

TOOLS AND ENVIRONMENTS
FOR PARALLEL AND
DISTRIBUTED COMPUTING

Edited by

Salim Hariri
Manish Parashar

A JOHN WILEY & SONS, INC., PUBLICATION

TOOLS AND ENVIRONMENTS
FOR PARALLEL AND
DISTRIBUTED COMPUTING

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

Surviving the Design of Microprocessor and Multimicroprocessor Systems:
Lessons Learned / Veljko Milutinović

Mobile Processing in Distributed and Open Environments / Peter Sapaty

Introduction to Parallel Algorithms / C. Xavier and S. S. Iyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

New Parallel Algorithms for Direct Solution of Linear Equations /
C. Siva Ram Murthy, K. N. Balasubramanya Murthy, and Srinivas Aluru

Practical PRAM Programming / Joerg Keller, Christoph Kessler, and
Jesper Larsson Traeff

Computational Collective Intelligence / Tadeusz M. Szuba

Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing /
Ivan Stojmenović (Editor)

Internet-Based Workflow Management: Toward a Semantic Web /
Dan C. Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Tools and Environments for Parallel and Distributed Computing /
Salim Hariri and Manish Parashar (Editors)

TOOLS AND ENVIRONMENTS
FOR PARALLEL AND
DISTRIBUTED COMPUTING

Edited by

Salim Hariri
Manish Parashar

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at

Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services please contact our Customer
Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Hariri, Salim.
Tools and environments for parallel and distributed

computing / Salim Hariri & Manish Parashar.
p. cm.

ISBN 0-471-33288-7 (Cloth)
1. Parallel processing (Electronic computers) 2. Electronic data

processing—Distributed processing. I. Parashar, Manish, 1967– II.
Title.

QA76.58.H37 2004
004¢.35—dc21 2003014209

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

www.copyright.com. Requests to the Publisher for permission should be addressed to the

CONTENTS

Preface xi

1. Parallel and Distributed Computing 1
S. Hariri and M. Parashar

1.1 Introduction: Basic Concepts 1
1.2 Promises and Challenges of Parallel and

Distributed Systems 4
1.2.1 Processing Technology 5
1.2.2 Networking Technology 5
1.2.3 Software Tools and Environments 6

1.3 Distributed System Design Framework 6
References and Further Reading 8

2. Message-Passing Tools 11
S. Hariri and I. Ra

2.1 Introduction 11
2.2 Message-Passing Tools versus Distributed Shared Memory 12

2.2.1 Distributed Shared Memory Model 12
2.2.2 Message-Passing Model 12

2.3 Message-Passing System: Desirable Features 13
2.4 Classification of Message-Passing Tools 15

2.4.1 Classification by Implementation 17
2.5 Overview of Message-Passing Tools 19

2.5.1 Socket-Based Message Passing 19
2.5.2 p4 20
2.5.3 Parallel Virtual Machine 20
2.5.4 Message-Passing Interface 21
2.5.5 Nexus 22
2.5.6 Madeleine I and II 22
2.5.7 Active Messages 23

2.6 ACS 23
2.6.1 Multithread Communications Services 24
2.6.2 Separation of Data and Control Functions 24

v

2.6.3 Programmable Communication, Control, and
Management Service 26

2.6.4 Multiple Communication Interfaces 28
2.6.5 Adaptive Group Communication Services 29

2.7 Experimental Results and Analysis 29
2.7.1 Experimental Environment 30
2.7.2 Performance of Primitives 30
2.7.3 Application Performance Benchmarking 39
2.7.4 Performance Results of Adaptive Schemes 44

2.8 Conclusions 50
References 52

3. Distributed Shared Memory Tools 57
M. Parashar and S. Chandra

3.1 Introduction 57
3.2 Cache Coherence 59

3.2.1 Directory-Based Cache Coherence 59
3.3 Shared Memory Consistency Models 60
3.4 Distributed Memory Architectures 61
3.5 Classification of Distributed Shared Memory Systems 62

3.5.1 Hardware-Based DSM Systems 64
3.5.2 Mostly Software Page-Based DSM Systems 69
3.5.3 All-Software Object-Based DSM Systems 72

References 76

4. Distributed-Object Computing Tools 79
R. Raje, A. Kalyanaraman, and N. Nayani

4.1 Introduction 79
4.2 Basic Model 80

4.2.1 RMI 80
4.2.2 CORBA 81
4.2.3 DCOM 85

4.3 Examples 86
4.3.1 Experimental Setup 87
4.3.2 Developing Applications under RMI, CORBA,

and DCOM 87
4.3.3 Experiment 1: Ping 90
4.3.4 Experiment 2: Producer–Consumer Problem 103
4.3.5 Experiment 3: Numerical Computation 118

4.4 Comparison of the Three Paradigms 142
4.4.1 Dependency Issues 142
4.4.2 Implementation Details 142

vi CONTENTS

4.4.3 Architecture Details 142
4.4.4 Support for Additional Features 144
4.4.5 Performance Comparison 144

4.5 Conclusions 146
References 146

5. Gestalt of the Grid 149
G. von Laszewski and P. Wagstrom

5.1 Introduction 149
5.1.1 Motivation 150
5.1.2 Enabling Factors 151

5.2 Definitions 152
5.3 Multifaceted Grid Architecture 154

5.3.1 N-Tiered Grid Architecture 155
5.3.2 Role-Based Grid Architecture 155
5.3.3 Service-Based Grid Architecture 157
5.3.4 Grid Challenges 158

5.4 Grid Management Aspects 158
5.4.1 Managing Grid Security 159
5.4.2 Managing Grid Information 161
5.4.3 Managing Grid Data 161
5.4.4 Managing Grid Execution and Resources 162
5.4.5 Managing Grid Software 162
5.4.6 Managing Grid Hardware 163

5.5 Grid Activities 163
5.5.1 Community Activities 164
5.5.2 Grid Middleware 166
5.5.3 High-Throughput Computing 171

5.6 Grid Applications 175
5.6.1 Astrophysics Simulation Collaboratory 175
5.6.2 Particle Physics Data Grid 176
5.6.3 NEESgrid 177

5.7 Portals 177
5.7.1 HotPage 179
5.7.2 Webflow and Gateway 179
5.7.3 XCAT 180
5.7.4 UNICORE 180
5.7.5 JiPANG 181
5.7.6 PUNCH 181
5.7.7 Access Grid 182
5.7.8 Commercial Grid Activities 182

5.8 Conclusions 183
References 183

CONTENTS vii

6. Software Development for Parallel and Distributed Computing 189
M. Parashar and S. Hariri

6.1 Introduction 189
6.2 Issues in HPC Software Development 189

6.2.1 Models for Parallel Computation 190
6.2.2 Portable Application Description Medium 190
6.2.3 Parallel Algorithm Development 191
6.2.4 Program Implementation and Runtime 191
6.2.5 Visualization and Animation 191
6.2.6 Maintainability 192
6.2.7 Reliability 192
6.2.8 Reusability 192

6.3 HPC Software Development Process 192
6.4 Parallel Modeling of Stock Option Pricing 192
6.5 Inputs 194
6.6 Application Analysis Stage 195
6.7 Application Development Stage 198

6.7.1 Algorithm Development Module 198
6.7.2 System-Level Mapping Module 199
6.7.3 Machine-Level Mapping Module 200
6.7.4 Implementation/Coding Module 200
6.7.5 Design Evaluator Module 201

6.8 Compile-Time and Runtime Stage 201
6.9 Evaluation Stage 202
6.10 Maintenance/Evolution Stage 202
6.11 Existing Software Support 203

6.11.1 Application Specifications Filter 203
6.11.2 Application Analysis Stage 204
6.11.3 Application Development Stage 204
6.11.4 Compile-Time and Runtime Stage 204
6.11.5 Evaluation Stage 204
6.11.6 Maintenance/Evolution Stage 205

References 205

Index 209

viii CONTENTS

CONTRIBUTORS

Sumir Chandra, Department of Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ 08854 (E-mail: sumir@caip.rutgers.edu)

Salim Hariri, Department of Electrical and Computer Engineering,
University of Arizona, Tucson, AZ 85721 (E-mail: hariri@ece.arizona.edu)

A. Kalyanaraman, Department of Computer and Information Science,
Indiana University Purdue University, Indianapolis, IN
(E-mail: akalyana@cs.iupui.edu)

N. Nayani, Department of Computer and Information Science, Indiana
University Purdue University, Indianapolis, IN
(E-mail: nnayani@cs.iupui.edu)

Manish Parashar, Department of Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ 08854
(E-mail: parashar@caip.rutgers.edu)

Ilkyeun Ra, Department of Computer Science and Engineering, University
of Colorado at Denver, Denver, CO 80217
(E-mail: ikra@carbon.cudenver.edu)

Rajeev Raje, Department of Computer and Information Science, Indiana
University Purdue University, Indianapolis, IN
(E-mail: rraje@cs.iupui.edu)

G. von Laszewski, Argonne National Laboratory, 9700 South Cass Avenue,
Argonne, IL 60439 (E-mail: gregor@mcs.anl.gov)

P. Wagstrom, Department of Engineering and Public Policy, Carnegie Mellon
University, Pittsburgh, PA 15213 (E-mail: pwagstro@andrew.cmu.edu)

ix

PREFACE

The primary focus of this book is the rapidly evolving software technology for
supporting the development, execution, management, and experimentation
with parallel and distributed computing environments. The design, develop-
ment, and utilization of parallel and distributed computing environments that
can efficiently support a wide range of scientific and engineering applications
remains a challenging research problem due to the complexity and varying
requirements of the applications, heterogeneity of the computing systems and
their networks, asynchronous complex interactions among the system
and application components, and the heterogeneity of the software tools
and environments. However, recent advances in processing and network
technology and software tools have addressed successfully many of the obsta-
cles hindering the wide deployment of parallel and distributed computing
environments.

Active research in parallel processing has resulted in advances in all aspects
of the computing technologies, including processing technology, computer net-
working technology, and software technology. Advances in processing tech-
nology have resulted in faster, more powerful processors with increased
functionality. Advances in computer networking technology have introduced
reliable high-speed networks capable of providing high transfer rates.
Advances in software technology have provided easy-to use tools and envi-
ronments for the development of parallel applications. These advances have
resulted in the proliferation of a large number of different architectural
classes, such as SIMD computers, MIMD computers, vector computers, and
data flow computers, where each class represents a set of different trade-offs
in design decisions such as coarse-grained (MIMD) parallelism versus fine-
grained (SIMD) parallelism, shared memory MIMD versus distributed
memory MIMD, hypercube topology versus mesh topology, and
circuit-switched versus packet-switched communication. Each architectural
class is tuned to deliver maximum performance to a specific set of applica-
tions. However, it remains a fact that none of the existing computing systems
are general enough to address all classes of applications and provide the
desired performance levels. In addition, these architectures are not scalable
and their relatively narrow applicability has prevented them from being cost-
effective.

Furthermore, the development of efficient application software capable of
exploiting the available computing potential is nontrivial and requires a thor-

xi

ough understanding not only of the application, but also of the target com-
puting environment. Given the diversity of current computing systems and
their architectural complexity, this is not a reasonable proposition, especially
since application developers are not, in general, computer engineers. Even
porting existing applications to high-performance systems is nontrivial and
usually involves extensive redevelopment. As a result, the future of parallel
and distributed computing will be governed to a large extent by the availability
of sufficiently high-level languages, tools, and development environments that
can support application developers.

A key factor contributing to the complexity of parallel software develop-
ment is the increased degrees of freedom that have to be resolved and tuned
in such an environment.Typically, during the course of parallel software devel-
opment, the developer is required to select between available algorithms for
the particular application, between possible hardware configurations and
among possible decompositions of the problem onto the hardware configura-
tion selected, and between different communication and synchronization
strategies. The set of reasonable alternatives that have to be evaluated is very
large, and selecting the best alternative among these is a formidable task.

The current user has to spend considerable time in understanding the
details of the overall system as well as specific system aspects such as data
distribution, problem partitioning and scheduling, routing, load balancing,
efficient vectorization, efficient utilization of the memory hierarchy, and
synchronization, in order to achieve even a fraction of the theoretical peak
performance offered by the system. Consequently, there exists a significant dis-
proportion between the effort involved in developing an application algorithm
and in its efficient realization on any high-performance system.

It is this realization that has motivated the writing of this book. The goal of
the book is to serve as a reference for current software tools and technologies
that can be used to develop, implement, and support high-performance paral-
lel and distributed computing environments and applications. In this book we
review promising software tools and environments that play an important role
in the development of high-performance parallel/distributed systems and
applications, and highlight the salient features and limitations of these tools
and environments. Consequently, this book can serve as a useful reference for
researchers, educators, and practitioners in the field of parallel and distributed
computing, supercomputing, and networking.

The book is organized into six chapters; a brief summary is as follows.

Chapter 1: Parallel and Distributed Computing

This chapter provides an introduction to parallel and distributed systems and
their benefits in performance, resource sharing, extendibility, reliability, and
cost-effectiveness. It outlines parallel and distributed computing approaches
and paradigms and the opportunities and challenges of parallel and

xii PREFACE

distributed computing. Finally, it presents a three-tiered distributed system
design framework to highlight architectural issues, services, and candidate
technologies for implementing parallel/distributed computing systems and
applications.

Chapter 2: Message-Passing Tools

This chapter briefly reviews message-passing models for network-centric
applications. It presents the advantages of message-passing tools and their
classification with respect to the application domain, programming model
supported, communication model, portability, and adaptability. The chapter
describes hardware- and software-based approaches to improve the perfor-
mance of message-passing tools. This is followed by an overview of existing
message-passing tools such as socket-based message passing, p4, Parallel
Virtual Machine (PVM), Message-Passing Interface (MPI), Nexus, Madeleine,
and Active Messages. The chapter then describes the design of ACS
(Adaptive Communication System), a multithreaded message-passing tool,
and presents an experimental evaluation of ACS and three different message-
passing tools (p4, PVM, and MPI) with respect to primitives and application
performance.

Chapter 3: Distributed Shared Memory Tools

This chapter presents tools and environments for distributed shared memory
(DSM), a software abstraction of shared memory on a distributed memory
multiprocessor or cluster of workstations. It outlines the properties and fea-
tures of DSM systems and classifies them based on their architectures. The
chapter then describes cache coherence protocols for hardware-based DSM
systems, including CC-NUMA, COMA, and S-COMA; hybrid schemes, includ-
ing R-NUMA and AS-COMA; and hardware-based environments, such as the
MIT Alewife Machine and the Stanford FLASH multiprocessor. Finally, exist-
ing DSM systems such as TreadMarks, Brazos, Mirage+, Orca, SAM, Midway,
CRL, and fine-grained Shasta DSM are described.

Chapter 4: Distributed-Object Computing Tools

This chapter provides an overview of popular distributed-object approaches
such as Java RMI, CORBA, and DCOM and presents the basic model under-
lying each approach followed by example applications with code segments
from different domains. An experimental evaluation of these approaches is
presented followed by a comparison of the approaches with respect to lan-
guage and platform dependency, implementation, architecture, additional
feature support, and performance. The proposed Unified Metaobject Model is
discussed.

PREFACE xiii

Chapter 5: Gestalt of the Grid

The gestalt of the Grid presented in this chapter provides an overview of
important influences, developments, and technologies that are shaping state-
of-the-art Grid computing. The motivation and enabling factors for the devel-
opment of the Grid are described, followed by various Grid definitions.
Common architectural views such as N-tiered, role-based, and service-based
Grid architectures are presented, followed by Grid management aspects that
include managing Grid security, Grid information, Grid data, Grid execution
and resources, and Grid software and hardware. The Grid activities presented
in this chapter are classified into community activities such as Global Grid
Forum and production Grids; development toolkits and middleware, such
as the Globus project, OGSA, Legion, Storage Resource Broker, Akenti,
and NWS; high-throughput computing, such as Condor, NetSolve, Ninf,
SETI@Home, and Nimrod-G; and applications such as ASC, PPDG, and
NEESgrid. Popular Grid portals and their toolkits, such as HotPage, Webflow
and Gateway, XCAT, UNICORE, JiPANG, PUNCH, and Access Grid, are
presented.

Chapter 6: Software Development for Parallel and
Distributed Computing

This chapter presents a study of the software development process in high-
performance parallel and distributed computing (HPC) environments and
investigates the nature of support required at each stage of development. The
objective is to illustrate the significance of tools and environments discussed
in this book during software development. The chapter first highlights some
of the issues that must be addressed during HPC software development. The
HPC software development process is then described. A parallel stock option
pricing model is used as a running example in this discussion. Finally,
some existing tools applicable at each stage of the development process are
identified.

Acknowledgments

This book has been made possible due to the efforts and contributions of many
people. First and foremost, we would like to acknowledge all the contributors
for their tremendous effort in putting together excellent chapters that are
comprehensive and very informative. We would like to thank the reviewers
for their excellent comments and suggestions. We would also like to thank
Val Moliere, Kirsten Rohstedt, and the team at John Wiley & Sons, Inc. for
getting this book together. Finally, we would like to dedicate this book to our
families.

Salim Hariri
Manish Parashar

xiv PREFACE

CHAPTER 1

Parallel and Distributed Computing

S. HARIRI

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ

M. PARASHAR

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ

1.1 INTRODUCTION: BASIC CONCEPTS

The last two decades spawned a revolution in the world of computing; a move
away from central mainframe-based computing to network-based computing.
Today, servers are fast achieving the levels of CPU performance, memory
capacity, and I/O bandwidth once available only in mainframes, at a cost orders
of magnitude below that of a mainframe. Servers are being used to solve com-
putationally intensive problems in science and engineering that once belonged
exclusively to the domain of supercomputers. A distributed computing system
is the system architecture that makes a collection of heterogeneous com-
puters, workstations, or servers act and behave as a single computing system.
In such a computing environment, users can uniformly access and name local
or remote resources, and run processes from anywhere in the system, without
being aware of which computers their processes are running on. Distributed
computing systems have been studied extensively by researchers, and a great
many claims and benefits have been made for using such systems. In fact, it is
hard to rule out any desirable feature of a computing system that has not been
claimed to be offered by a distributed system [24]. However, the current
advances in processing and networking technology and software tools make
it feasible to achieve the following advantages:

• Increased performance. The existence of multiple computers in a distrib-
uted system allows applications to be processed in parallel and thus

1

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

improves application and system performance. For example, the perfor-
mance of a file system can be improved by replicating its functions over
several computers; the file replication allows several applications to
access that file system in parallel. Furthermore, file replication distributes
network traffic associated with file access across the various sites and thus
reduces network contention and queuing delays.

• Sharing of resources. Distributed systems are cost-effective and enable
efficient access to all system resources. Users can share special purpose
and sometimes expensive hardware and software resources such as data-
base servers, compute servers, virtual reality servers, multimedia infor-
mation servers, and printer servers, to name just a few.

• Increased extendibility.Distributed systems can be designed to be modular
and adaptive so that for certain computations, the system will configure
itself to include a large number of computers and resources, while in other
instances, it will just consist of a few resources. Furthermore, limitations in
file system capacity and computing power can be overcome by adding
more computers and file servers to the system incrementally.

• Increased reliability, availability, and fault tolerance. The existence of mul-
tiple computing and storage resources in a system makes it attractive and
cost-effective to introduce fault tolerance to distributed systems. The
system can tolerate the failure in one computer by allocating its tasks to
another available computer. Furthermore, by replicating system functions
and/or resources, the system can tolerate one or more component
failures.

• Cost-effectiveness. The performance of computers has been approxi-
mately doubling every two years, while their cost has decreased by half
every year during the last decade [3]. Furthermore, the emerging high-
speed network technology [e.g., wave-division multiplexing, asynchro-
nous transfer mode (ATM)] will make the development of distributed
systems attractive in terms of the price/performance ratio compared to
that of parallel computers.

These advantages cannot be achieved easily because designing a general
purpose distributed computing system is several orders of magnitude more
difficult than designing centralized computing systems—designing a reliable
general-purpose distributed system involves a large number of options and
decisions, such as the physical system configuration, communication network
and computing platform characteristics, task scheduling and resource alloca-
tion policies and mechanisms, consistency control, concurrency control, and
security, to name just a few. The difficulties can be attributed to many
factors related to the lack of maturity in the distributed computing field, the
asynchronous and independent behavior of the systems, and the geographic
dispersion of the system resources. These are summarized in the following
points:

2 PARALLEL AND DISTRIBUTED COMPUTING

• There is a lack of a proper understanding of distributed computing
theory—the field is relatively new and we need to design and experiment
with a large number of general-purpose reliable distributed systems with
different architectures before we can master the theory of designing
such computing systems. One interesting explanation for the lack of
understanding of the design process of distributed systems was given by
Mullender [2]. Mullender compared the design of a distributed system to
the design of a reliable national railway system that took a century and
half to be fully understood and mature. Similarly, distributed systems
(which have been around for approximately two decades) need to evolve
into several generations of different design architectures before their
designs, structures, and programming techniques can be fully understood
and mature.

• The asynchronous and independent behavior of the system resources
and/or (hardware and software) components complicate the control soft-
ware that aims at making them operate as one centralized computing
system. If the computers are structured in a master–slave relationship,
the control software is easier to develop and system behavior is more
predictable. However, this structure is in conflict with the distributed
system property that requires computers to operate independently and
asynchronously.

• The use of a communication network to interconnect the computers
introduces another level of complexity. Distributed system designers not
only have to master the design of the computing systems and system soft-
ware and services, but also have to master the design of reliable com-
munication networks, how to achieve synchronization and consistency,
and how to handle faults in a system composed of geographically dis-
persed heterogeneous computers. The number of resources involved in a
system can vary from a few to hundreds, thousands, or even hundreds of
thousands of computing and storage resources.

Despite these difficulties, there has been limited success in designing
special-purpose distributed systems such as banking systems, online transac-
tion systems, and point-of-sale systems. However, the design of a general-
purpose reliable distributed system that has the advantages of both centralized
systems (accessibility, management, and coherence) and networked systems
(sharing, growth, cost, and autonomy) is still a challenging task [27]. Kleinrock
[7] makes an interesting analogy between the human-made computing systems
and the brain. He points out that the brain is organized and structured very
differently from our present computing machines. Nature has been extremely
successful in implementing distributed systems that are far more intelligent
and impressive than any computing machines humans have yet devised. We
have succeeded in manufacturing highly complex devices capable of high-
speed computation and massive accurate memory, but we have not gained
sufficient understanding of distributed systems; our systems are still highly

INTRODUCTION: BASIC CONCEPTS 3

constrained and rigid in their construction and behavior. The gap between
natural and man-made systems is huge, and more research is required to
bridge this gap and to design better distributed systems.

In the next section we present a design framework to better understand
the architectural design issues involved in developing and implementing high-
performance distributed computing systems. A high-performance distributed
system (HPDS) (Figure 1.1) includes a wide range of computing resources,
such as workstations, PCs, minicomputers, mainframes, supercomputers, and
other special-purpose hardware units. The underlying network interconnect-
ing the system resources can span LANs, MANs, and even WANs, can have
different topologies (e.g., bus, ring, full connectivity, random interconnect), and
can support a wide range of communication protocols.

1.2 PROMISES AND CHALLENGES OF PARALLEL AND
DISTRIBUTED SYSTEMS

The proliferation of high-performance systems and the emergence of high-
speed networks (terabit networks) have attracted a lot of interest in parallel
and distributed computing. The driving forces toward this end will be (1) the
advances in processing technology, (2) the availability of high-speed network,
and (3) the increasing research efforts directed toward the development of
software support and programming environments for distributed computing.

4 PARALLEL AND DISTRIBUTED COMPUTING

Special-Purpose Architecture
SIMD

Workstation

DM-MIMDSM-MIMDVector
Supercomputer

High-Speed Network

Fig. 1.1 High-performance distributed system.

Further, with the increasing requirements for computing power and the
diversity in the computing requirements, it is apparent that no single
computing platform will meet all these requirements. Consequently, future
computing environments need to capitalize on and effectively utilize the exist-
ing heterogeneous computing resources. Only parallel and distributed systems
provide the potential of achieving such an integration of resources and tech-
nologies in a feasible manner while retaining desired usability and flexibility.
Realization of this potential, however, requires advances on a number of
fronts: processing technology, network technology, and software tools and
environments.

1.2.1 Processing Technology

Distributed computing relies to a large extent on the processing power of the
individual nodes of the network. Microprocessor performance has been
growing at a rate of 35 to 70 percent during the last decade, and this trend
shows no indication of slowing down in the current decade. The enormous
power of the future generations of microprocessors, however, cannot be
utilized without corresponding improvements in memory and I/O systems.
Research in main-memory technologies, high-performance disk arrays,
and high-speed I/O channels are, therefore, critical to utilize efficiently the
advances in processing technology and the development of cost-effective high-
performance distributed computing.

1.2.2 Networking Technology

The performance of distributed algorithms depends to a large extent on the
bandwidth and latency of communication among the network nodes. Achiev-
ing high bandwidth and low latency involves not only fast hardware, but
also efficient communication protocols that minimize the software overhead.
Developments in high-speed networks provide gigabit bandwidths over local
area networks as well as wide area networks at moderate cost, thus increas-
ing the geographical scope of high-performance distributed systems.

The problem of providing the required communication bandwidth for dis-
tributed computational algorithms is now relatively easy to solve given the
mature state of fiber-optic and optoelectronic device technologies. Achieving
the low latencies necessary, however, remains a challenge. Reducing latency
requires progress on a number of fronts. First, current communication proto-
cols do not scale well to a high-speed environment. To keep latencies low, it is
desirable to execute the entire protocol stack, up to the transport layer, in
hardware. Second, the communication interface of the operating system must
be streamlined to allow direct transfer of data from the network interface to
the memory space of the application program. Finally, the speed of light
(approximately 5 microseconds per kilometer) poses the ultimate limit to
latency. In general, achieving low latency requires a two-pronged approach:

PROMISES AND CHALLENGES OF PARALLEL AND DISTRIBUTED SYSTEMS 5

1. Latency reduction. Minimize protocol-processing overhead by using
streamlined protocols executed in hardware and by improving the
network interface of the operating system.

2. Latency hiding. Modify the computational algorithm to hide latency by
pipelining communication and computation.

These problems are now perhaps most fundamental to the success of par-
allel and distributed computing, a fact that is increasingly being recognized by
the research community.

1.2.3 Software Tools and Environments

The development of parallel and distributed applications is a nontrivial
process and requires a thorough understanding of the application and the
architecture.Although a parallel and distributed system provides the user with
enormous computing power and a great deal of flexibility, this flexibility
implies increased degrees of freedom which have to be optimized in order to
fully exploit the benefits of the distributed system. For example, during soft-
ware development, the developer is required to select the optimal hardware
configuration for the particular application, the best decomposition of the
problem on the hardware configuration selected, the best communication and
synchronization strategy to be used, and so on. The set of reasonable alterna-
tives that have to be evaluated in such an environment is very large, and select-
ing the best alternative among these is a nontrivial task. Consequently, there
is a need for a set of simple and portable software development tools that can
assist the developer in appropriately distributing the application computations
to make efficient use of the underlying computing resources. Such a set of tools
should span the software life cycle and must support the developer during each
stage of application development, starting from the specification and design
formulation stages, through the programming, mapping, distribution, schedul-
ing phases, tuning, and debugging stages, up to the evaluation and maintenance
stages.

1.3 DISTRIBUTED SYSTEM DESIGN FRAMEWORK

The distributed system design framework (DSDF) highlights architectural
issues, services, and candidate technologies to implement the main compo-
nents of any distributed computing system. Generally speaking, the design
process of a distributed system involves three main activities: (1) designing the
communication system that enables the distributed system resources and
objects to exchange information, (2) defining the system structure (architec-
ture) and the system services that enable multiple computers to act as a system
rather than as a collection of computers, and (3) defining the distributed com-
puting programming techniques to develop parallel and distributed applica-

6 PARALLEL AND DISTRIBUTED COMPUTING

tions. Based on this notion of the design process, the distributed system design
framework can be described in terms of three layers (Figure 1.2): (1) network,
protocol, and interface (NPI) layer, (2) system architecture and services (SAS)
layer, and (3) distributed computing paradigms (DCP) layer. In what follows,
we describe the main design issues to be addressed in each layer.

• Communication network, protocol, and interface layer. This layer
describes the main components of the communication system that will be
used for passing control and information among the distributed system
resources. This layer is decomposed into three sublayers: network type,
communication protocols, and network interfaces.

• Distributed system architecture and services layer. This layer represents
the designer’s and system manager’s view of the system. SAS layer
defines the structure and architecture and the system services (distrib-
uted file system, concurrency control, redundancy management, load
sharing and balancing, security service, etc.) that must be supported by
the distributed system in order to provide a single-image computing
system.

• Distributed computing paradigms layer. This layer represents the pro-
grammer (user) perception of the distributed system. This layer focuses
on the programming paradigms that can be used to develop distributed
applications. Distributed computing paradigms can be broadly charac-
terized based on the computation and communication models. Parallel
and distributed computations can be described in terms of two para-
digms: functional parallel and data parallel paradigms. In functional par-
allel paradigm, the computations are divided into distinct functions which
are then assigned to different computers. In data parallel paradigm, all

DISTRIBUTED SYSTEM DESIGN FRAMEWORK 7

Distributed Computing Paradigms

System Architecture and Services (SAS)

Computer Network and Protocols

Computation Models

Architecture Models

Network Networks Communication Protocols

System-Level Services

Communication Models

Functional Parallel Data Parallel Message Passing Shared Memory

Fig. 1.2 Distributed system design framework.

the computers run the same program, the same program multiple data
(SPMD) stream, but each computer operates on different data streams.
One can also characterize parallel and distributed computing based on
the technique used for intertask communications into two main models:
message-passing and distributed shared memory models. In message
passing, tasks communicate with each other by messages, while in dis-
tributed shared memory, they communicate by reading/writing to a global
shared address space.

The primary objective of this book is to provide a comprehensive study of
the software tools and environments that have been used to support parallel
and distributed computing systems. We highlight the main software tools and
technologies proposed or being used to implement the functionalities of the
SAS and DCP layers.

REFERENCES AND FURTHER READING

1. S. Mullender, Distributed Systems, Addison-Wesley, Reading, MA, 1989.
2. S. Mullender, Distributed Systems, 2nd ed., Addison-Wesley, Reading, MA, 1993.
3. Patterson and J. Hennessy, Computer Organization Design:The Hardware/Software

Interface, Morgan Kaufmann, San Francisco, 1994.
4. B. H. Liebowitz and J. H. Carson, Multiple Processor Systems for Real-Time Appli-

cations, Prentice Hall, Upper Saddle River, NJ, 1985.
5. A. Umar, Distributed Computing, Prentice Hall, Upper Saddle River, NJ, 1993.
6. P. H. Enslow, What is a “Distributed” data processing system? IEEE Computer,

January 1978.
7. L. Kleinrock, Distributed systems, Communications of the ACM, November 1985.
8. H. Lorin, Aspects of Distributed Computer Systems, Wiley, New York, 1980.
9. A. S. Tannenbaum, Modern Operating Systems, Prentice Hall, Upper Saddle River,

NJ, 1992.
10. ANSA Reference Manual Release 0.03 (draft), Alvey Advanced Network Systems

Architectures Project, Cambridge, 1997.
11. G. Bell, Ultracomputer a teraflop before its time, Communications of the ACM, pp.

27–47, August 1992.
12. A. Geist, PVM 3 User’s Guide and Reference Manual, Oak Ridge National Labo-

ratory, Oak Ridge, TN, 1993.
13. K. Birman and K. Marzullo, ISIS and the META Project, Sun Technology, Summer

1989.
14. K. Birman et al., ISIS User Guide and Reference Manual, Isis Distributed Systems,

Inc., Ithaca, NY, 1992.
15. J. D. Spragins, J. L. Hammond, and K. Pawlikowski, Telecommunications Protocols

and Design, Addison-Wesley, Reading, MA, 1991.
16. D. R. McGlynn, Distributed Processing and Data Communications, Wiley, New

York, 1978.

8 PARALLEL AND DISTRIBUTED COMPUTING

17. C. B. Tashenberg, Design and Implementation of Distributed-Processing Systems,
American Management Associations, 1984.

18. K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, New York, 1984.

19. F. Halsall, Data Communications, Computer Networks and Open Systems, 3rd ed.,
Addison-Wesley, Reading, MA, 1992.

20. A. Danthine and O. Spaniol, High Performance Networking, IV, International Fed-
eration for Information Processing, 1992.

21. U. M. Borghoff, Catalog of Distributed File/Operating Systems, Springer-Verlag,
New York, 1992.

22. T. F. LaPorta and M. Schwartz, Architectures, features, and implementations of
high-speed transport protocols, IEEE Network, May 1991.

23. H. T. Kung, Gigabit local area networks: a systems perspective, IEEE Communi-
cations, April 1992.

24. D. E. Comer, Internetworking with TCP/IP, Vol. I, Prentice Hall, Upper Saddle
River, NJ, 1991.

25. A. S. Tannenbaum, Computer Networks, Prentice Hall, Upper Saddle River, NJ,
1988.

26. G. F. Coulouris and J. Dollimore, Distributed Systems: Concepts and Design,
Addison-Wesley, Reading, MA, 1988.

27. J. A. Stankovic, A perspective on distributed computer systems, IEEE Transactions
on Computers, December 1984.

28. G.Andrews, Paradigms for interaction in distributed programs, Computing Surveys,
March 1991.

29. R. Chin and S. Chanson, Distributed object based programming systems, Comput-
ing Surveys, March 1991.

30. Random House College Dictionary, Random House, New York, 1975.
31. S. Shatz, Development of Distributed Software, Macmillan, New York, 1993.
32. N. Jain, M. Schwartz, and T. R. Bashkow, Transport protocol processing at GBPS

rates, Proceedings of the SIGCOMM Symposium on Communication Architecture
and Protocols, August 1990.

33. D. A. Reed and R. M. Fujimoto, Multicomputer Networks Message-Based Parallel
Processing, MIT Press, Cambridge, MA, 1987.

34. J. B. Maurice, The Design and Implementation of the UNIX Operating System,
Prentice Hall, Upper Saddle River, NJ, 1986.

35. Ross, An overview of FDDI: the fiber distributed data interface, IEEE Journal on
Selected Areas in Communications, pp. 1043–1051, September 1989.

36. C. Weitzman, Distributed Micro/minicomputer Systems: Structure, Implementa-
tion, and Application, Prentice Hall, Upper Saddle River, NJ, 1980.

37. W. D. Hillis and G. Steele, Data parallel algorithms, Communications of the ACM,
Vol. 29, p. 1170, 1986.

38. P. J. Hatcher and M. J. Quinn, Data-Parallel Programming on MIMD Computers,
MIT Press, Cambridge, MA, 1991.

39. M. Singhal, Advanced Concepts in Operating Systems: Distributed, Database, and
Multiprocessor Operating Systems, McGraw-Hill, New York, 1994.

REFERENCES AND FURTHER READING 9

40. IBM, Distributed Computing Environment: Understanding the Concepts, IBM Cor-
poration, Armonk, NY, 1993.

41. M. Stumm and S. Zhou, Algorithms implementing distributed shared memory,
Computer, Vol. 23, No. 5, pp. 54–64, May 1990.

42. B. Nitzberg and V. Lo, Distributed shared memory: a survey of issues and algo-
rithms, Computer, pp. 52–60, August 1991.

10 PARALLEL AND DISTRIBUTED COMPUTING

CHAPTER 2

Message-Passing Tools

S. HARIRI

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ

I. RA

Department of Computer Science and Engineering, University of Colorado at Denver,
Denver, CO

2.1 INTRODUCTION

Current parallel and distributed software tools vary with respect to the types
of applications supported, the computational and communication models sup-
ported, the implementation approach, and the computing environments sup-
ported. General-purpose message-passing tools such as p4 [11], MPI [46], PVM
[64], Madeleine [41], and NYNET Communication System (NCS) [53] provide
general-purpose communications primitives, while dedicated systems such as
BLACS (Basic Linear Algebra Communication System) [70] and TCGMSG
(Theoretical Chemistry Group Message-Passing System) [31] are tailored
to specific application domains. Furthermore, some systems provide higher
level abstractions of application-specific data structures (e.g., GRIDS [56],
CANOPY [22]). In addition, these software tools or programming environ-
ments differ in the computational model they provide to the user, such as
loosely synchronous data parallelism, functional parallelism, or shared
memory. Different tools use different implementation philosophies such as
remote procedure calls, interrupt handlers, active messages, or client/server-
based, which makes them more suitable for particular types of communica-
tion. Finally, certain systems (such as CMMD and NX/2) are tied to a specific
system, in contrast to portable systems such as PVM and MPI.

Given the number and diversity of available systems, the selection of a
particular software tool for an application development is nontrivial. Factors

11

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

governing such a selection include application characteristics and system spec-
ifications as well as the usability of a system and the user interface it provides.
In this chapter we present a general evaluation methodology that enables
users to better understand the capacity and limitations of these tools to
provide communications services, control, and synchronization primitives. We
also study and classify the current message-passing tools and the approaches
used to utilize high-speed networks effectively.

2.2 MESSAGE-PASSING TOOLS VERSUS
DISTRIBUTED SHARED MEMORY

There are two models of communication tools for network-centric applica-
tions: message passing and distributed shared memory. Before we discuss
message-passing tools, we briefly review distributed shared memory models
and compare them to message-passing models.

2.2.1 Distributed Shared Memory Model

Distributed computing can be broadly defined as “the execution of cooperat-
ing processes which communicate by exchanging messages across an infor-
mation network” [62]. Consequently, the main facility of distributed computing
is the message-exchanging system, which can be classified as the shared
memory model and the message-passing model.

As shown in Figure 2.1, the distributed shared memory model (DSM) pro-
vides a virtual address space that is shared among processes on loosely coupled
processors.That is, the DSM is basically an abstraction that integrates the local
memory of different machines in a networking environment into a single local
entity shared by cooperating processes executing on multiple sites. In the DSM
model, the programmer sees a single large address space and accesses data
elements within that address space much as he or she would on a single-
processor machine. However, the hardware and/or software is responsible for
generating any communication needed to bring data from remote memories.
The hardware approaches include MIT Alewife [3], Princeton Shrimp [20], and
KSR [35]. The software schemes include Mirage [43], TreadMarks [67], and
CRL [12].

In a distributed computing environment, the DSM implementation will
utilize the services of a message-passing communication library in order to
build the DSM model. This leads to poor performance compared to using the
low-level communication library directly.

2.2.2 Message-Passing Model

Message-passing libraries provide a more attractive approach than that of the
DSM programming model with respect to performance. Message-passing

12 MESSAGE-PASSING TOOLS

libraries provide Inter Process Communication (IPC) primitives that shield
programmers from handling issues related to complex network protocols and
heterogeneous platforms (Figure 2.2). This enables processes to communicate
by exchanging messages using send and receive primitives.

It is often perceived that the message-passing model is not as attractive for
a programmer as the shared memory model. The message-passing model
requires programmers to provide explicit message-passing calls in their codes;
it is analogous to programming in assembly language. In a message-passing
model, data cannot be shared—they must be copied. This can be a problem in
applications that require multiple operations across large amounts of data.
However, the message-passing model has the advantage that special mecha-
nisms are not necessary for controlling an application’s access to data, and
by avoiding using these mechanisms, the application performance can be
improved significantly. Thus, the most compelling reason for using a message-
passing model is its performance.

2.3 MESSAGE-PASSING SYSTEM: DESIRABLE FEATURES

The desirable functions that should be supported by any message-passing
system can be summarized as follows:

MESSAGE-PASSING SYSTEM: DESIRABLE FEATURES 13

Memory
Mapper

Process

Memory
Mapper

Process

Memory
Mapper

Process

One Address Space

Memory Modules

Processors

Computer Network

Fig. 2.1 Distributed shared memory model.

