VAL in Fortran are one lessthanin C.

Tables 3.25, 3.26, and 3.27 give the C, Fortran, and C++ bindings for the info functions used in Figures 3.17 and 3.18. We refer
readers to the MPI Standard for a complete list of the info keys predefined in MPI [27].

3.8—
Consistency Semantics

MPI's consistency semantics for 1/0 specify the results when multiple processes perform 1/0. Several scenarios are possible.
We consider the common ones and explain them with the help of examples. We refer readers to the MPI Standard for a
complete specification of the consistency semantics[27].

38.1—
Simple Cases

There are two scenarios where consistency is not an issue. They are:

Page 90

Table 3.26
Fortran bindings for the info functions used in Figures 3.17 and 3.18

MPl _| NFO_CREATE(i nfo, ierror)
integer info, ierror

MPlI _I NFO_SET(i nfo, key, value, ierror)
integer info, ierror
character*(*) key, value

MPI | NFO GET(i nfo, key, valuelen, value, flag, ierror)
i nteger info, valuelen, ierror
character*(*) key, value
| ogical flag

MPI | NFO GET_NKEYS(i nfo, nkeys, ierror)
i nteger info, nkeys, ierror

MPlI _| NFO_GET_NTHKEY(i nfo, n, key, ierror)
integer info, n, ierror
character*(*) key

MPI _I NFO_FREE(i nfo, ierror)
integer info, ierror

MPI _FILE GET_INFQ(fh, info_used, ierror)
integer fh, info used, ierror

Table 3.27
C++ bindings for the info functions used in Figures 3.17 and 3.18

MPl::Info MPlI::Info:: Create()

void MPl::Info::Set(const char* key, const char* val ue)

bool MPI::Info:: Get(const char* key, int valuelen, char* val ue) const
int MPl::Info::Get_nkeys() const

void MPlI::Info:: Get_nthkey(int n, char* key) const

void MPlI::Info::Free()

MPl::Info MPI::File::Get_info() const

Page 91

1. Read-only access: If all processes are only reading from files and not performing any writes, each process will see exactly
the datathat is present in thefile. Thisis true regardless of which communicator was used to open thefile
(MPI _COW _SELF, MPI _COWM WORLD, or some other).

2. Separatefiles: If each process accesses a separate file (that is, no fileis shared among processes), MPI guarantees that the
data written by a process can be read back by the same process at any time after the write.

It gets more interesting when multiple processes access a common file and at least one process writes to the file. From the
perspective of consistency semantics, alot depends on which communicator was used to open thefile. In general, MPI
guarantees stronger consistency semanticsif the communicator correctly specifies every process that is accessing the file (for
example, MPI _COVM WORLD) and weaker consistency semantics if the communicator specifies only a subset of the processes
accessing the common file (for example, MPI _COVM_SELF) . In either case, the user can take steps to guarantee consistency
when MPI does not automatically guarantee consistency, as we shall see below.

3.8.2—
Accessing a Common File Opened with MPI _COVM WORLD

Let usfirst consider the case where all processes access a common file and specify the communicator as MPI _ COVM WORLD
when they open thefile, and at |east one process needs to write to the file. The ssimplest case of such accessis when each
process accesses a separate portion of thefile, that is, there are no overlapping regions (bytes) in the file between the accesses
of any two processes. In such cases, MPI automatically guarantees that a process can read back the data it wrote without any
extra synchronization. An example is shown below:

Process 0 Process 1
MPI_File open(MPI_COMM_WORLD, "file", . . ., &fhl) MPI_File open(MPI_COMM_WORLD, “file", .. ., &fh2)
MPI_File write at(fhi, O, buf, 100, MPI_BYTE, .. .) MPI_File write_at(fh2, 100, buf, 100, MPI_BUTE, .. .)
MPI_File read at(fhl, 0, buf, 100, MPI_BYTE, .. .) MPI_File read at(fh2, 100, buf, 100, MPI_BYTE, ..)

Here, two processes open acommon file with MPI _ COVM_ WORL D. Each process writes 100 bytes to different locations in the
file and reads back only the data it just wrote. MPI guarantees that the data will be read correctly.

Now let's consider the same example but with a difference: |et's assume that each process needs to read the data just written by
the other process. In other words, the accesses of the two processes overlap in the file. With respect to consistency semantics,
the situation now is dramatically different. When the accesses (or portions of the accesses) of any two processes overlap in the
file, MPI does not

Page 92

guarantee that the data will automatically be read correctly. The user must take some extra steps to ensure correctness. There
are three choices:

1. Set atomicity to true: Before the write on each process, change the file-access mode to atomic by using the function
MPlI _File set atomcity asfollows.

Process 0 Process 1
MPI_File_open(MPI_COMM_WORLD, "file", .. ., &fh1) MPI_File open(MPI_COMM_WORLD, "file", .. ., &fh2)
MPI_File set atomicity(fhl, 1) MPI_File set atomicity(fh2, 1)

MPI_File write_at(fh1, 0, buf, 100, MPI_BYTE, ..) MPI_File write_at(fh2, 100, buf, 100, MPI_BYTE, .. .)
MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)
MPI_File read_at(fh1, 100, buf, 100, MPI_BYTE, .. .) MPI_File read_at(fh2, 0, buf, 100, MPI_BYTE, .. .)

In the atomic mode, MPI guarantees that the data written by one process can be read immediately by another process. Thisis
not guaranteed in the nonatomic mode, which is the default mode when the file is opened. In the above program, a barrier is
used after the writes to ensure that each process has completed its write before the read is issued from the other process.

2. Close the file and reopen it: Another way to read the data correctly isto close the file after the write, reopen it, and then read
the data written by the other process, as shown below.

Process 0 Process 1
MPI_File_open(MPI_COMM_WORLD, "file", .. ., &fh1) MPI_File_ open(MPI_COMM_WORLD, “file", .. ., &fh2)
MPI_File write_at(fh1, 0, buf, 100, MPI_BYTE, ..) MPI_File write_at(fh2, 100, buf, 100, MPI_BYTE, .. ".)
MPI_File_close(&fhl) MPI_File_close(&fh2)
MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_ open(MPI_COMM_WORLD, "file", . . ., &fh1) MP!_File_ open(MPI_COMM_WORLD, "file", . . ., &fh2)
MPI_File read_at(fh1, 100, buf, 100, MPI_BYTE, . ..) MPI_File read_at(fh2, 0, buf, 100, MPI_BYTE, .. .)

By doing so, we ensure that there are no overlapping operations on the file handles returned from one collective open. The
reads are performed with a different set of file handles that did not exist when the writes were performed. A barrier isused in
this program for a similar reason as above: to ensure that each process has completed its close before the other process reopens
thefile.

3. Ensure that no "write sequence" on any process is concurrent with any sequence (read or write) on another process. Thisis
amore complicated way of ensuring correctness. The words sequence and write sequence have a specific meaning in this
context. A sequence is defined as a set of file operations bracketed by any pair of the functionsMPI _Fi | e_sync,3

MPlI _File open,andMPl _File close.A

3 Thefunction MPI _Fi | e_sync explicitly synchronizes any cached file data with that on the storage device;
MPI _Fi | e_openand MPl _Fi | e_cl ose aso have the same effect.

Page 93

sequence is called awrite sequence if any of the data-access operations in the sequence are write operations. For example, the
following three sets of operations are all sequences, and the first two are write sequences: sync—write—read—sync, open—-write—
write—close, and sync—ead—read—close. It isimportant to note that the first and last operations must be a sync, open, or close
for the set of operations to be called a sequence. MPI guarantees that the data written by a process can be read by another
process if the user arranges the program such that a write sequence on one process is not concurrent (in time) with any
sequence (read or write) on any other process.

Figure 3.19 shows how to apply thisrule to the above example where each process needs to read the data just written by the
other process. To ensure that no write sequence on a process is concurrent with any sequence on the other process, we have to
add sync functionsto create a write sequence and use a barrier to separate them (in time) from the write sequence on the other
process. We choose to let the write on process O occur first; we could have chosen the other way around. We add a sync after
the write on process 0 in order to create the sequence open—write_at—sync. Since MPl _Fi | e_sync iscollective over the
communicator with which the file was opened, namely, MPI _ COMM_WORLD, the function must also be called on process 1.

Then we call abarrier to separate this write sequence from the write sequence on process 1. Since the write sequence on
process 1 must begin after this barrier, we first have to create a sequence by calling a sync on process 1 immediately after the
barrier. Then we do the write, followed by another sync to complete the sequence. Because of the collective nature of

MPI _Fi | e_sync, the function must be called on process 0 as well. Next we call abarrier to separate the write sequence on

process 1 from the read sequence on process 0. Since the read sequence on process 0 must start after the barrier, we add a sync
after the barrier, followed by the read. If we did not add this sync, the read sequence would start from the sync that is just
before the barrier and, therefore, would not be time-separated from the write sequence on process 1. The sync after the barrier
on process 1 is needed because it is collective with the corresponding sync on process 0. It is not needed for consistency
semantics because the read sequence on process 1 that starts from just before the barrier is aready nonconcurrent with the
previous write sequence on process 0.

We note that if the program had used the collective versions of the read/write functions, namely,

MPI File wite_ at_all andMPI _Fil e _read_at _al |, wecould not have used this method for achieving
consistency. The reason isthat sinceit is erroneous to separate collective operations among processes by inserting barriersin
between, there is no way to make the write sequence on one process nonconcurrent

Page 94
Process 0 Process 1
MPI_File_ open(MPI_COMM_WORLD, "file", .. ., &fhl) MPI_File_open(MPI_COMM_WORLD, "file", .. ., &fh2)
MPI_File write at(fhl, O, buf, 100, MPI_BYTE, .. .) MPI_File_sync(fh2) (needed for collective operation)
MPI_File_sync(fhl)
MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)
MPI_File sync(fhl) (needed for collective operation) MPI_File sync(fh2)
MPI_File write_at(fh2, 100, buf, 100, MPI_BYTE, . ..)
MPI_File sync(fhl) (needed for collective operation) MPI_File sync(fh2)
MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)
MPI_File sync(fhl) MPI_File_sync(fh2) (needed for collective operation)
MPI_File read at(fh1, 100, buf, 100, MPI_BYTE, .. .) MPI_File read at(fh2, O, buf, 100, MPI_BYTE, .. .)
MPI_File_close(&fhl) MPI_File _close(&fh2)
Figure 3.19

Two processes open a common file with MPI _ COVMM_WORL D and use the default nonatomic mode of access. Each process

writes to the file and then needs to read the data just written by the other process. The syncs and barriers are needed for
the datato be correctly written and read.

with any other sequence on the other process. Therefore, in cases where multiple collective operations overlap, only the first
two options for achieving consistency are available, namely, setting atomicity or closing and then reopening thefile.

3.8.3—
Accessing a Common File Opened with MPI _COVM_SELF

Now let's consider the case where all processes access a common file but specify MPI _ COVM_SELF as the communicator

when they open it. (It'slegal to do so, but we don't recommend it in general.) In this case, there is only one way to achieve
consistency: the user must take steps to ensure that no write sequence on any process is concurrent with any sequence (read or
write) on any other process. Thisis needed even if there are no overlapping accesses among processes, that is, even if each
process accesses separate parts of the file. Changing the file-access mode to atomic does not help in this case.

Therefore, for our example where one process needs to read the data written by the other process, the only way to do it
correctly when the file is opened with MPI _ COVM_SELF isas shown in Figure 3.20. Thisis similar to Figure 3.19, the only

difference being the communicator passed to MPl _Fi | e_open. Because of MPI _COVM_SELF, all collective operations,
suchasMPI _Fi | e_sync, effectively become local operations. Therefore, the syncs that were needed in Figure 3.19 for

matching the corresponding collective sync on the other process are not needed here. Only those syncs needed for consistency
semantics, that is, for creating sequences, are needed.

Page 95

Process 0 Process 1

MPI_File_open(MPI_COMM_SELF, "file", .. ., &fhl) MPI_File_open(MPI_COMM_SELF, "file", .. ., &fh2)
MPI_File write_at(fh1, O, buf, 100, MPI_BYTE, .. .)
MPI_File_sync(fhl)

MPI_Barrief(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)

MPI_File_sync(fh2)
MPI_File write_at(fh2, 100, buf, 100, MPI_BYTE, . ..)
MPI_File_sync(fh2)

MPI_Barrier(MPI_COMM_WORLD) MPI_Barrier(MPI_COMM_WORLD)
MPI_File_sync(fhl)
MPI_File read at(fhl, 100, buf, 100, MPI_BYTE, .. .) MPI_File_read_at(fh2, 0, buf, 100, MPI_BYTE, . . .)
MPI_File_close(&fhl) MPI_File_close(&fh2)

Figure 3.20

The example in Figure 3.19 when the file is opened with MPI _COVM _SELF

Table3.28
Chbindingsfor MPl _File_set _atomicityandMPl _Fil e_sync

int MPl_File_set_atomicity(MPl _File fh, int flag)

int MPl_File_sync(MPl_File fh)

3.84—
General Recommendation

Although it islegal for multiple processes to access acommon file by opening it with MPI _COMM_SELF as the communicator,
it isnot advisable to do so. Users should strive to specify the right communicator to MPl _Fi | e _open—one that specifies all

the processes that need to access the open file. Doing so not only provides the benefit of the stronger consistency semantics that
MPI guarantees in such cases, but it can also result in higher performance. For example, one can then use the collective I/0
functions, which alow the implementation to perform collective optimizations.

Tables 3.28, 3.29, and 3.30 give the C, Fortran, and C++ bindings for the two functions introduced in this section,
MPI File set atomicityandMPl _File sync.

39—
File Interoper ability

Unlike messages, files are persistent entities; they remain after the program ends. Therefore, some questions must be answered
about MPI files, such as:

Page 96

Table3.29
Fortran bindingsfor MPl _Fil e_set _atomicity andMPl _Fil e_sync

MPl _FI LE_SET_ATOM CI TY(fh, flag, ierror)
integer fh, ierror
| ogical flag

MPl _FI LE_SYNC(fh, ierror)
integer fh, ierror

Table3.30
C++ bindingsfor MPl _Fil e_set _atomicityandMPl _Fil e_sync

void MPl::File::Set_atomcity(bool flag)

void MPI::File::Sync()

» Are MPI files any different from the files normally created by the file system? In other words, can an MPI file beread by a
non-MPI program?

» How can MPI files created on one machine be moved to another machine?
» How can MPI files written on one machine be read on another machine with a different data representation?
We answer these questions in this section.

39.1—
File Structure

MPI files contain no more information about the application than what the application explicitly storesin thefiles. In other
words, MPI files are not self-describing in any way; they are just like ordinary filesin content.

For performance reasons, MPI does not specify how an implementation should physically create files, although logically an
MPI program will always see the file as alinear sequence of bytes. For example, an implementation is free to store afile
physically in acompressed format or divide the file into smaller files stored on the local disks of different machines or in some
other way, aslong as the user is able to access the file as alinear sequence of bytes from an MPI program.

If files created by an MPI implementation are different from regular filesin the underlying file system, the MPI Standard
requires that the implementation provide a utility for usersto convert an MPI fileinto alinear sequence of bytes. It must also
provide utilities to perform familiar file operations, such as copying, deleting, and moving. Therefore, it is always possible to
access the data written by an

Page 97
MPI program from anon-MPI program—>by converting the MPI fileinto alinear sequence of bytesif necessary.

In many implementations, including ours (ROMIO [84, 87, 88, 89]), the files created are no different from the files created by
the underlying file system. Therefore, for files created by such implementations, one can directly use the regular file-system
commands, suchascp, rm nv, | s, andonealso can directly accessthefilesfrom anon-MPI program.

39.2—
File Data Representation

Since different machines have different binary data representations—byte ordering, sizes of datatypes, etc.—files created on
one machine may not be directly portable to other machines, unless these differences are accounted for. MPI provides users the
option of creating portable files that can be read on other machines. Thisis done viathe dat ar ep parameter to

MPI _File_set_view.

In al the examples we have considered so far in this chapter, we have used nat i ve asthevauefor the dat ar ep parameter
to MPl _Fi | e_set _vi ew. This parameter specifies the data representation used to store various datatypes (integers, floating-

point numbers) in the file. MPI supports multiple data representations. Three types of data representations are predefined in
MPI, called nati ve, internal,andexternal 32. Implementations are free to support additional representations. MPI

aso alows users to define new data representations and add them to an MPI implementation at run time (by providing the
necessary conversion functions, see Section 9.1).

Inthenat i ve representation, datais stored in thefile asit isin memory; no data conversion is performed. Thisis the default

data representation. Since there is no data conversion, thereisno lossin I/O performance or data precision. This representation
cannot be used in heterogeneous environments where the processes accessing a file have different data representationsin
memory. Similarly, afile created with this representation cannot be read on a machine with a different data representation. In
other words, files created with the nat i ve representation are not portable.

Thei nt er nal representation is an implementation-defined representation that may provide some (implementation-defined)
degree of file portability. For example, an MPI implementation can defineani nt er nal representation that is portable to any
machine where that MPI implementation is supported. A different MPI implementation may or may not be able to read the file.

Theext er nal 32 representation is a specific data representation defined in MPI. It is basically a 32-bit big-endian IEEE
format, with the sizes of all basic data-

Page 98

types specified by MPI. For a complete specification of ext er nal 32, see the MPI Standard [27]. A file written with
ext er nal 32 can be read with any MPI implementation on any machine. Since using ext er nal 32 may require the

implementation to perform data conversion, however, it may result in lower I/O performance and some loss in data precision.
Therefore, this representation should be used only if file portability is needed.

Note that an implementation may choose to use ext er nal 32 asthei nt er nal representation.

3.9.3—
Use of Datatypes for Portability

Althoughi nt er nal and ext er nal 32 data representations enable file portability, portability is possible only if the user
specifies the correct datatypes, and not MPI _BYTE. to the read/write functionsand to MPl _Fi | e_set _vi ew. Thisalows

the implementation to know what kind of datatype is being accessed and therefore perform the necessary type conversions. For
example, to write an array of 100 integers, you should specify count =100 and dat at ype=MPI _| NT to the write function.

Y ou should not specify it ascount =400 and dat at ype=MPI _BYTE as you would with the Unix 1/0O interface.

Care must aso be taken in constructing file views with derived datatypes because some derived-datatype constructors, such as
MPI _Type_struct, take displacementsin bytes. For constructing derived datatypes to be used in file views, these byte

displacements must be specified in terms of their values for the file data representation, not for the data representation in
memory. Thefunction MPl _Fi | e_get _t ype_ext ent isprovided for this purpose. It returns the extent of a datatypein the

file data representation selected. Similarly, the initial displacement in the file view (the di sp argument to
MPI _File_set view),whichisalso specified in bytes, must be specified in terms of its value for the file data
representation.

We note that the datatypes passed as arguments to read/write functions specify the data layout in memory. They must always
be constructed using displacements corresponding to displacementsin the memory data representation.

Let us now revisit the example of Figure 3.4 in which a process needs to access noncontiguous data located in afile as follows:
aninitial displacement of five integers, followed by groups of two contiguous integers separated by gaps of four integers. We
saw in Figure 3.5 how to set the view for this example for a nonportable file using the nat i ve data representation. Now let's

do the same for a portable file using ext er nal 32. The codeis shown in Figure 3.21.

When afileisfirst opened, the default data representation isnat i ve. To change the data representation to ext er nal 32, we
haveto cal the function MPl _Fil e_-

Page 99

MPI _Aint Ib, extent, extent_in_file;
WPl _Dat atype etype, filetype, contig;
MPI _OFfset disp;

MPI _File fh;

i nt buf[21000];

MPI _Fil e_open(MPI _COW WORLD, "/pfs/datafile",
MPl _MODE CREATE | MPI _MODE_RDWR,
MPI _I NFO _NULL, &fh);

MPlI _File set viewm(fh, 0, MPI_BYTE, MPI_BYTE, "external 32",
MPl | NFO NULL);
MPI _File_get _type_extent(fh, MPI_INT, &extent_in_file);

MPI _Type_conti guous(2, MPI_INT, &contig);

b = 0;

extent = 6 * extent_in_file;

MPI _Type_create_resized(contig, |Ib, extent, &filetype);
MPI _Type _commit (& il etype);

disp =5 * extent_in file;
etype = MPI _| NT,;

MPlI _File set view(fh, disp, etype, filetype, "external 32",
MPl | NFO _NULL);
MPI _File wite(fh, buf, 1000, MPI _INT, MPI_STATUS | GNORE);

Figure 3.21
Writing portable files

set _vi ew. But in thisexample, we run into a small problem. To create the derived datatype to be used as the filetype, we
need to know the extent of an integer in the ext er nal 32 data representation. We can, of course, look up the value in the MPI

Standard, but we would liketo find it a run time using the function specifically provided for the purpose, namely,
MPI _Fil e_get type_extent. Theproblem isthat thisfunction takes afile handle (and not a data representation) as

argument, which means that the data representation for the file must be set before calling this function. Hence, we need to call
MPI _Fi |l e_set _vi ewtwice: once just to set the data representation to ext er nal 32 (with dummy values for

displacement, etype, and filetype) and once again with the real displacement, etype, and filetype after the extent of an integer in
the file has been determined by using MPl _Fi | e_get _type_ -

Page 100
Table3.31
Chindingfor MPl _Fil e_get type_extent

int MPI_File get type extent(MPlI _File fh, MPI _Datatype datatype,
MPl _Ai nt *extent)

Table 3.32
Fortran binding for MPl _Fi | e_get type_extent

MPl _FI LE_GET_TYPE_EXTENT(fh, datatype, extent, ierror)
integer fh, datatype, ierror
i nt eger (ki nd=MPI _ADDRESS_KI ND) ext ent

Table 3.33
C++ binding for MPl _Fil e_get _type_extent

MPI::Aint MPl::File:: CGet_type_extent(const MI::Datatype& datatype) const

ext ent .4 Instead of using si zeof (i nt) asinFigure3.4, weuseextent _i n_fil e tocaculatedi sp and to create the
filetype. Thefile created by this program can be read with any MPI implementation on any machine.

C, Fortran, and C++ bindingsfor MPl _Fi | e_get _t ype_ext ent aregivenin Tables 3.31, 3.32, and 3.33.

3.94—
User-Defined Data Representations

MPI also allows the user to define new data representations and register them with the MPI implementation. The user must
provide the necessary conversion functions, which the implementation will use to convert from memory to file format and vice
versa. This provides a powerful method for users to write data in a representation that an MPI implementation may not support
by default. Thisis an advanced feature of MPI; we explain it with the help of an example in Chapter 9.

4 This could have been avoided if MPI had a function that took a data-representation string and a communicator as arguments
(instead of afile handle) and returned the extent of a datatype in that representation. Alas, since MPI has no such function, we
have to do it in this roundabout fashion.

Page 101

3.10—
Achieving High I/0 Performance with MPI

In this section we describe how MPI must be used in order to achieve high I/O performance. The I/O in an application can be
written with MPI in many different ways, with different performance implications. We examine the different ways of writing
an 1/0 application with MPI and see how these choices affect performance.

3.10.1—
The Four ''Levels' of Access

Any application has a particular "1/0 access pattern” based on its 1/0 needs. The same 1/O access pattern, however, can be
presented to the I/O system in different ways, depending on which I/O functions the application uses and how. We classify the
different ways of expressing 1/0 access patternsin MPI into four "levels,”" level O through level 3 [86]. We explain this
classification with the help of asimple example, accessing adistributed array from afile, which is a common access pattern in
parallel applications. The principle applies to other access patterns as well.

Consider atwo-dimensional array distributed among 16 processesin a (block, block) fashion as shown in Figure 3.22. The
array is stored in afile corresponding to the global array in row-major order, and each process needs to read its local array from
the file. The data distribution among processes and the array storage order in the file are such that the file contains the first row
of thelocal array of process O, followed by the first row of the local array of process 1, the first row of the local array of
process 2, the first row of the local array of process 3, then the second row of the local array of process 0, the second row of the
local array of process 1, and so on. In other words, the local array of each processis located noncontiguously in thefile.

Figure 3.23 shows four ways in which a user can express this access pattern in MPI. In level 0, each process does Unix-style
accesses—one independent read request for each row in the local array. Level 1issimilar to level 0 except that it uses
collective I/O functions, which indicate to the implementation that all processes that together opened the file will call this
function, each with its own access information. Independent 1/0O functions, on the other hand, convey no information about
what other processes will do. In level 2, each process creates a derived datatype to describe the noncontiguous access pattern,
defines afile view, and calls independent 1/0O functions. Level 3issimilar to level 2 except that it uses collective I/O functions.

Thefour levels represent increasing amounts of data per request, asillustrated

Page 102

Pz oM

Large armay P4 P5 PG | PT
distributed
amaong

16 processes

Euch square represents
a subarray in the memory
PR P | pro | opn | of asingle process

Pl12 PL3 P14 Pi5

e e

Frizsiel oo [k

J_E_"I::I I Pl | Pz ., P, PO, PI P PR

¥ ! E}
by PSP, PR P4, PR P6 P

E; £l 4 ER ¥ ¥
...... ovnerfPEy PO . PIO L PILL PR, PO PO PIL,

B2 P, Pl RIS, PI3), PRE, PI4 L PIS
[
end of file
Access pattern in the file

Figure 3.22
Distributed-array access

in Figure 3.24.5 The more the amount of data per request, the greater is the opportunity for the implementation to deliver higher
performance. Users must therefore strive to express their 1/0 requests as level 3 rather than level 0. How good the performance

isat each level depends, of course, on how well the implementation takes advantage of the extra access information at each
level.

If an application needs to access only large, contiguous pieces of data, level 0 isequivalent to level 2, and level 1isequivalent
to level 3. Users need not create derived datatypesin such cases, as level-0 requests themselves will likely perform well. Most
real parallel applications, however, do not fall into this category. Several studies of 1/0 access patternsin parallel applications
[4, 17, 65, 77, 78, 85] have shown that each process in a parallel program may need to access a number of relatively small,

noncontiguous portions of afile. From a performance perspective, it is critical that this access pattern be expressed in the 1/O
interface, asit enables

5Inthisfigure, levels 1 and 2 represent the same amount of data per request, but, in general, when the number of noncontiguous
accesses per process is greater than the number of processes, level 2 represents more data than level 1.
Page 103

MPI_File _open(.. ., "filename", . . ., &fh) MPI_File_open(MPI_COMM_WORLD, “filename", . . ., &fh)

for (i=0; i<n_local_rows; i++) {
MPI_File_seek(fh, .. .)
MPI_File_read(fh, row[i], . ..)

}

MPI_File_close(&fh)

Level O
(many independent, contiguous requests)

MPI_Type create subarray(. .., &subarray, .. .)
MPI_Type_commit(& subarray)

MPI_File _open(.. ., "filename", . . ., &fh)
MPI_File set view(fh, .. ., subarray, . . .)
MPI_File read(fh, local_array, .. .)
MPI_File_close(&fh)

for (i=0; i<n_local_rows; i++) {
MPI_File_seek(fh, .. .)
MPI_File read al(fh, rowl[i], . ..)

}

MPI_File_close(&fh)

Level 1
(many collective, contiguous requests)

MPI_Type create subarray(. .., &subarray, .. .)
MPI_Type_commit(& subarray)

MPI_File_open(MPI_COMM_WORLD, "filename", . . ., &fh)

MPI_File set_view(fh, .. ., subarray, . . .)
MPI_File read dl(fh, local_array, .. .)
MPI_File_close(&fh)

Level 2 Level 3
(single independent, noncontiguous request) (single collective, noncontiguous request)

Figure 3.23
Pseudo-code that shows four ways of accessing the datain Figure 3.22 with MPI

File

Space
: |,,L inde pendent contiguous
: request (level (1)
JPELAST HPT =i : collective contizuous
p .I- t T ' requests (level Tl
TTIPER N S
: e i .
| : | independent, nonconliguos
o - — request using a derived
| e datanype (level 2)
1
1
1
- . collective, noncontigucus :n:u;lugzrnt:-
i using derived datatypes (level 3)
1
L 1
el -
0 1 2 3 Processes
Figure 3.24

The four levels representing increasing amounts of data per request

gsi zes[0] = num gl obal _rows;
gsi zes[1] = num.gl obal _cols;
distribs[0] = distribs[1] = MPI _DI STRI BUTE_BLOCK;
dargs[0] = dargs[1l] = MPI_DI STRI BUTE DFLT_DARG,
psi zes[0] = psizes[1l] = 4;
MPI _Cormm r ank(MPI _COMM WORLD, &rank);
MPI _Type create_darray(16, rank, 2, gsizes, distribs, dargs, psizes,
MPI _ORDER _C, MPI _FLOAT, &filetype);
MPlI _Type commit (& il etype);
| ocal _array_size = numlocal _rows * numlocal cols;
MPI _Fil e_open(MPI _COMM WORLD, "/pfs/datafile", MPI_MODE RDONLY,
MPl _I NFO_NULL, &fh);
MPI _File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI I NFO_NULL) ;
MPI _File read _all(fh, local _array, |ocal _array_si ze,
MPI _FLOAT, &status);
MPI _File_cl ose(&f h);

Figure 3.25
Detailed code for the distributed-array example of Figure 3.22 using alevel-3 request

the implementation to optimize the I/O request. The optimizations typically allow the physical 1/0 to take place in large,

contiguous chunks, with higher performance, even though the user's request may be noncontiguous.

Page 104

For example, our implementation, ROMIO, performs an optimization called data sieving for level-2 requests. The basic ideais
asfollows: instead of reading noncontiguous data with lots of separate read calls to the file system, ROMIO reads large chunks
from the file and extracts, in memory, the datathat is really needed. For level-3 requests, ROMIO performs collective 1/0O: it
analyzes the requests of different processes, merges the requests as much as possible, and makes large parallel reads/writes for

the combined request. Details of both these optimizations can be found in [87].

Users, therefore, must ensure that they describe noncontiguous access patternsin terms of afile view and then call asingle I/0O
function; they must not try to access each contiguous portion separately asin Unix I/O. Figure 3.25 shows the detailed code for
creating a derived datatype, defining afile view, and making alevel-3 1/O request for the distributed-array example of Figure
3.22. It issimilar to the example in Figure 3.10.

We note that the MPI standard does not require an implementation to perform any of these optimizations. Nevertheless, even if
an implementation does not per-

Page 105

form any optimization and instead translates level-3 requests into several level-0 requests to the file system, the performance
would be no worse than if the user directly made level-0 requests. Therefore, there is no reason not to use level-3 requests (or
level-2 requests where level-3 requests are not possible).

3.10.2—
Performance Results

We present some performance results that show how the choice of level of request affects performance. We wrote the
distributed-array access example using level-0, level-2, and level-3 requests and ran the three versions portably on five
different parallel machines—HP Exemplar, SGI Origin2000, IBM SP, Intel Paragon, and NEC SX-4—using ROMIO. (For this
particular application, level-1 requests do not contain sufficient information for any useful optimizations, and ROMIO
therefore internally translates level-1 requestsinto level-0 requests.) These machines cover almost the entire spectrum of state-
of-the-art high-performance systems, and they represent distributed-memory, shared-memory, and parallel vector architectures.
They aso represent awide variation in 1/0O architecture, from the "traditional" parallel file systems on distributed-memory
machines such as the SP and Paragon, to the so-called high-performance file systems on shared-memory machines such as the
Origin2000, Exemplar, and SX-4. We used the native file systems on each machine: HFS on the Exemplar, XFS on the
Origin2000, PIOFS on the SP, PFS on the Paragon, and SFS on the SX-4.

We note that the machines had varying amounts of 1/O hardware. Some of the differencesin performance results among the
machines are due to these variations. Our goal in this experiment was to compare the performance of the different levels of
requests on a given machine, rather than comparing the performance of different machines.

Figures 3.26 and 3.27 show the read and write bandwidths for distributed-array access. The performance with level-0 requests
was, in general, very poor because level-0 requests result in too many small read/write calls. For level-2 requests—for which
ROMIO performs data sieving—the read bandwidth improved over level-0 requests by a factor ranging from 2.6 on the HP
Exemplar to 453 on the NEC SX-4. Similarly, the write bandwidth improved by a factor ranging from 2.3 on the HP Exemplar
to 121 on the NEC SX-4. The performance improved considerably with level-3 requests because ROMIO performs collective I/
Ointhis case. The read bandwidth improved by afactor of as much as 793 over level-0 requests (NEC SX-4) and as much as
14 over level-2 requests (Intel Paragon). Similarly, with level-3 requests, the write performance improved by a factor of as
much as 721 over level-0

Page 106

! B fevel 0

% e L TTE:
et | Olevel 3

i - rae l

§/5)

300+

Mbyte

2001

HF Exemplar BM 5P Intel Paragon NEC SX4 SG1 Qrigin2000

G4 procs G4 procs 256 progs 8 procs 32 procs

Read Bandwidth

Figure 3.26
Read performance of distributed array access (array size 512x512x512 integers = 512 Mbytes)

requests (NEC SX-4) and as much as 40 over level-2 requests (HP Exemplar). It is clearly advantageous to use level-3 requests
rather than any other kind of request.

3.10.3—
Upshot Graphs

We present some Upshot plots that illustrate the reduction in time obtained by using level-2 and level-3 requests instead of
level-0 requests for writing a three-dimensional distributed array of size 128 x 128 x 128 on 32 processors on the Intel Paragon
at Caltech. We instrumented the ROMIO source code to measure the time taken for each file-system call made by ROMIO and
also for the computation and communication required for collective 1/0. The instrumented code created trace files, which we

visualized using a performance-visualization tool called Upshot [38].

Figure 3.28 shows the Upshot plot for level-0 requests, where each process makes a separate write function call to write each
row of itslocal array. The numerous small bands represent the numerous writes in the program, as aresult of which the total
time taken is about 125 seconds. The large white portions are actually lots of writes clustered together, which become visible

when you zoom in to the region using Upshot.

Page 107

Y

450

- B laval
400 4 B evel 2
350 Olevel 3

00

4
|

I3
P
wn
=]

(o]
(=1
L]

ndwidth (Mby

A
=

en
L=]

0.
]

Wnte
=
L

(3,1
]

NS SN NTNTN

HP Exemplar IBM 5P lntel Paragon NEC SX4 SGIQrigin2000

fd pros Gl proscs 256 prows B procs 32 procs

[o)

Figure 3.27
Write performance of distributed array access (array size 512x512x512 integers =
512 Mbytes)

Figure 3.29 shows the Upshot plot for level-2 requests, for which ROMIO performs performs data sieving. In this case it
performed data sieving in blocks of 4 Mbytes at atime. As mentioned in Section 3.7, we can vary this block size viathe
ROMIO-specific hinti nd_wr _buf f er _si ze. Notice that the total time has decreased to about 16 seconds compared with
125 seconds for level-0 requests. For writing with data sieving, each process must perform a read-modify-write and also lock
the region of the file being written. Because of the need for file locking and a buffer size of 4 Mbytes, many processes remain
idle waiting to acquire locks. Therefore, only afew write operations take place concurrently. It should be possible to increase
parallelism, however, by decreasing the size of the buffer used for data sieving. Figure 3.30 shows the results for a buffer size
of 512 Khytes. Since more |/O operations take place in parallel, the total time decreased to 10.5 seconds. A further reduction in
buffer size to 64 Kbytes (Figure 3.31) resulted in even greater parallelism, but the I/O time increased because of the smaller

granularity of each 1/0O operation. The performance of data sieving can thus be tuned by varying the size of the buffer used for
data sieving, which can be done via the hints mechanism in MPI.

Page 108

[nupshot - ind.._l_rr_lz_ﬂ .
Paintor:| 117077145 07 [{6 soconeds) 1:: F: eseL View

LR E ERHT

LERRHL R 111

I HIIE

R ATIINTE

TR

AT AT LT TR T T
' DIUER DUERTRRAT TR0 EEmTE

[TTATRTRTR T
IJllll!]IlﬂII.!

ﬂ” i3 10 Ek
LT I
@m IBETT
[TEELUTT LA IR TR
i T -
L[AL 1] T
T A A e T e
T
LTI LT TR T
HETRNENN BT EDRAER T]
i 0T BRI G113 T 1777
ERTTRLTAT T AT Ti | |l T
LD EERERT TR N T
TR T T T I' NN
T ET TN
RERITT AT =
[_ JERTEHRT THERIIO HE 1
L1 T il
|E||iH|.| A BT e
TR TETAIATE 1 W1

=
—
==

-

Figure 3.28
Writing a128 x 128 x 128 distributed array on the Intel Paragon using level-0 requests
(Unix-style independent writes). Elapsed time = 125 seconds.

1

ST EATES jrh,. it ik Wng e T r!_ __
exnoilsi “E i i ‘ i 3 e 1

Figure 3.29
Writing a128 x 128 x 128 distributed array on the Intel Paragon using level-2 requests,
with the buffer size for data sieving = 4 Mbytes. Elapsed time = 16 seconds.

Page 109

Page 110

B TR
1 M

e 1 n
]
)
i]
W 0000006
i

I
I [0 i

Wi (00 {mmd

0-00000m
O-00000m
gooo Do
0 0 00

L1 |
W IE0000@

W0 aniom
i 0 I

; Wl 0mio0m
Wl 000000
Hl O0-0 00000
Wl 000004Mm
W 04 0i00m
(INERU

DL E]

Figure 3.30
Writing a128 x 128 x 128 distributed array on the Intel Paragon using level-2 requests,
with the buffer size for data sieving = 512 Kbytes. Elapsed time = 10.5 seconds.

Page 111

[# nupshot = Sl wr 128 S4R5uT
[Logrie [Display [Zoom i
Poanter: 12474528 | (i secomds) F: F; [Resol view

I
I

S B R R
WL Ll

[— ey R — e e
= i — ey o

Figure 3.31
Writing a128 x 128 x 128 distributed array on the Intel Paragon using level-2 requests,
with the buffer size for data sieving = 64 Kbytes. Elapsed time = 20 seconds.

Page 112

Figure 3.32 shows the Upshot plot for level-3 requests, for which ROMIO performs collective 1/0. The total time decreased to
about 2.75 seconds, which means that level-3 requests were about 45 times faster than level-0 requests and about four times
faster than the best performance with level-2 requests. The reason for the improvement is that the numerous writes of each
process were coalesced into a single write at the expense of some extra computation (to figure how to merge the requests) and
interprocess communication. With collective 1/0, the actual write time was only a small fraction of the total 1/O time; for
example, file open took longer than the write.

3.11—
An Astrophysics Example

As an example, we consider an astrophysics application from the University of Chicago, called ASTRO3D. This application
studies the mechanism by which intergal actic gases condense to form new stars. We describe how to perform the I/O needed by
this application using MPI. Details of the application and its 1/0O requirements can be found in [85].

3.11.1—
ASTRO3D 1/0 Requirements

The application uses several three-dimensional arrays that are distributed among processes using a block distribution in all
three dimensions. The arraysfit entirely in memory. Every few iterations, some of the arrays must be written to files for three
purposes: data analysis, checkpointing (for later restart), and visualization. The storage order of datain all filesisrequired to be
the same asit would be if the program were run with a single process. In other words, the arrays must be stored in column-
major order of the global array. There are two reasons for this requirement. The developers of the application want to be able to
restart the program with a different number of processes from the program that created the restart file [53]. They also want to
analyze and visualize the data with sequential (uniprocess) tools on regular workstations [53]. The easiest way to achieve these
goalsisto write the datato asingle filein some canonical order. The alternative way of writing to separate files and
postprocessing them is clumsy and inconvenient.

The datain the data-analysis and restart filesis organized as follows. Each file begins with a small "header" consisting of six
floating-point variables that have the same values on all processes. Following this header are six arrays appended one after
another in the same file. The visualization datais stored in four separate files, each of which has a six-variable header followed
by asingle array. Every few

Page 113

nupshot = coll wr 128

=) foren

s e

[;Cormpeitation

Figure 3.32
Writing a128 x 128 x 128 distributed array on the Intel Paragon using level-3 requests.
Elapsed time = 2.75 seconds.

Page 114
iterations, the application writes out new data-analysis and visualization files and overwrites the previously written restart file.

311.2—
I mplementing the 1/O with MPI

We describe how to write the restart file using MPI; the data-analysis file is identical, and the visualization fileis
similar—actually simpler, asit has only one array.

Figure 3.33 shows the code for writing the restart file. We first write the six-variable header (assume that the six variables have
aready been collected into a single buffer called header). Since al processes have the same values for the header, any one

process can write it. We choose to let process 0 write the header. Now we need to define the file view in away that the header
is automatically skipped and the arrays can be written with a single function call each. We create a darray datatype for use as
the filetype, similar to the one in the program in Figure 3.10. Wefill in various one-dimensional arrays, which are used as
parameters to the darray datatype constructor. gsi zes contains the size of the global array in each dimension. di st ri bs
specifies that the distribution is a block distribution in each dimension. dargs specifies the default distribution argument. We set
al entriesin psizesto zero for usein thefunction MPl _Di ns_create. MPI _Di ns_cr eat e createsalogical process grid
of the specified number of dimensions. If psi zes specifies anonzero value in any dimension, MPl _Di ns_cr eat e will use
that value as the number of processesin that dimension. Wewant MPl _Di ns_cr eat e to calculate the number of processes
in each dimension; therefore, we pass a zero-filled psi zes.

MPI _Type_cr eat e_dar r ay returns a datatype, which we first commit and then use as the filetype to
MPI _Fil e_set _vi ew. Thedisplacement is specified as the size of the header in bytes, namely, six timesthe size of a

floating-point number. Thiswill cause the header portion of the file to be skipped in subsequent writes. The etype is specified
as VPl _FLOAT. Recall that thefile view is defined as atiling of the file, starting at the displacement, followed by multiple

copies of the filetype appended contiguously one after another. Therefore, with this view, we can simply write all six arrays
withsix callstoMPl _File wite all. local _array_si ze isthesize of thelocal array in terms of the number of

floating-point numbers. After each write, the individual file pointer on each processis automatically incremented by the
number of etypes written, skipping all holes. The file pointer will therefore point to the offset in the file where the write of the
next array from this process should begin. Consequently, no explicit file-pointer manipulation is needed.

We note that we have used the darray datatype and MPI _Di ns__cr eat e for simplicity. All the warnings about darray
mentioned in Section 3.4.2 apply here. If an application does not follow the same definition of data distribution or logical-

Page 115

MPI _Fil e_open(MPI _COMWM WORLD, "/pfs/restartfile",
MPI _MODE_CREATE | MPI _MODE_WRONLY,
MPl _I NFO_NULL, &fh);

MPI _Conm si ze(MPI _COVM WORLD, &nprocs);
MPI _Conmm r ank(MPI _COVMM WORLD, &rank);
if (rank == 0)
MPI _File_wite(fh, header, 6, MPI_FLOAT, &status);

for (i=0; i<3; i++) {
gsi zes[i] = global _size_in_each_dim
distribs[i] = WMPI_DI STRI BUTE_BLOCK;
dargs[i] = MPI_DI STRI BUTE_DFLT_DARG
psi zes[i] = 0;
}
MPI _Di ns_create(nprocs, 3, psizes);
MPI _Type_create_darray(nprocs, rank, 3, gsizes, distribs, dargs,
psi zes, MPI _ORDER FORTRAN, MPl _FLOAT,
& il etype);
MPI _Type_commit (&f il etype);

MPI _File set viewmfh, 6*size of (float), MPI_FLOAT, fil etype,
"native", MPI I NFO NULL);

MPI _File wite_all(fh, arrayl, |ocal _array-size, Ml _FLOAT,
MPI _STATUS_| GNORE) ;

MPI _File wite_all(fh, array2, |ocal _array_size, MPl_FLOAT,
MPlI _STATUS | GNCRE) ;

MPI _File wite all(fh, array3, local _array_size, Ml _FLOAT,
MPI _STATUS_| GNORE) ;

MPI _File wite_all(fh, array4, |ocal __array_size, Ml _FLOAT,
MPI _STATUS_| GNORE) ;

MPI _File_ wite_all(fh, array5, |ocal _array_size, MPl_FLOAT,
MPlI _STATUS | GNORE) ;

MPI _File_ wite_all(fh, array6, |ocal _array_size, MPl_FLOAT,
MPI _STATUS_| GNORE) ;

MPI _File_cl ose(&f h);

Figure 3.33
Writing the restart filein ASTRO3D

Page 116
process ordering as the darray datatype, one must not use darray but must use subarray instead.

3.11.3—
Header |ssues

As mentioned above, the header in this application consists of six variables with the same values on al processes. It is
customary in most applications to write such a header at the start of the file. For performance reasons, however, it may be
better to write the header at the end of the file. High-performance file systems typically stripe files across multiple disksin
units of 64 Kbytes or some such number. By storing a small header at the start of afile and large arrays following it, accesses
to datain the large arrays are not likely to be aligned to disk blocks or striping units. These skewed accesses may result in loss
of performance. A better alternative (although somewhat counterintuitive) is to store the large arraysfirst and store the header
at the end of the file. With such a storage order, accesses to the large array are more likely to be aligned with file-system
boundaries, and the performance is likely to be better.

Figure 3.34 shows the code for writing the ASTRO3D restart file with the header at the end of the file. For writing the six
arrays, the only difference in the specification of the file view compared with the previous program is that the displacement is
specified as zero because there is no header to skip. The arrays are then written one after another with

MPI _File wite_all.Towritethe header at the end of thefile, we create a new file view in which we specify the

displacement as the size of the six arrays (global size) in bytes and the etype and filetype both as MPI _FLOAT. With this view,
al six arrayswill be skipped, and the header will be written contiguously after the arrays. Process 0 writes the header.

Reading the Header

When the header needs to be read from afile, for example during arestart, the read can be implemented in one of the following
ways:

* Process 0 can read the header and broadcast it to all other processes.

* All processes can read the header directly by using a collective read function, suchasMPl _Fil e_read_al | .
* All processes can read the header directly by using an independent read function, suchasMPl _Fi | e_r ead.

Since headers are usually small, the read-broadcast method is usually the best method to use. In the case of collective reads, the
implementation may analyze the request and then choose to implement it using a read-broadcast. Analyzing the request
involves interprocess communication, and hence overhead, which can be

Page 117

MPI _File_open(MPI _COW WORLD, "/pfs/restartfile",
MPI _MODE_CREATE | MPI _MODE_WRONLY,
MPlI _I NFO NULL, &fh);

for (i=0; i<3; i++) {
gsi zes[i] = gl obal _size_in_each_dim
distribs[i] = Ml _DI STRI BUTE_BLCCK;
dargs[i] = MPI_DI STRI BUTE_DFLT_DARG
psi zes[i] = O;

}

MPI _Di ns_create(nprocs, 3, psizes);

MPI _Conm si ze(MPI _COMM WORLD, &nprocs);

MPI _Conm r ank(MPI _COVM WORLD, &rank);

MPI _Type_create_darray(nprocs, rank, 3, gsizes, distribs, dargs,
psi zes, MPI _ORDER_FORTRAN, MPI _FLOAT,
& il etype);
MPI _Type_commit (&f il etype);
MPI _File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPl | NFO _NULL) ;

MPI _File wite_all(fh, arrayl, l|ocal _array_size, Ml _FLOAT,
VPl _STATUS_| GNORE) ;

MPI _File wite_all(fh, array2, |ocal _array_size, MPl_FLOAT,
MPl _STATUS_| GNORE) ;

MPI _File wite_all(fh, array3, local _array_size, MPl_FLOAT,
MPlI _STATUS_| GNORE) ;

MPI _File wite_all(fh, array4, l|local _array_size, Ml _FLOAT,
VPl _STATUS_| GNORE) ;

MPI _File wite_all(fh, array5, |ocal _array_size, MPl_FLOAT,
MPI _STATUS_| GNORE) ;

MPI _File wite_all(fh, array6, |ocal _array_size, MPl_FLOAT,
MPl _STATUS | GNORE) ;

gl obal _array_size = gsizes[0]*gsi zes[1] *gsi zes[2];

MPI _File_set_viewfh, 6*global _array_size*sizeof (float), MPI_FLQAT,

MPl _FLOAT, "native", Ml _I NFO NULL):
if (rank == 0)
MPI _File_ wite(fh, header, 6, MPI_FLOAT, &status);

MPI _File close(&fh);

Figure 3.34
Writing the ASTRO3D restart file with the header at the end of the file rather than at the beginning

Page 118

avoided if the user does the read-broadcast directly. The third option, independent reads from each process, will result in too
many small I/O requests.

3.12—
Summary

The /O interface in MPI provides many features that can help users achieve high 1/O performance in parallel applications. The
most important of these features are the ability for users to specify noncontiguous data layouts in memory and file using MPI
datatypes, the ability to specify the group of processes participating in collective 1/0O operations, and the ability to pass hints to
the implementation. To achieve high 1/0O performance with MPI, users must use these features. In particular, in applications
with noncontiguous access patterns, users must strive to express the I/0 in terms of level-3 requests (noncontiguous,
collective), rather than level-0 requests (Unix-style).

For further information on parallel 1/0 in general, we refer readers to [20, 21, 43, 49]. We aso recommend the Parallel 1/0
Archive on the World Wide Web at http://www.cs.dartmouth.edu/pario, which contains links to a number of research projects

in the area, a comprehensive bibliography, and other useful information.

http://www.cs.dartmouth.edu/pario

Page 119

4—
Under standing Synchronization

Parallel programming involves more than just transferring data between two processes. The receiver of the data must know
when the datais available. In the message-passing programming model, these two operations (data transfer and indicating that
the datais available) aretightly connected. Thisis not true of some other parallel programming models. In addition, the fact
that these two steps are combined in message passing can have unexpected performance consequences. In this chapter we will
explore some of the issues of synchronization between senders and receivers of data, both for message passing and shared
memory, before venturing away from the message-passing model in Chapter 5.

41—
Introduction

In this short chapter, we will not introduce any new MPI routines. Instead, we will look in more detail at what happens—and
what must happen—when data is moved between processes. In Section 4.2, we present another view of the ghost-cell-exchange
problem, where we consider not just the individual point-to-point messages, but the performance effect of interactions between
the delivery of messages. In Section 4.3, we change gears and ook briefly at the shared-memory programming model and
address some of the issues in writing correct shared-memory programs. These two sections will motivate the design of MPI's
remote memory access routines, introduced in the next chapter.

42—
Synchronization in Message Passing

A common use of message passing is to exchange ghost point values on a grid or mesh that is distributed among processes. We
have discussed such an example in Chapter 4 of Using MPI [32]. We will revisit this example to illustrate performance
problems caused by unintended synchronization and discuss how to improve the performance of this example using only MPI-
1 point-to-point message passing.

For concreteness, consider the 4 x 3 array of meshes (on twelve processes) shown in Figure 4.1. Each process must exchange
datawith its neighbors; two of the processes have four neighbors, six have three neighbors, and four have two neighbors.

The simplest code to send the ghost points between the processes is shown in Figure 4.2. As we showed in Chapter 4 of Using
MPI [32], this code can perform poorly or even deadlock because the MPI _Send calls can block, each waiting for another

process to issue the matching receive. Variations of this code that order

Page 120

aog Q_:,E
[LLLL]

1]
o o o
T
o o

S

Figure4.1
4 x 3 array of meshes. Open circles are ghost
cells; arrows indicate data exchanges needed
tofill ghost cells.

the send and receive pairs, for example, first sending down and then receiving from above, also have poor performance because
most of the sends will block, except for the processes at the very bottom. These have no process to send to and hence will issue
their receives, matching the send for the process immediately above them. In avery real sense, the code in Figure 4.2 has so
much synchronization that it will deadlock (a sort of interlocking synchronization).

To eliminate the possibility of deadlock or serialization, one should use nonblocking operations. Often, the easiest strategy isto
replace the MPl _Recv operations with the nonblocking version, MPl _| r ecv, as shown in Figure 4.3. This code will work,
but in practice its performance may be significantly poorer than you might expect. To understand why, we use asimple
performance model.

Let us assume that a process can receive from several senders at the same time, but that the total rate at which it can receive
dataisfixed. That is, if one process can send it data at 100 M Bytes/sec, then two processes can send data at only 50 MBytes/
sec each. Thisis avery reasonable model; it assumes that the rate at which a process can receive datais controlled by the
receiving process's ability to move data from its interconnection network with other processes into memory. To simplify the
analysis, let us assume that it takes one time period to send the ghost-cell data from one process to a neighboring process for an
entire edge. Since there are four edges, it should take four steps to send all of the ghost cell data.

Figures 4.4 through 4.9 show what might happen given the timing model that

Page 121

do i =1, n_nei ghbors
call MPI_SEND(edge (1,i), len, MPI_REAL, &
nbr (i), tag, comm ierr)
enddo
do i =1, n_nei ghbors
call MPI _RECV(inedge(1l,i), len, MPI_REAL, &
nbr(i), tag, conm status, ierr)
enddo

Figure 4.2
Sending ghost-point values in away that is straightforward, but performs poorly and may even deadlock

do i =1, n_nei ghbors
call Ml _I RECV (inedge (1,i), len, MPI_REAL, nbr(i), tag, &
comm requests(i), ierr)
enddo
do i =1, n_nei ghbors
call MPI_SEND (edge (1,i), len, WMPI_REAL, nbr(i), tag, &

comm ierr)
enddo
call MPI _WAITALL (n_nei ghbors, requests, statuses, ierr)

Figure 4.3
Code to send ghost-point values using nonblocking receives

has receivers controlling the rate at which data may be delivered. In the first step, shown in Figure 4.4, most of the processes
are sending down to the neighbor below. However, the bottom row of processes have no neighbor below, and so they begin to
send to another neighbor on the right or above, depending on the location. The processes that are the destinations for these
messages must share their memory bandwidth among the different senders.

In Figure 4.5 we begin to see the consequences of using MPl _Send. MPl _Send cannot return until the message has been
moved from the user's buffer. Because several processes in Figure 4.4 are the targets of two MPI _Send operations, these sends
can run only at half speed each, and so do not complete in asingle step. We see these data transfers continuing in Figure 4.5.

At the end of the fourth step, the communication could be complete if full use has been made of every process's interconnect.
Because of the synchronization requirements of MPI _Send, however, some communication steps did not take place at full

speed, and we are not yet done. In fact, two more steps are required, as shown

Receiving: 0 Receiving: O Receiving: O
Rate: Rate: Rate:
1 !
¥ ¥
Receiving: 1 Receiving: 1 Receiving: 1
Rate: 1 Rate: 1 Rate: 1
1 |
¥ ¥
Receiving: 1 Receiving: 1 Receiving: 2
Rate: 1 Rate: 1 Rate: 1/2
1 [
'l' |
Receiving: 1 Receiving: 2 Receiving: 2
Rate: 1 | Rate: 1/2 | Rate: 1/2
Figure 4.4

Step 1. All processes send to first neighbor; three processes are

each targets of two sends.

Step 2. Some sends to first neighbors are still continuing.

Receiving: O Receiving: 2 Receiving: 1
Rale; | Rate: 1/2 = Rate: 1
Receiving: 0 Receiving: 1 Receiving: 1
Rate: = Rate: 1 > Rate: 1

)
Receiving: 0 Receiving: 1 Receiving: 2
Rate: | Rate: 1 Rate: 1/2

b
Receiving: 0 Receiving: 2 Receiving: 2
Rate: | Rate: 1/2 *| Rata: 1/2

Figure 4.5

Receiving: 2 Receiving: 3 Receiving: 1
Rate: 1/2 =—=| Rate: 1/3]| Fale: 1
:

Receiving: 1 Receiving: 0 Receiving: 1
Rate: 1 Rate: Rate: 1

} !
Receiving: 1 Receiving: 1 Receiving: 1
Rate: 1 Rate: 1 =| Rate: 1

} T
Receiving: 0 Receiving: 1 Receiving: 0
Rate: Rate: 1 == Rate:

Figure 4.6

Step 3. One processis now receiving only at 1/3 of peak rate.

Page 122

Page 123

Receiving: 2 Receiving: 3 Receiving: 0
Rate: 1/2 | Rate: 1/3 “—| Hate:
1
Receiving: § Raceiving: 2 Receiving: 0
Rate: Rate: 1/2 = Rale:
Receiving: 0 Raeceiving: 1 Receiving: O
Rale: Rate: 1 =— Rale:
Receiving: 1 Receiving: 0 Receiving: 0
Rale: 1 =1 Rate: Rale:
Figure 4.7

Step 4. Two processes have become completely idle.