1. Simplicity. A message-passing system should be simple and easy to use.
2. Efficiency. A message-passing system should be as fast as possible.
3. Fault tolerance. A message-passing system should guarantee the delivery

of a message and be able to recover from the loss of a message.
4. Reliable group communication. Reliable group communication facilities

are important for many parallel and distributed applications. Some
required services for group communications are atomicity, ordered deliv-
ery, and survivability.

5. Adaptability. Not all applications require the same degree of quality of
service. A message-passing system should provide different levels or
types of services to meet the requirements of a wide range of applica-
tions. Furthermore, message-passing services should provide flexible and
adaptable communication services that can be changed dynamically at
runtime.

6. Security. A message-passing system should provide a secure end-to-end
communication service so that a message cannot be accessed by any

14 MESSAGE-PASSING TOOLS

Local memory

Process

Local memory

Process

Local memory

Process

Local memory

Process

Local memory

Process

Local memory

Process

Processors

Processors

Computer Network

Fig. 2.2 Message-passing model.

users other than those to whom it is addressed and the sender. It should
support authentication and encryption/decryption of messages.

7. Heterogeneity. Programmers should be free from handling issues related
to exchanging messages between heterogeneous computers. For
instance, data representations between heterogeneous platforms should
be performed transparently.

8. Portability. A message-passing system should be easily portable to most
computing platforms.

2.4 CLASSIFICATION OF MESSAGE-PASSING TOOLS

In this section we classify message-passing tools and discuss the techniques
used to improve their performance. Message-passing tools can be classified
based on application domain, programming model, underlying communication
model, portability, and heterogeneity (Figure 2.3).

• Application domain. This criterion classifies message-passing tools as
either general-purpose or application-specific, according to the targeted
application domain. General-purpose tools such as p4, PVM, and MPI
provide a wide range of communication primitives for implementing a
variety of applications, while some general-purpose tools such as ISIS
[10], Horus [55],Totem [45], and Transis [14] provide efficient group com-
munication services that are essential to implement reliable and fault-
tolerant distributed applications. On the other hand, dedicated systems
such as the Basic Linear Algebra Communication System (BLACS) and
the Theoretical Chemistry Group Message-Passing System (TCGMSG)
are tailored to specific application domains. Furthermore, some tools
provide higher-level abstractions of application-specific data structures
(e.g., GRIDS [56], CANOPY [22]).

• Programming model. Existing message-passing tools also differ with
respect to the programming models that are supported by the tool. The
programming model describes the mechanisms used to implement com-
putational tasks associated with a given application. These mechanisms
can be broadly classified into three models: data parallel, functional par-
allel, and object-oriented models. Most message-passing tools support a
data-parallel programming model such as ACS [1,2], MPI, p4, and PVM.
There are some message-passing tools, such as ACS, MPI, and PVM, that
offer functional programming. Agora [4] and OOMPI [50] were devel-
oped to support object-oriented programming models.

• Communication model. Message-passing tools can be grouped according
to the communication services used to exchange information between
tasks. Three communication models have been supported by message-
passing tools: client–server, peer-to-peer, and Active Messages. MPF [44]

CLASSIFICATION OF MESSAGE-PASSING TOOLS 15

and Remote Procedure Call (RPC) [49] are classified as client–server
models. Peer-to-peer message-passing tools include ACS, MPI, p4, and
PVM. Many message-passing tools are supported by this peer-to-peer
communication model. A new communication model, Active Messages
(AM) [19], reduces communication latency and response time. The tech-
niques used to exploit the high bandwidth offered by a high-speed net-
work are discussed in detail later in this section.

• Portability. Message-passing tools can be either portable to different com-
puting platforms or tied to a particular system. Message-passing tools
written by using standard communication interfaces are usually portable,

16 MESSAGE-PASSING TOOLS

Tools
Passing

Criteria of

Application Domain

Application-Oriented

General-Purpose

Programming
Model Supported

Communication

Portability

Adaptivity

Message-

Data Parallel

Functional
Parallel

Object-Oriented

Client–Server

Active Message

Portable

System-Dependent

Adaptive

Nonadaptive

ACS, MPI, p4, PVM

MPF, RPC

U–Net, AM

ACS, MPI, PVM

CMMD, NX

ACS, Madeleine

MPI, p4, PVM

MPI, PVM

ACS, MPI, p4, PVM

Agora, OOMPI

Model Peer–to–Peer ACS, MPI, p4, PVM

GRIDS, TCGMSG

Fig. 2.3 Classification of current message-passing tools.

but cannot fully utilize the benefits of the underlying communication
network. Such tools as CMMD [65] or NX/2 [54] are specially designed
to support message-passing for particular systems (e.g., CMMD for CM5
and NX/2 for Intel parallel computers). Since these tools use proprietary
communication hardware and software, their performance is better than
that of general-purpose message-passing tools.

• Adaptability. Supporting adaptability is becoming increasingly important
for implementing applications. ACS and Madeleine [41] were developed
to provide adaptable message-passing models that can adjust their com-
munication primitives to reflect changes in network traffics and computer
loads. In fact, most message-passing tools such as MPI, p4, and PVM do
not support adaptability.

2.4.1 Classification by Implementation

Message-passing tools can be classified based on the techniques used to
improve their performance. These techniques can be classified into two
categories (Figure 2.4): a hardware-based approach and a software-based
approach.

Hardware-Based Approach In the hardware-based approach, such as
Nectar [5], Afterburner [13], OSIRIS [15], Shrimp [20], Memory Channel [38],
and Parastation [69], research efforts have focused on building special hard-
ware to reduce communication latency and to achieve high throughput. The
developers of communication hardware develop device drivers and propri-
etary application programming interfaces (APIs) to access their communica-
tion hardware. By porting well-known programming interfaces (e.g., the BSD
socket) or standard message-passing libraries (e.g., MPI) into their imple-
mentations, existing applications written using these standards can achieve
high throughput. This approach is useful for building a high-performance
tightly coupled homogeneous workstation cluster. However, the use of special
communication hardware makes it difficult to port these implementations to
different computing platforms. Furthermore, this approach cannot be easily
adapted to support different schemes.

Software-Based Approach The main focus of the software-based
approach is either to incorporate special software techniques (e.g., deploying
adaptive techniques, multithreading, utilizing middle-ware services) into exist-
ing message-passing tools or to fine-tune the performance of critical parts of
the low-level communication interfaces (e.g., device driver, firmware codes of
the network adapter cards) for the existing high-speed networks (e.g., ATM,
Myrinet). This approach can be summarized as follows:

1. Multithreading. This has been proven to be an efficient technique to
overlap computations with communications or I/O operations and to

CLASSIFICATION OF MESSAGE-PASSING TOOLS 17

support asynchronous events in applications. The research efforts in this
category incorporate multithreading into existing message-passing tools
or develop a new message-passing tool using multithreading [39] tech-
niques. TPVM [21] is a multithreaded message-passing tool built on top
of PVM without making any changes in the original implementation.
LPVM [71] is an experimental PVM version that modifies the original
PVM implementation to make it thread-safe and then adds thread-
related functions. Chant [30] is an extension of Pthreads [47] that allows
threads in a distributed environment to communicate using message-
passing tools (e.g., MPI).

2. High-performance API. This technique is used to improve the perfor-
mance of message-passing tools by replacing standard communication
interfaces (e.g., the BSD Socket) used in existing message-passing tools
with high-performance communication interfaces (e.g., ATM API,

18 MESSAGE-PASSING TOOLS

Kernel

ACS

High-
Performance

API

Standard

Socket
Multi–
threading

Middle–
ware

Adaptive
Approach

Madeleine

Level

p4, PVM, MPI TPVM, Chant

Standard

Beowulf

Level
User

Fast Sockets

Message–Passing Schemes

PARMA Net*, GAMMA

U–Net/FE

Proprietary

Nexus, Panda

BIP, FM, HPAM
U–Net

HW–Based Approach

Nectar, SHRIMP, Memory Channel

SW–Based Approach

Fig. 2.4 Classification of message-passing schemes by implementation techniques.

Active Messages (AM), U-Net [18], Fast Message (FM) [52], Fast
Sockets [57], and NCS). These techniques can be grouped into two
groups based on the place where the high-performance interface is
implemented: kernel level and user level. In the kernel-level approach
the message-passing system is supported by an operating system (OS)
kernel with a set of low-level communication mechanisms. These kernel-
level techniques can be compatible with standard interfaces (e.g., Fast
Socket [57], Beowulf [7], PARMA [51]) or with proprietary interfaces
(e.g., GAMMA [26], Net* [48], U-Net/FE [17]). The user-level approach
is designed to improve performance by avoiding the invoking of system
calls. Currently developed message-passing systems with user-level tech-
niques are BIP [8], Fast Message(FM) [52], HPAM [40], and U-Net for
ATM [18].

3. Middleware. Another technique is to modify existing message-passing
tools so that they can utilize special middleware services (e.g., Panda [9],
Nexus [23]). This technique is used mainly for incorporating portability
and heterogeneity support into existing message-passing tools rather
than improving the performance of each system. The Nexus-based MPI
[24] and Panda-based PVM [58] implementations are examples of this
category.

2.5 OVERVIEW OF MESSAGE-PASSING TOOLS

2.5.1 Socket-Based Message Passing

The most popular and accepted standard for interprocess communication
(IPC) is the socket-based communication socket. Socket is a generalized net-
working capability introduced in 4.1cBSD and subsequently refined into their
current form with 4.2BSD [63]. Since socket allows communication between
two different processes that could be running on the same or different
machines, socket-based communication is widely developed for both UNIX
and PC Windows environments. For a programmer, a socket looks and behaves
much like a low-level file descriptor. Thus, commands such as read() and
write() work with sockets in the same way as they do with files and pipes.There
are two different types of sockets: (1) connection- or stream-oriented, and (2)
connectionless or datagram. In general, the connection-oriented socket is used
with Transfer Control Protocol (TCP), and the connectionless socket is used
with User Datagram Protocol (UDP).

For any process to communicate with another process, a socket should be
created in each communicating process by invoking the socket() system call,
which contains the type of communicating protocol and socket types (e.g.,
stream socket, datagram socket, raw socket, etc.). The socket() system call
returns a descriptor that we can use for subsequent system calls. Once a socket
has been created, the servers or clients should bind their well-known addresses

OVERVIEW OF MESSAGE-PASSING TOOLS 19

or specific addresses into the socket using the bind() system call to identify
themselves.

Sockets can be compatible with almost every computing platform and use
the underlying networks directly without injecting extra overhead between the
application layer and networks, which is faster than other message-passing
tools that are implemented on top of the socket API. However, socket pro-
gramming does not have a rich set of communication primitives and cannot
be used easily by application programmers.

2.5.2 p4

The Argonne National Laboratory developed p4 [11] as a portable library of
C and Fortran subroutines for programming parallel computers. It includes
features to explicit parallel programming of shared memory machines and net-
worked workstations via message passing. p4 is a library of routines designed
to express a wide variety of parallel algorithms.

The main feature of p4 is its support for multiple models of parallel
and distributed computations. For the shared memory model of parallel
computation, p4 provides a set of useful monitors for coordinating access to
shared data. Users of p4 can also construct the monitors using p4 primitives.
For the distributed memory model, p4 provides message-passing func-
tions such as typed send and receive operations, global operations, and the
creation of processes according to a text file describing group and process
structures.

It is easy to port p4 to different computing platforms and to run tasks in
heterogeneous computing environments. To support this, the process manage-
ment of p4 is essential. In p4, there are hierarchies between the processes of
master and slave when they are created. One of the limitations of p4 is due to
the static creation of processes. In addition, buffer allocation and management
are complicated and p4 is not user friendly.

2.5.3 Parallel Virtual Machine

The Parallel Virtual Machine (PVM) was developed as a software package to
support an ongoing heterogeneous network-computing research project
involving Oak Ridge National Laboratory and several research institutions
[27]. PVM provides users with an integrated set of software tools and libraries
that enables a collection of heterogeneous computer systems to be viewed as
a single parallel virtual machine. It transparently handles all message-passing
routing, data conversion, and tasks scheduling across a network of incom-
patible computer architectures.

PVM runs efficiently on most distributed systems, as well as on shared
memory systems and massively parallel processors (MPPs). In PVM, users
decompose the application into separate tasks and write their applications as
collections of cooperating tasks. A PVM application runs on a virtual machine

20 MESSAGE-PASSING TOOLS

created by the PVM environment, which starts and terminates tasks and pro-
vides communication and synchronization services between tasks.

The PVM message-passing primitives are oriented toward heterogeneous
operations, involving strongly typed constructs for buffering and transmission.
Communication constructs include those for sending and receiving data struc-
tures, as well as high-level primitives such as broadcast, barrier synchroniza-
tion, and global sum. The interprocess communications in PVM can be done
either by using message passing or shared memory similar to the UNIX
shared memory. To support shared memory primitives, PVM must emulate a
shared memory model using PVM message-passing primitives, which leads to
high overhead for its DSM primitives. PVM supports group communication
operations such as dynamic group create, join, and leave operation. PVM is
widely used in heterogeneous distributed computing environments because of
its efficiency in handling heterogeneity, scalability, fault tolerance, and load
balancing.

2.5.4 Message-Passing Interface

Unlike other message-passing tools, the first version of MPI was completed in
April 1994 by a consortium of more than 40 advisory members in high-
performance parallel and distributed computing. This effort has resulted in
defining both the syntax and semantics of a core of message-passing library
routines that is useful for a wide range of users and can be efficiently imple-
mented on a wide range of MPPs. The main advantages of establishing a
message-passing standard are portability and ease of use. In a distributed
memory environment in which the higher-level routines and/or abstractions are
built upon lower-level message-passing routines, the benefits of standardization
are particularly apparent. Furthermore, the definition of a message-passing
standard provides vendors with a set of routines that they can implement
efficiently or, in some cases, provides hardware support.

MPI provides a uniform high-level interface to the underlying hardware,
allowing programmers to write portable programs without compromising effi-
ciency and functionality. The main features of MPI are:

1. Communication services. MPI has a large set of collective communica-
tion services and point-to-point communication services. In addition, it
provides operations for creating and managing groups in a scalable way.

2. Full asynchronous communications.
3. User-defined data types. MPI has an extremely powerful and flexible

mechanism for describing data movement routines by both predefined
and derived data types.

4. Well-supported MPP and clusters. A virtual topology reflecting the com-
munication pattern of the application can be associated with a group of
processes. MPI provides a high-level abstraction for the message-passing

OVERVIEW OF MESSAGE-PASSING TOOLS 21

topology such that general application topologies are specified by a
graph, and each communication process is connected by an arc.

2.5.5 Nexus

Nexus consists of a portable runtime system and communication libraries for
task parallel programming languages [23]. It was developed to provide inte-
grated multiple threads of control, dynamic processes management, dynamic
address space creation, a global memory model via interprocessor references,
and asynchronous events. It also supports heterogeneity at multiple levels,
allowing a single computation to utilize different programming languages,
executables, processors, and network protocols. The core basic abstractions
provided by Nexus are as follows:

• Nodes. In the Nexus environment, a node represents a physical process-
ing resource. It provides a set of routines to create nodes on named com-
putational resources. A node specifies only a computational resource and
does not imply any specific communication medium or protocol.

• Contexts. A context is an object on which computations run. It contains
an executable code and one or more data segments to a node. Nexus sup-
ports the separation of context creation and code execution.

• Threads. In Nexus, a computation is done in one or more threads of
control. Nexus creates a thread in two different modes: within the same
context and in a different context, and provides a routine for creating
threads within the context of the currently executing thread.

• Global pointers. Nexus creates any address within a context that allows
contexts to move between them and intercontext reference. Global
pointers are used in conjunction with remote service requests to enable
actions to take place on a different context.

• Remote service requests. In Nexus, a thread can invoke an action in a
remote context via a remote service request. The result of the remote
service request is returned by a handler that is in the context pointed to
by a global pointer.

2.5.6 Madeleine I and II

Madeleine I [41] has been implemented as an RPC-based multithreaded
message-passing environment by Laboratoire de l’Informatique du Paral-
lélisme in 1999. It aims at providing both efficient and portable interprocess
communications, and consists of two layers:

• Portability layer: an interface with network protocol such as TCP and
Virtual Interface Architecture (VIA) [68]

22 MESSAGE-PASSING TOOLS

• RPC layer: a higher layer that provides advanced generic communication
facilities to optimize RPC operations

Madeleine II [42] is an adaptive multiprotocol extension of the Madeleine
I portable communication interface. It provides multiple network protocols
such as VIA, Scalable Coherent Interface (SCI) [61], TCP, MPI, and mecha-
nisms to dynamically select the most appropriate transfer method for a given
network protocol according to various parameters, such as data size or respon-
siveness to user requirements.Although the Madeleine is a portable and adap-
tive message-passing tool, it does not have rich communication primitives such
as group communication primitives.

2.5.7 Active Messages

Standard asynchronous message passing is so inefficient on commercial par-
allel processors that except for very large messages, applications achieve little
overlap of communication and computation in practice.This performance defi-
ciency is due primarily to message startup costs. Message-passing systems
typically have a great deal of overhead, most significantly as a result of
message copying from the user memory to communication buffers, and back.

Active Messages [19] is designed to overcome those types of communica-
tion overhead and achieve high performance in large-scale multiprocessors.
To reduce the time span from when a message starts sending until an action
is performed on the destination processor, AM messages contain the address
of the handler to be invoked on the message.This handler extracts the message
from the network in an application-specific way. Thus, the message can be
processed immediately or it can be integrated into an ongoing computation.

The performance measurement of AM on the nCube/2 shows that active
messages perform slightly over the minimum suggested by hardware, which is
an order of magnitude lower than existing messaging systems.There have been
several efforts to develop message-passing tools based on the Active Message
model, namely, UNet-ATM [16], Generic Active Messages (GAM) [25], and
HPAM [40].

2.6 ACS

ACS [1,2] (Adaptive Communication Systems) is a multithreaded message-
passing tool developed at Syracuse University, University of Arizona, and
University of Colorado at Denver that provides application programmers
with multithreading (e.g., thread synchronization, thread management), and
communication services (e.g., point-to-point communication, group communi-
cation, synchronization). Since ACS is developed as a proof-of-concept
message-passing tool, it does not provide the full capabilities required if it were
to be used as a programming environment. However, we chose ACS as one of

ACS 23

the tools for evaluation because the implementation philosophy is unique and
provides a flexible environment that is not supported by other message-
passing tools.

ACS is architecturally compatible with the ATM technology, where both
control (e.g., signaling or management) and data transfers are separated and
each connection can be configured to meet the quality of service (QoS)
requirements of that connection. Consequently, the ACS architecture is
designed to support various classes of applications by providing the following
architectural supports.

2.6.1 Multithread Communications Services

The advantage of using a thread-based programming paradigm is that it
reduces the cost of context switching, provides efficient support for fine-
grained applications, and allows the overlapping of computation and commu-
nication. Overlapping computation and communication is an important
feature in network-based computing. In wide area network (WAN)-based dis-
tributed computing, the propagation delay (limited by the speed of light) is
several orders of magnitude greater than the time it takes to actually transmit
the data [34]. Therefore, the transmission time of a small file—1 kilobyte
(kB)—is insignificant when compared to the propagation delay. Reducing
the impact of the propagation delay requires that we modify the structure of
computations so that they overlap communications.

2.6.2 Separation of Data and Control Functions

In high-speed networks very little time is available to decode, process, and
store incoming packets at a gigabit per second rate. Also, the bandwidth pro-
vided by high-speed networks is generally enough to be allocated to multiple
connections. Therefore, the software architectures of communication systems
for highspeed networks should be designed to exploit these requirements fully.
The communication process can be divided into two major functions: control
and data. The control functions are responsible for establishing and main-
taining connections to provide efficient and reliable communication links. The
data-transferring functions are responsible for reliably sending and receiving
data. In general, these two functions cannot run simultaneously, because they
were designed to share the communication link with each other. As Thekkath,
Levy, and Lazowska did for distributed operating systems [66], we designate
a channel for control and management and a data channel, and operate them
concurrently. Thus, by separating control/management and data, we accom-
plish better performance, as will be shown later. What follows is a detailed
description of the two planes.

Control Management Plane This plane provides the appropriate control
and management functions, including error control (EC), flow control (FC),

24 MESSAGE-PASSING TOOLS

fault tolerance control (FTC), QoS control (QC), security control (SC),
connection control management (CCM), and application control management
(ACM). For each application, ACS establishes one or more connections
that meet the application requirements in terms of the type of flow control
mechanism (rate-based or window-based), error control (parity check field or
selective retransmission), connection control (connection oriented or connec-
tionless service), fault tolerance, security, and the type of functions required
to control send/receive and multicast operations. We use multithreaded agents
to implement the control mechanisms selected for any given application at
runtime. For instance, in a collaborative environment that connects nodes
using wireless and wired networks, the nodes communicating by using wire-
less networks will select the appropriate flow and error control mechanisms
for wireless networks, while the nodes communicating over wired networks
use different control mechanisms. The ACS CMP provides all the capabilities
required to select these control management functions at runtime in order to
achieve this adaptability.

Data Communication Plane This plane provides a rich set of communica-
tion services that allows applications or tasks to cooperate and exchange infor-
mation. These communication services include the following:

• Point-to-point communication primitives that are responsible for data
transmission between two nodes. The attributes of these primitives can
be tailored to meet the application requirements by providing various
types of communication primitives: blocking versus nonblocking,
buffered versus nonbuffered.

• Group communication services (e.g., multicast, broadcast, gathering/
scattering) that can be implemented using different algorithms. For
example, by selecting the appropriate multicast algorithm for a particu-
lar application (rooted tree, spanning tree, etc.), the cost of group com-
munications can be reduced significantly and thus improve the
application performance.

• Multiple communication interfaces enable applications to choose the
appropriate communication technology when there are several types,
depending upon availability and capability. In this architecture, three
types of communication interface are supported:
• Socket communication interface (SCI). SCI is provided mainly for

achieving high portability over a heterogeneous network of computers
(e.g., workstations, PCs, parallel computers).

• ATM communication interface (ACI). ACI provides applications with
more flexibility to fully exploit the high speed and functionality of ATM
networks. Since ATM API does not define flow control and error con-
trol schemes, programmers can select the appropriate communication

ACS 25

services according to the QoS, quality of protection (QoP), and quality
of fault tolerance (QoF) requirements of the applications.

• Wireless communication interface (WCI). WCI offers a wireless access
backbone network whose quality is close to that of wired access, thus
extending broadband services to mobile users.

Providing different implementation mechanisms that can be selected
dynamically at runtime will lead to a significant improvement in application
performance, security, and fault tolerance. In a multimedia collaborative appli-
cation (videoconferencing) over a wide area network where multiple end
nodes and intermediate nodes cooperate, reliable multicasting service can be
supported by selecting the appropriate multicast algorithm suitable for the
application requirements.

2.6.3 Programmable Communication, Control, and
Management Service

Each network-centric application requires different schemes for flow control,
error control, and multicasting algorithms. One of the main goals of the adap-
tive communication architecture is to provide an efficient modular approach
to support these requirements dynamically. Thus the proposed ACS architec-
ture should be able to support multiple flow control (e.g., window-based,
credit-based, or rate-based), error control (e.g., go-back N or selective repeat),
and multicasting algorithms (e.g., repetitive send/receive or a multicast span-
ning tree) within the control plane to meet the QoS requirements of a wide
range of network-centric applications. Each algorithm is implemented as a
thread, and programmers select the appropriate control thread that meets the
performance and QoS requirements of a given network-centric application at
runtime. In ACS, the application requirements can be represented in terms
of QoS, QoP, and QoF requirements. Figure 2.5 illustrates an example of
how ACS dynamically build a protocol for each connection and adaptively
manages the application execution environment when several end systems
that are connected through different network technologies (wired ATM and
wireless) with different capabilities and performance can communicate with
each other collaboratively. Figure 2.5 shows two sessions that are configured
with different parameters. Session 1 is a connection over a wired network that
is relatively more reliable and has higher bandwidth, and session 2 is a con-
nection on a wireless network that is less secure and has lower bandwidth than
that of the wired network. Hence, these sessions need different protocol mech-
anisms to implement their flow and error control. For example, the protocol
for session 1 can be built by invoking the following ACS primitives:

• ACS_add_agent (dest, session, &agent, selective_repeat_error_control)
• ACS_add_agent (dest, session, &agent, credit_based_flow_control)

26 MESSAGE-PASSING TOOLS

The advantages of using this approach to build a specific protocol is that the
established connection does not have to be disconnected to change the pro-
tocol attributes during execution. If the user wants to use a different com-
pression algorithm to reduce the amount of data transmitted (e.g., increase the
compression level over session 2 since it is using a low-bandwidth wireless
network) the user can invoke the appropriate ACS primitive. For example, the
user can change the Qos, QoP, and QoF requirements of any open session by
invoking the corresponding ACS primitives:

• int ACS_QoS_change (int dest, int session, QoS_t qos)
• int ACS_QoP_change (int dest, int session, QoP_t qop)
• int ACS_QoF_change (int dest, int session, QoF_t qof)

ACS 27

Wired ATM
Communication

Interface

Wireless
Communication

Interface

R=Recv, S=Send, EC=Error Control, FC=Flow Control
SC=Security Control, CC=Compression Control

Application Programming Interface Application Programming InterfaceApplication Programming Interface

Participant 1
Participant 3

Participant 2

S

R

FC

EC

FC

EC FC FC

EC
EC

SC

CC
CC

SC

S S R

R R S

Data Connection

Control &
Management Connection

Data Connection

Control &
Management Connection

Session 1
Session 2

Session 1 Session 2

Fig. 2.5 Adapting to an application execution environment.

2.6.4 Multiple Communication Interfaces

Some parallel and distributed applications demand low-latency and high-
throughput communication services to meet their QoS requirements, whereas
others need portability across many computing platforms more than perfor-
mance. Most message-passing systems cannot dynamically support a wide
range of QoS requirements because their protocol architectures and commu-
nication interfaces are fixed. The proposed adaptive communication architec-
ture is flexible and can be used to build a large heterogeneous distributed
computing environment that consists of several high-speed local clusters. In
the environment shown in Figure 2.6, each homogeneous local cluster can be
configured to use the appropriate application communication interface that is
supported by the underlying computing platforms and is appropriate for the
computations running on the that cluster. In addition, each cluster can be inter-
connected by using the socket interface which is supported by all the clusters.
For example, the user can open a session within cluster 1 that uses the
Ethernet connection interface [socket interface (SCI)], a session within
cluster 2 that uses the ATM communication interface (ACI), and a session
within cluster 3 that is connected by wireless communication interface (WCI).

28 MESSAGE-PASSING TOOLS

Communication
Socket

Homogeneous Ethernet Cluster

ATM Communication Cluster
Wireless Communication Cluster

Data

Control & Management

Fig. 2.6 Use of multiple communication interfaces in ACS.

The connection between clusters is set up with the SCI. The syntax for defin-
ing a session in ACS is as follow:

Session_ID ACS_open_session
(int dest, Comm_t comm, QoS_t qos, Sec_t qop,
Fault_t qof)

where dest denotes the destination machine, comm denotes communication
interface type (e.g., SCI,ACI,WCI), qos, qop, and qof denote quality of service,
security, and fault tolerance requirements for an application, respectively.

Once a session is established, an ACS application can exchange messages
according to the session attributes specified by session-open primitives. The
syntax for ACS send/receive primitives is:

• int ACS_send(int dest, int dest_id, int session, char *buf, int len, int type)
• int ACS_recv(int *src, int *src_id, int *session, char **buf, int len, int *type)

The facility allows ACS to improve the overall performance of an applica-
tion because ACS can optimize the performance of local applications with the
best available network infrastructure in each cluster.

2.6.5 Adaptive Group Communication Services

ACS allows the dynamic formation of groups so that any process can join
and/or leave a group dynamically. All the communications related to a group
are handled by a single group server.Within each group there is a single group
server that is responsible for intergroup and multicasting communications.The
default implementation of ACS multicasting is a tree-based protocol, which is
more efficient than repetitive techniques for large group sizes. The ACS archi-
tecture, which separates the data and control/management transfer, allows
multicasting operations to be implemented efficiently by using control con-
nections to transfer status information (e.g., membership change, acknowl-
edgment to maintain reliability). This separation optimizes the data path and
improves the performance of ACS applications. To support adaptive group
communication services, ACS use two types of algorithms: resource aware
scheduling algorithm (RAA) and application aware scheduling algorithm
(AAA). RAA uses network characteristics and computing resource powers to
build the appropriate multicasting algorithm; AAA uses size and pattern of
group communications to set up a group communication schedule.

2.7 EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the performances of the ACS primitives and those of three dif-
ferent message-passing tools (p4, PVM, and MPI) and evaluate them from two

EXPERIMENTAL RESULTS AND ANALYSIS 29

different perspectives: primitives performance and applications performance.
All experiments were conducted over two different computing platforms
(SUN workstations running Solaris and IBM workstations running AIX 4.1)
interconnected by an ATM network and Ethernet. In all measurements, we
used the ACS version implemented over the socket interface. For the PVM
benchmarking we used the PVM direct mode, where the direct TCP connec-
tion is made between two endpoints. The MPICH [28] was used to evaluate
the performance of MPI.

2.7.1 Experimental Environment

The current ACS has been implemented and tested at the HPDC laboratory
and Sun workstation clusters at Syracuse University. The HPDC laboratory
has been constructed to provide cutting-edge communication system testing
environments and to encourage faculties and students to research and develop
noble technologies in high-performance and distributed computing and high-
speed communication system research fields. The HPDC laboratory is config-
ured with an IBM 8260 ATM switch [32] and an IBM 8285 workgroup ATM
switch [33]. The IBM 8260 ATM switch offers twelve 155-Mbps multiple ATM
connections to Sun workstations and PCs via UNI 3.1 [6] and classical IP over
ATM standards [36]. The IBM 8285 ATM concentrator is connected to IBM
8260 ATM switch and provides twelve 25-Mbps ATM connections to PCs. The
current configuration of the HPDC laboratory is shown in Figure 2.7. There
are several Sun workstation clusters in the Department of Electrical Engi-
neering and Computer Science at Syracuse University. They are located in dif-
ferent rooms, floors, and buildings and are connected via 10-Mbps Ethernet
(Figure 2.8). Most of the machines are Sun Ultra 5 workstations, some are Sun
SPARCs, some are Sun SPARC classic, and there are some Sun Ultra 4 work-
stations. With both the HPDC laboratory and the Sun workstation clusters,
we measured the performance of ACS, p4, PVM, and MPI in terms of their
primitives and applications. We present and discuss experimental results in
the following sections.

2.7.2 Performance of Primitives

We benchmark the performance of the basic communication primitives pro-
vided by each message-passing tool as point-to-point communication primi-
tives (e.g., send and receive) and group communication primitives (e.g.,
broadcast).

Point-to-Point Communication Performance In order to compare the
performance of point-to-point communication primitives, the round-trip per-
formance is measured using an echo program. In this echo program the client
transmits a message of proper size that is transmitted back once it is received
at the receiver side. Figures 2.9 and 2.11 show the performance of point-to-

30 MESSAGE-PASSING TOOLS

point (send/receive) communication primitives of four message-passing tools
for different messages of sizes up to 64kB when they are measured using dif-
ferent computing platform (i.e., Sun Solaris workstations to IBM AIX work-
stations). To measure the round-trip time, the timer starts in the client code
before transmitting a message and stops after receiving the message back. The
difference in time is used to calculate the round-trip time of the correspond-
ing message size. The time was averaged over 100 iterations after discarding
the best and worst timings. As we can see from Figures 2.9 and 2.11, ACS out-
performs other message-passing tools in any message sizes, while p4 has the
best performance on the IBM AIX platform (Figure 2.10). For message size
smaller than 1kB, the performance of all four tools is the same, but the per-
formance of p4 on the Sun Solaris platform and the performance of PVM on
the IBM AIX get worse as the message size gets bigger.

Consequently, it should be noted that the performance of send/receive
primitives of each message-passing tool varies according to the computing
platform (e.g., hardware or kernel architecture of the operating system) on
which the tools are implemented.ACS gives a good performance on either the
same computing platform or on a different platform. PVM performs worst
on the IBM AIX platform, but shows performance comparable to ACS on
both the Sun Solaris platform and the heterogeneous environment. The

EXPERIMENTAL RESULTS AND ANALYSIS 31

IBM 8285

IBM PowerPCIBM PowerPCIBM PowerPCIBM PowerPC

IBM RS6000

Windows 95Windows 95Windows NT

IBM 8285
ATM Switch

ATM Switch
IBM 8260

IBM RS6000

Windows NT
PCPC PC PC

Ethernet (10 Mbps)

25 Mbps

155 Mbps

SUN W/SSUN W/SSUN W/SSUN W/S

IBM RS6000 IBM RS6000
155 Mbps

155 Mbps

Fig. 2.7 HPDC laboratory at Syracuse University.

R
oo

m
 B

 -
 C

lu
st

er
 G

al
le

ry
R

oo
m

 A
 -

 C
lu

st
er

 F
ou

nd
er

ls
t

F
lo

or
 C

lu
st

er
 Z

oo

3r
d

F
lo

or

ST
C

 B
ui

ld
in

g

M
A

T
 L

ab
 a

t
L

in
k

H
al

l B
ui

ld
in

g

H
ub

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

H
ub

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/ S

SU
N

 W
/S

H
ub

SU
N

 W
/S

SU
N

 W
/S

H
ub

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

H
ub

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

H
ub

H
ub

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 W
/S

SU
N

 S
er

ve
r

SU
N

 S
er

ve
r

F
ig

.2
.8

Su
n

w
or

ks
ta

ti
on

 c
lu

st
er

 a
t

Sy
ra

cu
se

 U
ni

ve
rs

it
y.

32

EXPERIMENTAL RESULTS AND ANALYSIS 33

0

10

20

30

40

50

60

70

1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

ACS
P4
MPI

PVM

Fig. 2.9 Point-to-point communication performance in a Sun cluster environment.

0

5

10

15

20

25

1 1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

ACS
P4
MPI

PVM

Fig. 2.10 Point-to-point communication performance in an IBM cluster environment.

performance of p4 was worst on the Sun workstation running Solaris. MPI and
p4 give a better performance on the IBM workstation running AIX than on
either the Sun workstation running Solaris or the heterogeneous machines
running different operating systems. This implies that the performance of
applications written by using these two tools over the Sun Solaris platform
and the heterogeneous environment will be inferior to that written of appli-
cations using other message-passing tools.

Group Communication Performance Figures 2.12 to 2.18 show the per-
formance of broadcasting primitives [i.e., ACS_mcast(), p4_broadcast(),
pvm_mcast(), and MPI_Bcast()] over an Ethernet network for message sizes
from 1 byte to 64kB. The group size varies from 2 to 16, and up to 16 Sun
Solaris workstations were used for measuring the timings. As we can see from
Figures 2.12 to 2.18, the execution time of each broadcasting primitive
increases linearly for small message sizes up to 1kB but shows different
patterns when we increase message and group size. The ACS primitive
[ACS_mcast()] gives the best performance for various message and group
sizes. Furthermore, the ACS_mcast() primitive shows its broadcasting time is
smoothly increased as we increase size of group over eight members and
message size over 4kB.ACS can outperform when the group size and message
get larger because the ACS_mcast() primitive where most of the information

34 MESSAGE-PASSING TOOLS

0

50

100

150

200

250

300

350

1 1K 4K 8K 16K 32K 64K

T
im

e
(m

s)

Message Size (Bytes)

ACS
P4
MPI

PVM

Fig. 2.11 Point-to-point communication performance over ATM in a heterogeneous
environment.

EXPERIMENTAL RESULTS AND ANALYSIS 35

0

1

2

3

4

5

6

7

8

9

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.12 Comparison of broadcasting performance (message = 1 byte).

0

5

10

15

20

25

30

35

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.13 Comparison of broadcasting performance (message = 1kB).

36 MESSAGE-PASSING TOOLS

0

20

40

60

80

100

120

140

160

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.14 Comparison of broadcasting performance (message = 4kB).

0

20

40

60

80

100

120

140

160

180

200

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.15 Comparison of broadcasting performance (message = 8kB).

EXPERIMENTAL RESULTS AND ANALYSIS 37

0

50

100

150

200

250

300

350

400

450

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.16 Comparison of broadcasting performance (message = 16kB).

0

100

200

300

400

500

600

700

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.17 Comparison of broadcasting performance (message = 32kB).

for performing group communications (e.g., set up binary tree, set up routing
information) is set up in advance by using separate connections, and the start-
up time for the broadcasting operations is very small. Also, the tree-based
broadcasting improves performance as the group size gets bigger. Conse-
quently, the larger the message and group sizes, the bigger the difference of
execution time between ACS and other tools.The performance of the p4 prim-
itive (p4_broadcast()) is comparably good except for the message size of
32kB for which the p4 performance rapidly gets worse as we increase the
group size. One reason for this is that p4 shows a poorer performance for
point-to-point communication with large message sizes than that of the Sun
Solaris platform, as shown in Figure 2.9. The performance of the PVM primi-
tive [pvm_mcast()] is not very good for small message sizes, and as the message
and group size increase, the performance improves very little. In the
pvm_mcast(), where the broadcasting operation is implemented by invoking
a send primitive repeatedly, the performance is expected to increase linearly
as we increase the group size. Moreover, pvm_mcast() constructs a multicast-
ing group internally for every invocation of the primitive, which results in a
high start-up time when transmitting small messages, as shown in Figures 2.12
and 2.13 (message size 1 byte and 1kB). The MPI primitive [MPI_Bcast()]
shows a performance comparable to that of ACS and p4 for relatively small
message sizes (up to 4kB) and small group sizes (up to eight group members),
but it gets rapidly worse when it is running for large message sizes (over 8kB)

38 MESSAGE-PASSING TOOLS

0

200

400

600

800

1000

1200

1400

2 4 8 16

T
im

e
(m

s)

Group Size

ACS
P4
MPI

PVM

Fig. 2.18 Comparison of broadcasting performance (message = 64kB).

and large group sizes (over six members). This is because MPI and p4 perform
their broadcasting by calling a point-to-point primitive repeatedly, which is not
scalable.

2.7.3 Application Performance Benchmarking

We evaluate message-passing tools by comparing the execution time of four
applications [i.e., fast Fourier transform (FFT), Joint Photographic Experts
Group (JPEG) compression/decompression, parallel sorting with regular sam-
pling (PSRS), back-propagation neural network (BPNN) learning, voting] that
are commonly used in parallel and distributed systems. Most of the applica-
tion results shown in Figures 2.19 to 2.28 are almost identical to the results of
primitive performances shown in Figures 2.9 to 2.18. This means that the tool
with the best performance in executing its communication primitives will also
give the best performance results for a large number of network-centric appli-
cations. For example, ACS applications outperform other implementations,
regardless of the platform used. For applications that require many commu-
nications with small messages (e.g., FFT), the performance improvement is
modest; for applications with a large amount of data exchange, the perfor-
mance improvement is greater (e.g., JPEG, PSRS). Furthermore, for applica-
tions where a lot of broadcasting with a large amount of data is performed

EXPERIMENTAL RESULTS AND ANALYSIS 39

0

200

400

600

800

1000

1200

4 8

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Workstations

ACS
MPI
P4

PVM

Fig. 2.19 Back-propagation neural network performance in a heterogeneous
environment.

40 MESSAGE-PASSING TOOLS

0

100

200

300

400

500

600

8 16

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Workstations

ACS
MPI
P4

PVM

Fig. 2.20 Fast Fourier transform performance in a heterogeneous environment.

0

500

1000

1500

2000

4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Workstations

ACS
MPI
P4

PVM

Fig. 2.21 JPEG performance in a heterogeneous environment.

EXPERIMENTAL RESULTS AND ANALYSIS 41

0

500

1000

1500

2000

2500

8 16

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Workstations

ACS
MPI
P4

PVM

Fig. 2.22 Parallel sorting performance in a heterogeneous environment.

0

10

20

30

40

50

60

70

80

4 8

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Workstations

ACS
P4

PVM

Fig. 2.23 Voting performance in a heterogeneous environment.

42 MESSAGE-PASSING TOOLS

0

100

200

300

400

500

SUN IBM

E
xe

cu
tio

n
T

im
e

(s
ec

)

Workstation Platform

ACS
MPI
P4

PVM

Fig. 2.24 Back-propagation neural network performance in a homogeneous
environment.

0

200

400

600

800

1000

1200

1400

1600

1800

SUN IBM

E
xe

cu
tio

n
T

im
e

(m
s)

Workstation Platform

ACS
MPI
P4

PVM

Fig. 2.25 Fast Fourier transform performance in a homogeneous environment.

EXPERIMENTAL RESULTS AND ANALYSIS 43

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

SUN IBM

E
xe

cu
tio

n
T

im
e

(m
s)

Workstation Platform

ACS
MPI
P4

PVM

Fig. 2.26 JPEG performance in a homogeneous environment.

0

2000

4000

6000

8000

10000

SUN IBM

E
xe

cu
tio

n
T

im
e

(m
s)

Workstation Platform

ACS
MPI
P4

PVM

Fig. 2.27 Parallel sorting performance in a homogeneous environment.

(e.g., BPNN), ACS shows outstanding performance. We believe that most of
the improvements of ACS in this case are due to the overlapping of commu-
nications and computations and the tree-based broadcasting primitive. Figures
2.19 through 2.23 compare the performance of each message-passing tool,
using up to 16 Sun Solaris workstations interconnected by an Ethernet
network.

In general, PVM implementations perform better than MPI and p4 imple-
mentations in a heterogeneous environment, whereas in a homogeneous envi-
ronment the performance of MPI implementations is comparable to that of
PVM implementations. The performance of a p4 implementation in a BPNN
application is not good over four Sun Solaris workstations, but is better over
four IBM AIX workstations, due to the fact that p4 has the worst broadcast-
ing performance for large message sizes on a Sun Solaris platform, as shown
in Figure 2.12 through 2.18.

2.7.4 Performance Results of Adaptive Schemes

Performance Result of Application-Aware Multicasting Assume that
there is an application that has one group and three subgroups for multicast-
ing requests (Figure 2.29). We evaluate the performance of this application
with respect to two multicasting trees: (1) a binary tree algorithm, and (2) a
two-level tree. These two multicasting trees are constructed when the
ACS_group_create() is called:

44 MESSAGE-PASSING TOOLS

0

10

20

30

40

50

SUN IBM

E
xe

cu
tio

n
T

im
e

(s
ec

)

Workstation Platform

ACS
P4

PVM

Fig. 2.28 Voting performance in a homogeneous environment.

• Binary tree:
ACS_group_create(G0,TCP,none,err1,Binary,QoS)

• Two-level tree:
ACS_group_create(G0,TCP,none,err1,2-Level,QoS)

The corresponding trees for these two calls are shown in Figures 2.30 and 2.31,
respectively.

We evaluate two different types of trees using the ACS multicasting com-
munication service in order to:

1. Determine the performance difference between a binary tree and other
trees.

2. Check the effectiveness of the multicasting performance function that
we derived in Section 2.6.3.

EXPERIMENTAL RESULTS AND ANALYSIS 45

Multicasting Application:
 /* Assume G0 = {m1, m2,..., m16},

G1 = {m1, m2,..., m8}, G2 = {m9, m10, m11, m12},
G3 = {m15, m16}

 Thus, G1, G2, G3 � G0
 |G0| = 16, |G1| = 8, |G2| = 4, |G3| = 2
 msgsize = {1,8,16,32,64,128,256,512,1K,2K,4K,8K,
 16K,32K,64K,72K } */ ,

for i= 1 to10
 /* multicasts a message 10 times to group G0 */
 ACS_mcast(G0,int,10,msgbuf,msgsize);

 endfor
 ...

for j= 1 to 25
 /* multicasts a message 25 times to group G1 */
 ACS_mcast(G1,int,10,msgbuf,msgsize);

endfor
 ...

for k= 1 to 50
 /* multicasts a message 50 times to group G2 */
 ACS_mcast(G2,int,10,msgbuf,msgsize);

endfor
 ...

for l= 1 to 100
 /* multicasts a message 100 times to group G3 */
 ACS_mcast(G3,int,10,msgbuf,msgsize);

endfor
 ...
End Multicasting Application

�

Fig. 2.29 Application of ACS multicasting.

46 MESSAGE-PASSING TOOLS

G1

LG8

G2 G3

1LG1

15

1413121110987

6543

2

16

G0

MG

LG13 LG14

LG6LG5

LG12LG11

LG3

LG2

LG4

LG10LG9
LG7

0

17 18 19 20 21 22 23 24 25 26 27 28 29 30

m1 m2 m3 m4 m5 m6 m7 m8 m9 m11 m12 m13 m14 m15 m16m10

DATA

ACK

Fig. 2.30 Binary tree configuration.

16141312111098765

1

G3G1

G0

MG

15

LG2LG1 LG3 LG4

G2

0

2 3 4

17 19 2018

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16

DATA

ACK

Fig. 2.31 Two level tree configuration.

In this example, we compare the performance of the ACS multicast algo-
rithm with our analytical performance function MPk(m) for various message
sizes. The multicast performance can be described in terms of the delays
related to data transfer, message processing delays at each receiver node, and
the delay related to acknowledgments for each group (G0, G1, G2, and G3),
as shown in Table 2.1. We substitute the values of the delays related to Tn

k(m),
Dn

k(m), and An
k(c) (in Table 2.1) and get the MPFs for two different multicas-

ting trees:

To evaluate the application multicast performance for the two trees, we use
the data transfer time [(Tn

k(m)), receiving delay (Dn
k(m)), acknowledgment

delay (An
k(c)), and congestion delay (fk(m))] shown in Table 2.2.

The application performance for both the measurement and prediction
functions are shown in Table 2.3. The error between predicted multicasting
time and measurement is mostly within less than a 2% range. The multicast
function can be used to predict the performance of the multicast algorithm
and thus can be used to identify the appropriate multicast tree structure suit-
able for any given application.

MP m t m o m a c f m

MP m t m o m a c f mL L

2 2

2 2

740 315 740

370 410 370

() = ¥ () + ¥ () + ¥ () + ()
() = ¥ () + ¥ () + ¥ () + ()

EXPERIMENTAL RESULTS AND ANALYSIS 47

TABLE 2.2 Experimental Functions to Predict Application Multicast Performance
(Milliseconds)

Time 1B 64B 1kB 64kB

t(m) 0.184 0.238 1.033 57.216
o(m) 0.036 0.037 0.040 45.937
f2(m) 133.7137 191.2738 1,048.2170 13,408.0111
f2L(m) 70.3830 110.9276 563.8934 8,855.4217

a(4B) = 0.185ms, where acknowledgment is 4 bytes only

TABLE 2.1 Group Multicast Component Delays

Delay Time Group
Total

Time Tree G0 G1 G2 G3 Time

Data transfer T 2
xi(m) 4t(m) ¥ 10 4t(m) ¥ 25 4t(m) ¥ 50 4t(m) ¥ 100 740t(m)

T2L
xi (m) 2t(m) ¥ 10 2t(m) ¥ 25 2t(m) ¥ 50 2t(m) ¥ 100 370t(m)

Receiving Di
2(m) 4o(m) ¥ 10 3o(m) ¥ 25 2o(m) ¥ 50 1o(m) ¥ 100 315o(m)

D2L
i (m) 6o(m) ¥ 10 4o(m) ¥ 25 3o(m) ¥ 50 1o(m) ¥ 100 410o(m)

Acknowledge Ai
2(c) 4a(c) ¥ 10 4a(c) ¥ 25 4a(c) ¥ 50 4a(c) ¥ 100 740a(c)

A2L
i (c) 2a(c) ¥ 10 2a(c) ¥ 25 2a(c) ¥ 50 2a(c) ¥ 100 370a(c)

TA
B

L
E

 2
.3

A
pp

lic
at

io
n

M
ul

ti
ca

st
 P

er
fo

rm
an

ce
 U

si
ng

 M
ea

su
re

m
en

t
an

d
A

na
ly

ti
ca

l T
ec

hn
iq

ue
s

M
es

sa
ge

 S
iz

e
A

da
pt

iv
e

B
in

ar
y

(b
yt

es
)

M
ea

su
re

d
(m

s)
P

re
di

ct
 (

m
s)

E
rr

or
 (

%
)

M
ea

su
re

d
(m

s)
P

re
di

ct
 (

m
s)

E
rr

or
 (

%
)

1
22

5.
43

4
22

1.
67

3
1.

66
8

42
0.

61
0

41
8.

11
4

0.
59

4
8

22
8.

64
9

22
9.

66
4

0.
44

4
42

3.
88

9
42

4.
17

7
0.

06
8

16
23

5.
46

4
23

4.
81

9
0.

27
4

43
1.

24
6

43
1.

06
8

0.
04

1
32

25
4.

52
5

25
1.

83
1

1.
05

8
45

6.
68

8
46

0.
86

1
1.

03
7

64
27

6.
40

9
28

2.
60

8
2.

24
3

50
4.

95
0

51
5.

94
9

2.
17

8
12

8
32

8.
44

3
32

4.
55

7
1.

18
3

59
8.

11
5

59
1.

26
9

1.
14

5
25

6
75

0.
87

5
72

0.
19

7
4.

08
6

78
8.

04
2

78
7.

01
0

0.
13

1
51

2
77

4.
72

6
83

4.
86

0
7.

76
2

1,
19

6.
97

2
1,

20
0.

55
3

0.
29

9
1

k
1,

06
6.

28
1

1,
03

0.
95

2
3.

31
3

1,
96

5.
26

9
1,

96
2.

13
5

0.
15

9
2

k
2,

21
2.

44
6

2,
16

9.
97

5
1.

92
0

3,
49

9.
49

4
3,

49
3.

88
0

0.
16

0
4

k
3,

56
0.

47
1

3,
69

4.
21

0
3.

75
6

5,
46

0.
17

6
5,

47
5.

53
7

0.
28

1
8

k
6,

57
5.

17
3

6,
45

9.
76

3
1.

75
5

9,
05

7.
69

3
9,

04
7.

09
2

0.
11

7
16

k
13

,0
32

.5
35

1,
26

80
.3

82
2.

70
2

17
,8

41
.2

20
17

,5
97

.8
16

1.
36

4
32

k
24

,2
91

.6
79

24
,9

78
.1

97
2.

82
6

35
,0

96
.0

75
35

,7
07

.1
10

1.
74

1
64

k
49

,0
23

.2
40

48
,9

27
.9

78
0.

19
4

70
,4

47
.7

49
70

,3
54

.9
16

0.
13

2
72

k
55

,1
40

.7
76

54
,8

53
.0

13
0.

52
2

79
,1

89
.3

62
78

,8
43

.5
04

0.
43

7

48

Performance of Application by Resource-Aware Scheduling Algorithm
We present some performance results of applications to show perform-
ance gains made by deploying adaptive schemes such as resource-aware
scheduling.

Voting Application We have also compared the performance of ACS with
other message-passing tools by measuring the execution time of a static voting
application that requires intensive group communications. Replicating data at
different locations is a common approach to achieving fault tolerance in dis-
tributed computing systems. One well-known technique to manage replicated
data is a voting mechanism. The algorithm used in this experiment is based on
the static voting scheme proposed by Gifford [29] and shown in Figure 2.32.
In this experiment we assumed that there are 50 different files replicated at
each node and that each file server process generates 500 read or write requests
for arbitrary files. As we show in Figure 2.33, in a static voting application
where the sizes of the broadcasting messages are small and the communica-
tions take place randomly, the performance of resource-aware multicasting
ACS is comparable to that of non-resource-aware multicasting ACS for small
groups. However, the performance gap gets wider as we increase group size.
We believe that most of the improvements in the ACS resource aware sched-
uling algorithm are also due to utilizing the heterogeneity in computers.

Linear Equation Solver A linear equation solver application finds the solu-
tion vector x in the equation Ax = b, where A is a known N ¥ N matrix and b
is a known vector. The problem size in the experiments is 128 ¥ 128. Each task
was executed with one, two, and four Solaris machines interconnected by ATM
over IP and Ethernet networks. The performance results of the individual
tasks [LU (LU decomposition), INV (matrix inversion), and MULT (matrix
multiplication)] that were executed over different networks are shown in
Table 2.4.

LU gives better performance for sequential execution than do the two- and
four-node cases, because its implementation is communication-bound. For an
N ¥ N problem size and P processors, an LU task requires N/P all-to-all com-
munication and two one-to-all communication steps. For an INV task, four-
node is the best, and for a MULT task, two-node is the best among others,
since INV and MULT implementations require communication only for the
data distribution and result gathering phases. Thus their implementations
require only two one-to-all communication steps. An ATM-based network
gives better results than an Ethernet-based case for all task implementations.
According to these results, if the ACS user chooses one node for LU, four
nodes for INV, and two nodes for MULT while developing his/her application,
this combination will achieve a better performance than will other possibili-
ties. These results show that the performance of any application can be
improved significantly by the resource-aware scheduling algorithm provided
by our newly developed ACS.

EXPERIMENTAL RESULTS AND ANALYSIS 49

50 MESSAGE-PASSING TOOLS

1

2 3 6 2 3 6

2 3 6 2 3 6

4 5

1=Read/Write Request, 2=Vote_Request, 3=Version Number and Votes

4=Request Latest Copy, 5=Return Latest Copy, 6=Release_Lock

P2

P1

P3

Pn-1 Pn

Fig. 2.32 Static voting algorithm.

2.8 CONCLUSIONS

Applications running on networked workstations must use the underlying
network to communicate with their parties on remote machines; thus they
should be able to establish communication channels via a protocol for
exchanging data. Message-passing tools have been developed to provide a reli-
able and efficient data transmission mechanism on top of the underlying
network. In addition, they should be able to offer programming interfaces so
that users can easily develop their applications. A summary of the usefulness
and efficiency of popular message-passing tools is shown in Table 2.5.

CONCLUSIONS 51

0

20

40

60

80

100

120

140

4 8

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Workstations

ACS-RAM
ACS-NRAM

Fig. 2.33 Comparison of application performance.

TABLE 2.4 Performance of Linear Equation Solver Tasks on ATM and Ethernet
(Milliseconds)

No. of
LU INV MULT

Nodes Ethernet ATM Ethernet ATM Ethernet ATM

1 226,073 217,191 280,626 278,534 49,903 48,392
2 236,180 233,573 276,193 273,654 49,205 44,091
4 253,731 253,089 274,421 270,139 53,088 50,311

TABLE 2.5 Summary of Message-Passing Tools

Feature p4 PVM MPI Madeleine ACS

Richness of communication ÷ok ÷rich ÷very rich ÷poor ÷ok

Simplicity ÷ ÷ ÷ ÷ ÷
Efficiency ÷low ÷low ÷ok ÷low ÷high

Fault tolerance ÷ok ÷ok

Reliable group communication ÷low ÷ok ÷high

Adaptability ÷ok ÷high

Security ÷low ÷ok

Heterogeneity ÷ok ÷ok ÷high

Portability ÷ok ÷high ÷high

REFERENCES

1. I. Ra, S. Park, and S. Hariri, Design and evaluation of an adaptive communication
system for high performance distributed computing applications, Proceedings of
the International Workshop on Cluster Computing—Technologies, Environments,
and Applications (CC-TEA’2000), Las Vegas, NV, June 2000.

2. I. Ra, S. Hariri, and C. Raghavendra, An adaptive communication system for het-
erogeneous network computing, Proceedings of the 10th Heterogeneous Comput-
ing Workshop (HCW 2001), San Francisco, April 2001.

3. J. Kubiatowicz and A. Agarwal, The anatomy of a message in the Alewife multi-
processor, Proceedings of the International Conference on Supercomputing (ICS
1993), pp. 195–206, July 1993.

4. W. Codenie, K. D. Hondt, T. D’Hondt, and P. Steyaert, Agora: message passing as
a foundation for exploring OO language concepts, SIGPLAN Notices, Vol. 29, No.
12, pp. 48–57, December 1994.

5. E. Arnould, F. Bitz, E. Cooper, H. T. Kung, R. Sansom, and P. Steenkiste, The design
of Nectar: a network backplane for heterogeneous multicomputers, Proceedings of
the 3rd International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 205–216, April 1989.

6. ATM Forum, ATM User–Network Interface Specification, Version 3.1, Prentice
Hall, Upper Saddle River, NJ, 1994.

7. T. Sterling, D. J. Becker, D. Savarese, U. A. Ranawake, and C. V. Packer,
BEOWULF: a parallel workstation for scientific computation. Proceedings of the
24th International Conference on Parallel Processing, Oconomowoc, WI, August
1995.

8. L. Prylli and B. Tourancheau, BIP: a new protocol designed for high performance
networking on Myrinet, Proceedings of the Workshop PC-NOW, IPPS/SPDP’98,
LNCS 1388, pp. 472–485, Springer-Verlag, Orlando, FL, April 1998.

9. R. Bhoedjang,T. Ruhl, R. Hofman, K. Langendoen, H. Bal, and F. Kaashoek, Panda:
a portable platform to support parallel programming languages, Proceedings of the
Symposium on Experiences with Distributed and Microprocessor Systems IV, pp.
213–226, September 1993.

10. K. Birman, R. Cooper, T. A. Joseph, K. P. Kane, F. Schmuck, and M. Wood, Isis—A
Distributed Programming Environment: User’s Guide and Reference Manual,
Cornell University, Sthaca, NY, June 1990.

11. R. Butler and E. Lusk, Monitors, message, and clusters: the p4 parallel program-
ming system, Parallel Computing, Vol. 20, pp. 547–564, April 1994.

12. K. L. Johnson, M. F. Kasshoek, and D. A.Wallach, CRL: high-performance all soft-
ware distributed shared memory. Proceedings of the 15th Symposium on Operat-
ing Systems Principles, December 1995.

13. C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards, and J. Lumley, After-
burner, IEEE Network, Vol. 7, No. 4, pp. 36–43, July 1993.

14. D. Dolev and D. Malki, The Transis approach to high availability cluster commu-
nication, Communications of the ACM, Vol. 39, No. 4, pp. 64–70, 1996.

15. P. Druschel, L. L. Peterson, and B. S. Davie, Experiences with a high-speed network
adaptor: a software perspective, Proceedings of SIGCOMM, 1994.

52 MESSAGE-PASSING TOOLS

16. T. Eicken, V. Avula, A. Basu, and V. Buch, Low-latency communication over ATM
networks using active messages, IEEE Micro, Vol. 15, No. 1, pp. 46–53, February
1995.

17. M. Welsh, A. Basu, and T. Eicken, Low-latency communication over fast Ethernet,
Proceedings Euro-Par ’96, Lyon, France, August 1996.

18. T. Eicken, A. Basu, V. Buch, and W. Vogels, U-Net: a user-level network interface
for parallel and distributed computing, Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

19. T. Eicken, D. Culler, S. Goldstein, and K. Schauser, Active messages: a mechanism
for integrated communication and computation, Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, pp. 256–266, May 1992.

20. E. Felton, R. Alpert, A. Bilas, M. Blumrich, D. Clark, S. Damianakis, C. Dubnicki,
L. Iftode, and K. Li, Early experience with message-passing on the SHRIMP
multicomputer, Proceedings of the 23rd International Symposium on Computer
Architecture, pp. 296–307, May 1996.

21. A. Ferrari and V. Sunderam, TPVM: distributed concurrent computing with light-
weight processes, Proceedings of the 4th IEEE International Symposium on High
Performance Distributed Computing, pp. 211–218, August 1995.

22. M. Fischler, The Fermilab lattice supercomputing project, Nuclear Physics, Vol. 9,
pp. 571–576, 1989.

23. I. Foster, C. Kesselman, and S. Tuecke, The Nexus approach to integrating multi-
threading and communication, Journal of Parallel and Distributed Computing,
1996.

24. I. Foster, J. Geisler, C. Kesselman, and S. Tuecke, Managing multiple communica-
tion methods in high-performance networked computing systems, Journal of Par-
allel and Distributed Computing, Vol. 40, pp. 35–48, 1997.

25. D. Culler et al., Generic Active Message Interface Specification, Technical Report,
Department of Computer Science, University of California, Berkeley, CA, 1995.

26. G. Ciaccio, Optimal communication performance on fast ethernet with GAMMA,
Proceedings of the Workshop PCNOW, IPPS/SPDP’98, LNCS 1388, pp. 534–548,
Orlando, FL, April 1998, Springer-Verlag, New York, 1998.

27. G. Geist,A. Beguelin, J. Dongarra,W. Jiang, R. Mancheck, and V. Sunderam, PVM—
Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel Com-
puting, MIT Press, Cambridge, MA, 1994.

28. B. Gropp, R. Lusk, T. Skjellum, and N. Doss, Portable MPI Model Implementation,
Argonne National Laboratory, Angonne, IL, July 1994.

29. D. K. Gifford,Weighed voting for replicated data, Proceedings of the 7th ACM Sym-
posium on Operating System, pp. 150–162, December 1979.

30. M. Haines, D. Cronk, and P. Mehrotra, On the design of Chant: a talking threads
package, Proceedings of Supercomputing ’94, pp. 350–359, November 1994.

31. R. Harrison, Portable tools and applications for parallel computers, International
Journal of Quantum Chemistry, Vol. 40, pp. 847–863, February 1990.

32. IBM Corporation, 8260 Nways Multiprotocol Switching Hub, White Paper 997,
IBM, Armonk, NY, 1997.

33. IBM Corporation, IBM 8285 Nways ATM Workgroup Switch: Installation and
User’d Guide, IBM Publication SA-33-0381-01, IBM, Armonk, NY, June 1996.

REFERENCES 53

34. L. Kleinrock, The latency/bandwidth tradeoff in gigabit networks, IEEE Commu-
nication, Vol. 30, No. 4, pp. 36–40, April 1992.

35. H. Burkhardt et al., Overviewof the KSR1 Computer System, Technical Report
KSR-TR-9202001, Kendall Square Research, Boston, February 1992.

36. M. Laubach, Classical IP and ARP over ATM, Internet RFC-1577, January 1994.
37. M. Lauria and A. Chien, MPI-FM: high performance MPI on workstation clusters,

Journal of Parallel and Distributed Computing, February 1997.
38. J. Lawton, J. Bronsnan, M. Doyle, S. Riordain, and T. Reddin, Building a high-

performance message-passing system for Memory Channel clusters, Digital
Technical Journal, Vol. 8, No. 2, pp. 96–116, 1996.

39. B. Lewis and D. Berg, Threads Primer: A Guide to Multithreaded Programming,
SunSoft Press/Prentice Hall, Upper Saddle River, NJ, 1996.

40. R. Martin, HPAM: an active message layer for network of HP workstations, Pro-
ceedings of Hot Interconnects II, August 1994.

41. L. Bougé, J. Méhaut, and R. Namyst, Efficient communications in multithreaded
runtime systems, Proceedings of the 3rd Workshop on Runtime Systems for Paral-
lel Programming (RTSPP ’99), Lecture Notes in Computer Science, No. 1586, pp.
468–482, San Juan, Puerto Rico, April 1999.

42. O.Aumage, L. Bouge, and R. Namyst,A portable and adaptive multi-protocol com-
munication library for multithreaded runtime systems, Proceedings of the 4th Work-
shop on Runtime Systems for Parallel Programming (RTSPP ’00), Lecture Notes
in Computer Science, No. 1800, pp. 1136–1143, Cancun, Mexico, May 2000.

43. B. D. Fleisch and G. J. Popek, Mirage: A coherent distributed shared memory
design, Proceedings of the 12th ACM Symposium on Operating Systems Principles
(SOSP’89), pp. 211–223, December 1989.

44. M. Kraimer, T. Coleman, and J. Sullivan, Message passing facility industry
pack support, http://www.aps.anl.gov/asd/control/epics/EpicsDocumentation/
HardwareManuals/mpf/mpf.html, Argonne National Laboratory, Argonne, IL,
April 1999.

45. L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-Papadopoulos,
Totem: a fault-tolerant multicast group communication system, Communications
of the ACM, Vol. 39, No. 4, pp. 54–63, 1996.

46. MPI Forum, MPI: a message passing interface. Proceedings of Supercomputing ’93,
pp. 878–883, November 1993.

47. F. Mueller, A Library Implementation of POSIX Threads under UNIX, Proceed-
ings of USENIX Conference Winter ’93, pp. 29–41, January 1993.

48. R. D. Russel and P. J. Hatcher, Efficient kernel support for reliable communication,
Proceedings of 1998 ACM Symposium on Applied Computing, Atlanta, GA,
February 1998.

49. B. Nelson, Remote procedure call, Ph.D dissertation, Carnegie-Mellon University,
Pittsburgh, PA, CMU-CS-81-119, 1981.

50. J. M. Squyres, B. V. McCandless, and A. Lumsdaine, Object oriented MPI: a class
library for the message passing interface, Proceedings of the ’96 Parallel Object-
Oriented Methods and Applications Conference, Santa Fe, NM, February 1996.

51. P. Marenzoni, G. Rimassa, M. Vignail, M. Bertozzi, G. Conte, and P. Rossi, An oper-
ating system support to low-overhead communications in NOW clusters, Proceed-

54 MESSAGE-PASSING TOOLS

ings of the First International CANPC, LNCS 1199, Springer-Verlag, New York, pp.
130–143, February 1997.

52. S. Pakin, M. Lauria, and A. Chien, High performance messaging on workstations:
Illinois fast messages (FM) for Myrinet, Proceedings of Supercomputing ’95,
December 1995.

53. S. Park, S. Hariri, Y. Kim, J. Harris, and R. Yadav, NYNET communication system
(NCS): a multithreaded message passing tool over ATM network, Proceedings of
the 5th International Symposium on High Performance Distributed Computing, pp.
460–469, August 1996.

54. P. Pierce, The NX/2 Operating System.

55. R. Renesse, T. Hickey, and K. Birman, Design and Performance of Horus: A Light-
weight Group Communications System, Technical Report TR94-1442, Cornell
University, Sthaca, NY, 1994.

56. A. Reuter, U. Geuder, M. Hdrdtner, B. Wvrner, and R. Zink, GRIDS: a parallel
programming system for Grid-based algorithms, Computer Journal, Vol. 36, No. 8,
1993.

57. S. Rodrigues, T. Anderson, and D. Culler, High-performance local area communi-
cation with fast sockets, Proceedings of USENIX Conference ’97, 1997.

58. T. Ruhl, H. Bal, and G. Benson, Experience with a portability layer for imple-
menting parallel programming systems, Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and Applications, pp. 1477–
1488, 1996.

59. D. C. Schmit, The adaptive communication environment, Proceedings of the 11th
and 12th Sun User Group Conference, San Francisco, June 1993.

60. D. Schmidt and T. Suda, Transport system architecture services for high-
performance communication systems, IEEE Journal on Selected Areas in Com-
munications, Vol. 11, No. 4, pp. 489–506, May 1993.

61. H. Helwagner and A. Reinefeld, eds., SCI: Scalable Coherent Interface, Springer-
Verlag, New York, 1999.

62. E. Simon, Distributed Information Systems, McGraw-Hill, New York, 1996.

63. W. Stevens, UNIX Network Programming, Prentice Hall, Upper Saddle River, NJ,
1998.

64. V. Sunderam, PVM: a framework for parallel distributed computing, Concurrency:
Practice and Experience, Vol. 2, No. 4, pp. 315–340, December 1990.

65. Thinking Machine Corporation, CMMD Reference Manual, TMC, May 1993.

66. C. Thekkath, H. M. Levy, and E. D. Lazowska, Separating data and control trans-
fer in distributed operating systems, Proceedings of ASPLOS, 1994.

67. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel,TreadMarks: shared memory computing on networks of workstations,
IEEE Computer, Vol. 29, No. 2, pp. 18–28, February 1996.

68. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A.-M.
Merritt, E. Gronke, and C. Dodd, The virtual interface architecture, IEEE Micro,
pp. 66–75, March–April 1998.

69. T. Warschko, J. Blum, and W. Tichy, The ParaStation Project: using workstations as
building blocks for parallel computing, Proceedings of the International Conference

REFERENCES 55

on Parallel and Distributed Processing, Techniques and Applications (PDPTA’96),
pp. 375–386, August 1996.

70. R. Whaley, Basic Linear Algebra Communication Subprograms: Analysis and
Implementation Across Multiple Parallel Architectures, LAPACK Working Note 73,
Technical Report, University of Tennessee, Knoxville, TN, 1994.

71. H. Zhou and A. Geist, LPVM: a step towards multithread PVM,
http://www.epm.ornl.gov/zhou/ltpvm/ltpvm.html.

56 MESSAGE-PASSING TOOLS

CHAPTER 3

Distributed Shared Memory Tools

M. PARASHAR and S. CHANDRA

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ

3.1 INTRODUCTION

Distributed shared memory (DSM) is a software abstraction of shared
memory on a distributed memory multiprocessor or cluster of workstations.
The DSM approach provides the illusion of a global shared address space by
implementing a layer of shared memory abstraction on a physically distrib-
uted memory system. DSM systems represent a successful hybrid of two
parallel computer classes: shared memory multiprocessors and distributed
computer systems. They provide the shared memory abstraction in systems
with physically distributed memories, and consequently, combine the advan-
tages of both approaches. DSM expands the notion of virtual memory to dif-
ferent nodes. DSM facility permits processes running at separate hosts on a
network to share virtual memory in a transparent fashion, as if the processes
were actually running on a single processor.

Two major issues dominate the performance of DSM systems: communi-
cation overhead and computation overhead. Communication overhead is
incurred in order to access data from remote memory modules and to keep
the DSM-managed data consistent. Computation overhead comes in a variety
of forms in different systems, including:

• Page fault and signal handling
• System call overheads to protect and unprotect memory
• Thread/context switching overheads

57

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

• Copying data to/from communication buffers
• Time spent on blocked synchronous I/Os

The various DSM systems available today, both commercially and acade-
mically, can be broadly classified as shown in Figure 3.1.

The effectiveness of DSM systems in providing parallel and distributed
systems as a cost-effective option for high-performance computation is qual-
ified by four key properties: simplicity, portability, efficiency, and scalability.

• Simplicity. DSM systems provide a relatively easy to use and uniform
model for accessing all shared data, whether local or remote. Beyond such
uniformity and ease of use, shared memory systems should provide
simple programming interfaces that allow them to be platform and lan-
guage independent.

• Portability. Portability of the distributed shared memory programming
environment across a wide range of platforms and programming envi-
ronments is important, as it obviates the labor of having to rewrite large,
complex application codes. In addition to being portable across space,
however, good DSM systems should also be portable across time (able
to run on future systems), as it enables stability.

• Efficiency. For DSM systems to achieve widespread acceptance, they
should be capable of providing high efficiency over a wide range of appli-
cations, especially challenging applications with irregular and/or unpre-

58 DISTRIBUTED SHARED MEMORY TOOLS

Distributed Shared Memory (DSM) Systems

Mostly Software
Page-Based DSM

Systems
(e.g. TreadMarks,
Brazos, Mirage)

Fine-Grained
(e.g. Shasta DSM)

Coarse-Grained
(e.g. Orca, CRL,
SAM, Midway)

COMA
(e.g. KSR1)

CC-NUMA
(e.g. SGI Origin,

DASH)

S-COMA

Composite DSMs
Like

ASCOMA and
R-NUMA

Hardware-
Based

DSM Systems

All-Software
Object-Based
DSM Systems

Fig. 3.1 Taxonomy of DSM systems.

dictable communication patterns, without requiring much programming
effort.

• Scalability. To provide a preferable option for high-performance com-
puting, good DSM systems today should be able to run efficiently on
systems with hundreds (or potentially thousands) of processors. Shared
memory systems that scale well to large systems offer end users yet
another form of stability—knowing that applications running on small to
medium-scale platforms could run unchanged and still deliver good per-
formance on large-scale platforms.

3.2 CACHE COHERENCE

DSM systems facilitate global access to remote data in a straightforward
manner from a programmer’s point of view. However, the difference in access
times (latencies) of local and remote memories in some of these architectures
is significant (could differ by a factor of 10 or higher). Uniprocessors hide these
long main memory access times by the use of local caches at each processor.
Implementing (multiple) caches in a multiprocessor environment presents a
challenging problem of maintaining cached data coherent with the main
memory (possibly remote), that is, cache coherence (Figure 3.2).

3.2.1 Directory-Based Cache Coherence

The directory-based cache coherence protocols use a directory to keep track
of the caches that share the same cache line.The individual caches are inserted
and deleted from the directory to reflect the use or rollout of shared cache
lines. This directory is also used to purge (invalidate) a cached line that is
necessitated by a remote write to a shared cache line.

CACHE COHERENCE 59

Time Processor P1 Processor P2

x = 0
x = a

y = 0
y = b

x = dy = c

Fig. 3.2 Coherence problem when shared data are cached by multiple processors.
Suppose that initially x = y = 0 and both P1 and P2 have cached copies of x and y. If
coherence is not maintained, P1 does not get the changed value of y and P2 does not
get the changed value of x.

The directory can either be centralized, or distributed among the local
nodes in a scalable shared memory machine. Generally, a centralized directory
is implemented as a bit map of the individual caches, where each bit set rep-
resents a shared copy of a particular cache line. The advantage of this type of
implementation is that the entire sharing list can be found simply by examin-
ing the appropriate bit map. However, the centralization of the directory also
forces each potential reader and writer to access the directory, which becomes
an instant bottleneck. Additionally, the reliability of such a scheme is an issue,
as a fault in the bit map would result in an incorrect sharing list.

The bottleneck presented by the centralized structure is avoided by dis-
tributing the directory. This approach also increases the reliability of the
scheme. The distributed directory scheme (also called the distributed pointer
protocol) implements the sharing list as a distributed linked list. In this imple-
mentation, each directory entry (being that of a cache line) points to the next
member of the sharing list.The caches are inserted and deleted from the linked
list as necessary. This avoids having an entry for every node in the directory.

3.3 SHARED MEMORY CONSISTENCY MODELS

In addition to the use of caches, scalable shared memory systems migrate or
replicate data to local processors. Most scalable systems choose to replicate
(rather than migrate) data, as this gives the best performance for a wide range
of application parameters of interest. With replicated data, the provision of
memory consistency becomes an important issue. The shared memory scheme
(in hardware or software) must control replication in a manner that preserves
the abstraction of a single address-space shared memory.

The shared memory consistency model refers to how local updates to
shared memory are communicated to the processors in the system. The most
intuitive model of shared memory is that a read should always return the last
value written. However, the idea of the last value written is not well defined,
and its different interpretations have given rise to a variety of memory con-
sistency models: namely, sequential consistency, processor consistency, release
consistency, entry consistency, scope consistency, and variations of these.

Sequential consistency implies that the shared memory appears to all
processes as if they were executing on a single multiprogrammed processor.
In a sequentially consistent system, one processor’s update to a shared data
value is reflected in every other processor’s memory before the updating
processor is able to issue another memory access. The simplicity of this model,
however, exacts a high price, since sequentially consistent memory systems
preclude many optimizations, such as reordering, batching, or coalescing.
These optimizations reduce the performance impact of having distributed
memories and have led to a class of weakly consistent models.

A weaker memory consistency model offers fewer guarantees about
memory consistency, but it ensures that a well-behaved program executes as
though it were running on a sequentially consistent memory system. Again,

60 DISTRIBUTED SHARED MEMORY TOOLS

the definition of well behaved varies according to the model. For example, in
processor-consistent systems, a load or store is globally performed when it is
performed with respect to all processors. A load is performed with respect to
a processor when no write by that processor can change the value returned by
the load. A store is performed with respect to a processor when a load by that
processor will return the value of the store. Thus, the programmer may not
assume that all memory operations are performed in the same order at all
processors.

Memory consistency requirements can be relaxed by exploiting the fact that
most parallel programs define their own high-level consistency requirements.
In many programs, this is done by means of explicit synchronization opera-
tions on synchronization objects such as lock acquisition and barrier entry.
These operations impose an ordering on access to data within the program. In
the absence of such operations, a program is in effect relinquishing all control
over the order and atomicity of memory operations to the underlying memory
system. In a release consistency model, the processor issuing a releasing syn-
chronization operation guarantees that its previous updates will be performed
at other processors. Similarly, a processor acquiring synchronization operation
guarantees that other processors’ updates have been performed locally. A
releasing synchronization operation signals other processes that shared data
are available, while an acquiring operation signals that shared data are needed.
In an entry consistency model, data are guarded to be consistent only after an
acquiring synchronization operation and only the data known to be guarded
by the acquired object are guaranteed to be consistent. Thus, a processor must
not access a shared item until it has performed a synchronization operation
on the items associated with the synchronization object.

Programs with good behavior do not assume a stronger consistency guar-
antee from the memory system than is actually provided. For each model, the
definition of good behavior places demands on the programmer to ensure that
a program’s access to the shared data conforms to that model’s consistency
rules. These rules add an additional dimension of complexity to the already
difficult task of writing new parallel programs and porting old ones. But the
additional programming complexity provides greater control over communi-
cation and may result in higher performance. For example, with entry consis-
tency, communication between processors occurs only when a processor
acquires a synchronization object.A large variety of DSM system models have
been proposed over the years with one or multiple consistency models, dif-
ferent granularities of shared data (e.g., object, virtual memory page), and a
variety of underlying hardware.

3.4 DISTRIBUTED MEMORY ARCHITECTURES

The structure of a typical distributed memory multiprocessor system is shown
in Figure 3.3. This architecture enables scalability by distributing the memory
throughout the machine, using a scalable interconnect to enable processors to

DISTRIBUTED MEMORY ARCHITECTURES 61

communicate with the memory modules. Based on the communication mech-
anism provided, these architectures are classified as:

• Multicomputer/message-passing architectures
• DSM architectures

The multicomputers use a software (message-passing) layer to communi-
cate among themselves and hence are called message-passing architectures.
In these systems, programmers are required explicitly to send messages to
request/send remote data. As these systems connect multiple computing
nodes, sharing only the scalable interconnect, they are also referred to as
multicomputers. DSM machines logically implement a single global address
space although the memory is physically distributed.The memory access times
in these systems depended on the physical location of the processors and are
no longer uniform. As a result, these systems are also termed nonuniform
memory access (NUMA) systems.

3.5 CLASSIFICATION OF DISTRIBUTED
SHARED MEMORY SYSTEMS

Providing DSM functionality on physically distributed memory requires the
implementation of three basic mechanisms:

62 DISTRIBUTED SHARED MEMORY TOOLS

M

M

I/O

P+C

M I/O

P+C

M I/O

P+C

M I/O

P+C

I/O

P+C

M I/O

P+C

M I/O

P+C

M I/O

P+C

A scalable interconnection network

Fig. 3.3 Distributed memory multiprocessors (P+C, processor + cache; M, memory).
Message-passing systems and DSM systems have the same basic organization. The key
distinction is that the DSMs implement a single shared address space, whereas
message-passing architectures have distributed address space.