Page 124
Receiving: 0 Receiving: 1 Receiving: 0
Rate: Rate: 1 Rate:
Receiving: 0 Receiving: 2 Receiving: 0
Rate: Rate: 1/2 = Rate:
i
Receiving: 0 Receiving: 0 Receiving: 0
Rate: Rate: Rate:
Receiving: 0 Receiving: 0 Receiving: 0
Rate: Rate: Rate:
Figure 4.8

Step 5. Eight processes areidle!

in Figures 4.8 and 4.9. For simplicity in exposition, in the case where there are three processes sending to a single process, we
have "rounded down" the performance of transfersinto that process (on the top center). Making this more precise changes the
predictions of the timing model slightly, but does not change the qualitative behavior.

We can validate our theoretical analysis by running this program and examining its performance with atool such as Upshot
[38, 46]. An Upshot view of one iteration of this program, run on an IBM SP, is shown in Figure 4.10. We can see from Figure
4.10 that processes five and six, the two processes in the interior of the mesh, are the last to send, and processes one and two
are the last to receive, just as our model predicts. Furthermore, the time to send an edge (shown as ablack bar in Figure 4.10) is
not the same for each process; rather, there are roughly two different times. The longer time is roughly twice along as the short
send time; this can be seen in a histogram of the MPlI _Send times (Figure 4.11). The source of thisloss of performanceis our
insistence that the communication operations complete in a certain order. In this example, we do not need to send the ghost-
point values in any particular order, but by choosing MPI _Send to send the data, we have, without really thinking about it,
specified a certain order for the motion of data. Aswe have seen in Figures 4.4 through 4.9, this order of operations causes
conflicts for shared resources (in this case, the resource for receiving data), causing aloss in performance.

Receiving: 0 Receiving: 0 Receiving: 0
Rate: Rate: Rate:

Process Process 4 b P
Receiving: 1 Receiving: O Receiving: 0
Rate: 1 === Rate: Rate:

L Process 1 | L Procpss S |
Receiving: 1 Receiving: 0 Raceiving: 0
Rate: 1 Rate: Rate:

L Procpss ¥ L Procpss L Process 10 |
Receiving: 0 Receiving: 0 Receiving: 0
Rate: Rate: Rate:

e Process.3) e Process ¥ | e Process 11

Figure 4.9

Step 6. Communication finally completes, delayed by excessive
synchronization. Only four processes are busy during the last

step.

Figure 4.10
Upshot view of oneiteration

Page 125

Page 126

[I | : . :
hin i00 GO0 T L0

[LE:Lig

Figure4.11
Histogram of send times

To fix this problem, we need to relax our requirement of a particular order of execution. We can replace the MPl _Send calls
with MPl _| send asshown in Figure 4.12. Now, all of the sends may proceed; a sophisticated MPI implementation will
ensurethat all of the MPI _| send operations effectively share the available memory resources, and the data transfer will take
four time steps. When we do this, Upshot does indeed show us a more balanced view, as shown in Figure 4.13.

This approach is an example of ageneral technique for high-performance programming called deferred synchronization. By
waiting until the last possible moment to require that an operation (such asan MPl _| send) be completed, we give the system

the greatest opportunity to order operations for best performance.

Page 127

do i =1, n_nei ghbors
call Ml _| RECV(i nedge(1,i), len, MPI_REAL, nbr(i), tag, &
comm requests(i), ierr)
enddo
do i =1, n_nei ghbors
call MPl _| SEND(edge(1,i), len, MPI_REAL, nbr(i), tag, &
comm requests(n_nei ghbors+i), ierr)
enddo
call MPlI _WAI TALL(2*n_nei ghbors, requests, statuses, ierr)

Figure 4.12
Better version of code to exchange ghost points

Figure 4.13
Upshot view of exchange with nonblocking operations

43—
Comparison with Shared Memory

In shared-memory programming, data transfer between two threads of control (you can think of threads as processes sharing
memory if you are unfamiliar with threads) is often described as being as simple as reading from a variable or writing to a
variable. Thisisamost true. Consider the two threads that are counting up to 10 with a shared counter variablei (i startsat

zero) and a private (nonshared) variable j, using the code in Figure 4.14.

What can we say about the values of | that the two threads might print out? We are tempted to say that the sum of the values of
j printed by the two processes would equal 10, sincei has been incremented ten times. But thisisn't the only result that can
happen. Many values for the sum of the] valuesthat are greater

Page 128

int j 0

whi | e < 10) {
i i o+ 1;
j j + 1

I m— 1

J

}
print ("j =9%\n", j);

Figure 4.14
Codeto increment i until it reaches 10

thread 1 thread 2

read i (value 0) into register rl read i (value 0) into register rl
increment rl and j increment rl (value 1) and
storerlintoi

read i (valuel) into rl

increment rl and j

storerlintoi

read i (value 2) into rl

increment rl and |

storerlintoi

storerlintoi (vaue 1)

Figure 4.15
One possible sequence of operations for the first few steps of the codein 4.14

than ten are possible, and in fact the value of | on a single thread may exceed ten!

The reason is that as the two threads read and write to the shared variablei , the value set by one thread can be overwritten by
the other thread. For example, consider the sequence of operations shown in Figure 4.15.

At the end of the sequence of operationsin Figure 4.15, the value of i isone, but the value of j onthread 1 isthree! Thisisa

well-known and understood problem. The solution is to ensure that only one thread at a time can modify avariable and that a
thread does not read a variable until the value in the variable is guaranteed to be ready to be read. In other words, the read-
modify-write of i must be made atomic.

Consider the following modification. We use a shared variable t oken to aternate the threads: the value of tokenis 1 to start,
the value of nyi d isthe number of the executing thread (either 1 or 2), and the value of ot her i d isthe number of the other
thread (either 2 or 1, respectively). The codeis shown in Figure 4.16.

Page 129

This code is more likely to produce the correct value, but it too isn't guaranteed. There are two problems: volatile variables and
write ordering.

4.3.1—
Volatile Variables

First, the compiler may decide that t oken can be placed into aregister. That is, the compiler may read the value of t oken

from memory, placeit into aregister. and then refer to the value in that register rather than re-reading the value from memory.
In that case, any change to the value of t oken that is made by the other thread will not be seen by the first thread. To fix this

problem, at least in C and C++, we can declaret oken asvol ati | e:

volatile int token;

Note that we really need to declare i as volatile as well. Some Fortran compilers accept asimilar extension, for example,

i nt eger token
vol atil e token

(in many Fortran 77 compilers) or

integer, volatile :: token

(in some Fortran 90 compilers). The Fortran 2000 draft standard includesvol at i | e. Thistells the compiler that the value of

this variable may be changed by another agent, such as another thread, and ensures that the compiler won't reuse a value that
has been put in aregister.

However, note that declaring avariable asvol at i | e will cause the compiler to reload it into register before every use. In
some programs, this can result in a significant loss of performance.
int j =0;
while (i < 10) {
while (token !'= nyid) ;

=1 + 1;
token = otherid;
=0+ L
}
print ("j =%\n", j);
Figure 4.16

Codeto increment i until it reaches 10 using aflag

Page 130

4.3.2—
Write Ordering

The second problem is more subtle. There is no reason why the compiler can't choose to implement

i =i + 1
token = otherid
as
otherid

t oken
i

i +1

Asfar asthe compiler is concerned, the results are the same since the language doesn't say anything about multiple threads of
execution, and since such reorderings can be important for performance in other contexts. Furthermore, even if the compiler
didn't reorder the statements, modern microprocessors may reorder writes to memory. That is, the hardware may decide to
writeto memory in a different order than the compiler asked for, again to improve performance.

The concept of sequential consistency [50] is used to describe a parallel execution where the results are the same as if the
statements were executed by a single process (hence the sequential) according to some interleaving (without reordering) of the
statements from each process. The above compiler optimization or hardware reordering violates sequential consistency. The
slightly weaker processor consistency describes the intent of the code fragment above: on any processor, the writes (and reads)
occur in the order shown in the program. A discussion of severa different consistency models, including much weaker ones
than these, isfound in [25].

Avoiding the problems of write reordering requires great care. For example, to ensure that the value of i has been written to
memory before the value of token is modified in Figure 4.16, many systems require that a write synchronization instruction be
issued. Unfortunately, neither C nor Fortran has a portable way to write this (in some C compilers, you can issue assembly
language instructions with a directive such asasn(wsync) , but thisis not portable). As aresult, correct shared-memory
programming often requires calling special routines to ensure that operations are properly synchronized.

A third problem has to do with performance rather than correctness. The solution proposed above requires each thread to do the
same amount of work. In many cases, we prefer for each thread to be able to work at its own pace.

The most common solution isto all three of these problemsis to use locks. Only one thread may hold the lock at any time, and
the implementation of alock is

Page 131

int j =0;
while (i < 10) {

l ock();

i =i + 1;

unl ock();

=1+
}
print ("j =%\n", |);

Figure 4.17
Codetoincrement i until it reaches 10 using locks

guaranteed to avoid all of the problems that we've discussed. An example is shown in Figure 4.17.

There are other solutions, including semaphores and monitors. Another approach isto carefully implement abstractions such as
gueues, stacks, and listsin such away that all operations on those data structures behave correctly even when multiple
processes (or threads) are accessing them (see, for example, [54, 93, 60]). Unfortunately, the efficient implementation of these
operations often requires assembly language programming.

4.33—
Comments

One advantage of shared memory isthat, other than the issues that we've raised above, no special programming is needed—a
program may access data anywhere simply by referring to it. There is another advantage: even when tools such as| ock() /
unl ock() must be used to guarantee that data has been transferred, a single such operation may be used for any number of
data transfers. In other words, in shared-memory programming, the steps of transferring the data and synchronizing access to
the data have been separated. A single synchronization step may "complete” an arbitrary number of data transfers.

This analysis leads us to the next two chapters, in which we study the MPI approach to separating data transfer from
synchronization. In Chapter 5, we consider a simple barrier-style synchronization model. In Chapter 6, we look at two more
complex synchronization models.

Page 133

5
Introduction to Remote Memory Operations

Two principal approaches exist for communicating data between cooperating processes. message passing and direct access to
the memory in the remote process. MPI-1 provides a powerful and complete interface for the message-passing approach. The
remote memory operations of MPI-2 provide away to directly access memory in another process, through operations that put
datato, get datafrom, or update data at a remote process. Unlike message passing, the program running on the remote process
does not need to call any routines to match the put or get operations. Thus, remote memory operations can offer both greater
performance (when there is sufficient support in hardware for the operations) and greater functionality, simplifying some kinds
of parallel programming.

The MPI-2 remote memory operations grew out of several approaches for parallel programming based on remote memory
operations,! just as MPI-1 standardized message passing by drawing on experiences with research systems and commercial
message-passing systems,

Perhaps the most important of the research systemsis bulk synchronous parallel, often abbreviated as BSP [39, 76, 92]. In the
BSP style of parallel programming, programs are divided into sections, one where there is no communication between the
processes, and one where there is only communication; the sections are separated by barriers. Communication of data between
processes is handled by remote memory operations that put or get data, and these operations are all nonblocking (in the MPI
sense). Completion of these operations is handled by a single communication barrier, hence the term "bulk synchronous."

Several commercia systems have been delivered with remote memory operations. The most significant is undoubtedly the
Cray shmem [18] interface introduced with the Cray T3D. There were earlier commercial remote memory programming
systems, for example, CMMD Version 3 on the Thinking Machines CM-5. IBM has introduced LAPI [75] for distributed-
memory systems such asthe IBM SP. All of these systems have demonstrated that a remote memory programming model both
can be expressive in terms of supporting complex parallel applications and can offer high performance, particularly when
supported by fast hardware such as on the Cray T3D and T3E.

A related development has been in the use of remote memory operations to provide faster (particularly lower latency) "user-
space’ networking as an alternative to TCP/IP. A number of successful research systems, including U-Net [96], demon-

1 These are also called one-sided operations because only one of the two processes is directly involved, from the programmer's
standpoint, in the operation.

Page 134

strated the potential of this approach. Recently, an industry group has proposed VIA [95], or Virtua Interface Architecture, as
an industry standard model for network interfaces that directly support remote memory operations.

All of the above contributed to the design of the MPI-2 remote memory programming model. In addition, the MPI-2 design
makes the remote memory operations have the same "look and feel" as other MPI routines, including permitting the use of
datatypes and allowing collective operations on any communicator, not just MPl _ COVM WORLD (which is arestriction of
many of the prior systems). Finaly, the MPlI model is designed to be implementable on a wide range of systems, from
workstation networks with no special hardware for remote memory operations to tightly coupled parallel computers with fast,
fully coherent shared-memory hardware.

The MPI-2 remote memory operations must be distinguished from the shared-memory programming model. In the usual shared-
memory model, there is a single address space, shared by multiple threads of execution. References to memory, regardless of
location, are accomplished simply by referencing variables. A major advantage of this model is that programs can be written by
using familiar variable reference and assignment statements; new syntax or routines are not required. However, the model has
severa disadvantages. The most obviousis that supporting this model efficiently requires special hardware. A less obvious
problem is that simultaneous access by several different threads to the same memory location can lead to hard-to-find errors;
correcting this problem requires providing away to control or synchronize access to shared data as we saw in Section 4.3. The
approach used in shared-memory models uses some combination of sophisticated compilers and specia routines to provide, for
example, locks to synchronize access to shared variables.

This chapter introduces the MPI remote memory model. Rather than covering al of the functions in each category, as the MPI-
2 Standard [58] and the MPI Complete Reference [27] do, this chapter introduces functions as they are needed to illustrate their
use. Specifically, we cover here the routines used to initiate remote memory operations and the simplest of the three methods
provided by MPI for completing remote memory operations.

The following chapter continues the discussion of more general models of memory access and completes the coverage of the
remote memory access routines.

Page 135

51—
Introduction

The message-passing model provides a cooperative way of moving data from one process to another: one process performs a
send, and the destination process performs a receive. Only when the receive compl etes does the destination process have the
data. This approach has a number of important properties. One is that changesin the memory of the receiver can happen only
when the receiver allows them (by calling one of the MPI receive routines) and only in the memory locations that are specified
as the receive buffer in those routines. Thus, it is clear from the program both what memory locations can be modified by
another process (often called aremote process) and at what pointsin the program this can happen. These properties can aid in
ensuring that the program is correct and in debugging it if it isn't.

The requirement of message passing that data transfers be cooperative has its disadvantages as well. There are two main areas
of limitation: expressiveness (the ease with which programs may be written) and performance.

Whilein principle any parallel program can be written using message passing, in practice some programs are much harder to
write than others. The requirement that every send be matched with a receive demands careful planning and can add
complexity to acode. It is difficult to provide with message passing away for one process to access or modify data held by
another process, since both processes must cooperate to perform the operation. An example isasingle counter (for example, a
counter of the number of errors seen) that is shared by many processes. How can a process add a value to this counter? With
message passing, it must send a message to the process that "owns" the counter, asking that process to update the value. That
process in turn must check for these messages. This greatly complicates the program, particularly if the MPI implementation is
single threaded or does not want to use athread solely to update this value (asin Section 8.3).

In addition, as we saw in Section 4.2, the cooperative nature of message passing introduces an order into the delivery of data; in
some cases, the order isn't important to the application. Enforcing the order has performance costs, in terms of both the effect
described in Section 4.2 and of extra overhead in implementing message matching.

MPI-2 introduces a new approach for moving data from one process to another that eliminates the drawbacks of message
passing while retaining many of the advantages. This approach, called remote memory access (RMA), provides away to move
data from one process to another with a single routine that specifies both where the data is coming from and whereit is going
to. An RMA operationisa

Page 136

kind of combined send and receive; the calling process specifies both the send buffer and the receive buffer. Because asingle
cal isused, these routines are also called one-sided communication routines.

Using the RMA approach involves three main steps:

1. Define the memory of the process that can be used for RMA operations, preserving the advantage of limiting what memory
can be modified by aremote process. Thisis accomplished by defining a memory window and creating anew MPI object, the
MPI window object MPI _W n. See Section 5.3 for details.

2. Specify the data to be moved and where to moveit. The MPI routines that may be used are MPI _Put, MPI - Get , and
MPI _Accurul at e. See Section 5.4 for details.

3. Specify how we know that the datais available. In other words, what isthe RMA equivalent to the completion of areceive?
There are three different ways to accomplish thisin MPI. The simplest, which corresponds to the simplest BSP and shmem
models, is described in Section 5.5 and is the only method described in this chapter. The others are described in the next
chapter.

Section 5.2 contrasts message passing with remote memory access. The MPI functions introduced are described in more detail
in the following three sections (Sections 5.3 through 5.5). Section 5.6 contains two examples: an alternative to the Poisson
problem described in Chapter 4 of Using MPI [32], and a dense matrix-vector multiply. The chapter closes with some
discussion of memory coherence and RMA performance issues.

52—
Contrast with M essage Passing

Before going into the details of remote memory operations, we begin with asimple RMA example and compare it with point-to-
point message passing. In this example, unlike the example for computing Ttin Section 2.3, we will concentrate on the RMA
routines most closely related to MPlI _Send and MPI _Recv. This example emphasizes the similarities between RMA and

message-passing operations. Later we will see how to use RMA in situations where a message-passing solution is much more
difficult.

To see the similarities between RMA and message passing, let us consider sending data from one process to another.
Specificaly, processOissendingn i nt s inout buf tothevariablei nbuf in process 1.

Page 137

/* Create communi cator for separate context for processes
0 and 1 */

MPI _Conm rank(MPI _COWVM WORLD, &rank);

MPI _Commsplit(MPI _COWMM WORLD, rank <= 1, rank, &conm);

/* Only processes 0 and 1 execute the rest of this */
if (rank > 1) return;

/* Process 0 sends and Process 1 receives */
if (rank == 0) {

MPI _Isend(outbuf, n, MPI _INT, 1, 0, conm &request);
}

else if (rank == 1) {
MPI _Irecv(inbuf, n, MPI _INT, O, 0, comm &request);
}

/* Al ow other operations to proceed (conmunication or
conmputation) */

/* Conpl ete the operation */
MPlI Wi t(& equest, &status);

/* Free communi cator */
MPlI _Conm free(&comm);

Figure5.1
Example code for sending data from one process to another with nonblocking message passing

Figures 5.1 and 5.2 show the correspondence between the message-passing operations and remote memory operations. For
example, the memory window object serves arole similar to that of acommunicator in message passing. MPI _Put , like

MPI _| send, initiates adatatransfer. MPl _W n_f ence completes the data transfer initiated by MPI _Put , much as
MPI Wi t completesthetransfer initiated by MPl _| send.

These figures al so show some of the differences. Note that this example uses no remote memory operation corresponding to
MPI | r ecv; instead, the destination of the datais specified as arguments to the window creation on process 1. Thereis aso

anMPl _W n_f ence cal beforethe MPl _Put call. These differences will be covered below. An aternative version of Figure
5.2 ispossible that uses MPl _Get on process 1 instead of MPl _Put on process 0. In this case, thereis an RMA routine
corresponding to MPl _| recv, but notto MPI _I send.

Page 138

/* Create nmenory wi ndow for separate context for processes
0 and 1 */
MPI _Conm rank(MPI _COWM WORLD, &rank);
MPI _Commsplit(MPI _COWMM WORLD, rank <= 1, rank, &conm);
if (rank == 0) {
MPI _Wn_create(NULL, 0, sizeof(int),
MPI | NFO NULL, conm &win);
}
else if (rank == 1) {
MPI _Wn_create(inbuf, n * sizeof(int), sizeof(int),
MPI | NFO NULL, conm &win);
}
/* Only processes 0 and 1 execute the rest of this */
if (rank > 1) return;

/* Process O puts into process 1 */
MPI _Wn _fence(0, win);
if (rank == 0)
MPI _Put(outbuf, n, MPI _INT, 1, O, n, MPI _INT, win);

/* Al'l ow ot her operations to proceed (comrunication or
conmput ation) */

/* Conpl ete the operation */
MPI _Wn _fence(0, win);

/* Free the wi ndow */
MPI _Wn free(&win);

Figure 5.2
Example code for sending data from one process to another with remote memory operations

Page 139

A more subtle issue that has been passed over here has to do with when a program may access variables that are also used in
RMA operations. With message passing, the rules are (relatively) natural and easy to follow: between the beginning of the
message-passing operation and the end of the operation, whether it is a send or areceive, the buffer for the data should not be
accessed.2 With shared memory and RMA, the rules are more complex because of the one-sided nature of the operation: when
can data in the process that is not directly involved (viaan MPI _Put or MPl _Get call) in the data transfer be used? While the
general rules are somewhat complex, there are simple rules that will ensure a correct program; some of these are presented in
Section 5.7.

This example makes remote memory operations look more complex than message passing. The reason is that the operation is
"sending data from one process to another." Message passing is very natural for this operation, whereas RMA is not the most
natural approach, athough it can be implemented with RMA. We will see later other operations that are more natural with
RMA.

In addition, this example has used a collective routine (MPI _W n_f ence) to complete the remote memory operations. This

provides avery smple RMA model, but it is not the most general. A method that does not involve collective completion
operationsis described in the next chapter.

53—
Memory Windows

Thefirst step in using RMA isto define the memory that will be available for remote memory operations. The memory in a
process that can be accessed by another process through the use of the RMA routinesis called a memory window into the
process. It is called awindow because MPI limits what part of a process's memory is accessible to other processes. That is, just
as VPl _Recv limits where a message can be received (in the buffer specified by argumentsto MPI _Recv), amemory
window limits where data may be written (with MPI _Put or MPl _Accumnul at e) or read from (with MPI _Get) . A
memory window islocal memory (memory in the calling MPI process) that is made available to RMA operations. Itisa
contiguous section of memory, described as base address plus size in bytes.

Theroutine MPl _W n_cr eat e isused to tell MPI what memory windows are available. Following the analogy with the
message-passing operations, in addition

2 This applies even to reading from a buffer used for sends, even though many MPI programmers are unaware of this
requirement in the MPI Standard (see Section 3.7.2, Communication Initiation, in [56]).

Page 140

to specifying where data may be stored or read, we need also specify which MPI processes have access to that data. Since one
of the reasons for using the RMA interfaceisto allow severa different processes to access (read, set, or update) a memory
location, the most natural way to describe the processes that can access a memory window iswith an MPI group.

Since an MPI group isinvolved, it is not surprising that the MPI group used is the group of an MPI (intra)communicator. Since
acommunicator isinvolved, it isn't surprising that the operation to create the memory windows is collective over the
communicator.

Thisis enough to define the memory that forms the local memory window and the processes that can access that memory
window (also called window or local window). Two additional arguments must be provided. Thefirst is the displacement unit.
Thisisused to simplify accesses with a single datatype, particularly in heterogeneous applications. Typical values are either 1
(all accesses are in terms of byte offsets) or the size of adataitem (e.g., si zeof (doubl e)). Sections 5.4.1 through 5.4.3

coversthis argument in more detail.

The second required argument is an info argument that can be used to improve performance. Thisis covered in more detail in
Section 5.8. It isalways correct to use MPl _| NFO_NULL for this argument.

Thevauereturned is called an MPI window object, which represents the collection of windows defined by the collective
MPI _W n_cr eat e call. Thiswindow object must be passed to all RMA routines that perform RMA operations. The window

object serves the same role for RMA operations that the MPI communicator does for message-passing operations. The bindings
for MPl _W n_cr eat e areshownin Tables5.1, 5.2, and 5.3.

A Note on Terminology

A window refersto aregion of memory within asingle process. The output MPI _W n object fromaMPl _W n_creat e is
called a"window object" and describes the collection of windows that are the input to the MPI _W n_cr eat e call. It might

have been easier if the individual regions of memory were called something like facets or panes (as in window panes), but that
is not what was chosen in the MPI Standard. Instead, the term "window object" is aways used for the object returned by a call
to MPl _W n_cr eat e, and the term "window" for the local memory region.

When awindow object is no longer needed, it should be freed with acall to MPl _W n_f r ee. Thisisacollective cal; all of
the processes that formed the original window must call MPl _W n_f r ee collectively. MPI _W n_f r ee should be called

Page 141

Table5.1
C bindings for memory window routines

int MPI_Wn_create(void *base, MPI _Aint size, int disp_unit, MPI _Info info,
MPI _Comm comm MPI_Wn *win)

int MPl_Wn_free(MPI _Wn *win)

Table5.2
Fortran bindings for memory window routines

MPl _W N_CREATE(base, size, disp_unit, info, conm wn, ierror)
<type> base(*)
i nt eger (ki nd=MPI _ADDRESS_KI ND) si ze
i nteger disp_unit, info, conm wn, ierror

MPI _WN FREE(win, ierror)
integer win, ierror

Table5.3
C++ bindings for memory window routines

MPI::Wn MPI::Wn::Create(const void* base, Aint size, int disp_unit,
const Info& info, const |Intracomm& com)

void MPl::Wn::Free()

only when all RMA operations are complete; the completion of RMA operations is described in Section 5.5 and in Sections 6.2
and 6.11. Aswith the other routines that free an MPI opague object, the address of the object is passed; on return, it will be set
to MPl _W N_NULL.

531—
Hints on Choosing Window Parameters

This section covers some suggestions for picking the parametersfor MPl _W n_cr eat e. Choicesrelated to performance are

covered separately in Section 5.8. The use of the displacement unit for heterogeneous RMA communication is covered in
Section 5.4.1.

L ocal Window and Displacement Unit

Often, the local window should be chosen as a single array, declared or alocated in the calling program. The size of

Page 142

the window should be the size of the array. If the local window is asimple type, such asdoubl e in C or
DOUBLE PRECI SI ONin Fortran, then the displacement should be the size of that type. Otherwise, a displacement of one
should be used.

Info

Theinfo argument is used only to provide performance-tuning options. A value of MPI _| NFO_NULL isawaysvalid. See
Section 5.8.1 for an info value that can be used when only MPI _W n_f ence isused to complete RMA operations.

53.2—
Relationship to Other Approaches

Other (non-MPI) RMA approaches use afunction similar to MPI _W n_cr eat e to make alocal memory area available for
RMA operations. In BSP [39], the routine BSP_push_r eg (r eg isshort for "register") issimilar toMPl _W n_creat e
called over MPI _COVMM WORLD, and BSP_pop_r eg issimilarto MPl _W n_fr ee.

In Cray shmem [18], the single program model is exploited; variables that are statically declared (e.g., most variablesin
Fortran) are guaranteed (by the Cray compiler and the loader) to have the same local address. Thus, a program can use the
address of alocal variable as the address of that same variable (in the single program model) in another process. In this case, no
specia routines are needed to indicate what local memory is available for RMA operations; all memory is " preregistered.”
Accessing dynamically allocated memory requires communicating the addresses between the processes; in this case, the
programmer is responsible for keeping track of the location of aremote memory area (remote memory window in MPI terms).
In MP, thisis handled for the programmer by MPI through MPI _W n_cr eat e.

InIBM'sLAPI [75], memory is allocated specifically for RMA operations. This roughly combines MPl _Al | oc_nem(see
Section 6.3) with MPI _W n_cr eat e.

54—
Moving Data

Now that we've identified the memory that can participate in remote memory operations, we need to specify how to move data
between two processes. MPI provides three routines that specify what datato move: MPl _Put to put datainto aremote

memory window, MPlI _Get to get datafrom aremote memory window, and MPl _Accunul at e to update datain aremote
window. MPI _Put islike "store to remote memory" or "write to remote memory."

The specification of the datato put isidentical to that inan MPI _Send: buffer address, count, and datatype. The data can be
anywhere in memory; it does not

Page 143
Process () Process |
T MPIL_Win
SR - - _.-. - - S— ..._l / - e \\\..
Al - : A1) |
: Cret / — ;J;'
P —] __,_-"‘--. -
I'-r x'-i
I - 1 f_,.--"' . |
(B0 | . BQO)
\ [,
5
~— TN
' . Put ™.
| 4 C@)
Memory Space _ Memory Space
Figure 5.3

Windows, put, and get. Process O gets data from A on process 1. Process 1 puts data
into B on process 0. The window object is made up of the array B on process 0 and
the array A on process 1.

need to bein awindow. Thisis called the origin address; origin here refers to the process making the call, not the source of the
data

The specification of where to put the data on the remote node is slightly different from that of where the data comes from. The
destination of the datais always relative to the memory window on the destination process. Thus, instead of a buffer address,
the location to put the data is specified with the triple of offset in window, count, and datatype. The offset argument is
combined with the displacement unit that was specified when the window was created (thedi sp_uni t parameter to

MPI _W n_cr eat e) to determine exactly where the datawill be placed (see Section 5.4.1). The remote process is specified
with arelative rank in the window object, just as the destination of an MPl _Send is specified with arelative rank in a

communicator. The relationship between window objects, local windows, and RMA operationsis shown in Figure 5.3. A more
detailed diagram of an MPl _Put operation is shown in Figure 5.4.

We've said that MPl _Put islike acombined send and receive. Thisisn't quite correct. It is more like a combined nonblocking
send and nonblocking receive. That is, MPl _Put isanonblocking communication routine. There is no blocking version

Page 144

Process 0 Process 4

MPI_Puti B, 10, MPI_INTEGER,
4, 40, 10, MPI_INTEGER, win , ierr)
Figure5.4
[llustration of an MPI put operation. Note that the data sent is not in the
local window.

of MPl _Put . Thisisadeliberate choicein MPI, and it is worth spending some time to explain why the RMA communication
routines are nonblocking.

One of the benefits of nonblocking RMA operationsis that they allow many data motion operations to be completed with a
single operation (the MPI _W n_f ence that we've seen in the examplesin Section 5.2). One of the contributions to the latency

of point-to-point message passing is the need to complete each message-passing operation separately (even when using
multiple completion operations, such as MPl _\ai t al | , the MPI implementation must be prepared to complete each
individually with MPI _Wi t) . Separating the initiation of data motion from the completion of that data motion isimportant in
achieving high performance, as we have seen in Chapter 4. With the MPI RMA operations, any number of MPl _Put
operations can be completed efficiently by asingle MPI _W n_f ence call.

Section 6.2.1 shows how to implement a kind of blocking put operation. There could also be a buffered put (the analogue of
MPI _Bsend) ; again, thisis easy for an application programmer to do and isn't needed. The BSP bsp_put routineisin fact a

buffered put; the BSP counterpart to MPI _Put isBSP_hpput (hp for "high performance"). The Cray shnenput is
nonblocking in the same way MPI _Put is.

A counterpart to MPI _Put istheroutine MPlI _Get , which gets data from the remote process and returns that data to the
calling process. This takes the same

Table5.4
C bindings for RMA put and get routines

int MPl_Put(void *origin_addr, int origin_count, Ml _Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI _Dat atype target datatype, MPI _Wn wn)

int MPI_Get(void *origin_addr, int origin_count, MPl _Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI _Dat at ype target _datatype, MPI_Wn w n)

Table5.5
Fortran bindings for RMA put and get routines

MPI _PUT(origin_addr, origin_count, origin_datatype, target rank, target disp,
target _count, target_datatype, win, ierror)
<type> ori gi n_addr (*)
i nt eger (ki nd=MPI _ADDRESS_KI ND) target_disp
i nteger origin_count, origin_datatype, target_rank, target_count,
target_datatype, win, ierror

MPI _GET(origin_addr, origin_count, origin_datatype,target _rank, target disp,
target _count, target_datatype, win, ierror)
<type> ori gi n_addr (*)
i nt eger (ki nd=MPI _ADDRESS_KI ND) target_disp
i nteger origin_count, origin_datatype, target_rank, target_count,
target_datatype, win, ierror

Table5.6
C++ bindings for RMA put and get routines

void MPlI::Wn::Put(const void* origin_addr, int origin_count,
const Datatype& origin_datatype, int target_rank, Aint target disp,
int target_count, const Datatype& target_datatype) const

void MPl::Wn::Get(void *origin_addr, int
origin_count, const MPI::Datatype& origin_datatype,
int target _rank, MPl::Aint target_disp, int target_count,
const MPl:: Datatype& target datatype) const

Page 145

Page 146

argumentsas VPl _Put , but the data moves in the opposite direction. The bindingsfor MPI _Put and MPl _Get are shownin

Tables5.4, 5.5, and 5.6.

541—
Reasons for Using Displacement Units

We will see that there are two reasons why MPI memory windows have a displacement unit. (rather than defining everything in

terms of byte displacements). One reason is clarity in programming (byte offsets can be confusing), and the second is

correctness for heterogeneous systems. To understand both of these, consider the following task: put four ints into a remote
window, starting at the 11th i nt (10th numbering from zero). Let the remote window be created on process three with this

code:

int Al20];
disp_unit = 1; [/* displacenents in bytes */
MPI _Wn_create(A 20*sizeof(int), disp_unit, . . ., &in);

Then, to storeinto A[10] through A[13], process 1 would call

target _offset = 10 * sizeof (int);
MPI _Put (B, 4, MPI_INT, 3, target_offset, 4, MPI_INT, win);

Because process 3 specified adisplacement unit in bytes(di sp_unit = 1),thet arget _of f set used by process 1 must
be computed in bytes.

If, instead, process 3 creates the window explicitly as an array of integers with

int Al20];
disp_unit = sizeof (int) ; /* displacenents in ints */
MPI _Wn_create(A 20*sizeof(int), disp_unit, . . ., &in);

then process 1 can put datainto Al 10] through Al 13] with

target offset = 10;
MPI _Put (B, 4, MPI _INT, 3, target_offset, 4, MPI _INT, win);

Certainly the second approach is more convenient for RMA communication operations. However, it is essential when the MPI
processes use different data representations, such as in a heterogeneous cluster of workstations. For example, in the above case,
let us assume that process 1 uses 4-byte integers and process 3 uses 8-byte integers. In the first case, the use of a byte offset
displacement unit leads to the wrong action: process 1 is specifying a byte offset of 10* si zeof (i nt), but the size of an

i nt on process1is4 bytes, leading to an offset of 40 bytes. But on

Page 147

Cirigin Processor Target Processor
B byle integers 4 bwie integers

I lnt

: l|+||.|l[|ff

f
|
|

Pt with target_disp = |

Figure 5.5
Data size offset computation

process 3, with its 8-byte integers, thisrefersto Al 5] (5*si zeof (i nt)) . Using displacement unitsin terms of the local
type at the time the window object is created ensures that programs will be portable to heterogeneous environments. Figure 5.5
shows how an MPI _Put operation can move data to the correct location, even when the two processes have different data
lengths, when the displacement unit is set to the size of the dataitem (an integer in this case) rather than a single byte.

Given this, why ever use a displacement unit of 1 (byte displacement)? One case is with awindow that contains several
different data types. For example, a sparse matrix is often represented as three separate arrays: two of type integer and one of
type double precision. If these arrays were in asingle window (for example, they were allocated in a single Fortran common
block), it would be easiest to use byte displacements to access the individual elements.3 However, if byte displacements are
used, the application is not portable to heterogeneous systems where the basic datatypes have different lengths.

5.4.2—
Cautionsin Using Displacement Units

Note that the location in aremote memory window that is accessed by an RMA operation depends on combining the offset
specified on the origin process with the displacement unit that was specified on the target process. Thisis a potential source of
error: the displacement unit used is not the one specified inthe MPI _W n_cr eat e cal on the process that is originating the

RMA (e.g., MPl _Put) cal.

3 We say easiest because Fortran defines the ratio of sizes of numeric types; thus a displacement size of type integer could also
be used, even with the double-precision entries.

Page 148

Table5.7
Fortran binding for finding the size of avariable

MPI _SI ZEOF(x, si ze, i error)
<type> x
i nteger size, ierror

To avoid potential problemsin understanding RMA code, the displacement units should either be one for al processesin the
window or the size of the same basic type.

543—
Displacement Sizesin Fortran

Fortran has no counterpart to the C si zeof operator. In order to get the size of a datatype to be used in computing a
displacement, the function MPI _Type_si ze may be used with MPI predefined datatypes such as MPI _REAL and
MPI _| NTECER. In Fortran 90, the MPI routine MPl _Si zeof can also be used. Thisroutine takes asinput a variable of any

numeric intrinsic type and returns the size in bytes of that type. The variable may be a scalar or an array; the size returned is the
size of asingle element of that type. This routine may be used only when using the npi module. The binding for

MPI _Si zeof isshownin Table5.7.

55—
Completing Data Transfers

MPI provides many different ways to complete data transfers. This section discusses a simple barrier-like method. Other
methods are described in Chapter 6.

In many computations, data exchange happens in phases, computation occurs between communication phases. In the MPI
RMA model described in this chapter, these phases are separated with MPI _ W n_f ence. MPl _W n_f ence iscollective

over all processes in the group associated with the window object passedto MPI _W n_f ence. MPl _W n_f ence completes
any RMA operations that started since the last call to MPl _W n_f ence and ensures that any local storesto the memory
window will bevisibleto RMA operations (i.e., codelikea(10) = 3 whereais part of the local window) before any RMA
operationsthat follow the MPI _W n_f ence call. A good rulefor using MPl _W n_f ence isto ensure that between any pair
of successive MPI _W n_f ence calls, there may be either local stores (assignments to variables in the process) to the (local)

memory window or RMA put or accumulate operations (or neither), but not both local stores and RMA put or accumulate
operations. If

Page 149

Table5.8
C binding for window fence

int MPl_Wn_fence(int assert, MPI_Wn win)

Table5.9
Fortran binding for window fence

MPI _W N_FENCE(assert, win, ierror)
i nt eger assert, win, ierror

Table5.10
C++ binding for window fence

void MPl::Wn::Fence(int assert) const

there are no RMA put operations between a pair of MPl _W n_f ence calls, there may be both load and RMA get operations
on the memory window.

Programming remote memory operationsusing MPI _W n_f ence ismuch like the BSP model or SGI/Cray shmem

programming model. It isthe least like shared memory. It is most suitable for "data parallel” applications, where each process
is performing operations on a shared, distributed data structure.

MPI _W n_f ence has an additional argument (beyond the window), named asser t , that provides information about the
fence that can be used by some MPI implementations to provide better performance. A value of zero for theassert argument
isaways valid. Other values are described in Section 5.8.2. The bindings for MPI _W n_f ence are shown in Tables 5.8, 5.9,
and 5.10.

One common use of MPI _W n_f ence isto aternate between RMA accesses to amemory window and accesses by local
loads and stores from the local process. When used thisway, MPl _W n_f ence can be thought of a"toggling” between the
two kinds of accesses. However, MPl _W n_f ence ismoregeneral. MPl _W n_f ence separates RMA accesses (particularly
MPI _Put and MPI _Accunul at e) from non-RMA accesses that store data into any local window. Theassert argument
can be used to indicate exactly what kind of operations MPI _W n_f ence is separating; thisis covered in detail in Section
5.8.2.

The code fragment in Figure 5.6 shows an example of using MPI _W n_f ence to complete RMA operations and to separate
RMA operations from local |oads and stores. Note that in this example, MPI _W n_f ence is not atoggle between RMA and
local accesses. To be more specific, whenusing MPI _W n_f ence for RMA

Page 150

synchronization, all RMA operations must be bracketed by MPIl W n_f ence calls;an MPI _W n_f ence isneeded both to
start and to complete any RMA operation.

5.6—
Examples of RM A Operations

In this section we present two examples that use RMA operations. Thefirst is a ghost-cell update, similar to those used for
finite difference, finite volume, and finite element computations. The second computes a matrix-vector product using a
distributed dense matrix and vector.

5.6.1—
Mesh Ghost Cell Communication

This section provides an alternative approach to the Poisson problem, asimple partial differential equation, described in
Section 4.1 of [32]. In that chapter, the problem is solved with afinite difference method, using MPI's point-to-point
communication routines to communicate data between processes. The reader is referred to that section for details of the Poisson
problem. We will briefly review the operations that are needed to implement afinite difference method on a mesh that is
distributed among processes.

In solving partial differential equations, the solution often is approximated on a mesh of points that is distributed among the
processes. In the simplest case, shown in Figure 5.7, the mesh is regular, and it is partitioned among the processes with a
simple, one-dimensional decomposition. In more complex cases, the decomposition among processes can be multidimensional,
and the grid itself can be irregular. We will start with the simple decomposition. To compute the discretization at every point
on the part of the mesh that islocal to the process, we need the value of the neighboring points; these are called the ghost cells
or ghost points. An exampleisillustrated in Figure 5.8.

We will declare the local part of the distributed mesh with

doubl e precision a(0:nx+1, s—1:e+l)

Weleta(i,) stand for a(x,y;), where the coordinates of a mesh point are given by (x;,y;). As discussed in Using MPI [32],

this follows the natural representation of a mesh but is different from the "matrix" interpretation of atwo-dimensional array.
See Appendix E in Using MPI for more details. The declaration of arepresents a slice of the mesh, where each process has
rows (that is, ranges of the mesh in the y-coordinate) s to e (for start to end), and there are nx columns (ranges of the meshin

the x-coordinate), plus a column for the boundary conditions on the left and right.

Page 151

MPI _Wn_create(A . . ., &in) ;

MPI _Wn _fence(0, win) ;

if (rank == 0) {
/* Process O puts data into many | ocal w ndows */
MPI Put(. . . , win) ;
MPI _Put(. . . , win) ;

}

/* This fence conpletes the MPI _Put operations initiated
by process 0 */

MPI_Wn_fence(0, win) ;

/* Al processes initiate access to some window to extract data */
MPI _Get(. . . , win) ;

/* The follow ng fence conpletes the MPI _Get operations */

MPI _Wn_fence(0, win) ;

/* After the fence, processes can |load and store
into A, the local w ndow */
Al rank] = 4;
printf("Al%] = %\n", 0, A[O0]) ;
MPI _Wn_fence(0, win) ;
/* We need a fence between stores and RVA operations */
MPI Put(. . . , win) ;
/* The follow ng fence conpl etes the preceding Put */
MPI_Wn_fence(0, win) ;

Figure 5.6
An exampleusing MPl _W n_f ence to separate RMA operations from local |oad/stores and to

complete RMA operations

Page 152

e o ® & & & & ® @ wka
@ e & ® o o & o “:
e ® o ® ® ® & o O
® ® ® & 8 8 & & O k-0

o 8 8 & 0 90 o & o

Figure5.7
1-D decomposition of the domain. Gray circles represent
boundary condition cells; black circles are cellsinterior
to the physical domain. A sample computational stencil
is shown.

e ® & &% & & & ® O rnke?

Egmnk =1
e & & & o o o o o
®© & o o o o e 8 o
@ & & ® @ @ @ o @
.. ‘ rank =0
e &« & & & & & 8 ©
! [
® ® @ © o o © o 0

Figure5.8
The computational domain, with ghost points, for one of
the processes

Page 153

subroutine exchngl(a, nx, s, e, conmld, &
bottom nbr, top_nbr)
use npi
i nteger nx, s, e
doubl e precision a(0:nx+1, s-1: e+l)
i nt eger commid, bottom nbr, top_nbr
i nteger status_array(MPl _STATUS SI ZE, 4), ierr, req(4)

call MPI_I RECV(&
a(l,s-1), nx, MPI_DOUBLE PRECI SIQN, bottomnbr, 0, &
commid, req(l), ierr)

cal | MPI_I SEND(&
a(1l,e), nx, MPI_DOUBLE PRECISION, top_nbr, 0, &
commild, req(3), ierr)

call MPI_I RECV(&
a(l,e+l), nx, MPI_DOUBLE_PRECISION, top_nbr, 1, &
conmid, req(2), ierr)

cal | MPI_I SEND(&
a(1l,s), nx, MPI _DOUBLE PRECI SION, bottomnbr, 1, &
conmid, req(4), ierr)

call MPI _WAI TALL(4, req, status_array, ierr)
return
end

Figure 5.9
Code using point-to-point message passing to exchange ghost cell values

The agorithm for communicating the neighbor information to the ghost cells can be summarized as follows:

1. Initiatesend a(*, e) intheloca processtoa(*, s- 1) inthetop neighbor.

2. Initiatesend a(*, s) inthelocal processtoa(*, e+1) inthe bottom neighbor.

3. Complete all datatransfers.

An implementation of this algorithm that uses point-to-point message passing is shown in Figure 5.9. To convert thisto use
remote memory operations, it is quite obvious that the pairsof MPl _| recv and MPI _| send can be combined into either
MPI _Put or MPl _Get operations. Thethird step of the algorithm requiresasimple MPl _W n_f ence call, replacing the
MPI _Wai tall inFigure5.9.

Page 154

To use the RMA routines, we must first define an MPI window object in which the data will be moved (with either MPI _ Put
or VPl _Cet). The following code creates a window where each local window isthe (local part of the) mesh, including the
ghost cells:

i nteger sizedouble, ierr, wn
doubl e precision A(O: nx+1,s-1:e+l)

call MPI _TYPE_SI ZE(MPI _DOUBLE_PRECI SI ON, sizedouble, ierr)
call MPI _WN CREATE(A, (nx+2)*(e-s+3)*sizedouble, sizedouble, &
MPI I NFO NULL, MPI _COWM WORLD, win, ierr)

The code to use RMA to exchange ghost-cell valuesis shown in Figure 5.10. The displacements at the targets are offset by one;
thisis necessary to skip the first ghost cell on the left. It correspondsto a(0, s- 1) anda(0, e+1) whichisused to store the
boundary conditions and does not need to be transferred (note that the point-to-point version in Figure 5.9 sent and received
witha(1, *)). Note that we can store into A both with MPl _Put and read values from A; we don't need separate windows for
the different parts of A. However, if we wanted to both store into A with statementssuchasA(i,j) =...andwithMPl _Put ,
we must either separate the stores into the local window and the MPlI _Put operationswithaMPl _W n_f ence or put the
parts of A that we access with MPI _Put into separate MPI window objects.

The RMA codein Figure 5.10 is very similar to the point-to-point version in Figure 5.9. We have replaced two send-receive
pairs with two MPl _Put operations, and we have replaced the MPI Wi t al | on four requests with asimple

MPI _W n_f ence. Themgor differenceisthat thereisan MPI _W n_f ence at the beginning of the code to indicate that
local storesto A must complete and that RMA operations can now take place.

Deter mining the Target Displacement

In the example above, the first MPI _Put call appearsto take the leftmost edge of the mesh on the calling process and put it

into the rightmost ghost edge of the destination (or target) process. But doesit? In the example, the displacement for the target
window (ri ght _ghost _di sp) iscomputed by using the local process's window. In other words, the code computes the

location of the right ghost cellson process| ef t _nbr using the calling process's parameters. As Figure 5.11 shows, this

strategy can lead to errors if each process does not have an identically sized mesh. In our example, if the values of sand eare
not the same on all processes, the wrong value of ri ght _ghost _di sp will be computed.

Page 155

subroutine exchngl(a, nx, s, e, wn, &
bottom nbr, top_nbr)
use npi
i nteger nx, s, e
doubl e precision a(0:nx+1, s-1: e+1)
i nteger win, bottomnbr, top_nbr
i nteger ierr
i nt eger (ki nd=MPI _ADDRESS_KI ND) bottom ghost _di sp, top_ghost _disp

call MPI_WN_FENCE(O, win, ierr)
I Put bottom edge into bottom neighbor's top ghost cells
I See text about top_ghost _disp
top_ghost _disp = 1 + (nx+2)*(e-s+2)
call MPI_PUT(a(1,s), nx, MPI_DOUBLE PRECI SION, &
bottom nbr, top_ghost_disp, nx, &
MPI _DOUBLE_PRECI SION, win, ierr)

I Put top edge into top neighbor's bottom ghost cells

bott om ghost _disp =

call MPI_PUT(a(1,e), nx, MPlI_DOUBLE _PRECI SI ON, &
top_nbr, bottom ghost _disp, nx, &
MPI DOUBLE PRECI SION, win, ierr)

call MPI_WN_FENCE(O, win, ierr)

return

end

Figure 5.10
Code using RMA to exchange ghost cell values

To obtain the correct target displacement for the ghost cells on the right edge of the neighbor’'s mesh, it may be necessary to
communicate this information to the process that is performing the MPl _Put operation. The easiest way to do thisiswith

point-to-point message passing: as part of the process of setting up the windows and preparing to communicate, every process
sendsto its right neighbor the value to use for the target displacement in the MPI _Put . Thiscodeis shownin Figure 5.12. The

oneinthe expression for my_t op_ghost _di sp putsthe displacement at the first ghost point in the mesh (skipping the mesh
point representing the boundary).

An dternative approach is to communicate the mesh parameters s and e; then the appropriate displacements can be computed.
We have shown the communication of the displacementsto illustrate the general case and the care that must be taken when
communicating data of type MPl _Ai nt or MPl _ADDRESS_KI ND integers.

Page 156

’/dlsp=‘l+l¢‘3=43
1234.56?391{1111213

[TITT[T[

N

INEEEEEEEEEEE

Correct target offset (disp=1+14"4=57) ?nst Cells
| 1

{
i SEEEEEEEEEES /f

R LT T T

\

Targat offset based on origin process (disp=43)

Figure5.11
Illustration of the different target displacements needed when each local
mesh is of adifferent size

i nt eger sizedouble, ierr, wn

i nteger ny_top_ghost _disp

i nteger top_ghost disp_int

i nt eger (ki nd=MPI _ADDRESS KI ND) top_ghost _disp
doubl e precision A(0:nx+1, s-1: e+1)

call MPI _TYPE_SIZE(MPI _DOUBLE_PRECI SI ON, sizedouble, ierr)

call MPI _WN CREATE(A, (nx+2)*(e-s+3)*sizedouble, sizedouble, &
MPl | NFO NULL, WMPI_COWM WORLD, win, ierr)

I Conpute the displacenent into ny top ghost cells

ny_top_ghost _disp = 1 + (nx+2)*(e-s+2)

call MPI _SEND(mny_top_ghost _disp, 1, MPI _INTEGER, right_nbr, &

0, MPI _COW WORLD, ierr)
call MPI _RECV(top_ghost _disp_int, 1, Ml _INTEGER, |eft_nbr, &

0, WMPI_COW WORLD, status, ierr)
I Since | NTEGER may not be the sane as an MPlI _ADDRESS Kl ND i nt eger
top_ghost _disp = top_ghost _disp_int

Figure 5.12
Code to send to neighboring processes the displacement values to be used in MPI _Put operations

Page 157

Table5.11
C binding for routine to return the MPI datatype corresponding to a Fortran integer with r digits and for the routine to return a
datatype of a particular size

int MPI _Type create f90 integer(int r, Ml _Datatype *new ype)

int MPl_Type_match_size(int typeclass, int size, MPI_Datatype *type)

More on the Target Displacement

The type of the target displacement is| NTEGER (ki nd=MPI _ADDRESS_KI ND) in Fortran, MPl _Ai nt inC, and MPI : :
Ai nt in C++. Unfortunately, no native MPI datatype corresponds to the type MPl _Ai nt or | NTEGER
(ki nd=MPI _ ADDRESS_KI ND) . In many cases, as shown above, one can use an | NTEGERin Fortranor ani nt orl ong in

C and C++ to communicate target displacements between processes. Care must be taken, however, to pass the correct type of
integer inthe call to MPI _Put . Thisis especially important in Fortran when not using the MPI module, since type mismatches

will not be caught by the compiler.

The following code shows how to create a datatype that may be used to send values of type
| NTEGER (ki nd=MPI _ADDRESS KI ND) for Fortran:

i nteger (ki nd=MPI _ADDRESS KI ND) sanpl e
i nteger address_type, r, ierr

r = DA TS(sanpl e)
call MPI _TYPE CREATE F90 | NTEGER(r, address _type, ierr)

Thefunction DI G TS isalFortran intrinsic function that provides the number of digitsin avariable. The MPI routine

MPI _Type_create_f90_i nt eger returnsthe predefined MPI datatype that has the specified number of digits. Since this
is apredefined MPI datatype, you must not free the datatype nor commit it with MPl _Type_comnmi t . The bindings for

MPlI _Type create f90_integer areshowninTables5.11, 5.12, and 5.13.

InCand C++, MPl _Type_nmmat ch_si ze can be used to return a predefined MPI datatype with a specific size. This function
takes two input arguments: the typeclass of the datatype, which may have values

MPI _TYPECLASS REAL, MPI_TYPECLASS | NTECER, and MPI _TYPECLASS COWPLEX, and the size (in bytes) of
the desired variable. The output value is areference to a predefined MPI datatype. This datatype must not be freed. For
example, to find an MPI datatype in C++ that correspondsto MPI : : Ai nt , the following code may be used:

Page 158

Table5.12
Fortran binding for routine to return the MPI datatype corresponding to a Fortran integer with r digits and for the routine to

return a datatype of a particular size

MPl _TYPE_CREATE_F90_I| NTEGER(r, newtype, ierror)
integer r, newype, ierror

MPI _TYPE_MATCH_SI ZE(t ypecl ass, size, type, ierror)
i nteger typecl ass, size, type, ierror

Table5.13
C++ binding for routine to return the MPI datatype corresponding to a Fortran integer with r digits and to return a datatype of

aparticular size
MPI : : Dat at ype MPI:: Datatype:: Create_f90_integer(int r)

WPl :: Dat at ype MPI:: Datatype:: Match_size(int typeclass, int size)

newtype = MPI:: Datatype:: Match_size(MPl:: TYPECLASS | NTEGER,
si zeof (MPI:: Aint)

In a heterogeneous environment, neither MPl _Type_creat e_f 90_i nt eger nor MPl _Type_rmmat ch_si ze should be

used because systems of different type may return different MPI datatypes. In that case, your best bet is to find an integer type
whose sizeis at least aslarge as asthe size of char * and use that integer type when sending displacements. Alternatively, if

the C or C++ implementation supportsthel ong | ong type, you can use that, taking advantage of therulein C that si zeof
(1 ong | ong) isat least aslarge as the size of any other integer type, and is almost always large enough to hold a pointer.
The MPI datatype that correspondswith | ong | ong isMPl _LONG_LONG _| NT4 (in C++, MPI : LONG_LONG) . Make sure
that you send avariable of the correct type. MPl _LONG_LONG | NT should not be used to send data declared as MPI _Ai nt
because| ong | ong may belonger than an MPI _Ai nt .

An Alternative to Sending Displacements

In the example above, we had to send the displacement value needed for the MPI _Put operation for the ghost cells on the top
edge because the displacement needed at the origin process (the process calling MPI _Put) , in the general case, might not be
easy to caculate. Thereis

4MPl _LONG _LONGisusedin[79] but is not in the Standard, except in the 1/0O chapter where the external 32 format is being
defined. MPI implementations are likely to accept both, butMPl _LONG_LONG _| NT isamore portable choice, because that
MPI datatypeis part of MPI-1.

Page 159

subroutine exchngl(a, nx, s, e, wn, &
bottom nbr, top_nbr)

use np

integer nx, s, e

doubl e precision a(0: nx+1,s-1: e+l)

i nteger win, bottomnbr, top_nbr

i nteger ierr

call MPI _WN FENCE(O, win, ierr)
I Get top edge fromtop neighbor's first colum
call MPI_GET(a(1,e+l), nx, MPI_DOUBLE PRECI SION, &

top_nbr, nx + 1, nx, MPI_DOUBLE PRECI SION, win, ierr)
I Put bottom edge into bottom nei ghbor's ghost cells
call MPI_PUT(a(1,e), nx, MPI_DOUBLE PRECI SION, &

bottomnbr, 1, nx, MPI_DOUBLE PRECI SION, win, ierr)
call MPI_WN_FENCE(O, win, ierr)

return
end

Figure 5.13
Alternative code for exchanging ghost cells that mixes puts and gets

an alternative to this approach. Instead of putting datainto ghost cells only on remote processes, we can put data into the ghost
cells of the process on the top, starting at a displacement of one, and we can get the ghost cells for our part of the grid on the
bottom edge by getting grid data from the first column of the process on the bottom. That is, for the ghost values, we can put
into the bottommaost row (displacement of one), and for the top ghost cells, we get from the first row (displacement of (nx+2)

+1 double-precision values). The routine that we use to get the datais MPl _Get , and the code for thisis shown in Figure 5.13.

Note that we can use both MPI _Put and MPI _Get operations on the window. We can do this because the memory locations
being accessed as targets of the MPI _Put and MPI _Get operations do not overlap (see Section 5.7.3 and Section 4.7 of [27]).
Also note that there is no explicit referenceto thel ef t _nbr in the above code: the "get from right neighbor" replaces the
"put to left neighbor."

Playing with the Displacement Unit

In our example, we used a displacement unit of sizedouble, the number of bytesin a DOUBLE PRECI SI ON dataitem. Thisis
the most obvious choice, but there are others. One choiceisto make the dis-

Page 160

placement unit the size of an entire row® of A, rather than asingle element of A. If the window is defined with a displacement
unit of (nx+2) *si zedoubl e, then the offset that isused in MPl _Put isjust the row number. In other words, instead of
(nx+2) *(m+1) , wecan use simply m+1. If we do this, however, we must send an extra element, not just the interior part (e.
0., we must send nx+1 values starting from a(0, m) rather than nx values starting from a(1, nj . Even the need to send nx+1
elements instead of nx elements can be avoided by a careful definition of the local window; we leave that as an exercise for the
reader.

Using Datatypes

The simple one-dimensional decomposition is not scalable to alarge number of processes. In that case, it isimportant to use a
higher-dimensional decomposition. In the case of our two-dimensional mesh, we might declare the local mesh as

doubl e precision a(sx-1:ex+1, sy-1:sy+1)

Thisincludes ghost cells on all four sides. When sending the top and bottom row of ghost cells, we can use essentially the same
code as before. However, for the left and right edges, the datais not contiguous in memory. Thisis a perfect place to use MPI
datatypes, specifically the MPl _Type_vect or routine to construct a datatype for columns of the local mesh. The code to
construct the window object and the datatypes for the columnsis shown in Figures 5.14 and 5.15. Just as in the previous cases,
we also need to send the offsets to be used as the target displacements and the strides needed for the target datatypes (if every
local mesh has exactly the same size, we can dispense with this step; we include it to show what is needed in the general case).

With the window object and datatype for a row defined, we can now write the code to fill the ghost cells on all four sides (this
isassuming a five-point stencil). The code is shown in Figure 5.16. In aFortran 90 environment, the variables describing the
displacements and datatypes to use for the neighbors could be placed in a derived type, much as a C programmer would put
them into a structure.

Perfor mance | ssues

Using MPI datatypesis certainly the clearest and simplest approach and offers the possibility of good performance. In practice,
unfortunately, many MPI implementations do not provide high performance when using derived

5 Recall that we have defined arow of the array a as arow of the mesh, that is, the elements corresponding to constant y value.
Readers who are used to the matrix interpretation of two-dimensional arrays are reminded that the jth row of the mesh,
corresponding to y;, isa(: , j) , which in the matrix interpretation of a, is acolumn. We use the mesh interpretation because no

matrices are involved in our example.

Page 161

i nteger win, sizedouble, ierr

i nteger (kind=MPI _ADDRESS KI ND) right_ghost_disp, &
| eft _ghost _di sp, top_ghost _disp

i nteger ny_right _ghost _disp, ny_|eft _ghost disp, &
ny_top_ghost _disp, right _ghost disp_int, &
| eft _ghost _disp_int, top_ghost _disp_int

doubl e precision a(sx-1:ex+1,sy-1:ey+1)

I nx is the nunber of (non-ghost) values in x, ny iny

nx = ex - sx + 1

ny = ey - sy +1

cal |l MPI_TYPE_SI ZE(MPI _DOUBLE PRECI SI ON, sizedouble, ierr)

call MPI _WN CREATE(a, (ex-sx+3)*(ey-sy+3)*sizedouble, &

si zedoubl e, MPI _I NFO_NULL, MPI_COWM WORLD, &
win, ierr)

I Exchange informati on on the offsets

I Conpute the displacenent into my right ghost cells

ny_right_ghost_disp = 2*(nx+2)-1

call MPI _SEND(ny_right _ghost _disp, 1, MPI_INTEGER, right_nbr, &
0, MPI_COVM WORLD, ierr)

call MPI _RECV(right_ghost_disp_int, 1, MPI _INTEGER, left_nbr, &
0, MPI _COW WORLD, status, ierr)

I Conpute the displacenent into my top ghost cells

my_top_ghost _disp = (nx + 2)*(ny + 1) + 1

call MPI _SEND(mny_top_ghost disp, 1, MPI _INTEGER, top_nbr, &
0, MPI_COVM WORLD, ierr)

call MPI _RECV(top_ghost _disp_int, 1, MI _INTEGER, bottomnbr, &
0, MPI _COW WORLD, status, ierr)

I Conpute the displacenent into nmy |left ghost cells

my_left ghost disp = nx + 2

call MPI _SEND(my_left_ghost_disp, 1, MPI_INTEGER, I|eft_nbr, &
0, MPI_COVM WORLD, ierr)

call MPI _RECV(left_ghost_disp_int, 1, MPI_INTEGER, right_nbr, &
0, MPI_COW WORLD, status, ierr)

I Just in case INTEGER is not the same as MPI _ADDRESS KI ND i nt eger

ri ght _ghost disp ri ght _ghost disp_int

t op_ghost _di sp top_ghost _di sp_i nt

| eft _ghost _di sp | eft _ghost _di sp_int

Figure5.14
Code to exchange displacement values in preparation for using MPI _Put in the examplein Figure 5.16

Page 162
i nteger coltype, left _coltype, right _coltype

I Vector type used on origin

call MPI_TYPE_VECTOR(1, ny, nx+2, MPI_DOUBLE PRECI SION, &
coltype, ierr)

call MPI _TYPE COW T(coltype, ierr)

I Exchange stride informati on needed to build the left and right
I col types
call MPI _SENDRECV(nx, 1, MPI _INTEGER, left _nbr, 2, &
right_nx, 1, MPI_INTEGER, right_nbr, 2, &
MPI _COWM WORLD, status, ierr)
call MPI _SENDRECV(nx, 1, MPI_INTECGER, right_nbr, 3, &
left _nx, 1, MPI INTEGER, |eft _nbr, 3, &
MPI _COWM WORLD, status, ierr)
call MPI _TYPE VECTOR(1, ny, left _nx + 2, MPI_DOUBLE PRECI SI ON, &
left _coltype, ierr)
call MPI _TYPE COWM T(left _coltype, ierr)

call MPI_TYPE VECTOR(1, ny, right_nx + 2, MPI_DOUBLE PRECI SI ON, &
right _coltype, ierr)
call MPI _TYPE COW T(right _coltype, ierr)

Figure 5.15
Code to create vector datatypes to be used at the origin and at the targets in the example in Figure 5.16

datatypes for communication [33]. If the highest performance is required, it may be necessary to avoid the use of derived
datatypes. In this case, there are two approaches.

Thefirst isto move the data into a buffer, collecting the datafrom arow in A into contiguous memory locations. For example,
to move the top row of A into a buffer on the neighboring process, the code in Figure 5.17 code could be used. This approach
replacesthe single MPl _Put call that usesthe col t ype datatype. Note that it uses a different window object, wi nbuf , from
that used to move columns of A. Thisrequires a separate set of MPl _W n_f ence calls.

An dternativeisto put all of the ghost cells into contiguous memory locations, even the ones that were moved into columns of
A. That is, rather than put the ghost cellsin A, we put them into a different array, aghost. This array has 2* nx+2* ny elements.

We can create the window with the following code:

i nteger wi nbuf, ierr

Page 163

subroutine exchng2(a, sx, ex, sy, ey, win, &
| eft _nbr, right_nbr, top_nbr, bot_nbr, &
right _ghost disp, left _ghost _disp, &
top_ghost _di sp, coltype, right _coltype, left_coltype)
use np
i nteger sx, ex, Sy, ey, win, ierr
integer left_nbr, right_nbr, top_nbr, bot_nbr
i nteger coltype, right_coltype, left_coltype
doubl e precision a(sx-1:ex+1,sy-1:ey+1)
i nteger (kind=MPI_ADDRESS KI ND) right_ghost_disp, &
| eft _ghost _disp, top_ghost_disp, bot_ghost_disp
i nt eger nx

nx = ex - sx + 1

call MPI _WN FENCE(O, win, ierr)

I Put bottom edge into bottom nei ghbor's top ghost cells

call MPI_PUT(a(sx,sy), nx, MPI_DOUBLE_PRECI SION, bot_nbr, &
top_ghost _di sp, nx, MPI _DOUBLE PRECI SION, &
win, ierr)

I Put top edge into top neighbor's bottom ghost cells

bot _ghost _disp =1

call WPl _PUT(a(sx,ey), nx, MPI_DOUBLE PRECI SION, top_nbr, &
bot _ghost _di sp, nx, MPI_DOUBLE_PRECI SION, &
win, ierr)

I Put right edge into right neighbor's |eft ghost cells

call MPI _PUT(a(ex,sy), 1, coltype, &
right_nbr, left_ghost _disp, 1, right_coltype, &
win, ierr)

I Put left edge into the left neighbor's right ghost cells

call MPI _PUT(a(sx,sy), 1, coltype, &
| eft _nbr, right_ghost_disp, 1, left_coltype, &
win, ierr)

call MPI_WN_FENCE(O, win, ierr)

return

end

Figure 5.16
Code to exchange ghost values for atwo-dimensional decomposition of the mesh

Page 164

I Create a special wi ndow for the ghost cells

call MPI _W N_CREATE(abuf, . . ., winbuf, ierr)
ny = ey - sy +1
do i =1, ny
buf (i) = a(l,i-sy+1)
enddo

call MPI _W N _FENCE(O, winbuf, ierr)
call MPI _PUT(buf, ny, WMPI_DOUBLE PRECI SION, top_nbr, &
0, ny, MPI_DOUBLE PRECI SI ON, wi nbuf, ierr)
. simlar code for the bottom edge
call MPI _WN FENCE(O, winbuf, ierr)
code to unpack the data in the local nmenory to the ghost
cells

Figure 5.17
Code to move ghost cell data without using derived datatypes but using a second window object

doubl e precision aghost (MAX_GHOST)

nx = ex - sx +1
ny = ey - sy +1
I MAX GHOST nust be at |east 2*nx + 2*ny
call WPl _TYPE_SI ZE(MPI _DOUBLE_PRECI SI ON, sizedouble, ierr)
call MPI _W N_CREATE(aghost, (2*nx+2*ny)*sizedouble, &
si zedoubl e, MPI _I NFO NULL, &
MPI _COVM WORLD, wi nbuf, ierr)

Figure 5.18 shows the corresponding code to collect datainto buffer arrays and then move it with MPI _Put . Note that two
separate local buffer arrays, buf 1 and buf 2, are used. Recall that RMA data movement operations (MPl _Put here) are all

nonblocking in the MPI sense. That is, the data buffer must not be modified until the operation completes. Thus, just as
separate buffers are needed for MPI _| send, they are needed for the MPI _Put calls here.

For unstructured grid problems, a dight variation of the separate ghost array isto put all of the "ghost" points at the end of the
local array.

5.6.2—
Combining Communication and Computation

In many applications, acommon step is to receive data and then combine that data with other local datawith asimple
operation, such as addition. We saw asimple

Page 165

call MPI_WN_FENCE(O, winbuf, ierr)
I Put bottom edge into bottom nei ghbor's ghost cells
nx = ex - sx + 1
cal | MPI_PUT(a(sx,sy), nx, MPI_DOUBLE_PRECI SI ON, &
bottomnbr, 0, nx, MPI_DOUBLE PRECI SI ON, wi nbuf, ierr)
I Put top edge into top neighbor's ghost cells
cal |l MPI_PUT(a(sx,ey), nx, MPI_DOUBLE PRECI SI ON, &
top_nbr, nx, nx, MPI_DOUBLE PRECI SI ON, w nbuf, ierr)
I Put left edge into |left neighbor's ghost cells
ny = ey - sy +1
do i=sy, ey
buf 1(i-sy+1) = a(sx,i)
enddo
call MPI_PUT(bufl, ny, MPI_DOUBLE PRECI SION, &
left _nbr, 2*nx, ny, MPI_DOUBLE PRECI SION, &
wi nbuf, ierr)
I Put right edge into right neighbor's ghost cells

do i=sy, ey
buf 2(i-sy+1) = a(ex,i)

enddo

cal | MPI_PUT(buf2, ny, MPI_DOUBLE_PRECI SION, &
right _nbr, 2*nx+ny, ny, MPI _DOUBLE PRECI SI ON, &
Wi nbuf, ierr)

call MPI _WN FENCE(O, winbuf, ierr)

use data in aghost

Figure 5.18
Code to exchange ghost cell information in a 2-d decomposition without using derived datatypes

example of thisin Section 2.3.2, where Ttwas computed using RMA routines. In this section, we consider a slightly more
elaborate example: forming a matrix-vector product with the matrix and the vector distributed across two processes.

We can write this as follows, with the lines indicating the division of data among the two processes.

ﬂ) a"‘“” | flll]) (i)
w - Aw | Ap 1y

We can expand this to show the four separate matrix-vector multiplications:

Page 166

Assume that process 0 has w,, v, and the first block column of A: Ay, and A, and that process 1 hasw;, v;, and the second
block column of A: Ay and Aq;. Process 0 can thus compute #; = Aggrg and] = A,,u,; process 1 can compute

ty = Apyvy and £} = Ayw. Thetemporary ¢ stands for the result on the jth process of multiplying the ith block of the
matrix times the ith block of the vector. The computation of wis then

we = g+t

o= E.l] + !,:
where the superscript on t indicates which process computed the value.

If this was implemented with message passing, the natural approach would ook something like the following for process 0, and
where there are only two processes.

doubl e t[2][VEC SI ZE], buf[VEC SI ZE], W VEC S| ZF] ;
each process conputes ¢rank for i = 0, 1.
if (rank == 0) {
/1 Send ¢ = t[1] to process 1
req[0] = MPI::COW WORLD. Isend(t[1], n, MPI::DOUBLE, 1, 0);
/! Receive ¢, fromprocess 1 into buf
req[1] = MPI:: COW WORLD. I recv(buf, n, MPI::DOUBLE, 1, 0);
/1 We can also use req[O0].Waitall() or
/1 even MPI::REQUEST NULL.Waitall().
MPl :: Request::Waitall(2, req);
for (i=0; i<n; i++) Wi] =1t[0][i] + buf[i];
}

We have seen how to replace the message-passing part of this code with RMA operations. However, thisinvolves moving the
dataint[] twice: once from process 1 to process 0, ending up in the temporary vector buf , and then once more asit is loaded

and addedtot [0] inthefor-loop. This can be inefficient. Each time datais moved, the opportunity islost to do some
computing. It would be better to move thedataint and immediately add it to s to form w.

MPI-2 provides away to accomplish amove and combine as a single operation. The routine MPl _Accunul at e allows data
to be moved and combined, at the destination, using any of the predefined MPI reduction operations, such as VPl _SUM The
argumentsto MPl _Accunul at e have the same form asfor MPI_Put, with the addition of an MPI _Qp op argument. The
bindingsfor MPI _Accumnul at e are shown in Tables 5.14, 5.15, and 5.16.

Page 167

Table5.14
C bindings for RMA accumulate routine

int MPI _Accunul ate(void *origin_addr, int origin_count,
WPl _Datatype origin_datatype, int target_ rank,
MPI _Aint target_disp, int target_count,
MPI _Dat atype target datatype, MPI _Op op, MPI_Wn wn)

Table5.15
Fortran bindings for RMA accumulate routine

MPI _ACCUMULATE(ori gi n_addr, origin_count,origin_datatype, target_rank,
target _disp, target count,target datatype, op, win, ierror)
<type> origi n_addr (*)

i nt eger (ki nd=MPI _ADDRESS _KI ND) target _disp
i nteger origin_count, origin_datatype, target_rank, target_count,
target datatype, op, win, ierror

Table5.16
C++ bindings for RMA accumulate routine

void MPl::Wn::Accumul ate(const void* origin_addr, int origin_count,
const MPI::Datatype& origin_datatype, int target_rank,
Aint target_disp,int target_count,
const Dat atype& target datatype, const p& op) const

Using MPI _Accurul at e, we can replace the message passing and remove the for-loop, as shown in the following code
(again, thisisfor process 0):

MPl::Wn wn;
/] Create a window with w
win = MPl::Wn_create (w, n*sizeof (doubl e), sizeof(double),
MPI @ | NFO_NULL, MPI:: COMM WORLD);
if (rank == 0) {
/1 compute ¢ in wand ¢ in buf

// Add this value to w on the renote process

win. Fence(0);

wi n. Accurmul ate(buf, n, MPI::DOUBLE, 1, 0, n, MPI::DOUBLE,
WPl :: SUM) ;

Page 168

wi n. Fence(0);

}

MPI _Accurul at e isnot quite as general asthe MPI_1 collective computation routines

(MPlI _Reduce, MPI _Allreduce, MPlI_Reduce_scatter,andMPl _Scan) because only the predefined reduction
operations, such as MPl _SUMand MPI _LAND, are allowed. User-defined operations may not be used with

MPI _Accunul at e. Thisrestriction was made by the MPI Forum to allow and encourage more efficient implementations of
MPI _Accunul at e. In addition, there are restrictions on the datatype arguments. It is always correct to use the basic MPI
datatypes.

Concurrent Updates Using Accumulate

Now consider the case where there are more than two processes. If there are p processes, then the result w; on the ith processis
computed from the local contribution A;;v; and p — 1 contributions from the other p — 1 processes. With message passing® (e.g.,
MPI _I send and MPI _I r ecv) , or the RMA routines MPl _Put , and MPl _Get , one buffer is needed to receive data from
each process that is contributing data. With MPl _Accurul at e, each process can contribute directly to the result vector w, as
shown below:

doubl e t [MAX_RANK] [MAX_ VEC];

MPl::Wn wn;

/] Create a window with w

win=MI::Wn_create(w, n*sizeof (double), sizeof(double),
MPI ;0 I NFO_NULL, MPI:: COVM WORLD);

/1 conpute gre=* in t[i] and " in w

/1l Add this value to w on the renote process

wi n. Fence(0);

for (i=0; i<p; i++) {

if (i !'= myrank)
Wi n. Accurrul ate(t[i], n, MPI::DOUBLE, i,

0, n, MPI::DOUBLE, MPI::SUM);

}

wi n. Fence(0);

A special operation allowed for MPl _Accunul at e isMPl _ REPLACE. The effect of this operation is to replace the value at
the target with the value provided on the origin process. We do not need this operation for this example, but it can come

6 See Section 7.3.2 in Using MPI [32] for how this can be implemented with MPI _Reduce_scatter.

Page 169

in handy. In addition, it emphasizes that the MPI _Accurul at e function isthe only one of the three RMA operations that
may be used to update the same locations in a memory window with multiple calls without separating the calls with an

MPI _W n_f ence (or other window synchronization routine). The next section helps us understand the reason for this, as well
as the rules for when amemory location may be accessed with RMA operations and when with local 1oads and stores.

5.7—
Pitfallsin Accessing Memory

In order to understand the rules for access to datain memory windows, that is, when can one use an RMA operation and when
alocal load or store, it is necessary to consider in more detail what might happen when datain memory is referenced. The
issues here are quite subtle; it isimportant to remember that the MPI Standard is designed to be implementable on awide range
of hardware platforms, even those that do not have any hardware support for shared- or remote memory operations.
Understanding the reasons for the rules in this section often requires thinking of things that can go wrong, asin the examplesin
Section 4.3.

57.1—
Atomicity of Memory Operations

When can a program access a variable with local load or store? That is, when can the operations for using avalue in avariable
(load) or assigning avalue in avariable (store) be used without interfering with RMA operations? Consider the code in Figure
5.19. What isthe value of b[2] at the end of the code?

A number of possibilities arise. The most obviousisthat b[2] iseither thevalue1/ 3 or 12. 0. But that assumes that either b
[2] = 1./3.orthatthe MPl _Put for b[2] succeeds completely, that is, that either one of the operations to store avalue
into b[2] succeeds, and the other does not. Unfortunately, that may not be what happens within the computer (this also applies
to shared-memory programming, by the way). For example, assume that the hardware moves only four bytes at atime and that
adoubleis eight byteslong. Then putting a value into b[2] will require two separate operations by the computer hardware. In
the code in Figure 5.19, there are four possibilities for the result, not two, depending on the order in which each of the two parts
of b[2] are stored. These four possibilities are shown in Figure 5.20.

This example may seem alittle contrived, since many computers will guarantee to store even an eight-byte doubl e or
DOUBLE PRECI SI ONinasingle operation. But

Page 170

/[* This code is erroneous */
doubl e b[10];

for (i=0; i<10; i++) b[i] =rank * 10.0 + i;

MPI _Wn_create(b, 10*sizeof (double), sizeof (double),
MPI | NFO NULL, MPI _COWM WORLD, &win);

MPI _Wn_fence(0, win);
if (rank == 0) {

b[2] = 1./3.;
}
else if (rank == 1) {

/* Store ny value of b into process 0's wi ndow, which is

process 0's array b */

MPI _Put(b, 10, MPI_DOUBLE, 0, 0, 10, MPI_DOUBLE, win);
}
MPI _Wn_fence(0, win);

Figure5.19
Example of conflicting put and store operations. This code is erroneous.

IFD55555 | 55555555 | AOZSONKD | CHOCODNND |
F ‘.\-\. _ ._r'/ !
/ A
& L) - | ,'} l -
rd 1 1 =
| AFDS555500000000) /S 4028000055555555
I I ra d
1 : . r'f N o
IF[5555555555555 A2 B OO R RO ;‘
Figure 5.20

The four possible results for b[2] in Figure 5.19. The dashed boxes show possible,
but incorrect, results. The box on the top left contains 1/3 (as a floating-point value)
and isthe value stored by process 0 in the example in Figure 5.19. The box on the top
right contains 12 (also in floating point) and is the value MPl _Put by process 1.

Page 171

even for double-precision complex values, two operations may be required. And for a structure, of course, a number of
operations will be required.

Thisillustrates an important point: Operations in a programming language that appear to be a single operation, such as a store
to avariable, an increment (e.g., i ++in C), or an array operation (e.g., A = 0 for an array A in Fortran, may not be asingle
operation in the hardware. Operations that are performed as a single operation, without any possibility of another operation
modifying the result of the operation, are called atomic, because they are the smallest, indivisible operations.

57.2—
Memory Coherency

Some computer systems do not even provide memory systems that are fully coherent. For example, datain cache (representing
acopy of datain memory) that is updated may not cause datain memory or in another cache (representing the same memory
address) to be updated before some other process references the same memory locations. Such systems are said to not have
coherent memory caches. Most computers today do provide coherent caches, but there are performance implications, and some
specia high-performance systems may trade memory coherency for greater performance. The MPI RMA is designed to work
with both memory coherent and incoherent systems; this promotes maximum portability but does introduce some restrictions to
alow relatively efficient implementation even when there is no hardware support for coherent memory.

57.3—
Some Simple Rulesfor RMA

We have seen that maintaining the consistency of memory when two different agents may modify aword can be difficult. On
some systems, sophisticated hardware is used to ensure that updates are atomic and memory is coherent and to give the
expected results. However, MPI is designed so that RMA can be used even when such hardware support is not available. In
order to accomplish this, certain rules must be followed when using the RMA operations. A complete descriptionisgivenin
the MPI-2 Standard, Section 6.7, and in [27], Section 4.7. In this section, we provide rules that are sufficient for writing correct
code, but may be dlightly stricter than required.

Also, asis clear from above, reading from memory with either local loads or MPl _Get islessrestrictive that writing to
memory with either local storesor MPI _Put and MPI _Accurul at e. For that reason, we divide the cases to consider into
whether the memory window merely is accessed (that is, MPl _Get and load) or is modified (that is,

MPlI _Put, MPI _Accunul at e, or store).

Page 172
Overlapping Put and Accumulate Operations

The targets of two MPI _Put operationsin the same destination window must not overlap. This rule prevents problems such as
the one illustrated in Figure 5.19 (but involving two put operations rather than a put and aloca store).

Notethat MPl _Accunul at e allows (and even encourages) overlapping operations. There are afew restrictions here as well.
When the targets overlap, both the basic MPI datatype (for example, MPl _I NT) and the operation (for example, MPI _SUM)
must be the same.

It is possible to make remote memory stores to overlapping locations by using the operation
MPI _REPLACE i n MPI _Accurmul at e. Note, however, that if two MPlI _Accunul at e operations are accessing the same

locations in the target window, MPI does not specify in which order they make their replacements. For example, if two
processes are making callslike this

MPI _Accunul ate(a, 2, MPI_DOUBLE, . . ., MPI_REPLACE);

then at the target, the location at displacement O may get the value from one process and the location at displacement 1 may get
its value from the other process. MPI guarantees only that the updates don't break a basic datatype.” Put and accumulate
operations between two MPl _W n_f ence calls must not overlap under any circumstances.

Local Storesand RMA Updates

Storesinto the local window and MPI _Put or MPI _Accurnul at e operations into that window must be separated by an
MPI _W n_fence call.

Local Loadsand RMA Get

Local loads and MPI _Cet operations may access any part of the window that has not been updated by an RMA update
(MPI _Put or MPI _Accumnul at e) or local store operation.

The Easy Rule

The simplest ruleis asfollows:

1. Do not overlap accesses on windows (except for MPl _Accunul at e) .
2. Separate non-RMA access from RMA accesswith MPl _W n_f ence.
Thisis stricter than required by MPI, but it is often easy to accomplish.

So far, we have referred only to MPI _W n_f ence astheroutine to use in separating RMA updates, accesses, local |oads, and
local stores. In the next chapter, we will

7" The MPI Standard refersto "locations' and says that the results may vary only as much as computer arithmetics are not
commutative or associative. This suggests the interpretation that we have used here, but the actual text is unclear.

Page 173
introduce some additional MPI routines that may be used to separate the accesses. In those cases, these same rules apply.

57.4—
Overlapping Windows

Itis possibleto have several MPI window objects whose local windows overlap. The rulesin MPI for using these windows are
very restrictive; seeitem 3, page 132, in [27], Section 4.7 (Semantics and Correctness). The restrictions were made by the MPI
Forum to allow for relatively efficient implementations on systems without hardware support for shared-memory coherency.
Because of the performance issues and the compl exities of the rules for correct use, we recommend avoiding the use of
overlapping windows.8

57.5—
Compiler Optimizations

Aswe saw in Section 4.3, when one process modifies datain another process, there is arisk that, because the compiler has
placed the variable into aregister, the modified result won't be seen by the target process. The simplest fix for thisin C and C+
+ (and in many Fortran implementations) is to declare the variable that isgivento MPl _W n_cr eat e asthelocal memory

window asvol at i | .9 For example, in the grid example, we might use

i nt eger sizedouble, ierr, wn
doubl e precision, volatile :: a(0:nx+1,s-1:e+l)

call WPl _TYPE_SI ZE(MPI _DOUBLE_PRECI SI ON, sizedouble, ierr)
call MPI _WN CREATE(a, (nx+2)*(e-s+3)*sizedouble, sizedouble, &
MPI _I NFO_NULL, MPI_COVM WORLD, win, ierr)

In addition, if the array A isthen passed to other routines, it may be necessary to declareit asvol at i | e in those routines as
well.

The approach of using vol at i | e hasits drawbacks, however. Most important, it forces the compiler to reload any element of
the variable from memory rather than using a previously loaded value that is already in aregister. This can cause a significant
lossin performance. Fortunately, there is awork-around. The key is that the MPI RMA operations (that are completed by

MPlI _W n_f ence) can update the local window any time between thetwo MPI _W n_f ence calsthat separate them

8 These rules are the reason that thereisno MPI _W n_dup, since aduplicated window object would involve overlapping
memory windows.

9 We will see shortly that for C/C++ and MPI _W n_f ence synchronization, vol at i | e isnot necessary.

Page 174

from other operations. Thus, a correct MPI program cannot rely on the updates happening beforethe MPI _W n_f ence that

completes the RMA operations. For C and C++ thisis enough: since the local window is an argument to the
MPI _W n_cr eat e routine that returned the window object, and the window object isan input to MPI _W n_f ence, theC

or C++ compiler must take into account the possibility that MPI _W n_f ence will accessthe local window through a pointer
stored in the window object. Thus, we do not need vol ati | e in C or C++ when using MPl _W n_f ence synchronization.
Note that we are not saying that MPl _W n_f ence actually performs the updates, only that it could do so. The C/C++

compilers must assume the same, and therefore reload the value of any part of the local memory window that isin the register
after thecall toMPl _W n_f ence.

The situation is different in Fortran. Fortran pointers are much more restrictive (to allow the compiler more flexibility in
generating code), and in this case the Fortran compiler will not conclude that MPI _W n_f ence might update the variable
providedto MPl _W n_cr eat e asthelocal memory window. Thereisasimple fix that the programmer can use. Consider the
routine

subroutine MPE_ W N FENCE(base, assert, win, ierr)
use npi

doubl e precision base(*)

i nteger assert, win, ierr

call MPI_W N_FENCE(assert, win, ierr)

end

If we call this routine from our Fortran program instead of just MPl _W n_f ence, passing it the same array (as base) that we
used with MPlI _W n_cr eat e, then the Fortran compiler will assume that we might have changed the variable base (the
local window), particularly if we define MPE_W n_f ence with the following interface definition:

| NTERFACE MPE_W N_FENCE
subrouti ne MPE_W N FENCE(base, assert, win, ierr)

doubl e precision, intent(inout) :: base(*)
integer, intent(in) :: assert, wn
integer, intent(out) :: ierr

end subroutine MPE W N_FENCE
END | NTERFACE

Page 175

58—
Performance Tuning for RM A Operations

MPI-2 provides a number of waysto aid an MPI implementation in performing RMA operations efficiently. This section
discusses how to specify special casesto MPl _W n_cr eat e and MPl _W n_f ence to alow the MPI implementation to
optimize the RMA operations.

58.1—
Optionsfor MPI _W n_create

The MPI _W n_cr eat e call has an info argument that can be used to provide hints to the MPI implementation. Thereis one
predefined hint: theinfo key no_| ocks, if set to true, states that thislocal window is never used with locks (see Section 6.2

for adiscussion of locks). None of the examplesin this chapter use locks. This hint may be used with any RMA code that uses
only MPI _W n_f ence for synchronization.

The following example shows how to use no_I| ocks with the info argument to MPl _W n_cr eat e.

MPI _Info info;

MPI _Info create (& nfo);

MPI I nfo_set(info, "no_l ocks", "true");
MPI Wn create(. . ., info, . . .);
MPI Info free(& nfo);

MPI implementations may ignoretheno_| ocks key; however, it never hurtsto provide thisinfo value when creating a
window object when locks are not used.

The MPI-2 Standard, in an "advice to users,” mentionsthat MPI _W n_f r ee internally requires a barrier to ensure that all
operations, from any source, have completed. This appliesin general, but not if every process involved in creating a window
setsno_| ocks tot r ue. Thus, while MPI _W n_f r ee is collective over al of the processes in the group that formed the
window object, it need not be a barrier.

Choice of Local Window

The memory in acomputer is organized into a hierarchy of elements, each with its own size. At the very top of the hierarchy
areregisters that hold a single word (often 32 or 64 bits) of data. The next level of hierarchy is usually one or more levels of
cache. Each level of cacheis made up of cache lines. Each cachelineis 4 to 128 (or more) bytes in length. Below the cache
memory are memory pages, which are typically 4K to 16K bytes (but may be larger) in size. Data motion in a computer usually
happensin units of these natural sizes. For example, datais moved between memory and cache in units of the cache line size.

Page 176
I T T I T T | | -
[int [int [i [int | it i |t [iee [i [iee |
| double [double | double | double | double |~-1
Cache Line

(a)
i cache line | cache ling cache line cache line cache ling .
| — _.“—P",;.l,gc S ,!____. I

(b)

Figure5.21

Alignments of dataitems. Part (a) shows how a basic datatypes such asint and double
fit into a cache line. Part (b) shows how cache lines fit into amemory page.

In addition, each larger item is aligned to begin at the start of the next smallest item. That is, a page always starts at the
beginning of a cache line, and a cache line always starts at the beginning of a memory word. Another way to say thisisthat a
smaller item never crosses a boundary between two larger items. Thisis shown in Figure 5.21. Note that the sizes and
aignments are all nested.

Some MPI implementations will be more efficient if the base address is aligned on one of these boundaries; aligning on a page
boundary will guarantee that the base addressis also aligned on word and cache boundaries. It may aso help if the size of the
local window is an exact multiple of the page size. This applies particularly to systems without hardware support for shared
memory.

On some Unix systems, C users may use menal i gn instead of mal | oc to get good data alignments for dynamically allocated
data. The page size can be determined with the Unix function get pagesi ze.10 One Unix system provides the function
val | oc, which returns memory aligned with the system page size.

Another option isto alocate the memory used for the local memory window with MPlI _Al | oc_nemand MPl _Free_nmem

Because these routines are required for memory used with RMA lock and unlock routines, we discuss both the
MPI _Al'l oc_nemand MPI _Fr ee_nemroutines with lock and unlock in the next chapter.

10 get pagesi ze returns the system page size, which may be different from the page size used by the hardware. However, the
system page sizeis likely to be agood size to use because the system will want to size and align pages for efficient operation.

Page 177

5.8.2—
Optionsfor MPI _W n_f ence

MPI _W n_f ence provides avery genera collective RMA synchronization, which makes it relatively simple to use. In the
general case, each call to MPI _W n_f ence will complete any RMA operations that were started since the last call to

MPI _W n_f ence. Inaddition, MPl _W n_f ence must ensure that any local load and store operations are also complete
before any RMA operations that follow the MPl _W n_f ence call access the memory window. Ensuring that everythingisin

order is potentially expensive; for example, it may require flushing caches or making a copy of the memory window. To allow
an implementation to optimize for cases where such operations are unnecessary because of the structure of the user's code, the
MPI _W n_f ence call hasan argument, assert , that allows the user to provide information to MPI about how much work

MPI _W n_f ence may need to perform. Theasser t argument can contain any combination of the following four values,
they can be combined using bitwise or (|) in C and C++ and integer addition in Fortran.

MPI _MODE NOSTORE. The local window was not updated by local stores (or local get or receive calls) since the last cal to
MPI _W n_f ence. Thisrefersto operations that occurred before the fence call.

MPI _MODE NOSTORE may be used, for example, for the ghost cells in a mesh computation, where the local window that

contains the ghost cellsis read only with local loads. Thisworks only if the ghost cells are all that is exposed, or if the entire
array is used as read only and writes are done to another array.

Consider the case where the datais read from the array b, the corresponding window iscalled wi n_b, and the datais
computed inthe array a; a isnot in amemory window (or not in an overlapping memory window, as discussed in Section
5.7.4). Since there are no stores to b between the two callsto MPI _W n_f ence, the MPI _MODE_NOSTORE assertion may be
used on the second call to VPl _ W n_f ence. Thisis shown below:

MPI _Wn_create(b, n*sizeof(double), sizeof(double),
MPI I NFO NULL, MPI_COVMM WORLD, &win_b);

MPI _Wn_fence(0, win_b);

MPlI _Put(buf, m WM _DOUBLE, nbr, 0, m Ml _DOUBLE, win b);
update array a using information in array b
EXCEPT for any ghost cells

Page 178

MPI _Wn_fence(MPI _MODE NOSTORE, win_ b);
update the parts of a that depend on the ghost cells
inb

MPI _MODE_NOPUT. The local window will not be updated by put or accumulate calls between this fence call and the next
fencecall.

Thisbasically says that no changes will be made by remote processes to the local window before the next fence call. The local
process can modify the datain the local memory window using stores. Another name for this mode could have been "no RMA
update.”

Thisflag can help implementations that do not have hardware support for memory coherency, by informing them that the
memory window will not be changed by any RMA operations (this includes hardware where a cache-flush might otherwise be
required to maintain correct operations).

MPI _MODE NOPRECEDE. The fence will not complete any sequence of RMA calls made by the process calling
MPI _W n_f ence. If thisassertion is given by any process in the window group, then it must be given by all processesin the

group. Thus, no RMA calls can be made by any process in the group of the window, on this window object, since the last
MPI _W n_f ence call. Thisrefers to the operations that occurred before the fence call. It used to state that no processin the

window object's group made any RMA calls on this window. In other words, there isn't anything to complete. Another name
for this mode could have been "no RMA completion.”

MPI _MODE_NOSUCCEED. No RMA calls will be made on this window between this fence call and the next fence call. If the

assertion is given by any process in the window group, then it must be given by all processesin the group. Thisis used to
indicate that following this fence, no RMA calls will be made by any process in this window object's group before the next
fence call. Another name for this mode could have been "no RMA start.”

The C++ names of these modes have the form MPI : : MODE_NOSTORE and so on.

These assert flags may be combined where it makes sense. As an example, the code in Figure 5.10 can be augmented with all
four of the assertion values:

call MPI _W N_FENCE(MPI _MODE_NOPRECEDE, win, ierr)
I Put bottom edge into bottom neighbor's top ghost cells
top_ghost _disp = 1 + (nx+2)*(e-s+2)

Page 179

call MPI_PUT(a(1,s), nx, MPI_DOUBLE PRECI SION, &
bottom nbr, top_ghost _disp, nx, &
MPI _DOUBLE_PRECI SION, win, ierr)
I Put top edge into top neighbor's bottom ghost cells
bottom ghost _disp =1
call MPI _PUT(a(1,e), nx, MPI_DOUBLE PRECI SI ON, &
top_nbr, bottom ghost disp, nx, &
MPI _DOUBLE_PRECI SION, win, ierr)
cal | MPI_WN_FENCE(MPI _MODE_NOSTORE + MPI _MODE NOPUT + &
MPI _MODE_NOSUCCEED, win, ierr)

Thefirst VPl _W n_f ence call does not complete any RMA operations, and so MPl _ MODE NOPRECEDE may be used. Note
that the window may have been updated by local stores; in fact, it almost certainly was, so MPI _ MODE _NOSTORE must not be
used in the first fence call.

The second fence call completes only RMA operations. Thus, MPI _ MODE _NOSTORE can be used. Since no RMA callsfollow
the fence, we can use VPl _ MODE NOSUCCEED. MPI _ MODE NOPUT is redundant here because MPlI _ MODE NOSUCCEED
states that there are no RMA calls of any kind between this fence call and the next one. MPI _MODE_NOPUT could be used
where MPl _Get operations were being made between two fence calls but no MPl _Put or MPI _Accurul at e operations.

Almost every use of MPI _W n_f ence can specify some assert values. It is good practice to specify assert values because it
alows the MPI implementation to optimize the performance of MPI _W n_f ence and because it forces the programmer to

examine closely how the MPI RMA operations are being used. Such examination will help detect any erroneous use of RMA
that violates the rules set forth in Section 5.7.

Page 181

6—
Advanced Remote Memory Access

This chapter introduces two new mechanisms for synchronizing and completing remote memory access (RMA) operations. The
first mechanism is called locks; locks allow one process to access a window in another process without the target process
making any RMA calls, providing for truly one-sided operations. The second mechanism is a scalable, noncollective alternative
toMPl _Wn_fence.

6.1—
Introduction

In the preceding chapter, we introduced MPI's remote memory access operations. One requirement of the RMA routines in that
chapter was the need for all processes that created awindow object to call MPl _W n_f ence to separate RMA operations

from local loads and stores and to complete RMA operations. In other words, while the individual MPI _Put, MPI _Get, and
MPI _Accurul at e operations are one sided and are called by a single process (instead of the two processes required to use
send-receive-style message passing), we required a collective operation MPl _W n_f ence to complete the RMA operations.
In this chapter, we will relax this requirement in two different ways.

6.2—
L ock and Unlock

In Chapter 5, both the origin and target processes of an RMA operation must call the MPl _W n_f ence to complete the RMA

call (along with al of the processes that are in the window object's group). Thisis called active target synchronization, because
the target is actively involved in the process. In many cases, however, a process may want to access data in aremote (target)
process without that process being required to call any MPI routines. Thisis called passive target synchronization. In MPI,
passive target synchronization is accomplished by using MPI _W n_I| ock and MPI _W n_unl ock at the origin process.

To perform a passive target RMA operation, you use MPI _Put, MPI _Get, and/or MPl _Accurnul at e, just aswhen using
active target synchronization. However, instead of surrounding the RMA callswith callsto MPl _W n_f ence, you begin the
sequence of RMA calswith MPl _W n_| ock and end the sequence of RMA callswith MPl _W n_unl ock. Thelock and

unlock operations apply only to a specific remote window (specified by arank), not the entire window object (that is, not all
ranks); the specific window isindicated by ar ank in the group of the window object. These two calls define an access epoch:

between MPI _W n_I| ock and VPl _W n_unl ock, a

Page 182

Table6.1
C binding for locks

int MPl_Wn_lock(int lock_type, int rank, int assert, MPI_Wn wn)

int MPIl _Wn_unlock(int rank, MPI_Wn w n)

Table6.2
Fortran binding for locks

MPI _W N_LOCK(Il ock_type, rank, assert, win, ierror)
i nteger |ock type, rank, assert, win, ierror

MPI _W N UNLOCK(rank, win, ierror)
i nteger rank, win, ierror

Table 6.3
C++ bhinding for locks

void MPl::Wn::Lock(int lock type, int rank, int assert) const

void MPlI::Wn::Unlock(int rank) const

process may access the memory window of aremote process. The bindingsfor MPl _W n_| ock and MPI _W n_unl ock are
shownin Tables 6.1, 6.2, and 6.3.

The name lock is an unfortunate one, as these MPI operations do not behave the way shared-memory locks do. Instead, they are
really "begin passive target access' and "end passive target access." Specifically, when referring to a remote window, all that
theMPl _W n_I| ock and MPI _W n_unl ock pair saysisthat the RMA operations between them will be complete when

MPI _W n_unl ock returns, and, depending on the lock type (see below), they may occur atomically with respect to other
accesses to the same remote memory window. We will discuss thisin more detail in Section 6.5. Only when referring to the
local window (that is, when the rank in the lock call isthe rank of the calling process in the window object's group) do these
routines behave like conventional locks. That is because, when using passive target synchronization, you must use

MPI _W n_| ock and MPI _W n_unl ock around accesses to your own local window to ensure that RMA operations from

other processes do not modify the data unexpectedly.

Page 183

int MPE_Bl ocking put(void *buf, int count, MPI_Datatype dtype,
int target _rank, MPI _Aint target offset,
int target_count, MPlI_Datatype target_dtype,
MPI _Wn win)

{
int err;
MPI _Wn_lock(MPI_LOCK SHARED, target_rank, O wn);
err = MPI _Put(buf, count, dtype, target_rank, target_offset,
target count, target _dtype, win);
MPI _Wn_unl ock(target_rank, win);
return err;
}
Figure 6.1

Blocking, independent (passive target) put operation

6.2.1—
I mplementing Blocking, I ndependent RMA Operations

The most elementary use of lock and unlock isto create a blocking version of the RMA data-movement commands that do not
require the target to make any MPI calls. To do this, we ssmply surround the RMA call with lock and unlock. Figure 6.1 shows
an implementation of a blocking put operation.

Theuse of MPI _LOCK SHARED allows several RMA operations to act on the same window (not just window object) at the

sametime. If it is necessary to ensure that only one RMA operation at atime can act on the target window,
MPI _LOCK EXCLUSI VE must be used. This guarantees that no other RMA operation has any access, either put, get, or

accumulate, to the window at the target process.

Put another way, MPI _LOCK SHARED is used when the purpose of the lock is simply to allow one or more RMA operation to

complete, independently of any action by the target or other process. When it is essential to guarantee atomic (undivided)
access to awindow on a particular process, MPI _LOCK _EXCLUSI VE must be used. We will seein Section 6.5 an example

where VPl _LOCK_EXCLUSI VE isrequired.

Note that when MPI _LOCK_SHARED is used, the user must ensure that no concurrent operations modify the same or
overlapping parts of the window, with the exception of multiple MPI _Accurul at e callsthat all use the same type signatures
and same operation (these are the same restrictions on MPl _Accunul at e asin the previous chapter). MPI _LOCK SHARED
should be used primarily with MPI _Get when there is no chancethat aMPl _Put or MPl _Accunul at e operation will be
changing

Page 184

the contents of the window.

Locksin MPI protect only the window at a specific rank within awindow object. This feature improves scalability: a
distributed data structure is thus protected by separate |ocks on each process.

6.3—
Allocating Memory for MPI Windows

In Chapter 5, any variable or memory location could be used as the local window for RMA operations. Passive target
operations, however, can be more difficult to implement. Realizing this, the MPI Standard allows implementations to restrict
the use of passive target RMA (that is, using MPl _W n_| ock and MPI _W n_unl ock) to memory windows that have been

allocated with MPlI _Al | oc_mem Thisroutine alocates si ze bytes of memory and returns a pointer to the alocated memory
inbaseptr.

6.3.1—
Using VPl _Al | oc_nmemfrom C/C++

The Cversion of MPI _Al | oc_nmemusesthetypevoi d * for the returned type, even though the actual parameter that must

be passed is the address of a pointer. This choice of binding makes it easier to pass the address of a pointer to a particular
datatype. For example, the following code allocates 10 doubles:

doubl e *d_ptr;
MPI _Alloc_men(10 * sizeof(double), MPl _INFO NULL, & ptr);

If the last formal argument wastyped asvoi d ** the third actual argument would need to be cast to that type:
MPl _Alloc_men{ 10, MPI _INFO NULL, (void **)& ptr)

The MPI Forum felt that the convenience of avoiding the extra cast outweighed the potential confusion in the binding, since
returning a pointer to ani nt , for example, requires an argument of type

i nt **. Thesameapproachisused by MPI _Buf f er _det ach, which aso returns a pointer, and in the copy callback
function used in attribute caching (see Section 9.4).

Theinfo argument is provided to allow the user to specify, for example, different locations or properties for the allocated
memory. For example, on a distributed-shared-memory machine such as an SGI Origin2000, specifying the node that should
contain the shared memory might offer performance advantages. The null value, MPlI _| NFO_NULL, is aways valid and will

be the only value that we will usein
Page 185

our examples. There are no predefined info keys for use with MPl _Al | oc_men implementations define the keys that they
support.

To free memory allocated with MPlI _Al | oc_mem one must use the routine MPI _Fr ee_nem The bindings for the memory
allocation routines are shown in Tables 6.4, 6.5, and 6.6.

6.3.2—
Using MPl _Al | oc_mnmemfrom Fortran

Fortran doesn't have pointers of the same kind that C and C++ do. However, some Fortran implementations provide an
extension, often referred to as " Cray pointers’ or "integer pointers,” that may be used. A "Cray pointer" isvery much likeaC
pointer rather than a Fortran 90 pointer. In the declaration, a"Cray pointer” is named, and the Fortran variable that the pointer
will point at is also named. The space for this second variable is not allocated. In the following example, the pointer is p and
the variableit pointstoisu(0: 50, 0: 20) .

doubl e precision u

poi nter (p, u(0:50,0:20))

i nteger (kind=MPI_ADDRESS KI ND) size

i nt eger sizeofdouble, ierror

I careful with size (rmust be MPI _ADDRESS Kl ND)

call Ml _SI ZEOF(u, sizeofdouble, ierror)

size = 51 * 21 * sizeofdouble

call MPI _ALLOC MEM size, MPlI_INFO NULL, p, ierror)

program may now refer to u, including passing it
to MPI _W N _CREATE

call MPI _FREE MEM u, ierror) ! not p!
Note that in MPl _Fr ee_nem the variable that the pointer points at, not the pointer itself, is passed.

If "Cray pointers' are not available, then the best approach is often to use a C program to allocate the array with
MPI _Al | oc_rmemand then pass this array as an argument to a Fortran routine.

6.4—
Global Arrays

As an example of how an existing high-level library for one-sided operations can be implemented using the standard MPI one-
sided operations, we consider the Global

Page 186

Table6.4
C bindings for memory allocation and deallocation routines. The pointer isreturned in basept r in MPl _Al | oc_nmem see

text.
int MPI _Alloc_mem(MPI _Aint size, MPI _Info info, void *baseptr)

int MPI _Free _men(void *baseptr)

Table 6.5
Fortran bindings for memory allocation and deall ocation routines.

MPI _ALLOC MEM si ze, info, baseptr, ierror)
integer info, ierror
i nteger (ki nd=MPI _ADDRESS KI ND) size, baseptr

MPI _FREE MEM base, ierror)
<type> base(*)
i nteger ierror

Table 6.6
C++ bindings for memory allocation and deallocation routines

void *MPI:: Al oc_nmen(Al nt size,const Info & nfo)

void MPl:: Free_nen(void *base)

Arrayslibrary [62, 63].

The Global Arrays library isa collection of routines that allows the user to define and manipulate an array that is distributed
across al processes of aparallel program. In the versions 1 and 2 of the Global Arrays library, the global array had two
dimensions, whose individual elements could be of i nt eger, doubl e preci si on,ordoubl e conpl ex. Version3

of the Global Arrayslibrary allows for arrays with more than two dimensions. The Globa Arrayslibrary islarge and powerful;
in addition to operations for writing to and reading from any part of aglobal array, it provides arange of operations from linear
algebra, including GA_DI AGfor solving the generalized eigenvalue problem, GA_ LU SOLVE for solving a system of linear

equations by LU factorization, and GA_DGEMMfor performing matrix-matrix multiplies.

In this section we will describe an implementation of asmall subset of alibrary similar to the Global Arrayslibrary. Our ssmple
subset has the following routines:

ga_create Creates anew global array.

Page 187
ga_free Freesaglobal array.
ga put Puts datainto an arbitrary 2-dimensional subsection of a global array.
ga_get Gets data from an arbitrary 2-dimensional subsection of aglobal array.

ga_acc Accumulates data into an arbitrary 2-dimensional subsection of aglobal array. Unlike MPl _Accunul at e, the entire
accumulation is atomic.

ga read_inc Readsdatafromthe (i, j) element of aglobal array of integers, returnsthat value, and incrementsthe (i , j)
element by a given increment. Thisis afetch-and-add operation.

ga _create_ mutexes Creates mutex variables that can be used for mutual exclusion.
ga_lock Locks amutex (see below).
ga_unlock Unlocks a mutex.

ga_destroy_mutexes Frees the mutex variables created with ga_cr eat e_nut exes.

The major differences between our library and the Global Arrayslibrary, beyond offering far fewer capabilities, are the smpler
distribution of the global array among processes (to simplify the code that we present) and the more general datatypes and
process groups. The latter come essentially “for free" by exploiting the datatypes and groupsin MPI.

Most of these operations are fairly obvious. Thega_cr eat e and ga_f r ee are needed to manage the global array itself. The
routinesga_put, ga_get,andga_acc aresimilarto MPl _Put, MPI _Get,and MPl _Accunul at e. Theremaining
five routines introduce new functionality that we describe briefly here and in more detail below. The operationga_r ead_i nc

provides a basic operation for implementing shared data structures. The remaining four routines provide for mutexes. these are
variables that allow one process to ensure that it has exclusive access to a shared resource (such as a memory window). Mutex
is short for "mutual exclusion.”

One reason for considering such alarge set of operationsis that the presence of some operations, particularly ga_r ead_.i nc,
introduces some complications into the implementation of the others.

Page 188

Let's begin with an overview of the design. We use a pointer to a structure, called GA,1 which contains information about the

global array. For smplicity in the examples, we require that the array have two dimensions and that the array be decomposed
into groups of columns as shown in Figure 6.2. We a so assume Fortran ordering and indexes that start from one. Thus, the
local rectangles on each process are stored in contiguous memory locations.

Thisimmediately gives us most of the members of the data pointed at by GA: we need an MPI window object to contain the

global array and some ints to hold the sizes of the array and how it is decomposed among the processes. It is also useful to
know the MPI datatype that corresponds to the data type for the array and the size of an element of this data type. For cases
where the datatypeis MPl _| NTEGER, MPI _DOUBLE_PRECI SI ON, or MPI _DOUBLE_COVPLEX, this matches the

original Global Arrayslibrary. In our version, we can alow any contiguous datatype (we will use the size, not the extent, of the
datatype in our example code, again for simplicity). Thega—>1 ock_wi n element is explained in Section 6.7.1. The contents

of aGA are shown in the header filein Figure 6.3. The implementation of our GA library isin C; a Fortran interface may be
provided by using tools such as bf or t [34].

6.4.1—
Createand Free

Now that we have al of the members of GA, we can describe the code to create and free anew global array.

Thecodefor ga_cr eat e isshown in Figure 6.4. The routine MPE_Mut ex_cr eat e isused to initialize a specia
synchronization operation and is explained in Section 6.6.

The codeto free aglobal array is shown in Figure 6.5. This code uses awindow attribute to discover the base address of the
window. Window attributes are much like communicator attributes; the function to access window attributes,

MPlI _W n_get attr,ismuch likeitscommunicator counterpart (MPl _Attr_get inMPI 1; MPl _Conm get _attr in
MPI 2). Three predefined window attributes are set; these are MPI _W N_BASE for the base address of the local window,

MPI _W N_SI ZE for the size (in bytes) of the local memory window, and MPI _W N_DI SP_UNI T for the displacement unit
chosen when the window object was created. In addition, users can create their own window object keyvals and attributes (see
Section 6.5.3). The bindingsfor MPl _W n_get attr areshownin Tables6.7, 6.8, and 6.9.

1 We use a pointer to the structure instead of the structure itself so that the users alway see the pointer. This improves modul arity
and makes it easier to modify the implementation without forcing the users to rebuild al their code.

Page 189
chunk2 jlo jhigh
~- el | [1 1 1] 1 1 [1 |
] i] I 1 1] I 1]] []]
N O O e s
oo i v E
] 1]] [] 1] I []] I []]
dim1 R
L et e high
T L e
I I 1 I F i 1 i i I I] i
T T T T T T T T 1 T T T T
ﬂ:1:2:3:4:5:5:?:8:9:1[::11:12:13
I e ———— __..dimz = il]
Figure 6.2

Decomposition of aglobal two-dimensional array. The rectangle given by coordinates
(ilo,jlo) to(ihigh,jhigh) showsatypical region that can be accessed or
modified with the global array routines. Vertical dashed lines show the decomposition
of the global array across 14 processes. The global array has dimensions dim1 by dim2.

/* W& make GA a pointer to this structure so that users al ways
have a pointer, never the actual structure */
t ypedef struct _GA {
MPI _Wn ga_Wn;
MPI _W n | ock_wi n;
/* Datatype and size */
MPI _Dat at ype dtype;

i nt dtype_si ze;
/* sizes of the global array */
i nt di ml, dinR2, chunk2;
}rGA
Figure 6.3

Header file for global arrays. Additional information, such as the address and size of the local memory window, could be
stored here as well.

Table6.7
C binding for routine to access window attributes

int MPI_Wn_get _attr(MPI_Wn win, int win_keyval, void *attribute val, int *flag)

Page 190

#i ncl ude "ga. h"
int ga create(MPI _Commcomm int dinl, int ding,
MPI _Dat atype dtype, GA *ga)

{
GA new ga;
i nt si ze, chunk2, sizeoftype;
MPlI _Aint |ocal _size;
voi d *ga_wi n_ptr;

/* Get a new structure */
new ga = (GA)mal | oc(sizeof(struct _GA));
if (!new_ga) return O;

/* Determne size of GA nenory */

MPI _Comm si ze(comm &size);

chunk2 = dinR / size;

/* Require size to exactly divide dinm2 */

if ((dinm2 %size) '=0) MPI_Abort(comm 1);
MPl _Type_si ze(dtype, &sizeoftype);

| ocal _size = dim * chunk2 * sizeoftype;

/* Allocate menory nmy ga win and create w ndow */
MPI _Al'l oc_nen(|ocal _size, MPI_INFO NULL, &ga win_ptr);

MPI _Wn_create(ga_win_ptr, local_size, sizeoftype,
MPl _| NFO_NULL, comm &new ga—>ga_win);

/* Create critical section wi ndow */
MPE_Mut ex_create(comm size, &new ga—>lock _wn);

/* Save other data and return */

new _ga—>dt ype = dtype;
new_ga—>dt ype_si ze = si zeoftype;
new_ga—>di ml = di m;
new_ga—>di n2 = di ng;
new_ga—>chunk?2 = chunk2;
*ga = new_ga,
return 1;

Figure 6.4
Codeto create aglobal array

Page 191

Table6.8

Fortran binding for routine to access window attributes

MPI _WN GET_ATTR(wi n, win_keyval, attribute val, flag, ierror)
i nteger win, wn_keyval, ierror
i nt eger (ki nd=MPI _ADDRESS _KI ND) attribute_val
| ogical flag

Table 6.9
C++ binding for routine to access window attributes

bool MPI::Wn::Get_attr(const Wn& win, int w n_keyval,
voi d* attribute_val) const

#i ncl ude "ga. h"
int ga free(GA ga)

{

int flag;

void *ga_win_ptr;

MPI _Wn_get attr(ga—>ga_ win, MPI_WN BASE, &ga win_ptr,
& lag);

if ('flag) return 1;

MPI _Wn_free(&a->ga_win);

MPE_Mut ex_free(&ga—>lock_wn);

MPI _Free men(ga win ptr);

free (ga);
return O;

}

Figure 6.5
Codeto free aglobal array

Page 192

An dternative to using a GA structure isto use the MPI window object, specifically ga_wi n, and use window attributes to
store the rest of the data. We will see an example of this approach in Section 6.5.