• Processor-side hit/miss check. This operation, on the processor side, is
used to determine whether or not a particular data request is satisfied in
the processor’s local cache. A hit is a data request satisfied in the local
cache; a miss requires the data to be fetched from main memory or the
cache of another processor.

• Processor-side request send. This operation is used on the processor side
in response to a miss, to send a request to another processor or main
memory for the latest copy of the relevant data item and waits for even-
tual response.

• Memory-side operations. These operations enable the memory to receive
a request from a processor, perform any necessary coherence actions, and
send its response, typically in the form of the data requested.

Depending on how these mechanisms are implemented in hardware or soft-
ware helps classify the various DSM systems as follows:

• Hardware-based DSM systems. In these systems, all processor-side mech-
anisms are implemented in hardware, while some part of memory-side
support may be handled in software. Hardware-based DSM systems
include SGI Origin [14], HP/Convex Exemplar [16], MIT Alewife [2], and
Stanford FLASH [1].

• Mostly software page-based DSM systems. These DSM systems
implement hit/miss check in hardware by making use of virtual memory
protection mechanisms to provide access control. All other support is
implemented in software. Coherence units in such systems are the size of
virtual memory pages. Mostly software page-based DSM systems include
TreadMarks [5], Brazos [6], and Mirage+ [7].

• Software/Object-based DSM systems. In this class of DSM systems, all
three mechanisms mentioned above are implemented entirely in soft-
ware. Software/object-based DSM systems include Orca [8], SAM [10],
CRL [9], Midway [11], and Shasta [17].

Almost all DSM models employ a directory-based cache coherence mech-
anism, implemented either in hardware or software. DSM systems have
demonstrated the potential to meet the objectives of scalability, ease of pro-
gramming, and cost-effectiveness. Directory-based coherence makes these
systems highly scalable. The globally addressable memory model is retained
in these systems, although the memory access times depend on the location of
the processor and are no longer uniform. In general, hardware DSM systems
allow programmers to realize excellent performance without sacrificing pro-
grammability. Software DSM systems typically provide a similar level of pro-
grammability. These systems, however, trade off somewhat lower performance
for reduced hardware complexity and cost.

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 63

3.5.1 Hardware-Based DSM Systems

Hardware-based DSM systems implement the coherence and consistency
mechanisms in hardware, making them faster but more complex. Clusters of
symmetric multiprocessors (SMPs) with hardware support for shared memory
have emerged as a promising approach to building large-scale DSM parallel
machines. Each node in these systems is an SMP with multiple processors.
The relatively high volumes of these small-scale parallel servers make them
extremely cost-effective as building blocks. The software compatibility is pre-
served through a directory-based cache coherence protocol. This also helps
support a shared memory abstraction despite having memory physically dis-
tributed across the nodes. A number of different cache coherence protocols
have been proposed for these systems. These include: (1) cache-coherent
nonuniform memory access (CC-NUMA), (2) cache-only memory access
(COMA), (3) simple cache-only memory access (S-COMA), (4) reactive
NUMA, and (5) adaptive S-COMA. Figure 3.4 illustrates the processor
memory hierarchies in CC-NUMA, COMA, and S-COMA architectures.

Cache-Coherent Nonuniform Memory Access (CC-NUMA) Figure 3.4(a)
shows the processor memory hierarchy in a CC-NUMA system. In this system,
a per-node cluster cache lies next to the processor cache in the hierarchy.
Remote data may be cached in a processor’s cache or in the per-node cluster
cache. Memory references not satisfied by these hardware caches must be sent
to the referenced page’s home node to obtain the data requested and to
perform necessary coherence actions. The first processor to access a remote
page within each node results in a software page fault. The operating system’s
page fault handler maps the page to a CC-NUMA global physical address and
updates the node’s page table. The Stanford DASH and SGI Origin systems
implement the CC-NUMA protocol.

64 DISTRIBUTED SHARED MEMORY TOOLS

P+C

Cluster
Cache

Main
Memory Directory

P+C

Simple-
COMA

H/W

CC-NUMA
(a)

P+C

Attraction
Memory

Address
Tags

Directory
Main

Memory

COMA
(b)

S-COMA
(c)

Local and
remote

data

Local data only
Local and remote data

Fig. 3.4 Processor memory hierarchies in CC-NUMA, COMA, and S-COMA (P+C,
processor + cache; H/W, hardware).

Cache-Only Memory Access (COMA) The key idea in COMA architecture
is to use the memory within each node of the multiprocessor as a giant cache
(also termed an attraction memory) as shown in Figure 3.4(b). Data migration
and replication are done just as in caches. The advantage of this scheme is the
ability to capture the remote capacity misses as hits in the local memory; that
is, if a data item is initially allocated in a remote memory and is frequently used
by a processor, it can be replicated in the local memory of the node where it
is being referenced frequently. The attraction memory maintains both the
address tags and the state of data. The COMA implementation requires
customized hardware and hence has not become a popular design choice.
The Kendall Square Research KSR1 [18] machine implemented COMA
architecture.

Simple Cache-Only Memory Access (S-COMA) An S-COMA system,
shown in Figure 3.4(c), uses the same coherence protocol as CC-NUMA,
but allocates part of the local node’s main memory to act as a large cache for
remote pages. S-COMA is much cheaper and simpler to implement than
COMA, as it can be built with off-the-shelf hardware building blocks. It also
uses standard address translation hardware. On a first reference to a remote
page from any node, a software page fault occurs which is handled by the oper-
ating system. It initializes the page table and maps the page in the part of main
memory being used as cache. The essential extra hardware required in S-
COMA is a set of fine-grain access control bits (one or two per block) and an
auxiliary translation table. The S-COMA page cache, being part of main
memory, is much larger than the CC-NUMA cluster cache. As a result, S-
COMA can outperform CC-NUMA for many applications. However, S-
COMA incurs substantial page overhead, as it invokes the operating system
for local address translation.Additionally, programs with large sparse data sets
suffer from severe internal fragmentation, resulting in a thrashing1 of the S-
COMA page cache. In such applications, CC-NUMA may perform better.
Since S-COMA requires only incrementally more hardware than CC-NUMA,
some systems have proposed providing support for both protocols. For
example, the S3.mp [19] project at Sun Microsystems supports both S-COMA
and CC-NUMA protocols.

Hybrid Schemes Given these diverse application requirements, hybrid
schemes such as reactive NUMA (R-NUMA) [3] and adaptive S-COMA
(ASCOMA) [4] have been proposed. These techniques combine CC-NUMA
and S-COMA to get the best of both with incrementally more hardware.These
schemes have not yet been implemented in commercial systems.

Reactive Nonuniform Memory Access (R-NUMA) R-NUMA dynami-
cally reacts to program and system behavior to switch between CC-NUMA

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 65

1 Thrashing: if a process does not have “enough” pages, the page-fault rate is very high. This leads
to low CPU utilization as a process is busy swapping pages in and out.

and S-COMA. The algorithm initially allocates all remote pages as CC-
NUMA but maintains a per-node, per-page count of the number of times that
a block is re-fetched as a result of conflict2 or capacity3 miss.When the re-fetch
count exceeds a threshold, the operating system intervenes and reallocates the
page in the S-COMA page cache. Thus, based on the number of re-fetches, R-
NUMA classifies the remote pages as reuse pages and communication pages
and maps them as CC-NUMA and S-COMA, respectively.A CC-NUMA page
is upgraded to be an S-COMA page if the re-fetch count exceeds a threshold
figure.

Adaptive Simple Cache-Only Memory Access (ASCOMA) The ASCOMA
scheme proposes a page allocation algorithm that prefers S-COMA pages at
low memory pressures and a page replacement algorithm that dynamically
backs off the rate of page remappings between CC-NUMA and S-COMA
mode at high memory pressures.

ASCOMA initially maps pages in S-COMA mode. Thus, when memory
pressure is low, S-COMA neither suffers any remote conflict or capacity
misses, nor does it pay the high cost of remapping. ASCOMA reacts to an
increase in memory pressure by evicting cold pages (i.e., pages not accessed
for a long time) from and remapping hot pages (i.e., pages that are frequently
accessed) to the local page cache. It adapts to differing memory pressures to
fully utilize large page cache at low memory pressures and avoids thrashing
at high memory pressures. The adaptivity is implemented by dynamically
adjusting the re-fetch threshold that triggers remapping, increasing it when
memory pressure is high.

The DSM architecture provides global addressability of all memory in a
system. While the two processors on a node share the same bus, they do not
function as a snoopy cluster. Instead, they operate as two separate processors
multiplexed over a single physical bus.This is unlike in many other CC-NUMA
systems, where the node is a SMP cluster. Such an architecture helps reduce
both local and remote latencies and increases memory bandwidth. Thus both
the absolute memory latency and the ratio of remote to local memory laten-
cies is kept to a minimum.

Other CC-NUMA features provided in the Origin system include
combinations of hardware and software support for page migration and
replication. These include per-page hardware memory reference counters, a
block-copy engine that copies data at near-peak memory speeds, mecha-
nisms for reducing the cost of TLB updates, and a high-performance local and
global interconnect design. Furthermore, the cache coherence protocol mini-
mizes latency and bandwidth per access with a rich set of synchronization
primitives.

66 DISTRIBUTED SHARED MEMORY TOOLS

2 Conflict miss: a miss in cache due to mutually exclusive data access requests.
3 Capacity miss: a miss in cache due to insufficient capacity of the cache.

MIT Alewife Machine The MIT Alewife machine [2] is an example of a CC-
NUMA shared memory programming environment on a scalable hardware
base. Figure 3.5 shows an overview of the MIT Alewife architecture. Each
node consists of a processor, a floating-point unit, 64kB of direct-mapped
cache, 8MB of DRAM, a network router, and a custom-designed communi-
cation and memory management unit (CMMU). The nodes can communicate
using either shared memory or message passing via the single-chip CMMU.
The CMMU is the heart of an Alewife node and is responsible for coordinat-
ing message-passing and shared memory communication. It implements a
scalable cache-coherence protocol and provides the processor with a low-
latency network interface.

Shared memory is distributed in the sense that the shared address space is
physically partitioned among nodes. Cache lines in Alewife are 16 bytes in size
and are kept coherent through software extended directory protocol. Each of

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 67

Alewife node

Distributed
Shared

Memory

Distributed
Memory

Private
Memory

Cache

FPU CPU

CMMU

Network
Router

HOST

VME
Host

Interface

Fig. 3.5 Alewife architecture (CMMU, communication and memory management
unit; FPU, floating-point unit).

the 16-byte memory lines has a home node that contains storage for its data
and coherence directory. All coherence operations for given memory line,
whether handled by hardware or software, are coordinated by its home node.
Each node contains the data and coherence directories for a 4-MB portion of
shared memory.

Alewife provides four classes of architectural mechanisms that implement
an automatic locality management strategy which seeks to maximize the
amount of local communication by consolidating related blocks of computa-
tion and data, and attempts to minimize the effects of nonlocal communica-
tion when it is unavoidable. The four classes are:

• Coherent caches for shared memory. Although the system’s physical
memory is statically distributed over the nodes in the machine, Alewife
provides the abstraction of globally shared memory to programmers. The
memory hardware helps manage locality by caching both private and
shared data on each node.

• Fine-grained computation. Alewife supports fine-grained computation by
including fast user-level messages.

• Integrated message passing. Although the programmer sees a shared
memory-programming model, for performance reasons much of the
underlying software is implemented using message passing.The hardware
supports a seamless interface.

• Latency tolerance. The mechanisms of block multithreading and pre-
fetching attempt to tolerate the latency of interprocessor communication
when it cannot be avoided. These mechanisms require caches that con-
tinue to supply instructions and data while waiting for the pre-fetched
data or during miss (called lockup-free caches).

The MIT Alewife machine implements a complete programming environ-
ment consisting of hardware, compiler, and operating system, all combined to
achieve the goal of programmability by solving problems such as scheduling
computation, and moving data between processing elements. Features of this
environment include globally shared address space, a compiler that auto-
matically partitions regular programs with loops, a library of efficient syn-
chronization and communication routines, distributed garbage collection, and
a parallel debugger.

Stanford FLASH Multiprocessor Like Alewife, the Stanford FLASH
multiprocessor [1] emphasizes efficient integration of both cache-coherent
shared memory and low-overhead user-level message passing. FLASH, shown
in Figure 3.6, is a single-address-space machine consisting of a large number
of processing nodes connected by a low-latency high-bandwidth interconnection
network. Every node is identical, containing a high-performance off-the-shelf
microprocessor and its caches. These caches form a portion of the machine’s

68 DISTRIBUTED SHARED MEMORY TOOLS

distributed memory and a node controller chip MAGIC (memory and general
interconnect controller). The MAGIC chip forms the heart of the node, inte-
grating a memory controller, I/O controller, network interface, and program-
mable protocol processor. This integration allows for low hardware overhead
while supporting both cache coherence and message-passing protocols in a
scalable and cohesive fashion. The MAGIC includes a programmable pro-
tocol processor that offers flexibility. The hardwired data movement logic
achieves low latency and high bandwidth by supporting highly pipelined data
transfers without extra-copying within the chip. MAGIC separates data move-
ment logic from protocol state manipulation logic, which ensures that it does
not become a latency or bandwidth bottleneck.

FLASH’s base cache coherence protocol is directory based and has two
components: a scalable directory data structure and a set of handlers. For a
scalable directory structure, FLASH uses dynamic pointer allocation, wherein
each cache line-sized block (128 bytes) of main memory is associated with an
8-byte state word called directory header. This header is stored in a contigu-
ous section of main memory devoted solely to the cache coherence protocol.
A significant advantage of dynamic pointer allocation is that the directory
storage requirements are scalable. Overall, the directory occupies 7 to 9
percent of main memory, depending on system configuration.

3.5.2 Mostly Software Page-Based DSM Systems

An alternative approach, making use of software to implement, has seen the
evolution of quite a number of page-based DSM systems. These techniques
make use of the virtual memory hardware in the underlying system, to imple-
ment the shared memory consistency models in software to resolve the con-
flicting memory accesses (memory accesses to the same location by different

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 69

Second-Level
Cache

DRAM CPU

MAGIC

Fig. 3.6 FLASH system architecture. (From J. Kuskin et al. [1].)

processors, at least one of which is a write access). Examples of mostly soft-
ware page-based DSM systems include TreadMarks [5], Brazos [6], and
Mirage+ [7].

The advantage of page-based DSM systems is that they eliminate the shared
memory hardware requirement, making them inexpensive and readily imple-
mentable. These systems are found to work well for dense matrix codes. As
the coherence policy is implemented in software, it can be optimized to make
use of the operating system to implement coherence mechanisms. The use of
operating system, however, makes them slow compared to hardware coher-
ence mechanisms. Additionally, the coarse sharing granularity (i.e., large page
size) results into false sharing and relatively higher communication time per
page. One solution is to have multigrain systems; using fine-grained shared
memory within an SMP and page-based distributed shared memory across the
SMPs.

A key issue in page-based DSM systems is write protocols.

• Write-update and write-invalidate protocols. There are two approaches to
maintaining the memory coherence requirement. One approach is to
ensure that a processor has exclusive access to a data item before it writes
that item. This type of protocol is called a write-invalidate protocol
because it invalidates all other copies on a write. This is by far the most
common protocol.The other alternative is to update all the cached copies
of a data item when it is written. This type of protocol is called a write-
update protocol.

• Single- and multiple-writer protocols. Most hardware cache and DSM
systems use single-writer protocols. These protocols allow multiple
readers to access a given page simultaneously, but a writer is required to
have sole access to a page before performing modifications. Single-writer
protocols are easy to implement because all copies of a given page are
always identical, and page fault can always be satisfied by retrieving a
copy of the page from any other processor that currently has a valid copy.
This simplicity often comes at the expense of high message traffic. Before
a page can be written, all other copies must be invalidated. These invali-
dations can then cause subsequent access misses if the processors whose
pages have been invalidated are still accessing the page’s data. False
sharing occurs when two or more unrelated data objects are located on
the same page and are written concurrently by separate processors. Since
the consistency unit (usually, a virtual memory page) is large in size, false
sharing is a potentially serious problem and causes the performance of
single-writer protocol to deteriorate further, due to interference between
un-related accesses. Multiple-writer protocols allow multiple processors
to have a writable copy of the page at the same time.

TreadMarks TreadMarks [5] supports parallel computing on networks of
workstations (NOWs) by providing the application with a shared memory

70 DISTRIBUTED SHARED MEMORY TOOLS

abstraction. The TreadMarks application programming interface (API)
provides facilities for process creation and destruction, synchronization,
and shared memory allocation. Synchronization, a way for the programmer
to express ordering constraints between the shared memory accesses of
different processes, is implemented with critical sections. TreadMarks provides
two synchronization primitives: barriers and exclusive locks. Barriers are
global in the sense that calling the barrier process is stalled until all the
processes in the system have arrived at that barrier. In the case of locks, a
lock-acquire call acquires a lock for the calling process and a lock-release call
releases it.

TreadMarks uses multiple-writer protocol. The shared page is initially
write-protected. When a write occurs in a processor (say P1), TreadMarks
creates a copy of the page, or a twin, and saves it as a part of TreadMarks’ data
structure on P1. It then un-protects the page in the user’s address space so that
further writes to that page occur without software intervention. Later, P1
arrives at a barrier; there is an unmodified twin and a modified copy in the
user’s address space. By making a word-by-word comparison of the two, a run-
length encoding of the modifications of the page, called a diff, is created. Once
the diff is created, it is sent to all the processors sharing that page. These
processors then modify the page, discarding the twin. The same sequence of
events takes place on every other processor. Once the diff is received, the
entire sequence of events is local to each processor and does not require
message exchanges, unlike in single-writer protocols.

Brazos Brazos [6] is a page-based DSM that makes use of relaxed consis-
tency models and multithreading on a network of multiprocessor computers.
It executes on x86 multiprocessor workstations running Windows NT 4.0.
Brazos is based on selective multicast in a time-multiplexed network envi-
ronment such as Ethernet. Selective multicast is used in Brazos to reduce the
number of consistency-related messages and to efficiently implement its
version of scope consistency. One disadvantage with multicast is the potential
harmful effect of unused indirect diff (i.e., run-length encoding of the modifi-
cations of a page). Although receiving multicast diffs for inactive pages does
not increase network traffic, it does cause processors to be interrupted fre-
quently to process incoming multicast messages. These messages and subse-
quent changes are not accessed before the next time that page is invalidated;
thus, they detract user-code computation time. The dynamic copyset reduction
mechanism ameliorates this effect by allowing processes to drop out of the
copyset for a particular page. This causes them to be excluded from multicast
messages, providing diffs for the page.

Brazos uses multithreading at both user level and DSM system level. Mul-
tiple user-level threads allow applications to take advantage of SMP servers
by using all available processors for computation. The Brazos runtime system
has two threads. One thread is responsible for responding quickly to asyn-
chronous requests for data from other processes and runs at the highest

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 71

possible priority. The other thread handles replies to requests sent previously
by the process.

Brazos implements a version of a scope consistency model, which is a bridge
between a release consistency model and an entry consistency model. The
scope consistency model seeks to reduce the false sharing present in page-
based DSM systems. False sharing occurs when two or more threads modify
different parts of the same page of data but do not actually share the same
data element. This leads to unnecessary network traffic. Scope consistency
divides the execution of a program into global and local scopes, and only data
modified within a single scope is guaranteed to be cohered at the end of that
scope. Brazos implements software-only scope consistency that requires no
additional hardware support.

Mirage+ Mirage+ [7], developed at University of California, Riverside, allo-
cates a time window during which processors at a node possess a page. At the
end of the time window, the node may be interrupted to relinquish the page.
During the time window, processes at the site(s) having read-only access may
read, or processes at the site having write access may read or write the page.
The page may also be unused during the time window. Thus, the time window
provides some degree of control over processor locality (i.e., the number of
references to a given page that a processor will make before another proces-
sor is allowed to reference that page). Mirage+ is a write-invalidate coherent
system (i.e., a store requires that all read-only copies of a page be invalidated
before storing to the page with the referenced location).

Mirage+ defines one distinguished site called the library site. Requests for
pages are sent to the library site, queried, and processed sequentially.All pages
must be checked out from the library. Another distinguished site is the clock
site. It is the site that has the most recent copy of a page. The library site
records which site is acting as a clock site. The process of converting a reader
to a writer when a page fault occurs is called an upgrade. The process of con-
verting a writer to a reader is called a downgrade.

Mirage makes use of performance improvement techniques in a networked
environment such as high-level packet blasting and compression. High-level
packet blasting eliminates the overhead of explicitly handshaking each packet,
thus improving the total time for a remote page significantly. Compression
works by reducing the number of packets that the system must transmit at
each page fault.

3.5.3 All-Software/Object-Based DSM Systems

In the all-software (object-based) approach, shared memory support is
entirely supported in software. Orca, SAM, Midway, CRL, and Shasta are
examples of this approach. Shasta is unique in that it uses a fine-grained
approach.

72 DISTRIBUTED SHARED MEMORY TOOLS

Orca Orca [8] defines an object- and language-based DSM model. It encap-
sulates shared data in objects and allows programmers to define operations
on these objects using abstract data types.This model is supported by the Orca
language, designed specifically for parallel programming on DSM systems.
Orca integrates synchronization and data accesses giving an advantage that
programmers, while developing parallel programs, do not have to use explicit
synchronization primitives.

Orca migrates and replicates shared data (objects) and supports an update
coherence protocol for implementing write operations. Objects are updated
using function shipping (i.e., the operation and its parameters are sent to all
machines containing a copy of the object to be updated).The operation is then
applied to the local copies. To ensure that the replicated copies are updated
in a coherent manner, the operation is sent using totally ordered group com-
munication. All updates are executed in the same order at all machines (i.e.,
sequential consistency is guaranteed). Orca is implemented entirely in soft-
ware and requires the operating system (or hardware) to provide only basic
communication primitives. This flexibility of being an all-software system is
exploited to implement several important optimizations.

Portability is achieved in Orca by using a layered approach.The system con-
tains three layers, and the machine-specific parts are isolated in the lowest
layer. This layer (called Panda) implements a virtual machine that provides
the communication and multitasking primitives needed by a runtime. Porta-
bility of Orca requires only portability of Panda.

SAM Stanford SAM [10] is a shared-object system for distributed shared
memory machines. SAM has been implemented as a C library. It is a portable
runtime system that provides a global name space and automatic caching of
shared data. SAM allows communication of data at the level of user-defined
data types, thus allowing user control over communication in a DSM machine.
The basic principle underlying SAM is to require the programmer to desig-
nate the way in which data are to be accessed. There are two kinds of data
relationships (hence synchronization) in parallel programs: values with single
assignment constraints, and accumulators, which allow mutually exclusive
accesses to the requesting processors.

Values make it simple to express producer–consumer relationships or
precedence constraints; any read of a value must wait for the creation of the
value. Accumulators allow automatic migration of data to the requesting
processors, making sure that the data accesses are mutually exclusive.

SAM incorporates mechanisms to address the problems of high communi-
cation overheads; these mechanisms include tying synchronization to data
access, chaotic access to data, pre-fetching of data, and pushing of data to
remote processors. SAM deals only with management and communication of
shared data; data that are completely local to a processor can be managed by
any appropriate method. The creator of a value or accumulator should specify

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 73

the type of the new data. With the help of a preprocessor, SAM uses this type
of information to allocate space for the messages, to pack them, unpack them,
and to free the storage of the data. The preprocessor can handle complex C
data types.

An important mechanism for tolerating communication latency is to
support for asynchronous access. SAM provides the capability to fetch values
and accumulators asynchronously. An asynchronous fetch succeeds immedi-
ately if a copy of the value is available on the local processor. If the value is
not available immediately, the fetch operation returns an indication of non-
availability, and the requesting process can proceed with other access or com-
putation. The requesting process is notified when the value becomes available
on the local processor. For asynchronous access to an accumulator, the process
is notified when the accumulator has been fetched to the local processor and
mutual exclusion has been obtained.

Midway Midway [11], at Carnegie Mellon University, is also an object-based
DSM programming system supporting multiple consistency models within a
single parallel program. Midway contains data that may be processor consis-
tent, release consistent, or entry consistent. Midway programs are written in
C and the association between synchronization objects and data must be made
with explicit annotations. Midway requires a small amount of compile time
support to implement its consistency protocols (e.g., whenever the compiler
generates its code to store a new value into a shared data item, it also gener-
ates code that marks the item as “dirty” in an auxiliary data structure).
Distributed synchronization management, implemented in Midway, enables
processors to acquire synchronization objects not presently held in their local
memories. Two types of synchronization objects are supported: locks and bar-
riers. Locks are acquired in either exclusive or nonexclusive mode by locating
the lock’s owner using a distributed queuing algorithm. Distributed cache
management ensures that a processor never enters a critical section without
having received all updates to the shared data guarded by that synchroniza-
tion object (a lock or a barrier). Midway implements entry consistency with
an update-based protocol, thereby requiring interprocessor communication
only during acquisition of synchronization objects. Entry consistency guaran-
tees that shared data become consistent at a processor when the processor
acquires a synchronization object known to guard the data.

CRL: C Region Library CRL [9] is an all-software DSM model that is
system and language independent. It is portable and employs a region-based
approach. Each region is an arbitrarily sized contiguous area of memory iden-
tified by a unique region identifier. CRL is implemented entirely as a library.
CRL requires no functionality from the underlying hardware, compiler, or
operating system beyond that necessary to send and receive messages. CRL
considers entire operations on regions of data as individual units and provides
sequential consistency for the read and write operations. In terms of individ-

74 DISTRIBUTED SHARED MEMORY TOOLS

ual loads and stores, CRL provides memory coherence through entry or re-
lease consistency. CRL employs a fixed-home directory-based write-invalidate
protocol.

CRL is able to use part of main memory as a large secondary cache instead
of relying only on hardware caches, which are typically small. Regions, chosen
to correspond to user-defined data structures, assist coherence actions to trans-
fer exactly the data required by the application.

Fine-Grained Shasta DSM Fine-grained sharing is an alternative all-software
approach proposed to overcome both the false sharing and unnecessary trans-
mission. Shasta [17] is a fine-grained all-software DSM developed at Western
Research Laboratory. It supports coherence at fine-granularity and thus
alleviates the need for complex mechanisms for dealing with false sharing
typically present in software page-based DSM systems. To reduce the high
overheads associated with software message handling, the cache coherence
protocol is designed to minimize extraneous coherence messages. It also
includes optimizations such as nonblocking stores, detection of migratory data
sharing, issuing multiple load misses in a batch, merging of load, sharing misses
to the same line, and support for pre-fetching and home-placement directives.

Shared data in Shasta has three basic states:

• Invalid. The data are not valid on this processor.
• Shared. The data are valid on this processor and other processors have

copies of it.
• Exclusive. The data are valid on this processor and no other processor

has a copy of it.

Communication is required if a processor attempts to read data that are in an
invalid or shared state. This is called a shared miss.

The shared address space in Shasta is divided into ranges of memory called
blocks. The block size can be different for different ranges of the shared
address space (i.e., for different program data). The line size is configurable at
compile time and is typically set to 64 or 128 bytes.The size of each block must
be a multiple of the fixed line size. Coherence is maintained using a directory-
based invalidation protocol, which supports three types of requests: read, read
exclusive, and exclusive (or upgrade). Supporting exclusive requests is an
important optimization since it reduces message latency and overhead if the
requesting processor has the line in shared state. Shasta supports three types
of synchronization primitives: locks, barriers, and event flags.

A home processor is associated with each virtual page of shared data, and
each processor maintains directory information for the shared data pages
assigned to it. The protocol maintains the notion of an owner processor for
each line which corresponds to the last processor that maintained an exclu-
sive copy of the line. Directory information consists of two components: a

CLASSIFICATION OF DISTRIBUTED SHARED MEMORY SYSTEMS 75

pointer to the current owner processor and a full-bit vector of the processor
that are sharing the data.The protocol supports dirty sharing, which allows the
data to be shared without requiring the home node to have an up-to-date copy.
A request coming to the home node is forwarded to the current owner as an
optimization; this forwarding is avoided if the home processor has a copy of
the data.

To avoid the high cost of handling messages via interrupts, messages from
other processors are serviced through a polling mechanism. Polls are also
inserted at every loop back-edge to ensure reasonable response times. The
protocol aggressively exploits the release consistency model by emulating the
behavior of a processor with nonblocking stores and lockup-free caches.

REFERENCES

1. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Roseblum, and J. Henessy, The
Stanford FLASH multiprocessor, Proceedings of the 21st International Symposium
on Computer Architecture, April 1994.

2. A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Krauz, J. Kubiatowicz, B.
Lim, K. Mackenzie and D. Yeung, The MIT Alewife machine: architecture and
performance, Proceedings of the 22nd International Symposium on Computer
Architecture (ISCA), June 1995.

3. B. Falsafi and D. A. Wood, Reactive NUMA: a design for unifying S-COMA and
CC-NUMA, Proceedings of the 24th International Symposium on Computer Archi-
tecture (ISCA), 1997.

4. C. Kuo, J. Carter, R. Kumarkote, and M. Swanson, ASCOMA: an adaptive hybrid
shared memory architecture, International Conference on Parallel Processing
(ICPPË98), August 1998.

5. C. Amza, A. Cox, S. Dwarakadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W.
Zwaenepoel,TreadMarks: shared memory computing on networks of workstations,
IEEE Computer, Vol. 29, No. 2, pp. 18–28, 1996.

6. E. Speight and J. K. Bennett, Brazos: a third generation DSM system, Proceedings
of the 1997 USENIX Windows NT Workshop, August 1997.

7. B. D. Fleisch, R. L. Hyde, and N. Christian, Mirage+: a kernel implementation of
distributed shared memory for a network of personal computers, Software Prac-
tice and Experience, Vol. 24, No. 10, pp. 887–909, October 1994.

8. H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, and T. Ruhl,
Performance evaluation of the Orca shared object system, ACM Transactions on
Computer Systems, Vol. 16, No. 1, pp. 1–40, 1998.

9. K. L. Johnson, M. Kaashoek, and D. Wallach, CRL: high-performance all-software
distributed shared memory, Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP ’95), 1995.

10. D. J. Scales and M. S. Lam, The design and evaluation of a shared object system for
distributed memory machines, Proceedings of the First Symposium on Operating
Systems Design and Implementation, November 1994.

76 DISTRIBUTED SHARED MEMORY TOOLS

11. B. Bershad, M. Zekauskas, and W. Swadon,The Midway distributed shared memory
system, IEEE International Compute Conference (COMPCON), 1993.

12. E. Hagersten, A. Saulsbury, and A. Landin, Simple COMA node implementations,
Proceedings of the 27th Hawaii International Conference on System Sciences
(HICSS-27), Vol. I, pp. 522–533, January 1994.

13. B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, Operating system support
for improving data locality on CC-NUMA computer servers, Proceedings of
the 7th Symposium on Architectural Support for Programming Languages and
Operating Systems (ASPOLS VII), 1996.

14. J. Laudon and D. Lenoski, The SGI Origin: a ccNUMA highly scalable server,
http://www-europe.sgi.com/origin/tech_info.html.

15. A. Charlesworth, STARFIRE: extending the SMP envelope, IEEE MICRO,
January–February 1998.

16. T. Brewer and G. Astfalk, The evolution of HP/convex exemplar, Proceedings of
the IEEE Computer Conference (COMPCON), Spring, February 1997.

17. D. J. Scales, K. Gharachorloo, and A. Aggarwal, Fine-Grain Software Distributed
Shared Memory on SMP Clusters, Research Report 97/3, February 1997.

18. H. Burkhardt III, S. Frank, B. Knobe, and J. Rothnie, Overview of the KSR1 Com-
puter System, Technical Report KSR-TR-9202001, Kendall Square Research,
Boston, February 1992.

19. A. Saulsbury and A. Nowatzyk, Simple COMA on S3.MP, Proceedings of the 1995
International Symposium on Computer Architecture Shared Memory Workshop,
Portofino, Italy, June 1995.

REFERENCES 77

CHAPTER 4

Distributed-Object Computing Tools

R. RAJE, A. KALYANARAMAN, and N. NAYANI

Department of Computer and Information Science, Indiana University Purdue University,
Indianapolis, IN

4.1 INTRODUCTION

Distributed computing systems are omnipresent in today’s world. The rapid
progress in the semiconductor and networking infrastructures have blurred
the differentiation between parallel and distributed computing systems and
made distributed computing a workable alternative to high-performance
parallel architectures.

However attractive distributed computing may be, developing software for
such systems is hardly a trivial task. Many different models and technologies
have been proposed by academia and industry for developing robust distrib-
uted software systems. Despite a large number of such systems, one fact is clear
that the software for distributed computing can be written efficiently using the
principles of distributed-object computing. The concept of objects residing in
different address spaces and communicating via messages over a network
meshes well with the principles of distributed computation. Out of the exist-
ing alternatives, Java-RMI (Remote Method Invocation) from Sun Microsys-
tems, CORBA (Common Object Request Broker Architecture) from Object
Management Group, and DCOM (Distributed Component Object Model)
from Microsoft are the most popular distributed-object models among
researchers and practitioners. This chapter provides a brief overview of these
three popular approaches. As each of these models is fairly comprehensive, a
detailed treatment of them in one chapter is not feasible. However, the chapter
provides information about the basic model of each approach, followed by
three actual examples, chosen from different domains, each having a different
flavor with code segments, followed by a comparison and experimental eval-

79

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

uation of these approaches. A brief discussion on a proposed Unified Meta-
Object Model is presented at the end of the chapter.

4.2 BASIC MODEL

4.2.1 RMI

Java Remote Method Invocation [2] allows the implementation of distributed
objects in Java. It allows a client running on any Java virtual machine to access
a Java object hosted on a remote virtual machine. RMI follows the language-
centric model [16]. This fact is two-faceted. First, the clients and servers need
to be implemented in Java. This gives them an inherent object-oriented
appearance and allows objects to interact with all the features of Java, such as
JNI and JDBC. It also means that a server object can be run and accessed
from any virtual machine, thus achieving platform independency. Second,
the model is tied to Java, and hence objects cannot be implemented using
any other language, thereby prohibiting interactions between heterogeneous
(i.e., implemented in different languages) objects.

Basic Model The basic model of RMI consists of a client program, which
intends to access a remote object, and a server program, which hosts the
remote object [2]. For a client to connect to a remote object requires a refer-
ence to the object hosted by the server program [4]. A client can locate the
remote server object in two ways.These two ways differ in the manner in which
the client obtains the remote reference. These are described below.

1. Explicitly obtaining a remote reference. RMI provides a nonpersistent
registry called RMIREGISTRY, which should be deployed on the server
machine. The server object when instantiated should register itself to the
local RMIREGISTRY. This action is achieved by calling Naming.bind().
When trying to connect to a remote object, the client looks up a named
instance registered at the RMIREGISTRY. Figure 4.1 explains the archi-
tecture and the sequence of events in a typical RMI application.

2. Implicitly obtaining a remote reference. A reference to a remote object
can also be obtained as a parameter or return value in a method call.
This, too, can serve as a means of accessing a remote object from a client.
It is assumed that a RMI client knows which server machine the remote
object is currently hosted on for it to connect so that a lookup for
that object can be performed on that server machine for obtaining a
reference.

Irrespective of the approach used, once a remote reference is available to
the client it achieves the remote method invocation using stubs and skeletons.
The client-side stub acts as the proxy for the server. The server-side skeleton

80 DISTRIBUTED-OBJECT COMPUTING TOOLS

handles the method invocations done by all the remote stubs to the local
server object. When a client invokes a method on the object reference, the call
is first received by the stub. Marshaling is done by the stub and the data are
sent to the server. The server-side skeleton unmarshals the method call and
routes it to the actual server object. Upon completion of method execution
the skeleton receives the return parameters, marshals the contents, and sends
it back to the client stub, which would then unmarshal it. This entire process
is transparent to the client and the method invocation looks like a local
method call. The serialization ability of Java is used for the marshaling/unmar-
shaling of arguments and return values.

4.2.2 CORBA

CORBA (Common Object Request Broker Architecture) [13] is a distributed
object architecture that provides a communication infrastructure for a
heterogeneous and distributed collection of collaborating objects [18].
These remote or local collaborating objects can interoperate across networks
regardless of the language in which they are written or the platform on
which they are deployed.

CORBA is a suite of specifications issued by the Object Management
Group (OMG) [13]. The OMG is a nonprofit consortium comprising about
1000 computer companies. It was formed in 1989 with the purpose of pro-
moting the theory and practice of object technology in distributed computing
systems. OMG realizes its goals through creating standards which allow inter-
operability and portability of distributed object-oriented applications [17].The
CORBA standards for interoperability in heterogeneous computing environ-

BASIC MODEL 81

STUB

CLIENT

RMIREGISTRY

Server MachineClinet Machine

SKELETON

SERVER

2-lookup

3-method calls

4-actual
method call

1-bind

Fig. 4.1 RMI architecture and sequence of events.

ments, promoted by the OMG, lay down guidelines for developing distributed
applications whose components collaborate transparently, scalably, reliably,
and efficiently [18].

Basic Model: CORBA Architecture The Object Management Architecture
(OMA), defined by the OMG, is a high-level design of a complete distributed
environment. OMA provides the conceptual infrastructure and forms the basis
for all OMG specifications, including the object model and the reference
model. The object model underlies the CORBA architecture and defines
common object semantics for specifying an object and its visible characteris-
tics in a heterogeneous environment, and the reference model defines object
interactions. The OMA comprises of four main components: object request
brokers and object services (system-oriented components) and application
objects and common facilities (application-oriented components) [17]. The
object request broker (ORB) is the middleware that handles the communica-
tion details between the objects. Figure 4.2 shows the main components of the
CORBA architecture and their interconnections. Below, a brief explanation of
each of the components is provided. This explanation is a condensed form of
[14,16,21].

A CORBA object is a virtual entity that consists of an identity (the object
reference that helps to identify, locate, and address a CORBA object), an inter-

82 DISTRIBUTED-OBJECT COMPUTING TOOLS

INTERFACE
REPOSITORY

IDL
COMPILER

IMPLEMENTATION
REPOSITORY

OBJECT
(SERVANT)

DSI
IDL

SKELETON

CLIENT

IDL
STUBS

DII

GIOP/IIOP

STANDARD INTERFACE

ORB-SPECIFIC INTERFACE

STANDARD LANGUAGE MAPPING

STANDARD PROTOCOL

OBJ
REF

in args

operation()

out args + return value

ORB
INTERFACE

OBJECT
ADAPTER

ORB CORE

Fig. 4.2 CORBA architecture. (From Schmidt [14].)

face, and an implementation. The object implementation is known as a servant.
Every CORBA object maps to a servant.

A servant is a programming language entity that implements the operations
that are defined in the CORBA object’s Interface Definition Language (IDL)
interface. Servants can be implemented in various languages, such as C, C++,
Java, Smalltalk, and Ada. The servants exist in the context of a server and are
located and invoked by the ORB and the object adapter (OA) with the help
of the object references.

A client application is a program entity that invokes an operation on a
remote object by maintaining a reference to the object. A client can obtain a
reference to a remote server object by binding to the CORBA naming or
trader service.

The object request broker (ORB) is the middleware that provides a commu-
nication channel for routing client requests to target object implementations
transparently.A client can access the services of an object implementation only
through the ORB. The ORB is responsible for finding the object implementa-
tion, activating it if necessary, delivering the request to the object, and returning
any response to the calling object. CORBA 2.0 specifies that each ORB must
support a standard adapter called the basic object adapter (BOA). Servers may
support more than one object adapter. CORBA 3.0 introduces a portable
version of BOA called the portable object adapter (POA). The BOA and POA
are responsible for the transparent activation of objects. POA provides a more
flexible architecture that allows the ORB implementations to be designed such
that the CORBA servers can fit a variety of application needs. The POA also
introduces some additional features, such as providing the option of using a
servant manager for each implementation of an object reference.These servant
managers, also called callback objects or instance managers, assist the POA in
the management of server-side objects [16].