6.4.2—
Put and Get

Theroutinesfor ga_put andga_get arerelatively simple. The code for ga_put isshownin Figure 6.6; ga_get isvery
similar. The basic algorithm is as follows:

1. Determine the rank of process holding the leftmost column to update ga_put) or get (ga_get).

2. Begin an access epoch for that rank.

3. For each column of datato be updated or fetched from that target process, perform the RMA (put or get) operation.
4. Complete the RMA.

5. Continue to the next rank until the last specified column (j hi gh) has been reached.

For simplicity, these routines put or get one column of data at atime; a more sophisticated implementation would check for
special cases such as entire columns or use an MPI datatype created with MPl _ Type_vect or to accessall of therequired

columns on aremote process with asingle RMA call. Using an MPI datatype eliminatesthe f or loop and replaces a set of
MPI _Put or MPl _Get operationswith asingle MPl _Put or MPl _Get .

These routines have two tricky parts. The first is the computation of the address of the buffer to passto the RMA routines. The
code presented here assumesthat achar * pointer isin bytes (thisis common but not universal and is not required by the C

standard). The other tricky part isthe callsto MPE_Mut ex_| ock and MPE_Mut ex_unl ock. These routines establish a
critical section (mutex is short for "mutual exclusion") and are necessary to ensure proper operation when ga_acc and
ga_read_i nc areused. We will see how to implement these routines below in Section 6.6. We will call these mutex locks or
mutual exclusion locks to emphasize that they are different from the locks provided by MPI _W n_| ocKk.

In these examples, an assert argument of MPI _ MODE_NOCHECK is provided to MPI _W n_| ock. Thisvalue may be used
when it is known that no other process will attempt to call MPI _W n_| ock on the same window object and process. In our
case, because of the call to MPE_Mut ex_| ock, we know that no other process can

Page 193

#i ncl ude "ga. h"
int ga_put(GAga, int ilo, int ihigh, int jlo, int jhigh,

voi d *buf)
{
i nt jeur, jfirst, jlast, j, rank;
MPI _Aint disp;
jeur =jlo;
while (jcur <= jhigh) {
rank = (jecur - 1) /ga—>chunk2;
jfirst = rank * ga—>chunk2 + 1;
jlast = (rank + 1) * ga—->chunk2;
if (jlast > jhigh) jlast = jhigh;
MPE_Mut ex_I| ock(rank, ga—>lock_win);
/* Using |ock_shared allows get accesses to proceed */
MPl _W n_l ock(MPI _LOCK SHARED, rank, MPI_MODE_NOCHECK,
ga—>ga_win);
for (j=jcur; j<sjlast; j++) {
disp = (j - jfirst) * ga—>diml + (ilo - 1);
MPI _Put(buf, ihigh - ilo + 1, ga—>dtype,
rank, disp, ihigh - ilo + 1, ga—>dtype,
ga—>ga_win);
buf = (void *) (((char *) buf) +
(ihigh - ilo + 1) * ga—>dtype_size);
}
MPI _W n_unl ock(rank, ga—>ga_win);
MPE_Mut ex_unl ock(rank, ga—>lock_win);
jeur = jlast + 1;
}
return O;
}
Figure 6.6

The code for ga_put

Page 194

cal MPl _W n_| ock for this process and window. The MPI _W n_| ock and MPI _W n_unl ock callsin this case are used
only to complete the RMA operations between them.

6.4.3—
Accumulate

The global array version of accumulate, ga_acc, isabit more interesting. In the Global Arrays library, ga_acc isboth one

sided and atomic. By atomic, we mean that the action isindivisible; if there are multiple accumul ate operations to the same part
of aglobal array, all elements contributed by asingle ga_acc operation are accumulated before another ga_acc operation is

allowed to modify any of the same elements of the global array. To implement this, we first acquire all of the mutual exclusion
locks that we are going to need and then perform the accumulate operations. We can rel ease the mutual exclusion locks as we
compl ete the accumulate operations in each window. The code for ga_acc isshownin Figure 6.7.

It is often dangerous for a routine to depend on acquiring several mutexes, asga_acc does here. In the general case, if there

are severa processes each of which needs several mutexes, each process may acquire one of the mutexes needed by the others
and then wait forever for one of the other mutexes. Thisis the dining philosophers problem, where processes are replaced by
philosophers and mutexes by forks, with each philosopher needing two forks to eat; if each philosopher siezes afork, the
philosophers starve, each waiting for another the relinquish afork.

The current code does not suffer from this problem because the mutexes are acquired in strict rank-increasing order: if a
process requires several mutexes, it either acquires all that it needs, or blocks because a process has gotten the mutex ahead of
it. If it has blocked, it cannot interfere with the success of the process that already holds the mutex. However, if we made major
changes to our library, such as providing more general decompositions of the global array among the processes, this algorithm
would have to be reevaluated.

To implement the remaining parts of our simple global array library, we will need to discuss the implementation of mutexes.
We will use afetch-and-add operation to implement a mutex.

6.5—
Another Version of NXTVAL

In Using MPI [32], Section 7.1.2, we introduced the NXTVAL routine. This routine provided a shared counter; any process
could request a value from this counter, which was then incremented. Thisis a "fetch-and-add" operation, a common build-

Page 195

#i ncl ude "ga. h"
int ga acc(GA ga, int ilo, int ihigh, int jlo, int jhigh, void *buf)
{
i nt jeur, jfirst, jlast, j, rank, rank _first, rank_| ast;
MPI _Aint disp

/* In order to ensure that the entire update is atomc, we nust
first nmutex-lock all of the windows that we will access */
rank_first (jlo - 1) / ga—>chunk2;
rank_| ast (jhigh - 1) / ga—>chunk2
for (rank = rank _first; rank <= rank_l ast; rank++) {
MPE_Mut ex_I| ock(rank, ga—>lock_win);

}

jeur =jlo;
while (jcur <= jhigh) {

rank = (jecur - 1) /ga—>chunk2;
jfirst = rank * ga—>chunk2 + 1;
jlast = (rank + 1) * ga—->chunk2;

if (jlast > jhigh) jlast = jhigh:

MPI _Wn_lock(MPI_LOCK SHARED, rank, MPI_MODE NOCHECK
ga—>ga_win);
for (j=sjcur; j<sjlast; j++) {

disp = (j - jfirst) * ga—>dimL + (ilo - 1);
MPI _Accunul ate(buf, ihigh - ilo + 1, ga—>dtype,
rank, disp, ihigh - ilo + 1, ga—>dtype,
MPI _SUM ga->ga win);
buf = (void *) (((char *)buf) +
(ihigh - ilo + 1) * ga—>dtype_size);
}

MPI _W n_unl ock(rank, ga->ga_win);

MPE_Mut ex_unl ock(rank, ga—->lock win);

jeur = jlast + 1;
}
return O;
}
Figure 6.7

Code for global array accumulate. Note that all target processes are locked with MPE_Mut ex_| ock before any is updated.

Page 196

ing block for certain types of distributed algorithms. The versions presented in UsingMPI used point-to-point message passing
and required either a separate process or thread or periodic polling by one process. In this section, we will see how to
implement afetch-and-add operation using RMA.

Our first attempt might ook something like the following:

/* This code is erroneous */
int one = 1;
MPI _Wn_create (. . ., &in);

MPI _Wn_l ock(MPI _LOCK EXCLUSIVE, 0, 0, win);
MPI _Get (&value, 1, MPI_INT, O, O, 1, MPI_INT, win);
MPI _Accunul ate(&one, 1, MPI _I NT,
0, 0, 1, MPI_INT, MPI_SUM win);
MPI _Wn_unlock (0, win);

However, this would not be correct. There are two problems. First, the MPI Standard explicitly prohibits accessing (with
MPl _CGet or alocal load) and updating (with either MPI _Put or MPl _Accunul at e) the same location in the same access

epoch (the time between two MPI _W n_f ence calsor Ml _W n_| ock and MPI _W n_unl ock) . Evenif the MPI
Standard permitted overlapping accesses by MPI _Accumul at e and MPl _Get , these functions are nonblocking and can
complete in any order as long as they complete by thetime MPl _W n_unl ock returns. The MPI Standard does not specify an
order in which RMA operations must complete.

In some implementations, these operations may complete in the order that they appear, particularly on loosely coupled systems
with no shared-memory hardware support. On other systems, enforcing an ordering may be expensive, and hence the MPI
Forum decided not to require it (also see Section 4.3.2). For applications such as the ghost-point exchange in Section 5.6.1,
ordering is not required, and, as mentioned in Section 4.2, enforcing an ordering can reduce performance. However, for
operations such as fetch and add, the lack of ordered operations is inconvenient. Specifically, the lack of ordering means that
loosening the access restrictions to allow overlapping access from the same origin process isn't sufficient to allow usto use the
above code to implement fetch and add.

Because of the very weak synchronization provided by MPI _W n_| ock and MPI _W n_I| ock and therestrictions on
overlapping access to memory windows by RMA operations, it turns out to be surprisingly hard to implement a fetch and add
operation using the MPI RMA operations. We will present two solutions, but first we will start with another approach that
doesn't work. Understanding why it

Page 197

doesn't work will provide a better understanding of VPl _W n_| ock and MPI _W n_unl ock.

We will present the solutions as part of an MPI extension library we call MPE. These functions are not part of the MPI standard
but are designed to utilize any MPI implementation.

6.5.1—
The Nonblocking Lock

An obvious approach for implementing fetch and add is to use two locks: oneis used to completethe MPI _Get and,ina
separate step, the MPI _Accurnul at e operations, and the other is used to establish a critical section. Only one processis
allowed to be "in" the critical section at any time; in shared-memory code it is common to use locks to implement critical
sections. Thus, at first glance, it looks like we could use awindow object where rank 0 contained a single integer that was
accessed with MPI _Get and MPI _Accunul at e, and where alock on rank 1 was used solely to provide the critical section.

The code for NXTVAL might then look like that in Figure 6.8.

But this code will not work because MPI _W n_| ock, except when called with the target rank the same as the rank of the
calling process, may be nonblocking. That is, just asthe MPl _Put, MPI _Get, and MPl _Accunul at e operations are
nonblocking, so may MPI _W n_1| ock be nonblocking. All the MPl _W n_| ock call doesisto establish an access epoch,
indicating that RMA calls on the specified window object and rank may be made, until the matching MPI _W n_unl ock. If
the lock typeis MPl _LOCK_EXCLUSI VE, it also ensures that the RMA operations are performed atomically with respect to
other processes at the target.

Note that when MPI _W n_| ock iscalled with the rank of the calling process (so the lock is being acquired for the local
memory window), the MPI Standard specifiesthat MPl _W n_| ock must block until the lock is acquired. Thisis because,
when using passive target RMA operations, you must call MPl _W n_| ock and MPl _W n_unl ock around any local |oads
and stores. Since the local loads and stores may happen at any time, the MPI _W n_1| ock call in this particular case must block
until the lock is acquired. But in all other cases, MPI _W n_I| ock may be nonblocking.

6.5.2—
A Nonscalable | mplementation of NXTVAL

How can we implement a fetch-and-add operation using RMA? Here is one simple algorithm. The value of the counter isthe
sum of the contributions from each process. Since a process always knows the sum of its own contributions, a process needs
only get the contributions from all other processes and add that to its own.

Page 198

/* Erroneous code */
int MPE_Counter_nxtval (MPI _Wn counter_win, int *value)

{

int one = 1;

/* Acquire access to the counter */
MPI _Wn_lock(MPI _LOCK EXCLUSIVE, 1, 0, counter_wn);

/* Once we get the lock, we can fetch the counter value */

MPI _Wn_lock(MPI _LOCK SHARED, 0, MPI _MODE NOCHECK, counter_win);
MPI _Get(value, 1, MPI_INT, 0, 0, 1, MPI_INT, counter_wn);

MPI _W n_unl ock(0, counter_win);

/* And update the value */

MPI _Wn_lock(MPI_LOCK SHARED, 0, MPI_MODE NOCHECK, counter_wn);

MPI _Accumul ate(&one, 1, MPI _INT, 1, 0, 1, MPI _INT, Ml _SUM
counter_win);

MPI _W n_unl ock(0, counter_win);

/* Rel ease the counter */
MPI _W n_unl ock(1, counter_win);
return O;

}

Figure 6.8
An (erroneous) attempt to implement NXTVAL using two locks

This suggests that instead of a single integer for the counter, we use an array that has one element for each participating
process. We will use an array of integers on the process with rank 0. The ith element of this array will contain the contribution
of the processwithrank i to the counter. The algorithm for the process at rank i isthen asfollows:

1. Lock the window at rank zero.
2. Get al elements of the array except for thei th element (our rank).
3. Increment thei th element.

4. Unlock the window.

Page 199

Table6.10
C routine for accessing the group of awindow object

int MPI_Wn_get_group(MPl_Wn win, MPI_Goup *group)

Table6.11
Fortran routine for accessing the group of awindow object
MPI _W N_GET_GROUP(Wwi n, group, ierror)

i nteger win, group, ierror

Table6.12
C++ routine for accessing the group of awindow object

MPI:: Group MPI::Wn::Get_group() const

5. Sum the elementsin the array (except for the i th element); add the number of times this routine has been called (that is, the
sum of contributions to the counter by this process).

This code is shown in Figure 6.9.

In this implementation of NXTVAL, we have chosen to store the additional information (myval _p, the pointer to the

contributions from the local process to the counter) that we need in the window object itself. This approach allows usto
illustrate how information may be cached on awindow object. An alternative approach would be to define a mutex object that
would contain fields for the window object, the size of the window object's group, the rank of the processin that group, and the
sum of the contributions to the counter from this process.

To determine the number of processesin the window object's group, and the rank of the calling process in this group, we can
access the window object's group with MPI _W n_get _gr oup. Thiscal returns a group that is the same as the group of the

communicator that was used in creating the window object. Once we have this group, we can find the size and rank of the
calling process by using MPl _Gr oup_si ze and MPI _Gr oup_r ank, respectively. We free the group with

MPI _G oup_free. This example does not include the code to create the window object or initialize the window memory.
Bindingsfor VPl _W n_get gr oup are shownin Tables6.10, 6.11, and 6.12.

Page 200

extern int MPE COUNTER KEYVAL;
int MPE Counter _nxtval (MPl_Wn counter_win, int *val ue)

{
MPI _Group group;
i nt rank, size, nyval, flag, i, *val, one = 1;
MPl _Ai nt *nyval _p;
MPI _Wn_get _group(counter_w n, &group);
MPl _Group_rank(group, & ank);
MPI _Group_si ze(group, &size);
MPI _G oup_free(&group);
MPI _Wn_get_attr(counter_w n, MPE_COUNTER KEYVAL, &nyval _p,
& lag);
myval = *myval _p;
val = (int *)malloc (size * sizeof(int));
MPI _Wn_lock(MPI _LOCK EXCLUSIVE, 0, 0, counter_wn);
for (i=0; i<size; i++) {
if (i == rank)
MPI _Accurul ate(&one, 1, MPI _INT, 0O, i, 1, MPI _INT,
MPI _SUM counter_win);
el se
MPI _Get(&val[i], 1, MPI _INT, O, i, 1, MPI_INT,
counter_win);
}
MPI _Wn_unlock(0, counter_wn);
/* Add to our contribution */
*nyval _p = *nyval _p + 1;
/* Conpute the overall value.
Storing *nmyval _p into val[rank] and starting *value at zero
woul d elimnate the if test */
*val ue = nyval ;
for (i=0; i<size; i++) {
if (i !'=rank) *value = *value + val[i];
}
free (val);
return O;
}
Figure 6.9

A nonscalable version of NXTVAL

Page 201

Table6.13
C bindings for window object attribute routines (see Table 6.7 for MPI _W n_get _attr)

int MPI_Wn_create_keyval (MPl_Wn_copy_attr_function *win_copy_attr_fn,
MPI _Wn_delete_attr_function *win_delete_attr_fn, int *w n_keyval,
void *extra_state)

int MPI_Wn_free_keyval (i nt *wi n_keyval)
int MPI_Wn_set_attr(MPI_Wn win, int win_keyval, void *attribute_val)

int MPI_Wn_delete attr(MPI_Wn win, int win_keyval)

6.5.3—
Window Attributes

One complication in the code in Figure 6.9 is the need to store the local contribution to the counter. In this code, we have stored
this value in the counter window itself, using awindow attribute. Window attributes are very similar to communicator
attributes (see Section 9.4 and Using MPI [32], Section 6.2). Attributes allow information to be cached on awindow object
according to akeyval. The functions for window attributes are shown in Tables 6.13, 6.14, and 6.15.

With these functions, we can create akeyval (MPE_COUNTER_KEYVAL in our example) that is known only to the NXTVAL

routines. We allocate an int to hold the local contribution to the counter and store the pointer to this value as the attribute
associated with MPE_COUNTER _KEYVAL.

The code to create the MPI _W n for NXTVAL is shown in Figure 6.10. Note that we have used MPl _Al | oc_nmemto create
the counter memory.

A Curious Feature

TheMPl _W n_create_keyval routinecontainsaMPl _W n_copy_attr _fn. However, thereis no circumstance when
this routine would be called. For communicators and datatypes, the respective duplicate functions MPl _Cormm dup, MPI : .
Comm : Cl one,and VPl _Type_dup) arethe only functions that cause a keyval's copy function to be invoked. But aswe

have mentioned before, the rules for overlapping accesses make any kind of "duplicate window" operation nearly useless.
Thus, asthe MPI Standard is currently written, the copy function provided when creating a keyval for awindow object has no
purpose.

If the MPI Standard were to be extended, it is possible that aMPl _W n_dup function could be defined, perhaps by loosening
the restrictions on overlapping access to memory windows or by having VPl _W n_dup allocate new memory windows. In
that case, a copy function would become important. By providing the copy func-

Page 202

Table6.14
Fortran bindings for window object attribute routines (see Table 6.8 for MPI _W n_get _attr)

MPl _W N_CREATE_KEYVAL(wW n_copy_attr_fn, win_delete_attr_fn, w n_keyval,
extra_state, ierror)
external win_copy attr_fn, win delete attr_fn
i nteger wi n_keyval, ierror
i nt eger (ki nd=MPI _ADDRESS KI ND)extra_state

MPI W N FREE KEYVAL(w n_keyval, ierror)
i nteger wi n_keyval, ierror

MPI _W N_SET_ATTR(wi n, wi n_keyval, attribute_val, ierror)
integer win, win_keyval, ierror
i nt eger (ki nd=MPI _ADDRESS KI ND) attri bute_val

MPI _W N_DELETE_ATTR(w n, w n_keyval, ierror)
i nteger win, win_keyval, ierror

tion argument now, the MPI Forum has ensured that future extensions are not constrained.

Improving the NXTVAL Routine

One of the drawbacks of attaching all of the local datato awindow object rather than a separate structure is that a user could
erroneously delete the counter with MPl _ W n_f r ee rather than MPE_Count er _f r ee. We can turn this drawback into an
advantage by using the MPI _W n_del et e_f n argument of the keyval. When the window object for the counter is freed, we
want all of the memory that we have alocated to be freed. The code to do thisis shown in Figure 6.11. With this code, a
separate MPE_Count er _del et e routineis

Table6.15

C++ bindings for window object attribute routines (see Table 6.9 for MPI : : W n: : Get _attr)

int MPl::Wn::Create_keyval (MPlI::Wn:: Copy_attr_function* win_copy_attr_fn,

MPI::Wn::Delete_attr_function* win_delete_attr_fn,

voi d* extra_state)

void MPlI::Wn::Free_keyval (int& wi n_keyval)

void MPl::Wn::Set_attr(int win_keyval, const void* attribute_val)

void MPl::Wn::Delete attr(int win_keyval)

extern int MPE_COUNTER KEYVAL;

void MPE_Counter_create(MPl_Conm ol d_conm MPI_Wn *counter_win)

si zeof (int),

{
int size, rank, *counter_nmem i, *nyval _p;
MPI _Comm rank(ol d_comm &rank);
MPI _Comm si ze(ol d_comm &si ze);
if (rank == 0) {
MPI _All oc_mem(size * sizeof (int), MPI_INFO NULL,
&counter _mem);
for (i=0; i<size; i++) counter_nenfi] = O;
MPI _Wn_create(counter_nem size * sizeof(int),
MPI | NFO NULL, old_comm counter_wn);
}
el se {
MPI _Wn_create(NULL, 0, 1, MPI _I NFO NULL, old_comm
counter_win);
}
/* Create ny local counter */
i f (MPE_COUNTER KEYVAL == MPlI _KEYVAL_I| NVALI D) {
MPI _Wn_create_keyval (MPI _W N NULL_ COPY_FN,
MPI _W N_NULL_DELETE_FN,
&VPE_COUNTER_KEYVAL, NULL);
}
nmyval _p = (int *)malloc(sizeof(int));
MPI _Wn_set_attr(*counter_w n, MPE_COUNTER_KEYVAL, nyval _p);
}
Figure 6.10

Code to create the window object and counter memory used for NXTVAL

Page 203

Page 204

int MPE Counter_attr_delete(MPI_Wn counter_wi n, int keyval,
void *attr_val, void *extra_state)

{
int counter _flag, *counter_nmem *nyval _p = (int *)attr_val;
MPI _Wn_get_attr(counter_wi n, MI_WN_BASE,
&counter_mem &counter _flag);
/* Free the nmenory used by the counter and | ocal value */
if (counter_flag && counter_nen)
MPI _Free_mem(counter_nmem);
free(nyval _p);
return MPI _SUCCESS;
}
Figure 6.11

Routine to free memory allocated in NXTVAL, using the delete function on the keyval MPE_COUNTER_KEYVAL
unnecessary; the user may simply use MPl _W n_f r ee on the counter window.

Another improvement isto replace thef or loop of MPl _Get callswith asingle MPl _Get using a datatype created with
MPI _Type_i ndexed. The codein Figure 6.12 shows the use of the bl ock _| engt h argument to MPI _Type_i ndexed
to define an efficient datatype for thistransfer. The first block is of length r ank (the number of members before the location
that is accumulated into with MPl _Accumnul at e. The second block contains the number of remaining members after that
location. Notethat bl ens[0] will be zeroforrank = 0 andbl ens[1] will bezeroforrank = size - 1.

6.5.4—
A Scalable | mplementation of NXTVAL

Our implementation of NXTVAL is correct but not scalable: for p processes, we need to read or modify p locations in remote

memory and perform p — 1 local additions. This strategy is acceptable for small numbers of processes but is unworkable when
the number of processes reaches hundreds or thousands. To devel op a scalable implementation of NXTVAL, we look at the task

of forming the sum of the contributions from each process. The most obvious way to improve the scalability isto use atree,
where the internal nodes of the tree hold the sums of the contributions of their children.

We can develop the algorithm recursively. Figure 6.13 shows the trees needed for

Page 205

int blens[2], disps[2];
MPI _Dat at ype get _type;

bl ens[0] = rank;

di sps[0] = O;

bl ens[1] = size - rank - 1;
di sps[1] = rank + 1;

MPI _Type_i ndexed(2, blens, disps, MPI_INT, &get_type);
MPI _Type conmmit(&get type);

/* The followi ng code replaces the RVA accesses in
MPE_Count er _nxtval */
MPI _W n_l ock(MPI _LOCK EXCLUSI VE, 0, 0, counter_win);
MPI _Accunul ate(&one, 1, MPI _INT, 0, rank, 1, MPI _INT,
MPI _SUM counter win);
MPlI _Get(&val[0], 1, get type, O, O, 1, get type, counter win);
MPI _W n_unl ock(0, counter_win);

Figure 6.12
Using an indexed datatype to reduce the number of RMA calls

two processes (@) and four processes (b). The trees are stored in the local window on a single process; for concreteness in the
discussion of the algorithm, we will assume that the tree is stored as an array that is contained in the local memory window on
process 0. We describe below how the tree is represented in the array. In Figure 6.13(a), we can see that for process 1 to
compute the value, it need only get the value that process O has contributed. Adding that to its own value givesit the value of

the counter. By using MPl _Accunul at e to add its component to the its element in the tree (the right child), process 1
ensures that process O will get the correct value for the counter the next time process 0 executes a fetch and increment.

In Figure 6.13(b), the tree for four processes shows where the scalability comes from: Process 1 needs to read only two nodes
(the right child of the root and its own sibling, process 0) and increment one node (the parent of processes 0 and 1). These
operations are shown with black (MPI _Get) and grey (MPI _Accurul at e) boxes.

The full algorithm follows. The root of each subtree contains the sum of the values of each leaf. Thisis applied recursively.
Then to get the value of the counter, we need only get the values of the two children. Of the two children, one child will be an
ancestor of the process and the other will not be an ancestor. For the child

/mul]

2 ql o
i e —
B 0 mEEE ()
0 1 1] 1 2 3
(a) (b)

Figure 6.13

Fetch and increment trees for 2 processes (a)
and 4 processes (b), where process 1 is
performing the fetch and increment. In both
cases, the black boxes are read with VPl _ Get
and the grey boxes are incremented with
WPl _Accunul at e. Theroot box (shown with
slanted lines) is neither read nor updated. The
numbers under the leaf boxes indicate the number
of the process that contributes to that leaf.

CJ 1 . I =
--""—:fnxd—| JL - .. r -""' H\ T -"J-ﬁ"“ﬁ- - ...rihEl. . ﬂ'ﬂ.’nl'-_. —
SRRl B I8 o I s I s I s B e I s B e s B
0 1 2 3 4 5] Fi B 9 10 1 12 13 14 15

Figure 6.14
Example showing scalable implementation of fetch and increment. Black boxes are read with
MPI _Get ; grey boxes are incremented with MPl _ Accunul at e. The RMA accesses used

by process 5 are shown.

Page 206

that is not an ancestor, we read its value with MPl _Get . For the child that is an ancestor, we get the value by recursively
applying this algorithm to that child, and use MPl _Accurul at e to increment the value of that child. Thus, to compute the

sum, we need only add up the contributions from the sibling of the node, its parents, and the parent's siblings. Thisis shown in
Figure 6.14. The code requires only asingle lock and unlock, and for p processes, uses 2p — 2 words of memory and requires
that log,p words be fetched with MPl _Get , log,p words be incremented with MPI _Accurrul at e, and log,p local additions

be made.

Our code, particularly to set up the counter, is now more complex. We store the tree in an array, following these rules:

1. Theroot is at index zero.

2. For any node, the left child is at index (node + 1) and the right child is at index (node + 2””—1), where the tree has mlevels
and thenodeisonlevel I. The

Page 207

L] .

0 — el

1 - =nll) 8.

2—— [= sl Tz

3— [F) [51 (9] (i3 (18] jrn 25 (2]

4-[4] (5] (7] (8] O 2] 4] 095 (98] (28] [22) [23) [E6] (37 (38 [30)

6 1 2 3 4 5 B 7 B 8 10 11 12 13 14 15

Figure 6.15
Example showing how the tree in Figure 6.14 is mapped into an array. The numbers in the boxes
are the indexes into the array.

levels are defined recursively: the level of the children of anode is one greater than the level of a node, and the level of the root
iszero. Thelevel of thetreeisgiven by |log, |, when there are p processes.

This mapping of the tree onto an array for the tree in Figure 6.14 is shown in Figure 6.15. That tree has five levels, numbered
from zero to four.

For a process of rank i, we thus need to access only the nodes on the path from the root to the leaf representing that process. We
place these indices into two integer arrays: get i dx holds the indices of the entries that we need to get, and acc_i dx holds

the indices of the entries that we need to add one to. The code to determine these valuesis shown in Figure 6.16. For Fortran
programmers, the expression mask <<= 1 means "shift left by one" and is equivalent to the Fortran code

mask = mask * 2.

Since we have these arrays, we can build datatypes with them that allow usto use asingle MPl _Get and MPl _Accunul at e
cal asfollows:

MPI _Type_create_i ndexed_bl ock(|evel, 1, get_idx, MPI_INT,
&get _type);

MPI _Type_create_i ndexed_bl ock(level, 1, acc_idx, MPI _INT,
&acc_type);

MPI _Type _commit(&get type);

MPI _Type _commit(&acc_type);

The code that we have shown applies only when the number of processesis apower of two. The modifications to allow this
code to work with any number of processes are straightforward and left to the reader.

Page 208

/* Get the |argest power of two smaller than size */
mask = 1;

while (mask < size) nmask <<= 1;

mask >>= 1;

/* Find the path to the leaf fromthe root */
| evel = 0;
i dx = 0;
while (mask > 1) {
if (rank < mask) {
/* Go left */
get _idx[Ilevel]
acc_i dx[| evel]
idx = idx + 1;

i dx + nmask;
idx + 1;

}

el se {
/* Go Right */

r ank rank - nask;

get _idx[level] =idx + 1;
acc_idx[level] = idx + nask;
idx = idx + mask;
}
| evel ++;
mask <<= 1,
}
Figure 6.16

Code to find the path through the tree for the counter value

6.6—
An RMA Mutex

For many operations, it isimportant to be able to establish a critical section or mutual exclusion among the processes. With a
small modification to the MPE_Count er _nxt val routine, we can implement such an operation. We change

MPE_Count er _nxt val so that the value added to the counter is the third argument to the routine, rather than always being
one. This smply means changing the first parameter in the call to MPl _Accurnul at e to point to the value to add, and
changing

*myval _p + 1;

*nyval _p
to
Page 209
*myval _p = *myval _p + increnent;

Call this new routine MPE_Count er _i nc_si npl e. With this simple change, we can implement a simple mutex as follows:

void MPE Mutex | ock _sinple(MPI_Wn win)

{
i nt val ue;
MPE_Counter _inc_sinmple(win, &alue, 1);
while (value !'= 0) {
MPE _Counter _inc_sinple(win, &alue, -1);
MPE_Counter _inc_sinple(win, &alue, 1);
}
}

What this doesis continually try to add one to the counter. If the value returned was zero, it returns. Now, any other attempt to
acquire a mutex on the same window (window object and rank) will return one (or greater, if several processes are trying to
acquire the mutex). Otherwise, it subtracts one from the counter (ignoring the returned value) and calls

MPE_Count er _i nc_si npl e to get the current value and add one to the counter. The routine to unlock the mutex is even

simpler; we need only decrement the counter:

void MPE_Mutex_unl ock_sinple(MPI_Wn win)
{

i nt val ue;

MPE _Counter _inc_sinmple(win, &value, -1);
}

These implementations are very ssimple and have their drawbacks. But they are correct and reliable. The implementation of fast,
fair, and scalable mutexes and other shared data structures is amajor area of study; see[2, 60, 93] for some examples of the
issues that arise in different environments.

For the Global Arrayslibrary, we need a slightly more general version of these mutex routines. We need a separate mutex for
each process in the window. Where we used process O to hold the fetch-and-add treein MPE_Count er _nxt val , we

generalize thisto use a separate tree on each process of the window; this provides a separate fetch-and-add counter on each
process. We define anew routine MPE_Count er _i nc by adding arank argument that indicates which process to perform a

fetch-and-add on, and definea MPE_Mut ex_| ock and MPE_Mut ex_unl ock that also take arank argument as the first
argument; the window that is used for the fetch-and-increment

Page 210

is the second argument. Finally, we are ready to define MPE_Mut ex_cr eat e. Thisroutine creates awindow object that
contains a fetch-and-increment tree at the first si ze processes in the window, where si ze isthe second argument and the
communicator used to create the window object is the first argument. MPE_Mut ex__cr eat e returns the new window object
as the third argument.

6.7—
The Rest of Global Arrays

Now that we have a scalable fetch and increment and a mutex routine, we can complete our implementation of our simplified
Global Arrayslibrary.

6.7.1—
Read and | ncrement

Thega_r ead_i nc isafetch and increment operation. We have seen in Section 6.5 that we cannot simply use
MPlI _Get and MPI _Accunul at e to implement afetch and increment. In addition, our solution used multiple memory

locations for asingle counter. Obviously, we cannot use this approach for aglobal array with many elements. Our solution isto
use the MPE_Mut ex_| ock and MPE_Mut ex_unl ock to establish acritical section around any access to the global array,

whether by ga_put , ga_get, or ga_acc. Thewindow object ga—>| ock_wi n holds the window used to implement the
mutual exclusion; thisis the sole purpose of this window object. Note that if we did not allow ga_r ead_i nc to modify an
arbitrary member of the global array and did not require atomicity of thega_acc operation, we would not need the second
MPI window object ga—>l ock_wi n. The code for ga_r ead_i nc isshown in Figure 6.17. The only interesting part of this

code is the computation for the rank of the process holding the designated element and the displacement of that element in the
local window (see Using MPI [32], Appendix E, for a discussion about the computation).

Another approach is to use asingle mutex for all accessesto the global array, rather than having one for each local window
(that is, there are as many locks as there were processes in the communicator with which the window object was created). The
approach that we are taking is more scalable, since nonoverlapping operations on different processes can occur concurrently.

6.7.2—
Mutual Exclusion for Global Arrays

Like many libraries that provide shared objects, the Global Arrays library provides routines to create, use, and destroy mutexes
for mutual exclusion. Once these mutexes are created, they can be used to lock and unlock access to data or code.

Page 211

#i ncl ude "ga. h"
int ga_read_inc(GAga, int i, int j, int inc)
{

int buf, rank;

MPI _Ai nt di sp;

rank = (j - 1) / ga—>chunk2;

/* di sp depends on the displacenment unit being sizeof (int) */
disp =(j - 1 - (rank * ga—>chunk2)) * ga—>dim + i - 1;

MPE_Mut ex_I| ock(rank, ga—>lock_win);

MPl _Wn_l ock(MPI _LOCK_SHARED, rank, MPl _MODE_NOCHECK,

ga—>ga_win);
MPI _Get(&buf, 1, MPI _INT, disp, 1, MPI _INT, rank, ga—>ga win);
MPI _W n_unl ock(rank, ga->ga_win);

MPI _Wn_l ock(MPI_LOCK SHARED, rank, MPI_MODE NOCHECK,
ga—>ga_win);
MPI _Accurmul ate(& nc, 1, MPI | NT,
disp, 1, MPI_INT, rank, MPI_SUM ga—->ga win);
MPI _W n_unl ock(rank, ga->ga_win);

MPE_Mut ex_unl ock(rank, ga—>lock_win);

return buf;

}

Figure 6.17
Code for read and increment, using the MPE mutex routines

Page 212

The implementation of these mutexesis based on the MPE_Mut ex_| ock introduced in the preceding section.

To provide the best scalability, we place only one mutex per local window. If the number of requested mutexesis larger than
the size of MPI _COMM _WORL D, we create enough window objects to provide one mutex per process per window object. This

code, as well asthe code to lock a particular mutex, is shown in Figure 6.18.

6.7.3—
Comments on the MPI Version of Global Arrays

The absence of aread-modify-write operation or of ordered RMA operations makes the implementation of a Global Array
library less straightforward than it would be if MPI RMA provided those operations. Furthermore, it is not clear yet whether the
MPI RMA operations will be implemented efficiently enough to provide afast enough implementation of libraries such as
Global Arrays, particularly when mutual exclusion is needed. In addition, operations such as fetch and increment, while very
valuable, are not the most powerful [37]; operations such as compare and swap provide more powerful building blocks. Thisis
one area where enhancements to the MPI Standard may be necessary.

6.8—
Differences between RMA and Shared Memory

To understand the similarities and differences between RMA and shared-memory programming, it is helpful to contrast MPI
window objects with shared-memory approaches that involve separate processes (rather than separate threadsin asingle
process). There are two widely used and relatively portable models in Unix. One uses nmap (memory map) and f or k (create a

new process), and the other uses shnget (shared memory get) and shmat (shared memory attach).2 In both cases, the shared

memory is anew region of memory, not one that exists in the application already. In other words, it is similar to requiring that
all shared memory be alocated with MPlI _Al | oc_nem

The most significant difference, however, isin how the memory is accessed. There are no separate routines to put/get/
accumulate with this shared memory; it is part of the address space of the process and can be accessed with the normal
language facilities. For example, Figure 6.19 shows one way for a processto create a 4kByte

2 None of these approaches is entirely portable. The version shown in Figure 6.19 relies on using nmap without areal file;
versions that use shimat often run into limits on the amount of available shared memory and race conditions in managing shared-
memory segments.

#i ncl ude "ga. h"

/* Instead of using a static variable, we could attach these

a communi cator, using a comuni cator attribute */
static MPI_Wn *GA nutex_wi ns = O;
static int GA mutex_nwi ns = 0;

int ga create_nmutexes(int num)

{
int size, nwin, i;
MPI _Comm si ze(MPI _COW WORLD, &size);
nwn = (num+ size - 1) / size;
GA nutex_ wins = (MPI_Wn *)malloc(nwin * sizeof (MPl _Wn));
if (!GA nutex wins) return 1;
for (i=0; i<nwin; i++) {
if (num< size) size = num
MPE_Mut ex_create(MPI _COVW WORLD, size, &GA nmutex_wins [i]);
num -= si ze;
}
GA nutex_nwins = nw n;
return O;
}
void ga_lock(int n)
{
int size, rank, w n_num
MPI _Conmm si ze(MPI _COW WORLD, &size);
win num=n/ size;
r ank =n %size;
MPE_Mutex_ | ock(rank, GA nmutex wins [win_num);
}
Figure 6.18

Code for mutex creation and locking a mutex

i nt *mem oc;
i nt *shared_int, fd, am parent;

fd = open("/dev/zero", O RDWR);
memoc = (int *) nmap ((caddr_t)0, 4096,

PROT_READ| PROT_WRI TE| PROT_EXEC,

MAP_SHARED, fd, (off _t) 0);
shared_int = nem oc;
*shared_ int = 12;
am parent = fork();
if (amparent) {
/* parent code */

}

el se {
/* child code */
printf("The shared integer is %", *shared_int);
*shared_int += 1;

}

Figure 6.19

Creating two process that communicate with shared memory

to

Page 213

Page 214

shared-memory region with mmap, usef or k to create a second process, and have both processes accessan i nt in this shared
region.

The figure illustrates the differences between shared memory and the MPI RMA model. In MPI, no shared memory isvisible to
the user. Rather, with MPI _Put, MPI _CGet, or MPI _Accunul at e, the user can access memory in a defined memory
window object in another process. This approach is both more general (it provides more flexibility over the memory that is
accessible) and more limited (the user must use special routines to access memory).

In addition, MPI addresses the issue of data-access synchronization. Consider the following small change to the code in Figure
6.19, in which theinitial assignment *shar ed_i nt = 12 ismoved into the parent code part of thei f :

am parent = fork();
if (am_parent) {
/* parent code */
*shared_int = 12;

}
el se {
Page 215
/* child code */
printf("The shared integer is %", *shared_int);
*shared_int += 1;
}

What valueis printed out now? The answer is either O or 12, depending on exactly how fast the parent and the child run. This
isaclassic race condition, where the answer depends on a race between two threads of control (the two processes, in this case).
To avoid this, one must add routines that ensure that datais available when needed. Many Unix implementations provide
senop (semaphore operation) for this; they may aso provide vendor-specific mutual-exclusion operations. In MPI, data
synchronization is accomplished by completing an RMA routine using, for example,

MPI _Wn _fence or MPI _W n_unl ock.

6.9—
Managing a Distributed Data Structure

To understand more clearly the differences between the MPI RMA model and shared memory, particularly the use of pointers
in shared memory, let uslook at the implementation of alist containing character keys and values that is distributed among all
the processes in an MPI communicator. We first describe a shared-memory implementation of a routine that searches for a
given key and returns the corresponding value. We then show what must be changed to implement the same operations using
MPI RMA. We follow this by adding the ability to allow some processes to insert elementsin the list while others may be
searching the list, again showing both shared-memory and RMA implementations.

6.9.1—
A Shared-Memory Distributed List | mplementation

In this section, we consider alist distributed among processes as shown in Figure 6.20. We also assume that thelist is
unchanging (i.e., that the list was constructed in an earlier phase of the program). For this section, the only operation on the list
is thus a search through the list for a particular element. We describe the routine Fi ndEl mthat searches through the list.

A shared-memory implementation is relatively ssimple. We start with asimple list element defined by the structure Li st EI m
shown in Figure 6.21. We also include a pointer to the head of the list and code to initialize the head to point to an empty
element (thiswill simplify some code when we add the ability to modify the list). We assume that all processes can access the
head pointer, aswell asthe character

Page 216

Figure 6.20
A example of alist distributed among four processes

typedef struct _listelm{

struct _Iistelm*next;

char *key, *value; } ListElm
Li stEl m headval = { 0, 0, 0 };
static ListElm*head = &headval ;

Figure 6.21
Definition of alist element and list pointer for the
shared-memory implementation of adistributed list.
ITh&ee dﬁfinitions are stored in theinclude file

i st.h.

strings pointed at by the key and val ue fieldsin each list element (because they are al stored in shared memory).

The code to find an element in the list that matches a particular key is then quite simple, as shown in Figure 6.22. C
programmers might reduce the code to three lines by replacing the whi | e loop with af or loop that handles the initialization,
test, and advancement to the next list element, but the form here is easier for Fortran programmers to follow and, more
important, will be easier to compare with the MPI RMA version that we consider next.

6.9.2—
An MPI I mplementation of a Distributed List

In MPI, we cannot directly access the list elements on other processes. Instead, we must use RMA operations to access them. In
addition, we cannot use a simple pointer to identify alist element. In the distributed case, we need to know

Page 217

#i nclude "list.h"

char *FindEl m(const char *key)

{
Li stElm*ptr;

ptr = head->next;
while (ptr) {
if (strcnp(ptr—>key, key) == 0)
return ptr-—>val ue;
ptr = ptr—->next;
}

return O;

Figure 6.22
Shared-memory version of Fi ndEl mfor astatic list

1. the rank of the process that holds the element, and
2. the displacement within the window of the element.

Thus, instead of using apointer (Li st ELM *) to access elements, we define a structure Renot ePoi nt er , shown in Figure
6.23. Thisstructure also includesal ocal _poi nt er field. If thelist element is on the local process, thisfield is the address

of thelist element and is used only on that process. It is not required, since the address of an element on alocal process can be
computed from the displacement, but having this data precomputed can improve the performance of the RMA implementation
of Fi ndEl m The header file that contains the definition of Renot ePoi nt er aso contains a definition of alist element that

replaces the pointer to the next list element (st ruct _| i st el m *next inthe shared-memory case) with a
Renot ePoi nt er . In addition, the list elements themselves contain character arrays for the key and val ue rather than
pointersto key and val ue strings. These could aso have been implemented by using Renot ePoi nt er to point to the

storage locations in a memory window, but for many applications, it is both simpler and more efficient (in timeif not in
memory) to store these directly within the list element.3

The head of thislist is dightly different, even though it looks nearly the same as the shared-memory case in Figure 6.21. In the
shared-memory case, there was one head variable that every process could access directly. Inthe MPI RMA case, there

3 The same efficiency argument often holds in the shared-memory case as well, but for simplicity we have used the simplest and
most general formin this case.

Page 218

#def i ne MAX_KEY_SI ZE 64
#define MAX_VALUE_SI ZE 256

typedef struct {

MPI _Ai nt disp; /* Displacenent in w ndow */
i nt owner _rank; /* Rank (process) */
voi d *| ocal _poi nter; /* Local address of data pointed

at (if data local) */
} Renot ePoi nt er;
typedef struct {
Renot ePoi nt er next;
/* For sinmplicity, we nake the key and value stay within the
structure. In a nore general case, they too could use
Renot ePoi nter */
char key[MAX_KEY_SI ZF],
val ue[MAX_VALUE_SI ZE] ;
} ListElm

/* The head starts on process 0 at displacenent 0 */
static RenotePointer head = {0, 0, 0};

MPI _Dat at ype ListEl mtype;

Figure 6.23
Header fileDl i st . h for distributed list code. Thel ocal _poi nt er fieldisdeclared asvoi d *

to provide agenera "remote pointer;" however, in the code in these examples, we could a so have used
Li stEl m *| ocal _pointer.

are no shared variables; each process has (direct) access only to its own variables. In the RMA case, each process hasits own
head variable. Thisis defined asaRenbt ePoi nt er that points at displacement zero on process zero. Thus, the RMA

version of the distributed list always starts on process zero.

Thelast partof Dl i st . h isan MPI datatype that will be used to access alist element (Li st El n). Sinceali st El mcontains
aremote pointer as well as character arrays, we use an MPI datatypeto accessalLi st EI mon aremote process. Not shown
hereisthe list element that head pointsto; thisisaLi st El mon process 0 with displacement O, and with

key = "\rel ax0".

The code to construct this datatype isfairly simple. The only problem is how to handle the MPI _Ai nt fieldinthe
Renot ePoi nt er because there is no predefined MPI datatype corresponding to MPI _Ai nt , as discussed in Section 5.6.1
(we do not need to transfer thevoi d *I ocal _poi nt er field, of course). We can use the

Page 219

function MPl _Type_mat ch_si ze aswedid in Section 5.6.1 to find the corresponding MPI datatype. An aternative that
maintains portability isto use atool such as GNU aut oconf [51] to determine the appropriate datatype.

Therest of theLi st El m t ype datatype is constructed with the following code:

/* Create a type for the RenotePointer */

bl ens[0] = 1;

di spl s[0] = O;

MPI _Type_mat ch_size(MPI _TYPECLASS | NTEGER, sizeof (MPI _Aint),
&dtypes[0]);

bl ens[1] = 1;

MPl _Get address(&head. di sp, &disp base);

MPl _Get _address(&head. owner _rank, &displs[1]);

di spls[1] = displs[1] - disp_base;

dtypes[1] = MPI _INT,;

MPI _Type create_struct(2, blens, displs, dtypes, & enpointer);

/* Create the datatype for ListElm*/

dtypes[0] = renpointer; blens[0] = 1;
dtypes[1] = Ml _CHAR; bl ens[1] = MAX_KEY_SI ZE;
dtypes[2] = MPI _CHAR bl ens[2] = MAX_VALUE_SI ZE;

MPI _Type_create_struct(3, blens, displs, dtypes,
&Li stEl mtype);

MPI _Type _free(& enpointer);

MPI _Type_commit(&ListElmtype);

This example takes advantage of the fact that in MPI, an object may be freed once the user no longer needs it explicitly. Any
reference to the object by another MPI operation (in this case, the datatype Li st El m_t ype) ensures that the object itself is

not deleted until all referencesto it are freed (in this case, until Li st El m t ype is deleted).

With these preliminaries, we are ready to describe the RMA version of Fi ndEl m The code in Figure 6.24 parallels the shared-
memory code, but with some important differences.

» Becausewemust useaMPl _W n_| ock/ MPI _W n_unl ock to complete any MPI _Get operation, we get an entire list
element, including the key and val ue, in asingle operation, rather than first checking the key and then obtaining either the
val ue (if thekey matched) or the next pointer (if the key did not match). We

Page 220

also make a copy of the list element that we will look at. Thisis more efficient that using multiple lock/get/unlock operations.

* Weget theremote list elementintoal ocal _copy. Thisl ocal _copy isdeclared st at i ¢ sothat we can return it asthe
value found by Fi ndEl m Thisisasimple approach, but cannot be used if there are multiple threads per process.

* Inthe case where the datais local, we use the | ocal _poi nt er field of the Renot ePoi nt er rather than either using
MPI _CGet onthelocal process or computing the local pointer from the window base and displacement.

» Theend of thelist isindicated by an owner _r ank of —1. We use this rather than using awindow displacement of zero
(di sp in Renot ePoi nt er) because a displacement of zero isavalid location.

6.9.3—
Handling Dynamically Changing Distributed Data Structures

How does our code change if the list can be updated and searched at the same time? Just as before, we start with shared-
memory code. Since the list can be updated by one thread while another thread is searching it, we may need to establish a
critical section around the list. We start by defining an | nser t El mroutine that may be used to insert an element into the list;

this code is shown in Figure 6.25. We assume that the list is sorted by key; the insert routine inserts the element into the correct
location in the list. The codeis straightforward; thewhi | e | oop finds the pointer to the list elements before (| ast ptr)

and after (pt r) the element to be inserted (here is where having head point to afirst element helps; there is no special code for
handling the head. No element isinserted if key isfound. Note that a mutex lock is used around access to the list to prevent
concurrent inserts from corrupting the list data structures. We do not define the routines| ock_rmut ex and unl ock _nut ex;
we simply assume that they exist for the shared-memory case. In addition, the function DupSt r i ng is used to allocate space

(in shared memory) for astring and copy the argument to that space; the implementation of this simple function is not shown.
Finally, we assume that mal | oc may be used to allocate shared memory.

A Del et eEl mroutine has asimilar form, with the code first finding the element (based on key) to remove, then linking
around it and freeing the storage used by the deleted list element.

The Fi ndEl mroutine for adynamic list is slightly different from the static list version shown in Figure 6.22. In particular, if

elements can be deleted as well asinserted, we cannot simply return the value element from alist entry, since that storage could
be freed by another process executing Del et eEl m Instead, we make a copy of the value before returning it. Of course, this

requires that the user free

Page 221
#i nclude "Dlist.h"

char *FindEl m(MPI _Wn wi n, const char *key)

{
static ListEl mlocal copy;
Li st El m *| ocal _copy_ptr;
Renot ePoi nter ptr;
i nt nmy_rank;
MPlI _G oup Wi n_group;

/* nmy_rank could al so be preconputed, of course */
MPI _Wn_get_group(win, & n_group);

MPl _Group_rank(wi n_group, &ny_rank);

MPI _Goup_free(&wi n_group);

ptr = head;
while (ptr.owner_rank >= 0) {
/* Make sure we have the data */
if (ptr.owner_rank !'= my_rank) {
MPI _W n_l ock(MPI _LOCK SHARED, ptr.owner_rank, 0, win);
MPI _Get(& ocal _copy, 1, ListElmtype,
ptr.owner _rank, ptr.disp, 1, ListElmtype, win);

MPI _W n_unl ock(ptr.owner_rank, win);
| ocal _copy_ptr = & ocal _copy;
}
el se
| ocal _copy _ptr = (ListElm*)(ptr.|ocal _pointer);

if (strcnp(|ocal _copy_ptr—>key, key) == 0)
return | ocal _copy_ptr—>val ue;

ptr = |l ocal _copy_ptr—>next;
}
/* Did not find key */
return O;
}
Figure 6.24

Code to find an element in an unchanging distributed list using RMA. Note that this code is not thread safe
because it uses a static variable (I ocal _copy).

Page 222

#i nclude "list.h"
extern char *DupString(const char *);

void InsertElm const char *key, const char *val ue)
{

ListElm*ptr, *last_ptr, *new ptr;

i nt conpar e;

/* Lock list, find insertion point, and insert element */
| ock_rmutex();

| ast _ptr = head;
ptr = head—>next;
while (ptr) {
conpare = strcnp(ptr—>key, key);
if (conpare == 0) {
/* Duplicate key. lgnore */
unl ock_mutex(); return; }
if (conpare > 0) {
br eak;

}
| ast_ptr

ptr

ptr;
pt r—>next ;

}

/* Create new el enment */

if (!'(newptr = (ListElm*)malloc(sizeof(ListEIn))))
abort ();

new ptr—>key

new_ptr—>val ue

new_pt r—>next

| ast _ptr—>next

DupString(key);
DupString(value);

ptr;
new _ptr;

unl ock_rmut ex() ;

}

Figure 6.25
Shared-memory code to insert an element into alist

Page 223

#include "list.h"
extern char *DupString(const char *);

char *FindEl m(const char *key)
{

Li stElm*ptr;

char *| ocal _val ue;

i nt conpar e;

| ock_mutex();
ptr = head->next;
while (ptr) {
conpare = strcnp(ptr—>key, key);
if (conpare == 0) {
| ocal _val ue = DupString(ptr—>val ue);
unl ock_mutex();
return | ocal val ue;
}
else if (conpare > 0)
br eak;
ptr = ptr—>next;
}
unl ock_rmut ex();
return O;

}

Figure 6.26
Shared-memory routine to find an element in alist that may be modified by other
processes

the result returned by Fi ndEl mwhen it is no longer needed. The other change is the addition of | ock__nut ex and
unl ock_rmut ex callsto ensure that the list is not modified by another process while Fi ndEl mis searching through the list.
The code for the shared-memory version of Fi ndEl mfor dynamic listsis shown in Figure 6.26.4

These two shared-memory codes are fairly simple, but they illustrate one of the more subtle issuesin writing parallel programs.
Inboth | nsert El mand Fi ndEl m a

4 1f write ordering is enforced, that is, storesto memory occur in the order they are written and are not reordered by the compiler
or the memory system hardware (see Section 4.3.2), we may be able to avoid locks in the Fi ndEl mroutine by carefully

ordering the updates to the list elementsinl nser t El m However, such codeis fragile because write ordering is not a
requirement of C, C++, or Fortran, and code that runs on one system may fail on another.

Page 224

single mutex lock is used to protect the list. Asaresult, only one process at atime can use the list. This restriction makesthis
code nonscalable: as more processes are added, the program may not run faster. Note that if thereisno Del et eEl m only an

I nsert EI m we do not need to use a mutex around the Fi ndEl mroutine because we can ensure that the list isalways valid
(thisiswhy the last pointer operation istheassignment to | ast _pt r—>next inl nsert El m).

6.9.4—
An MPI I mplementation of a Dynamic Distributed List

The RMA version of the dynamic list routinesis very similar to the shared-memory version, with the same changes that we
made for a static list (that is, we read the entire list element into a copy).

Our first task isto provide away to dynamically allocate memory to be used by | nser t El m Since MPI provides no routines

to allocate memory from alocal memory window, we must write our own. Fortunately, we have chosen to use fixed-sized list
elements, so we can use asimple list alocator. The following code shows the initial list element allocation and window
creation.

Li stEl m *avai | ;

MPI _Al l oc_menm(MAX _LOCAL_LI ST * sizeof (ListElm,
MPl I NFO NULL, &avail);

for (i=0; i<MAX_LOCAL_LIST; i++) {

avail[i].next.local _pointer = avail + i + 1;
avail[i].next.disp =i;
}

avai | [MAX_LOCAL_LI ST-1].next.l ocal _pointer = O;
MPI _Wn _create(avail, MAX LOCAL LIST * sizeof (ListElm,
sizeof (ListElmM, . . .);

With this code, allocating an element simply requiresusing avai | and resetting avai | toavai | —>next .
| ocal _poi nter.Weuseavail [i]. next. di sp tohold the displacement in the local window of that item (not the next
item) while in the avail list.

The major changein Fi ndEl misthe use of MPE_Mut ex_| ock and MPE_Mut ex_unl ock to provide the mutex needed to
safely read thelist, just as| ock_mut ex and unl ock_nut ex were used in the shared-memory version. These use a separate
window object, wi nl ock, which is created with MPE_Mut ex_cr eat e. Similarly, | nser t El malso requires a mutex to

modify the list safely. In the RMA versions, shown in Figures 6.27, 6.28, and 6.29, a single mutex is used. Asthisis not
scalable, we could use an approach similar to the one used in the Global Arrayslibrary earlier

Page 225

in this chapter—one mutex per process. This allows multiple processes to access the list at the same time, aslong asthey are
accessing parts of the list that are on different processes. Care must be taken to avoid a deadly embrace if this approach is used,
since it may be necessary to acquire several locks. Note that because we are using MPE_Mut ex_| ock to ensure exclusive

access to the memory window, we can use the assert value MPI _MODE_NOCHECK in the call to MPI _W n_| ock.

There are some important differences between the RMA versions aswell. In the static (unchanging) list version of Fi ndEl m
(Figure 6.24),the MPI _W n_1| ock and MPl _W n_unl ock calls surround only the MPl _Get call (in order to provide an
access epoch and to complete the MPlI _Get call). In the dynamic list case shown in Figure 6.27, the lock must surround both

remote and local accesses to the memory, because in the case where a remote process updates the local window, the update
may not become visible to the local process until it begins an access epoch. In the static case, there were no updates, and hence
no local access epochs were necessary.

The code for inserting an element, shown in Figures 6.28 and 6.29, has more differences with its shared-memory counterpart
than Fi ndEl mdoes. Most important, the RMA version of | nser t El mreads an entire element and saves the previous

element (inl ocal _copy_| ast), with Renot ePoi nt er | ast_ptr the RMA pointer to the previous element. When an
element isinserted, we replace the entire list element, not just the Renot ePoi nt er next fieldinit. Thisis done to keep the
example code simple. Note that by using a displacement unit of si zeof (Li st El m) , we simplify the displacement
calculations but lose the flexibility in making updates to specific partsof aLi st El m

6.10—
Compiler Optimization and Passive Tar gets

In Section 5.7.5 we discussed the danger that a value updated in memory may be ignored because the compiler is using a copy
placed in aregister. The same issues apply to passive target synchronization. Fortran programmers should consider either using
avol ati | e statement, where available, or passing the local memory window to a dummy or near-dummy routine (e.g., an

MPE_W n_| ock that takes the local window, as well as the window object, as an argument). However, C and C++
programmers don't need tousevol at i | e, at least when the lock typeis MPI _LOCK _EXCLUSI VE, since accesses to the
local window still requireusing VPl W n_| ock and MPl _W n_unl ock.

Page 226

#include "Dist.h"
extern char *DupString(const char *);
extern MPI _Wn w nl ock;

char *FindEl m(MPI _Wn wi n, const char *key)
{
Li stEl' m | ocal _copy, *local _copy_ptr;
char *| ocal value = 0;
Renot ePoi nter ptr;
i nt nmy_rank;
MPl _Group Wi n_group;

/* my_rank could al so be preconputed, of course */
MPI _W n_get_group(win, & n_group);

MPI _Group_rank(win_group, &y_rank);

MPI _Group_free(&wi n_group);

MPE_Mut ex_ | ock(0, winlock);
ptr = head;

while (ptr.owner_rank >= 0) {
/* Make sure we have the data */
MPI _Wn_lock(MPI _LOCK SHARED, ptr.owner_rank,
MPI _MODE_NOCHECK, win);
if (ptr.owner_rank !'= my_rank) {
MPI _Get(& ocal _copy, 1, ListElmtype,
ptr.owner _rank, ptr.disp, 1, ListElmtype, win);
| ocal _copy_ptr = & ocal _copy;
}
el se
| ocal _copy_ptr = (ListElm*)(ptr.local _pointer);
MPI W n_unl ock(ptr.owner_rank, win);

if (strcrmp(local _copy_ptr—>key, key) == 0) {
| ocal _value = DupString(|ocal_copy_ptr—>val ue);
br eak;

}

ptr = local copy_ptr—>next;

}
MPE_Mut ex_unl ock(0, winlock);

return | ocal val ue;

}

Figure 6.27
An RMA routineto find an element in alist that may be modified by other processes

Page 227

#include "Dlist.h"
Li stEl m *avai | ;
extern MPI _Wn wi nl ock;

void InsertEln(MPI_Wn win, const char *key, const char *val ue)

{
Li stEl' m | ocal _copy, local _copy_last, *new_|ocal ptr;
MPI _Ai nt new_| ocal _ptr_disp;
Renot ePoi nter last_ptr, ptr;
i nt conpare, ny_rank;
MPlI _Group Wi n_group;

/* my_rank could al so be preconputed, of course */
MPI _Wn_get _group(win, & n_group);
MPI _Group_rank(wi n_group, &ny_rank);

MPI _G oup_free(&wi n_group);

/* Lock list, find insertion point, and insert element */
MPE_Mut ex_ | ock(0, winlock);

ptr = head;
while (ptr.owner_rank >= 0) {
/* This code could use | ocal _pointer as FindEl m does, but this
shorter version is used to reduce the size of the exanple */
MPI _Wn_l ock(MPI_LOCK SHARED, ptr.owner_rank,
MPI _MODE_NOCHECK, win);
MPI _Get(& ocal copy, 1, ListEl mtype,
ptr.owner_rank, ptr.disp, 1,
ListElmtype, win);
MPI W n_unl ock(ptr.owner_rank, win);

conpare = strcnp(| ocal _copy. key, key);

if (conpare == 0) { /* duplicate entry. Do nothing */
MPE_Mut ex_unl ock(O, winlock); return; }

if (conpare > 0) {
br eak;

}

/[* Save entire list element that "last_ptr" points to */

| ocal _copy_|I ast = | ocal _copy;

| ast_ptr = ptr;

ptr = | ocal _copy. next;
}
Figure 6.28

An RMA routineto insert an element in alist that may be modified by other processes: code to find
the insert location

}

/* Create new el ement. The new el enent nust be allocated from
the local menory w ndow. Note that each process has its own
list of available list elenments */

if (! (new_local _ptr = avail)) MPI_Abort(MPI_COVM WORLD, 1);

avail = (ListElm*)avail—>next.| ocal _pointer;

strcpy(new_ | ocal ptr—>key, key);

strcpy(new_|l ocal _ptr—>val ue, val ue);

new_| ocal _ptr_disp = new_| ocal _ptr—>next. disp

new | ocal _ptr—>next = | ocal _copy_I| ast. next;

/* Set the renpte pointer field of the previous entry to point to

the new entry */

| ocal _copy_Il ast. next.owner _rank =

| ocal _copy_l ast. next.disp =

| ocal _copy_Il ast.next.local pointer =
(my_rank == last_ptr.owner_rank) ? new |ocal ptr : O;

nmy_r ank;
new | ocal _ptr_di sp;

MPI _Wn_lock(MPI_LOCK SHARED, |ast_ptr.owner_rank,
MPI _MODE_NOCHECK, win);
MPl _Put (& ocal _copy_l ast, 1, ListE mtype,
| ast _ptr.owner_rank, last _ptr.disp, 1, ListElmtype, win);
MPI W n_unl ock(ptr.owner_rank, win);

MPE_Mut ex_unl ock(0, winlock);

Figure 6.29
An RMA routine to insert an element in alist that may be modified by other processes. code to insert the
element into the proper location

Page 228

6.11—
Scalable Synchronization

A third approach may be used to synchronize MPI RMA operations. This approach is a more scalable version of
MPI W n_fence.LikeMPl _W n_f ence, itisan active target synchronization method. Unlike MPI _W n_f ence,

however, the approach is not collective over the group of the window object. Instead, these routines are called only for the
processes that are origins, targets, or both for RMA operations.

From the grid ghost-point exchange used in Chapter 5 to introduce the RMA operations, it should be clear that collective
synchronization is stronger than necessary. A process can continue past the ghost-point exchange once two things have
happened: the RMA operations to the neighbors (that is, with the neighbors as targets) have completed, and any RMA
operations targeting this process have also completed. The third MPI synchronization approach allows us to express this

Page 229

Table6.16
C routines for scalable active target synchronization

int MPl_Wn_start(MPI_Goup to_group, int assert, MPI_Wn w n)
int MPI_Wn_conplete(MPI _Wn w n)
int MPI _Wn_post (Ml _Goup fromgroup, int assert, MPI_Wn wn)

int MPI_Wn_wait(MI_Wn wn)

degree of synchronization.

6.11.1—
Exposure Epochs

To understand this approach, we first introduce the concept of an exposure epoch. Thisis the period of time when aloca
window may be the target of RMA operations. In other words, it is the time when the local window is exposed to changes made
by other processes. Thisisthe counterpart to the access epoch first mentioned in Section 6.2. The routine MPl _W n_post

begins an exposure epoch and MPI _ W n_wai t ends an exposure epoch for the local window. These calls take as an argument
the window object whose local window is being exposed. In addition, MPI _W n_post takesan MPI group as an argument.

Thisisthe group of processes that will be making RMA operations with thislocal window as the target. We emphasize thisin
the argument list by using the name f r om_gr oup for this group: it is the group from which RMA calls will be coming.

An access epoch is ssimply the period of time when a process is making RMA calls on awindow object. Most of this chapter
has discussed the use of MPI _W n_I| ock and MPI _W n_unl ock to establish an access epoch for passive target

synchronization. For active target synchronization, an access epoch is started with MPI _W n_st ar t and completed with
MPI _W n_conpl et e.JustlikeMPl _W n_post, MPI_Wn_start takesan MPI group as an argument; this group

indicates the processes that will be targets of RMA calls made by this process. We emphasi ze this by using the name
t o_gr oup intheargument list: it is the group to which RMA calls are being made. The bindings for al four routines are

shown in Tables 6.16, 6.17, and 6.18.

6.11.2—
The Ghost-Point Exchange Revisited

We can rewrite the ghost-point exchange code from Section 5.6.1 by replacing the MPl _ W n_f ence callsthat surround the
RMA operations with combinationsof M°Pl _W n_start, MPI_Wn_post, MPI_Wn_wait,and
MPI _W n_conpl et e. There

Page 230

Table6.17
Fortran routines for scalable active target synchronization

MPI _W N_START(to_group, assert, wn, ierror)
i nteger to_group, assert, win, ierror

MPI _W N_COVPLETE(wW n, ierror)
integer win, ierror

MPI _W N _POST(from group, assert, win, ierror)
i nteger fromgroup, assert, win, ierror

MPI WN WAl T(win, ierror)
integer win, ierror

Table6.18
C++ routines for scalable active target synchronization

void MPI::Wn::Start(const MPl::Goup& to_group, int assert) const
void MPl::Wn:: Conpl ete(void) const
void MPlI::Wn::Post(const MPl::Goup& fromgroup, int assert) const

void MPl::Wn::Wiit(void) const

are two parts to this. First, we must construct the groups for the MPl _W n_st art and MPl _W n_post cals. Inthecodein
Figure 5.10, the targets (neighbors) for the MPI _Put operationsaret op_nbr and bot t om nbr.

The code to create the group is ssimply

MPI _Wn_get_group(win, &group);

ranks[0] = bottom nbr;

ranks[1] = top_nbr;

MPI _Group_incl(group, 2, ranks, &nbr_group);
MPlI _Group_free(&group);

(This code ignores the possibility that either bot t om nbr ort op_nbr isMPI _PROC _NULL; in that case, the size of the
group nbr _gr oup must be reduced.) Because the ghost points are exchanged, this group is aso the group of processes that
arethe origin processes for MPl _Put callsthat target this process. Thus, thet o_gr oup of MPl _W n_st art andthe
from group of MPl _W n_post arethe samein this case.

Page 231
Second, we replacethe MPI _ W n_f ence that precedes the RMA operations in Figure 5.10 with

MPI W n_post(nbr_group, 0, win);
MPI _Wn_start(nbr_group, 0, win);

and we replace the MPI _W n_f ence that follows the RMA operations with

MPI _Wn_conplete(win);
MPI_Wn wait(win);

6.11.3—
Performance Optimizations for Scalable Synchronization

The two calls that are used to initiate scalable synchronization for RMA (MPl _W n_start and MPl _W n_post) takean
assert argument. This assert value can be used by an MPI implementation to provide improved performance in the same
way that theassert argument to MPl _W n_f ence can be used (see Section 5.8.2).

Threeassert values may be used with MPI _W n_post . Recall that MPl _W n_post begins an exposure epoch for the

local window; thus, assert values that tell the implementation about changes to the local window before or after the
MPI _W n_post call may be helpful. The three assert values are the following:

MPlI _MODE NOSTORE: Theloca window was not updated by local stores (or local get or receive calls) since the last call to
MPI _W n_conpl et e.

MPI _MODE NOPUT: Thelocal window will not be updated by put or accumulate calls between thisMPI _W n_post call
and the matching MPI _W n_conpl et e call.

MPI _MODE_NOCHECK: Thematching MPI _W n_st art calls have not been issued by any process that is an origin of RMA
operations that have this process as the target. In addition, those MPl _W n_st art calls must also specify
MPI _MODE NOCHECK astheir assert value.

Theonly assert vauedefined for MPl _W n_st art isMPI _MODE_NOCHECK, which can be used only when the matching
MPlI _W n_post callson thetarget processes have already been called and have specified MPI _ MODE_NOCHECK as part of
their assert argument.

Unlikethe MPI _W n_f ence case, these assert values are less likely to be useful. For example, many programs will perform
stores to the local window before beginning an exposure epoch with MPI _W n_post (eliminating MPl _MODE_NOSTORE as
avalid assert value). Using VPl _Get instead of MPI _Put or MPl _Accunul at e by the origin processes would allow

MPI _MODE NOPUT to beused asanassert vaue, but that is

Page 232

not a good reason to prefer MPI _CGet over MPl _Put . The assert value MPI _ MODE_NOCHECK requires some outside

synchronization to ensure that the conditions for its use are met; these are similar to those needed for a ready-send (such as
MPI _Rsend) .

Theinfokey no_| ocks may beused withaMPl _W n_creat e cal if VPl _W n_| ock and MPI _W n_unl ock are never
used with the created window object. Just as for programs that use MPI _W n_f ence to complete RMA operations, this can
be an important optimization.

6.12—
Summary

This chapter has covered two major topics. passive target RMA and scalable synchronization. The maority of the chapter has
focused on passive target RMA: remote access without active cooperation by the target process. This provides a true one-sided
operation, compared with the active target RMA introduced in Chapter 5 that relies on all processes, both origin and target,
calling MPl _W n_f ence. The passive target synchronization, using VPl _W n_| ock and MPl _W n_unl ock to define an

access epoch, is designed to alow the widest portability and performance by an MPI implementation.

However, the looseness of the synchronization (the nonblocking lock) makes other operations more awkward, particularly read-
modify-write operations. We showed how to implement one of the most basic read-modify-write operations, a fetch-and-add,

in several ways, including onethat is relatively simple and another that is scalable but more complex. With a fetch-and-add,
many important distributed data structures, such as queues, stacks, and lists, can be implemented. We used our implementation
of fetch-and-add in two examples: a distributed array library and adistributed list. The distributed list example also allowed us
to compare a shared-memory implementation with MPI RMA; this example will help users who wish to port an application to a
distributed-memory system using MPI.

The third form of RMA synchronization defined by the MPI Standard is another form of active target synchronization, but one
that identifies the target and origin processes for any RMA operation. This allows an MPI implementation to provide a
synchronization mechanism that is as scalable as the application. We illustrated this by revisiting the ghost-point-exchange
example introduced in Chapter 5, replacing callsto MPI _W n_f ence with the scalable synchronization routines

MPI _Wn_post, MPl_Wn_start, MPI_Wn_conplete,andMPI _Wn_wait.

Page 233

7—
Dynamic Process M anagement

In this chapter we describe the MPI approach to the creation of new MPI processes by MPI processes. We also describe how
separately started MPI applications can establish contact and exchange MPI messages with one another.

71—
Introduction

The MPI-1 Standard does not say anything about how processes are started. Process startup takes place outside an MPI
program, and an MPI process calls MPl _Conm si ze to find out how many processes were started and calls

MPI _Cormm r ank to find out which oneit is. The number of processesis thusfixed no later than when MPI _I ni t returns.

MPI users asked that the MPI Forum revisit this issue for several reasons. The first was that workstation-network users
migrating from PVM [24] to MPI were accustomed to using PVM's capabilities for process management. A second reason was
that important classes of message-passing applications, such as client-server systems and task-farming jobs, require dynamic
process control. A third reason was that with such extensions, it might be possible to write parts of the parallel-computing
environment in MPI itself.

This chapter begins by discussing the MPI approach to creating new processes, continuing the discussion of
MPI _Comm_spawn, begun in Section 2.4, with a new example. We a so review communication between groupsin an

intercommunicator, both point to point (defined in MPI-1 but rarely used) and collective (new in MPI-2). Section 7.3 discusses
how to connect two MPI programs, using the example of a computational program and a visualization program. The chapter
concludes by discussing some of the reasons for the particular design of the MPI dynamic process routines.

7.2—
Creating New MPI Processes

The basics of MPI _Conmm_spawn were introduced in Section 2.4, where we used the parallel copy example to illustrate how
to spawn processes from an MPI program. Recall that MPI _Comm_s pawn creates an intercommunicator containing as its two
groups the spawning processes and the spawned processes. In this section we explore MPI _Conmm_spawn in more detail by

revisiting the matrix-vector multiplication program from Chapter 3 of Using MPI [32]. This program was presented there as an
example of the "master-slave” paradigm. We will adapt it to use avariable

Page 234

) Mt .\"v. sendi 1)

| ¥

Figure 7.1
M essage passing with an intercommunicator

number of slaves, which are not started until after the master decides how many slave processes there should be.

7.2.1—
| ntercommunicators

Before we plunge into this example, it might be a good idea to review the concept of MPI intercommunicators.
Intercommunicators are arelatively obscure part of MPI-1, but play a more prominent role in MPI-2, where they turn out to be
just what is needed to express some of the new ideas. Thisis particularly true in the area of dynamic process management. A
"normal”™ MPI communicator is, strictly speaking, an intracommunicator. It consists of a context and a group of processes. The
distinguishing feature of an intercommunicator isthat it has associated with it two groups of processes, referred to (from the
point of view of a specific process) as the local group (the group containing the process) and the remote group. Processes are
identified by rank in group, as usual, but a message sent to a process with a particular rank using an intercommunicator always
goes to the process with that rank in the remote group. Figure 7.1 shows a message sent from process O (in itslocal group) to
process 1. Sinceit is sent in an intercommunicator, it goes to the process with rank 1 in the remote group. This behavior of
point-to-point operationsis specified in MPI-1. MPI-1 does not specify the behavior of collective operations on
intercommunicators, but MPI-2 does. As in the point-to-point case, communications take place between the two groups.
Indeed, we will see an example of an intercommunicator collective operation in our matrix-vector multiplication example.

Page 235

7.2.2—
Matrix-Vector Multiplication Example

Our matrix-vector multiplication example uses the same algorithm employed in Chapter 3 of Using MPI [32]. Instead of having
all processes started outside the program, however, we will start only the master process and have it start the slaves with

MPI _Comm_spawn. This means that the most obvious difference between this version and the MPI-1 version is that the
master and the slaves are each separate main programs.® First let us consider the beginning of the code for the master process,
shownin Figure 7.2.

We expect to start this program with

npi exec -n 1 master

The program multiplies the matrix a by the vector b and stores the result in c. The parallelism comes from performing the dot
products of the rows of awith b in parallel. We assume that there are more rows of a than there are processes, so that each
process will do many dot products. For this example, we do not assume that all processes execute at the same speed; hence we
adopt a self-scheduling algorithm for load-balancing purposes. The master process sends rows, one by one, to the slave
processes, and when a slave finishes with arow, it sends the result (the dot product) back to the master. If more rows remain to
be done, the master sends arow to the slave that just completed a row. From the master's point of view, work is handed out to
whichever slave has become idle. From the slave's point of view, it receives a job, works on that job, and sends the result back
to the master, simultaneously requesting a new task. The master itself does not compute any dot products. In thisway all the
daves are kept busy, even if they work at different speeds.

This algorithm is not a particularly good way to parallelize matrix-vector multiplication, but it demonstrates self-scheduling
algorithms well. The algorithm is the same one used in Using MPI, but here we do not determine the number of slaves until
after the master has started, in order to illustrate both MPI _Conmm_spawn and the use of MPI _Bcast onan
intercommunicator, both of which are new in MPI-2. Thefirst part of the master program is shown in Figure 7.2. The only
variables new for this version are the intercommunicator s| aveconmm which will be constructed by MPI _Comm_spawn, and

the variable numslaves, which holds the number of slaves.

In general, a program of this type would do some sort of calculation to determine how many slaves to spawn. Aswe will seein
Section 7.2.5, it can also obtain advice

1 The MPI-1 Standard supports the multiple-instruction multiple-data (MIMD) model aswell, but MPI-1 programs are often
written using the single-program multiple-data (SPMD) model.

Page 236

I Matrix-vector nultiply, with spawning of slaves
PROGRAM nai n
use np
i nteger MAX_ROWN5, MAX _CCOLS
paraneter (MAX ROAS = 1000, MAX COLS = 1000)
doubl e precision a(MAX ROA5, MAX CCLS), b(MAX CCOLS), c(MAX ROWE)
doubl e precision buffer (MAX_ COLS), ans
i nteger slaveconm

integer ierr, status (MPl_STATUS Sl ZE)
integer i, j, nunmsent, sender, nunslaves
i nt eger anstype, rows, cols

call MPI _INIT(ierr)
! mast er deci des how nmany slaves to spawn, say 10
nunsl aves = 10
cal | MPI _COW SPAWN(' sl ave', MPI _ARGV_NULL, numsl aves, &
MPI | NFO NULL, 0, MPI _COW WORLD, &
sl avecomm MPI _ERRCODES | GNORE, ierr)
! master initializes and then di spatches

r ows = 100
col s = 100
! initialize a and b
do 20 j = 1,cols
b(j) =1
do 10 i = 1,rows
a(i,j) =
10 conti nue

20 conti nue
nunsent = 0
! send b to each sl ave
call WPl _BCAST(b, cols, MPI_DOUBLE PRECI SI ON, MPI _ROOT, &
sl aveconm ierr)

Figure 7.2
First part of master for matrix-vector multiplication

Page 237

from the system on how many davesit can spawn. To simplify this example, we assume that the master somehow decides to
create ten dlaves, and so we simply set nunsl aves equal to 10. The call that creates the slaves and the corresponding

intercommunicator is

call MPI _COW SPAVWN(' sl ave', MPI _ARGV_NULL, nunslaves, &
MPI | NFO NULL, 0, MPI _COW WORLD, &
sl avecomm MPlI _ERRCODES | GNORE, ierr)

(The Fortran version of) MPl _Conm_spawn has nine arguments. The first is the executable file to be run by the new
processes. The second argument is an array of strings to represent the "command line" arguments to the executable. Here, since
we are not passing the slaves any command-line arguments, we use the predefined constant MPI _ ARGV_NULL. The third
argument is the number of slaves to start. Extrainformation (such as what machines to start the slave processes on), and
perhaps even site-specific hints to the job scheduler, can be given in the fourth argument, thei nf o argument. Here, we just
pass the predefined constant MPI 1 NFO_NULL and defer to Section 7.2.5 afuller discussion of its use with

MPI _Comm _spawn. Thecall to MPl _Conm_spawn is collective (over the communicator specified in the sixth argument),
and the first four arguments need not be presented at al of the processes (although they must, of course, be syntactically
correct), but will be interpreted only at the "root" process, specified in the fifth argument. Here we specify 0O, since thereis only
one master process. The sixth argument is the communicator over which this call is collective, here MPI _COVM WORLD.2

Next come the output arguments. The seventh argument, here sl aveconmm will be set to be the intercommunicator containing

both the master (in the local group) and the slaves (in the remote group). The next argument is an array of error codes, one for
each new process to be created, but we can (and here do) pass the specia constant MPI _ ERRCODES | GNORE instead, to

indicate that we are not going to check theindividual error codes. The overall error code (the last argument in Fortran or the
function value returned in C) can be checked to see whether MPI _ Comm_spawn was successful asawhole or not. If itis

MPI _SUCCESS, then all processes were successfully created, and all potential communication, both with and among the new
processes, is enabled.

The bindings for MPI _Comm spawn and MPl _Conm get _par ent areshownin Tables 7.1, 7.2, and 7.3. Note that, in the
C++ bindings, there aretwo versionsof MPI : : | nt racomm : Spawn, onewiththear ray_of _err codes last argument
and one

2 Since there is only one process, we could also have used MPI _COVM SELF.

Page 238

Table7.1
C bindings for process creation

int MPI _Conm spawn(char *comrand, char *argv[], int nmaxprocs,
MPI Info info, int root, MPI_Conmm conmm
MPI _Comm *intercomm int array_of errcodes[])

i nt MPI_Conmm get _parent (MPl _Conm *par ent)

Table7.2
Fortran bindings for process creation

MPI _COWM _SPAWN(conmand, argv, maxprocs, info, root, comm interconm
array_of _errcodes, ierror)
character*(*) conmand, argv(*)
i nteger info, maxprocs, root, comm interconm
array_of errcodes(*), ierror

MPlI _COVWM _GET_PARENT(parent, ierror)
i nteger parent, ierror

without. The one without this argument corresponds to calling MPI _Comm_spawn with MPI _ ERRCODES | GNORE asthe
last argument in C.

7.2.3—
I ntercommunicator Collective Operations

Next the master initializes the matrix a and the vector b and uses the collective operation MPl _Bcast to send b to the slaves.
In MPI-1, collective operations were not defined for intercommunicators such as s| aveconm but MPI-2 defines the behavior
of collective operations on intercommunicators. For MPl _Bcast , the broadcast occurs from the root in the local group to all

the processes in the remote group, which in this case are the slaves. Because there are two groups, the root process indicates
itself by using the special value MPl _ROOT. The processes receiving the broadcast specify the rank of the root in the other

group, just as they would if there were a single group. (Here, where the local group has only one member, the effect is not
different from the case in which all processes are in the same (intra)communicator, but in general an intercommunicator
MPI _Bcast isquite different from an intracommunicator MPI _Bcast .) If there is more than one process in the group that

contains the root, those processes specify MPI _PROC_NULL astheroot value. Thisisillustrated in Figure 7.3.

Note that (at this point) we don't have an intracommunicator containing the mas-

Page 239

Table7.3
C++ bindings for process creation
MPI:: I ntercomm MPI:: I ntracomm : Spawn(const char* command,
const char* argv[], int maxprocs, const Ml ::Info& info, int root,

int array_of errcodes[]) const

MPI :: I ntercomm MPI:: I ntracomm : Spawn(const char* conmmand,
const char* argv[], int maxprocs, const Ml::Info& info,
int root) const

MPIl : : I nterconm MPI :: Conm : Get _parent ()

— 2

-~ G' MP PROC MULL ‘x__\ _,-‘: LY _,." \“
— ¢ -~ - o
[Me1_PROC MuULL 2| MPLROOT B I
/ ~4 |
! # X
3| MPI_PROC_NULL e

Figure 7.3
Intercommunicator broadcast. The argument used asther oot field is given inside the box
representing each process. In this example, process 2 in the group on the left is broadcasting
to every processin the group on theright.

ter and the slaves; we could create one with the MPI-1 function MPl _| nt er comm _ner ge aswedid in Section 2.4.2, but it
will not be necessary in this example.

7.2.4—
I ntercommunicator Point-to-Point Communication

The rest of the master code is shown in Figure 7.4. It isvery similar to the nonspawn version of the code (Figure 3.7 in Using
MPI [32]). The mgjor differenceisthat the ranks of the slaves go from 0 to nunsl aves—1, since the master is addressing

them, not in MPI _COVM_WORL D, but in the remote group of the intercommunicator s| aveconm The master sends al the

daves arow to work with, receives answers from the slaves, and then sends out new rows until al rows are done. Then it sends
amessage with tag 0 to each slave to tell it that the computation is over. Finally, the master prints the vector ¢, which isthe
product of a and b.

Page 240

! send a row to each slave; tag with row nunber
do 40 i = 1, mi n(nunsl aves, r ows)
do 30 j = 1,cols
buffer(j) = a(i,j)
30 continue
call MPI _SEND(buffer, cols, MPI_DOUBLE PRECISION, i-1, &
i, slaveconm ierr)
nunsent = nunsent +1
40 conti nue
do 70 i = 1,rows
call MPI _RECV(ans, 1, MPI_DOUBLE_PRECI SI ON, &
MPl _ANY_SOURCE, MPI _ANY_TAG &
sl avecomm status, ierr)
sender = st at us(MPl _SOURCE)

50

70

80

anstype status(MPI _TAQ
c(anstype) ans
if (numsent .lt. rows) then
do 50 j = 1,cols
buffer(j) = a(numsent+1,)
conti nue

rowis tag val ue

send anot her

row

cal | MPI _SEND(buffer, cols, MPI_DOUBLE PRECI SI ON, &
sender, nunsent+1, slavecomm ierr)

nunsent = nunsent +1
el se

call MPI _SEND(buffer, 0, MPI_DOUBLE_PRECI SI QN, sender,

0, slaveconm ierr)
endi f
conti nue

print the answer

do 80 i = 1,rows
print *, "c(", i, ") =", c(i)
conti nue

call MPI _COW FREE(sl| avecomm ierr)
call WPl _FI NALI ZE(i err)

END PROGRAM mai n

Figure 7.4
Second part of master for matrix-vector multiply

sl ave program for matrix-vector nultiplication
PROGRAM nai n

90

100

use np

i nteger MAX_COLS

paraneter (MAX COLS = 1000)

doubl e precision b(MAX_COLS)

doubl e precision buffer(MAX_COLS), ans

integer i, ierr, status(Ml _STATUS Sl ZE)
i nteger row, cols, rows, rank
i nt eger parent conm

call MPI_INT(ierr)
call MPI _COVWM GET_PARENT(parentconm ierr)

the master is nowrank O in the renote group of the

parent intercomuni cator

sl aves receive b, then conpute dot products unti

done nessage received
rows = 100
cols = 100

call MPI_BCAST(b, cols, MPI_DOUBLE PRECI SION, 0, &

parentconm ierr)

call MPI _COVM RANK(MPI _COVMM WORLD, rank, ierr)

if (rank .ge. rows) go to 200 ! skip if nore processes than work

call MPI _RECV(buffer, cols, MPI_DOUBLE PRECISION, 0, &
MPI _ANY_TAG parentcomm status, ierr)

if (status(MPl _TAG .eq. 0) then

go to 200
el se
row = status(Ml _TAGQ
ans = 0.0
do 100 i = 1,cols
ans = ans+buffer(i)*b(i)
conti nue

call MPI _SEND(ans, 1, MPI _DOUBLE PRECISION, 0, row, &

parentconm ierr)

&

Page 241

go to 90
endi f
200 conti nue
call MPI _COW FREE(parentconm ierr)
call MPI _FI NALI ZE(ierr)
END PROGRAM nmi n

Figure 7.5
Slave part of matrix-vector multiply

Page 242

The code for the davesis shown in Figure 7.5. It is very similar to the slave part of the original version (Figure 3.8 in Using
MPI [32]). The new feature here is that after MPl _| ni t , the slaves can communicate with one another, through their

MPI _ COVM WORLD, which contains all processes spawned with the same MPl _Cormm spawn cal |, but not with the

master. In this example, the slave processes do not communicate with each other; they need communicate only with the master.
To obtain a communicator containing the master, the slaves do

call MPI _COW GET_PARENT(parentcomm ierr)

Thisreturnsin par ent conmthe intercommunicator created by the collective call to MPl _Comm _spawn in the master and
MPI 1 nit inthedaves. Theloca group of this communicator (from the slaves' point of view) is the same as the group of
their MPI _COVM_WORLD. The remote group is the set of processes that collectively called MPI _Comm_spawn, which in this
case consists of just the master. The slaves address the master as rank 0 in par ent conmaduring the exchange of rows and dot
products. When the slaves get the "all done" message (t ag=0), they call MPl _Fi nal i ze and exit.

7.25—
Finding the Number of Available Processes

The MPI Forum spent some time and effort debating whether it was possible to incorporate into the MPI Standard an interface
to ajob scheduler. It turned out that the variety of schedulers and their interfaces, coupled with the great variety in the types of
requests that users wanted to make of their resource managers, made this too difficult. Therefore, MPI's dynamic process
management defers to some other possible library any interaction with the scheduler. The one feature remaining from this
discussion that did enter the Standard (although only as an optional feature) is MPl _UNI VERSE_SI ZE, an attribute of

MPI _COVM WORLD. The term "optiona” here means that an MPI implementation need not provide a value for the attribute;
but if such avalueis provided, it works as follows. MPl _UNI VERSE_SI ZE provides to the MPI application information on

how many processes can usefully be run. The application can then use this information to determine how many "additional
processes can usefully be spawned. The value of MPI _UNI VERSE_SI ZE, even if provided, is not a hard limit; rather, itisa

"best guess' by the implementation of how many processes could exist.

The implementation is free to determine the value of the attribute MPI _UNI VERSE_SI ZE however it wishes. It could come

from an environment variable set either by the user or by the system. It could come from runtime interaction with a job
scheduler, or it could be set by the process manager. One logical approach isto

Page 243
have MPI _UNI VERSE_SI ZE set by npi exec. That is, in an environment with both a scheduler and a process manager,3

npi exec -n 1 -universe_size 10 matvec-nmaster
could perform three functions:
* request 10 "dots' from the job scheduler,
* request from the process manager that 1 process running mat vec_mast er be started, and
* arrange for the value of MPI _UNI VERSE_SI ZE to be set to 10.

Then the mat vec_mast er program would know that 9 more processes could be started without requiring additional
interaction with the scheduler.

Now let us consider the use of MPI _UNI VERSE_SI ZE with MPI _Conm_spawn. The beginning of mat vec_nast er
modified to use MPl _UNI VERSE_SI ZE is shown in Figure 7.6. Features of the program not in our earlier
MPI _Cormm _spawn examples are the following:

* Ituses MPI _UNI VERSE_SI ZE to decide how many processes to spawn.

* It checks the error codes from the attempts to spawn processes.

L et us step through this program. We call MPl _Cormm get _at t r to see whether the attribute MPI _ UNI VERSE_SI ZE has
been set. If it has, we spawn as many processes as the value of VPl _UNI VERSE_SI ZE tells us are available. Since the master

process counts as one process, we spawn one less than the value of the attribute itself. On the other hand, if there is no such
atribute (uni ver se_si ze_fl ag = 0), then we take a more conservative approach. We create an MPl _| nf o object and

use it to describe a"soft" request for any number of processes between one and ten. (See Section 2.5 for details on
MPI _I nf 0.) Here we use the predefined info key sof t and specify arange of numbers of processes using the same form as

for the - sof t argument to npi exec. We also pass an array of error codesto befilled in, and check for success.

Recall that MPl _Conmm_spawn returns an intercommunicator (sl aveconmin this case) in which the remote group consists
of the newly spawned processes. We use MPI _Conm r enot e_si ze to find out the size of this group, which is the number
of slaves.

3 Theargument - uni ver se_si ze isnot astandard argument for npi exec; it is shown here as an example that some
implementations may provide. Other possibilities for specifying the value of MPI _UNI VERSE_SI ZE include an environment
variable or configuration parameter.

Page 244

i nteger softinfo

i nt eger (ki nd=MPlI _ADDRESS Kl ND) uni verse_si ze
| ogi cal universe_size flag

i nt eger nunsl aves, i, errcodes(10)

cal | MPI _COW GET_ATTR(MPI _COWM WORLD, MPI _UNI VERSE SI ZE, &
uni verse_si ze, universe_size_flag, ierr)
if (universe_size flag) then
call MPI _COW SPAWN(' sl ave', MPI _ARGV_NULL, universe_size-1, &
MPI _I NFO_NULL, 0, MPI_COW WORLD, &
sl avecomm errcodes, ierr)
el se
call Ml _| NFO CREATE(softinfo, ierr)
call Ml _I NFO SET(softinfo, 'soft', "1:10', ierr)
cal | MPI _COWM SPAWN(' sl ave', MPl _ARGV_NULL, 10, &
softinfo, 0, MPI _COW WORLD, &
sl avecomm errcodes, ierr)
call MPlI _|I NFO FREE(softinfo, ierr)

endi f
call MPI _COW REMOTE Sl ZE(sl avecomm nunsl aves, ierr)
do i=1, 10

if (errcodes(i) .ne. MPlI_SUCCESS) then

print *, "slave ', i, ' did not start'

endi f
enddo
print *, 'nunber of slaves ="', nunsl aves

Figure 7.6

Modification of the master part of the matrix-vector program to use MPl _ UNI VERSE_SI ZE to specify the
number of available processes

In C and C++, the value returned by MPlI _Conm get _at t r isapointer to an integer containing the value, rather than the
valueitself. Thisisthe same as for the other predefined attributes such asMPl _TAB_UB. The code for accessing the value of
MPI _UNI VERSE_SI ZE from C follows:

int *universe_size ptr, universe_size flag;

MPl _Comm get _attr(MPI _COVM WORLD, MPI _UNI VERSE_SI ZE,
&uni verse_size ptr, &universe_size flag);
if (universe_size_flag) {
printf("Number of processes available is %\n",

Page 245
char *sl ave_argv| 2] ;
slave_argv[0] = argv|[3];
slave_argv[1] = NULL;

MPI _Conm spawn("pcp_sl ave", slave argv, numhosts, hostinfo,
0, MPI_COW SELF, &pcpsl aves,
MPI _ERRCODES_| GNORE) ;

Figure 7.7
Passing command-line arguments to spawned processes

*uni verse_si ze_ptr);

}

7.2.6—
Passing Command-Line Arguments to Spawned Programs

In our examples so far, we have used MPI _ARGV_NULL to indicated that the spawned programs are called with no command-

line arguments. It is often helpful to pass command-line parameters to the spawned programs. For example, in the parallel copy
example in Section 2.4.2, instead of using MPl _Bcast to send the name of the output file to each slave, we could have started

the processes with a single command-line argument containing the name of the output file. The change to the master program
(Figure 2.16) isshown in Figure 7.7.

Thear gv argument to MPI _Conm_spawn isdifferent from the ar gv parameter in a C/C++ mai n in two ways: it does not
contain the name of the program (the value of ar gv[O] inmai n), and it isnull terminated (rather than using an ar gc
parameter containing the argument count, as mai n does). In Fortran, the code issimilar. An array of char act er isused; an
entirely blank string indicates the end of the list.

What if we would like to pass separate command-line arguments to each of the new processes? MPI offers a separate function,
MPI _Cormm spawn_nul ti pl e, for this purpose as well as for starting processes that use different executable files. The

bindings are shown in Tables 7.4, 7.5, and 7.6. Basically, the first four arguments specifying the command name, argument
vector, number of processes, and info have become arrays of size count, which isthe first argument.

7.3—
Connecting M PI Processes

Some applications are naturally constructed from several separate programs. One example used in Using MPI [32] and in the
MPI Standard is that of a climate

Page 246

Table7.4
Spawning multiple executablesin C

int MPI _Comm spawn_nul tiple(int count, char *array_of conmands[],
char **array_of _argv[], int array_of _maxprocs[],
MPI Info array_of _info[], int root, MPI_Conm comm
MPI _Comm *intercomm int array_of errcodes[])

Table7.5
Spawning multiple executablesin Fortran

MPI _COVM _SPAWN_MULTI PLE(count, array_of_commands, array_of _argv,
array_of maxprocs, array_of info, root, comm intercomm
array_of errcodes, ierror)

i nteger count, array_of _info(*), array_of _rmaxprocs(*), root,
Comm intercomm array_of errcodes(*), ierror
character*(*) array_of commands(*), array_of _argv(count, *)

Table7.6

Spawning multiple executablesin C++

MPI :: I nterconm MPI:: | ntraconm : Spawn_nul tiple(int count,
const char* array_of _commands[], const char** array_of_argv[],
const int array_of maxprocs[], const MPI::Info array of info[],

int root, int array_of _errcodes[])

simulation constructed from two programs: a simulation of the ocean and a simulation of the atmosphere. In fact, this example
was used in Using MPI to discuss intercommunicators. Another popular example is one that connects a visualization program
to asimulation program. We will consider this example below.

One advantage of the approach in this section is that the choice of visualization program can be made at run time; thisis
different from having the simulation program spawn the visualization program. The approach also can work when complexities
of the runtime environment make it difficult to start the visualization process either with npi exec or with

MPI _Conmm _spawn.

Much of discussion in the MPI Standard on connecting MPI processes talks about clients and servers. While many of the
concepts and issues are shared with traditional client/server models, there are also a number of differences. We prefer to think
of the MPI model as a peer-to-peer model where one process accepts

Page 247

connections and the other process requests the connection. Because the MPI model for connecting processes does not address
traditional client/server issues such as fault tolerance, we prefer to avoid the terms "client" and "server".

7.3.1—
Visualizing the Computation in an MPI Program

Often when running asimulation, it is useful to be able to visualize the progress of the simulation, perhaps by using three-
dimensional graphics to draw the current state of the solution on the mesh being used to approximate the problem. As our
example of interconnecting two MPI programs we enhance the Poisson solver described in Chapter 5 to connect with a
visualization program.

We modify the Poisson program as follows:

1. The program creates a port and accepts a connection on that port. A port is nothing but a name that another program can use
to connect to the program that created the port. As you would expect, the result of connecting to another MPI program is an
intercommunicator connecting the two programs.

2. At each iteration, the Poisson solver sends the current solution to the visualization program using intercommunicator
communication operations.

Our first version assumes that the visualization program is actually asingle process. In fact, the visualization program is very
simple, asis shown in Figure 7.8. At each iteration, the program receives the iteration number, using a point-to-point
intercommunicator operation, and the mesh itself, using MPl _Gat her v in an intercommunicator collective operation. The

code to initialize the arguments needed by MPI _Gat her v uses MPl _Gat her (aso in intercommunicator form) to receive

the amount of data that each processin the server will send to this program. The actual graphics drawing is done by the routine
Dr awivesh.

Theroutine MPl _Conm _connect establishes the connection to the other program. Because we choose to have the
visualization program connect to the computation program, the visualization program is the client of the computation program
(the processes that call MPI _Conmm connect are dwaysthe clients). Theinput argumentsto MPl _Conmm connect arethe
port name, ani nf o value, the rank of a"lead" or root process, and an intracommunicator. We will discuss the port name
below; it is simply a character string, although its value is determined by the MPI implementation. In this version of the
example, we read the port name from standard input.

Enhancements to this program could run the visualization routine in a separate thread, allowing the user to rotate, scale, and
otherwise interact with the data

Page 248

#i nclude "npi.h"

#defi ne MAX_PROCS 128

#define MAX_MESH 512*512

int main(int argc, char *argv[])

{
MPI _Comm server;
i nt it, i, nprocs, rcounts[MAX PROCS], rdispls[MAX PROCS];
doubl e mesh[MAX_MESH] ;
char port _name[MPl _MAX_ PORT_NAME] ;

MPl Init(0, 0);

gets(port_nane); /* we assune only one process
in MPl _COVM WWORLD */
MPI _Comm connect (port_name, MPI | NFO NULL, 0, MPI _COVM WORLD,
&server);
MPI _Comm renote_si ze(server, &nprocs);

/* Get the nunber of data values from each process */
MPI _Gather(MPI _BOTTOM 0, MPI_DATATYPE NULL,
rcounts, 1, MPI_INT, MPI_ROOT, server);
/* Conpute the nesh displacenents */
rdispls[0] = 0;
for (i=0; i<nprocs-1; i++)
rdispls[i+1l] = rdispls[i] + rcounts[i];

while (1) {
MPI _Recv(& t, 1, MPI_INT, 0O, O, server, MPI_STATUS | GNORE);
if (it < 0) break;
MPl _Gatherv(MPI _BOTTOM 0, MPI_DATATYPE NULL,
mesh, rcounts, rdispls, MPl_DOUBLE,
MPI _ROOT, server);
Drawesh(nesh);
}
MPI _Conm di sconnect (&server);
MPI _Finalize();
return O;

Figure 7.8
Visualization program

Page 249

visually, while the code shown here updates the data each time a new iteration becomes available. Of course, the code uses the
appropriate facilities (such as a thread mutex) to ensure that the drawing routine always has a consistent data set and not a
mixture of several iterations.

7.3.2—
Accepting Connections from Other Programs

We must modify the program that computes the approximations to the Poisson problem to accept the connection from the
visualization program and send to it the data to be visualized. The changes are shown in Figure 7.9. Thefirst item to note is that
these changes are al additions; the original program is unchanged. For example, if the program was using MPI _ COVM WORLD
before, it continues to use the same communicator for the computational part of the code. The second item to note is that this
program isin Fortran, while our visualization client program isin C. MPI-2 provides for language interoperability, including
the ability of programs in different languages to send messages to each other.

The changes to the program come in three places. The first place creates a port that the client program to connect to. To do this,
wecal MPl _QOpen_port, which returns a port name. Asusual, ani nf o value may be used to request implementation-

specific behavior when requesting a port; in this case, we use MPl _| NFO_NULL to get the default behavior. A port nameis

simply a character string, and we print it out. It is this printed value that the client program must provide to
MPI _Comm connect andthat isread with the get s statement in Figure 7.8.

Once the port is open, the program allows another MPI program to connect to it by calling MPI _Conmm accept . Thisisa

collective call over all processesin the input communicator (the fourth argument), with the input arguments (such as the port
name) valid at the specified root, which is process 0 in this case. Ani nf o argument is provided here aswell to alow for

implementation-specific customization. Thisis ablocking collective call that returns an intercommunicator.

The middle part of the code sends data to the client process, starting with information on the decomposition of the datain the
computational process and continuing with the iteration count and current result within the iteration loop. These
communication operations match the communication callsin the visualization client.

Thefina part of the program closes the port and disconnects from the client by calling MPI _Cl ose_port and
MPI _Cormm di sconnect . TheMPl _Cl ose_port call freesup port; after the MPl _Cl ose_port call, the port name
returned by MPl _Open_port isno longer valid.

Page 250

charact er*(MPI _MAX_PORT_NAME) port _nane
i nt eger client

if (nyid .eq. 0) then
call MPI _OPEN _PORT(MPI _I NFO NULL, port_name, ierr)
print *, port_nane
endi f
call MPI _COWM ACCEPT(port_nanme, Ml _| NFO NULL, 0, &
MPI _COW WORLD, client, ierr);
I Send the information needed to send the nesh
call MPlI _GATHER(nesh_size, 1, MPI _I NTEGER, &
MPI _BOTTOM 0, MPI_DATATYPE NULL, &
0, client, ierr)

I For each iteration, send the I ocal part of the nmesh
if (nyid .eq. 0) then
call MPI_SEND(it, 1, MPI_INTEGER 0O, O, client, ierr)
endi f
call MPI _GATHERV(mesh, mesh_size, MPI_DOUBLE PRECI SION, &
MPI _BOTTOM 0, 0, &
WPl _DATATYPE NULL, O, client, ierr)

I Disconnect fromclient before exiting
if (myid .eq. 0) then

call MPI _CLOSE PORT(port_name, ierr)
endi f
call MPI _COWM DI SCONNECT(client, ierr)
call MPI _FINALIZE(ierr)

Figure7.9
Modifications to Poisson example to accept connections from the visualization program and to
send datato it

Page 251

Table7.7
C bindings for client/server functions

int MPI _Open_port(MPI _Info info, char *port _nane)
int MPI_C ose_port(char *port_nane)

int MPI _Comm accept (char *port_nane, MPI _Info info, int root,
MPI _Comm conm MPI _Comm * newcom)

int MPI _Comm connect (char *port_nane, MPI _Info info, int root,
MPI _Comm conm MPI _Comm * newconm)

i nt MPI _Comm di sconnect (MPl _Conm *com)

Thecall to MPl _Conm di sconnect ensuresthat all communication on the communicator has completed before returning;
thisisthe difference between this function and MPI _Conm fr ee.

The bindings for the routines used in these examples arein Tables 7.7, 7.8, and 7.9.

If the server needs to manage multiple connections at once, it must use a separate thread (see Chapter 8) for each
MPI _Cormm accept call. The client need not be changed. Using athread also allows the server to handle the case of no

connections, as we will see in the next chapter.

7.3.3—
Comparison with Sockets

The MPI routines for connecting two groups of processes follow asimple model that is similar to the Unix sockets model (see
[81] for adescription of sockets). A comparison with that model illustrates some of the differences as well as the motivation for
the design. The correspondences are shown below:

MPI _Open_port . The socket routinessocket , bi nd, and | i st en provide asimilar function. At the end of bi nd, aport
specified by an I P address and a port number is defined. Thel i st en call prepares the port to receive connection requests.
One mgjor difference isthat the port number is an input value for bi nd, whereasit is part of the output value (as part of the
port _name) for MPl _Cpen_port.

MPI _Conm accept . The socket routine accept establishes the connection and returns a new socket.

Page 252

Table7.8
Fortran bindings for client/server

MPl _OPEN_PORT(i nfo, port_nane, ierror)
character*(*) port_nane
integer info, ierror

MPI _CLOSE PORT(port_nane, ierror)
character*(*) port_name
i nteger ierror

MPI _COW ACCEPT(port _nane, info, root, conm newconm ierror)
character*(*) port_name
integer info, root, comm newconmm ierror

MPI _COVM_CONNECT(port _nane, info, root, comm newcomm ierror)
character*(*) port_name
integer info, root, comm newcomm ierror

MPI _COVM DI SCONNECT(conm i error)
i nteger comm ierror

Table7.9
C++ bindings for client/server functions

void MPl::Open_port(const MPlI::Info& info, char* port_nane)

void MPl::d ose_port(const char* port_nane)

MPI::Intercomm MPI:: I ntracomm : Accept (const char* port_nane,
const MPI::Info& info, int root) const

MPI :: I ntercomm MPI:: I ntracomm : Connect (const char* port_nane,
const MPl::Info& info, int root) const

voi d MPI:: Comm : Di sconnect ()

Page 253

MPI _Conm _connect . The socket routinessocket and connect are used to connect to a port.

The differences between these approaches are also important. The most important is that the socket interface establishes a
connection between two processes (or threads), whereas the MPI interface connects two groups of processes. In addition, the
socket interface provides very fine control on the connection mechanism. For example, the socket operations can be placed into
anonblocking mode (with an f cnt | call on the socket file descriptor). Because Unix file descriptors are used, an application
canusesel ect orpol | to manage multiple! i st en (thatis, MPl _ Conm accept) operationswithin asingle process

(or thread).

Early discussions in the MPI Forum considered nonblocking versions of the dynamic process routines (see [29] for one
proposal). However, the Forum decided that nonblocking collective operations introduce too many complexities and instead
recommended the use of separate threads that make blocking calls. In fact, it is often preferable to use threads and the blocking
versions of the sockets on those Unix systems that support threads, as this provides a simpler programming model.

Other features of the socket interface, such as control over timeouts, can be accomplished through implementation-specific
i nf o options. For example, an implementation could provide theinfo key t i meout with value in milliseconds; passing an

info object containing thiskey to MPI _Conm accept would allow the implementation to timeout the connection attempt.

7.3.4—
Moving Data between Groups of Processes

If the dataiis large, the visualization program itself may need to be paralel (for example, an MPI version of POV-Ray [70]). In
this case, we need to send a data structure that is distributed in one way on one group of processes to a different distribution on

another group of processes.

For ssimplicity, we will consider the case of two different one-dimensional decompositions asillustrated in Figure 7.10. Each

process on the left must send data to one or more processes on the right. This could be written as a collection of

intercommunicator point-to-point operations (using nonblocking send and receive operations to ensure that the operations don't
cause deadlock or sequentialization), but we will illustrate an alternative approach using the intercommunicator collective

routineMPl _Al I t oal | v.

Theroutine MPl _Al | t oal | v isamore flexible version of theroutine MPI _Al | t oal | . In the intracommunicator form,

each process sends different data to every other process. In the intercommunicator version, each process in one group

F3 - . - PE

___________________ — P

P2 -
- |P1

Pl -

PO - PO
Mesh in Compute Section Mesh in Visualization Section

Figure 7.10

Data transfers between the simulation program (4 processes) and the visualization
program (3 processes). Solid lines indicate the decomposition of the mesh among
processes. Arrows indicate the transfers that take place. Dashed lines show the

division of the mesh in terms of the other group of processes.

Page 254

sends different data to every other process in the other group. In our case, every processis not sending to every other process.
For those processes to which no datais being sent, we simply set the sendcount for those destinations to zero. The code in

Figure 7.11 computesthe sendcount s and sdi spl s argumentsfor MPl _Al | t oal | v, where the calling process has rows
s to e of the mesh, and the decomposition on the visualization server is given by the array m where (i) isthe number of

rows On processi .

MPI _Al'l t oal | v may be preferable to individual send and receive operations when MPI is being used over awide-area

network. For example, the visualization program may be running on alocal graphics workstation while the computational
program may be running on a remote supercomputer. Using MPl _Al | t oal | v alows an MPI implementation to better

optimize the movement of data between the two systems, because the entire data motion is concisely described by the

argumentsto VPl _Al I toal | v.

7.3.5—
Name Publishing

In the example above, the port name is moved between the server and the client by using pr i nt to print the name onto

standard output and get s to read the name from standard input. Thisis completely general but more than alittle awkward.

Fortunately, MPI-2 provides a partial solution. We can think of the

print *, port_nanme

step as publishing the port name to the outside world. Similarly, the

Page 255

rrs=1
displ =0
do i =0, viz_nunprocs-1
if (s .ge. r_s + mi)) then
sendcounts(i) =0
sdispls(i) =0
elseif (e .It. r_s) then
sendcounts(i) =0
sdispls(i) =0

el se
sendcounts(i) = mn(e - s + 1, r_s +nmi) - s) * nx
sdi spls(i) = disp
di spl = di spl + sendcounts(i)
endi f
rs=r_s +ni)
enddo
Figure 7.11

Code to compute argumentsfor MPI _Al [toal | v

gets(port_nane);

call intheclient is asking the user to look up the port name. MPI-2 provides an alternative to printing and reading that is called
aname service. In the MPI-2 approach, a program may associate a port name with a private name chosen by the programmer.
This private name is called the service name. A port name is associated with a service name by calling the routine

MPI _Publ i sh_nane; the association may be removed by calling MPl _Unpubl i sh_narne.

A process that needs a particular port name may look it up by passing the service nameto MPl _Lookup_nane. Since the

service name is defined by the programmer rather than the MPI implementation (or runtime system), the service name may be
hard-coded into the application.

Figure 7.12 shows the changes that must be made to the visualization and simulation programs to allow them to use the MPI
name publishing routines rather than pr i nt and get s. The bindings for the name service routines are given in Tables 7.10,

7.11,and 7.12.

Name publishing has a number of limitations. The most important limitation is that since the service names are chosen by the
programmer, it is always possible for two programmers to choose the same service name for two different applications. There
is no perfect solution to this problem, but a number of approaches

Page 256
Visualization Program:

MPI _Lookup_name("Poi sson", MPI _| NFO_NULL, port_nane);
MPI _Conm connect (port_nanme, MPlI _| NFO NULL, 0, MPI_COVM WORLD,
&server);

Simulation Program:

charact er*(MPI _MAX PORT_NAME) port _nane
i nteger client

if (nyid .eq. 0) then
call MPI _OPEN _PORT(MPI _I NFO NULL, port_name, ierr)
call MPI _PUBLI SH NAME(' Poisson', MPI_INFO NULL, &
port _nane, ierr)
endi f
call MPI _COW ACCEPT(port_nanme, MPI _I NFO NULL, 0, &
MPI _COVW WORLD, client, ierr);

if (nyid .eq. 0) then
cal | MPI _UNPUBLI SH NAME(' Poi sson', MPI _I NFO _NULL, &
port _name, ierr)
call MPI _CLOSE PORT(port_nane, ierr)
endi f

Figure 7.12
Code changes to the example in Figures 7.8 and 7.9 to use name publishing

Table7.10
C bindings for name publishing

int MPI _Publish_nanme(char *service_nanme, MPI _Info info, char *port_nhane)
i nt MPl _Unpublish_name(char *service_nane, MPl _Info info, char *port_nane)

i nt MPlI _Lookup_nane(char *service_nane, MPI _Info info, char *port_nane)

Table7.11
Fortran bindings for name publishing

MPI _PUBLI SH NAME(service_nanme, info, port_nanme, ierror)
integer info, ierror
character*(*) service_nane, port_nane

MPI _UNPUBLI SH NAME(servi ce_name, info, port_nane, ierror)
integer info, ierror
character*(*) service_nane, port_nane

MPI _LOOKUP_NAME(servi ce_nane, info, port_nane, ierror)
character*(*) service_nane, port_nane
integer info, ierror

Table7.12
C++ bindings for name publishing

void MPl:: Publish_nane(const char* service_nanme, const M°l::Info& info,
const char* port_nane)

voi d MPI:: Unpublish_nane(const char* service_nane, const Ml ::Info& info,
const char* port_nane)

void MPI:: Lookup_nane(const char* service_nane, const MI::Info& info,
char* port_nane)

Page 257

can be used to reduce the chance for trouble. One approach that is used by commercial distributed-computing systems such as
DCE [23] isto provide a central clearing house for service names. The programmer requests a service name and is given a
name that is guaranteed to be unique (at least within the domain that the distributed-computing system is running over, which is
all that is required). The downsides to this approach are that the names are often long strings of seemingly random characters
and that a central registry of names must be maintained, even as the domain of available computers changes. Furthermore, each
user of the client and server must acquire their own service names.

A simpler but dlightly less robust approach is for the service name to include the user's login name (this allows multiple users to
use the same program without having their service names collide). For example, instead of using " Poi sson" asthe service

name for the visualization client, we might use the code

Page 258

sprintf(service_nanme, "Poisson-%", cuserid(NULL));

Theroutinecuser i d returns the name of user associated with the calling process. There is no direct Fortran equivalent, but it

isusually possible to access this information through an implementation-specific way (if necessary, calling a C routine to
perform the operation).