The ORB interface is an abstract interface defined in the CORBA specifi-
cation, containing various helper functions for stringification (converting
object references to strings), destringification (reverse of stringification), and
creating argument lists for requests made through the dynamic invocation
interface (DII). This logical ORB entity can be implemented in various ways
by different vendors.

A CORBA IDL stub serves as a connection between the client applications
and the ORB.The IDL compiler generates the client-side stubs and the server-
side skeletons.

A skeleton is a programming language entity that serves as a connection
between the OA and the servant and allows the OA to dispatch requests to
the servant.

The dynamic invocation interface (DII) allows a client application to invoke
a request on a server object directly by using the underlying request mecha-
nisms provided by an ORB without having to go through the IDL interface-
specific stubs. The DII allows clients to make both nonblocking deferred
synchronous and one-way calls [14].

BASIC MODEL 83

The dynamic skeleton interface (DSI) is the server-side counterpart of the
DII. The DSI allows an ORB to deliver requests to an object implementation
that does not have IDL-based compiled skeletons or stubs.

The object adapter acts as an intermediary between the ORB and the object
implementation.The object adapter is responsible for associating object imple-
mentations with the ORB, activating/deactivating the objects and delivering
requests to the objects. Object implementations can support multiple object
adapters.

For various objects of different ORBs to be able to communicate seam-
lessly with one another, the CORBA 2.0 specification provides a methodology
known as the ORB Interoperability Architecture or the General Inter-ORB
Protocol (GIOP). The GIOP [13] is a collection of message requests that
ORBs can make over a network. GIOP maps ORB requests to different
network transports.The Internet Inter-ORB Protocol (IIOP) [13], which maps
GIOP messages to TCP/IP, is a GIOP implementation but a standardized
version that all ORBs must be able to use. An Environment Specific Inter-
ORB Protocol (ESIOP) is the complement of GIOP. ESIOPs let GIOP type
messages be mapped to a proprietary network protocol such as the Open Soft-
ware Foundation’s (OSF’s) Distributed Computing Environment (DCE). Any
2.0 ORB based on an ESIOP must include a half bridge to IIOP so that IIOP
requests can also be made on it [15].

IDL (Interface Definition Language) The Interface Definition Language
(IDL), defined by the OMG, is used to describe object interfaces in a standard
manner. IDL [5] is a declarative language and its grammar is an extension of
a subset of the ANSI C++ standard.The IDL interfaces are similar to the inter-
faces in Java and abstract classes in C++. OMG provides mappings from IDL
to different implementation languages such as Java and C++ [13]. The IDL
compiler generates the client-side stubs and server-side skeletons.

CORBA Object Services CORBA object services are a set of interfaces
and objects used for handling the invoking and implementation of objects.
Currently, CORBA provides about 15 object services.The prominent ones are:

• Naming service: helps clients find object implementations based on their
name.

• Trading service: allows objects to advertise their services and bid for
contracts.

• Event service: provides for an event-channel interface that distributes
events among components.

Other services are persistent object service, life-cycle service, time service,
transaction service, relationship service, externalization service, concurrency
control service, query service, licensing service, property service, security service,
and collection service.

84 DISTRIBUTED-OBJECT COMPUTING TOOLS

4.2.3 DCOM

DCOM [8] is the distributed extension of COM (component object model)
that allows components distributed across networks to communicate directly
in a secure and reliable manner. It sits on the DCERPC layer and builds its
object remote procedure calls [6]. It is a binary standard, which allows it to be
implemented in any language that generates a binary code compatible to this
standard [7]. The main feature of DCOM is that the operating system acts as
the central registry repository for maintaining object references.

Basic Model DCOM supports two types of object activation, in-process and
out-of-process activations. In in-process activation the server object instance
is created and run in the client’s address space. In out-of-process activation the
server object is hosted in a separate process address space. This can either be,
local, where it is on the same machine as the client, or remote, where it is on
a different machine altogether. Depending on the requirement of the appli-
cation on object-sharing constraints, object visibility to clients and deployment
feasibility, the developer can choose between in-process or out-of-process
implementation of the server object. If each client requires a separate instance
of server implementation, an in-process activation might be chosen. If a
separate server instance is required to be running independently catering to
requests from clients on the fly, out-of-process activation is the choice.

DCOM clients can locate objects in more than one way. The server object
interface ID could be registered on the client machine’s system registry as a
fixed configuration. The other option is to allow the client to specify explicitly
the location of the server object (CoCreateInstanceEx()). The third option is
to specify a name that uniquely identifies a COM object in a directory name-
space. This unique name given to an object instance is also referred to as a
moniker [9].

Each COM component exposes a set of functionally related methods
through a COM interface. Object classes are those that implement one or more
of these interfaces. Each COM interface and object class has a global identi-
fier to be uniquely identified. Each COM server instantiates object instances
of the object classes. Figure 4.3 depicts all components involved in the COM
architecture [6].

The COM-SCM (service control manager) provides a set of methods for a
client to perform a remote activation on the server object. This layer receives
calls from the OLE32 and routes them to its server machine counterpart. A
new server object instance is created on the server if this is the first request
for the server object. The call returns the interface pointer to the client, and
the client henceforth can invoke methods on the remote object. On subse-
quent requests for the same object instance, the same interface pointer is
returned. The client can interact with the server object with only those
methods described in the interface. COM interfaces are defined using
Microsoft Interface Definition Language (MIDL).

BASIC MODEL 85

Any COM interface should derive from a standard base interface called
IUnknown, directly or indirectly. IUnknown is an interface that exposes three
methods: AddRef, QueryInterface, and Release. It forces implementation of
these three methods by the implementation class object. Each time a client
connects, the reference count for the object instance is incremented by one,
and when the client disconnects, the count is decremented. This is done by the
invocation of AddRef and Release methods, respectively. DCOM provides
robust connection management through this mechanism. At any point of time,
if the reference count is greater than zero, the server object instance resides
in the memory, as it means that at least one client is connected to this object.
When the reference count hits zero, the server object instance is unloaded
from memory.The QueryInterface method takes in an interface ID and returns
the requested COM interface on the same object [10]. A COM component
supports a list of interfaces and is represented in MIDL through a coclass.

Once a client receives an object pointer, it invokes methods as it would on
any of its local objects. On any method invocation on the object, marshaling
is done, by reading the stack and writing into a flat memory buffer which holds
data over the RPC network. On the client side this is done by the client-side
stub called Proxy. The buffer is received by the server-side skeleton called
Stub, which recreates the stack on the server side and invokes the method.

4.3 EXAMPLES

In an attempt to give a general idea on the implementation techniques and to
arrive at a comparative study of the three distributed technologies—RMI,

86 DISTRIBUTED-OBJECT COMPUTING TOOLS

Client

COM
library

Obj.
proxy

Inter.
proxy

SCM(s)
& registry

Server

class
factory

object

Inter.
stub

boj.
stub

basic
programming
architecture

remoting
architecture

COM
library

SCM

registry

SCM

registry

RPC channel

OXID
resolver

Ping client Ping server

OXID
resolver

object exporter

OXID
object

wire
protocol

architecture

Server machineClient machine

Fig. 4.3 DCOM architecture. (From Chung etal. [6].)

CORBA, and DCOM—three experiments are depicted here. The first exper-
iment is a ping experiment, the objective for which is to measure performance
by response time. To detail a typical way of implementing a concurrency
problem using these technologies, a producer–consumer problem is shown as
the second experiment. A matrix-by-vector multiplication experiment shows
the implementation of a numerical computation problem in a distributed envi-
ronment. For sake of brevity, all implementation details are not indicated.
However, all the important features are highlighted in the examples, which will
enable the reader to write their applications using these three methodologies.

4.3.1 Experimental Setup

All the experiments were conducted on Pentium MMX (Model 4, CPU family
5, CPU MHz 200.456) machines connected by 10-Mbps Ethernet. The operat-
ing system used was Red Hat Linux. Java (JDK 1.3) was used as the pro-
gramming language, for the obvious reason that RMI is one of the
technologies. The CORBA implementations were done using Visibroker for
Java 4.1 [19], which is fully compliant with the CORBA 2.3 specification. Devi-
ating from the conventional approach, a tool that implements DCOM on
UNIX platforms was chosen. This was done to make sure that all three exper-
iments using all three paradigms were conducted under the same environment,
so that a true comparative study could be made. The tool used was J-Integra
Pure Java-COM bridge [26]. It offers a platform-independent implementation
of COM libraries and hence suits the Java-DCOM implementation on UNIX
platforms.

4.3.2 Developing Applications under RMI, CORBA, and DCOM

Steps Involved in Design and Implementation of RMI Applications The
steps to be followed in developing a RMI server and a client are described
below.

Server Side

1. Design the remote interface. As a rule, the remote interface should
extend java.rmi.Remote directly or indirectly. In addition, each remote
method should throw java.rmi.RemoteException, which gets thrown for
any problem on the server side or network during the span of the remote
method call.

2. Implement the remote interface. The implementation class must provide
an implementation for every method listed in the interface. The imple-
mentation class needs to extend from RemoteObject, typically through
UnicastRemoteObject.

3. Implement the RMI server. This involves creating and installing the
remote object. The setup procedure is:

EXAMPLES 87

a. Create and install RMISecurityManager. This step is strongly recom-
mended, although optional. This protects the access to system
resources from any untrusted code downloaded from the remote
virtual machine [2].

b. Create instances of the server object.
c. Bind or register the server object(s) with the RMI remote object

registry (rmiregistry) or other naming service. If rmiregistry is being
used as the naming service, it needs to be deployed on the server
machine before the RMI server program runs.

Client Side

1. Create and install RMISecurityManager.
2. Lookup for the server object. A bind string that contains the remote

server name where the object is hosted and the name bound with that
object instance is supplied to the lookup() method on the
java.rmi.Naming class. This method returns the object reference of the
remote object.

3. Invoke methods on the object reference thus obtained.

Steps Involved in Design and Implementation of CORBA Applications
The steps involved in developing a typical CORBA application are:

1. Write a specification that describes the interfaces of the object or
objects to be implemented using the IDL.

2. Compile the IDL specification using the IDL compiler provided by the
particular ORB and for a particular target implementation language.
This produces the client stub code and server skeleton code.

3. Identify the interfaces and classes generated by the IDL compiler that
would be used or specialized to invoke or implement operations.

4. Write the server object code.
5. To implement the server object code derived from the POA classes,

provide implementations of the interface’s methods and implement the
server’s main routine.

6. Write the client program code.
7. For the client implementation code, initialize the ORB and obtain the

references to any CORBA objects that we have created by doing a
bind. Invoke methods on these objects.

8. Compile all the code generated and our application code with the target
language compiler.

9. Start the ORB on the host.
10. Run the distributed application.

88 DISTRIBUTED-OBJECT COMPUTING TOOLS

Steps Involved in Design and Implementation of DCOM Applications
The steps shown below provide a general set of procedures involved in the
design and implementation of a typical DCOM client–server application.
Although there are some idiosyncrasies of developing a DCOM application
under the UNIX environment based on the tool used, they are not shown here,
to avoid confusion.

Server Side

1. Create the MIDL specification. As a rule, each interface should extend
IUnknown directly or indirectly. If the interface derives from IDispatch
(which is itself derived from IUnknown), it means that the DCOM object
supports late binding on remote method calls. In this case, each method
call is routed through IDispatch::Invoke(). This feature of the server
object is described as Automation [11]. Each interface should be con-
tained in at least one coclass. A coclass represents a server component
and specifies a listing of all supported interfaces for that component
object. Each coclass is represented by a unique 128-bit number called
CLSID. The list of all coclasses is embedded in a library, which contains
all information that the MIDL compiler uses to generate a type library.
A type library is a binary file that contains information similar to that
contained in a header file.

2. Implement the coclass. The implementation class provides an
implementation for every method listed in each component’s contained
interface. As more than one interface can be a part of one coclass, the
same implementation class can be used to implement many interfaces.
Also, as the same interface can be a part of more than one coclass, one
interface can have more than one implementation.

3. Register the component. This step could vary depending on the access
method the component’s clients would follow. For instance, if the
Windows system registry is used by the clients for lookup, a program
(regsvr32) to register the CLSID and IID of the components is run. This
program can be executed by a user, who has rights to create/modify
entries in the system registry. If the clients use monikers, a separate
server program is run, which instantiates a new server object. After
instantiation, this program stores the named instance (moniker) in a file,
which would then be read by any client program for binding purposes.
The second approach was used for our experimentation purposes.

Client Side

1. Locate the server object. This again depends on the access method used.
If monikers are used, the moniker file has to be read to get the name of
the named interface object reference running on the server for binding.

EXAMPLES 89

In a normal case, a typical Java-DCOM client creates a local reference
to the remote interface object as though it is a local class object.The calls
to the COM-SCM (like coCreateInstance()) are internally handled once
the JVM knows that it is a remote object activation.

2. Invoke methods. The client then starts invoking methods on the object
reference as if it were a local object.

4.3.3 Experiment 1: Ping

The objective of this experiment is to assess the performance of the distrib-
uted technologies, RMI, CORBA, and DCOM. The server object implements
an interface, that takes in a floating-point array from the client and returns a
reversed array back to the client. The client program first obtains a reference
to this remote server object. It then creates a local float array and invokes a
remote method on the object. This remote method reverses the float-array
object and returns back the resultant array. This method invocation is done
repeatedly on the object, and the average time for one method call is calcu-
lated. It is to be noted that for getting a realistic measurement of time, a Java
native call for obtaining the system time is used in place of a call on the Java
virtual machine. As a locally created object is passed from the client and got
back from the server, this gives a good measurement strategy for assessing per-
formance of these three technologies under the same environment. Although
the load on the network is a variant that is not taken into consideration, the
ping experiment (for RMI, CORBA, and DCOM) was carried out when no
other user processes were deployed on the machines or using the network.

RMI

Step 1: Create the Interface File—PingRMI.java

public interface PingRMI extends java.rmi.Remote
{
float[] doReverse(float[] inputVect) throws java.rmi.
RemoteException;
}// end of PingRMI

Step 2: Create the Ping Implementation Class—PingRMIImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
public class PingRMIImpl extends UnicastRemoteObject

implements PingRMI
{
private String m_sName;

90 DISTRIBUTED-OBJECT COMPUTING TOOLS

public PingRMIImpl(String sName) throws RemoteException
{

// constructor implementation
}// end of PingRMIImpl constructor

public float[] doReverse(float[] inputVect) throws
RemoteException

{
// reverse the input vector onto a temporary vector
and

// return the temporary vector
}// end of doReverse
}// end of PingRMIImpl

Step 3: Implement the Server Class—PingRMIServer.java

import java.rmi.*;
import java.rmi.server.*;
public class PingRMIServer
{

public static void main(String[] args)
{

// creates the security manager for RMI
// this is done to make sure access to system
resources is restricted
System.setSecurityManager(new RMISecurityManager());
try
{

// instantiates an instance of the server object
PingRMIImpl pingObject = new PingRMIImpl
("PingServer");
System.out.println("RMI Object Created");
// binds the created object instance to the
rmiregistry
Naming.rebind("PingServer",pingObject);
System.out.println("Binding Done");

}
catch (Exception e)
{

System.out.println("Exception in PingRMIServer main: " +
e.getMessage());

e.printStackTrace();
}

}// end of main
}// end of PingRMIServer

EXAMPLES 91

Step 4: Define the Ping Client—PingRMIClient.java

//This is a client-side activity.
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class PingRMIClient
{
public static void main(String[] args)
{

// creates the security manager for RMI
// this is done to make sure access to system
// resources is restricted
System.setSecurityManager(new RMISecurityManager());
try
{

// looksup for the remote object and obtains
// a local reference
PingRMI myPingObject = (PingRMI)
N a m i n g . l o o k u p (" r m i : / / " + a r g s [0] + " /
PingServer");

// initialize and populate the input
// vector inputVect

// initialize the output return vector
// create a timer object

TimeWrap oTimer = new TimeWrap();
// start the timer this will be a native
// interface call
String sStartTime = oTimer.getFromTimer();

// loop around to perform repeated reversals through
// remote call

for(int i=0;i<iLoop;i++)
{
outVect = myPingObject.doReverse(inputVect);

}

// stop the timer
String sEndTime = oTimer.getFromTimer();

// print the input and return vector con-
tents for verification

// calculate the total time taken on an average for
// each method call

lTimeDiff = (endTime-startTime) / iLoop;

92 DISTRIBUTED-OBJECT COMPUTING TOOLS

// display the ping results
System.out.print("\nTime Taken for one RMI
call on an average

(in MicroSec)= ");
System.out.println(lTimeDiff);

}
catch(Exception e)
{

System.out.println("Exception in Client=
"+e.getMessage());
e.printStackTrace();

}
} // end of main
} // end of PingRMIClinent

The underlying assumption above is that a timer is already implemented using
JNI for getting a more realistic value for the start and end times.

Step 5: Define the Makefile
Makefile:

all :
@echo "You must specify a taret"

java :
\$(MAKE) -f Makefile.java

clean_java :
\$(MAKE) -f Makefile.java clean

Makefile.java:

default:
javac PingRMI.java
javac PingRMIImpl.java
rmic PingRMIImpl
javac PingRMIServer.java
javac PingRMIClient.jave

clean:
rm -f *.lass

Step 6: Define the Security Policy Files As RMI requires the implementa-
tion of security manager on both the server and the client sides, it is required
to specify the rights that need to be granted explicitly, for launching the server
and client programs. This is done through a policy file. A sample of both server
and client policy files is shown here.

EXAMPLES 93

Server.policy:

grant
{
permission java.net.SocketPermission

''*:1024-65535'',''accept,listen,connect,
resolve'' ;

}

The server program needs connect, resolve rights to connect to the
RMIREGISTRY and accept, listen rights to accept a new connection from a
client. The Server.policy file grants these rights on any ports specified in the
range.

Client.policy:

grant
{

permission java.net.SocketPermission
''*:1024-65535'',''connect,resolve'';

}

The client program needs connect, resolve rights to connect to the remote
server’s RMIREGISTRY. The client.policy file grants these rights on any ports
specified in the range.

Step 7: Execute the Programs The steps to be followed on the server side
are:

Prompt> rmiregistry &
Prompt> java –Djava.security.policy=Server.policy
PingRMIServer &

The first step brings up the rmiregistry, and the second step launches the RMI
ping server object.

The client program is launched the following way:

Prompt> java –Djava.security.policy=client.policy
PingRMIClient Pegasus

The machine on which the RMI server has been launched is specified as the
argument to the client program. In the sample case shown, it is Pegasus.

94 DISTRIBUTED-OBJECT COMPUTING TOOLS

CORBA

Step 1: Create the IDL File—Ping.idl

//Ping.idl
module Ping
{
//unbounded sequence of floats.

typedef sequence<float> oneDimArray;
//Specify the interface for PingCorbaClass
interface PingCorba
{

oneDimArray doReverse(in oneDimArray X);
};

};

The CORBA IDL type module maps to a Java Package with the same name
as the IDL module. The IDL type interface maps to a Java interface with the
same name. A sequence is a variable-sized one-dimensional array of elements,
where the element can be of any IDL-defined type. The sequence must be
named using an IDL typedef before it can be used as an IDL type. A CORBA
IDL sequence maps to a Java array with the same name. A CORBA sequence
can be either bounded to a maximum length or unbounded [16]. In the ping
example here an unbounded sequence has been used so that no restrictions
are imposed on the maximum number of elements in the sequence.

Step 2: Use the IDL Compiler to Generate Client Stubs and Server Servants
Compile the .idl file using the command: idl2java Ping.idl -no_tie. The -no_tie
option declares that ties which are meant for delegation-based implementa-
tions for non-OO languages [16], are not used. The idl2java compiler creates
a separate directory called Ping and puts all the generated files in this direc-
tory. This is because the IDL specification module maps to a java equivalent
of package. In this case since the module is named Ping, the generated Java
files will be part of the package Ping.

Step 3: Provide an Implementation for the PingCorba Object—PingCor-
baImpl.java The PingCorbaImpl class should extend from the PingCorba-
POA class, which is a part of the package Ping [20].

// PingCorbaImpl.java
public class PingCorbaImpl extends Ping.PingCorbaPOA
{

PingCorbaImpl Constructor
...

public float[] doReverse (float [] X)

EXAMPLES 95

{
// reverse the input array and return it.

...
} //end of doReverse
} //end of PingCorbaImpl

Step 4: Implement the Server Program—PingCorbaServer.java The server
program does the following: initializes the ORB, creates a portable object
adapter (POA) with the required policies—in this case with a LifespanPolicy
value of PERSISTENT, creates the PingServant object, activates the servant
object, activates the POA manager (and the POA), and then waits for incom-
ing requests. The lifespan policy specifies the lifespan of the object and can
have the values TRANSIENT (default) or PERSISTENT. A transient object
activated by a POA cannot outlive the POA that created it, whereas a persis-
tent object activated by a POA can outlive the process in which it was first
created. Requests invoked on a persistent object may result in the implicit acti-
vation of a process, a POA, and the servant that implements the object [20].

// PingCorbaServer.java
import org.omg.PortableServer.*;
public class PingCorbaServer
{
public static void main(String[] args)
{

try
{

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.
init(args,null);

// get a reference to the root POA
POA rootPOA =

POAHelper.narrow(orb.resolve_initial_refer-
ences ("RootPOA"));

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.
PERSISTENT)
};

// Create myPOA with the right policies
POA myPOA =
rootPOA.create_POA("PingCorba_poa", rootPOA.the_POAMan-
ager(), policies);

96 DISTRIBUTED-OBJECT COMPUTING TOOLS

// Create the servant
PingCorbaImpl PingServant = new PingCorbaImpl();

// Decide on the ID for the servant
byte[] PingId = "Ping".getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(PingId, PingServant);

// Activate the POA manager
rootPOA.the_POAManager().activate();

System.out.println(myPOA.servant_to_reference(PingServant)
+ " is ready. ");

// Wait for incoming requests
orb.run();
}
catch (Exception e)
{

e.printStackTrace();
}
}//end of main
}//end of PingCorbaServer

Step 5: Implement the Client—PingCorbaClient.java

// PingCorbaClient.java
public class PingCorbaClient
{
public static void main(String[] args)
{
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init
(args,null);

// Get the Id
byte[] PingId = "Ping".getBytes();

// Locate a PingCorba object reference. Give the full
// POA name and the servant ID.
Ping.PingCorba myPingObj =
Ping.PingCorbaHelper.bind(orb, "/PingCorba_poa", PingId);

EXAMPLES 97

//Create a float array (inputArray) of length N and
// populate it.

...
//Create a float array (outputArray) of same length as
//inputArray.

...

// Create a timer object
TimeWrap oTimer = new TimeWrap();

// Start the timer—this will be a native interface call
String sStartTime = oTimer.getFromTimer();
// Loop around to perform repeated reversals through
// remote call
for(int i=0;i<iLoop;i++)
{

outputArray = myPingObj.doReverse
(inputArray);

}
// Stop the timer
String sEndTime = oTimer.getFromTimer();

// print the input and return vector contents
for verification

...

// calculate the total time taken on an average for each
// method call

lTimeDiff = (endTime-startTime) / iLoop;

// display the ping results
System.out.print("\nTime Taken for one call on an
average (in MicroSec)= ");
System.out.println(lTimeDiff);
} //end of main
} //end of class PingCorbaClinent

Step 6: Create the Makefile to Compile all the Java files The Makefile for
this application is shown here. This Makefile should be used in conjunction
with Makefile.java shown below. To run the makefile, issue the following
command: Prompt> make java.

Makefile:

all :
@echo "You must specify a target"

98 DISTRIBUTED-OBJECT COMPUTING TOOLS

java :
\$(MAKE) -f Makefile.java

clean_java :
\$(MAKE) -f Makefile.java clean

Makefile.java:

.SUFFIXES: .java .class .idl .module

.java.class:
vbjc \$<

.idl.module:
idl2java \$<
touch \$@

default: all
clean:

rm -rf Ping
rm -f *.class *.tmp *.module *~

IDLS = \
Ping.idl

MODULES = \$(IDLS: .idl = .module)
SRCS = \

PingCorbaImpl.java \
PingCorbaClient.java \
PingCorbaServer.java

CLASSES = \$(SRCS: .java=.class
all: \$(MODULES) \$(CLASSES)

Step 7: Launch the Application Before running the client programs or server
applications, you must start the Visibroker Smart Agent [20] on at least one
host in your local network. Launch the application as follows:

• Start the Smart Agent: Prompt> osagent
• Start the server: Prompt> vbj PingCorbaServer
• Run the client: Prompt> vbj PingCorbaClient

DCOM

Step 1: Create the .idl file—PingDCOM.idl

[
// A unique 128-bit identifier for the PingDCOM
// library
// This can be generated by using utilities like
// guidgen, provided by Microsoft

EXAMPLES 99

uuid(5f648dc9-00e2-1000-5000-86448cae0000),
version(1.0),
helpstring("PingDCOM library definition. ")

]

library PingDCOM
{
// import the standard OLE library. This gives access
// to the standard OLE types
importlib("STDOLE2.TLB");
// Forward declare all types defined in this IDL file
interface IPingServerDCOM;
coclass PingServerDCOM;
[
odl,
uuid(5f651112-00e2-1000-5002-86448cae0000),
helpstring("Interface for Java class PingServerDCOM "),
dual,
oleautomation

]
interface IPingServerDCOM : IDispatch
{
[id(0x1), helpstring("Java method: public float[]
PingServerDCOM.doReverse(float[])")]
HRESULT doReverse([in] VARIANT p1, [out, retval] VARIANT
*retVal);
};
[
uuid(5f651112-00e2-1000-5001-86448cae0000),
helpstring("Java class PingServerDCOM ")

]
coclass PingServerDCOM
{

interface IPingServerDCOM;
};
}

HRESULT is the accepted form of return parameter for any DCOM method
invocation. It defines a set of possible return values based on the success of
the remote operation. S_OK, E_FAIL, E_POINTER, and E_UNEXPECTED
are some of the common return values.

Step 2: Run MIDL on the idl File The PingDCOM.idl file is compiled using
Microsoft’s MIDL compiler. This is done by: midl PingDCOM.idl. This gen-

100 DISTRIBUTED-OBJECT COMPUTING TOOLS

erates PingDCOM.tlb, which is the type library that will be used by the client.
A type library is a binary representation of the component [5].

Step 3: Register the .tlb File The command javatlb PingDCOM.tlb is run
next. This creates the .class files for the type library that have enough knowl-
edge of how to convert the Java bytecode to COM-compatible calls. The tlb
file, once registered, makes an entry into the system registry, which could be
verified by running regedit.

Step 4: Implement the PingDCOM Interface

import java.io.*;
import java.util.*;
import com.ms.com.*;
public class PingServerDCOM implements IPingServerDCOM
{
public float [] doReverse (float[] inputVect)
{

// reverse the input vector onto a temporary
// vector and

// return the temporary vector
} // end of doReverse
} // end of PingServerDCOM

The implementation above is now compiled and the class file is placed in the
<windows>\Java\Lib directory.

Step 5: Register the Class File The implementation class file is registered
using javareg/register/class PingServerD-COM.class/clsid:5f651112-00e2-1000-
5001-86448cae0000/surrogate. Javareg [22] is a command line tool provided by
Microsoft SDK for Java that allows registering of Java classes as COM com-
ponents in the Windows system registry. Surrogate suggests that this class
server, when brought up, would associate itself with a surrogate process
address space.

Step 6: Set up DCOMCNFG The level and security and access are defined
by DCOMCNFG for each registered class. Each registered class is treated as
an application and the details pertaining to the location of where the appli-
cation can be hosted and endpoints are furnished at this level. Machine-level
access and launch rights are also set using this utility. The following steps are
to be done at the client side.

Step 7: Register the Type Library Javatlb PingDCOM.tlb is run on the client
machine too, to register the interface IID on to the client’s registry.

EXAMPLES 101

Step 8: Register the Object Class CLSID Javareg /register /class:
PingServerDCOM.class /clsid:5f651112-00e2-1000-5001-86448cae0000. This
command registers the remote object class id on to the local client machine.

Step 9: Set up DCOMCNFG to Specify Location The server machine where
the remote object is required to be hosted is specified using DCOMCNFG
location tab.

Step 10: Define Client Implementation

import java.io.*;
import java.util.*;
public class PingDCOMClient
{
public static void main(String[] args)
{

try
{

// create the Ping Object – if the server
// is not already running, this
// would launch the server object
IPingServerDCOM myPingObject =
(IPingServerDCOM)

new PingServerDCOM();
// initialize and populate the input vector
// inputVect

// initialize the output return vector
// create a timer object

TimeWrap oTimer = new TimeWrap();
// start the timer – this will be a native
// interface call

String sStartTime = oTimer.getFromTimer();
// loop around to perform repeated reversals through
// remote call

for(int i=0;i<iLoop;i++)
{

outVect = myPingObject.doReverse(inputVect);
}
// stop the timer
String sEndTime = oTimer.getFromTimer();

// print the input and return vector contents for
// verification
// calculate the total time taken on an average for each
// method call

102 DISTRIBUTED-OBJECT COMPUTING TOOLS

lTimeDiff = (endTime-startTime) / iLoop;

// display the ping results
System.out.print("\nTime Taken for one DCOM call
on an average (in MicroSec)= ");
System.out.println(lTimeDiff);

}
catch(Exception e)
{

System.out.println("Exception in Client="+e.getMes-
sage());

e.printStackTrace();
}
} // end of main
}// end of PingDCOMClient

All the steps above outline the list of activities involved in implementing a
DCOM server and client under a Windows environment. However, as the
objective of this experiment was to measure the performance of DCOM and
compare it with RMI and CORBA, the DCOM application was run on UNIX
using a Pure Java-COM bridge [23]. Only the salient idiosyncrasies pertaining
to that tool are outlined in brief as follows:

• All COM-related libraries are implemented in the package com.linar.
jintegra.*.

• As UNIX-based systems do not have a system registry like-Windows, reg-
istration of the COM components are done through monikers. When a
server object is instantiated, the object moniker (named instance) is
written down as a string into a moniker file. When a client requests for
that server object reference, this moniker file is read and the string is con-
verted back to an interface pointer pointing to the server object.This con-
version is done internally at the time of binding to the server object after
obtaining the moniker string.

• The tool provides command line utilities, which allow the programmer to
introduce COM-related specifics in a plain Java code. The command
java2com converts a Java server implementation code to the corre-
sponding COM IDL. The command com2java allows us to convert a type
library (.tlb) into a Java package.

4.3.4 Experiment 2: Producer–Consumer Problem

This problem gives an overview of how concurrency control can be achieved
in a distributed environment using the three technologies RMI, CORBA, and
DCOM. In this implementation the server object hosts a synchronized buffer.
The client has a producer and a consumer, each running concurrently in its
own thread and accessing the shared buffer on the server.The producer thread

EXAMPLES 103

generates a float value which it writes onto the shared buffer, and the con-
sumer thread reads this value.

RMI

Interface Definition of the Buffer: SyncBufferRMI.java

public interface SyncBufferRMI extends java.rmi.Remote
{

public void deposit(float fInputData) throws
java.rmi.RemoteException;
public float consume() throws java.rmi.RemoteException;

} // end of SyncBufferRMI

This is the base interface, which represents the buffer, on to which the pro-
ducer deposits new data and from which the consumer reads the next avail-
able data.

Interface Definition of the Buffer Manager: SyncBufferManagerRMI.java

public interface SyncBufferManagerRMI extends java.rmi.
Remote
{

SyncBufferRMI createNewSyncBuffer(int iSize)
throws java.rmi.RemoteException;

} // end of SyncBufferManagerRMI

This is the interface that provides a new buffer to a client. This is required
to make sure that each client creates and acts on a new synchronized
buffer.

Implementation of the Buffer: SyncBufferRMIImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
public class SyncBufferRMIImpl extends UnicastRemoteObject
implements SyncBufferRMI
{
private int m_iCapacity;
private int m_iCount;
private int m_iFront;
private int m_iRear;
private float[] m_data;

104 DISTRIBUTED-OBJECT COMPUTING TOOLS

// this will be called by createNewSyncBuffer of the
// SyncBufferManagerRMIImpl
public SyncBufferRMIImpl(int iSize) throws Remote-
Exception
{

super();
// initialise the matrix with the size provided

} // end of constructor

// deposit is called by the client directly by the pro
// ducer thread
public synchronized void deposit(float inputData) throws
RemoteException

{
try
{
while(m_iCount==m_iCapacity) // means its full
{

wait();
}

// write the new data into the next buffer position and
// notify all

notifyAll();
}
catch(InterruptedException e)

{
System.out.println("Interrupted Exception in
deposit()");
e.printStackTrace();

}
} // end of deposit

// consume is called by the client directly by the
// consumer thread
public synchronized float consume() throws RemoteEx-
ception
{

try
{

while(m_iCount==0)
{

// means buff is empty and hence nothing to consume
wait();
}

}

EXAMPLES 105

catch(InterruptedException e)
{
e.printStackTrace();

throw new RemoteException();
}

// store the next available data into retValue and notify
// all saying done

notifyAll();
return retValue;

} // end of consume
} // end of SyncBufferRMIImpl

Implementation of the Buffer Manager: SyncBufferManagerRMIImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
public class SyncBufferManagerRMIImpl extends Unicast-
RemoteObject implements SyncBufferManagerRMI
{
private String m_sName;

// this is called by RMIServer code
public SyncBufferManagerRMIImpl(String sName) throws
RemoteException
{

super();
m_sName = sName;

} // end of constructor
// this is called by the client directly and acts as a
// new buffer provider
public SyncBufferRMI createNewSyncBuffer(int iSize)
throws RemoteException

{
return new SyncBufferRMIImpl(iSize);

} // end of createNewSyncBuffer
} // end of SyncBufferManagerRMIImpl

Implementation of the Buffer Server: SyncBufferRMIServer.java

import java.rmi.*;
import java.rmi.server.*;
public class SyncBufferRMIServer
{

public static void main(String[] args)
{

System.setSecurityManager(new RMISecurityManager());

106 DISTRIBUTED-OBJECT COMPUTING TOOLS

try
{

SyncBufferManagerRMIImpl syncBufferManager =
new SyncBufferManagerRMIImpl("SyncBufferMan-
ager");
System.out.println("RMI Object Created");
Naming.rebind("SyncBufferManager",sync-
BufferManager);
System.out.println("Binding Done");

}
catch (Exception e)
{

System.out.println("Exception in SyncBuffer-
RMIServer main: " +

e.getMessage());
e.printStackTrace();

}
} // end of main

} // end of SyncBufferRMIServer

Implementation of the Buffer Client: SyncBufferRMIClient.java

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class SyncBufferRMIClient
{
public static void main(String[] args)
{
System.setSecurityManager(new RMISecurityManager());

try
{

SyncBufferManagerRMI mySyncBufferManager =
(SyncBufferManagerRMI)
Naming.lookup("rmi://"+args[0]+"/SyncBufferManager");

// initialize buffer size
SyncBufferRMI mySyncBuffer =

mySyncBufferManager.create-
NewSyncBuffer (iBufSize);

int iLoop=100;
// create new producer and consumer threads

EXAMPLES 107

Producer myProducer = new Producer
(mySyncBuffer,iLoop);
Consumer myConsumer = new Consumer
(mySyncBuffer,iLoop);
// the producer thread when started would
// keep writing onto the syncbuffer
// iLoop times
myProducer.start();

// the consumer thread when started would keep reading
// from the sync buffer

// the data written by the producer, iLoop
// times
myConsumer.start();

// Main Thread of client waiting for
// the producer and consumer threads to
// terminate

}
catch(Exception e)
{

System.out.println("Exception in Client="+e.
getMessage());
e.printStackTrace();

}
} // end of main
} // end of SyncBufferRMIClient

The implementation of the producer and consumer threads is not shown
here.

Makefile: Makefile.java

default:
javac SyncBufferRMI.java
javac SyncBufferRMIImpl.java
rmic SyncBufferRMIImpl
javac SyncBufferManagerRMI.java
javac SyncBufferManagerRMIImpl.java
rmic SyncBufferManagerRMIImpl
javac SyncBufferRMIServer.java
javac SyncBufferRMIClient.java

clean:
rm -f *.class

108 DISTRIBUTED-OBJECT COMPUTING TOOLS

CORBA

IDL: ProducerConsumer.idl

// ProducerConsumer.idl
module ProducerConsumer
{

//Interface for SyncBufferCorba class
interface SyncBufferCorba
{
//Methods of the class that this interface exposes.
void deposit(in float value);
float consume();
};

//Interface for SyncBufferCorbaManager class
interface SyncBufferCorbaManager

{
//Method of the class that this interface exposes.
SyncBufferCorba createNewSyncBuffer();

};
};

Implementation of the SyncBufferCorba Object:
SyncBufferCorbaImpl.java

// SyncBufferCorbaImpl.java
public class SyncBufferCorbaImpl extends ProducerCon-
sumer.SyncBufferCorbaPOA
{

private int bufferCount = 10;
private int availableCount = 0;
private float[] buffer;

//Constructor
...

public synchronized void deposit(float value)
{

while(availableCount >= bufferCount)
{

try
{

EXAMPLES 109

//Wait for Consumer to get Value
wait();

}catch(InterruptedException ie)
{
System.out.println(ie);
}
}//end of while

//Add the value to the buffer and increment available count.
...

//Notify Consumer that buffer has been set.
notifyAll();

}//end of deposit

public synchronized float consume()
{

while(availableCount <= 0)
{
try
{
//wait for Producer to put value
wait();

}catch(InterruptedException ie){
System.out.println(ie);
}
}//end of while

//Retrieve value from buffer and decrement available
//count.

...
//Notify Producer that value has been retrieved from
buffer.
notifyAll();

return value;
}//end of consume
} //end of SyncBufferCorbaImpl

Implementation of the SyncBufferCorbaManager Object:
SyncBufferCorbaManagerImpl.java

// SyncBufferCorbaManagerImpl.java
import org.omg.PortableServer.*;

110 DISTRIBUTED-OBJECT COMPUTING TOOLS

public class SyncBufferCorbaManagerImpl extends Producer-
Consumer.SyncBufferCorba{
public synchronized ProducerConsumer.SyncBufferCorba
createNewSyncBuffer()
{
SyncBufferCorbaImpl SyncBufferCorbaServant = new
SyncBufferCorbaImpl();
ProducerConsumer.SyncBufferCorba syncBuffer = null;
try
{
// Activate it on the default POA which is root POA for
this servant
syncBuffer = ProducerConsumer.SyncBufferCorbaHelper.
narrow(
}

catch (Exception e)
{
e.printStackTrace();
}
// Return the syncBuffer reference.
return syncBuffer;

}//end of createNewSyncBuffer
}//end of SyncBufferCorbaManagerImpl

Implementation of the Server Program: SyncCorbaServer.java

// SyncCorbaServer.java
import org.omg.PortableServer.*;
public class SyncCorbaServer
{
public static void main(String[] args)

{
try

{

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_
references(“RootPOA”));

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

EXAMPLES 111

rootPOA.create_lifespan_policy(LifespanPolicyValue.
PERSISTENT)
};

// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA(“SyncBuffer_poa”,
rootPOA.the_POAManager(), policies);

// Create the servant
SyncBufferCorbaManagerImpl SyncBufferManagerServant =
new SyncBufferCorbaManagerImpl();

// Decide on the ID for the servant
byte[] bufferManagerId = “SyncBuffer”.getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(bufferManagerId,
SyncBufferManagerServant);

// Activate the POA manager
rootPOA.the_POAManager().activate();

System.out.println(myPOA.servant_to_reference(Sync-
BufferManagerServant) + “ is
ready.”);

// Wait for incoming requests
orb.run();

}
catch (Exception e)

{
e.printStackTrace();

}
}//end of main

}//end SyncCorbaServer

Implementation of the Client: SyncCorbaClient.java

// SyncCorbaClient.java
public class SyncCorbaClient implements Runnable
{
private org.omg.CORBA.ORB orb;
private ProducerConsumer.SyncBufferCorbaManager syncBuffer
Manager;
private ProducerConsumer.SyncBufferCorba syncBuffer;

112 DISTRIBUTED-OBJECT COMPUTING TOOLS

public SyncCorbaClient(String[] args)
{

// Initialize the ORB.
orb = org.omg.CORBA.ORB.init(args,null);

// Get the Id
byte[] bufferManagerId = “SyncBuffer”.getBytes();

// Locate the SyncBufferCorbaManager reference.
//Give the full POA name and the servant ID.
syncBufferManager =
ProducerConsumer.SyncBufferCorbaManagerHelper.
bind(orb, “/SyncBuffer_poa”, bufferManagerId);

//Get a SyncBufferCorba reference.
syncBuffer = syncBufferManager.createNewSyncBuffer();

Consumer consumer = new Consumer();
Thread consumerThread = new Thread(consumer);
//Start the Consumer Thread.
consumerThread.start();

//Start the Producer Thread.
run();

}//end of SyncCorbaClient

public void run()
{
//Producer thread implementation to call the deposit
//method on the
//syncBuffer object and deposit values into the syn-
//chronous buffer.

...
} //end of ProducerRun

//Define the inner class Consumer implementing Runnable
//which calls the consume
//method on the syncBuffer object to consume values from
//the synchronous buffer.

...

public static void main(String[] args)
{

EXAMPLES 113

SyncCorbaClient myClient = new SyncCorbaClient(args);
}//end of main

}//end of SyncCorbaClient

Makefile.java for this Application To be used in conjunction with the file
Makefile provided in the ping example.

.SUFFIXES: .java .class .idl .module

.java.class:
vbjc \$<

.idl.module:
idl2java \$<
touch \$@

default: all
clean:

rm -rf ProducerConsumer
rm -f class tmp module *~

IDLS = \
ProducerConsumer.idl

MODULES = \$(IDLS:.idl=.module)
SRCS = \

SyncBufferCorbaImpl.java \
SyncBufferCorbaManagerImpl.java \
SyncCorbaClient.java \
SyncCorbaServer.java

CLASSES = \$(SRCS:.java=.class)
all: \$(MODULES) \$(CLASSES)

DCOM

Interface Definition of the Buffer and Buffer Manager:
ISyncBufferManagerDCOM.idl

[
uuid(3ebf6888-00e2-1000-5000-7f0000010000),
version(1.0),
helpstring(“SyncBufferManager generated from
SyncBufferManagerDCOM”)

]
library SyncBufferManager
{
importlib(“STDOLE2.TLB”);

// Forward declare all types defined in this IDL file
interface ISyncBufferDCOM;

114 DISTRIBUTED-OBJECT COMPUTING TOOLS

interface ISyncBufferManagerDCOM;
coclass SyncBufferManagerDCOM;
[
odl,
uuid(3ec03fde-00e2-1000-5006-7f0000010000),
helpstring(“Interface for Java class SyncBufferDCOM “),
dual,
oleautomation

]
interface ISyncBufferDCOM : IDispatch
{
[id(0x1), helpstring(“Java method: public synchronized
float SyncBufferDCOM.consume()”)]
HRESULT consume([out, retval] float *retVal);

[id(0x2), helpstring(“Java method: public syn-
chronized void

SyncBufferDCOM.deposit(float)”)]
HRESULT deposit([in] float p1);

};
[
odl,

uuid(3ec03f07-00e2-1000-5002-7f0000010000),
helpstring(“Interface for Java class SyncBuffer-
ManagerDCOM “),
dual,
oleautomation

]
interface ISyncBufferManagerDCOM : IDispatch
{

[id(0x2), helpstring(“Java method: public
SyncBufferDCOM

SyncBufferManagerDCOM.createNewSyncBuffer
(int)”)]

HRESULT createNewSyncBuffer([in] long p1,
[out, retval] SyncBufferDCOM* *retVal);

};
[

uuid(3ec03f06-00e2-1000-5001-7f0000010000),
helpstring(“Java class SyncBufferManagerDCOM “)

]
coclass SyncBufferManagerDCOM
{

interface ISyncBufferManagerDCOM;
};
}

EXAMPLES 115

Note that there are two interfaces defined in the same .idl file. ISyncBuffer-
DCOM is the main buffer interface that is used by the client. ISyncBuffer-
ManagerDCOM is the manager interface, which is again used just to provide
a newly created buffer to a client program. The coclass above comprises only
the manager interface, as that is what will be used first directly by the client.
Also note that the interface derives from IDispatch, indicating that it is an
automation server.

Implementation of the Buffer Object: SyncBufferDCOM.java This provides
implementation for the ISyncBufferDCOM interface.

public class SyncBufferDCOM implements ISyncBufferDCOM
{
private int m_iCapacity;
private int m_iCount;
private int m_iFront;
private int m_iRear;
private float[] m_data;

public SyncBufferDCOM(int iSize)
{

// initialise the buffer
}
// deposit is called by the client directly
public synchronized void deposit(float inputData)
{
try

{
while(m_iCount==m_iCapacity) // means its full
{
wait();

}
// write the new data into the next buffer position and
// notify all notifyAll();
}

catch(InterruptedException e)
{

System.out.println(“Interrupted Exception in
deposit()”);
e.printStackTrace();

}
} // end of deposit

// this can be called by the client directly
public synchronized float consume()
{

116 DISTRIBUTED-OBJECT COMPUTING TOOLS

try
{
while(m_iCount==0)

{
// means buff is empty and hence nothing to consume

wait();
}

}
catch(InterruptedException e)
{

System.out.println(“Interrupted Exception in
deposit()”);
e.printStackTrace();

}

// store the next available data into retValue and
// notify all

notifyAll();
return retValue;

} // end of consume
} // end of SyncBufferDCOM

Implementation of the Buffer Manager Object:
SyncBufferManagerDCOM.java

public class SyncBufferManagerDCOM implements
ISyncBufferManagerDCOM
{
// this will be called by the client directory to obtain
// a new SyncBufferDCOM object
// reference
public SyncBufferDCOM createNewSyncBuffer(int iSize)

{
return new SyncBufferDCOM(iSize);

} // end of createNewSyncBuffer
} // end of SyncBufferManagerDCOM

Implementation of the Buffer Client: SyncBufferDCOMClient.java

public class SyncBufferDCOMClient
{

public static void main(String[] args)
{

try
{

EXAMPLES 117

ISyncBufferManagerDCOM mySyncBufferManager =
(ISyncBufferManagerDCOM) new SyncBuffer-
ManagerDCOM();

// init buffer size and loop variables like iLoop
// create new sync buffer

ISyncBufferDCOM mySyncBuffer =
(ISyncBufferDCOM)

mySyncBufferProvider.createNew-
SyncBuffer (iBufSize);

Producer myProducer = new
Producer(mySyncBuffer, iLoop);
Consumer myConsumer = new Consumer
(mySyncBuffer, iLoop);

// start producer and consumer threads
myProducer.start();
myConsumer.start();

// Main Thread of client waiting for the
producer and consumer threads to
// terminate

}
catch(Exception e)
{

System.out.println(“Exception in
Client=“+e.getMessage());
e.printStackTrace();

}
} // end of main
} // end of SyncBufferDCOMClient

4.3.5 Experiment 3: Numerical Computation

The objective of this experiment is to indicate an implementation of a numer-
ical algorithm in a distributed fashion. The problem that is taken for this
purpose is a matrix-by-vector multiplication, which uses the algorithm given
in [12]. Given an m * n matrix, A, and an n * 1 vector, u, it is required to
compute the m * 1 product vector, v. This is done using a linear array of m
processors, P1, P2, . . . , Pm, in a parallel fashion. Assume that vi corresponds to
the ith row in the final vector v. Initially, vi is 0. The strategy is to compute vi

in Pi cumulatively. Figure 4.4 shows a modified version of the pictorial repre-
sentation of the algorithm described in [12]. In this figure, the value of m is 2.
aij indicates the element in the ith row and jth column of matrix A. ui indicates
the ith value in the vector u.

118 DISTRIBUTED-OBJECT COMPUTING TOOLS

There are two server objects for this experiment. The first server object
represents a processor object, which merely supports a product method to
calculate the product of two float numbers and stores the resultant sum
cumulatively in a member variable.The second server object acts as the central
arbitrator, which actually implements the method doMultiply, taking in a
matrix and a vector.The client sends the input matrix and vector to this central
server object. The central server object, in turn, creates two processor objects
locally and passes them to two child threads. Each child thread then does a
parallel computation for each resultant matrix row by invoking the doProd-
uct method on the processor object. The results are compiled and sent back
to the client by the central server object. This suggests a possible approach to
tackle a numerical parallel computation problem using all three distributed
technologies.

RMI

Interface Definition of the Matrix: MatixRMI.java

public interface MatrixRMI extends java.rmi.Remote
{

int getRows() throws java.rmi.RemoteException;
int getCols() throws java.rmi.RemoteException;
float getElement(int iRows, int iCols) throws
java.rmi.RemoteException;
void setElement(int iRows, int iCols, float value)
throws java.rmi.RemoteException;
void populateMatrix() throws java.rmi.RemoteException;

} // end of MatrixRMI

EXAMPLES 119

P1

P2

u2

u1

v2

v1

a11 a12

a21 a22

Fig. 4.4 Matrix-by-vector multiplication.

Interface Definition of the Matrix Manager: MatrixManagerRMI.java

public interface MatrixManagerRMI extends java.rmi.
Remote
{
MatrixRMI createNewMatrix(int iRows,int iCols) throws

java.rmi.RemoteException;
MatrixRMI doMultiply(MatrixRMI matA, MatrixRMI matB)
throws java.rmi.RemoteException;

} // end of MatrixManagerRMI

Interface Definition of the Processor: ProcessorRMI.java

public interface ProcessorRMI extends java.rmi.Remote
{
void doProduct(float value1, float value2) throws
java.rmi.RemoteException;

float getResult() throws java.rmi.RemoteException;
} // end of ProcessorRMI

Implementation of the Matrix Object: MatrixRMIImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
public class MatrixRMIImpl extends UnicastRemoteObject

implements MatrixRMI
{
private int m_iRows;
private int m_iCols;
private float[][] m_data;

// constructors
...
// functions for accessing the matrix elements
...
// functions for initializing and populating the matrix
...
} // end of MatrixRMIImpl

Implementation of the Processor Object: ProcessorRMIImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

120 DISTRIBUTED-OBJECT COMPUTING TOOLS

// this class does a product of two floats and stores the
// cumulative sum
public class ProcessorRMIImpl extends UnicastRemoteOb-
ject

implements ProcessorRMI
{
private float m_fSum;
private String m_sName;

public ProcessorRMIImpl(String sName) throws RemoteEx-
ception

{
super();
m_fSum=0;

} // end of constructor

// this is called by the RowMultiplier Threads of Matrix
// Manager

public void doProduct(float value1, float value2)
throws RemoteException

{
m_fSum = m_fSum + (value1 * value2);

} // end of doProduct

public float getResult() throws RemoteException
{
float retSum;

retSum = m_fSum; // once returned the sum is
// re-initialized to 0
m_fSum = 0;
return retSum;

} // end of getResult
} // end of ProcessorRMIImpl

Implementation of the Matrix Manager Object: MatrixManagerRMIImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
public class MatrixManagerRMIImpl extends UnicastRemo-
teObject implements MatrixManagerRMI
{
private String m_sName;
private int m_iNoOfRows;

public MatrixManagerRMIImpl(String sName) throws Remote-
Exception

EXAMPLES 121

{
super();

// initialize the internal variables like the number of
// rows of the matrix
// this can handle
} // end of constructor

public MatrixRMI createNewMatrix(int iRows,int
iCols) throws RemoteException
{

return new MatrixRMIImpl(iRows,iCols);
} // end of createNewMatrix

public MatrixRMI doMultiply(MatrixRMI matA, MatrixRMI
vectorB) throws

RemoteException
{

try
{

// create proc1 and proc2 object refer
// ences for the two processors running

// in two different machines
ProcessorRMI proc1 = (ProcessorRMI)

Naming.lookup(“rmi://pegasus/Multiplier-
Processor”);

ProcessorRMI proc2 = (ProcessorRMI)
Naming.lookup(“rmi://reliant/Multiplier-
Processor”);

// perform checks on the number of rows and columns
// initialize the result matrix
MatrixRMI resultMatrix ;
resultMatrix = new MatrixRMIImpl(rowsA,colsB);
// A shared buffer which is synchronized is used for
// this purpose
Buffer syncBuf = new Buffer(vectorB);
// have two threads for computing each of the two
// rows of the result matrix
// these threads will invoke doProduct methods of
// the processor object
RowMultiplier1 t1 = new
RowMultiplier1(proc1,syncBuf, row2,resultMatrix);
RowMultiplier2 t2 = new
RowMultiplier2(proc2,syncBuf, row1,resultMatrix);

t1.start();
t2.start();

122 DISTRIBUTED-OBJECT COMPUTING TOOLS

while(t1.isAlive() || t2.isAlive())
{
// do nothing wait
}
// results are already in resultMatrix
// return the merged matrix/vector

return resultMatrix;
}
catch(Exception e)
{

System.out.println(“Exception in
Client=“+e.getMessage());
e.printStackTrace();

throw new RemoteException();
}

} // end of doMultiply
} // end of MatrixManagerRMIImpl

The implementation for the RowMultiplier and buffer are not shown here.

Implementation of the Matrix Server: MatrixRMIServer.java

import java.rmi.*;
import java.rmi.server.*;
public class MatrixRMIServer
{

public static void main(String[] args)
{

System.setSecurityManager(new RMISecurityManager());
try
{
MatrixManagerRMIImpl matMgrObject =
new MatrixManagerRMIImpl(“MatrixManager”);

System.out.println(“RMI Object Created”);
Naming.rebind(“MatrixManager”,matMgrObject);
System.out.println(“Binding Done”);

}
catch (Exception e)
{

System.out.println(“Exception in MatrixRMIS-
erver main: “ + e.getMessage());

e.printStackTrace();
}

} // end of main
} // end of MatrixRMIServer

EXAMPLES 123

Implementation of the Processor Server: ProcessorRMIServer.java

import java.rmi.*;
import java.rmi.server.*;
public class ProcessorRMIServer
{

public static void main(String[] args)
{

System.setSecurityManager(new RMISecurityManager());
try
{
ProcessorRMIImpl procObject =
new ProcessorRMIImpl(“MultiplierProcessor”);
System.out.println(“RMI Object Created”);
Naming.rebind(“MultiplierProcessor”,procObject);
System.out.println(“Binding Done”);
}
catch (Exception e)
{

System.out.println(“Exception in ProcessorRMI-
Server main: “ + e.getMessage());
e.printStackTrace();

}
}// end of main

}// end of ProcessorRMIServer

Implementation of the Matrix Client: MatrixRMIClient.java

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class MatrixRMIClient
{

public static void main(String[] args)
{

System.setSecurityManager(new RMISecurityManager());
try
{
MatrixManagerRMI myMatManager = (MatrixManagerRMI)
Naming.lookup(“rmi://”+args[0]+”/MatrixManager”);

// init rows and columns for the matrix
MatrixRMI MatA = myMatManager.createNew-
Matrix (iRowsA,iColsA);

124 DISTRIBUTED-OBJECT COMPUTING TOOLS

// init rows and columns for the vector
MatrixRMI MatB = myMatManager.createNewMatrix
(iRowsB,iColsB);
MatA.populateMatrix();
MatB.populateMatrix();

// initialize the output matrix
MatrixRMI MatC = myMatManager.createNewMa-
trix(iRowsC, iColsC);
// start timer
String sStartTime = oTimer.getFromTimer();
for(int i=0;i<iLoop;i++)
{

MatC = myMatManager.doMultiply(MatA,MatB);
}
// end timer

String sEndTime = oTimer.getFromTimer();
// print the input and return vector contents
// for verification

// calculate the total time taken on an average
// for each method call
lTimeDiff = (endTime-startTime) / iLoop;
System.out.print(“\nTime Taken for one RMI call
on an average

(in MicroSec)= “);
System.out.println(lTimeDiff);

}
catch(Exception e)
{

System.out.println(“Exception in Client=“+
e.getMessage());
e.printStackTrace();

}
} // end of main

} // end of MatrixRMIClient

Makefile: Makefile.java

default:
javac ProcessorRMI.java
javac ProcessorRMIImpl.java
rmic ProcessorRMIImpl
javac MatrixRMI.java
javac MatrixManagerRMI.java
javac MatrixRMIImpl.java
javac MatrixManagerRMIImpl.java

EXAMPLES 125

rmic MatrixRMIImpl
rmic MatrixManagerRMIImpl
javac MatrixRMIServer.java
javac ProcessorRMIServer.java
javac SyncBufferRMIClient.java

clean:
rm -f x.lass

CORBA

IDL: MatMult.idl

// MatMult.idl
module MatMult
{
interface MatrixCorba
{
short getRows();
short getCols();
void populateMatrix();
float getElement(in short row,in short col);
void setElement(in short row,in short col,in float val);
};

interface MatrixCorbaManager
{

MatrixCorba createNewMatrix(in short row,in short col);
MatrixCorba doMultiply(in MatrixCorba A,in MatrixCorba B);
};

interface ProcessorCorbaManager
{
void doProduct(in float U,in float A);
float getResult();
};
};

Implementation of the MatrixCorba Object: MatrixCorbaImpl.java

// MatrixCorbaImpl.java
public class MatrixCorbaImpl extends MatMult.MatrixCor-
baPOA
{

private short rows;

126 DISTRIBUTED-OBJECT COMPUTING TOOLS

private short cols;
private float[][] matrix;

//Constructor
...

//Functions for getting the number of rows and columns.
...

//Functions for accessing the elements of the matrix
...

//Function for populating the Matrix
...

} //end of MatrixCorbaImpl

Implementation of the MatrixCorbaManager Object:
MatrixCorbaManagerImpl.java

// MatrixCorbaManagerImpl.java
import org.omg.PortableServer.*;
public class MatrixCorbaManagerImpl extends MatMult.
MatrixCorbaManagerPOA
{
public synchronized MatMult.MatrixCorba createNewMatrix
(short row,short col)
{
MatrixCorbaImpl matrixServant = new MatrixCorbaImpl(row,
col);
MatMult.MatrixCorba matrix = null;

try
{
// Activate it on the default POA which is root POA
// for this servant
matrix = MatMult.MatrixCorbaHelper.narrow(
_default_POA().servant_to_reference(matrixServant));

}
catch (Exception e)

{
e.printStackTrace();
}

// Return the matrix.
return matrix;

}//end of createNewMatrix

EXAMPLES 127

public synchronized MatMult.MatrixCorba
doMultiply(MatMult.MatrixCorba A,MatMult.MatrixCorba B)
{

String[] args = null;

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,
null);

//Steps to get the object reference for processor2 which
//is running on
// on a different machine:

// Step 1) Get the Processor Id
byte[] processor2Id = “Processor2”.getBytes();
// Step 2) Locate the ProcessorCorbaManager object
reference .
MatMult.ProcessorCorbaManager processor2 =
MatMult.ProcessorCorbaManagerHelper.bind(orb, “/Proces-
sor2_poa”, processor2Id);

//Initialize the resultMatrix which is a MatrixCorbaImpl
//object.
MatrixCorbaImpl resultMatrix = null;

//Initialize matrix which is a MatrixCorba object.
MatMult.MatrixCorba matrix = null;

//Get the number of rows and columns in A and B by
//calling getRows() and
//getCols on matrix references A and B passed to this
//method.

...
//Perform checks on number of rows and columns in matri-
//ces A and B.

...
//buffer is a synchronized shared Buffer object which
//will be accessed by the two
//processor objects.
Buffer buffer = new Buffer();

//Instantiate the resultMatrix .
resultMatrix = new MatrixCorbaImpl(rowsA,colsB);

128 DISTRIBUTED-OBJECT COMPUTING TOOLS

//Do a narrow on the resultMatrix to obtain a MatrixCorba
//object reference.
try
{
// Activate it on the default POA which is root POA for
// this servant
matrix = MatMult.MatrixCorbaHelper.narrow(
_default_POA().servant_to_reference(resultMatrix));

}
catch (Exception e)

{
e.printStackTrace();
}

//rowMultiply is the thread which will compute the result
//for the first row of the
//matrix by invoking the doProduct() method on proces
//sor1 object.
RowMultiplier rowMultiply = new RowMultiplier(buffer,A,
matrix,0);
rowMultiply.start();

//Here the currentThread performs computations to get
//the result for the second
//row of the matrix by invoking the doProduct() method
//on the processor2 object
//whose object reference we had obtained earlier.

...

//Iteratively pick each element from row 2 of Matrix A
//and the column of Vector B
// and invoke doProduct() on processor2 by passing these
// coefficients.

...
processor2.doProduct(coeffU,coeffA);

//Set the synchronized buffer with the coefficient from
//Vector B which will be read
//by the rowMultiply thread and used in the result cal-
//culations for row 1.
buffer.setBuffer(coeffU);

//Get the computed result for this row and set the element
//in the resultant matrix.

EXAMPLES 129

float result = processor2.getResult();
matrix.setElement((short)rowNum,(short)0,result);

//Wait in a no-op loop for the rowMultiply thread to
//complete.

...
//Returning the result matrix
return matrix;
}//end of doMultiply
}//end of MatrixCorbaManagerImpl

Implementation of the RowMultiplier Thread Object: RowMultiplier.java

class RowMultiplier extends Thread
{
private int arrayLen;
private int rowNum;
private MatMult.MatrixCorba matrixA;
private MatMult.MatrixCorba resultMatrix;
private Buffer bufferObj;

//RowMultiplier Constructor which initializes all its
//data members.
public void run()

{
String[] args = null;

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);

//Steps to get the object reference for processor1 which
//is running on
// on a different machine:
// Step 1) Get the Processor Id
byte[] processor1Id = “Processor1”.getBytes();
//Step 2) Locate the ProcessorCorbaManager object ref-
//erence .
MatMult.ProcessorCorbaManager processor1 =
MatMult.ProcessorCorbaManagerHelper.bind(orb, “/Proces-
sor1_poa”, processor1Id);

//The computations performed by this thread are similar
//to those performed by
// doMultiply(..) thread. The result for the first row
// of the matrix is obtained

130 DISTRIBUTED-OBJECT COMPUTING TOOLS

// invoking the doProduct() method on the processor1
// object.

...
}//end of run
}//end of class RowMultiplier

Implementation of the ProcessorCorbaManager Object:
ProcessorCorbaManagerImpl.java

// ProcessorCorbaManagerImpl.java
import org.omg.PortableServer.*;
public class ProcessorCorbaManagerImpl extends
MatMult.ProcessorCorbaManagerPOA
private float result;

//Constructor for ProcessorCorbaManagerImpl
...

//void doProduct(float,float) implementation: Multiply
//input parameters and store result.

...
// float getResult() implementation: Return the computed
// result.

...
}//end of ProcessorCorbaManagerImpl

Implementation of the MatrixCorbaClient Class: MatrixCorbaClient.java

// MatrixCorbaClient.java
public class MatrixCorbaClient
{
public static void main(String[] args)
{

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);

// Get the Id
byte[] MatrixManagerId = “Multiplier”.getBytes();

// Locate a matrix manager. Give the full POA name and
// the servant ID.
MatMult.MatrixCorbaManager manager =
MatMult.MatrixCorbaManagerHelper.bind(orb, “/matrix_agent_
poa”, MatrixManagerId);

EXAMPLES 131

//Create matrix A with 2 rows and N columns and Vector
//B with N rows and 1 column.
MatMult.MatrixCorba matrixA = manager.createNewMatrix
(rowsA,colsA);
MatMult.MatrixCorba matrixB = manager.createNewMatrix
(rowsB,colsB);

//Populate matrices A and B.
matrixA.populateMatrix();
matrixB.populateMatrix();

//Create the output matrix - matrixC
MatMult.MatrixCorba matrixC = manager.createNewMatrix
(rowsA,colsB);

//Instantiate the Timer object.
TimeWrap oTimer = new TimeWrap();
//Starting the timer
String sStartTime = oTimer.getFromTimer();

for(int i=0;i<iLoop;i++)
{

matrixC = manager.doMultiply(matrixA,matrixB);
}
//Stopping the timer.
String sEndTime = oTimer.getFromTimer();

//Printing the input and resultant matrix contents for
verification.

...

//Calculate the total time taken on an average for each
//method call.
lTimeDiff = (endTime - startTime)/iLoop;

System.out.print(“\nTime Taken for one call on an average
(in MicroSec)= “);
System.out.println(lTimeDiff);

} //end of main
} //end of MatrixCorbaClient

Implementation of the MatrixCorbaServer Object: MatrixCorbaServer.java

// MatrixCorbaServer.java
import org.omg.PortableServer.*;

132 DISTRIBUTED-OBJECT COMPUTING TOOLS

public class MatrixCorbaServer
{
public static void main(String[] args)
{
try

{
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init
(args,null);

// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_
references(“RootPOA”));

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.
PERSISTENT)
};

// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA(“matrix_agent_poa”,

// Create the servant
MatrixCorbaManagerImpl managerServant = new MatrixCorba-
ManagerImpl();

// Decide on the ID for the servant
byte[] matrixId = “Multiplier”.getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(matrixId, managerServant);

// Activate the POA manager
rootPOA.the_POAManager().activate();

System.out.println(myPOA.servant_to_reference
(managerServant) + “ is ready.”);

// Wait for incoming requests
orb.run();
}
catch (Exception e)
{
e.printStackTrace();

EXAMPLES 133

}
}//end of main
}//end of MatrixCorbaServer

Implementation of the First ProcessorCorbaServer:
ProcessorCorbaServer1.java

// ProcessorCorbaServer1.java
import org.omg.PortableServer.*;
public class ProcessorCorbaServer1
{
public static void main(String[] args)
{
try
{
// Initialize the ORB.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_
references(“RootPOA”));

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.
PERSISTENT)
};

// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA(“Processor1_poa”,
rootPOA.the_POAManager(),
policies);

// Create the servant
ProcessorCorbaManagerImpl processor1Servant =
new ProcessorCorbaManagerImpl();

// Decide on the ID for the servant
byte[] processId = “Processor1”.getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(processId, processor1Servant);

// Activate the POA manager

134 DISTRIBUTED-OBJECT COMPUTING TOOLS

rootPOA.the_POAManager().activate();
System.out.println(myPOA.servant_to_reference(proces-
sor1Servant) + “ is ready.”);

// Wait for incoming requests
orb.run();
}
catch (Exception e)
{
e.printStackTrace();
}
}//end of main
}//end of ProcessorCorbaServer1

Implementation of the ProcessorCorbaServer2 is similar to Processor
CorbaServer1 and hence it is not shown here. Implementation of the Buffer
object is also not shown.

Makefile.java for this Example This makefile is to be used in conjunction
with the file Makefile provided in the ping example.

.SUFFIXES: .java .class .idl .module

.java.class:
vbjc \$<

.idl.module:
idl2java \$<
touch \$@

default: all
clean:

rm -rf MatMult
rm -f *.class *.tmp *.module *~

IDLS = \
MatMult.idl

MODULES = \$(IDLS:.idl=.module)
SRCS = \

MatrixCorbaImpl.java \
MatrixCorbaManagerImpl.java \
ProcessorCorbaManagerImpl.java\
Buffer.java\
MatrixCorbaServer.java\
ProcessorCorbaServer1.java\
ProcessorCorbaServer2.java\
RowMultiplier.java\
MatrixCorbaClient.java

EXAMPLES 135

CLASSES = \$(SRCS:.java=.class)
all: \$(MODULES) \$(CLASSES)

DCOM

Interface Definition of the Matrix and Matrix Manager: MatrixManager.idl

[
uuid(49fbcf3f-00e2-1000-5000-7f0000010000),
version(1.0),
helpstring(“MatrixManager generated from MatrixMan-
agerDCOM “)

]
library MatrixManager
{
importlib(“STDOLE2.TLB”);
// Forward declare all types defined in this IDL file
interface IMatrixManagerDCOM;
coclass MatrixManagerDCOM;
interface IMatrixDCOM;
[
odl,
uuid(49fc4a47-00e2-1000-5002-7f0000010000),
helpstring(“Interface for Java class MatrixManagerDCOM “),
dual,
oleautomation

]
interface IMatrixManagerDCOM : IDispatch
{
[id(0x2), helpstring(“Java method: doMultiply”)]

HRESULT doMultiply([in] IMatrixDCOM* p1, [in] IMa-
trixDCOM* p2, [in] BSTR p3, [in] BSTR p4, [out,
retval] IMatrixDCOM* *retVal);
[id(0x3), helpstring(“Java method: public IMa-
trixDCOM

MatrixManagerDCOM.createNewMatrix(int,int)”)]
HRESULT createNewMatrix([in] long p1,

[in] long p2,
[out, retval] IMatrixDCOM* *retVal);

};
[

uuid(49fc4a46-00e2-1000-5001-7f0000010000),
helpstring(“Java class MatrixManagerDCOM “)

]

136 DISTRIBUTED-OBJECT COMPUTING TOOLS

coclass MatrixManagerDCOM
{

interface IMatrixManagerDCOM;
};
[

odl,
uuid(49fc4b87-00e2-1000-5006-7f0000010000),
helpstring(“Interface for Java class IMatrixDCOM “),
dual,
oleautomation

]
interface IMatrixDCOM : IDispatch
{

[id(0x1), helpstring(“Java method: public int
IMatrixDCOM.getRows()”)]
HRESULT getRows([out, retval] long *retVal);
[id(0x2), helpstring(“Java method: public int
IMatrixDCOM.getCols()”)]
HRESULT getCols([out, retval] long *retVal);
[id(0x3), helpstring(“Java method: public float

IMatrixDCOM.getElement(int,int)”)]
HRESULT getElement([in] long p1, [in] long p2,[out,
retval] float *retVal);

[id(0x4), helpstring(“Java method: public void
MatrixDCOM.setElement(int,int,float)”)]

HRESULT setElement([in] long p1, [in] long p2,
[in] float p3);
[id(0x5), helpstring(“Java method: public void
IMatrixDCOM.populate()”)]
HRESULT populateMatrix();

}; // end of IMatrixDCOM
} // end of MatrixManager library

Interface Definition of the Processor: Processor.idl

[
uuid(49f8de44-00e2-1000-5000-7f0000010000),
version(1.0),
helpstring(“Processor generated from ProcessorDCOM
(J-Integra)”)

]
library Processor
{
importlib(“STDOLE2.TLB”);
// Forward declare all types defined in this IDL file

EXAMPLES 137

interface IProcessorDCOM;
coclass ProcessorDCOM;
[
odl,
uuid(49f9502c-00e2-1000-5002-7f0000010000),
helpstring(“Interface for Java class ProcessorDCOM “),
dual,
oleautomation

]
interface IProcessorDCOM : IDispatch
{
[id(0x1), helpstring(“Java method: public void

ProcessorDCOM.doProduct(float,float)”)]
HRESULT doProduct([in] float p1,[in] float p2);
[id(0x3), helpstring(“Java method: public float
ProcessorDCOM.getResult()”)]
HRESULT getResult([out, retval] float *retVal);

};
[

uuid(49f9502c-00e2-1000-5001-7f0000010000),
helpstring(“Java class ProcessorDCOM “)

]
coclass ProcessorDCOM
{

interface IProcessorDCOM;
}; // end of ProcessorDCOM
} // end of Processor library

Implementation of the Matrix Object: MatrixDCOM.java

public class MatrixDCOM implements IMatrixDCOM
{
private int m_iRows;
private int m_iCols;
private float[][] m_data;

// constructors
...
// functions for accessing the matrix elements
...
// functions for initializing and populating the matrix
...
} // end of MatrixDCOM

138 DISTRIBUTED-OBJECT COMPUTING TOOLS

Implementation of the Processor Object: ProcessorDCOM.java

public class ProcessorDCOM implements IProcessorDCOM
{
private float m_fSum;

// constructors
// this can be called by the MatrixManager Server Object
// directly
public void doProduct(float value1, float value2)
{

m_fSum = m_fSum + (value1 * value2);
} // end of doProduct

public float getResult()
{

// assumes that the result is being retrieved
// ..so initialise back the variable

// return cumulative sum and initialize it to zero
} // end of getResult
}

Implementation of the Matrix Manager Object: MatrixManagerDCOM.java

public class MatrixManagerDCOM implements IMatrix-
ManagerDCOM
{
// constructor
// this method returns reference to a new matrix
public IMatrixDCOM createNewMatrix(int iRows,int iCols)
{

return new MatrixDCOM(iRows,iCols);
} // end of createNewMatrix

public IMatrixDCOM doMultiply(IMatrixDCOM matA, IMa-
trixDCOM vectorB)

{
try
{

// create proc1 and proc2 object references for the
// two processors running
// in two different machines

IProcessorDCOM proc1 = (IProcessorDCOM) new
ProcessorDCOM();

EXAMPLES 139

IProcessorDCOM proc2 = (IProcessorDCOM) new
ProcessorDCOM();

// perform checks on the number of rows and columns
// initialize the result matrix
IMatrixDCOM resultMatrix ;
resultMatrix = (IMatrixDCOM) new MatrixDCOM(rowsA,
colsB);
// A shared buffer which is synchronized is used for
// this purpose
Buffer syncBuf = new Buffer(vectorB);
// have two threads for computing each of the two
// rows of the result matrix
// these threads will invoke doProduct methods of
the processor object
RowMultiplier1 t1 = new
RowMultiplier1(proc1,syncBuf, row2,resultMatrix);
RowMultiplier2 t2 = new
RowMultiplier2(proc2,syncBuf, row1,resultMatrix);
t1.start();
t2.start();
while(t1.isAlive() || t2.isAlive())
{
// do nothing wait
}
// results are already in resultMatrix
// return the merged matrix/vector
return resultMatrix;
}
catch(Exception e)
{

System.out.println(“Exception in Client=“+e.getMes-
sage());
e.printStackTrace();
throw new RemoteException();
}
} // end of doMultiply
} // end of MatrixManagerDCOM

The implementation for RowMultiplier and the synchronized buffer is not
shown.

Implementation of the Matrix DCOM Client: MatrixDCOMClient.java

import java.io.*;
import java.util.*;
public class MatrixDCOMClient

140 DISTRIBUTED-OBJECT COMPUTING TOOLS

{
public static void main(String[] args)

{
try

{
// create the MatrixManager Object – if the server is
// not already running, this
// would launch the server object

IMatrixManagerDCOM myMatManager = (IMatrix-
ManagerDCOM)
new MatrixManagerDCOM();

// init rows and columns for the matrix
IMatrixDCOM MatA = myMatManager.createNew-
Matrix(iRowsA,iColsA);

// init rows and columns for the vector
IMatrixDCOM MatB = myMatManager.createNew-
Matrix(iRowsB,iColsB);
MatA.populateMatrix();
MatB.populateMatrix();

// initialize the output matrix
IMatrixDCOM MatC = myMatManager.createNewMatrix(iRowsC,
iColsC);

// start timer
String sStartTime = oTimer.getFromTimer();
for(int i=0;i<iLoop;i++)
{
MatC = myMatManager.doMultiply(MatA,MatB);

}
// end timer

String sEndTime = oTimer.getFromTimer();
// print the input and return vector con-
// tents for verification

// calculate the total time taken on an average
// for each method call
lTimeDiff = (endTime-startTime) / iLoop;
System.out.print(“\nTime Taken for one DCOM
call on an average
(in MicroSec)= “);

System.out.println(lTimeDiff);
}
catch(Exception e)
{

System.out.println(“Exception in
Client=“+e. getMessage());
e.printStackTrace();

EXAMPLES 141

}
} // end of main

} // end of MatrixDCOMClient

4.4 COMPARISON OF THE THREE PARADIGMS

A comparison of the three paradigms based on the listed factors follows.

4.4.1 Dependency Issues

Issues related to language and platform dependency are discussed in Table 4.1.

4.4.2 Implementation Details

A comparative study is done of the manner in which the three paradigms allow
implementation of distributed applications, shown in Table 4.2. Factors con-
sidered include IDL specifications, location transparency (client’s knowledge
of the server location), object registration (manner in which the server object
is registered), and mode of obtaining an object reference (manner in which a
server object reference is obtained by the client).

4.4.3 Architecture Details

The communication protocols used by the three paradigms and system
resources involved are noted in Table 4.3.

142 DISTRIBUTED-OBJECT COMPUTING TOOLS

TABLE 4.1 Comparison Based on Language and Platform Dependencies

RMI CORBA DCOM

Can only be implemented Since CORBA is a DCOM is a binary
using Java. specification, standard. Hence it

implementation is possible can be implemented
in all languages which in any language,
provide support to ORB which could generate
libraries and language the required binary
mappings. code.

Can run on all platforms Can run on all platforms Can run on all
for which a Java virtual (UNIX, mainframe, platforms for which
machine implementation Windows, etc.) for which COM service
is available. ORB implementation is implementation is

available. available. However,
DCOM is strongly
integrated to
Windowsbased
systems.

COMPARISON OF THE THREE PARADIGMS 143

TABLE 4.2 Comparison Based on Implementation Specifics

RMI CORBA DCOM

IDL supports multiple IDL supports multiple MIDL does not support
inheritance. inheritance. multiple inheritance.

Instead multiple
interfaces can be
embedded into a single
coclass and navigation
across interfaces is
enabled using
Aggregation and
Containment
techniques.

Allows exceptions to be Allows exceptions to be Does not allow exceptions
specified at IDL level. specified at IDL level. to be specified at the

IDL level.
Client stub is called Stub Client stub is called Stub Client stub is called Proxy

and the server stub is and the server stub is and the server stub is
called Skeleton. called Skeleton. called Stub.

The interface name The interface name Each interface has a unique
uniquely identifies an uniquely identifies an Interface Identifier
interface. The interface. The (IID). Each object
implementation of the implementation of the implementation class has
server object is server object is mapped a unique Class ID
mapped to a unique to a unique name in the (CLSID). Both these are
name in the Implementation stored in the system
RMIREGISTRY. Repository. registry.

A client can obtain a A client can obtain a A client can obtain a
reference to a remote reference to a remote remote interface pointer
server object by server object by by invoking
performing a lookup() invoking the bind() CoCreateInstance().
on the remote server method or by binding However in a Java-COM
machine. to the Naming or client, type casting to

Trader service. interface internally
invokes these COM
methods.

A client code has to know A client code need not A client code need not
the remote machine on know where the server know where the server
which the server object object is hosted. object is hosted.
is hosted to obtain a
reference.

Dynamic invocation of Run time type To support dynamic
methods [24] on objects information of a remote invocation, an interface
is possible via Reflection. interface is stored in should derive from

Interface Repository, IDispatch. This is a dual
on which the client can interface which queries
query to invoke a the type library to
method using Dynamic retrieve the run time
Invocation Interface. information of the object.

4.4.4 Support for Additional Features

A comparison if the security features, garbage collection mechanisms, and call-
back mechanisms in each of the three paradigms is provided in Table 4.4.