Another limitation of the name-service routinesis that an MPI implementation is not required to provide a usable name service.
That is, theroutinesMPI _Publ i sh_name, MPI _Unpubl i sh_name, and MPl _Lookup_nane must be provided, but

they can return failure for all operations.4

74—
Design of the MPI Dynamic Process Routines

Programmers that are used to the simple Unix command r sh or Unix function f or k can find the MPI approach to dynamic
process management complex. This section explains some of the reasons for the MPI approach.

7.41—
Goalsfor MPI Dynamic Process Management

The design of the MPI dynamic process routines maintains the properties that have made MPI successful: portability,
determinism, scalability, and performance. In addition, it exploits the power of MPI communicators (particularly
intercommunicators) to accomplish this with only three new functions. MPI _Cormm_spawn, and MPI _Cormm get _par ent .

Portability

The most basic requirement is that users be able to write portable applications that can run in a variety of job-scheduling/
process-management environments. This seemingly simple requirement isin fact one of the most demanding. Job scheduling
and process management environments are very different in different systems. For example, many programmers are familiar
with clusters of workstations, which offer awide variety of flexible and powerful options. But many high-performance systems
provide fewer features, trading flexibility for performance. For instance, a number of massively parallel processors (MPPs)
allow either one process per node (e.g., SGI/Cray T3D and T3E) or one process per node when using the high-performance
interconnect (IBM SP). Furthermore, to optimize communication, some high-performance systems take advantage of the fact
that the collection

4 By default, errors are fatal; therefore, checking the return value from these routines requires changing the error handler for
MPlI _COVM WORLD.

Page 259

of processes is unchanging. Changes to the communication layout are expensive and may require collective operations (thisis
in fact what a parallel job-startup program does on some MPPs). Finaly, the division of labor between ajob scheduler and a
process starter, while natural, is not universal. The MPI model assumes only that a new collection of processes can be started
and connected together and to the parent processes. This capahility is close to what most environments, even on MPPs, require
to start an MPI-1 job, and the MPI Forum felt that this would be portable.

Deter minism

The semantics of dynamic process creation must be carefully designed to avoid race conditions. In MPI, every processisa
member of at least one communicator. The collection of processesin a communicator must be unchanging. If it isn't, collective
operations (suchasMPl _Al | r educe) no longer have well-defined meanings. Adding processes to an MPI "job" requires the

creation of a new communicator. Removing processes requires freeing the communicators, window objects, and MPI file
objects that contain the exiting processes. The requirement of determinism dictated the use of communicators and collective
operationsin creating processes. Note that the "two-party” approach used in many systems that create one process at atime can
be implemented in MPI by simply using MPI _COVM _SEL F as the communicator for the spawning process and using a soft
spawn of one processin MPl _Comm_spawn. The MPI approach permits this use, but also allows for scalably spawning large
numbers of processes that are provided with efficient interprocess communications.

Scalability and Performance

One of the ways in which MPI achieves scalability and performance is through the use of collective operations that concisely
describe an operation that involves large numbers of processes. Rather than create new processes through individua requests to
ajob manager and process creator, MPI allows the programmer to make a single request for alarge number of processes that
will belong to a single group (one of the two groups in the intercommunicator returned by MPI _Cormm_spawn).

In summary, when trying to understand the design choices for the MPI dynamic process routines, it isimportant to think not of
what can be done on afew workstations running some variety of Unix but what would be required for a supercomputer that
provides only a batch-scheduling interface and only one process per node. The MPI design allows a program to run on either
system without change (other than the path name for the program).

Page 260

7.4.2—
What MPI Did Not Standardize

We have noted that several features are dependent on the MPI implementation. The MPI Forum spent a great deal of time
discussing these, but in the end concluded that there was no approach that was both general enough to maintain the portability
of MPI and powerful enough to provide a useful facility for users of MPI. Thiswas particularly true for the interface to the job
scheduler and process manager.

Many job schedulers provide a rich command language for specifying the resources to be used for ajob. These may include
specific software releases, hardware (cache size or CPU speed), and even priorities (for example, a processor with set A of
capabilities or, if that is not available, then one with set B). Some research systems have provided limited subsets of these
capabilities, and the MPI Forum considered following their lead. In the end, however, the Forum felt that any specific choice
was worse than no choice at al. Instead, the Forum invented the MPI _I nf o argument as a general hook for providing
implementation-specific information to MPI _Conmm_spawn. This genera "hints" mechanism for providing a portable way to

specify implementation-specific information was so useful that it was applied to the 1/0 and RMA routines as well.

Although it is unfortunate that the MPI Forum could not standardize the job-manager and process-startup interface, it is exactly
the same situation that users face for file names. While users of Unix systems may feel that file names are standard, there
remain important differences with other operating systems. For example, with Windows, valid characters are different,
directory-separator character is different, and Unix has no "drive" letter. Even within Unix, different file-system
implementations offer different performance and correctness properties; specifying the file name can select completely
different file system environments.

Page 261

8
Using MPI with Threads

Threads form an important programming model that separates a process into a single address space and one or more threads of
control. Threads provide a natural programming model for symmetric multiprocessors; they are also an effective way to hide
latency in high-latency operations. MPI-1 was designed to work well with threads; MPI-2 adds features to improve the ability
of MPI implementations to deliver high performance to both single-threaded and multithreaded programs.

Wefirst cover what threads are and why they are useful. Section 8.2 describes how MPI interacts with threads. In Section 8.3,
we revisit the NXTVAL routine, this time implemented using threads with MPI. Threads are often used to create nonblocking

operations from blocking ones; we show how to do thiswith MPI in Section 8.4. We conclude with some comments on mixed-
model programming (MPI and threads together).

8.1—
Thread Basics and | ssues

Throughout this book we have referred constantly to processes as the entities that communicate with one another. A process
may be defined loosely as an address space together with a current state consisting of a program counter, register values, and a
subroutine call stack. The fact that a process has only one program counter means that it is doing only one thing at atime; we
call such a process single threaded. Multiple processes may be executed on a single processor through timesharing, so in some
sense the processor is doing more than one thing at atime, but the processisn't.

Both vendors and users have experimented with a generalization of this situation in which processes have multiple program
counters (with associated register values and stacks) sharing the process's address space. The (program counter, register set,
stack) tripleis called athread and is very much like a processin its own right except that it does not have an address space of
itsown.

The motivation for threadsis to allow a concurrent programming model within a single process, with very rapid switching of
control of the CPU from one thread to another possible because little or no memory management is involved.

Individual threads are not visible outside a process. Therefore, MPI communication among multithreaded processes does not
address individual threads; the threads of a process can perform MPI operations on behalf of their processes. Using threadsin
conjunction with message passing can be extremely convenient, for several reasons:

Page 262

* Threads provide a natural implementation of nonblocking communication operations. A thread can be created to do a
blocking receive operation. As long as this blocks only the thread and not the process, it has the effect of a nonblocking
receive. The same applies to sends.

* Threads can increase the convenience and efficiency of the implementation of collective operations.
* Threads are becoming the parallel programming model of choice for "symmetric multiprocessing” shared-memory machines.
* Threads can help improve performance by helping to make highly latent systems more "latency tolerant.”

8.11—
Thread Safety

In order for threads to be used in conjunction with a message-passing library, however, the library must be designed to work
well with threads. This property is called thread safety. Thread safety means that multiple threads can be executing message-
passing library calls without interfering with one another. Thread unsafety occurs when the message-passing system is
expected to hold certain parts of the process state and it is impossible to hold that process state for more than one thread at a
time. For example, some libraries use the concept of "“the most recently received message" to avoid passing a status argument
stored on the process's stack. That is, user code will look something like

recv(nsg, type);
src get _src();
I en get _len();

This approach works in the single-threaded case, but in the multithreaded case, several receives may bein progress
simultaneously, and when get _sr c iscaled, it may not be clear for which message the source is supposed to be returned.
MPI solves this particular problem by returning the source as part of the status object, which normally resides on the stack of a
specific thread. This problem of aresource that is owned by the message-passing library instead of by the user thread can arise
in the case of other data structures as well, such as message buffers, error fields, or "current” contexts. MPI has been carefully
engineered to be thread safe in its semantics, and implementers are encouraged to provide thread-safe implementations, so that
MPI can work hand in hand with thread libraries.

For an application to use MPI with threads, it isn't enough that the implementation of MPI be thread-safe. The thread library
must be aware of the MPI implementation to the extent that execution of a blocking operation will cause the

Page 263

current thread to yield control to another thread in the process rather than cause the process to block. When a message arrives, a
thread waiting for it should be made runnable again. Furthermore, when a system call is made, the operating system should
block only the thread that made the call, not all threads, or much of the flexibility of user-level threadsislost.

The issue of threads has been widely discussed and implemented in slightly different ways by various vendors. Fortunately, the
POSIX standard [42], aso known as Pthreads, seems likely to become the most widely used definition for threads.

Threads are a'so becoming awidely used programming paradigm for shared-memory multiprocessors, which are now
appearing from a number of vendors. MPI can be used to program networks of such machines precisely becauseit is designed
to be thread safe. (A higher-level paradigm for programming with the thread model is monitors, discussed in [6].) Threads may
also be used by a compiler to provide parallelism with little or no direct involvement by the programmer. The OpenMP [67]
programming model is one example of a popular thread-based programming model for shared-memory multiprocessors.

8.1.2—
Threads and Processes

Thread systems where the operating system (the kernel) is not involved in managing the individual threads are called user
threads. User threads tend to be faster than kernel threads (that is, the time that it takes to switch between threads within the
same process is typically smaller with user threads), but often have the restriction that some system calls will block al threads
in the process containing the thread that made the system call, not just the calling thread. Such system callsinclude

read, wite, recv,andsend. Thistradeoff in performance versus generality can make it difficult to write truly
portable multithreaded programs, since the application cannot assume that the entire process will not be blocked when a thread
calsalibrary routine. The POSIX thread (Pthreads) specification does not specify whether the threads are user or kernel; itis
up to the threads implementation.

8.2—
MPI and Threads

The MPI-1 Standard was designed to be thread-safe: with the exception of MPI _Pr obe and MPI _| pr obe, thereis no global

state or notion of "current value" in the MPI specification (see Section 5.2.3 in Using MPI [32]). Thread-safe implementations
of MPI-1 have been developed [91] and have confirmed that the MPI-1 design is thread-safe. In MPI-2, the 1/O routines that
contain explicit offsets (e.g., MPI _-

Page 264

Fil e_read_at) provide athread-safe alternative to use of a separate seek operation. In other words, MPl _Fi | e_seek has
the same thread-safety issuesas MPl _Pr obe; MPI-2 does, however, provide a thread-safe alternative to using
MPI _Fi | e_seek through the explicit offset versions of the I/O routines.

The MPI-2 Standard benefited from experiences in using threads and building thread-safe M Pl implementations. For example,
the portability problems experienced by multithreaded applications because of the differences between the capabilities of user
and kernel threads led the MPI Forum to require that MPI calls block only the calling thread. This still doesn't address the issue
of user versus kernel threads, but if the application uses MPI for all interprocess communication and 1/0 and makes no explicit
system calls, amultithreaded MPI application (assuming that the MPI implementation provides the necessary level of thread
support as defined below) is portable, even if the thread system provides only user threads.

The MPI Forum also required that correct MPI programs not attempt to have multiple threads complete the same nonblocking
MPI operation. For example, it isinvalid to start a nonblocking MPI operation in one thread and then allow several threads to
cal MPl _Wait or MPl _Test ontherequest object. It is permissible, of course, to have one thread start a nonblocking MPI

operation and have a different thread complete it, as long as there is no possibility that two threads will try to complete (or test)
the same operation. Thisrestriction allows MPI implementations to provide high performance in operations involving request
objects because the implementation can rely on the fact that only one (user-defined) thread will ever operate on the request.

Another issue has been the performance tradeoffs between multithreaded and single-threaded code. While having multiple
threads enables an application to use multiple processors or to perform aternate work while a high-latency operation—such as
|/O—proceeds, multithreaded code also requires operations to guard against inconsistent updates to the same memory location
from different threads (see Section 4.3). These additional operations, particularly if they involve software locks or system calls,
can be quite expensive. Some vendors have provided both single-threaded and multithreaded libraries, but then an application
(and even more so, alibrary) is faced with the question: have | been linked with the right library? If not, the application will
still run but will suffer occasional and mysterious errors.

These experiences are most clearly shown in the new MPI-2 function to initialize an MPI program: MPl _I ni t _t hr ead. This
function, in addition to the ar gc and ar gv argumentsof MPl _I ni t , requests alevel of thread support, and returns the level
of thread support that was granted. Here are the kinds of thread support, in order of increasing generality:

Page 265

Table8.1
C binding for initializing MPI with threads

int MPI Init _thread(int *argc, char ***argv, int required, int *provided)

Table8.2
Fortran binding for initializing MPI with threads

MPl _I NI T_THREAD(r equi red, provided, ierror)
i nt eger required, provided, ierror
MPI _THREAD_SI NGLE: Only one (user) thread
MPI _THREAD FUNNELED: Many user threads, but only the main thread may make MPI calls

MPI _THREAD_ SERI ALI ZED: Many user threads may make MPI calls, but only one thread at a time does so (the user must
guarantee this)

MPI _THREAD MJULTI PLE: Freefor al. Any thread may make MPI calls at any time.

All values are integers and are ordered so that the more general value is greater than all of the more restrictive levels of support.

The bindingsfor MPl _I ni t _t hr ead are shownin Tables 8.1, 8.2, and 8.3. An MPI implementation is permitted to return
any of these values as the value of pr ovi ded. For example, an MPI implementation that is not thread safe will always return
MPI _THREAD_SI NGLE. On the other hand, an MPI implementation could be provided in severa different versions, using the
value of r equi r ed to determine which to choose (through dynamic linking of the libraries), and reporting the value

provi ded. Thisallowsthe MPI implementer and the MPI user to choose whether to pay any performance penalty that might
come with afully multithreaded MPI implementation.

Thefunction MPl _I ni t _t hread canbeusedinstead of MPI _I ni t . That is, while an MPI-1 program starts with

MPI _I nit and endswith MPl _Fi nal i ze, an MPI-2 program can start either with MPI _I nit or MPl _I nit _t hr ead.
Regardless of whether MPI I nit or MPl _I nit_thread iscaled, the MPI program must end with acall to

MPI _Fi nal i ze (thereisno” MPl _Fi nal i ze_t hread") . Inaddition, the MPI-2 Standard requires that the thread in
each processthat called MPI _Init or MPl _I nit _thread, which MPI callsthe main thread, also be the (only) thread in
that process that callsMPI _Fi nal i ze.

Page 266

Table8.3
C++ bindings for initializing MPI with threads. The returned value is the level of thread support provided.

int MPl::Init_thread(int &argc, char **&argv, int required)

int MPl::Init_thread(int required)

Note that the value of r equi r ed does not need to have the same value on each processthat iscalling MPl _I nit _t hr ead.
An MPI implementation may choose to give the same value of pr ovi ded, of course. We will see below an example where
different levels of thread support may be chosen.

The most thread-friendly level of supportis MPI _ THREAD MULTI PLE. When thislevel of support is provided, MPI routines
may be used in any combination of threads. Such an MPI implementation is called thread compliant.

MPI _I ni t caninitialize MPI to any level of thread support; command-line arguments to npi exec or environment variables
may affect the level of thread support.

There are no MPI routines to create a thread; that task is left to other tools, which may be compilers or libraries. In the next
section, we show an example where the new thread is created by using a Pthreads library call. In an OpenMP program, the
compiler may create the additional threads. By |leaving the exact method of thread creation to other standards, MPI ensures that
programs may use any thread approach that is available (aslong asit is consistent with the MPI implementation).

8.3—
Yet Another Version of NXTVAL

One example that we have used is that of a"next value" routine that increments a counter and returns the value. In Using MPI
[32], we used this example in Section 7.1 to illustrate the use of MPI _Conm spl i t, ready sends, and multiple completions.
In Section 6.5 of this book, we developed a version that used remote memory access. In this section we consider a solution to
the same problem that uses threads.

Specifically, we will dedicate athread to providing the counter. This thread will use a blocking receive to wait for requests for
anew value and will smply return the data with a blocking send.

The code in Figure 8.1 is reasonably smple. Only afew items need mentioning. The process with rank zero creates the thread
ini ni t _count er . Any process, including the one with rank zero, may then call count er _nxt val to fetch the current

Page 267

voi d *counter_routine(MPI_Comm *counter_commp)

{
int incr, ival = 0;
MPlI _Status status;
while (1) {
MPl _Recv(& ncr, 1, MPI_INT, MPI_ANY_SOURCE, MPI _ANY_TAG
*counter_commp, &status);
if (status. MPl_TAG == 1) return;
MPl _Send(& val, 1, MPI_INT, status. MPl _SOURCE, O,
*counter_commp);
ival += incr;
}
}

/* We discuss howto elimnate this global var in the text */
static pthread_t thread_id;
void init_counter(MPI_Comm comm MPI_Conmm *counter_commp)

{
int rank;
MPI _Comm dup(comm counter_commp);
MPI _Comm rank(comm &rank);
if (rank == 0)
pthread create(& hread_id, NULL, counter_routine,
counter_commp);
}

/* Any process can all this to fetch and increnent by val ue */
voi d counter_nxtval (MPI _Comm counter_conm int incr, int *value)
{
MPI _Send(& ncr, O, MPI _INT, O, 1, counter_conm;
MPI _Recv(value, 1, MPI _INT, 0, 0, counter_comm MPI_STATUS | GNORE);
}
/* Every process in counter_com{including rank 0!)
nmust call stop counter */
void stop_counter(MPI _Comm *counter_commp);

{
i nt rank;
MPI _Barrier(*counter_conmp);
MPlI _Conm rank(*counter_commp, & ank);
if (rank == 0) {
MPI _Send(MPI _BOTTOM 0O, MPI _INT, 0, 1, *counter_commp);
pthread join(thread id, NULL);
}
MPI _Conm free(counter_conmp);
}
Figure 8.1

Version of nxt val using threads

Page 268

value and increment it by thevalue of i ncr . Thest op_count er routineusesaMPl _Barri er first to ensurethat no
processis still trying to use the counter. The process with rank zero then sends a message to itself, but this message is received
incount er _routi ne,whichisrunning in aseparate thread. Receiving that message causes count er _r out i ne to exit,
thereby terminating that thread. The pt hr ead_j oi n call inst op_count er causesthe process that created the thread to
wait until the thread finishes.

This code depends on the MPI guarantee that a blocking MPI call blocks only the calling thread, not all of the threadsin the
process. Without this requirement, a thread-safe implementation of MPI would have little value. This does require the
MPI _ THREAD MULTI PLE mode. However, only one process needs this level of thread support. If no other processes are

using threads, they could specify MPl _ THREAD_SI NGLE as the required level of thread support.

Thevariablet hr ead_i d isglobal in Figure 8.1. This prevents more than one counter from being active at any timein any

single process. However, we all know that global variables are bad. Fortunately, MPI provides a convenient way to attach this
variable to the output communicator, count er _conm_p, through the use of attributes. Attributes are covered in more detail

in Using MPI [32] in Section 6.2.1.

8.4—
Implementing Nonblocking Collective Oper ations

Thenxt val codein Figure 8.1 demonstrates how to implement what is sometimes called an "hrecv" (from the Intel NX

library) or "interrupt-driven receive" by using a blocking receive operation and threads. In fact, most nonblocking operations
can be viewed asif they were implemented as a blocking operation in a separate thread. One reason that nonblocking collective
operations were not included in MPI-2 is that they can be implemented by calling the matching blocking collective operation
using a separate thread.1

An example of blocking collective operation whose nonblocking version we'd like to haveisMPl _Comm accept . Because
MPI _Conmm accept isnot anonblocking operation, it cannot be cancelled. This means that an MPI program that calls
MPI _Conmm accept cannot continue until the MPI _Conm accept returns. To handle this,

1 We've brushed under the rug a number of difficulties with nonblocking collective operations, such as what happens if the same
process has several outstanding collective operations on the same communicator (which is not valid in MPI) and what a request
object would look like. But for many of the purposes for which users wish to use nonblocking collective operations, using a
separate thread and the blocking version of the operation is adequate.

Page 269

i nteger exit_nsg, server
parameter (exit_msg = -1)

call MPI _COVWM CONNECT(port_name, MPI I NFO NULL, 0, &
MPI _COW SELF, server, ierr)
cal |l MPI_BCAST(exit_mnsg, 1, Ml _INTEGER, MPI_ROOT, &
server, ierr)
call ©MPI _COVM DI SCONNECT(server, ierr)

Figure 8.2
Code to connect and terminate a connection

aprogram that uses MPI _Conmm _accept to alow, but not require, another MPI program to attach to it should make a
"dummy" connect request to satisfy the MPl _Conm _accept . For example, in Section 7.3.2, we showed a program that
alowed avisualization program to connect to it to allow the visualization program to draw data as it was being computed.

But what if we do not want to require the visualization program to connect before proceeding with the computation? We can
start by placing the MPI _Conmm accept into a separate thread. This alows the program to continue even while the

MPI _Comm accept iswaiting.

However, the program cannot exit until the MPl _Cormm _accept completes. The easiest way to handle this situation isto have
the same program connect to itself to complete the connection, as shown in Figure 8.2.

To alow for this case, we also change the initial connect and accept code so that the first communication is an integer that
indicates either anormal (e.g., visualization client) connection or an exit message. We use an intercommunicator broadcast to
ensure that all of the participating processes receive the message.

85—
Mixed-M odel Programming:
MPI for SMP Clusters

One of the most popular computer architecturesis a cluster of symmetric multiprocessors (SMPs). Another popular architecture
is the nonuniform memory-access (NUMA) shared-memory computer. On both of these kinds of architectures, the approach of
combining message-passing with shared-memory techniques (such as threads) can provide an effective programming model.
This approach is often called mixed-model programming.

MPI was designed to encourage mixed-model programming. The thread-safe

Page 270

Table 8.4
C routines to discover the level of thread support

int MPI _Query_ thread(int *provided)

int MPI _Is_ thread_main(int *flag)

Table85
Fortran routines to discover the level of thread support

MPl _QUERY_THREAD(pr ovi ded, ierror)
i nt eger provided, ierror

MPI IS THREAD MAI N(flag, ierror)
| ogical flag
i nteger ierror

design has made it relatively easy to use MPI with programs that use either implicit, compiler-based parallelism or explicit,
user-programmed parallelism. In this model, the most common MPI thread mode is MPI _ THREAD FUNNELED: only one

thread performs MPI calls. The other threads are used only for compute tasks. Using MPI with this model isvery smple: in
fact, it often amounts to nothing more than using a compiler switch to enable the automatic generation by the compiler of
multithreaded code for loops. In other cases (e.g., when using OpenMP [67, 68]), afew changes or annotations to the code
must be made to enable the thread-based parallelization of loops.

However, if library routines might be called by some of the compute threads, additional care must be exercised. In the
MPI _ THREAD FUNNELED model, alibrary routine that is called by athread may wish to ensure that it be allowed to perform

MPI calls. It can discover the level of thread support by calling MPI _Query _t hr ead, which returns the level of thread
support that has been provided. If thelevel isMPI _ THREAD FUNNELED, only the "main" thread may make MPI calls. A
thread can determine whether it isthe main thread by calling MPl _| s_t hr ead_nmi n, which returns alogical value
indicating whether the calling thread is the same thread that called MPI _I nit or MPl _I nit _t hr ead. The bindings for
these calls are given in Tables 8.4, 8.5, and 8.6.

Figure 8.3 shows how alibrary routine could determine that it has an adequate level of thread support. This code takes
advantage of the ordering of the values of the levels of thread support to simplify the tests. Notethat MPI _Query _t hr ead

Page 271

Table8.6
C++ routines to discover the level of thread support

int MPl::Query_thread()

bool MPI::ls_thread_main()

int thread_ | evel, thread_is_nain;

MPI _Query_thread(&thread_|evel);
MPl Is thread main(& hread is _main);
if (thread_l evel > MPI_THREAD FUNNELED | |
(thread_l evel == MPI _THREAD FUNNELED && thread_is_main)) {
we may nake MPI calls

}

el se {

printf("Error! Routine makes MPI call s\n\
This thread does not support themn");

return 1;
}

Figure 8.3

Codeto test for the necessary level of thread support. Note that if thet hr ead_| evel is
MPI _THREAD SERI ALI ZED, the user must ensure that no other thread makes MPI calls
when this library may be making MPI cals.

and VPl _|s_thread_mai n may be used even when MPI isinitialized withMPl _I ni t instead of MPl _I nit _t hread.
Using MPI Programswith OpenM P

Some systems for thread-based parallelism, such as OpenMP [67, 68], allow the user to control the number of threads with
environment variables. Unfortunately, MPI does not require that the environment variables (or ar gc and ar gv) be propagated
to every process by the MPI implementation. Therefore, instead of using the environment variables directly, you must
specifically set the number of threads to use. Since many MPI implementations start the process with rank 0 in

MPI _ COVM WORL D with the user's environment, the code in Figure 8.4 can be used. Theroutineonp_get _num t hr eads

will return the number of threads, in case you wish to check that the requested number of threads was provided.

Page 272
MPI _Conm rank(MPI _COVM WORLD, &rank);
if (rank == 0) {
nt hreads_str = getenv("OVWP_NUM THREADS");
if (nthreads_str)
nt hreads = atoi (nthreads_str);
el se
nt hreads = 1;
}
MPI _Bcast(&nthreads, 1, MPI _INT, 0, MPI_COVM WORLD);
onp_set _numthreads(nthreads);
Figure 8.4
Code to set the number of OpenMP threads from within an MPI program.
Page 273

o9—
Advanced Features

In this chapter we consider some advanced features of MPI-2 that are particularly useful to library writers.

9.1—
Defining New File Data Representations

We mentioned in Chapter 3 that users can define new file data representations and register them with the MPI implementation.
We explain this feature with the help of a simple example.

Let's define anew file dataformat called i nt 64 in which integers are of length 8 bytes and stored in little-endian format. Let's

assume that we are running the program on a machine in which integers are of length 4 bytes and in big-endian order. In other
words, both the size of integers and the byte order are different in the native representation and in the file. For smplicity, we
consider only one datatype, namely, integers, and assume that the program uses only integers. Other datatypes can be handled
similarly.

We can create this new data format and register it with the MPI implementation using the function
MPl _Regi st er _dat ar ep asfollows:

MPI _Regi ster_datarep("int64", read _conv_fn, wite conv_fn,
dtype file extent fn, NULL);

wherei nt 64 isthe name of the new data representation, andr ead_conv_fn, wite_conv_fn,and

dtype_fil e_extent _f n arepointersto functionsthat we must provide. The implementation will user ead_conv_fn
andw i t e_conv_f n to convert datafrom file format to native format and vice versa. The implementation will use
dtype _fil e_extent fn todeterminethe extent of adatatype in the new data representation. The final parameter is an

extra-state parameter, which the implementation will pass to the conversion functions and the extent function each timeit calls
them. This parameter alows the user to pass additional information to those functions. We just pass a null parameter here.
After the new data representation is registered in this way, we can use it any time in the rest of the program by passing i nt 64

asthedat ar ep argumentto MPl _Fi | e_set _vi ew.

For thei nt 64 format, we can definedt ype_fil e_extent _fn simply as

int dtype file_extent fn(MPl _Datatype datatype,
MPI _Aint *file_extent,
void *extra_state)

Page 274

if (datatype == MPI _INT) return 8;
el se return MPI _ERR _TYPE;
}

The MPI Standard specifies that the implementation will passto dt ype_fi | e_ext ent _f n only basic (predefined)
datatypes used by the user. Even if the user uses derived datatypes in the program, the implementation will pass only the
constituent basic datatypes of that derived datatype, not the derived datatype itself. For our example, therefore, we need only
implement this function to handle the integer datatype. For any other datatype, we return error.

For reading integers stored in afileini nt 64 format on a machine with 4-byte integersin big-endian order, we can define the
read conversion function as follows:

int read_conv_fn(void *userbuf, Ml _Datatype datatype,
int count, void *filebuf, MPI_Offset position,
void *extra_state)

int i;

if (datatype !'= MPI _INT) return MPI _ERR TYPE;
byte swap((long long *) filebuf, count);
for (i=0; i<count; i++)
((int *) userbuf) [position + i] =
((long long *) filebuf) [i];
return MPI _SUCCESS;

Here we have assumed that | ong | ong isan 8-byte integer. The MPI implementation will call this function from within any
MPI function that does afile read. Before calling this function, the implementation will read count itemsof type dat at ype
(integersin this case) from the file and store them contiguously in the buffer f i | ebuf . To read the correct amount of data, the
implementation will usedt ype_fi | e_ext ent _f n to determine the extent of an integer inthei nt 64 format. The read
conversion function must copy these count integersthat areini nt 64 formatinfi | ebuf into native format inuser buf .
The data must be stored starting from an offset in user buf specified by the posi t i on parameter. This parameter is
provided for the following reason: if there isn't enough memory for the implementation to allocate af i | ebuf large enough to
store all the data to be read, the implementation can allocate asmaller f i | ebuf , read the datain parts, and call

r ead_conv_f n with different valuesfor posi t i on each time.

Page 275

Inread_conv_f n, wereturn an error if the datatype passed isnot MPl _| NT, because the Standard specifies that the
implementation will pass to this function only the datatypes used by the user. (Unlikefor dt ype _fil e_extent fn,the
conversion functions will be passed a derived datatype if the user uses a derived datatype.) Weimplement r ead_conv_f n by
first calling afunction byt e_swap that does the byte swapping necessary to convert each 8-byte integer in an array of n
integers from little-endian to big-endian; the implementation of byt e_swap isleft to the reader.

The write conversion function isimplemented similarly. We first copy count number of 4-byte integers starting from the offset
positioninuserbuf intofi | ebuf by appropriate type-casting. We then call the byte-swapping routine.

int wite_conv_fn(void *userbuf, MPI_Datatype datatype,
int count, void *filebuf, MPI_Ofset position,
void *extra_state)

{ . .
int i;
if (datatype !'= MPI _INT) return MPI _ERR TYPE;
for (i=0; i<count; i++)
((long long *) filebuf) [i] =
((int *) userbuf) [position + i];
byte_swap((long long *) filebuf, count);
return MPI _SUCCESS;
}

The C, Fortran, and C++ bindingsfor MPl _Regi st er _dat ar ep aregivenin Tables 9.1, 9.2, and 9.3.

9.2—
External Interface Functions

MPI-2 defines a set of functions, called external interface functions, that enable users to do certain things that would otherwise
require access to the source code of an MPI implementation. These functions include functions for decoding datatypes, creating
request objects for new nonblocking operations (called generalized requests), filling in the st at us object, and adding new
error codes and classes. The external interface functions are useful to library writers. They can be used, for example, to layer
the MPI-2 1/0O functions on top of any MPI-1 implementation that also supports the MPI-2 external interface functions. Our
implementation of the

Page 276

Table9.1
C binding for MPl _Regi st er _dat arep. MPI _Dat arep_conversi on_functi on and

VPl _Dat arep_extent functi on arenot MPI functions; they show the calling sequences for the callback functions
passed to MPl _Regi st er _dat ar ep.

i nt MPI _Regi ster_datarep(char *datarep,
MPI _Dat ar ep_conversion_function *read_conversi on_fn,
MPI _Dat arep_conversion_function *wite_conversion_fn,
VPl _Datarep_extent function *dtype file_extent fn,
void *extra_state)

typedef int MPI_Datarep_conversion _function(void *userbuf,
MPI _Dat at ype datatype, int count, void *fil ebuf,
MPI _Offset position, void *extra_state)

typedef int MPI_Datarep_extent function(Ml _Datatype datatype,
MPI _Aint *file_extent, void *extra_state)

Table9.2

Fortran binding for MPl _Regi st er _datarep. read_conversion_functionanddtype_file_extent_fnare
not MPI functions; they show the calling sequences for the callback functions passed to

MPl _Regi ster_datarep. write_conversion_functi on hasthesame argument list as
read_conversion_function.

MPI REQ STER DATAREP(dat arep, read conversion_fn, wite _conversion_fn,
dtype file_ extent fn, extra state, ierror)
character*(*) datarep
external read conversion_fn, wite_conversion_fn,
dtype file_ extent fn
i nt eger (ki nd=MPI _ADDRESS KI ND) extra_state
i nteger ierror

subrouti ne READ CONVERSI ON_FUNCTI ON(user buf, dat at ype, count,
filebuf, position, extra state, ierror)
<type> userbuf (*), filebuf(*)
i nt eger count, datatype, ierror
i nt eger (ki nd=MPI _OFFSET_KI ND) position
i nt eger (ki nd=MPI _ADDRESS KIND) extra_state

subroutine DTYPE_FI LE_EXTENT_FN(dat atype, extent, extra_state, ierror)
i nt eger datatype, ierror
i nt eger (ki nd=MPI _ADDRESS KI ND) extent, extra_ state

Page 277

Table9.3
C++ binding for MPl _Regi st er _dat ar ep. The bindings for the callback functions are similar to the C casein Table 9.1.

void MPl:: Regi ster_datarep(const char* datarep,
MPI : : Dat ar ep_conver si on_functi on* read _conversion_fn,
MPI : : Dat ar ep_conversi on_functi on* wite_conversion_fn,
WPl : : Dat arep_extent _function* dtype file_extent _fn,
voi d* extra_state)

MPI-2 1/0O functions (ROMI0) uses this feature and therefore works with multiple MPI-1 implementations [88].

9.2.1—
Decoding Datatypes

An MPI datatype is an opaque object that describes data layout. In many cases, such as for layering the MPI-2 I/O functions, it
is necessary to know what a datatype represents. With purely MPI-1 functionality it is not possible to do so unless one has
access to the internal representation of datatypes in the implementation. Such an approach is clearly nonportable. MPI-2,
therefore, has defined a mechanism by which users can portably decode a datatype. Two functions are provided for this
purpose: MPl _Type_get _envel ope and MPl _Type_get _cont ent s. To see how these functions can be used, let's

write a ssimple program to determine whether a given datatype is a derived datatype of type hvector and, if so, print the count,
blocklength, and stride that was used to create this hvector type. This program is shown in Figure 9.1.

Wefirst call thefunction MPI _Type_get _envel ope to determine whether the given datatype is of type hvector. The first

argument to this function is the datatype itself. The function returnsin the last argument a constant, called combiner, that
indicates the kind of datatype. For example, it returns MPI _COVBI NER_NANMED if the datatype is a predefined (basic)

datatype, MPI _COVBI NER | NDEXED if it is an indexed datatype, and so on. For derived datatypes, however, it is not

sufficient just to know the kind of datatype; we also need to know how that derived datatype was constructed. The three
arguments, ni nt s, nadds, and nt ypes, are output parameters that help usin this regard. nints tells us how many integer

parameters were used in the constructor function that created dat at ype, nadds tells us how many address-sized parameters
were used, and nt ypes tells us how many datatypes were used. We use these values to allocate buffers of the right size and
pass them to the function MPI _Type_get cont ent s in order to retrieve al the parameters that

Page 278

#i ncl ude "npi.h"
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

void is_type_hvector (Ml _Dat atype dat atype)

{
int nints, nadds, ntypes, conbiner, *ints;
MPI _Ai nt *adds;
MPI _Dat at ype *types;
MPI _Type_get envel ope(dat at ype, &nints, &nadds, &ntypes,
&conbi ner) ;
if (conmbiner != MPI_COVBI NER_HVECTOR)
printf("not type hvector\n");
el se {
printf("is type_hvector\n");
ints = (int *) malloc(nints*sizeof(int));
adds = (MPI _Aint *) mall oc(nadds*si zeof (MPI _Aint));
types = (MPl _Datatype *) mall oc(ntypes*sizeof (MPl _Dat atype));
MPl _Type_get _cont ent s(dat atype, nints, nadds, ntypes,
ints, adds, types);
printf("count = %, blocklength = %, stride = %d\n",
ints[0], ints[1], adds[O0]);
free(ints);
free(adds);
free(types);
}
}
Figure 9.1

Code that checks if agiven datatype is of type hvector and, if so, prints the count, blocklength, and stride

Page 279

Table9.4
C bindingsfor MPI _Type_get _envel ope and MPl _get _contents

int MPI _Type get envel ope(MPl _Dat at ype datatype, int *num.integers,
i nt *num addresses, int *numdatatypes, int *conbiner)

int MPI_Type_get _contents(MI _Dat atype datatype, int max_integers,
int max_addresses, int max_datatypes, int array_of integers[],
MPI _Aint array_of _addresses[], MPI_Datatype array_of _datatypes[])

were used to create dat at ype.

For an hvector datatype in our example program, MPl _Type_get _envel ope returns

conbi ner =MPI _COMBI NER_HVECTOR, ni nts=2, nadds=1, andnt ypes=1. We alocate three arrays, called
ints, adds,andtypes,ofsizesni nts, nadds, andnt ypes, respectively. We next call

MPI _Type_get cont ent s withdat at ype asthefirst parameter; then thethreevaluesni nt s, nadds, and nt ypes;
and finally the three arraysi nt s, adds, andt ypes. Theimplementation will fill these arrays with the parameters that were
used in the construction of dat at ype. For each kind of derived datatype (contiguous, vector, indexed, etc.), the MPI Standard
specifies exactly how these arrays are filled. For an hvector datatype, i nt s[0] andi nt s[1] contain the count and
blocklength that were passed to the hvector constructor function, adds[0] containsthe stride, andt ypes[0] containsa
datatype equivalent to the datatype passed to the hvector constructor.

We can recursively call MPl _Type_get envel ope and MPl _Type_get cont ent s on the returned datatype until we
reach a basic datatype. In thisway, recursively constructed datatypes can be recursively decoded.

Wenotethat MPI _Type_get cont ent s must be called only for derived datatypes. It is erroneous to call this function for a
basic datatype, and, in fact, there is no reason to do so. One can determine the type of a basic datatype by simply doing a
comparison check, suchas"i f (datatype == MPI _I NT)." Onecannot useaC swi t ch statement, however, because
MPI _I NT, MPI _DOUBLE, and so forth are not necessarily compile-time constants.

C, Fortran, and C++ bindings for the datatype decoding functions are given in Tables 9.4, 9.5, and 9.6.

9.2.2—
Generalized Requests

MPI enables usersto define new nonblocking operations, create MPl _Request objectsfor them, and use any of the usual
MPI functions, suchasMPl _Test, Ml _-

Page 280

Table9.5
Fortran bindingsfor MPI _Type_get _envel ope and VPl _Type_get _contents

MPI _TYPE_GET_ENVELOPE(dat at ype, num.i ntegers, num addresses,
num dat at ypes, conbi ner, ierror)
i nt eger datatype, num.integers, num addresses, num datatypes,
conbi ner, ierror

MPI _TYPE GET_CONTENTS(dat at ype, max_integers, max_addresses,
mex_dat at ypes, array_of integers, array_of addresses,
array_of datatypes, ierror)
i nt eger datatype, max_integers, nax_addresses, nax_dat at ypes,
array_of integers(*), array_of datatypes(*), ierror
i nt eger (ki nd=MPI _ADDRESS _KI ND) array_of _addresses(*)

Table9.6
C++ bindingsfor MPl _Type_get _envel ope and MPl _Type_get _contents

void MPl:: Datatype:: Get_envel ope(int& num.integers, int& num addresses,
i nt & num dat at ypes, int& conbi ner) const

void MPl:: Datatype:: Get_contents(int max_integers, int nax_addresses,
int nmax_datatypes, int array_of integers[],
MPI:: Aint array_of addresses[],
MPI : : Dat at ype array_of _datatypes[]) const

Wi t , or their variants, to test or wait for the completion of these operations. Such requests are called generalized requests.

To understand how generalized requests can be used, let's consider the example of implementing the nonblocking write
function MPl _Fi | e_i wri t e ontop of itsblocking version, MPl _Fi | e_wri t e, using athread. We have split the code into

two figures: Figure 9.2 contains the function MPI _Fi | e_i wri t e, and Figure 9.3 contains other functions used in Figure 9.2.
ImplementingMPl _File_iwite

Intheimplementation of MPI _Fi | e_i writ e wefirst allocate a structure called par ans and fill it with various parameters
that we want to pass to the thread functionwr i t e_t hr ead and to the callback functions associated with the generalized
request (explained below). We directly fill into this structure the parametersf h, buf , and count that were passed to

MPI _File_iwite.Wedonot storetheorigina datatype directly because the user may free the data-

Page 281

#i ncl ude "npi.h"
#i ncl ude <pthread. h>

typedef struct {

MPI _File fh;
voi d *buf;
int count;

VPl _Dat at ype *dat at ype;
MPlI _Request *request;
MPlI St atus *stat us;

} parans_struct;

void *wite thread(void *ptr);

int MPI _ File iwite(MPI_File fh, void *buf, int count,
MPI _Dat at ype dat at ype, MPI_Request *request)
{

pt hread t thread;
parans_struct *parans;
MPI _Status *status;

status = (MPI _Status *) malloc(sizeof (MPI _Status));
parans = (parans_struct *) malloc(sizeof (parans_struct));
parans—>f h = fh;

par ans—>buf = buf;

par ans—>count = count;

par ans—>st at us = st at us;

MPI _Type_dup(dat at ype, paranms—>dat at ype);

MPI _Grequest _start(query _fn, free_fn, cancel fn,
(void *) paranms, request);
par ans—>r equest = request;
pthread _create(& hread, NULL, wite_thread, (void *) parans);
return MPI _SUCCESS;

Figure 9.2
Implementing Pl _File_ iwiteontopof MPl _Fil e _write using generalized requests and threads.

Thefunctionswite_thread, query_fn, free_fn, andcancel _fn aredefinedin Figure9.3.

Page 282
void *wite thread(void *ptr)
{
parans_struct *parans;
parans = (parans_struct *) ptr;
MPl _File_wite(paranms—>fh, parans—>buf, paranms—>count,
*(par ans—>dat at ype), parans—>st at us);
MPI _Grequest _conpl et e(*(par ans—>r equest));
return O;
}
int query_fn(void *extra_state, MPI_Status *status)
{
parans_struct *parans;
i nt count;
parans = (params_struct *) extra_state;
MPI _Get el enent s(paranms—>st atus, *(parans—>datatype), &count);
MPlI _Status_set el enents(status, *(parans—>datatype), count);
MPI _Status_set cancel |l ed(status, 0);
return MPlI _SUCCESS;
}
int free_fn(void *extra_state)
{
free(((parans_struct *) extra_state)—>status);
MPI _Type free(((parans_struct *) extra_state)-—>datatype);
free(extra_state);
return MPI _SUCCESS;
}
int cancel _fn(void *extra_ state, int conplete)
{
return MPI _SUCCESS;
}
Figure 9.3
Definitions of functions used in the code in Figure 9.2
Page 283

typeimmediately after MPI _Fi |l e_i wri t e returns.! We instead create a duplicate of the datatype using MPl _Type_dup
and store this duplicate. We also dynamically allocate ast at us obj ect and store apointer to it in the par ans structure.

We do so because we need to pass this status object around the various callback functions: we will useit as the status argument
toMPl _File_wite,andwewill query its contentsin order to fill the corresponding status object for the generalized

request. The st at us object, therefore, must remain allocated until the generalized request is freed.

The function to create a generalized request isMPl _Gr equest _st art . The nameis somewhat misleading: this function
does not actually start any operation; it just creates a new request object that can be associated with the new nonblocking
operation being defined. We must start the nonblocking operation separately, and we do so by using the POSIX [42] function
pt hr ead_cr eat e, which creates a new thread.2

Thefirst three argumentsto MPI _Gr equest _st art are callback functions that we must provide. The MPI implementation
will use these callback functionswhen MPI _Test, MPI _Wait, MPI _Cancel , and other such MPI functions are called

on the generalized request. We explain below how we have implemented these callback functions. The fourth argument to
MPI _Grequest _st art isan extra-state argument, which the implementation does not use itself but simply passes to the

callback functions each time they are called. We pass the par ans structure as this argument. The implementation returns a
request object, called generalized request, as the fifth argument. To the user, this generalized request is like any other
request object returned by a nonblocking MPI function. Any of the usual functions, suchas MPl _Test or MPI _\Wi t, can be

called on this object. The implementation will invoke the callback functions to implement test, wait, and other operations on
the generalized request.

We start the nonblocking write with acall to pt hr ead_cr eat e, which creates a new thread within the process. The ID of
the newly created thread is returned in the first argument. The second argument specifies the attributes for the new thread; we
just pass a null argument, which means that the default thread attributes will be used. The third argument specifies the function
that the thread will execute. In this

1 MPI allowsthe user to free an MPI object after the routine that begins a nonblocking operation; the MPI implementation
internally retains all necessary information about the object until the nonblocking operation compl etes.
2 Note that if we used the thread to call a blocking system routine, such aswr i t e, we would need to ensure that the thread was a

kernel thread, as discussed in Chapter 8. Since we will use an MPI call for the I/0, MPI guarantees that calling the MPI blocking
routine will block only the thread, not the process.

Page 284

example, the functioniswr i t e_t hr ead. The final argument is the parameter that the thread will pass to the function

wri t e_t hr ead; we passthe par ans structure as thisargument. Sincewr i t e_t hr ead isrun as a separate thread,

pt hr ead_cr eat e returns without waiting for wri t e_t hr ead to complete. Asaresult, thefunction MPl _File iwite
returns with the write operation initiated but not completed, that is, as a nonblocking write operation.

*wite_thread.Inthefunctionwrite_ t hread, wesimply cal the blocking version (MPl _Fi |l e_wri t e) of the
nonblocking function being implemented. The parameters passed to this function are extracted from the par ans structure.
Since thisisablocking function, it returns only after the write has completed. After it returns, we call the function

MPI _Grequest _conpl et e to inform the implementation that the operation associated with the generalized request has
completed. Only after MPl _Gr equest _conpl et e has been called will the implementation return f | ag=t r ue when the
user callsMPl _Test ontherequest. Similarly, VPl _ Vi t will return only after MPl _Gr equest _conpl et e hasbeen
caled.

Let's now see how we have implemented the three callback functions passed to MPI _Gr equest _start.

e query_fn. TheMPI implementation will call query_f n to fill the status object for the request. Thiswill occur, for
example, when MPl _Test or MPl _\i t are called on the request. The implementation will passto quer y_f n the par ans
structure that we passed asthe ext r a_st at e argument to MPI _Gr equest _st ar t . The second argument passed to
query_f nisastatusobject that we must fill. To fill the status object, we use the functions MPl _ St at us_set _el enent s
and MPl _St at us_set _cancel | ed, which aso are external interface functions defined in MPI-2.

Recall that the par ans structure contains a status object that wasfilledby MPI _Fi | e_wri t e inthefunction
write_thread. Weusethe MPI-1 function MPl _Get _el enent s to retrieve the number of basic elements that were
writtenby MPI _Fil e_wite.Wethenuse MPl _St at us_set _el enment s to enter the same value in the status object
passed by the MPI implementation to quer y_f n. Note that thereis no function like MPI _St at us_set _count in MPI for
setting the value to be returned when MPlI _Get _count iscalled on the status object. Thisis because the implementation can
calculate the count from the number of basic elements that we have specified using MPl _St at us_set _el enent s.

We also need to specify in the status object if the request had been successfully cancelled in responseto an MPlI _Cancel

called by the user. The user can check whether the cancellation was successful by using the function
MPI _Test cancel |l ed.

Page 285

In this simple example, we do not support cancellation of requests; therefore, we simply pass 0 as the second argument to
MPI _Status_set cancel | ed.

» free_f n. The MPI implementation will invoke the callback functionf r ee_f n to free all resources allocated by the user
for implementing the generalized request. f r ee_f n will be invoked when the generalized request is freed, for example, with
MPI _Test, MPI_Wait, or MPl _Request _free. Theimplementation also passestofree_f ntheextra_state
argument (par amns structure) that we passedto MPl _ Gr equest _start . Inthefree_f n, wefreethe data structures that
we allocated in the implementation of MPI _Fi | e_i wri t e, namely, the status object and the duplicated datatype stored in
the par ans structure and then the par ans structure itself.

» cancel _f n. The MPI implementation will invoke the callback function cancel _f n when the user attempts to cancel the
nonblocking operation using MPI _Cancel . The implementation will passconpl et e=true tocancel _f nif

MPI _Grequest _conpl et e hasalready been called on the request (by the separate thread executing the function

wri t e_t hr ead); otherwise, it will passconpl et e=f al se. Thislets us know whether the nonblocking operation has

already completed and therefore cannot be cancelled. In this simple example, however, we do not support cancellation anyway.
Therefore, we simply return MPI _ SUCCESS.

Note that in order to know whether the request was successfully cancelled, the user must call MPI _Test _cancel | ed.
Cdling MPl _Test _cancel | ed will cause the implementation to invoke the quer y_f n in which we set the cancelled field
of the status object to 0, indicating that the request was not cancelled.

We stress the fact that the mechanism for generalized requests in MPI does not start nonblocking operations, nor does it cause
them to progress or complete. The user must use some other mechanism (for example, threads) to take care of initiation,
progress, and completion of the operation. MPI needs to be informed only of the completion of the generalized request (by
caling MPl _Gr equest _conpl et e).

C, Fortran, and C++ bindings for the MPI functions for generalized requests and for filling the status object are given in Tables
9.7,9.8, and 9.9.

9.2.3—
Adding New Error Codes and Classes

A layered library, such as an implementation of the MPI-2 1/0 functions on top of an MPI-1 implementation, may need to add
new error codes and classes to the ones already defined by the MPI implementation. These would allow the user to call the
usual MPI-1 functions on error code and classes, namely, MPI _Err or _cl ass to

Page 286

Table9.7

C bindings for the MPI functions for generalized requests and for filling the status object.

MPI _Grequest _query_function, MPlI_Gequest_free_function, and

MPI _Grequest _cancel _functi on arenot MPI functions; they show the calling sequences for the callback functions

passedto MPI _Grequest _start.

int MPI _Grequest _start(MPl _Gequest _query function *query fn,
MPI _Gequest _free_function *free_fn,
MPlI _Grequest _cancel _function *cancel _fn, void *extra_state,
MPI _Request *request)

typedef int MPl_Gequest_query function(void *extra_state, MPl _Status *status)
typedef int MPI_Gequest _free function(void *extra_state)

typedef int MPlI_Gequest cancel function(void *extra state, int conplete)

int MPI _Grequest_conpl ete(MPl _Request request)

int MPI _Status_set_elements(MPl _Status *status, MPI_Datatype dat atype,
i nt count)

int MPl_Status_set _cancell ed(MPl _Status *status, int flag)

determine the error classto which an error code belongsand MPI _Er r or _st ri ng to retrieve atext string associated with the
error code. MPI provides three functions for adding new error codes and classes:

MPI _Add_error_cl ass, Ml _Add_error_code,and VPl _Add_error_string. Asanexample, let's see how a
layered library of the MPI-2 /O functionality can add the I/O error class MPI _ ERR _AMODE, an error code associated with this
class, and the corresponding error strings to the MPI implementation. The program fragment is shown in Figure 9.4.

Note that an error class indicates a particular kind of error in general. Multiple error codes, corresponding to more specific
errors, can be associated with an error class. In this example, we define a new error class, VPl _ERR _AMODE, and a specific

error code, MPI 0_ERR_AMODE_COVB, associated with this class. We use MPIO_, and not MPI _, for the error code because

error codes are not predefined in MPI; only error classes are. We have defined the error code and class as external variables
because they need to be used in other parts of the layered /O library.

We usethe function MPI _Add_error _cl ass to create anew error class called MPl _ERR_AMODE. The MPI

implementation assigns a value to the new error class; we cannot directly assign avalue to it ourselves. We use the function
MPI _Add_-

Page 287

Table 9.8
Fortran bindingsfor MPl _Grequest _start and MPl _Grequest _conpl ete. query fn, free_fn, and

cancel _f n arenot MPI functions; they show the calling sequences for the callback functions passed to
MPlI _Grequest _start.

MPl _GREQUEST_START(query_fn, free_fn, cancel _fn, extra_state, request, ierror)
i nteger request, ierror
external query fn, free_fn, cancel _fn
i nteger (kind=MPI _ADDRESS KIND) extra_state

subrouti ne QUERY FN(extra_ state, status, ierror)
i nt eger status(MPl _STATUS SI ZE), ierror
i nt eger (ki nd=MPI _ADDRESS KIND) extra_state

subroutine FREE FN(extra_state,ierror)
i nteger ierror
i nt eger (ki nd=MPI _ADDRESS_KI ND) extra_state

subrouti ne CANCEL_FN(extra_state, conplete, ierror)
i nteger ierror
i nt eger (ki nd=MPI _ADDRESS KIND) extra_state
| ogi cal conplete

MPl _GREQUEST_COWPLETE(r equest, ierror)
i nteger request, ierror

WPl _STATUS_SET_ELEMENTS(st at us, datatype, count, ierror)
i nteger status(M°l_STATUS SI ZE), datatype, count, ierror

MPI STATUS SET CANCELLED(status, flag, ierror)
i nteger status(MPl_STATUS SI ZE), ierror
| ogical flag

Page 283

Table9.9
C++ bindingsfor MPl _Grequest _start and MPl _Gr equest _conpl et e. The bindings for the callback functions are

similar to the C casein Table 9.7.

MPI :: Grequest MPI:: Gequest::Start(
const MPl::Grequest::Query_function query_fn,
const MPl:: G equest::Free_function free_fn,
const MPl:: Grequest::Cancel _function cancel _fn, void *extra_state)

void MPl:: G equest:: Conplete()
void MPl:: Status:: Set_el enents(const MPI:: Datatype& datatype, int count)

void MPl:: Status:: Set_cancel | ed(bool flag)

extern int MPI _ERR AMODE; /* error class */
extern int MPI 0_ERR AMODE COMVB; /* error code */

MPI _Add_error_cl ass(&WvPl _ERR_AMODE) ;
MPI _Add_error_code(MPI _ERR_AMODE, &MPI O ERR AMODE_COMB) ;
MPI _Add_error_string(MPl _ERR_AMODE,
"Error related to the anpde passed to MPI _File_open");
MPI _Add_error_string(MPI O ERR_AMODE COVB,
"MPI _MODE RDWR and MPI _MODE RDONLY cannot be specified together");

Figure 9.4
Adding new error codes and classes to an MPI implementation. In this example, alayered library of the
MPI-2 1/O functionality addsthe error class MPl _ERR_AMODE, an error code associated with this

class, and the corresponding error strings to the MPI implementation.

error _code to create anew error code, MPl O ERR_AMODE COMB, associated with the error class MPI _ ERR_ AMODE. The
implementation assigns a value to this error code. Next we use the function VPl _Add_er r or _st ri ng to associate atext

string with the new error class and error code. Note that the string associated with the error class indicates a general error about
amode, whereas the string associated with the error code indicates a very specific error. After the new error code and class have
been added in this fashion, users can use the functions MPI _Error _cl ass and MPl _Er r or _st ri ng on the new error

code and class.

C, Fortran, and C++ bindingsfor MPl _Add_error _cl ass, MPl _Add_error_code,and MPl _Add_error _string
aregivenin Tables9.10, 9.11, and 9.12.

Page 289

Table9.10
C bindings for the functions for adding new error codes and classes
int MPI _Add _error_class(int *errorclass)

int MPl _Add_error_code(int errorclass, int *errorcode)

int MPI _Add _error_string(int errorcode, char *string)

Table9.11
Fortran bindings for the functions for adding new error codes and classes

MPI _ADD ERROR CLASS(errorclass, ierror)
i nteger errorclass, ierror

MPI _ADD ERROR CODE(errorclass, errorcode, ierror)
i nteger errorclass, errorcode, ierror

MPI _ADD ERROR _STRI NG errorcode, string, ierror)
i nteger errorcode, ierror
character*(*) string

Table9.12
C++ hindings for the functions for adding new error codes and classes

int MPlI::Add error_class()

int MPl::Add_error_code(int errorclass)

void MPl::Add_error_string(int errorcode, const char* string)

9.3—
Mixed-L anguage Programming

Library writers often write alibrary in one language (for example, C) and provide interfacesto it (called wrappers) from other
languages (for example, Fortran and C++). MPI provides features that make it possible for a program written in one language
to call MPI functions implemented in another language. The three languages that MPI supports are C, Fortran, and C++. MPI
also allows programs written in different languages to send messages to one another; we considered such an examplein

Chapter 7.