4.4.5 Performance Comparison

The performance comparison is based on the results of ping and matrix-by-
vector multiplication examples. In the ping example, a 100-element float array
was passed-by-value to the remote server object, and a reversed array was
passed back to the client.The average time computed for 10 such method invo-
cations is shown in Table 4.5 for each paradigm. In the matrix-by-vector mul-
tiplication, a 2 ¥ 100 matrix was multiplied by a 100 ¥ 1 vector. The references
to these two input objects were passed to the server object, and a reference
to the product matrix was returned back to the client. The average time com-
puted for 10 such multiplications is shown in Table 4.5 for each paradigm.

Time measurement was done through a native system call using JNI. Use
of the Java system call for getting time was avoided because a more realistic
time could be obtained through a native call than from the Java virtual
machine. From the results it can be observed that time taken for computation
was the least while using RMI for the ping experiment, where the parameter
was passed-by-value. A possible reason could be the efficiency of object seri-
alization in RMI. From the results of matrix-by-vector multiplication, it could
be observed that CORBA requires the least time for computation. A possible
reason could be that objects pass-by-reference is strongly supported in
CORBA by the process of stringification and destringification. The computa-
tion time using DCOM for passing parameter-by-reference is found high. This
could be the result of two factors. First, the DCOM used for the experiments
was a customized implementation of a third-party tool, which could explain a

144 DISTRIBUTED-OBJECT COMPUTING TOOLS

TABLE 4.3 Comparison Based on Architecture

RMI CORBA DCOM

Uses Java Remote Uses Internet Inter-ORB Uses Object Remote
Method Protocol Protocol (IIOP) as the Procedure Call (ORPC)
(JRMP) as the communication as the communication
communication protocol. protocol.
protocol.

JVM is responsible for The Basic Object Adapter The DCOM-Service
locating Vand (BOA) or the Portable Control Manager is
activating an object Object Adapter (POA) responsible for both
implementation [24]. are responsible for locating and activating

object activation, while objects.
the ORB is responsible
for locating objects.

part of the overhead. Second, the DCOM implementation uses the concept of
moniker for obtaining object reference. This is achieved by converting the
moniker into a string and writing the string into a moniker file, which could
later be read by the client program to obtain the reference.

In the case of matrix-by-vector multiplication, the client passes the matrix
and vector objects by references to the central server. The central server then
looks up the available processor objects by reading the moniker file corre-
sponding to the processor object and then performs the computation. This
reading of the moniker file is an I/O activity, which very much stands as ratio-

COMPARISON OF THE THREE PARADIGMS 145

Table 4.4 Comparison Based on Support for Additional Features

RMI CORBA DCOM

Enforces the creation of The CORBA Security DCOM supports robust
a RMISecurityManager Service supports the security by allowing
object. This ensures that identification, users to specify user-
downloaded class code authentication, level authentication and
for any object passed authorization, and access-level rights
to the client does not access control of the (through access control
access the system principles. It also list) over objects.
resources. provides security

auditing.
Distributed garbage Distributed garbage Distributed garbage

collection is handled by collection is not collection is activated by
the Java virtual specified. a pinging mechanism by
machine. which the server object

detects whether clients
are connected.

Asynchronous call-back Deferred synchronous Call-back interfaces are
routines are supported calls allow clients to supported in DCOM.
where in a server can poll on a delayed
call back a method on response from the
any of its clients. server. Event service

allows consumers to
either request events or
be notified of events.

TABLE 4.5 Comparison Based on Performance

Parameter RMI CORBA DCOM
Experiment Passing (ms) (ms) (ms)

Ping By value 25.792 163.823 135.545
Matrix-by-vector By reference 6781.155 1546.716 123,305.330

multiplication

nale for the slow performance of DCOM in the matrix-by-vector multiplica-
tion experiment. However, in the ping experiment, as the moniker file was read
before the object was passed-by-value, the result shows a reasonably lower
computation time.

4.5 CONCLUSIONS

As evident from Section 4.4, each model has strengths and weaknesses. Each
performs better under some conditions, while the performance degrades in
some other situations. Hence the question “Which approach is better?” does
not have a unique answer. Instead, the open nature of the future distributed
systems will need the creation of a comprehensive metaobject model, which
will seamlessly encompass the objects adhering to different models, thereby
promoting a conglomeration of heterogeneous objects. UMM (the Unified
Meta-object Model) [25] is one such proposed metamodel being developed
for providing solutions to the software development of future open systems.
UMM is based on an amalgamation of three concepts: objects, service, and col-
laboration. More details about UMM are available in [25].

REFERENCES

1. Sun Microsystems, Inc., Java remote method invocation: distributed computing for
Java, http://java.sun.com/marketing/collateral/javarmi.html.

2. Sun Microsystems, Inc., An overview of RMI applications,
http://java.sun.com/docs/ books/tutorial/rmi/overview/html.

3. Sun Microsystems, Inc., RMI and JavaTM distributed computing,
http://java.sun. com/features/1997/nov/rmi.html.

4. Sun Microsystems, Inc., Distributed object applications,
http://java.sum.com/products/jdk/1.2/docs/guide/rmi/spec/rmi-objmode.doc1.html.

5. R. Buyya, High Performance Cluster Computing, Prentice Hall, Upper Saddle
River, NJ, 1999.

6. P. E. Chung, Yennun Huang, Shalini Yajnik, Deron Liang, J. C. Shih, Chung-Yih
Wang, and Yi-Min Wang, DCOM and CORBA side by side, step by step, and layer
by layer, http://research.microsoft.com/~ymwang/papers/C++R97CR.htm.

7. G. S. Raj, The component object model,
http://www.execpc.com/~gopalan/com/com_ravings.html.

8. Microsoft Corporation, Microsoft COM technologies: DCOM,
http://www.microsoft.com/com/tech/dcom.asp.

9. M. Horstmann and M. Kirtland, DCOM architecture, http://msdn.microsoft.com/
library/default.asp?URL=/library/backgrnd/htmlmsdn_dcomarch.htm.

10. C. Goswell, The COM Programmer’s Cookbook, Microsoft Office Product
Unit, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncomg/
html/msdn_com_co.asp.

146 DISTRIBUTED-OBJECT COMPUTING TOOLS

11. K. Brockschmidt, Inside OLe (Microsoft Programming), Microsoft Press,
Redmond, WA, 1995.

12. S. G. Akl, Parallel Computation: Models and Methods, Prentice Hall, Upper Saddle
River, NJ, 1997.

13. Object Management Group, OMG formal documentation,
http://www.omg.org/technology/documents/new_formal/index.htm.

14. D. C. Schmidt, Overview of Corba,
http://www.cs.wustl.edu/~schmidt/corba-overview.html.

15. G. Minton, IIOP specification: a closer look,
http://www.blackmagic.com/people/gabe/iiop.html.

16. R. Orfali and D. Harkey, Client/Server Programming with JAVA and CORBA,
Wiley, New York, 1998.

17. K. Keahey, A brief tutorial on Corba,
http://www.cs.indiana.edu/hyplan/kksiazek/tuto.html.

18. D. C. Schmidt, Developing distributed object computing applications with
CORBA, http://www.cs.wustl.edu/~schmidt/PDF/corba4.pdf.

19. Borland Software Corporation, VisiBroker 4,
http://info.borland.com/techpubs/visibroker/visibroker4/.

20. Borland Software Corporation, Visibroker for Java 4.1: programmers guide,
http://info.borland.com/techpubs/books/vbj/vbj40/framesetindex.html.

21. CORBA basics, http://ootips.org/corba-basics.html.

22. Microsoft Corporation, http://www.microsoft.com/java.

23. Linar Ltd., J-Integra, pure Java–COM bridge, www.linar.com.

24. G. S. Raj, A detailed comparison of CORBA, DCOM and Java/RMI,
http://www.execpc.com/~gopalan/misc/compare.html.

25. R. R. Raje, UMM: unified meta-object model for open distributed systems, Pro-
ceedings of the 4th IEEE International Conference on Algorithms and Architecture
for Parallel Processing, Word Scientific Publishing Company, Singapore, 2000.

26. J-Integra, http://j-integra.intrinsyc.com.

REFERENCES 147

CHAPTER 5

Gestalt of the Grid

G. VON LASZEWSKI

Argonne National Laboratory, Argonne, IL

P. WAGSTROM

Argonne National Laboratory, Argonne, IL
and Illinois Institute of Technology, Chicago, IL

5.1 INTRODUCTION

The Grid approach is an important development in the discipline of computer
science and engineering. Rapid progress is being made on several levels,
including the definition of terminology, the design of an architecture and
framework, the application in the scientific problem-solving process, and the
creation of physical instantiations of Grids on a production level. In this
chapter we provide an overview of important influences, developments, and
technologies that are shaping state-of-the-art Grid computing. In particular,
we address the following questions:

• What motivates the Grid approach? (see Section 5.1.1)
• What is a Grid? (see Section 5.2)
• What is the architecture of a Grid? (see Section 5.3)
• Which Grid research activities are performed? (see Section 5.5)
• How do researchers use a Grid? (see Section 5.7.7)
• What will the future bring? (see Section 5.8)

Before we begin our discussion, we start with an observation that leads us
to the title of this chapter. A strong overlap between past, current, and future
research in other disciplines influences this new area and makes answers to

149

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

some of the questions complex. Moreover, although we are able to define the
term Grid approach, we need to recognize that, similar to the gestalt approach
in psychology, we face different responses by the community to this evolving
field of research. Based on the gestalt approach, which hypothesizes that a
person’s perception of stimuli has an effect on his response, we will see a
variety of stimuli on the Grid approach that influence current and future
research directions.

We close this introductory section with a famous picture
used in early psychology experiments. If we examine the
drawing in detail, it will be rather difficult to decide what
the different components represent in each of the inter-
pretations. Although hat, feather, and ear are identifiable
in the figure, one’s interpretation (Is it an old woman or a
young girl?) is based instead on “perceptual evidence.”
This figure should remind us to be open to individual per-
ceptions about Grids and to be aware of the multifaceted
aspects that constitute the gestalt of the Grid.

5.1.1 Motivation

To define the term Grid we first identify what motivates its development. We
provide an example from weather forecasting and modeling that includes a
user community with strong influence on the newest trends of computer
science over the past several decades. L. F. Richardson [68,72] expressed the
first modern vision of numerical weather prediction in 1922. Within two
decades, the first prototype of a prediction system had been implemented by
von Neumann, Charney, and others on the first generation of computers [70].
With the increased power of computers, numerical weather prediction became
a reality in the 1960s and initiated a revolution in the field that we are still
experiencing. In contrast to these early weather prediction models, today the
scientific community understands that complex chemical processes and their
interactions with land, sea, and atmosphere have to be considered.

Several factors make this effort challenging. Massive amounts of data must
be gathered worldwide; those data must be incorporated into sophisticated
models; the results must be analyzed; feedback must be provided to the mod-
elers; and predictions must be supplied to consumers (Figure 5.1).

Analyzing this process further, we observe that the data needed as input
to the models based on observations and measurements of weather and
climate variables are still incomplete, and sophisticated sensor networks
must be put in place to improve this situation.The complexity of these systems
has reached a level where it is no longer possible for a single scientist to
manage the entire process; the era of the lonely scientist working in seclusion
is coming to an end. Today, accurate weather models are derived by
sharing the intellectual property within a community of interdisciplinary
researchers.

150 GESTALT OF THE GRID

This increase in the complexity on the numerical methods and amount of
data required, along with the factor of community access, requires access
to massive amounts of computational and storage resources. Although today’s
supercomputers offer enormous power, accurate climate and weather
modeling requires access to even larger resources that may be integrated
from resources at dispersed locations. Therefore, weather prediction promotes
more than just a focus on making compute resources available as part of a
networked environment. We have identified the need for an infrastructure to
be created from a dynamic, dispersed set of sensor, data, compute, collabora-
tion, and delivery networks. Clearly, weather forecasting is a complex process
that requires flexible, secure, coordinated sharing of a wide variety of
resources.

5.1.2 Enabling Factors

When we look at why it is now possible to develop very sophisticated forecast
models, we see an increase in understanding, capacity, capability, and accuracy
on all levels of our infrastructure. Clearly, technology has advanced dramati-
cally. Communication satellites and the Internet enable remote access to
regional and international databases and sensor networks. Collaborative infra-
structures (such as the Access Grid [29]) have moved exchange of informa-
tion beyond the desktop. These advances have affected and will continue to
profoundly affect the way scientists work with each other. Computing power
has also increased steadily. Indeed, for more than three decades, computer
speed has doubled every 18 months (supporting Moore’s law [62]), and this
trend is expected to last for at least the next decade. Furthermore, over the
past five years, network bandwidth has increased at a much larger rate, leading

INTRODUCTION 151

observations model prediction

feedback

consumersensors compute and storage
facilities

scientists

calculatecollaboratemeasure deliver

Fig. 5.1 Weather forecasting is a complex process that requires a complex
infrastructure.

experts to believe that the network speed doubles every nine months. At the
same time, the cost of production for network and computer hardware is
decreasing.

We also observe a change in modality of computer operation. The first gen-
eration of supercomputers comprised high-end mainframes, vector processors,
and parallel computers. Access to this expensive infrastructure was provided
and controlled as part of a single institution within a single administrative
domain. With the advent of network technologies, promoting connectivity
between computers, and the creation of the Internet, promoting connectivity
between different organizations, a new trend arose, leading away from the cen-
tralized computing center to a decentralized environment. As part of this
trend, it was natural to collect geographically dispersed and possibly hetero-
geneous computer resources, typically as networks of workstations or super-
computers. The first connections between high-end computers used to solve a
problem in parallel on these machines were termed a metacomputer. (The term
is believed to have originated as part of a gigabit testbed [60].)

Thus, increases in capacity, capability, and modality are enabling a new way
of doing distributed science. Additionally, technology once viewed as special-
ized infrastructure is becoming a commodity technology, making it possible to
access resources, for example through the use of the Internet [68], more easily.
This vision, which has become clearer over the past few decades, now applies
to many other disciplines that will provide commercial viability in the near
future. It has had, and will continue to have, a profound impact on several
scientific disciplines, including computer science.

5.2 DEFINITIONS

In this section we provide the most elementary definition of the term Grid and
its use within the community. As we have seen, the Grid approach has been
guided by a complex and diverse set of requirements but at the same time pro-
vides us with a vision for an infrastructure that promotes sophisticated inter-
national scientific and business-oriented collaborations. Much research in this
area, some of which is mentioned in this chapter, has been influential in
shaping what we now term the Grid approach:

Definition: Grid Approach A strategy that promotes a vision for sophisti-
cated international scientific and business-oriented collaborations.

The term Grid is an analogy to the electric power grid that allows perva-
sive access to electric power. In a similar fashion, computational Grids provide
access to collections of compute-related resources and services. As early as
1965, the designers of the Multics operating system envisioned and named
requirements for a computer facility operating “like a power company or

152 GESTALT OF THE GRID

water company” [80], and others envisioned Grid-like scenarios [59]. However,
we emphasize that our current understanding of the Grid approach goes far
beyond simply sharing compute resources in a distributed fashion. Besides
supercomputer and compute pools, Grids include access to information
resources (such as large-scale databases) and access to knowledge resources
(such as collaborative interactions between colleagues). Essential is that these
resources may be at geographically dispersed locations and may be controlled
by different organizations. Thus, the following definition for a Grid is
appropriate:

Definition: Grid An infrastructure that allows for flexible, secure, coordi-
nated resource sharing among dynamic collections of individuals, resources,
and organizations.

So far we have used the term Grid rather abstract manner. To distinguish
the concept of a Grid from an actual instantiation of a Grid as a real, avail-
able infrastructure, we use the term production Grid. Such production Grids
are typically shared among a set of users. The analogy in the electrical power
Grid would be a power company or agglomerate of companies that maintain
their own Grid while providing persistent services to the user community.
Thus, the following definition is introduced:

Definition: Production Grid An instantiaion of a Grid that manifests itself
by including a set of resources to be accessed by Grid users.

Additionally, we expect that multiple production Grids will exist and be
supported by multiple organizations. Fundamental to the Grid is the idea
of sharing. Naturally, it should be possible to connect such Grids with each
other so as to share resources. Thus, it is important to define a set of ele-
mentary standards that assist to provide interoperability between production
Grids.

Some production Grids are created based on the need to support a partic-
ular community. Although the resources within such a community are usually
controlled in different administrative domains, they can be accessed as part of
a community production Grid. Examples of production and community pro-
duction Grids are introduced in Section 5.5.1.

Definition: Community Production Grid A production Grid in which cre-
ation and maintenance are performed by a community of users, developers,
and administrators.

The management of a community production Grid is usually handled by a
virtual organization [46], which defines the rules that guide membership and
use of resources.

DEFINITIONS 153

Definition: Virtual Organization An organization that defines rules that
guide membership and use of individuals, resources, and institutions within a
community production Grid.

A typical Grid will contain a number of high-end resources such as super-
computers or data storage facilities. As these resources can be consumed by
users, we term them in analogy to electrical power plants as follows:

Definition: Grid Plane A high-end resource that is integrated in a virtual
organization and can be shared by its users.

The user, on the other hand, is able to access these resources through a user-
specific device such as a computer, handheld device, or cell phone.

Definition: Grid Appliance A device that can be integrated into a Grid while
providing the user with a service that uses resources accessible through the Grid.

Grid appliances provide a portal that enables easy access, utilization, and
control of resources available through a Grid by the user. We define the term
Grid portal in more detail in Section 5.7.

One important concept that was originally not sufficiently addressed within
the Grid community was the acknowledgment of sporadic and ad hoc Grids
that promote the creation of time-limited services. This concept was first for-
mulated as part of an initial Grid application to conduct structural biology and
computed microtomography experiments at Argonne National Laboratory’s
Advanced Photon Source (APS). In these applications, it was not possible to
install, on long-term basis, Grid-related middleware on the resources, because
of policy and security considerations. Hence, besides the provision for a per-
vasive infrastructure, we require Grid middleware to enable sporadic and ad
hoc Grids that provide services with limited lifetime. Furthermore, the admin-
istrative overhead of installing such services must be small, to allow the instal-
lation and maintenance to be conducted by the nonexpert with few system
privileges.

5.3 MULTIFACETED GRID ARCHITECTURE

A review of the literature about existing Grid research projects shows that
three different architectural representations are commonly used. Each of
these architectural views attempts to present a particular aspect of Grids.Thus,
we believe it is important recognize that the architecture of the Grid is
multifaceted and an architectural abstraction should be chosen that fits best
to describe the given aspect of the Grid research. Nevertheless, in each case
one needs to consider the distributed nature and unique security aspects. Next
we describe these common architectural views in more detail.

154 GESTALT OF THE GRID

5.3.1 N-Tiered Grid Architecture

The N-tiered application architecture (Figure 5.2) provides a model for Grid
developers to create flexible and reusable Grid applications. Decomposing a
Grid application into tiers allows developers to modify or add only to a spe-
cific layer rather than to focus on the reimplementation of all parts of the
application. N-tiered application architectures are common within and are
most often represented as part of layer 7 of the OSI model [64]. Many
Grid projects provide an N-tiered architecture. The advantage of an N-tiered
architecture is its familiarity and its applicability to many conceptual Grid
problems that try to separate issues between the application and the physical
layer.

5.3.2 Role-Based Grid Architecture

The secure access to a collectively controlled set of physical resources reused
by applications motivates a role-based layered architecture [46,47].Within this
architecture, it is easy to identify fundamental system components, specify the
purpose and function of these components, and indicate how these compo-
nents interact with one another. This architecture classifies protocols, services,
application programming interfaces, and software development kits according
to their roles in enabling resource sharing. It identifies five layers: fabric,
connectivity, resource, collective, and application layer (Figure 5.3). Inter-
operability is preserved by using a small standard set of protocols assisting in
the secure exchange of information and data among single resources. These
resources are managed by collective services in order provide the illusion of
a single resource to application designers and users.

The layers within the architecture are defined as follows:

• The fabric layer contains protocols, application interfaces, and toolkits
that allow development of services and components to access locally con-
trolled resources, such as computers, storage resources, networks, and
sensors.

MULTIFACETED GRID ARCHITECTURE 155

Grid
Fabric

Middleware
Advanced
Services

Applications Portals

System Level User Level

Fig. 5.2 N-tiered Grid architecture based on an application user’s point of view.

• The connectivity layer includes the necessary Grid-specific core commu-
nication and authentication support to perform secure network transac-
tions with the resources within the Grid fabric. This includes protocols
and services allowing secure message exchange, authentication, and
authorization. It is beneficial to develop a small set of standard protocols
and services to provide the means of interoperability.

• The resource layer contains protocols that enable secure access and mon-
itoring by collective operations.

• The collective layer is concerned with the coordination of multiple
resources and defines collections of resources that are part of a virtual
organization. Popular examples of such services are directories for
resource discovery and brokers for distributed task and job scheduling.

• The application layer comprises user applications that are used within a
virtual organization.

Each of these layers may contain protocols, application programming inter-
faces, and software development kits to support the development of Grid
applications and services. A benefit of this architecture is the ability to boot-
strap a complex Grid framework while refining it successively on various
levels. We emphasize that this architecture can be supported with an im-
mensely rich set of already defined application interfaces, protocols, toolkits,
and services provided through commodity technologies and developments
within high-end computing. Reuse and extension of these standards, based on
Grid-specific requirements, will support the development of Grids.

156 GESTALT OF THE GRID

Collective Services

Reso d
Conn ti ty

Layer

Fabric

User Applications

H
ig

h
-E

n
d

 T
ech

n
o

lo
g

ies

C
o

m
m

o
d

it
y

T
ec

h
n

o
lo

g
ie

s

Secure Access
to

Resources and
Services

Distributed Information Services,
Brokering, and Monitoring

Application Ser ces and
Development Tools

Physical Devices and
Resources s h as

Computers, Storage,
Networks, a Sensors

Fig. 5.3 Role-based layered view of Grid architecture.

5.3.3 Service-Based Grid Architecture

In the near future we will observe a shift within information technologies
toward service-oriented concepts. From the perspective of Grid computing, we
define a service as a platform-independent software component, which is
described with a description language and published within a directory or reg-
istry by a service provider (Figure 5.4). A service requester can locate a set of
services with a query to the registry, a process known as resource discovery. A
suitable service can then be selected and invoked, a process known as binding
[37,41].

Definition: Service A platform-independent software component published
within a directory or registry by a service provider.

The usefulness of the service-based Grid architecture can be illustrated by
scheduling a task on a computer cluster. First, we locate a set of possible
resources. Next, we select a compute resource from this set where we would
like to schedule our task. A criterion to select such a resource could be cost
or load balance among the resources. Once a suitable resource is selected, we
bind the task of execution to this resource. Figure 5.3 shows the parties and
message exchanges that define a service-based model. An important aspect of
services is the possibility to compose new services easily while using existing
ones. This is enabled by the standard description, not only of the protocol but
also of the behavioral description of such a service.

Clearly, it is possible to develop complex flows between services. Since this
service-based model deals with the use of asynchronous services, it will be
important to deal appropriately with service guarantees in order to avoid
deadlocks and other hazards. The service-based concept has been in wide use,

MULTIFACETED GRID ARCHITECTURE 157

Registry

ProviderRequestor

find

bind

publish

Fig. 5.4 The service model allows the description of a provider service that can be
published in a registry and be found and bound by a requestor.

not only by the Grid community but also by the business community. This fact
has led to recent collaborative efforts between the Grid and the business
community. An example of such an activity is the creation of the Open Grid
Services Architecture, which we describe in more detail in Section 5.5.2.

5.3.4 Grid Challenges

Whatever the form of a Grid, we must consider the dynamic, unpredictable
properties of the Grid while providing a reliable and persistent infrastructure.
Additionally, we would like to enable open collaborations without neglecting
protection of the collaboration with appropriate security restrictions. These
apparent contradictions—desire for reliability vs. a potentially unreliable
infrastructure, or restricted vs. unrestricted access to information—provide
complex challenges for Grids (Figure 5.5). For Grids to become a reality, we
must develop infrastructures, frameworks, and tools that address these
complex management challenges and issues.

5.4 GRID MANAGEMENT ASPECTS

A massively distributed and interconnected system entails management issues
that go far beyond those of typical computers. Among these issues are the
security of the system to maintain the overall integrity of the system; data and
information management to ensure that the relevant data about users, systems,

158 GESTALT OF THE GRID

Software/
Application

Service

Hardware
Infrastructure

Tasks

Data

Information

Communities

Grid
Management

Fig. 5.5 The Grid approach must deal with a complex management challenge in many
areas.

GRID MANAGEMENT ASPECTS 159

Delegation

Single
Sign-

on

Community
Authorization

Non-
repudiation

Encryption

Authorization

Authentication

Security

Fig. 5.6 Issues to be addressed in security.

and experiments is available to users and programs on the Grid; execution and
resource management to handle the allocation of resources and ensure that
tasks are executed in a timely matter; software management to handle deploy-
ment of software packages; and hardware management to ensure that the
physical base of the Grid stays running. In this section we address these issues
and their relationship to the Grid.

5.4.1 Managing Grid Security

Since the Grid approach deals with heterogeneous and dispersed resources
and services, security aspects within Grids play an important role. Most com-
modity security services available today enable the interaction between two
peers. The concepts used to enable this interaction are authentication, autho-
rization, encryption, and nonrepudiation (Figures 5.6 and 5.7).

Authentication deals with verification of the identity of an entity within the
Grid. Although this is commonly associated only with identification of a Grid
user, the Grid also requires authentication of resources and services provided
as part of the Grid.

Authorization deals with the verification of an action that an entity can
perform after authentication was performed successfully. Thus, policies must
be established that determine the capabilities of allowed actions. A typical
example is the use of a batch queue by user A between 3 and 4 o’clock, with
user B allowed to use the queue only from 5 to 6 o’clock. In general, policies
determine who can do what, when, and at which resource.

160 GESTALT OF THE GRID

Encryption provides a mechanism for protecting the confidentiality of mes-
sages in transit between two peers.

Nonrepudiation in authentication services provides proof of the integrity
and origin of data in an unforgeable relationship that can be verified by any
third party at any time.

Besides these general security issues, the Grid infrastructure poses unique
requirements. For instance, it is infeasible to authenticate via password chal-
lenges for a user on thousands of different resources.

Single sign-on is a mechanism that supports authentication to a large
number of Grid resources on behalf of the user or resource by delegating the
task of authentication to a service acting on behalf of the user (also called a
proxy service). Such a service will typically create a temporary credential
(often referred to as a secure proxy) that is used for authentication. An impor-
tant factor to consider within single sign-on is that different domains may
provide different local security mechanisms. Thus, any solution muse be able
to deal with different identity mappings, such as UNIX accounts accessible
through PKI or Kerberos.

Delegation is the process of one Grid entity acting on behalf of another Grid
entity. Delegation must be performed carefully because it is possible to create
delegation chains.A simple example of such a chain is the initiation of a process
on a resource D, initiated by a resource A, and subsequently delegated through
B and C(AµBµCµD). In general, we observe that the longer the chain, the
greater the risk for misuse. Accordingly, it is desirable to create what we term
limited delegation. This includes procurements for authentication restriction
with more sophisticated Grid services.Thus, we can create a limited proxy that
may, among other things, restrict use to a particular Grid resource.

Community authorization provides mechanisms for a virtual organiza-
tion to define policies for groups of users that can be applied to enabling
access control to resources by a community. This service is needed in case it is
impossible or impractical to keep track of access to a resource on a user-
by-user basis. An authority that establishes trust between the peers reg-
ulates inclusion in such a community. In this sense, community authorization

Secure communication
through encryption
and nonrepudiation

Access control
through authentication
and authorization

Single sign-on

Secure Execution

Authentication and authorization

Community
authorization
through delegation

Delegation

Fig. 5.7 Security concepts useful for Grids.

enables single sign-on to resources while being delegated to a trusted
authority.

Secure execution is desired in environments where the user community
becomes too large to handle. In these cases it is important to provide a service
that can run untrusted applications (those submitted by the users) in a trusted
environment (the cluster at a compute center or a Grid); the concept of virtual
machines is essential for such a service.

We must consider the user community when designing a security infra-
structure for applications and services running in a Grid environment. Many
users are unwilling to deal with obtrusive security procedures but at the same
time expect a reasonable level of security. Hence, it is of utmost importance
to present the security mechanisms to users in an easy and mostly transpar-
ent way. A minimum level of understanding by users is necessary so that they
can specify their own security requirements and understand the security guar-
antees or risks of the Grid. In this respect, an educational service provided as
part of the strategy of production Grids can offer the necessary explanations
and guidance for accessing Grid resources and developing secure service.

5.4.2 Managing Grid Information

Within Grids, information about the users and the system is critical. User
information helps to establish collaborative sessions, and system information
helps users select the appropriate resources and applications. The availability
of such information is important for the maintenance, configuration, and use
of the heterogeneous and dynamically changing Grid infrastructure. Charac-
teristics that must be imposed on such an information service to support Grids
include

• Uniform, flexible access to information
• Scalable, efficient access to dynamic data
• Access to multiple information sources

The creation of such an information service must be an integral part of each
Grid toolkit and application. In the past, distributed directories have provided
such a service. Often, a centrally maintained relational database may serve the
same purpose. In any case, the design of a scalable information service must
consider the distributed nature of the Grid. Equally important is the fact that
resource owners may not wish to export information about their systems to
unauthorized users. Although restricted access to information is already
possible, it is not addressed adequately in the first generation of prototype
production Grids.

5.4.3 Managing Grid Data

Each program executed in a Grid is dependent on data, and the data require-
ments for applications running on the Grid are enormous. For example,

GRID MANAGEMENT ASPECTS 161

gathering data for a meterological forecast requires processing and storage of
petabytes of data each day. To compensate for limited storage capacities at
remote sites, services that perform delivery on demand may augment the data
with a lifetime to limit the amount of actual data in the Grid. If the calcula-
tion cannot be performed on the server where the data are located, the user
must be able to replicate those data efficiently elsewhere. Thus, a reliable file
transfer service must be provided to move the data between source and des-
tination on behalf of the issuing client. Filters can be used to reduce the
amount of data during a transfer, based on metadata attached with the file. If
the data can be created with less effort than the actual data transfer, it may
be advantageous to augment data with pedigree information about how to
regenerate the data instead of storing them.

5.4.4 Managing Grid Execution and Resources

Calculations on resources within the Grid are controlled by execution services.
The simplest execution service is part of the operating system and allows exe-
cution of jobs and tasks on a single resource. A Grid security infrastructure
must be in place that provides authentication and authorization mechanisms
to govern the use of this resource. Batch queuing systems provide a conve-
nient way to extend such an execution service to a cluster, a parallel computer,
or a supercomputer. In order to enable the use of multiple instances of such
resources, a resource coallocation mechanism is needed. Such a mechanism
will identify a suitable set of resources based on the Grid information service
and verify that the resources selected are available (or fulfill the user’s request
if they are not), reserve the resources, and finally, execute the user’s task on
this agglomeration of resources.

Algorithms to control the collective use of such resources may be quite
complex. Since the algorithmic implications for scheduling in such an envi-
ronment are an NP-complete problem, heuristics may be used to solve the
scheduling problem and to guarantee execution of the tasks. Researchers are
currently exploring the use of combinatorial optimization strategies, stochas-
tic sampling, economic models, and agent-based systems. Smart services are
necessary that can deal with deadlock prevention, avoidance, and QoS guar-
antees on the local and global scales. Often, complicated workflows must be
formulated as part of the complex interdisciplinary applications run by scien-
tists on Grids. Thus, it is necessary to provide workflow management services
that allow control of the flow of data and applications as part of the problem-
solving process.

5.4.5 Managing Grid Software

Deployment of applications, components, and services in a distributed
heterogeneous environment is a challenging problem. Of particular concern
is guaranteeing interoperability between different versions of software and

162 GESTALT OF THE GRID

libraries on already installed and operational software and services. Use of the
Grid service model described earlier offers a partial solution to this problem
by providing metadata to each application and service installed on the Grid
that can be queried through the Grid information service. In this way it is
possible to include portability data within the infrastructure, which will be used
as part of an authorization service to verify whether services or applications
can interoperate.

5.4.6 Managing Grid Hardware

The resource providers are responsible for hardware management on the
Grid. Notifications about downtimes and maintenance upgrades must be avail-
able through the information service in order to simplify the user’s search for
suitable resources with service guarantees. In general, hardware manage-
ment must be augmented with an appropriate infrastructure on the hardware
service provider side. Quality-of-service augmentations on the hardware
level, such as networks, could provide a profound advantage for future Grid
infrastructures.

5.5 GRID ACTIVITIES

We have organized our discussion of Grid projects into three classes: com-
munity activities, development toolkits, and applications (Figure 5.8). Within
each class, we describe various activities in being performed by the Grid
community.

GRID ACTIVITIES 163

Grid

Applications Development Community

Science Collaboration Middleware Userware Standardization Production Grids Industry

Global GridForum
IETF
W3C
OMG

DOE Science Grid
NASA IPG

NPACI
UK Grid

Asia/Pacific Grid
Other Production Grids

Akenti
SRB

Legion
NWS

Globus Toolkit Compute Services

Python CoG Kit
JSP CoG Kit
Web Services
Java CoG Kit

...

Condor
Netsolve

Ninf
Nimrod

Seti

Portal

Hotpage
Unicore
Punch

Java CoG Kit
...

Astrophysics
Particle Physics

Structural Biology
Geophysics

Access Grid

Fig. 5.8 Simple classification of Grid activities: community activities, development
tools, and applications.

5.5.1 Community Activities

A variety of activities are performed by the community. Each of these activi-
ties has a profound impact on the development of Grids. We identify three
basic Grid user communities and the activities they perform:

• Development: Grid programmers who develop services in a collaborative
fashion for deployment in the Grid

• Appication: scientific or application users who access the services pro-
vided as part of the Grid

• Community building: administrators who deploy services and applica-
tions in production Grids in order to make them accessible to others

Whereas today’s Grid users include mostly large-scale scientific application
users and developers, we expect that with the availability of robust Grid tool-
kits the community will expand to the financial sector, the health care sector,
small industries, and even the common household user needing access to ser-
vices resources accessible through the Grid. Thus, the Grid will be instrumen-
tal in furthering the scientific discovery process [19] while developing the next
generation of community problem-solving environments.

Global Grid Forum The Global Grid Forum (GGF) is an international
community-initiated forum of individual researchers and practitioners working
on various facets of Grids. The mission of the GGF is to promote and develop
Grid technologies and applications through the development and documen-
tation of “best practices,” implementation guidelines and standards, with an
emphasis on “rough consensus and running code.” The objective is to support
with such standards the creation of production Grids; address infrastructure
obstacles inhibiting the creation of these Grids; perform educational outreach;
and facilitate the use of Grid technologies within diverse application commu-
nities. Based on the Internet Engineering Task Force model, the GGF contains
several area groups and, within these areas, working groups dealing with a
particular Grid-related problem. The current areas are information services,
security, scheduling and management, performance, architecture, data, and
applications and models. Regular meetings are held in which over 200 orga-
nizations from more than 30 countries are represented [25].

Production Grids A number of national and international community
production Grids have been established in the past few years. Each is part of
a virtual organization spanning multiple administrative domains and enabling
access to high-end resources such as supercomputers, mass storage systems,
and advanced instruments. A well-trained administrative staff is responsible
for deploying services and components in such collectively maintained
production Grids.

164 GESTALT OF THE GRID

DOE Science Grid The Department of Energy (DOE) Science Grid is a pilot
program to provide an advanced distributed computing infrastructure based
on Grid middleware and tools to enable the degree of scalability in scientific
computing necessary for DOE to accomplish its science missions. Emphasis
is placed on making the construction and use of large-scale heterogeneous
systems as easy as using today’s desktop environments.The DOE Science Grid
[40] is part of a large initiative entitled Scientific Discovery through Advanced
Computing (SciDAC) [19], which was started in fiscal year 2001. The objective
of SciDAC is to develop the scientific computing software and hardware infra-
structure needed for terascale computers to advance DOE research programs
in basic energy sciences, biological and environmental research, fusion energy
sciences, and high-energy and nuclear physics.

TeraGrid The TeraGrid [21] project seeks to build and deploy the world’s
largest, fastest, most comprehensive distributed infrastructure for open
scientific research. Upon completion, the TeraGrid will include 13.6 tera-
flops of Linux cluster computing power distributed at five sites: the National
Center for Supercomputing Applications (NCSA) at the University of Illinois
at Urbana–Champaign; the San Diego Supercomputer Center (SDSC) at
the University of California–San Diego; Argonne National Laboratory in
Argonne, Illinois; the California Institute of Technology (Caltech) in
Pasadena; and the Pittsburgh Supercomputing Center in Pittsburgh. The Tera-
Grid will include other distributed facilities capable of managing and storing
more than 450 terabytes of data, high-resolution visualization environments,
and toolkits for Grid computing. A high-speed network, which will operate
between 50 and 80 gigabits/second, will permit the tight integration of the com-
ponents in a Grid. The $53 million project is funded by the National Science
Foundation and includes corporate partners.The TeraGrid benefits from other
Grid-related activities performed at the partner sites through the National
Computational Science Alliance (Alliance) [9,10,76] and the National
Partnership for Advanced Computational Infrastructure (NPACI) [11]. The
Alliance and NPACI is supporting the TeraGrid activities through their part-
ners and infrastructure/building activities and their current and future Grid
infrastructures.

NASA Information Power Grid The NASA Information Power Grid project
was initiated from a series of workshops in autumn of 1997. The goal is to
provide seamless access to resources between NASA sites and a few selected
NPACI sites for application development. These applications are likely to
include aeronautics and other areas of interest to NASA, such as space sci-
ences and earth sciences. The requirements that NASA will address first are
seamless access to distributed legacy applications via networks, cross-platform
computational and interactive visualization of large three-dimensional data
sets, intelligent and distributed data mining across unspecified heterogeneous

GRID ACTIVITIES 165

data sources, agent technologies, privacy and security, and tools for the devel-
opment of multidisciplinary systems. Additionally, NASA must deal with a
number of real-time requirements for aircraft operations systems [15]. The
current hardware resources included in the prototype Information Power
Grid are based on Globus Toolkit technology and comprise approximately
1500CPU nodes in six SGI Origins distributed across several NASA centers.
Also included are 10 to 50 terabytes of securely accessible mass storage,
several workstation clusters with approximately 100CPUs, and a Condor pool
with 300 workstations.

EuroGrid EuroGrid [14] is an application testbed for the European Grid
community. It is supported as a shared-cost research and technology develop-
ment project between the European Commission and its 11 partner institu-
tions. It will demonstrate the use of Grids in selected scientific and industrial
communities,address the specific requirements of these communities,and high-
light the benefits of using Grids. The objectives are to establish and operate a
European Grid among several of Europe’s high-performance computing
centers. Besides developing Grid software and applying it within state-of-the-
art applications such as biomolecular simulations, weather prediction, coupled
CAE simulations, structural analysis, and real-time data processing, the align-
ment with commercial partners is intended to productize the software.

DataGrid The DataGrid [12] project is funded by the European Community.
The objective is to enable next-generation scientific exploration that requires
intensive computation and analysis of shared large-scale databases, from
hundreds of terabytes to petabytes, across widely distributed scientific virtual
communities. The initiative is led by CERN, the European Organization for
Nuclear Research, together with five other main partners and 15 associated
partners. Major application areas are quantum chromodynamics, Earth obser-
vation, and human health research.