Let us consider the example of implementing the Fortran interface for the MPI function MPl _Fi | e_wri t e ontop of itsC

implementation. The code is shownin

#i nclude "npi.h"

void npi _file_wite_ (MPI_Fint *fh, void *buf, int
MPI _Fint *datatype, MPI_Fint
MPI _Fint *err)

{
MPI _File fh_c;
MPI _Dat at ype dat at ype_c;
MPlI _Status status_c;
fh c = WPl _File f2c(*fh);
datatype_c = MPI _Type_f2c(*datatype);
*err = (MPI _Fint) MPI _File wite(fh_c, buf, *count,
&status_c);
MPI _Status_c2f(&tatus_c, status);
}
Figure 9.5

Implementing the Fortran interfacefor MPl _File_wite

dat at ype_c,

Figure 9.5. When a user compiles a Fortran program containing a cal to the "external” function MPl _Fil e_writ e, the

compiler creates an object file in which this function is named according to some convention followed by the compiler. For
example, some compilers convert the function name to all lower-case letters and append an underscore at the end, some
compilers add a double underscore at the end, some don't add an underscore, and some convert the function nameto all capital
letters. For the Fortran program to link correctly, we must define the name of the C wrapper function according to the
convention followed by the Fortran compiler. Let's assume that the Fortran compiler converts the function name to lower case
and adds an underscore. Therefore, we hame the wrapper functionnpi _file wite_.

The argument list to this function takes into account the fact that parameters to functions in Fortran are passed by reference (as
addresses) and that handles to MPI objects in Fortran are defined to be of typei nt eger . Since an integer in Fortran may not

be of the same size as an integer in C, MPI provides a datatype called MPI _Fi nt in C and C++, which represents an integer of
the same size as a Fortran integer. Therefore, all argumentstonpi _fi |l e_wri t e_ other than the user's buffer are of type
MPI _Fint*.

Before we can call the C function MPl _Fi | e_wri t e, the Fortran handlesto MPI objects must be converted to C handles.
MPI provides handle conversion functions

Page 291

Table9.13
Bindings for the conversion functions used in Figure 9.5

MPI _File MPI _File f2c(MPI _Fint file)
MPI _Dat atype MPI _Type_f2c(MPI _Fint dat atype)

int MPl_Status_c2f(MPI _Status *c_status, MPI_Fint *f_status)

to convert from C handles to Fortran handles and vice versa. Weuse MPl _Fi | e_f 2c¢ to convert the Fortran file handleto aC
filehandleand MPI _Type_f 2c¢ to convert the Fortran datatype handle to a C datatype handle. Then we call the C function
MPlI _File wite andpassittheC file handle and the C datatype. Since st at us isan output parameter, we defineanew C
status object and pass it to the function. After the function returns, we call MPl _St at us_c2f , which copies al the
information contained in the C status object into the Fortran status object passed by the user. Note that MPl _St at us_c2f is
dightly different from handle conversion functions such asMPI_File c2f, because st at us objects are explicitly allocated by

the user and are not system objects. Handle conversion functions merely convert handles between languages, whereas
MPI _St at us_c2f actualy copiesal the information contained in a C status object (a structure of type MPl _St at us) into

auser-supplied Fortran status object (an integer array of size MPl _STATUS_SI ZE) .

The MPI Standard specifies that datatypes defined in any language can be used in any other language after the handles have
been converted appropriately using MPl _Type_f 2c or MPl _Type_c2f (see Section 2.2.6 of [27]). For example, if the
Fortrancall to MPl _Fi | e_wr i t e specifiesthe datatype MPI _ COVPLEX, the Fortran wrapper function can pass this datatype
tothe C function MPI _Fi | e_wri t e after handle conversion with MPI _Type_f 2c.

Similar handle conversion functions are provided for al other MPI objects, namely, groups, communicators, requests, window
objects, info, and op. All handle conversion functions are defined in C only; they do not have Fortran and C++ bindings.
Handles can be passed from C to C++ by using overloaded C++ operators called from C++ code. No provision existsin MPI
for direct access to C++ objects from C and for direct accessto C or C++ objects from Fortran.

The bindings for the conversion functions used in Figure 9.5 are given in Table 9.13.

Page 292

9.4—
Attribute Caching

MPI allows users to cache user-defined information on certain MPI objects, such as communicators, datatypes, and windows.
This feature of MPI is particularly useful to library writers. MPI-1 supports this feature on communicators only. MPI-2
extended attribute caching to datatypes and windows. Let us consider an example in which alibrary needsto decode a derived
datatype and create a "flattened" version of the datatype consisting of alist of offsets and lengths for use later in the program.
Flattening of datatypesis needed, for example, in alayered library that implements the MPI-2 /O functionality. Storing this
flattened information on the datatype itself by using attribute caching is very handy here because of the following reasons:

* The flattened information can be easily accessed whenever the datatype is passed to the library.

» When the user frees the datatype using MPl _Type_f r ee, the MPI implementation also frees the flattened information

using the delete function that was provided when the flattened information was cached as an attribute on the datatype. If the
flattened information is instead stored in some other way, such asin atable or list indexed by the datatype handle, one cannot
ensure that the flattened information will be freed when the user frees the datatype. If the flattened information is not freed
when the user frees the datatype and if the MPI implementation reuses the same datatype handle for a newly created derived
datatype, there is a danger of the library using the old flattened information for the new datatype. Attribute caching eliminates
this problem.

Figures 9.6 and 9.7 show the code for caching a flattened version of a datatype as an attribute on the datatype. To store the
flattened information, we use a structure of typef | at _st r uct , which contains an array of offsets, an array of lengths, the
number of entries (n) in these two arrays, and a reference count to avoid creating multiple copies of this structure when the
datatype is duplicated using MPI _Type_dup. We do not show the actual code for flattening a datatype; it can be written along

the lines of Figure 9.1 by using the functions MPl _Type_get _envel ope and MPl _Type_get _cont ent s recursively.

We use the function MPI _Type_cr eat e_keyval to create anew attribute key that, together with an associated value, can
be cached on a datatype. Thefirst two parametersto MPl _Type_cr eat e_keyval are callback functions—a copy function

and a delete function—that we must provide. They are described below. MPI returnsin the third argument a key that we can
use to cache an attribute value

Page 293

#i nclude "npi.h"

typedef struct {
MPI _Aint *offsets;
int *lengths;
int n; /*no. of entries in the offsets and |l engths arrays*/
int ref _count; /* reference count */
} flat _struct;

void Flatten_datatype(MPl _Dat at ype dat at ype)
{

flat _struct *flat_dtype;

i nt key;

flat_dtype = (flat_struct *) malloc(sizeof (flat_struct));
flat_dtype—>ref _count = 1;

/* code for allocating nmenory for the arrays "offsets" and
"l engths" and for flattening the datatype and filling in the
of fsets and | engths arrays goes here */

MPI _Type_creat e_keyval (Copy_fn, Delete_fn, &key, (void *) 0);
MPI _Type_set _attr(datatype, key, flat_dtype);

Figure 9.6
Using attribute caching on datatypes to cache a flattened version of a datatype on the datatype itself.
The copy and delete functions for the attribute key are defined in Figure 9.7.

on the datatype. The fourth argument is an extra-state argument, which MPI will simply pass on to the callback functions. We
usethe function MPI _Type_set _at tr to store this key on the datatype and associate the flattened datatype as the value of

this key. Attribute values are address-sized integers; therefore, we store a pointer to the flattened datatype as the attribute value.

The copy and delete callback functions for the attribute key are defined in Figure 9.7. MPI will call the copy function when the
datatype is duplicated using MPI _Type_dup. Inthe copy function, we merely increment the reference count by one. We also

set thef | ag parameter to 1 to indicate that we want this attribute to be cached on the duplicated datatype. If f | ag isset to 0,
the attribute will be deleted from the duplicated datatype. Intheatt r _val _out parameter, we must return the attribute value
associated with this key on the duplicated datatype. In

Page 294

i nt Copy_fn(MPl_Dat atype datatype, int key, void *extra_state,
void *attr_val __in, void *attr_val _out, int *flag)

{
((flat_struct *) attr_val _i n—>ref_count += 1;
*((flat_struct **) attr_val _out) = (flat_struct *) attr_val _in;
*flag = 1;
return MPlI _SUCCESS;
}

int Delete_fn(MPI_Datatype datatype, int key, void *attr_val,
void *extra_ state)

flat_struct *flat_dtype;

flat_dtype = (flat_struct *) attr_val;

flat_dtype—>ref_count -=1;

if (flat_dtype->ref_count == 0) {
free(flat_dtype—>offsets);
free(fl at_dtype—>| engt hs);
free(flat_dtype);

}
return MPlI _SUCCESS;

}

Figure 9.7
Definitions of the copy and delete functions used in Figure 9.6

this case, the value is the same as the value on the original datatype, namely, a pointer to the flattened datatype structure, which
MPI passesintheat t r _val _i n parameter.

Althoughbothattr _val inandattr_val out areof typevoi d*, they are defined differently. at t r _val _i nisthe
value itself, which is an address-sized variable and therefore of typevoi d*. attr_val _out, however, isan output
parameter; MPI will pass the address of the new attribute value as this parameter. at t r _val _out istherefore an address of
an address-sized variable, which isaso defined asvoi d*. Sinceat t r _val _out isthe address of the new attribute value
andattr_val _i nistheinput valueitself, we cannot simply do

attr_val _out = attr_val in;

Instead we do

*((flat_struct **) attr_val _out) = (flat_struct *) attr_val _in;

Page 295

Table9.14
C bindings for the attribute caching functions used in Section 9.4. MPl _Type_copy_attr_functi on and

MPlI _Type_del ete_attr_functi on arenot MPI functions; they show the calling sequences for the callback functions
passedto MPl _Type_create_keyval .
int MPI _Type_create_keyval (MPI _Type_copy_attr_function *type copy_attr_fn,

MPl _Type_del ete_attr_function *type_delete_attr_fn,

int *type_keyval, void *extra_state)

typedef int MPlI_Type copy_attr_function(MPl _Datatype ol dtype, int type keyval,
void *extra state, void *attribute val _in, void *attribute val out,
int *flag)

typedef int MPlI _Type delete_attr function(MPl _Datatype type, int type keyval,
void *attribute val, void *extra state)

int MPl_Type_set_attr(M°l _Datatype type, int type_keyval, void *attribute_val)

MPI will call the delete function when the datatype is freed using MPI _Type_f r ee. In the delete function, we decrement the
reference count. If the count is zero after decrementing, we free the memory allocated for the flattened datatype.

C, Fortran, and C++ bindings for the attribute caching functions used in this example are given in Tables 9.14, 9.15, and 9.16.

For cases where no special copy or delete functions are needed, MPI provides "do-nothing" functions. These are
MPI _COVM NULL_ COPY_FNand MPI _COVMM NULL_DELETE FN for communicator attributes,

MPl _TYPE_NULL_COPY_FNand MPI _TYPE_NULL_DELETE_FNfor datatype attributes, and
MPl _W N_NULL_COPY_FNand MPI W N_NULL_DELETE_FN for window object attributes.

9.5—
Error Handling

In this section we describe M PI's support for handling errors in programs.

95.1—
Error Handlers

MPI associates an error handler function with each communicator, window object, and file handle. If an error occursin an MPI
function, the implementation will invoke the associated error handler. The default error handler for communicators and window
objectsisMPI _ERRORS ARE FATAL, whereasfor file handlesitis MPl _ ERRORS RETURN. In other words, if the default

error handlers are set and an error

Page 296

Table9.15

Fortran bindings for the attribute caching functions used in Section 9.4.t ype_copy_attr_fnand

type_del ete_attr _f narenot MPI functions; they show the calling sequences for the callback functions passed to
MPI _Type_create_keyval .

MPI _TYPE CREATE KEYVAL(type copy_attr _fn, type delete attr_fn,
type_keyval, extra_state, ierror)
external type_copy_attr_fn, type_delete_attr_fn
i nt eger type keyval, ierror
i nt eger (ki ng=MPI _ADDRESS KI ND) extra_state

subroutine TYPE_COPY_ATTR FN(ol dtype, type_keyval, extra_state,
attribute_val _in, attribute_val _out, flag, ierror)
i nt eger ol dtype, type _keyval, ierror
i nt eger (ki nd=MPI _ADDRESS KIND) extra state, attribute_val in,
attribute val out
| ogical flag

subroutine TYPE DELETE ATTR FN(type, type_keyval, attribute val,
extra_state, ierror)
i nteger type, type_keyval, ierror
i nt eger (ki nd=MPlI _ADDRESS KIND) attribute_val, extra_state

MPI _TYPE SET ATTR(type, type keyval, attribute_val, ierror)
i nteger type, type_keyval, ierror
i nt eger (ki nd=MPI _ADDRESS KIND) attribute_val

Table9.16
C++ bindings for the attribute caching functions used in Section 9.4. The bindings for the callback functions are similar to the
Ccasein Table9.14.
int MPI::Datatype:: Create_keyval (
WPl : : Dat at ype: : Copy_attr_function*type_copy_attr_fn,
MPI : : Dat atype:: Del ete_attr_function* type_delete_attr_fn,
voi d* extra_state)

void MPl::Datatype:: Set_attr(int type_keyval, const void* attribute_val)

Page 297

occurs in anon-1/0 function, the program will abort, whereas if an error occursin an 1/0 function, the implementation will try
to continue execution by returning an appropriate error code.

MPI provides functions to create a new error handler, to associate it with a communicator, window object, or file handle, and to
explicitly invoke an error handler. Let's consider the case of file handles. The function for creating a new error handler that can
be associated with afile handleisMPl _Fi | e_cr eat e_errhandl er; thefunction for associating an error handler with a

filehandleisMPI _Fi | e_set _errhandl er; and the function for explicitly invoking the error handler associated with a
filehandleisMPI _Fi | e_cal | _errhandl er . Similar functions exist for communicators and window objects.

The default error handler for all files can be changed by calling MPl _Fi | e_set _er r handl er withanull file handle,
MPI _FI LE_NULL, before any fileis opened in the program. This method (of passing a null handle), however, cannot be used

for communicators and window objects. The default error handler for all communicators can be changed by changing the error
handler associated with MPlI _ COVM WORLD immediately after MPI isinitialized. Newly created communicators will inherit

the new error handler from the "parent” communicator. Thereis no way to change the default error handler for all window
objects; it must be changed explicitly for each window object by using MPl _W n_set _err handl er.

9.5.2—
Error Codes and Classes

Almost all MPI functionsin C and Fortran return an error code. In C, the error code is the return value of the MPI function; in
Fortran, itisthei er r or argument to the function. If the function returns successfully, the error code is set to

MPI _SUCCESS; if not, an implementation-defined error code is returned. Error codes can be mapped onto standard MPI error
classes by using the function MPI _Er r or _cl ass. Thefunction MPl _Er r or _st ri ng can be used to obtain atext string

corresponding to the error code. The error classes defined in MPI for 1/0O and remote memory operations are listed in Tables
9.17 and 9.18, respectively. Other error classes defined in MPI-2—for dynamic process management, info functions, and some
miscellaneous functions—are listed in Table 9.19. The error classes defined in MPI-1 are given in Chapter 7 of Using MPI [32].

For example, consider the following program fragment. For demonstration purposes, we use both methods of printing an error
message: via error classes and via error strings.

errcode = MPI _Fil e_open(MPl _COVW WORLD, "/pfs/datafile",

Page 298

MPI _MODE_RDONLY, MPI _I NFO_NULL, &fh);
if (errcode != MPI _SUCCESS) {

MPI _Error_cl ass(errcode, &errclass);
if (errclass == MPI _ERR _NO_SUCH FI LE)

printf("File does not exist\n");
el se {

MPI _Error_string(errcode, str, & en);

printf("%\n", str);

}

The C++ functions do not return error codes. If an error occursin non-1/0 functions, the default error handler MPI : :
ERRORS ARE FATAL causes the program to abort. In the case of errorsin I/O functions, the default 1/0 error handler MPI : :
ERRORS RETURN simply returns control to the calling function; there is no provision for the user to retrieve the error code.
To catch errors, users must change the error handler to MPI : : ERRORS_ THROW EXCEPTI ONS, which uses the C++
exception mechanism to signal an error by throwing an MPI : : Except i on object.

9.6—
Topics Not Covered in This Book

MPI-2 has additiona routines that we have not covered in this book. They include the following.

* Routinesto add and retrieve printable namesto MPI objects: MPl _Conm set _name, MPI _Conm get _nane,
MPI _Wn_set_name, MPI_Wn_set_nanme, MPI_Type_set_name, and VPl _W n_get _narne.

* A routine to create an MPI connection out of an existing non-MPI connection: MPI _Cormm _Joi n

 Additional routinesfor I/O, including: VPl _Fi l e_get anode, MPl _File get _atomcity,

MPl _File get byte offset, MPI _File_get group, MPI _File get position,

MPlI _File get position_shared, MPI _File get view, MPI _File iread_at,

MPl _File preallocate, MPI _File read all _begin, MPI _File read_all _end,

MPI File read at _all _begin, MPI _File read at _all_end, MPI_File_set_ size,

MPI File wite at_all _begin, MPI _File wite_at_all _end, MPI _File wite_ordered begin,
andMPl _File wite_ordered_end.

Page 299
Table9.17
Error classesfor I/0
MPI _ERR FI LE Invalid file handle
MPI _ERR NOT_SAME Collective argument not identical on all processes or collective
routines called in a different order by different processes
MPI _ERR AMODE Error related to the anbde passedto MPl _Fi | e_open
MPI ERR _UNSUPPORTED DATAREP Unsupported datarep passed to MPl _Fi | e_set _vi ew
MPI _ERR _UNSUPPORTED_OPERATI ON Unsupported operation, such as seeking on afile that supports
sequential access only
MPI _ERR _NO SUCH FI LE File does not exist

MPl _ERR FI LE_EXI STS File exists

MPI _ERR BAD FI LE
MPI _ERR ACCESS

MPI _ERR NO_SPACE

MPI _ERR QUOTA

MPI _ERR READ ONLY
MPI _ERR FILE_I N_USE

MPI _ERR DUP_DATAREP

MPI _ERR_CONVERSI ON

Invalid file name (e.g., path name too long)
Permission denied

Not enough space

Quota exceeded

Read-only file or file system

File operation could not be completed because the file is currently
open by some process

Conversion functions could not be registered because a data
representation identifier that was already defined was passed to
MPI _Regi st er_dat arep

An error occurred in a user-supplied data conversion function

MPI _ERR | O Other /O error
Table9.18
Error classes for RMA operations
MPI _ERR WN Invalid wi n argument
MPI _ERR _BASE Invalid base argument

MPI _ERR SI ZE
MPI _ERR DI SP

MPI _ERR LOCKTYPE
MPl _ERR ASSERT

MPI _ERR RMA_CONFLI CT

MPI _ERR RMA_SYNC

Invalid si ze argument

Invalid di sp argument
Invalid I ockt ype argument
Invalidassert argument
Conflicting accesses to window

Wrong synchronization of RMA calls

Page 300

Table9.19
Other error classes defined in MPI-2

Dynamic Process Management

MPl _ERR_SPAWN
MPl _ERR_PORT
MPI _ERR_SERVI CE

MPl _ERR_NAME

Info Functions
MPI _ERR | NFO_KEY

MPl _ERR | NFO VALUE
MPl _ERR_| NFO_NOKEY

Miscellaneous
MPI _ERR KEYVAL

MPI _ERR_NO_MEM

Unable to spawn specified number of processes
Named port does not exist or has been closed

An attempt to unpublish a name that has not been published or has
already been unpublished

Service name has not been published

Size of info key exceeds VPl _MAX_| NFO_KEY
Size of info value exceeds MPI _ VAX_| NFO VAL

Key not defined in info object

Invalid attribute key

Out of memory in MPlI _Al | oc_nem

* Additional routines for manipulating info objects: MPI _I nf o_del et e, MPl _I nf o_dup, and
MPI I nfo_get val uel en.

* Routinesto pack and unpack from a specified external data representation: MPl _Pack_ext er nal and
MPI _Unpack_ext ernal .

Although these routines did not find a natural place in our book, they may be just what you need. For example, the routines for
naming MPI objects can allow an MPIl-aware debugger to print more detailed information about an MPI object. We encourage
you to consider these routines when developing an application.

Page 301

10—
Conclusions

In this chapter we summarize our journey through the new types of parallel programs that are enabled by MPI-2, comment on
the current status of MPI-2 implementations, and speculate on future directions for MPI.

10.1—
New Classes of Parallel Programs

By providing a standard message-passing interface, MPI-1 made it possible for the parallel programs of its time to become
portable. Many message-passing programs, particularly in the area of scientific computing, were already in production use.
Over arelatively short period, most of them were converted to MPI and thus achieved portability. New message-passing
applications were devel oped that used MPI from the very beginning.

MPI confers portability in both "space" and "time." An MPI application can be run on multiple parallel computers or developed
on one and run in production mode on another (space portability). Perhaps even more important, an MPI application can be
moved from one generation of machines to the next (time portability). This property has proven to be extremely important as
the set of parallel computer vendors and types of parallel machines have undergone rapid change.

The MPI-2 Standard greatly extends the range of programs that can be written portably from their inception. Programs that
require high-performance 1/0, programs with dynamically changing numbers of processes, programs that use loose
synchronization and remote memory access, and libraries that extend MPI itself are all starting to be written, and, because of
MPI, they can be written portably.

10.2—
MPI-2 Implementation Status

MPI-2 islarger and more complex than MPI-1, and implementation is proceeding more slowly. Nonetheless, as this book is
being written (in the summer of 1999), one complete MPI-2 implementation already exists and several others are under
development.

10.2.1—
Vendor | mplementations

Fujitsu offers a complete MPI-2 implementation, done by PALLAS. Compaq (formerly Digital), Fujitsu, HP, IBM, NEC, SGlI,
Sun, and others are in the process of providing MPI-2 functionality, in most cases starting with parallel 1/0. The current release
of HP's MPI includes some of the remote memory access functions, as

Page 302

well the MPI-2 thread functions and multithreading of MPI calls. The Edinburgh Parallel Computing Center has developed a
nearly complete implementation of the remote-memory functions for the Cray/SGI T3D [9]. Compaq has demonstrated one-
sided operations but has not yet released them. We expect to see more and more parts of MPI-2 appear in each of these
companies MPI products as time goes by.

10.2.2—
Free, Portable | mplementations

The most widely used publicly available MPI implementations are LAM [7] and MPICH [30]. These MPI implementations are
particularly popular on heterogeneous workstation networks and "Beowul f" clusters, where no vendor implementation is
available. MPICH is also used on massively parallel processors where it competes with vendor MPI implementations.

Both LAM and MPICH are moving in the direction of MPI-2. Both aready offer the parallel 1/0 part of MPI-2 (see Section
10.2.3) and the C++ bindings for MPI-1. LAM also has the dynamic process management functionality and part of the remote
memory operations. As of thiswriting, MPICH is undergoing an internal redesign (see Appendix B of Using MPI [32]) in
preparation for the addition of full MPI-2 functionality.

10.2.3—
Layering

For some areas of MPI-2, it is possible for athird party to supply part of the MPI library in such away that it uses any
underlying MPI-1 implementation. We discussed this approach in Chapter 9 for implementing the MPI-2 1/O functionality.
This approach has been used in at least three different implementations of the MPI-2 I/O functions: our portable
implementation, ROMIO [88]; the portable implementation PMPIO from NASA Ames Research Center [22]; and the
implementation on top of HPSS from Lawrence Livermore National Laboratory [45]. A group at the University of Notre Dame
has implemented the MPI-1 C++ bindings [66] as wrappers for the C versions of the MPI-1 functions.

10.3—
Where Does MPI Go from Here?

It is not known yet whether there will be an "MPI-3." Standardizing the basic message-passing operations (MPI-1) has been a
great success. The benefits of standardizing the significant extensions to the message-passing model represented by MPI-2
have yet to be realized. More experience is needed with the devel opment

Page 303

of applications that utilize the wide range of capabilities provided by MPI-2. We can expect these applications to appear as
more and more MPI-2 implementations are rel eased.

MPI-2 is certainly not the end of the line. As parallel computing hardware and software environments continue to evolve, the
need for standardization in a number of areas will become apparent. Indeed, the most important benefit of MPI may turn out to
be that it has raised expectations among application developers that vendors, users, and computer scientists can truly cooperate
in the development of community standards that provide portability in both space and time. There are many areas where such
cooperation would benefit the entire community. In some of these areas efforts are already under way. Others remain research
areas with standardization still premature but possible in the future. In this section we briefly discuss some of these areas.
Discussions that took place in the MPI Forum on several of these topics can be found in the MPI Forum's "Journal of
Development,” where ideas that were considered noteworthy but not ready for standardization were recorded [57].

10.3.1—
More Remote Memory Operations

The MPI Forum debated a much larger list of RMA operations than the set that was eventually voted into the Standard. As
discussed in Chapter 6, experience may show that the Forum's drive for economy went too far, and some of the operations that
were voted out should have remained in. One test that should be applied to potential M PI-style remote-memory operationsis
that it should be straightforward to trans ate existing successful remote memory access libraries to their MPI counterparts.
Examples are the Cray shmem library [18] and the Global Arrayslibrary [63]. MPI remote memory operations should also
make it easy to implement concepts, such as monitors [40], that have proven useful from the theoretical aswell as practical
point of view for managing shared data.

10.3.2—
More on Threads

The MPI Forum also considered a more far-ranging set of functions for specifying explicit multithreading a gorithms before
settling on the narrow set of functions described in Chapter 8. As experience grows with multithreading and as both hardware
and software environments provide more support for efficient multithreading, MPI may need to be extended in order to express
algorithms that blend explicit (as opposed to automatic or compiler-directed) multithreading with MPI message-passing and
remote-memory operations. Such an integrated environment would

Page 304
form a solid foundation for the next round of research on and experimentation with advanced programming models.

10.3.3—
More Language Bindings

Javais here to stay as a major programming language. Its use as alanguage for scientific applicationsis just beginning, but
there is already an effort, called the Java Grande Forum [44], to improve Java's performance and usability for scientific
applications. Part of this effort isto propose aset of Java bindings for MPI [11]. While much of the C++ binding effort in MPI-
2 can be carried over to Java, the new language presents its own set of problems (and opportunities!) with respect to MPI.

As parallel computing begins to be applied more and more in the business community, even as away of speeding up old
application systems, there may be interest in a COBOL binding.

10.3.4—
I nteroperability of MPI I mplementations

One feature that users asked for soon after multiple MPI implementations appeared was interoper ability, the ability for
different MPI implementations to communicate. Such a system would enable a single application to run on multiple parallel
computers, using a different MPI implementation on each. Now nearing completion is an effort, called IMPI (Interoperable
MPI), to define the necessary protocols so that an MPI implementation can communicate with other similarly enabled MPI
implementations. A draft of the protocol specification is available [14].

10.3.5—
Real-Time MPI

During the MPI-2 Forum meetings, one group discussed the restrictions and extensions that would be necessary to adapt MPI
for anumber of different types of real-time environments. These deliberations were unfinished at the time the MPI-2 Standard
was published, but the group continued to meet afterwards, calling itself the "MPI/RT Forum™ [61]. The MPI/RT Forum has
produced several versions of the MPI/RT specification [72].

10.4—
Final Words

In this book we have illustrated and discussed the features of MPI-2. These features extend the programming model provided
by MPI-1 and position MPI as a standard for new kinds of parallel programs. Throughout the book we have taken

Page 305

the opportunity to discuss some of the subtler issues of the message-passing model and its extensions. We hope users find this
guide helpful in their development of advanced MPI applications.

A—
Summary of MPI-2 Routinesand Their Arguments

This Appendix contains the bindings for the MPI-2 routinesin C, Fortran, and C++.

Al—
C Routines

This section describes the C routines from [58].

int MPI _Accunmul ate(void *origin_addr, int origin_count,
MPI _Dat atype origin_datatype, int target_rank,
MPI _Aint target_disp, int target_count,
MPI _Dat atype target datatype, MPI _Op op, MPI_Wn wn)

Accumulates data in the window of the target process using the specified operation

int MPl _Add_error_class(int *errorclass)

Creates a new error class and returnsits value

int MPI _Add _error_code(int errorclass, int *error)

Creates a new error code associated with the specified error class and returnsits value

int MPI _Add_error_string(int errorcode, char *string)

Associates an error string with an error code or class

int MPl_Alloc_mem(MPI _Aint size, MPI_Info info, void *baseptr)

Allocates memory that may be used for (potentially faster) RMA and message-passing operations

int MPI _Alltoallwvoid *sendbuf, int sendcounts [], int sdispls [],

int rdispls [], MPI_Datatype recvtypes [], MPI_Conmm conm

WPl _Dat at ype sendtypes [], void *recvbuf, int recvcounts [],

Sends data from all to all processes, with variable counts, displacements, and datatypes

int MPI_Cl ose_port(char *port_nane)

Releases the network address represented by the specified port name

int MPI _Comm accept (char *port_nane, MPI _Info info, int root,
MPI _Comm conm MPI _Comm * newcom)

Establishes communication with a client

MPI _Fint MPI _Conm c2f (MPI _Comm conm)

Converts a C communicator handle to a Fortran communicator handle

int MPI_Comm call _errhandl er (MPI _Comm conm int error)

Invokes the error handler associated with a communicator

(table continued on next page)

Page 307

Page 308

(table continued from previous page)

i nt MPI _Conmm connect (char *port_nane, MPI _Info info, int root,
MPI _Conm conm MPI _Conm * newconm)

Establishes communication with a server

int MPI_Comm create_errhandl er(MPI _Comm errhandl er _fn *function,
MPI _Errhandl er *errhandl er)

Creates an error handler that can be attached to communicators

int MPI _Comm create_keyval (MPI _Comm copy_attr_function *comm copy_-
attr_fn, MPI _Commdelete_attr_function *commdelete_attr_fn,
int *comm keyval, void *extra_state)

Creates a new attribute key that can be cached on communicators

int MPl_Comm del ete_attr(MPl _Conm comm int conm keyval)

Deletes an attribute key cached on a communi cator

int MPI _Conmm di sconnect (MPl _Conm *conmnm)

Waits for all pending communication in the communicator to complete and then frees the communicator

MPI _Conm MPI _Conm f 2c(MPI _Fi nt conm)

Converts a Fortran communicator handle to a C communicator handle

int MPI_Comm free_keyval (i nt *comm keyval)

Frees an attribute key created with MPI _Conmm cr eat e_keyval

int MPI _Comm get _attr(MPl_Conm comm int conmkeyval, void
*attribute_val, int *flag)

Returns the value associated with an attribute key cached on a communicator

int MPI _Comm get _errhandl er (MPI _Conmm conm
MPI _Errhandl er *errhandl er)

Returns the error handler currently associated with a communicator

int MPI _Comm get _name(MPI _Conmm conm char *comm_ name, int *resultlen)

Returns the name associated with a communi cator

int MPI _Comm get _parent (MPl _Conm *parent)

Returns the parent intercommunicator of a spawned process
int MPl _Commjoin(int fd, MPI_Conmm *i nterconm

Creates an intercommunicator from the union of two MPI processes that are connected by a socket

int MPl_Comm set _attr (Ml _Comm conm int conm keyval, void
*attribute_val)

Sets the value for an attribute key cached on a communicator

(table continued on next page)

(table continued from previous page)

int MPI _Comm set _errhandl er(MPl _Comm comm WMPI _Errhandl er errhandl er)

Attaches a new error handler to a communicator

int MPI _Comm set nanme(MPlI _Conm comm char *conmm nane)

Associates a name with a communi cator

int MPI _Comm spawn(char *command, char *argv[], int naxprocs,
MPl _Info info, int root, MPI_Conm comm
MPI _Comm *interconm int array_of errcodes[])

Spawns new processes running an MPI program

char **array_of _argv[], int array_of_nmaxprocs[],
MPI _Info array_of _info[], int root, MPI_Comm conmm
MPI _Comm *interconm int array_of errcodes[])

int MPI _Comm spawn_nul tiple(int count, char *array_of commands[],

Spawns new processes running different MPI programs

int MPI _Exscan(void *sendbuf, void *recvbuf, int count,
WPl _Dat at ype datatype, MPI _Op op, MPI _Comm conm

Performs a prefix reduction

MPI _Fint MPI_File c2f(MPI_File file)

Converts a C file handle to a Fortran file handle

int MPIl _File call_errhandler(MPI _File fh, int error)

Invokes the error handler associated with a file

int MPIl _File close(MPl _File *fh)

Closes afile

int MPI _File create_errhandler(MPl_File_ errhandl er _fn *function,
MPI _Errhandl er *errhandl er)

Creates an error handler that can be attached to files

int MPl _File_delete(char *fil ename, MPI_Info info)

Deletesafile

MPI _File MPI _File_f2c(MPI_Fint file)

Converts a Fortran file handle to a C file handle

int MPl _File_get_anode(MPI _File fh, int *anode)

Returns the access mode of a file

int MPl _File_get_atomicity(MPl_File fh, int *flag)

Returns the current setting for atomicity of file accesses

int MPl _File_get_byte offset(MPI_File fh, MPI _Ofset offset,
MPI _OFfset *disp)

Converts a view-relative file offset into an absolute byte offset

(table continued on next page)

Page 309

(table continued from previous page)

int MPI _File get _errhandler(MPl _File file,
MPI _Errhandl er *errhandl er)

Returns the error handler associated with a file

int MPl_File_get_group(MPl_File fh, MPI_G oup *group)

Returns a duplicate of the group of the communicator used to open a file

int MPl_File_get_info(MPI _File fh, MPI_Info *info_used)

Returns a new info object containing the hints currently associated with afile

int MPl _File_get_position(MPI _File fh, MPI_Ofset *offset)

Returns the current location of the individual file pointer

int MPl_File_get_position_shared(MPl _File fh, MPI_Offset *offset)

Returns the current location of the shared file pointer

int MPl _File_get_size(MPl _File fh, MPI_Ofset *size)

Returns the size of a file in bytes

int MPl_File_get _type_extent(MPI_File fh, Ml _Datatype datatype,
MPl _Ai nt *extent)

Returns the extent of a datatype in the file data representation

int MPl _File_get_view(MPl _File fh, MPI_Ofset *disp,
MPI _Datatype *etype, MPI_Datatype *fil etype, char *datarep)

Returns the current file view

int MPI _File iread(MPlI _File fh, void *buf, int count,
MPI _Dat at ype dat atype, MPI_Request *request)

Sarts a nonblocking file read from the current location of the individual file pointer

int MPl_File_iread_at(MPI _File fh, MPI_Ofset offset, void *buf,
int count, MPI_Datatype datatype, Ml _Request *request)

Sarts a nonblocking file read from the specified offset

int MPl _File_iread_shared(MPl _File fh, void *buf, int count,
WPl _Dat at ype datatype, MPI _Request *request)

Sarts a nonblocking file read from the current location of the shared file pointer

int MPI File iwite(MPl_File fh, void *buf, int count,
MPI _Dat at ype dat atype, MPI _Request *request)

Sarts a nonblocking file write from the current location of the individual file pointer

int MPl_File_iwite_at(MPI_File fh, MPI _Ofset offset, void *buf,
int count, MPI_Datatype datatype, Ml _Request *request)

Sarts a nonblocking file write from the specified offset

(table continued on next page)

Page 310

(table continued from previous page)

int MPl_File_iwite_shared(MPl _File fh, void *buf, int count,
WPl _Dat at ype datatype, MPI _Request *request)

Sarts a nonblocking file write from the current location of the shared file pointer

int MPl_File_open(MPl_Conm comm char *filenane, int anode,
MPI _Info info, MPI _File *fh)

Opens afile

int MPI _File_ preallocate(MPl _File fh, MPI_Ofset size)

Preallocates disk space for a file

int MPl_File_ read(MPl _File fh, void *buf, int count,
MPI _Dat at ype datatype, MPI_Status *status)

Reads from the current location of the individual file pointer

int MPl_File_read_all (Ml _File fh, void *buf, int count,
MPI _Dat at ype datatype, MPI_Status *status)

Collective read from the current location of the individual file pointer

int MPl _File_read_all_begin(MPl _File fh, void *buf, int count,
WPl _Dat at ype dat at ype)

Sarts a split collective read from the current location of the individual file pointer

int MPIl_File read_all_end(MPl _File fh, void *buf, MPI_Status *status)

Completes a split collective read started with MPl _Fi | e_read_al | _begi n

int MPl_File_read_at(MPl_File fh, MPI_Ofset offset, void *buf,
int count, MPI_Datatype datatype, MPI_Status *status)

Reads from the specified file offset

int MPl_File read_at_all(MPl _File fh, MPI_Offset offset, void *buf,
int count, MPI_Datatype datatype, Ml _Status *status)

Collective read from the specified file offset

int MPIl _File read_at _all _begin(MPI _File fh, MPI_Ofset offset,
void *buf, int count, MPlI_Datatype datatype)

Sarts a split collective read from the specified file offset

int MPl _File_read_at_all _end(MPI _File fh, void *buf,
MPl _Status *status)

Completes a split collectiveread started withMPl _Fil e read_at _all _begin

int MPI _File read ordered(MPl _File fh, void *buf, int count,
MPI _Dat at ype datatype, MPI_Status *status)

Collective read using the shared file pointer

(table continued on next page)

Page 311

(table continued from previous page)

int MPI _File read_ordered_begin(MPI _File fh, void *buf, int count,
MPI _Dat at ype dat at ype)

Sartsa split collective read using the shared file pointer

int MPl_File_read_ordered_end(MPl _File fh, void *buf,
MPI _Status *status)

Completes a split collective read started with MPl _Fi | e_read_or der ed_begi n

int MPl_File_read_shared(MPI _File fh, void *buf, int count,
MPI _Dat at ype datatype, MPI_Status *status)

Reads from the current location of the shared file pointer

int MPl_File_seek(MPl _File fh, MPI_Ofset offset, int whence)

Moves the individual file pointer

int MPl _File_seek_shared(MPl _File fh, MPI_Offset offset, int whence)

Moves the shared file pointer

int MPIl _File set _atomicity(MPl _File fh, int flag)

Sets atomicity of file accesses

int MPl _File_set_errhandler(MPl _File file, MPI_Errhandl er errhandl er)

Attaches a new error handler to afile

int MPl _File_set_info(MPlI _File fh, MPI_Info info)

Sets new values for the hints associated with a file

int MPl _File_set_size(MPl _File fh, MPI_Ofset size)

Setsthefilesize

int MPl_File_set_view(MPl _File fh, MPI_Ofset disp,
WPl _Dat atype etype, MPI_Datatype filetype, char *datarep,
MPI _Info info)

Setsthefile view

int MPI _File sync(MPl _File fh)

Synchronizes any cached file data with that on the storage device

int VPl File wite(MPlI _File fh, void *buf, int count,
WPl _Dat at ype datatype, MPI_Status *status)

Writes from the current location of the individual file pointer

int MPl_File_wite_all(MI_File fh, void *buf, int count,
WPl _Dat at ype datatype, MPI_Status *status)

Collective write fromthe current location of the individual file pointer

int MPI _File wite_all_begin(MPI_File fh, void *buf, int count,
MPI _Dat at ype dat at ype)

Sartsa split collective write from the current location of the individual file pointer

(table continued on next page)

Page 312

(table continued from previous page)

int MPI_File_wite_all_end(MPl _File fh, void *buf, MPI_Status *status)

Completes a split collective write started withMPl _Fil e_write_al |l _begin

int MPl_File wite_at(MPI _File fh, MPI_Ofset offset, void *buf,
int count, MPI_Datatype datatype, Ml _Status *status)

Writes from the specified file offset

int MPl_File wite_at_all(MPI_File fh, MPI _Ofset offset, void *buf,
int count, MPI_Datatype datatype, Ml _Status *status)

Collective write from the specified file offset

int MPI File wite_ at_all _begin(MPl _File fh, MPI _Ofset offset,
void *buf, int count, MPI_Datatype datatype)

Sarts a split collective write from the specified file offset

int MPl_File_ wite_at_all_end(MPl _File fh, void *buf,
MPI _Status *status)

Completes a split collective write started with MPl _Fil e_write_at _all _begin

int MPl_File_ wite_ ordered(MPl _File fh, void *buf, int count,
MPI _Dat at ype datatype, MPI_Status *status)

Collective write using the shared file pointer

int MPl_File_ wite_ordered_begin(MPl _File fh, void *buf, int count,
VPl _Dat at ype dat at ype)

Sarts a split collective write using the shared file pointer

int MPI_File wite_ordered_end(MPlI _File fh, void *buf,
MPl _Status *status)

Completes a split collective write started withMPl _Fil e_write_ordered_begin

int MPI _File wite_shared(MPI _File fh, void *buf, int count,
MPI _Dat at ype datatype, MPI_Status *status)

Wrkites from the current location of the shared file pointer

int MPl_Finalized(int *flag)

Indicates whether MPI _Fi nal i ze has completed

int MPI _Free_nmen(void *base)

Frees memory allocated with VPl _Al | oc_nmem

int MPl_CGet(void *origin_addr, int origin_count,
WPl _Dat atype origi n_datatype, int target_rank,
MPI _Aint target _disp, int target_count,
MPI _Dat atype target datatype, MPI_Wn wn)

Sarts a one-sided receive operation

(table continued on next page)

Page 313

(table continued from previous page)

int MPl _Cet_address(void *location, MPI_Aint *address)

Returns the address of a location in memory

int MPI _Grequest_conpl et e(MPl _Request request)

Informs MPI that the operations represented by a generalized request are complete

int MPl_Grequest_start (Ml _G equest_query_function *query_fn,
MPI _Grequest free function *free_fn,
MPI _Grequest _cancel _function *cancel _fn, void *extra_state,
MPl _Request *request)

Creates a new generalized request object

MPI _Fint MPl _Group_c2f(MPI _G oup group)

Convertsa C group handle to a Fortran group handle

MPI _Group MPI _Group_f2c(MPl _Fint group)

Convertsa Fortran group handle to a C group handle

MPI _Fint MPI _Info_c2f(MPI _Info info)

Converts a C info handle to a Fortran info handle

int MPl _Info_create(MPl _Info *info)

Creates a new info object

int MPl _Info_delete(MPl _Info info, char *key)

Deletes a (key,value) pair from an info object

int MPl _Info_dup(MPI_Info info, MPI_Info *new nfo)

Returns a duplicate of an info object

MPI I nfo MPI _Info_f2c(MPI _Fint info)

Converts a Fortran info handle to a C info handle

int MPl _Info_free(MPl _Info *info)

Frees an info object

int MPl _Info_get(MPI_Info info, char *key, int valuelen, char *val ue,
int *flag)

Returns the value associated with an info key

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

Returns the number of keys currently defined in the info object

int MPl _Info_get_nthkey(MPl _Info info, int n, char *key)

Returns the nth key defined in the info object

int MPl _Info_get_valuelen(MPl _Info info, char *key, int *val uel en,
int *flag)

Returns the length of the value string associated with an info key

(table continued on next page)

Page 314

(table continued from previous page)

int incount, void* outbuf, Aint outsize, A nté& position)
const

voi d Dat at ype: : Pack_external (const char* datarep, const void* inbuf,

Packs data into a contiguous buffer in external 32 format

Ai nt Dat at ype: : Pack_ext ernal _size(const char* datarep, int incount)
const

Returns the amount of space needed to pack a datatype in external 32 format

void Wn::Post(const Group& group, int assert) const

Sarts an RMA exposure epoch for the local window associated with a window object

void File::Preallocate(Ofset size)

Preallocates disk space for afile

voi d Publish_nane(const char* service_nane, const |nfo& info,
const char* port_nane)

Publishes a (port_name, service_name) pair

void Wn::Put(const void* origin_addr, int origin_count,
const Datatype& origin_datatype, int target rank,
Aint target_disp, int target_count,
const Dat atype& target_datatype) const

Sarts a one-sided send operation

int Query_thread()

Returns the current level of thread support

void File::Read(void* buf, int count, const Datatype& datatype)

Page 348

Reads from the current location of the individual file pointer

void File::Read(void* buf, int count, const Datatype& datatype,
St at us& st at us)

Reads from the current location of the individual file pointer

void File::Read all(void* buf, int count, const Datatype& datatype)

Collective read from the current location of the individual file pointer

void File::Read all (void* buf, int count, const Datatype& datatype,
St at us& st at us)

Collective read from the current location of the individual file pointer

void File::Read_all_begin(void* buf, int count,
const Dat at ype& dat at ype)

Sarts a split collective read from the current location of the individual file pointer

void File::Read_all _end(voi d* buf)

Completes a split collectiveread started withMPl_Fil e_read_al |l _begin

(table continued on next page)

(table continued from previous page)

void File::Read_all _end(voi d* buf, Status& status)

Completes a split collectiveread started withMPl _Fi |l e_read_al | _begin

void File::Read_at (O fset offset, void* buf, int count,
const Dat at ype& dat at ype)

Reads from the specified file offset

void File::Read at (O fset offset, void* buf, int count,
const Dat at ype& dat atype, Status& status)

Reads from the specified file offset

void File::Read at_all (O fset offset, void* buf, int count,
const Dat at ype& dat at ype)

Collective read from the specified file offset

void File::Read_at_all (O fset offset, void* buf, int count,
const Dat at ype& dat atype, Status& status)

Collective read from the specified file offset

void File::Read at_all _begin(Ofset offset, void* buf, int count,
const Dat at ype& dat at ype)

Sarts a split collective read from the specified file offset

void File::Read_at_all _end(voi d* buf)

Completes a split collective read started with VPl _Fi | e_read_at _al | _begin

void File::Read at_all _end(voi d* buf, Statusé& status)

Completes a split collective read started with VPl _Fi | e_read_at _al | _begin

void File::Read_ordered(voi d* buf, int count,
const Dat at ype& dat at ype)

Collective read using the shared file pointer

void File::Read_ordered(voi d* buf, int count,
const Datatype& datatype, Status& status)

Collective read using the shared file pointer

void File:: Read_ordered_begi n(voi d* buf, int count,
const Dat at ype& dat at ype)

Page 349

Sarts a split collective read using the shared file pointer

void File:: Read_ordered_end(voi d* buf)

Completes a split collectiveread started with MPl _Fi | e_read_ordered_begin

void File::Read_ordered_end(voi d* buf, Status& status)

Completes a split collectiveread started withMPl_Fi | e_read_ordered_begin

(table continued on next page)

(table continued from previous page)

void File::Read_shared(voi d* buf, int count,
const Dat at ype& dat at ype)

Reads from the current location of the shared file pointer

void File:: Read_shared(void* buf, int count,
const Dat at ype& dat atype, Status& status)

Reads from the current location of the shared file pointer

voi d Regi ster_dat arep(const char* dat ar ep,
Dat ar ep_conver si on_functi on* read_conversion_fn,
Dat ar ep_conver si on_functi on* wite_conversion_fn,
Dat arep_extent _function* dtype file_extent_fn,
voi d* extra_state)

Adds a new file data representation to MPI

Dat at ype Dat at ype: : Resi zed(const Aint |b, const Aint extent) const

Returns a new datatype with the specified lower bound and extent

void File::Seek(Ofset offset, int whence)

Moves the individual file pointer

void File::Seek_shared(O fset offset, int whence)

Moves the shared file pointer

void Info::Set(const char* key, const char* val ue)

Adds a (key,value) pair to an info object

void File::Set_atomcity(bool flag)

Sets atomicity of file accesses

void Conm :Set_attr(int commkeyval, const void* attribute_val)
const

Sets the value for an attribute key cached on a communicator

Page 350

void Datatype:: Set_attr(int type_keyval, const void* attribute_val)

Sets the value for an attribute key cached on a datatype

void Wn::Set_attr(int win_keyval, const void* attribute_val)

Sets the value for an attribute key cached on a window object

voi d Status::Set_cancel | ed(bool flag)

Setsthe value to bereturned by MPI _Test _cancel | ed

void Status:: Set_ el enents(const Datatype& datatype, int count)

Setsthe valueto bereturned by MPI _ Get _el enent s

voi d Conm : Set _errhandl er (const Errhandl er& errhandl er)

Attaches a new error handler to a communicator

(table continued on next page)

(table continued from previous page)

void File::Set _errhandl er(const Errhandl er& errhandl er)

Attaches a new error handler to afile

void Wn::Set_errhandl er(const Errhandl er& errhandl er)

Attaches a new error handler to a window object

void File::Set _info(const Info& info)

Sets new values for the hints associated with a file

void Comm : Set _nanme(const char* conmm nane)

Associates a name with a communicator

voi d Dat at ype: : Set _nanme(const char* type_nane)

Associates a hame with a datatype

void Wn::Set_name(const char* wi n_nane)

Associates a name with a window object

void File::Set _size(Ofset size)

Setsthefilesize

void File::Set viewm(Ofset disp, const Datatype& etype,
const Datatype& filetype, const char* datarep,
const Info& info)

Setsthefile view

I ntercomm | ntraconmm : Spawn(const char* command, const char* argv[],
i nt maxprocs, const Info& info, int root) const

Spawns new processes running an MPI program

I ntercomm | ntracomm : Spawn(const char* comrand, const char* argv[],
i nt maxprocs, const Info& info, int root,
int array_of _errcodes[]) const

Spawns new processes running an MPI program

I ntercomm I ntraconmm : Spawn_nul ti pl e(int count,
const char* array_of conmands|[],
const char** array_of _argv[],
const int array_of_maxprocs[], const Info array_of _info[],
int root)

Spawns new processes running different MPI programs

(table continued on next page)

Page 351

(table continued from previous page)

I nterconm | ntracomm : Spawn_nul ti pl e(int count,
const char* array_of _conmmands|[],
const char** array_of _argv[],
const int array_of maxprocs[], const Info array_of info[],
int root, int array_of _errcodes[])

Spawns new processes running different MPI programs

Grequest Grequest:: Start(const Grequest:: Query_function query_fn,
const Grequest::Free function free_fn,
const Grequest:: Cancel _function cancel _fn, void
*extra_state)

Creates a new generalized request object

void Wn::Start(const G oup& group, int assert) const

Sarts an RMA access epoch, enabling access only on windows at processes in the specified group

void File::Sync()

Synchronizes any cached file data with that on the storage device

bool Wn::Test() const

Tests whether RMA operations on the window object exposed with MPI _ W n_post have completed

void Wn::Unlock(int rank) const

Completes an RMA access epoch started with MPI _W n_| ock

voi d Dat at ype: : Unpack_ext ernal (const char* datarep,
const void* inbuf, Aint insize, A nté& position,
voi d* outbuf, int outcount) const

Unpacks data stored contiguously in external 32 format

voi d Unpublish_nanme(const char* service_nanme, const Info& info,
const char* port_name)

Unpublishes a previously published service name

void Wn::Wait() const

Completes an RMA exposure epoch started with MPl _W n_post

void File::Wite(const void* buf, int count,
const Dat at ype& dat at ype)

Writes from the current location of the individual file pointer

Page 352

void File::Wite(const void* buf, int count,
const Dat at ype& datatype, Status& status)

Writes from the current location of the individual file pointer

(table continued on next page)

(table continued from previous page)

void File::Wite_all(const void* buf, int count,
const Dat at ype& dat at ype)

Collective write fromthe current location of the individual file pointer

void File::Wite_all(const void* buf, int count,
const Dat at ype& datatype, Status& status)

Collective write fromthe current location of the individual file pointer

void File::Wite_all _begin(const void* buf, int count,
const Dat at ype& dat at ype)

Sartsa split collective write from the current location of the individual file pointer

void File::Wite_all _end(const void* buf)

Completes a split collective write started withMPl _File_write_al |l _begin

void File::Wite_all_end(const void* buf, Status& status)

Completes a split collective write started with MPl _Fil e_wite_all _begin

void File::Wite at(Ofset offset, const void* buf, int count,
const Dat at ype& dat at ype)

Writes from the specified file offset

void File::Wite_at(Ofset offset, const void* buf, int count,
const Dat at ype& dat atype, Status& status)

Writes from the specified file offset

void File::Wite at_all (O fset offset, const void* buf, int count,
const Dat at ype& dat at ype)

Collective write from the specified file offset

void File::Wite at_all (O fset offset, const void* buf, int count,
const Dat atype& datatype, Statusé& status)

Collective write from the specified file offset

void File::Wite_at_all_begin(Ofset offset, const void* buf,
int count, const Datatype& datatype)

Sarts a split collective write from the specified file offset

void File::Wite_ at_all_end(const void* buf)

Completes a split collective write started with MPI _Fil e_write_at _all _begin

Page 353

void File::Wite_at_all_end(const void* buf, Status& status)

Completes a split collective write started withMPl _Fil e_wite_at _all _begin

void File::Wite_ordered(const void* buf, int count,
const Dat at ype& dat at ype)

Collective write using the shared file pointer

(table continued on next page)

(table continued from previous page)

void File::Wite_ordered(const void* buf, int count,
const Dat at ype& dat atype, Status& status)

Collective write using the shared file pointer

void File::Wite_ordered_begin(const void* buf, int count,
const Dat at ype& dat at ype)

Sarts a split collective write using the shared file pointer

void File::Wite_ordered_end(const void* buf)

Completes a split collective write started with MPl _Fi |l e_write_ordered_begin

void File::Wite ordered_end(const void* buf, Statusé& status)

Completes a split collective write started with MPl _Fi |l e_writ e_ordered_begin

void File::Wite_shared(const void* buf, int count,
const Dat at ype& dat at ype)

Writes from the current location of the shared file pointer

Page 354

void File::Wite_shared(const void* buf, int count,
const Dat atype& datatype, Status& status)

Writes from the current location of the shared file pointer

B_
M PI Resourceson the World Wide Web

Here we describe how to get access to MPI-related material on the Internet.

MPI Home Pages

Page 355

Many MPI "home pages" exist on the World Wide Web. The most important isthe MPI Forum's home page, http://www.mpi-
forum.org. The page at http://www.mcs.anl.gov/mpi contains links to other home pages as well as links to tools, tutorials,

implementations, and documentation on MPI.

Examples of MPI Programs

All of the examples used in this book are available on the Web at http://www.mcs.anl.gov/mpi/usingmpi2 or by anonymous

ftpfromftp.ncs. anl . gov indirectory pub/ npi / usi ng2/ exanpl es. Thisdirectory is organized by book chapter.
Thefile' READMVE' liststhefiles by chapter. A Unix ' t ar' file (compressed) containing al the examplesisavailablein

"exanpl es. tar. gz' . Instructionsfor unpacking thisfile arein the' READVE' file.

MPI Implementations

The MPICH implementation, written by the authors of this book and others, isfreely available and may be downloaded from
the Web at http://www.mcs.anl.gov/mpi/mpich or by anonymousftp fromf t p. nts. anl . gov. The' READVE' filein
directory ' pub/ npi ' describes how to fetch and install the most recent version of MPICH. The MPICH distribution includes
examples and test programs, as well as performance-measurement programs. Most of the test and performance programs may

be used with any MPI implementation.

A list of implementations is maintained at http://www.mpi.nd.edu/MPI; thisincludes both freely available and commercial

implementations.

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi/usingmpi2
http://www.mcs.anl.gov/mpi/mpich
http://www.mpi.nd.edu/MPI

TheMPI Standard

The MPI Standard is available, in both PostScript and HTML forms, on the Web at http://www.mpi-forum.org. Errata for both

MPI-1 and MPI-2 are also available there. In addition, archives of the MPI Forum, including e-mail discussions, meeting notes,
and voting records, can be viewed there.

Discussion on M PI

A newsgroup, conp. par al | el . mpi , isdevoted to discussion of all aspects of MPI. Discussion of MPI-related issues also
sometimes occurs in the more general group conp. par al | el , devoted to parallel computers and computation.

A "freguently asked questions' (FAQ) pageis available at

http://ww. erc. nsstate. edu/ npi/ npi -faqg. ht n

Page 356

A great deal of information on parallel-programming projects and tools is available on the Web. We encourage you to
investigate other sites on the Web for other resources on MPI and parallel computing.

Page 357

C—

Surprises, Questions, and Problemsin MPI

This appendix describes some issues that have arisen since the MPI-2 Standard was completed. Most of these are relatively
obscure but have been discovered (in most cases) by someone trying to use or implement MPI. We begin with the clear

oversights, continue with features that have ambiguous or awkward definitions, and conclude with some common
misunderstandings.

For the current status on these issues, check http://www.mpi-forum.org/docs/ for the erratafor MPI-2.

C.1—
No MPI _Errhandl er _f2c and MPl _Er r handl er _c2f

The MPI Forum, when describing the functions to convert opague handles between C and Fortran, overlooked error handlers.
In MPI 2.0, thereisno MPI _Err handl er _f2c or MPl _Er r handl er _c2f . Thisshould be corrected by the MPI Forum.

C2—
NoMPl _LONG_LONGin C

The MPI Standard specifiesan MPI _LONG_LONG _| NT type but no MPl _LONG_LONG. To make matters more confusing, in
MPI-2.0, theunsi gned | ong | ong type was added with MPI name MPlI _UNSI GNED _LONG_LONG. Many MPI
implementations support both MPI _ LONG_LONGand MPlI _LONG_LONG | NT, but as of MPI-2.0, the only standard-
conforming MPI datatype for alonglong isMPl _LONG_LONG | NT.

C.3—
MPI _PROC_NULL in RMA

Thevalue VPl _ PROC_NULL may be used in point-to-point communications as a sort of no-op: the call is allowed, but no data

issent (in asend) or received (in areceive). The remote memory access routines do not specifically say whether
MPI _PROC_NULL isvalidfor MPI _Put, MPI _Get,or MPl _Accunul at e. E-mail discussions have supported the

interpretation that MPI _PROC_NULL isallowed, but as of thiswriting, no final decision has been taken.

http://www.mpi-forum.org/
http://www.erc.msstate.edu/mpi/mpi-faq.html
http://www.mpi-forum.org/docs/

C4—
MPI _OF f set Argument for Derived Datatype Constructors

Since many systems support file sizes larger than the memory-address space (for example, 64-bit file sizes but 32-bit memory
addresses), file offsets, displacements,

Page 358

and so forth, in MPI are of type MPl _COF f set rather than MPI _Ai nt . However, in al derived-datatype constructor functions
that take byte displacements as arguments, the displacement is of type MPl _Ai nt . Even the new datatype constructor
functions defined in MPI-2—MPI _Type_cr eat e_hi ndexed, MPI _Type_create_hvector, and

MPI _Type_cr eat e_st r uct —take displacements of type MPl _Ai nt . This means that on systems where MPI _Of f set
islarger than MPI _Ai nt , it isnot possibleto create a"large” derived datatype of type hindexed, hvector, or struct to describe
the datalayout in a"large” file.

Most applications, however, should still be able to access large files either by using smaller derived datatypesto "tile" thefile
(since thefile view is defined in terms of atiling) or by not using derived datatypes at al. The rea solution is that the MPI
Forum must change the bindings of the datatype constructorsto use MPI _ O f set instead of MPI _Ai nt .

C5—
Useof MPI I nf o_Set

One vendor has interpreted the MPI-2 Standard as restricting the valid keysin MPl _I nf o_set to those defined by the

vendor. Unrecognized keys are ignored. The advantage of this approach is that it alows the user to determine from within a
program which info keys the implementation supports. The disadvantage with thisinterpretation isthat MPl _| nf o cannot be

used to hold key/value pairs for other parts of the code, including layered software. For example, alibrary might use the MPI
profiling interface to provide areplacement for MPI _Fi | e_set vi ewthat looked at theinfo value for akey profil i ng:

trace-fil e-vi ews beforecaling PMPI _Fi | e_set _vi ew. With the interpretation that only keys defined by the MPI
implementation may be set with MPI _I nf o_set , info cannot be used by layered software.

C.6—
Valuesfor C++ Versionsof MPI Constants

The MPI Forum, in an attempt to provide amore "C++ flavor” to the C++ bindings, defined versions of the MPI constants,
suchas MPlI _SEEK SET, as part of the MPI namespace: MPI : : SEEK _SET. This seemed like agood idea at the time, but it

has a serious problem. In C++, preprocessor definitions are independent of namespaces. Even if amodule carefully uses
namespaces, another include file can use #def i ne to redefine aname. For example, SEEK_SET is defined in the header file

<st di 0. h>. Thismeansthat MPI : : SEEK SET cannot be used in a program that has

Page 359

included <st di 0. h>, unless the application has been careful to #undef SEEK_ SET before trying to use MPI : :
SEEK_SET.

At the time this book was being written, the MPI Forum was still discussing how to work around this problem. Fundamentally,
the problem is that the C++ preprocessor ignores namespaces, so areal fix would require a change to C++ (or to all C and C++
header files), not MPI. That isn't going to happen, so the MPI Forum will need to select an alternative that isless likely to cause
problems, such as using mixed case (e.g., Seek_set) or lower case for the MPI C++ constants. To find out how thisis

resolved, check the errata page at http://www.mpi-forum.org.

C.7—
Lack of Ordering for RMA

As mentioned before in Section 6.5, al the RMA operations are nonblocking and unordered. That is, even between a pair of
processes, RMA operations heed not complete in the order in which they were issued.

http://www.mpi-forum.org/

C.8—
Thread Scoping Not Communicator Based

The components of truly modular software should be able to operate correctly independent of the other componentsin an
application. In particular, it shouldn't be necessary for MPI _I ni t _t hr ead to set the limits of thread availability; this could

be done on a communicator-by-communicator basis, particularly since MPI uses communicators to separate all other operations
(for example, messages on different communicators are noninterfering).

Nonetheless, in thisarea, MPI is still ahead of many other systems. For example, in one vendor's thread implementation, two
libraries are provided: one with working mutual-exclusion routines and one where the mutual exclusion routines are provided,
but as no-ops. That is, amultithreaded program can call the mutual-exclusion routines, but they won't actually provide for
mutual exclusion. To make matters worse, the broken library is the one that the user will get by default (that is, without using
specia options). There is no easy and efficient way for an application to discover at run time whether the user has correctly
linked with the working versions of mutual exclusion. At least in the MPI case, MPl _Query_t hr ead will tell alibrary

routine what level of thread support is present.

Page 360

C.9—
Confusion Caused by MPI Routine Names

In addition to routines that we have already mentioned (such asMPl _W n_1 ock) , there are two sets of routines whose names
frequently mislead MPI users. These are the "immediate” routines, for example, MPl _I send, and the "test" routines, for
example, MPl _Test .

The word "immediate,” when applied to an MPI routine name for the"1" in names suchasMPl _| send and MPI _I r ecv,

does not mean that the operation is"immediate” in the sense of "takes no time." Rather, it means that the operation is
nonblocking, and the completion of the routine isindependent of any other process. But the routine could still take a significant
amount of time.

For example, consider an MPI _| send with amodest_sized message to send. If the MPI implementation is sure that the

message can be delivered to the destination without requiring the destination process to take any action, perhaps because the
MPI implementation is keeping careful track of available buffer space, then the MPI _I send might not return until the

message has been delivered.

The other misleading nameis "test." In MPI, "test" really means "test and complete if possible.” Asaresult, atest operation
suchasMPI _Test can also take a significant amount of time. For example, consider the MPl _| send case again, but this

time the message istoo large to be delivered until the destination process sends an ok-to-send message. If acall to MPl _Test
on the request for that send occurs after the ok-to-send is received, the MPl _Test may not return until the message has been
delivered. This can take a significant amount of time; the MPI _Test call isonly nonblocking, not instantaneous.

Page 361

D—
Standardizing External Startup with mpiexec

MPI-1 said nothing about how MPI programs were started. Hence, although MPI programs themsel ves were portable, scripts
that invoked MPI programs were not. Several implementations used the name npi r un for a script or program that started MPI

applications. This, however, only made things worse, because their arguments were not compatible, and users encountered the
problem of accidentally trying to launch an application linked with one MPI implementation with the npi r un of another

implementation. The MPI Forum responded with a standard definition for alaunching command called npi exec, first

introduced in Chapter 2 of this book. This feature is not required of an MPI implementation in order for the implementation to
claim conformance with the Standard, but if such acommand exists it is expected to take the form defined by the Standard.
Therefore, scriptsthat use nmpi exec can be portable at |east among those MPI implementations that implement it. The syntax

of npi exec isshown in Table D.1. Let us consider the example program pmandel for parallel Mandelbrot calculation and

display that is described in Chapter 5 of Using MPI [32] and distributed with MPICH. The simplest way to start pmandel,
assuming that we wish to run it with ten processes altogether, is

npi exec -n 10 pnandel

It is aso possible to pass command-line arguments to the program as follows:

npi exec -n 10 pnandel -i cool.points -1 oop

or

npi exec -n 10 pnandel -rmn -2 -rnmax 2 -imn -2 -imax 2 +zoom

Note that MPI does not guarantee that command-line arguments will be propagated to all processes, although some
implementations do provide this service. The most portable way to propagate command-line argumentsis for process 0 to use
MPI _Bcast to forward them to the other processes.

TableD.1
Optionsfor npi exec

npi exec -n <nunprocs> -soft <exp> -host <nane> -arch <nane>
-wdi r <di rnane> -path <pathnane> -file <fil enanme>
prognane <program args>

Page 362

The other possible argumentsto nmpi exec (before the program name) are optional, both for users and for implementers,

although if an implementation recognizes them, they must have the meanings specified in the Standard. Some of the arguments
can be thought of as part of an interface to ajob scheduler that allocates resources. We can specify that al processes be run on
a specific machine, for example bi g- i r on, with

npi exec -n 10 -host big-iron pmandel

If we don't care which host or hosts the program runs on but need to request a given computer architecture or operating system
(because the program was compiled for that environment), we can specify something like

npi exec -n 10 -arch sparc-solaris pmandel
and expect mpi exec to perform such scheduling as necessary to find us ten Solaris workstations to run on.

Perhaps our application can usefully be run on various numbers of processes, depending on what is available. For example,
suppose that we wish to run prmandel on any number of processes up to ten. Since the pmandel application requires at least

two processes for its master-slave a gorithm, we need at least two processes, but we are willing to accept any number up to the
maximum of ten. We would use

npi exec -n 10 -soft 2:10 pnmandel
The- sof t argument can be followed by severa types of expression. For example,

npi exec -n 1000 -soft 2:1000: 2 pnmandel

specifies an even number of processes (the third number is the stride, with a default value of one when the third valueis
omitted), and

npi exec -n 1024 -soft 2,4, 8,16, 32, 64, 128, 256, 512, 1024 pmandel
specifies a power of two as the number of processes, as some algorithms require.

Two other arguments are directed at the process manager rather than the job scheduler. The - pat h argument tells the process
manager where to look for the executable to run, and - wdi r tells the process manager to set the new process's working
directory. Thisis particularly important if the program is going to perform file I/O. Thus

1 Even specifying the number of processesis optional; it may be taken from an environment variable, or default to one, or be
defined in any other way by the implementation.

Page 363

npi exec -n 10 -path /hone/ nme/ npi ch/ exanpl es \
-wdi r /home/ me/l ogfil es prmandel

tells mpiexec to look for pmandel in/ hore/ nme/ npi ch/ exanpl es and make/ hone/ e/ | ogfi | es itsworking
directory while running, presumably becauseit is going to write some logfiles.

Finally, thereisa"catchall* argument, - f i | e, to provide any further capabilities the implementation wishes to offer that are
not covered by these arguments, such as memory requirements to be given to the job scheduler. The - f i | e argument specifies
afile name that contains information for mpi exec that is specific to each particular implementation of MPI. For example, if

we say

npi exec -n prmandel -file hosts pnmandel

for MPICH, then mpiexec will look in file'host s' for alist of machinesto run on.

D.1—
Starting Multiple Executables with nmpi exec

The nmpi exec command, as described above, starts the same executable on some number of hosts, with each having the same

working directory. Only one set of program arguments can be specified. Since MPI programs need not be SPMD (that is,
different processes can be executing different programs), we need a way to start multiple executables. Thisis also necessary
when different processes are executing on different architectures (MPI programs can be heterogeneous). Even if we wish to
start all processes with same program, we may want to pass them different arguments. One form of npi exec for these cases

uses colons to separate sets of arguments. Thus

npi exec -n 5 ocean : -n 10 atnos
starts five copies of ocean and ten of at nos, and
npi exec fasta infilel : fasta infile2 : fasta infile3
starts three processes running f ast a, each with a different first argument. Finally,
npi exec -configfile nyfile

causes npi exec tolook in' myfil e' forthe command lines. For example, ' myfil e’ might contain

Page 364

-n 5 -arch solaris-i 86 ocean
-n 10 -arch irix-02 atnos

Thisis needed if the parameters to the commands include colons.

D.2—
Another Way for MPI Processesto Start

Sometimes an application may not know until run time that it should be paralel at all. However, it may be difficult, if not
impossible, to start MPI processes with npi exec. For example, another application may be responsible for deciding whether

this application should "become paralel.” For such cases, the MPI-2 Standard recommends (but does not mandate) that any
process, no matter how it is started, be able to become an MPI process (with an MPI _ COVM _WORL D consisting only of itself)

by smply calling MPI _I ni t . Then it could use the functions described in Chapter 7 to create or attach to other MPI
processes. This capability is called singleton MPI_Init in the Standard (see Section 3.5.2 in [27] and 5.5.2 in [58]).

Why is this feature not a strict requirement in the MPI Standard? The Forum considered that it would be too great arestriction
on implementers to require it. Most MPI-1 implementations require some sort of MPI "environment” to exist before even the
first process is started. For example, there may need to be a daemon running on each host where MPI processes are to run. In
this case, when a process not started by the daemon callsMPI _I ni t , it isallowed to fail, but the Standard encourages that

MPI _I nit itself start the daemon if possible and otherwise set up the MPI environment. This method may be much slower
that starting MPI programs with either npi exec or MPI _Conmm_spawn.

Page 365

References

[1] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. Fortran 95 Handbook.
MIT Press, Cambridge, MA, 1997.

[2] F. Andre, D. Herman, and J.-P. Verjus. Synchronization of Parallel Programs. Scientific Computing Series. MIT Press,
Cambridge, MA, 1985.

[3] Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and Barry F. Smith. PET Sc home page. http://www.mcs.anl.gov/
petsc, 1999.

[4] Sandra Johnson Baylor and C. Eric Wu. Parallel 1/0 workload characteristics using Vesta. In R. Jain, J. Werth, and J.
Browne, editors, Input/Output in Parallel and Distributed Computer Systems, chapter 7, pages 167-185. Kluwer Academic
Publishers, 1996.

[5] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evaluation of primitives for parallel 1/0. In
Proceedings of Supercomputing '93, pages 452—461. |EEE Computer Society Press, November 1993.

[6] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Overbeek, James Patterson, and Rick
Stevens. Portable Programs for Parallel Processors. Holt, Rinehart, and Winston, New York, NY, 1987.

[7] Greg Burns, Rgja Daoud, and James Vaigl. LAM: An open cluster environment for MPI. In John W. Ross, editor,
Proceedings of Supercomputing Symposium '94, pages 379-386. University of Toronto, 1994.

[8] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel programming system. Parallel Computing,
20:547-564, April 1994.

[9] Kenneth Cameron, Lyndon J. Clarke, A. Gordon Smith, and Klaas Jan Wierenga. Using MPI on the Cray T3D. Edinburgh
Parallel Computing Centre, June 1997. http://www.epcc.ed.ac.uk/t3dmpi/Product/Docs/user/ug-plain.html.

[10] Pei Can, Edward Felten, AnnaKarlin, and Kai Li. Implementation and performance of integrated application-controlled
file caching, prefetching, and disk scheduling. ACM Transactions on Computer Systems, 14(4):311-343, November 1996.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.epcc.ed.ac.uk/t3dmpi/Product/Docs/user/ug-plain.html

[11] Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Geoffrey Fox. MPI for Java: Position document and
draft API specification. Technical Report JGF-TR-03, Java Grande Forum, November 1998. http://www.npac.syr.edu/projects/

perc/reports/ MPI posi ti on/ posi tion. ps.

[12] Jaeyoung Choi, Jack J. Dongarra, and David W. Walker. Parallel matrix transpose algorithms on distributed memory
concurrent computers. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable Parallel Libraries
Conference, pages 245-252. |EEE Computer Society Press, October 1993.

[13] Alok Choudhary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy, Tarvinder Singh, and Rajeev
Thakur. PASSION: Parallel and scalable software for input-output. Technical Report SCCS-636, NPAC, Syracuse University,
September 1994. Also available as CRPC Technical Report CRPC-TR94483-S.

[14] IMPI Steering Committee. IMPI - interoperable message-passing interface, 1998. http://impi.nist.gov/IMPI/.

[15] Peter Corbett, Dror Feitelson, Y arson Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill Nitzberg, Bernard Traversat,
and Parkson Wong. MPI-10: A paralél /O interface for MPI, version 0.2. Technical Report IBM Research Report RC 19841
(87784), IBM T. J. Watson Research Center, November 1994,

Page 366

[16] Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. ACM Transactions on Computer Systems, 14
(3):225-264, August 1996.

[17] PhyllisE. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. Input-output characteristics of scalable parallel
applications. In Proceedings of Supercomputing '95. ACM Press, December 1995.

[18] Cray Research. Application Programmer's Library Reference Manual, 2nd edition, November 1995. Publication SR-2165.

[19] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel 1/0 via a two-phase run-time
access strategy. In Proceedings of the Workshop on I/O in Parallel Computer Systems at |PPS'93, pages 5670, April 1993.
Also published in Computer Architecture News, 21(5):31-38, December 1993.

[20] Juan Miguel del Rosario and Alok Choudhary. High performance 1/0O for parallel computers: Problems and prospects.
Computer, 27(3):59-68, March 1994.

[21] Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, and Y arson Hsu. Paralel 1/0 subsystemsin massively parallel
supercomputers. |EEE Parallel and Distributed Technology, 3(3):33—47, Fall 1995.

[22] Samuel A. Fineberg, Parkson Wong, Bill Nitzberg, and Chris Kuszmaul. PMPIO—a portable implementation of MPI-10.
In Proceedings of the Sxth Symposium on the Frontiers of Massively Parallel Computation, pages 188-195. |EEE Computer
Society Press, October 1996.

[23] Open Software Foundation. Introduction to OS-/DCE. Prentice Hall, Englewood Cliffs, NJ, 1992.

[24] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy Sunderam. PVM: Parallel Virtual
Machine—A User's Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, MA, 1994.

[25] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. Proceedings of the 17th Annual International
Symposium on Computer Architecture, published in ACM SIGARCH, 18(2):15-26, May 1990.

[26] Garth A. Gibson, Daniel Stodolsky, Pay W. Chang, William V. Courtright |1, Chris G. Demetriou, Eka Ginting, Mark
Holland, Qingming Ma, LeAnn Neal, R. Hugo Patterson, Jiawen Su, Rachad Y oussef, and Jim Zelenka. The Scotch parallel
storage systems. In Proceedings of 40th IEEE Computer Society International Conference (COMPCON 95), pages 403—410.
|EEE Computer Society Press, Spring 1995.

[27] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir.
MPI—The Complete Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

[28] William Gropp and Ewing Lusk. Scalable Unix tools on parallel processors. In Proceedings of the Scalable High-
Performance Computing Conference, pages 56—62. |EEE Computer Society Press, 1994.

http://www.npac.syr.edu/projects/pcrc/reports/
http://www.npac.syr.edu/projects/pcrc/reports/
http://impi.nist.gov/IMPI/

[29] William Gropp and Ewing Lusk. Dynamic process management in an MPI setting. In Proceedings of the Seventh IEEE
Symposium on Parallel and Distributed Processing, October 25-28, 1995, San Antonio, Texas, pages 530-534. |IEEE
Computer Society Press, 1995.

Page 367

[30] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the
MPI Message-Passing Interface standard. Parallel Computing, 22(6):789-828, 1996.

[31] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message
Passing Interface. MIT Press, Cambridge, MA, 1994.

[32] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message
Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

[33] William Gropp, Ewing Lusk, and Debbie Swider. Improving the performance of MPI derived datatypes. In Anthony
Skjellum, Purushotham V. Bangalore, and Y oginder S. Dandass, editors, Proceedings of the Third MPI Developer's and User's
Conference, pages 25-30. MPI Software Technology Press, 1999.

[34] William D. Gropp. Users Manual for bfort: Producing Fortran Interfaces to C Source Code. Mathematics and Computer
Science Division, Argonne National Laboratory, March 1995. Technical report ANL/MCS-TM 208.

[35] R. J. Harrison. Portable tools and applications for parallel computers. Intern. J. Quantum Chem., 40(847), 1991.

[36] Rolf Hempel and David W. Walker. The emergence of the MPI message passing standard for parallel computing.
Computer Standards and Interfaces, 21:51-62, 1999.

[37] Maurice P. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124—
149, January 1991.

[38] VirginiaHerrarte and Ewing Lusk. Studying parallel program behavior with upshot . Technical Report ANL-91/15,
Argonne National Laboratory, 1991.

[39] J. M. D. Hill, B. McCaoll, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. H.
Bisseling. BSPlib: The BSP programming library. Parallel Computing, 24(14):1947-1980, December 1998.

[40] C. A. R. Hoare. Monitors. An operating system structuring concept. Comunications of the ACM, pages 549-557, October
1974.

[41] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S. Blumenthal. PPFS: A high
performance portable parallel file system. In Proceedings of the 9th ACM International Conference on Supercomputing, pages
385-394. ACM Press, July 1995.

[42] IEEE/ANSI Std. 1003.1. Portable operating system interface (POSIX)—part 1: System application program interface (API)
[C language], 1996 edition.

[43] Ravi Jain, John Werth, and James C. Browne, editors. Input/Output in Parallel and Distributed Computer Systems,
volume 362 of The Kluwer International Seriesin Engineering and Computer Science. Kluwer Academic Publishers, 1996.

[44] Jave Grande Forum. http://www.javagrande.org.

[45] Terry Jones, Richard Mark, Jeanne Martin, John May, Elsie Pierce, and Linda Stanberry. An MPI-10 interface to HPSS. In
Proceedings of the Fifth NASA Goddard Conference on Mass Storage Systems, pages |:37-50, September 1996. Also available
from http://esdis-it.gsfc.nasa.gov/M SST/conf1998.html.

http://www.javagrande.org/
http://esdis-it.gsfc.nasa.gov/MSST/conf1998.html

Page 368

[46] Edward Karrels and Ewing Lusk. Performance analysis of MPI programs. In Jack Dongarra and Bernard Tourancheau,
editors, Proceedings of the Workshop on Environments and Tools For Parallel Scientific Computing, pages 195-200. SIAM
Publications, 1994.

[47] CharlesH. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and Mary E. Zosel. The High Performance
Fortran Handbook. MIT Press, Cambridge, MA, 1993.

[48] David Kotz. Disk-directed 1/O for MIMD multiprocessors. ACM Transactions on Computer Systems, 15(1):41-74,
February 1997.

[49] David Kotz and Ravi Jain. I/O in parallel and distributed systems. In Allen Kent and James G. Williams, editors,
Encyclopedia of Computer Science and Technology, volume 40. Marcel Dekker, Inc., 1999.

[50] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. |IEEE
Transactions on Computers, C-28(9):690-691, September 1979.

[51] David MacKenzie and Ben Elliston. Autoconf: Creating Automatic Configuration Scripts. GNU, 2.1.3 edition, December
1998. http://sourceware.cygnus.com/autoconf/autoconf _toc.html.

[52] TaraM. Madhyasthaand Daniel A. Reed. Exploiting global input/output access pattern classification. In Proceedings of
SC97: High Performance Networking and Computing. ACM Press, November 1997.

[53] Andrea Malagoli. Personal communication, 1996.

[54] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS-005-91, Columbia University,
1991.

[55] John May. Parallel Print Function. http://www.lInl.gov/sccd/Ic/ptcprint.

[56] Message Passing Interface Forum. MPI: A message-passing interface standard. http://www.mpi-forum.org.

[57] Message Passing Interface Forum. MPI-2 Journal of Development, 1997. http://www.mpi-forum.org/docs/mpi-20-jod.ps.Z.

[58] Message Passing Interface Forum. MPI2: A message passing interface standard. International Journal of High
Performance Computing Applications, 12(1-2):1-299, 1998.

[59] Message Passing Interface Forum. MPI-2: Extensions to the message-passing interface, July 1997. http://www.mpi-forum.
org/docs/mpi 2-report.html.

[60] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing (PODC '96), pages
267-275. ACM, May 1996.

[61] MPI/RT Forum. http://www.mpirt.org.

[62] J. Nieplochaand R. J. Harrison. Shared memory programming in metacomputing environments. The Global Array
approach. The Journal of Supercomputing, 11(2):119-136, October 1997.

[63] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays. A portable "shared-memory" programming model for
distributed memory computers. In Proceedings, Supercomputing '94: Washington, DC, November 14-18, 1994,
Supercomputing, pages 340-349. IEEE Computer Society Press, 1994.

http://sourceware.cygnus.com/autoconf/autoconf_toc.html
http://www.llnl.gov/sccd/lc/ptcprint
http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/mpi-20-jod.ps.Z
http://www.mpi-forum.org/docs/mpi2-report.html
http://www.mpi-forum.org/docs/mpi2-report.html
http://www.mpirt.org/

Page 369
[64] Nils Nieuwejaar and David Kotz. The Galley parallel file system. Parallel Computing, 23(4):447-476, June 1997.

[65] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis, and Michael Best. File-access characteristics of
parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems, 7(10):1075-1089, October 1996.

[66] MPI-2 C++ bindings, 1999. http://www.mpi.nd.edu/research/mpi2c++.

[67] OpenMP Fortran Application Program Interface, Version 1.0. http://www.openmp.org, October 1997.

[68] OpenMP C and C++ Application Program Interface, Version 1.0. http://www.openmp.org, October 1998.

[69] R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. Informed prefetching and caching.
In Proceedings of the 15th Symposium on Operating System Principles, pages 79-95. ACM Press, December 1995.

[70] POV-RAY home page. http://www.povray.org.

[71] Jean-Pierre Prost, Marc Snir, Peter Corbett, and Dror Feitelson. MPI-10, a message-passing interface for concurrent 1/O.
Technical Report RC 19712 (87394), IBM T.J. Watson Research Center, August 1994.

[72] Real-Time Message Passing Interface (MPI/RT) Forum. Document for the real-time M essage Passing Interface (MPI/RT-
1.0) draft standard. http://www.mpirt.org/drafts.html, June 1999.

[73] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Windlett. Server-directed collective I/O in Panda. In Proceedings of
Supercomputing '95. ACM Press, December 1995.

[74] Kent E. Seamons. Panda: Fast Access to Persistent Arrays Using High Level Interfaces and Server Directed | nput/Output.
PhD thesis, University of Illinois at Urbana-Champaign, May 1996.

[75] Gautam Shah, Jarek Nieplocha, Jamshed Mirza, Chulho Kim, Robert Harrison, Rama K. Govindargju, Kevin Gildea, Paul
DiNicola, and Carl Bender. Performance and experience with LAPI—a new high-performance communication library for the
IBM RS/6000 SP. In Proceedings of the 1st Merged International Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing (IPPSSPDP-98), pages 260-266. | EEE Computer Society, March 30-April 3 1998.

[76] D. B. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and answers about BSP. Technical Report PRG-TR-
15-96, Oxford University Computing Laboratory, 1996.

[77] E. Smirni and D. A. Reed. Lessons from characterizing the input/output behavior of parallel scientific applications.
Performance Evaluation: An International Journal, 33(1):27—44, June 1998.

[78] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, and Daniel A. Reed. I/O requirements of scientific applications. An
evolutionary view. In Proceedings of the Fifth |EEE International Symposium on High Performance Distributed Computing,
pages 49-59. IEEE Computer Society Press, 1996.

Page 370

[79] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. MPI—The Complete Reference:
Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 1998.

[80] Jeffrey M. Squyres, Brian C. McCandless, and Andrew Lumsdaine. Object oriented MPI: A classlibrary for the message
passing interface. In Parallel Object-Oriented Methods and Applications (POOMA '96), Santa Fe, 1996.

[81] W. Richard Stevens. Unix Network Programming: Networking APIs. Sockets and XTI, volume 1. Prentice Hall,
Englewood Cliffs, NJ, 2nd edition, 1998.

[82] Rajeev Thakur and Alok Choudhary. An extended two-phase method for accessing sections of out-of-core arrays.
Scientific Programming, 5(4):301-317, Winter 1996.

[83] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivaramakrishna Kuditipudi. Passion: Optimized
I/O for paralel applications. Computer, 29(6):70-78, June 1996.

http://www.mpi.nd.edu/research/mpi2c++
http://www.openmp.org/
http://www.openmp.org/
http://www.povray.org/
http://www.mpirt.org/drafts.html

[84] Rajeev Thakur, William Gropp, and Ewing Lusk. An abstract-device interface for implementing portable parallel-1/0
interfaces. In Proceedings of the 6th Symposium on the Frontiers of Massively Parallel Computation, pages 180-187. IEEE
Computer Society Press, October 1996.

[85] Rajeev Thakur, William Gropp, and Ewing Lusk. An experimental evaluation of the parallel 1/0 systems of the IBM SP
and Intel Paragon using a production application. In Proceedings of the 3rd International Conference of the Austrian Center for
Parallel Computation (ACPC) with Special Emphasis on Parallel Databases and Parallel 1/0, pages 24-35. Lecture Notesin
Computer Science 1127. Springer-Verlag, September 1996.

[86] Rajeev Thakur, William Gropp, and Ewing Lusk. A case for using MPI's derived datatypes to improve /O performance.
In Proceedings of SC98: High Performance Networking and Computing, November 1998.

[87] Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective 1/0 in ROMIO. In Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel Computation, pages 182—-189. |EEE Computer Society Press, February 1999.

[88] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-10 portably and with high performance. In
Proceedings of the 6th Workshop on 1/0 in Parallel and Distributed Systems, pages 23—-32. ACM Press, May 1999.

[89] Rajeev Thakur, Ewing Lusk, and William Gropp. Users guide for ROMIO: A high-performance, portable MPI-10
implementation. Technical Report ANL/MCS-TM-234, Mathematics and Computer Science Division, Argonne National
Laboratory, Revised July 1998.

[90] The MPI-IO Committee. MPI-1O: A pardlel file1/O interface for MPI, version 0.5, April 1996. http://parallel.nas.nasa.
gov/MPI-IO.

[91] Richard Treumann. Experiencesin the implementation of a thread safe, threads based MPI for the IBM RS/6000 SP, 1998.
http://www.research.ibm.com/actc/ToolsyMPI_Threads.htm.

[92] L. G. Valiant. A bridging model for parallel computations. Communications of the ACM, 33(8):103-111, August 1990.

Page 371

[93] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the Fourteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 214-222, Ottawa, Ontario, Canada, August 1995.

[94] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. MIT Press, Cambridge, MA, 1997.

[95] VI Architecture. http://www.viarch.org.

[96] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels and. U-Net: A user-level network interface for
parallel and distributed computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP),
pages 40-53. ACM Press, December 1995.

Page 373

Subject Index

A

accept, 251

access epoch, 181, 196, 229
MPI _W n_| ock, 197

access_styl e, 48

accumulate, 30, 31, 35

http://parallel.nas.nasa.gov/MPI-IO
http://parallel.nas.nasa.gov/MPI-IO
http://www.research.ibm.com/actc/Tools/MPI_Threads.htm
http://www.viarch.org/

active target, 181, 228

alignment

data, 176

APl, 3

arrays
accessing from files, 67
distributed, 67

ASCI, 3

assert
MPI _Wn_fence, 177
MPlI _W n_I| ock, 192
MPlI _W n_post, 231
MPI _Wn_start, 231

ASTRO3D, 112

atomic mode, 92

atomic operations, 171

atomic update, 128

attribute
predefined, 188
window, 188

attribute caching, 292

aut oconf, 219

B

basic Fortran support, 21
basic I/0O functions, 54
Beowulf, 38, 302

bi nd, 251

block distribution, 69
block-cyclic distribution, 69
BSP, 133

bulk synchronous parallel, 133

C
C++ bindings
implementation of, 302
C++ constants, 358
C++ example, 24, 83, 166
cache coherence, 171
cacheline, 175
cancel fn, 285
cb_buffer_size, 86
cb_nodes, 86
child process, 37
children, 37
client, 246, 247
CM-5, 133
CMMD, 133
COBOL, 304
coherence, 169
coherence conflict
example, 169
coherent memory, 171
collective /0O, 64, 67, 81, 104
Compag, 301
compiler optimizations, 173
configure, 219
connect , 253
consistency semantics, 89
constants
in C++, 358
cp, 97
Cray pointers, 185

Cray shmem library, 2

Cray T3D, 2, 133
critical section, 197
cyclic distribution, 69
cyclic(k) distribution, 69
D
darray, 68
darray datatype constructor, 68
data alignment, 176
data movement, 142
data parallel, 149
data representation, 20, 97
conversion functions, 273
ext ernal 32,97
i nternal, 97
nati ve, 20, 97
user-defined, 100, 273
datasieving, 104
effect of varying buffer size, 107
data transfer
cooperative, 135
datatype constructor
darray, 68
subarray, 72
datatype decoding, 277
datatype flattening, 292

datatypes

performance with, 160
decoding datatypes, 277
default error handler, 297
deferred synchronization, 126

derived datatypes

MPI _OF f set argument needed, 357

determinism, 259
dining philosophers, 194
direct _read, 86

direct_ wite, 86

displacement, 61
displacement unit, 32, 146
distributed arrays, 68
distributed list example
dynamic, 220
static, 216
distributed mesh, 150
distribution
block, 69
block-cyclic, 69
cyclic, 69
cyclic(k), 69
irregular, 78

dtype_file_extent _fn,273

dynamic process management, 7, 36, 233

design, 258
error classes, 297
performance, 259

scalability, 259

E

Edinburgh Parallel Computing Center, 302

end of file, 24

epoch

access, 181, 229

exposure, 229

Page 374

error classes
dynamic process management, 297
1/0, 297, 299
info functions, 297
MPI-2, 300
MPI-2 miscellaneous, 297
RMA, 297, 299
error codes and classes
adding new, 285
error handler
default, 297
error handlers, 295
for conversion, 357
error handling, 295
C++, 298
etype, 20, 61
explicit offsets, 55
passing in Fortran, 57
explicit-offset functions, 55
exposure epoch, 229
extended Fortran support, 21

externa interface functions

adding error codes and classes, 285
datatype decoding, 277
definition, 275
generalized requests, 279
external interfaces, 8

ext er nal 32 datarepresentation, 97
F
FAQ, 355

fcntl, 253

fence, 31

astoggle, 149
fetch and add, 194
file

displacement, 61

etype, 20, 61
filetype, 20, 61
view, 20

file, 40

file handle, 52

file interoperability, 95
file name
format of, 52
file pointer, 54
individual, 54
shared, 29, 83
file systems, 51
GFS, 51
HFS, 51
paralel, 51
PIOFS, 51
SFS, 51
XFS, 51
fileview, 60
file-system commands, 97
filetype, 20, 61
Fi ndEl m
with RMA, 221, 226
with shared memory, 217
flattening datatypes, 292

fork, 212

Fortran 2000, 129
Fortran 90, 21
Fortran 95, 7
Fortran support
basic, 21
extended, 21

Fortran wrappers

implementation of, 290
free fn,285

Fujitsu, 301

Page 375

G

ga_acc, 195

ga_create, 190

ga free, 191

ga_put, 193

ga_read_inc,211

generalized requests, 279, 283
callback functions, 284

get, 30, 31, 137

ghost area, 74

ghost cell update, 150

ghost cells, 150

ghost point, 119, 150, 228

global array subset, 186

Global Arrayslibrary, 186

GPFS, 51

H

handle conversion, 290
header in file

placement, 116

reading of, 116
heterogeneous

RMA, 147
HFS, 51

High Performance Fortran, 69
hints, 47, 85

history of MPI, 1

host , 48

HP, 301

HPSS, 302

hr ecv, 268

/0

access levels, 101

achieving high performance, 101
advantage of MPI over Unix, 60, 64
archive on the Web, 118
astrophysics example, 112
atomic mode, 92

collective, 64, 67, 81, 104
consistency semantics, 89
contiguous accesses, 52

error classes, 297

header infile, 116

independent, 66

nonatomic mode, 92
nonblocking, 81

noncontiguous accesses, 60
parallel, 12, 51

sequence, 92

split collective, 81

toasinglefile, 19
to separate files, 16
write sequence, 92
[/O functions
basic, 54
IBM, 301
IBM SP, 1, 133
IMPI, 304

implementations of MPI

free, 302

portable, 302

vendor, 301
ind _rd _buffer_size, 86
i nd_w _buffer_size, 86,107
independent 1/0O, 66
individual file pointer, 54
individual-file-pointer functions, 55
info, 18, 47, 52, 85

RMA, 142

info functions
error classes, 297

InsertEl m

with RMA, 227

with shared memory, 222
Intel NX, 268
Intel Paragon, 1
intercommunicator, 37, 234
i nt er nal datarepresentation, 97
interoperability, 304
interrupt-driven receive, 268

intracommunicator, 37, 234

IPITCP, 133

irregular distribution, 78

J
Java, 304
K
kernel thread, 263
keyval, 201
L
LAM, 2
language interoperability, 8, 249, 289
LAPI, 133
latency, 262
latency tolerance, 262
Lawrence Livermore National Laboratory, 302
library
configuring, 219

linearized array, 68

listen, 251

load, 169

local group, 234

local store, 148

local window, 140, 141

lock, 130
definition, 181
nonblocking, 197
unfortunate name, 182

l's, 97

M

main thread, 265

Page 376

map array, 78
massively parallel processors (MPPs), 1
matrix-vector multiplication, 235
sparse matrix, 150
memory allocation, 184
memory coherence, 169
memory map, 212
memory page, 175
memory window, 136, 139, 140
mesh communication
Upshot graphs, 125, 127
message passing
vs. RMA, 137
message-passing model, 1
MIMD, 235
mixed-language programming, 289
mixed-model programming, 269
mmap, 212
monitors, 263, 303
MPE, 197
MPI

resources on the Web, 355
MPI and OpenMP, 271
MPI Forum, 2
MPI history, 1
MPI implementations, 355
free, 302
portable, 302
vendor, 301
MPI-1.0, 4

MPI-1.1, 4

MPI-1.2, 4

MPI-2 Forum, 3, 4

MPI-3, 302

MPI-10, 5, 51

MPI/RT, 304

MPI File iwite
implementation of, 280

MPICH, 2

npi exec, 11, 361

npi run, 11, 361

multiple instruction multiple data, 235

multithreading, 4

mutex, 187, 208, 210

mutual exclusion, 187, 210

mv, 97

N

name service, 255

NASA Ames Research Center, 302
nat i ve datarepresentation, 20, 97
NEC, 301

nested alignment, 176

network of workstations, 1

NFS, 38

no_|I ocks, 175, 232

nonatomic mode, 92

nonblocking collective operation, 268
nonblocking 1/0, 81

nonblocking lock, 197

nonuniform memory access, 3, 269
NUMA, 3, 269

NXTVAL, 194

with RMA (nonscalable), 200
with RMA (scalable), 204

with threads, 266

O

one-sided, 136

one-sided communication, 133
one-sided operations, 6, 29
OpenMP, 4, 263

OpenMP and MPI, 271

origin address, 143

P

p4, 1
PALLAS, 301

parallel computers, 1
parallel file systems, 51
parallel 1/0, 12, 51
Parallel 1/0 Archive, 118
parent, 37
parent process, 37
passive target, 181
pat h, 48
peer to peer, 246
performance visualization, 106, 125, 127
PETSc, 3
pi

calculation of, 30
PIOFS, 51
pipeline parallelism, 39

pipelining, 38

PLAPACK, 3

PMPIO, 302

pol | , 253

port, 247

port name publishing, 254

portability, 258
datatypes for, 98
space, 301
time, 301

POV-Ray, 253

predefined attribute, 188

process startup, 11

processor consistency, 130

pt hr ead_cr eat e, 267, 283

Pthreads, 263
publishing port name, 254
put, 30, 33, 137

PVM, 1, 37

Q
query_fn, 284

R
race condition, 215
read-modify-write, 128
read conv_fn, 273
read_once, 48
red-time MPI, 304
receive

interrupt-driven, 268
remote group, 234

remote memory access, 29

Page 377

remote memory operations, 6
introduction, 133
more needed?, 303
vs. shared-memory model, 134
remote process, 135
rm97
RMA, 29
error classes, 297
examples, 150
ghost cell updates, 150
heterogeneous, 147
rules, 171
steps, 135
VS. message passing, 136
RMA access epoch, 33
ROMIO, 86, 302
collective I/O, 104
datasieving, 104
files, 97
hints, 86
optimizations, 104
performance results, 105
Upshot graphs, 106
S
Scal APACK, 3
SEEK_SET, 358
sel ect, 253
self-scheduling, 235
senop, 215
sequence, 92

sequenti al , 48

sequential consistency, 130
sequential 1/0O, 13
server, 246
service name, 255
SFS, 51
SGl, 301
SGI/Cray T3E, 133
shared file pointer, 29, 83
shared memory, 119

compared to RMA, 212
shared-file-pointer functions, 83
shmat , 212
shmem, 2, 133, 142
shnyet , 212
single program multiple data, 235
singleton MPl | ni t, 364
SMP, 3
socket , 251

sockets
comparison with MPI, 251
connecting processes, 251
sof t, 243
sparse matrix, 150
spawn
soft, 243
spawning processes, 37
with multiple command lines, 245
with multiple executables, 245
split collective 1/0, 81
SPMD, 235, 363

start i odevi ce, 86

startup

command for, 361

with multiple executables, 363
st di o. h, 358
store, 169
striping_factor,86
striping_unit, 85, 86
subarray, 68
subarray datatype constructor, 72
Sun Microsystems, 301
symmetric multiprocessing, 262, 269

synchronization

Page 378

deferred, 126
in message passing, 119
scalable, 231

SY SV shared memory, 212

-
target displacement, 154
TCGMSG, 1
TCP/IP, 133
Thinking Machines CM-5, 1, 133
thread

main, 265
thread compliance, 266
thread safety, 262
threads, 8, 303

definition, 261

standard, 263

user, 263

typeclass, 157

U

University of Notre Dame, 302
Upshot, 124

user threads, 263

user-space networking, 133

\%
vector machines, 1
VIA, 134
view
file, 20

volatile variable, 129, 173, 225

W
wdi r, 48
Web resources, 355
window, 30
definition, 140
keyval, 201
window attribute, 188, 201
window abject, 30, 140
windows
overlapping, 173
workstations

network of, 1
World Wide Web, 355
write ordering, 130
write sequence, 92

write_conv_fn,273

X

XFS, 51

Function and Term Index

A

MPI_Accumulate, 35, C:36, C:167, f90:167
MPI::Add_error_class, C++:289

MPI_Add _error_class, 286, C: 289, f90:289
MPI::Add_error_code, C++:289
MPI_Add_error_code, 286, C:289, f90:289
MPI::Add_error_string, C++:289
MPI_Add_error_string, 286, C:289, f90: 289
MPI::Alloc_mem, C++:186
MPI_Alloc_mem, 33, 184, C:186, f90:186
MPI_Allreduce, 42

MPI_Alltoallv, 253

MPI_ARGV_NULL, 237

B

MPI_Bcast, 238
MPI_Buffer_detach, 184
MPI_BYTE, 45, 46

C

MPI_Cancel, 285

MPI_Cart_coord, 74
MPI_Cart_create, 72
MPI::Close_port, C++:252
MPI_Close port, 249, C:251, f90:252
MPI_COMBINER_HVECTOR, 279
MPI_COMBINER_INDEXED, 277
MPI_COMBINER_NAMED, 277
MPI::Comm::Disconnect, C++:252

MPI::Comm::Get_parent, C++:239

Page 379

MPI::Comm::Get_rank, C++:28
MPI::Comm::Get_size, C++:28
MPI_Comm_accept, 249, C:251, f90:252, 268
MPI_Comm_connect, 247, 249, C:251, f90:252, 268
MPI_Comm_disconnect, 249, C:251, f90:252, 269
MPI_Comm_free, 251

MPI_Comm_get_attr, 243

MPI_Comm_get_name, 298

MPI_Comm_get parent, 42, C:46, C:238, f90:238
MPI_Comm_Join, 298
MPI_COMM_NULL_COPY_FN, 295
MPI_COMM_NULL_DELETE_FN, 295
MPI_Comm_parent, 37

MPI_Comm _remote size, 243
MPI_COMM_SELF, 259

MPI_Comm_set_name, 298

MPI_Comm_spawn, 37, C:46, C:238, 90:238
MPI_Comm_spawn_multiple, 245, C:246, f90:246
MPI::COMM_WORLD, 26
MPE_Counter_eattr_delete, 204
MPE_Counter_create, 202

MPE_Counter_inc, 209

D

MPI_Datarep _conversion_function, C:276
MPI_Datarep_extent_function, C:276
MPI::Datatype::Create_darray, C++:75
MPI::Datatype::Create f90_integer, C++:158
MPI::Datatype::Create_indexed block, C++:81
MPI::Datatype::Create_keyval, C++:296
MPI::Datatype::Create_subarray, C++:75

MPI::Datatype::Get_contents, C++:280

MPI::Datatype::Get_envelope, C++:280
MPI::Datatype::Match_size, C++:158
MPI::Datatype::Resized, C++:64
MPI::Datatype::Set_attr, C++:296
MPI_Dims create, 114
MPI_DISTRIBUTE_BLOCK, 71

MPI_DISTRIBUTE_DFLT_DARG, 71

E

MPI_ERRCODES IGNORE, 40, 237
MPI_Errhandler_c2f, 357
MPI_Errhandler_f2c, 357
MPI_Error_class, 297
MPI_Error_string, 297
MPI::ERRORS_ARE_FATAL, 298
MPI_ERRORS ARE_FATAL, 295
MPI::ERRORS_RETURN, 298
MPI_ERRORS RETURN, 295
MPI::ERRORS_THROW_EXCEPTIONS, 26, 298
MPI::Exception, 26, 298

=

MPI::File::Close, C++:28, C++:56
MPI::File::Get_info, C++:90
MPI::File:Get_size, C++:28

MPI::File::Get_type extent, C++:100

Page 380
MPI::File::lwrite_at, C++:83
MPI::File::Open, C++:28, C++:56
MPI::File::Read, C++:28, C++:56
MPI::File::Read all, C++:68
MPI::File:Read at, C++:59
MPI::File::Seek, C++:56
MPI::File::Set_atomicity, C++:96
MPI::File::Set_view, C++:28, C++:64
MPI::File::Sync, C++:96
MPI::File::Write, C++:56
MPI::File::Write all, C++:68
MPI::File:Write_all_begin, C++:83
MPI::File:Write all_end, C++:83
MPI::File::Write at, C++:59
MPI::File::Write_shared, C++:84
MPI_File call _errhandler, 297
MPI_File close, C:21, f90:22, 54, C:55, f90:56, 92
MPI_File_create_errhandler, 297
MPI_File f2c, 291, C:291
MPI_File get amode, 298
MPI_File _get atomicity, 298
MPI_File_get_byte offset, 298
MPI_File_get group, 298
MPI_File get info, 86, C:89, f90:90
MPI_File _get position, 298
MPI_File _get position_shared, 298
MPI_File get_size, 24, C:24
MPI_File get type extent, 99, C:100, f90:100
MPI_File get view, 298

MPI_File iread_at, 298

MPI_File iread, 81

MPI_File iread shared, 85

MPI_File iwrite at, 81, 82, C:82, f90:82
MPI_File_ iwrite, 280
MPI_File_iwrite_shared, 85

MPI_File, 16

MPI_FILE_NULL, 18

MPI_File_open, 17, C:21, f90:22, 52, C:55, f90:56, 92
MPI_File preallocate, 298

MPI_File read_all_begin, 298

MPI_File read al end, 298

MPI_File read_all, 66, C:67, f90:67
MPI_File read at_all_begin, 298

MPI_File read_at_all_end, 298

MPI_File read at_all, 93

MPI_File read_at, 29, 55, C:58, f90:58, 264
MP!_File read, C:24, 54, C:55, f90:56
MPI_File read_ordered begin, 85

MPI_File read_ordered end, 85

MPI_File read_ordered, 85

MPI_File read_shared, 83

MPI_File_seek, 29, 54, C:55, f90:56, 264
MP!_File seek_shared, 83
MPI_File set atomicity, C:95, f90:96
MPI_File_set_errhandler, 297

MPI_File set_info, 85, 86

MPI_File set _size, 298

MPI_File_sync, 92, C:95, f90:96
MPI_File write all begin, 82, C:82, f90:82

MPI_File write all_end, 82, C:82, f90:82

MPI_File write al, 67, C:67,90:67, 114, 116
MPI_File write_at_all_begin, 298

MPI_File write at_al end, 298

MPI_File write at_all, 93

MPI_File write at, 29, 55, C:58, f90:58
MPI_File write, 18, C:21, f90:22, 54, C:55, f90:56, 284
MPI_File write_ordered_begin, 298

MPI_File write _ordered_end, 298

MPI_File write ordered, 85
MPI_File write shared, 29, 83, C:84, f90:84
MPI::Finalize, C++:28

MPI_Fint, 290

MPI::Free_mem, C++:186

MPI_Free mem, C:186, 90:186

G

MPI_Get, 35, C:36, 137, 142, 144, C:145, f90:145
MPI::Grequest::Complete, C++:288
MPI::Grequest:: Start, C++:288
MPI_Greguest_cancel _function, C:286
MPI_Grequest_complete, 284, C: 286, f90:287
MPI_Greguest_free function, C:286
MPI_Grequest_query_function, C:286
MPI_Grequest_start, 283, C: 286, f90:287
MPI_Group_free, 199

MPI_Group_incl, 230

MPI_Group_rank, 199

MPI_Group_size, 199

I

MPI::Info::Create, C++:90

MPI::Info::Free, C++:90

MPI::Info::Get, C++:90

MPI::Info::Get_nkeys, C++:90
MPI::Info::Get_nthkey, C++:90

MPI::Info::Set, C++:90

MPI_Info_create, 48, C:49, 90:49, 86, C:89, f90:90
MPI_Info_delete, 300

MPI_Info_dup, 300

MPI_Info_free, 48, C:49, 90:49, 86, C:89, f90:90
MPI_Info_get, 86, C:89, f90:90

MPI_Info_get nkeys, 86, C:89, f90:90
MPI_Info_get nthkey, 86, C:89, f90:90
MPI_Info_get valuelen, 300

MPI_Info, 47

MPI::INFO_NULL, 26

MPI_INFO_NULL, 18, 52

MPI_Info_set, 48, C:49, f90:49, 86, C:89, f90:90, 358
MPI::Init, C++:28

MPI::Init_thread, C++:266

MPI_Init_thread, 264, C:265, f90:265, 359
MPI_Intercomm_merge, 42, C:46, 239
MPI::Intracomm::Accept, C++:252
MPI::Intracomm:Connect, C++:252
MPI::Intracomm::Spawn, C++:239
MPI::Intracomm: Spawn_multiple, C++:246

MPI::ls thread main, C++:271

MPI_Is thread main, C:270, f90:270, 271

MPI_lsend, 360

Page 381

L

MPI_LOCK_EXCLUSIVE, 183, 225
MPI_LOCK_SHARED, 183, 221
MPI_LONG_LONG_INT, 158
MPI_LONG_LONG, 158, 357
MPI::Lookup name, C++:257

MPI_Lookup_name, 255, C:256, f90:257

M

MPI_MAX_INFO _KEY, 89
MPI_MAX_INFO VAL, 89

MPI_MIN, 42

MPI_MINLOC, 42
MPI_MODE_CREATE, 18, 59
MPI_MODE_NOCHECK, 192, 225, 231
MPI_MODE_NOPRECEDE, 178
MPI_MODE_NOPUT, 178, 231
MPI::MODE_NOSTORE, 178
MPI_MODE_NOSTORE, 177, 231
MPI_MODE_NOSUCCEED, 178
MPI_MODE_RDONLY, 48, 52
MPI_MODE_WRONLY, 18, 59
MPE_Mutex_lock, 209

MPE_Mutex_unlock, 209

O

MPI_OFFSET_KIND, 22, 57
MPI_Offset, 20, 54, 357
MPI::Open_port, C++:252
MPI_Open_port, 249, C:251, f90:252
MPI_ORDER_C, 71

MPI_ORDER_FORTRAN, 71

P
MPI_Pack_external, 300

MPI_Probe, 264

MPI_PROC_NULL, 230, 238, 357
MPI::Publish_name, C++:257
MPI_Publish_name, 255, C:256, f90: 257

MPI_Put, 137, 142, C:145, £90:145

Q
MPI::Query_thread, C++:271

MPI_Query _thread, 270, C:270, f90:270, 359

R

MPI::Register_datarep, C++:277
MPI_Register_datarep, 273, C: 276, f90:276
MPI_REPLACE, 168, 172
MPI_Request_free, 285

MPI_ROOT, 238

S

MPI::SEEK_SET, 358

MPI_SEEK_SET, 54, 358

MPI_Sizeof, 148, f90:148
MPI::Status::Set_cancelled, C++:288
MPI::Status::Set_elements, C++:288
MPI_Status c2f, 291, C:291

MPI_STATUS IGNORE, 18, 55, 115
MPI_Status_set_cancelled, 284, C:286, f90: 287

MPI_Status set_elements, 284, C: 286, f90: 287

Page 382
MPI_STATUS SIZE, 291

T

MPI_Test cancelled, 284

MPI_Test, 360

MPI_THREAD_FUNNELED, 265
MPI_THREAD_MULTIPLE, 265
MPI_THREAD_SERIALIZED, 265
MPI_THREAD_ SINGLE, 265

MPI_Type copy_attr_function, C:295
MPI_Type create darray, 69, C:75, f90:75, 114
MPI_Type create f90_integer, C:157, f90:158
MPI_Type create_indexed_block, 80, C:80, f90:80, 207
MPI_Type create keyval, 292, C:295, f90:296
MPI_Type create resized, 61, C:62, 190:63
MPI_Type create subarray, 74, C:75, f90:75
MPI_Type delete attr function, C:295
MPI_Type dup, 293

MPI_Type f2c, 291, C:291

MPI_Type free, 292, 295

MPI_Type _get_contents, 277, C:279, f90:280
MPI_Type get_envelope, 277, C:279, f90:280
MPI_Type_indexed, 204

MPI_Type match_size, C:157, f90:158
MPI_TYPE_NULL_COPY_FN, 295
MPI_TYPE_NULL_DELETE_FN, 295
MPI_Type _set_attr, 293, C:295, f90:296
MPI_Type set_name, 298

MPI_TYPECLASS COMPLEX, 157
MPI_TYPECLASS INTEGER, 157

MPI_TYPECLASS REAL, 157

U

MPI_UNIVERSE_SIZE, 242, 243
MPI_Unpack_external, 300
MPI::Unpublish_name, C++:257
MPI_Unpublish_name, 255, C: 256, f90:257

MPI_UNSIGNED_LONG_LONG, 357

W

MPI::Win::Accumulate, C++:167
MPI::Win::Complete, C++:230
MPI::Win::Create, C++:141
MPI::Win::Create keyval, C++:202
MPI::Win::Delete attr, C++:202
MPI::Win::Fence, C++:149
MPI::Win::Free, C++:141
MPI::Win::Free_keyval, C++:202
MPI::Win::Get, C++:145
MPI::Win::Get_attr, C++:191
MPI::Win::Get_group, C++:199
MPI::Win::Lock, C++:182
MPI::Win::Post, C++:230

MPI::Win::Put, C++:145
MPI::Win::Set_attr, C++:202
MPI::Win::Start, C++:230
MPI::Win::Unlock, C++:182
MPI::Win::Wait, C++:230
MPI_WIN_BASE, 188
MPI_Win_complete, 229, C:229, f90:230
MPI_Win_create keyval, C:201, f90:202, 203
MPI_Win_create, 31, C:36, 139, C:141, f90:141

MPI_Win_delete attr, C:201, f90:202

MPI_Win_delete fn, 202
MPI_WIN_DISP_UNIT, 188
MPE_Win_fence, 174

MPI_Win_fence, 33, C:36, 137, 148, C:149, f90:149, 177
MPI_Win_free keyval, C:201, f90:202
MPI_Win_free, 36, C:36, 140, C:141, f90:141
MPI_Win _get attr, 188, C:189, f90:191
MPI_Win_get_group, 199, C:199, f90:199, 226
MPI_Win_get name, 298

MPI_Win lock, 181, C:182, f90:182, 197
MPI_Win, 31

MPI_WIN_NULL_COPY_FN, 203, 295
MPI_WIN_NULL_DELETE_FN, 203, 295
MPI_WIN_NULL, 141

MPI_Win_post, 229, C:229, f90:230
MPI_Win_set_attr, C:201, f90:202
MPI_Win_set_errhandler, 297
MPI_Win_set_name, 298

MPI_WIN_SIZE, 188

MPI_Win_start, 229, C:229, f90:230
MPI_Win_unlock, 181, C:182, f90:182

MPI_Win_wait, 229, C:229, f90:230