ApGrid The ApGrid [13] is a partnership for Grid computing in the Asia/
Pacific region. So far, it includes about 30 institutions. One of the important
objectives of ApGrid is building an international Grid testbed. The current
technology plan includes the Globus Toolkit as its underlying infrastructure.

5.5.2 Grid Middleware

The collection of APIs, protocols, and software that allow creation and use of
a distributed system such as a Grid is called middleware. It is at a lower level
than end-user applications, while being at a higher level than the underlying
network transport methods. A variety of middleware packages are available,
of which we examine a select few.

166 GESTALT OF THE GRID

Globus Project Over the past few years, the Globus Project has contributed
in many ways to the Grid effort. It has five thrust areas. First, the Globus
Project conducts research on Grid-related issues such as resource manage-
ment, security, information services, data management, and application devel-
opment environments. Second, the Globus Project is developing open-source,
open-architecture Grid software, called the Globus Toolkit.A growing number
of research institutions and companies have committed to supporting this
open source activity. Third, the Globus Project assists in the planning and
building of large-scale testbeds, both for research and for production use by
scientists and engineers. Fourth, the Globus Project collaborates in a large
number of application-oriented efforts that develop large-scale Grid-enabled
applications in collaboration with scientists and engineers. Fifth, the Globus
Project is committed to community activities that include educational out-
reach and participation in defining Grid standards as part of the Global Grid
Forum. The Globus Toolkit is modular, enabling users to choose the compo-
nents needed for the development of Grid-enabled applications.

Security is an important aspect of the Globus Toolkit. The Grid Security
Infrastructure (GSI) uses public key cryptography as the basis for its func-
tionality. It enables security services such as mutual authentication, confiden-
tial communication, delegation, and single sign-on. GSI builds the core for
implementing other Globus Toolkit services.

Communication within the Globus Toolkit is handled through the Globu-
sIO library, which provides TCP, UDP, IP multicast, and file I/O services with
support for security, asynchronous communication, and quality of service.
An important tool provided by the Globus Project is MPICH-G2, which
supports MPI across several distributed computers. MPICH-G2 was used at
SC2001 in an astrophysical calculation that received the Gordon Bell Prize
[55].

Information about a Grid is handled through the Metacomputing Directory
Service (MDS). The concept of a directory service for the Grid was first
defined in [38] and later refined in [39]. The MDS manages information about
entities in a Grid in a distributed fashion.The current implementation of MDS
is based on the Lightweight Directory Access Protocol. This protocol enables
uniform querying of system information from a variety of system components
and can be used for constructing a uniform name space for resource informa-
tion across a system that may involve many organizations.

Resource management within the Globus Toolkit is handled through a
layered system in which high-level global resource management services are
built on top of local resource allocation services. The current Globus Toolkit
resource management system comprises three components: (1) an extensible
resource specification language that serves as a method for exchanging infor-
mation about resource requirements among all of the components in the
Globus Toolkit resource management architecture; (2) a standardized inter-
face to local resource management tools, including LSF, NQE, LoadLeveler,

GRID ACTIVITIES 167

and Condor; and (3) a resource coallocation service that enables construction
of sophisticated coallocation strategies that allow use of multiple resources
concurrently.

Data management is supported by integration of the GSI protocol to access
remote files through, for example, the HTTP and the FTP protocols.

Data Grids are supported through replica catalog services in the newest
release of the Globus Toolkit. These services allow copying of the most rele-
vant portions of a dataset to local storage for faster access. Installation of the
extensive toolkit is enabled through a packaging toolkit that can generate
custom-designed installation distributions.

Current research activities include the creation of a community access
server, restricted proxies for placing additional authorization requests within
the proxy itself, data Grids, quality of service, and integration within com-
modity technologies, such as the Java framework and Web services. Future
versions of the Globus Toolkit will integrate the Grid architecture with
Web services technologies.

Commodity Grid Kits The Globus Project provides a small set of useful ser-
vices, including authentication, remote access to resources, and information
services to discover and query such remote resource. Unfortunately, these
services may not be compatible with the commodity technologies used for
application development by software engineers and scientists. To overcome
this difficulty, the Commodity Grid project is creating Commodity Grid Toolk-
its (CoG kits) that define mappings and interfaces between Grid services
and particular commodity frameworks. Technologies and frameworks of
interest include Java, Python, CORBA [77], Perl, Web Services, .NET, and
JXTA.

Existing Java [78] and Python CoG kits provide the best support for a
subset of the services within the Globus Toolkit. The Python CoG kit uses
SWIG to wrap the Globus Toolkit C-API, while the Java CoG kit is a com-
plete re-implementation of the Globus Toolkit protocols in Java. The Java
CoG kit is done in pure Java and provides the ability to use a pure Java GRAM
service. Although the Java CoG kit can be classified as middleware for inte-
grating advanced Grid services, it can also be viewed both as a system pro-
viding advanced services currently not available in the Globus Toolkit and as
a framework for designing computing portals [79]. Both the Java and Python
CoG kits are popular with Grid programmers and have been used successfully
in many community projects.

Open Grid Services Architecture One of the major problems facing Grid
deployment is the variety of different “standards,” protocols, and difficult-
to-reuse implementations. This situation is exacerbated by the fact that
much of the Grid development has been done separately from corporate-
distributed computer development. As a result, a chasm has begun to appear
[52].

168 GESTALT OF THE GRID

The Open Grid Services Architecture (OGSA) is an effort to utilize
commodity technology to create a Grid architecture. OGSA utilizes the Web
service descriptions as a method to bring concepts from Web services into the
Grid. In OGSA, everything is a network-enabled service that is capable of
doing some work through the exchange of messages. Such “services” include
computing resources, storage resources, programs, networks, databases, and a
variety of tools. When an OGSA service conforms to a special set of interfaces
and support standards, it is deemed a Grid service. Grid services have the
ability to maintain their state; hence, it is possible to distinguish one running
Grid service instance from another. Under OGSA, Grid services may be
created and destroyed dynamically. To provide a reference mechanism for a
particular Grid service instance and its state, each instance has a unique Grid
service handler (GSH).

Because a Grid service instance may outlast the protocol on which it runs
initially, the GSH contains no information about protocols or transport
methods, such as an IP address or XML schema version. Instead, this infor-
mation is encapsulated a Grid service reference (GSR), which can change over
time. This strategy allows the instance to upgrade or add new protocols. To
manipulate Grid services, OSGA has interfaces that handle and reference
abstractions that make up OGSA. These interfaces can vary from service to
service; however, the discovery interface must be supported on all services to
allow the location of new Grid service instances.

Using such an object-oriented system offers several advantages. All
components are virtualized, removing many dependency issues and allowing
mapping of multiple logical resources into one physical resource. Moreover,
because there is a consistent set of interfaces that all services must provide,
construction of complex services is greatly simplified. Together these features
allow for mapping of service semantics onto a wide variety of platforms and
communication protocols. When OGSA is combined with CoG kits, a new
level of ease and abstraction is brought to the Grid. Together, these technolo-
gies form the basis for the Globus Toolkit 3.0 [48].

Legion Legion is a Grid software project developed at the University of
Virginia. Legion addresses Grid key issues such as scalability, program-
ming ease, fault tolerance, security, and site autonomy. The goal of the Legion
system is to support large degrees of parallelism in application codes and
to manage the complexities of the physical system for the user. Legion seam-
lessly schedules and distributes the user processes on available and appropri-
ate resources while providing the illusion of working on a single virtual
machine.

As does other Grid middleware, Legion provides a set of advanced services.
These include the automatic installation of binaries, a secure and shared virtual
file system that spans all the machines in a Legion system, strong PKI-based
authentication, flexible access control for user objects, and support of legacy
codes execution and their use in parameter space studies.

GRID ACTIVITIES 169

Legion’s architecture is based on an object model. Each entity in the Grid
is represented as an active object that responds to member function invoca-
tions from other objects. Legion includes several core objects, such as com-
puting resources, persistent storage, binding objects that map global to local
process IDs, and implementation objects that allow the execution of machine
code. The Legion system is extensible and allows users to define their own
objects. Although Legion defines the message format and high-level protocol
for object interaction, it does not restrict the programming language or the
communications protocol. Legion has been used for parameter studies, ocean
models, macromolecular simulations, and particle-in-cell codes. Legion is also
used as part of the NPACI production Grid; a portal eases the interaction with
the production Grid using Legion.

Storage Resource Broker The Storage Resource Broker (SRB) [20]
developed by the San Diego Supercomputer Center is client-server middleware
that provides a uniform interface for connecting to heterogeneous remote
data resources and accessing replicated datasets. The SRB software includes
a C client library, a metadata server based on relational database technology,
and a set of Unix-like command line utilities that mimic, for example, ls, cp, and
chmod. SRB enables access to various storage systems, including the Unix file
system, archival storage systems such as UNITREE [8] and HPSS [6], and large
database objects managed by various database management systems such as
DB2, Oracle, and Illustra. SRB enables access to datasets and resources based
on their attributes rather than their names or physical locations. Forming an
integral part of SRB are collections that define a logical name given to a set of
datasets. A Java-based client GUI allows convenient browsing of the collec-
tions. Based on these collections, a hierarchical structure can be imposed on
data, thereby simplifying the organization of data in a manner similar to a Unix
file system. In contrast to the normal Unix file system, however, a collection can
encompass data that are stored on remote resources. To support archival mass
storage systems, SRB can bind a large set of files (that are part of a collection)
in a container that can be stored and accessed as a single file.Additionally, SRB
supports three authentication schemes: GSI, SEA (an RSA-based encryption
scheme), and plain text password. Furthermore, SRB can enable access control
to data to groups of users. Other features of SRB include data replication, exe-
cution of user operations on the server, data reduction prior to a fetch opera-
tion by the client, and monitoring.

Akenti Akenti is a security model and architecture providing scalable secu-
rity services in Grids. The project goals are to (1) achieve the same level of
expressiveness of access control that is accomplished through a local human
controller in the decision loop, and (2) accurately reflect existing policies for
authority, delegation, and responsibilities. For access control, Akenti uses dig-
itally signed certificates that include the user identity authentication, resource

170 GESTALT OF THE GRID

usage requirements (or use conditions), user attribute authorizations (or
attribute certificates), delegated authorization, and authorization decisions
split among on- and offline entities. All of these certificates can be stored
remotely from the resources.Akenti provides a policy engine that the resource
server can call to find and analyze all the remote certificates. It also includes
a graphical user interface for creating use conditions and attribute certificates.

Network Weather Service Network Weather Service (NWS) [51] is a dis-
tributed monitoring service that periodically records and forecasts the per-
formance of various network and computational resources over time. The
service is based on a distributed set of performance sensors that gather the
information in a central location. These data are used by numerical models to
generate forecasts (similar to weather forecasting). The information also can
be used by dynamic schedulers to provide statistical quality-of-service read-
ings in a Grid. Currently, the system supports sensors for end-to-end TCP/IP
performance measuring bandwidth and latency, available CPU percentage,
and available nonpaged memory. The forecast models include mean-based
methods, which use some estimate of the sample mean as a forecast; median-
based methods, which use a median estimator; and autoregressive methods.
While evaluating the accuracies of the prediction during run time, NWS is able
to configure itself and choose the forecasting method (from those that are pro-
vided with NWS) that best fits the situation. New models can be included in
NWS.

5.5.3 High-Throughput Computing

High-throughput computing is an extension of the concept of supercomput-
ing. While typical supercomputing focuses on floating-point operations per
second (flops), high-throughput systems focus on floating-point operations per
month or year [24]. The projects listed in this section are projects that provide
increased performance for long-term calculations by using distributed com-
modity hardware in a collaborative method.

Condor Condor is a system to utilize idle computing cycles on workstations
by distributing a number of queued jobs to them. Condor focuses on high-
throughput computing rather than on high-performance computing [75].
Condor maintains a pool of computers and uses a centralized broker to dis-
tribute jobs based on load information or preference associated with the jobs
to be executed. The broker identifies, in the pool of resources, idle computers
with available resources on which to run the program (thus, the metaphor of
a condor soaring over the desert looking for food).

The proper resources are found through the ClassAds mechanism of
Condor. This mechanism allows each computer in the pool to advertise the

GRID ACTIVITIES 171

resources that it has available and to publish them in a central information
service. Thus, if a job is specified to require 128 megabytes of RAM, it will not
be placed on a computer with only 64 megabytes of RAM [24].

The ever-changing topology of workstations does, of course, pose a problem
for Condor. When users return to their computers, they usually want the
Condor processes to stop running. To address this issue, the program uses the
checkpoints described above and restarts on another host machine. Condor
allows the specification of elementary authorization policies, such as “user A
is allowed to use a machine but not user B” and the definition of policies for
running jobs in the background or when the user is not using the machine
interactively. Such authorization frameworks have been used successfully in
other projects, such as SETI@Home [42–44,56].

Today, Condor also includes client-side brokers that handle more complex
tasks such as job ordering via acyclic graphs and time management features.
To prevent monopolizing the resources by a single large application, Condor
can use a fair scheduling algorithm. A disadvantage with the earlier Condor
system was that it was difficult to implement a coallocation of resources that
were not part of a workstation but were part of a supercomputing batch queue
system. To also utilize batch queues within a pool, Condor introduced a mech-
anism that provides the ability to integrate resources for a particular period
of time into a pool. This concept, known as glide-in, is enabled through a
Globus Toolkit back end. With this technique, a job submitted on a Condor
pool may be executed elsewhere on another computing Grid. Currently,
Condor is working with the Globus Project to provide the necessary resource
sharing [75].

Much of Condor’s functionality results from the trapping of system calls by
a specialized version of GLIBC that C programs are linked against. Using this
library, most programs require only minor (if any) changes to the source code.
The library redirects all I/O requests to the workstation that started the
process. Consequently, workstations in the Condor pool do not require
accounts for everyone who can submit a job. Rather, only one general account
for Condor is needed. This strategy greatly simplifies administration and
maintenance. Moreover, the special GLIBC library provides the ability to
checkpoint the progress of a program. Condor also provides a mechanism that
makes it possible to run jobs unchanged, but many of the advanced features,
such as checkpointing and restarting, cannot be used. Additional Grid func-
tionality has been included with the establishment of Condor flocks, which
represent pools in different administrative domains. Policy agreements
between these flocks enable the redistribution of migratory jobs among the
flocks [42,43].

NetSolve NetSolve, developed at the University of Tennessee’s Innovative
Computing Laboratory, is a distributed computing system that provides access
to computational resources across a heterogeneous distributed environment
via a client-agent-server interface [16,33]. The entire NetSolve system is

172 GESTALT OF THE GRID

viewed as a connected nondirected graph. Each system that is attached to Net-
Solve can have different software installed on it. Users can access NetSolve
and process computations through client libraries for C, Fortran, Matlab, and
Mathematica. These libraries can access numerical solvers such as LAPACK,
ScaLAPACK, and PETSc. When a computation is sent to NetSolve, the
agent uses a “best-guess” methodology to determine to which server to
send the request.That server then does the computation and returns the result
using the XDR format [36]. Should a server process terminate unex-
pectedly while performing a computation, the computation is restarted auto-
matically on a different computer in the NetSolve system. This process is
transparent to the user and usually has little impact other than a delay in
getting results.

Because NetSolve can use multiple computers at the same time through
nonblocking calls, the system has an inherent amount of parallelism. This, in
one sense, makes it easy to write parallel C programs. The NetSolve system is
still being actively enhanced and expanded. New features included a graphi-
cal problem description file generator, Kerberos authentication, and additional
mathematical libraries [26]. NetSolve’s closest relative is Ninf (see below).
Work has been done on software libraries that allow routines written for Ninf
to be run on NetSolve, and vice versa. Currently, however, there are no known
plans for the two projects to merge [33].

Ninf Ninf (Network Information Library for High Performance Computing)
is a distributed remote procedure call system with a focus on ease of use and
mathematical computation. It is developed by the Electrotechnical Labora-
tory in Tsukuba, Ibaraki, Japan.

To execute a Ninf program, a client calls a remote mathematical library
routine via a metaserver interface. This metaserver then brokers various
requests to machines capable of performing the computation. Such a client-
agent-server architecture allows a high degree of fail safety for the system.
When the routine is finished, the metaserver receives the data and transfers
them back to the client.

The Ninf metaserver can also order requests automatically. Specifically, if
multiple dependent and independent calculations need to take place, the inde-
pendent ones will execute in parallel while waiting for the dependent calcu-
lations to complete. Bindings for Ninf have been written for C, Fortran, Java,
Excel, Mathematica, and Lisp. Furthermore, these bindings support the use of
HTTP GET and HTTP PUT to access information on remote Web servers.
This feature removes the need for the client to have all of the information and
allows low-bandwidth clients to run on the network and receive the compu-
tational benefits the system offers [63].

Several efforts are under way to expand Ninf into a more generalized
system.Among these efforts are Ninflet, a framework to distribute and execute
Java applications, and Ninf-G, a project designed a computational RPC system
on top of the Globus Toolkit [69].

GRID ACTIVITIES 173

SETI@Home SETI@Home, run by the Space Science Laboratory at the
University of California–Berkeley, is one of the most successful coarse-grained
distributed computing systems in the world. Its goal is to integrate computing
resources on the Web as part of a collection of independent resources that are
plentiful and can solve many independent calculations at the same time. Such
a system was envisioned as a way to deal with the overwhelming amount of
information recorded by the Arecibo radio telescope in Puerto Rico and the
analysis of the data. The SETI@Home project developed stable and user-
appealing screen savers for Macintosh and Windows computers and a
command-line client for Unix systems [56,61] that started to be widely used
in 1999.

At its core, SETI@Home is a client-server distributed network. When a
client is run, it connects to the SETI@Home work unit servers at the Univer-
sity of California–Berkeley and downloads a packet of data recorded from the
Arecibo telescope. The client then performs a fixed mathematical analysis on
the data to find signals of interest. At the end of analysis, the results are sent
back to SETI@Home, and a new packet is downloaded for the cycle to repeat.

Packets of information that have been shown to have useful information
are then analyzed again by the system to ensure that there was no client error
in the reporting of the data. In this way, the system shows resiliency toward
modified clients, and the scientific integrity of the survey is maintained [56].
To date, SETI@Home has accumulated more than 900,000 CPU-years of pro-
cessing time from over 3.5 million volunteers around the globe. The entire
system today averages out to 45 Tflops, which makes it the world’s most
powerful computing system by a big margin [34]. One of the principal reasons
for the project’s success is its noninvasive nature; running SETI@Home causes
no additional load on most PCs, where it is run only during the inactive cycles.
In addition, the system provides a wealth of both user and aggregate infor-
mation and allows organizations to form teams for corporations and organi-
zations, which then have their standings posted on the Web site. SETI@Home
was also the first to mobilize massive numbers of participants by creating a
sense of community and to project the goals of the scientific project to large
numbers of nonscientific users.

SETI@Home was originally planned in 1996 to be a two-year program with
an estimated 100,000 users. Because of its success, plans are now under way
for SETI@Home II, which will expand the scope of the original project [28].
Multiple other projects, such as Folding@home, have also been started [4].

Nimrod-G Nimrod was originally a metacomputing system for parameter-
ized simulations. Since then it has evolved to include concepts and technolo-
gies related to the Grid. Nimrod-G is an advanced broker system that is one
of the first systems to account for economic models in scheduling of tasks.
Nimrod-G provides a suite of tools that can be used to generate parameter
sweep applications, manage resources, and schedule applications. It is based
on a declarative programming language and an assortment of GUI tools.

174 GESTALT OF THE GRID

The resource broker is responsible for determining requirements that the
experiment places on the Grid and for finding resources, scheduling, dis-
patching jobs, and gathering results back to the home node. Internal to the
resource broker are several modules:

• The task-farming agent is a persistent manager that controls the entire
experiment. It is responsible for parameterization, creation of jobs,
recording of job states, and communication. Because it caches the states
of the experiments, an experiment may be restarted if the task-farming
agent fails during a run.

• The scheduler handles resource discovery, resource trading, and job
assignment. In this module are the algorithms to optimize a run for time
or cost. Information about the costs of using remote systems is gathered
through resource discovery protocols, such as MDS for the Globus
Toolkit.

• Dispatchers and actuators deploy agents on the Grid and map the
resources for execution. The scheduler feeds the dispatcher a schedule,
and the dispatcher allocates jobs to the different resources periodically
to meet this goal.

The agents are dynamically created and are responsible for transporting the
code to the remote machine, starting the actual task, and recording the
resources used by a particular project. The Nimrod-G architecture offers
several benefits. In particular, it provides an economic model that can be
applied to be metacomputing, and it allows interaction with multiple different
system architectures, such as the Globus Toolkit, Legion, and Condor. In the
future, Nimrod-G will be expanded to allow advance reservation of resources
and use more advanced economic models, such as demand and supply, auc-
tions, and tenders/contract-net protocols [30].

5.6 GRID APPLICATIONS

At the beginning of Section 5.5.1 we divided Grid projects into three classes:
community activities, toolkits (middleware), and applications. Here we focus
on three applications representative of current Grid activities.

5.6.1 Astrophysics Simulation Collaboratory

The Astrophysics Simulation Collaboratory (ASC) was originally developed
in support of numerical simulations in astrophysics and has evolved into a
general-purpose code for partial differential equations in three dimensions
[1,31]. Perhaps the most computationally demanding application that has been
attacked with ASC is the numerical solution of Einstein’s general relativistic

GRID APPLICATIONS 175

wave equations, in the context, for example, of the study of neutron star
mergers and black hole collisions. For this purpose, the ASC community
maintains an ASC server and controls its access through login accounts on
the server. Remote resources integrated into the ASC server are controlled
by the administrative policies of the site contributing the resources. In general,
this means that a user must have an account on the machine on which the
service is to be performed. The modular design of the framework and its
exposure through a Web-based portal permits a diverse group of researchers
to develop add-on software modules that integrate additional physics or
numerical solvers into the Cactus framework.

The Astrophysics Simulation Collaboratory pursues the following
objectives [32]:

• Promote the creation of a community for sharing and developing simu-
lation codes and scientific results

• Enable transparent access to remote resources, including computers, data
storage archives, information servers, and shared code repositories

• Enhance domain-specific component and service development support-
ing problem-solving capabilities, such as the development of simulation
codes for the astrophysical community or the development of advanced
Grid services reusable by the community

• Distribute and install programs onto remote resources while accessing
code repositories, compilation, and deployment services

• Enable collaboration during program execution to foster interaction
during the development of parameters and the verification of the
simulations

• Enable shared control and steering of the simulations to support asyn-
chronous collaborative techniques among collaboratory members

• Provide access to domain-specific clients that, for example, enable access
to multimedia streams and other data generated during execution of the
simulation

To achieve these objectives, ASC uses a Grid portal based on JSP for thin-
client access to Grid services. Specialized services support community code
development through online code repositories. The Cactus computational
toolkit is used for this work.

5.6.2 Particle Physics Data Grid

The Particle Physics Data Grid (PPDG) [18] is a collaboratory project con-
cerned with providing the next-generation infrastructure for current and
future high-energy and nuclear physics experiments. One of the important

176 GESTALT OF THE GRID

requirements of PPDG is to deal with the enormous amount of data that is
created during high-energy physics experiment and must be analyzed by large
groups of specialists. Data storage, replication, job scheduling, resource man-
agement, and security components supplied by the Globus, Condor, STACS,
SRB, and EU DataGrid projects [12] all will be integrated for easy use by the
physics collaborators. Development of PPDG is supported under the DOE
SciDAC initiative (Particle Physics Data Grid Collaboratory Pilot) [18].

5.6.3 NEESgrid

The intention of the Network for Earthquake Engineering Simulation grid
(NEESgrid) is to build a national-scale distributed virtual laboratory for
earthquake engineering. The initial goals of the project are to (1) extend the
Globus Toolkit information service to meet the specialized needs of the com-
munity and (2) develop a set of services called NEESpop, along with existing
Grid services to be deployed to the NEESpop servers. Ultimately, the system
will include a collaboration and visualization environment, specialized
NEESpop servers to handle and manage the environment, and access to exter-
nal system and storage provided by NCSA [66].

One of the objectives of NEESgrid is to enable observation and data access
to experiments in real time. Both centralized and distributed data repositories
will be created to share data between different locations on the Grid. These
repositories will have data management software to assist in rapid and con-
trolled publication of results A software library will be created to distribute
simulation software to users. This will allow users with NEESgrid-enabled
desktops to run remote simulations on the Grid [65].

NEESgrid will comprise a layered architecture, with each component
being built on core Grid services that handle authentication, information, and
resource management but are customized to fit the needs of the earthquake
engineering community. The project will have a working prototype system by
the fourth quarter of 2002. This system will be enhanced during the next few
years, with the goal to deliver a fully tested and operational system in 2004 to
gather data during the next decade.

5.7 PORTALS

The term portal is not defined uniformly within the computer science commu-
nity. Sometimes it represents integrated desktops, electronic marketplaces, or
information hubs [49,50,71].We use the term here in the more general sense of
a community access point to information and services (Figure 5.9).

Definition: Portal A community service with a single point of entry to
an integrated system providing access to information, data, applications, and
services.

PORTALS 177

In general, a portal is most useful when designed for a particular commu-
nity in mind. Today, most common Web portals build on the current genera-
tion of Web-based commodity technologies, based on the HTTP protocol for
accessing the information through a browser.

Definition: Web Portal A portal providing users ubiquitous access, with the
help of Web-based commodity technologies, to information, data, applications,
and services.The current generation of Web portals is accessed through HTTP
and Web browsers.

A Grid portal is a specialized portal useful for users of production Grids.
A Grid portal provides information about the status of the Grid resources and
services. Commonly, this information includes the status of batch queuing
systems, load, and network performance between the resources. Further-
more, the Grid portal may provide a targeted access point to useful high-end
services, such as the generation of a compute- and data-intensive parameter
study for climate change. Grid portals provide communities with another
advantage: they hide much of the complex logic to drive Grid-related services
with simple interaction through the portal interface. Furthermore, they reduce
the effort needed to deploy software for accessing resources on production
Grids.

178 GESTALT OF THE GRID

Applications
and

Services

Information
and
Data

Users

Portal

Fig. 5.9 Portals provide an entry point that helps to integrate information and data,
application, and services.

Definition: Grid Portal A specialized portal providing an entry point to the
Grid to access applications, services, information, and data available within a
Grid.

In contrast to Web portals, Grid portals may not be restricted to simple
browser technologies but may use specialized plug-ins or executables to handle
the data visualization requirements of, for example, macromolecular displays
or three-dimensional high-resolution weather data displays.A Grid portal may
deal with different user communities, such as developers, application scientists,
administrators, and users. In each case, the portal must support a personal view
that remembers the preferred interaction with the portal at time of entry. To
meet the needs of this diverse community, sophisticated Grid portals (currently
under development) are providing commodity collaborative tools such as
newsreaders, e-mail, chat and videoconferencing, and event scheduling. Addi-
tionally, some Grid portal developers are exploiting commodity technologies
such as JavaBeans and JSP, which are already popular in Web portal environ-
ments. In the following sections we highlight several examples of well-known
Grid portals and the toolkits being used to create these portals.

5.7.1 HotPage

HotPage [17] is a portal that provides a collective view of a distributed set of
high-performance computing resources. The portal enables researchers easily
to find information about each of the resources in the computational Grid.
This information (which is stored in HTML) includes technical documenta-
tion, operational status, load and current usage, and queued jobs. Additionally,
HotPage enables users to access and manipulate files and data and to submit,
monitor, and delete jobs. Grid access is through the Globus Toolkit [22] or via
the Network Weather Service [51]. The HotPage back end is accessed through
Perl CGI scripts that create the pages requested. HotPage has been installed
on a variety of production Grids, such as NPACI [11] and the NASA IPG [15].

5.7.2 Webflow and Gateway

Webflow and its successor, Gateway [35], are two influential projects in design-
ing portals for Grids. They offer a programming paradigm implemented over
a virtual Web-accessible Grid. An application is designed by a computational
graph that is visually edited by the end user using Java applets. Nodes of the
graph are reusable modules that written by the developers. Module users need
not, however, be concerned with issues such as allocating and running the
modules on various machines, creating connections among the modules,
sending and receiving data across these connections, or running several
modules concurrently on one machine. The Gateway system takes care of
these management issues and coordinates the execution.

PORTALS 179

The Gateway system is based on a modern three-tiered architecture. Tier 1
is the high-level front end enabling visual programming, steering, runtime data
analysis and visualization, and collaboration; this front end is based on Web
technologies and object-oriented commodity standards. Tier 2 is formed by
distributed object-based, scalable and reusable Web servers and object brokers
and builds the middleware. Tier 3 comprises the back-end services such as
execution services and data movement services.

5.7.3 XCAT

The XCAT Project [58] from Indiana University provides an implementation
of the Common Component Architecture (CCA) [3] to assist in the assembly
of applications using Grid resources. The CCA specification describes the
construction of portable software components that can be reused in any CCA-
compliant runtime frameworks. These frameworks are tuned for a variety of
application environments and in some cases are designed for applications that
run on massively parallel computers. Here components may be parallel objects
(multiple component instances operating in synchrony and communicating
with each other with MPI), or they may be highly multithreaded and run on
large, shared memory multiprocessor servers. In other cases, the frameworks
are designed to enable the construction of applications from components that
are distributed over a Grid.

XCAT allows Grid application programmers to script complex distributed
computations and package these applications with simple interfaces for others
to use. Each user obtains a personal notebook for controlling the applications;
the notebook is used as an elementary abstraction to package applications and
data scripts and parameters as part of a Web page. The portal server has an
integrated event service allowing application and Grid resource information
to publish events through the Network Weather Service [51] and Autopilot [2].
XCAT has been tested on distributed simulation of chemical processes in
semiconductor manufacturing and collaboratory support for x-ray crystal-
lography. XCAT is based on the Globus Toolkit and uses the Java CoG Kit
[53,78] for its core security and remote task creation, and RMI over XSOAP
[60] as a communication protocol.

5.7.4 UNICORE

UNICORE (Uniform Interface to Computing Resources) [23] provides a ver-
tical integration environment for Grids, including access to resources through
a portal. It is designed to assist in the workflow management of tasks to be
scheduled on resources that are part of supercomputing centers. UNICORE
workflow comprises hierarchical assemblies of interdependent tasks, with
dependencies that are mapped to actions such as execution, compilation,
linking, and scripting according to resource requirements on target machines
on the Grid. Besides strong authentication, UNICORE assists in compiling

180 GESTALT OF THE GRID

and running applications and in transferring input and output data. One of the
main components of UNICORE is the preparation and modification of struc-
tured jobs through a graphical user interface that supports workflows. It allows
submission, monitoring, and control of the execution as part of a client that
gets installed on the user’s machine. Originally, UNICORE supported Web
browser plug-ins, but it is now distributed as a stand-alone application.
UNICORE is being used as the Grid infrastructure for a research project
known as UNICORE Plus. This project is enhancing the original UNICORE
software with new functionality to handle system administration and manage-
ment, modeling of dynamic and extensible resources, creation of application-
specific client and server extensions, improved data and file management
functions, and runtime control of complex job chains. Metacomputing support
(e.g., reservation, co-scheduling, application-level communication, and perfor-
mance analysis) is also under consideration. Development to utilize Globus
Toolkit enabled resources within UNICORE is underway [5].

5.7.5 JiPANG

JiPANG (Jini-based Portal Augmenting Grids) [74] is both a portal system and
a toolkit, providing a uniform interface layer for accessing a variety of Grid
systems. JiPANG is built on top of the Jini distributed object technology. It
functions as a higher-level management services to resources being managed
by individual Grid systems such as Ninf [63], NetSolve [36], and the Globus
Toolkit [22] via the Java CoG Kit [78]. A Java API provides the user with a
uniform interface to the Grid. A specialized JiPANG browser allows interac-
tive access to Grid resources and services.

5.7.6 PUNCH

PUNCH (Purdue University Network-Computing Hubs) is a distributed
network computer that allows users to access text and graphical applications
remotely via a Web browser. PUNCH provides the ability to define several
community portals, each of which serves a specific set of users [27].When users
visit a community portal, they are presented with a menu of applications that
they can execute. These applications range from CPU simulators to drawing
programs to complex commercial electronic design automation and mathe-
matical analysis packages. For text-based tools, an HTML interface is provided
that forwards all commands to the actual application.This enables a quick inte-
gration of command line–based applications into PUNCH. For more complex
graphical applications, systems such as VNC are used to transmit the display
back to remote users [54]. Such a method has also been used by other Grid
portal activities, including the Access Grid (see Section 5.7.7).

At the base of PUNCH is PVFS, the PUNCH virtual file system. By using
a series of proxies over standard NFS protocols, PUNCH is able to allow near-

PORTALS 181

native NFS performance over disparate networks.Also, the PVFS removes the
need for individual user accounts. Instead, all files are owned by a system
account with the PUNCH user of the file being identified by its position in the
file system tree. This abstraction is taken further to the level of user mainte-
nance. In a traditional distributed system, user account information would
need to be propagated to all systems on the network. PUNCH solves this by
maintaining a pool of UIDs on each server that are dynamically assigned to
users when they begin execution of processes on a server. An accounting facil-
ity keeps track of the UIDs in use and reclaims UIDs automatically at the end
of the user’s session.

Based on these features, PUNCH allows different institutions to share
computational resources and applications. Sharing is possible even across
different administrative domains based on a limited-trust relationship that can
be established between the domains. This feature allows users at multiple
universities to have access to the same computer systems with small risk of
exploitation [45].

5.7.7 Access Grid

The Access Grid (AG) project develops a package of Grid software and main-
tains a production Grid of resources that can be used to support human inter-
action. The goal of the Access Grid is to support large-scale distributed
meetings, collaborative work sessions, seminars, lectures, tutorials, and train-
ing. It provides the ability to include multimedia display, presentation and
interaction environments, and interfaces to Grid middleware and visualization
environments. This focus on group communication is in contrast to desktop-
based tools that focus much more on individual communication.

The environment is intended to foster both formal and informal group
interactions. Large-format displays integrated with intelligent or active
physical meeting rooms (also called nodes) are a central feature of the Access
Grid. Such a physical meeting room contains the high-end audio and visual
technology needed to provide a high-quality compelling user experience. A
number of Access Grid nodes are deployed worldwide that are frequently
used to conduct meetings, site visits, training sessions, and educational events
[29].

5.7.8 Commercial Grid Activities

Many of the early Grid projects that started as research efforts are now also
marketed commercially. Legion, for example, is currently marketed through
Avaki (which was cofounded by the developers of Legion). Several compa-
nies have decided to include the Globus Toolkit in their Grid marketing strate-
gies that are based on extensions or support models. Nevertheless, the Globus
Toolkit will continue to be a free open-source toolkit.

182 GESTALT OF THE GRID

Efforts such as IBM’s commitment to the Web services framework,
Microsoft’s .Net [7], Sun’s Web services [73] and JXTA framework [57] will be
major drivers for the next generation of Grid software. The development of
an Open Grid Services Architecture together with companies such as IBM
promises to integrate business and research models and processes in order to
leverage from each other’s technologies. Much additional work is needed to
extend this early work.

5.8 CONCLUSIONS

In this chapter we have identified a vision that motivates the creation of Grids
and Grid-enabled systems. We have also examined a variety of projects that
address some—but not all—of the issues that must be resolved before the Grid
is truly universal. In addition to the development of middleware, interfaces are
needed that can be used by the application scientists to access Grids. Com-
modity Grid toolkits enabling access to Grid functionality on an API level
such as Fortran, Java, and Python are important. Portals must also be devel-
oped to hide the complex infrastructure of Grids and allow scientists to use
this infrastructure in the daily scientific exploration. The tools and technolo-
gies discussed in this chapter are but the first step in the creation of a global
computing Grid.

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Information, and Computa-
tional Science Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract W-31-109-Eng-38. DARPA, DOE, and NSF support Globus Toolkit
research and development. We thank Ian Foster, Geoffrey C. Fox, Dennis
Gannon, Xian-He Sun, and members of the Computing Portals Working
Group, formerly known as Datorr and now active as part of the Grid Com-
puting Environment working group of the GGF, for valuable discussions
leading up to this work. The Globus Toolkit and Globus Project are trade-
marks held by the University of Chicago.

REFERENCES

1. ASC Portal, http://www.ascportal.org.

2. Autopilot, http://www-pablo.cs.uiuc.edu/Project/Autopilot/AutopilotOverview.htm.

3. Common Component Architecture Forum, http://www.cca-forum.org/.

4. Folding@home, http://folding.stanford.edu/.

REFERENCES 183

5. Grid Interoperability Project, http://www.grid-interoperability.org/.

6. HPSS, http://www.sdsc.edu/hpss/hpss1.html.

7. Microsoft.NET, http://www.microsoft.com/net/.

8. Unitree, http://www.unitree.com/.

9. National Center for Supercomputing Applications, http://www.ncsa.uiuc.edu/, 1986.
10. Alliance on Track to Enhance Services,

http://archive.ncsa.uiuc.edu/datalink/0005/VMR.intro.html, 2000.
11. National Partnership for Advanced Computational Infrastructure,

http://www.npaci.edu/, 2000.
12. DataGrid Project, http://www.eu-datagrid.org/, 2000.
13. ApGrid: Partnership for Grid Computing in the Asia Pacific Region,

http://www.apgrid.org/.

14. EUROGRID: Application Testbed for European Grid Computing,
http://www.eurogrid.org/, 2001.

15. Information Power Grid Engineering and Research Site, http://www.ipg.nasa.gov/,
2001.

16. Netsolve, http://www.cs.utk.edu/netsolve, 2001.
17. NPACI HotPage, https://hotpage.npaci.edu/, 2001.
18. Particle Physics Data Grid, http://www.ppdg.net/.

19. Scientific Discovery through Advanced Computing (SciDAC),
http://www.sc.doe.gov/ascr/mics/scidac/, 2001.

20. Storage Resource Broker (SRB), http://www.npaci.edu/DICE/SRB/, 2001.
21. TerraGrid, http://www.teragrid.org/, 2001.
22. Globus Project, http://www.globus.org/, 2001.
23. UNICORE, http://www.unicore.de/.

24. Condor, http://www.cs.wisc.edu/condor/, February 2002.
25. Global Grid Forum, http://www.gridforum.org, 2002.
26. NetSolve, http://icl.cs.utk.edu/netsolve/, February 2002.
27. PUNCH, http://punch.ecn.purdue.edu/, March 2002.
28. SETI@Home, http://setiathome.ssl.berkeley.edu/, February 2002.
29. Access Grid, http://www-fp.mcs.anl.gov/fl/accessgrid/, 2002.
30. D. Abramson, R. Buyya, and J. Giddy, A computational economy for Grid com-

puting and its implementation in the Nimrod-G resource broker, Future Genera-
tion Computer Systems, Vol. 18, No. 8, October 2002.

31. G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, J. Masso, A. Merzky,
T. Radke, E. Seidel, and J. Shalf, Solving Einstein’s equations on supercomputers,
IEEE Computer, pp. 52–59, http://www.cactuscode.org, 1999.

32. G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke,
E. Seidel, and J. Shalf, The Cactus code: A problem solving environment for the
Grid, in High-Performance Distributed Computing, 2000, Proceedings of the 9th
IEEE International Symposium on High-Performance Distributed Computing,
Pittsburgh, August 2000, IEEE Press, New York, pp. 253–260.

33. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and S.
Vadhiyar, Users’ Guide to NetSolve V1.4, Technical Report CS-01-467, Computer
Science Department, University of Tennessee, Knoxville, TN, July 2001.

184 GESTALT OF THE GRID

34. G. Bell and J. Gray, What’s next in high-performance computing, Communications
of the ACM, Vol. 45, No. 2, pp. 91–95, February 2002.

35. D. Bhatia, V. Burzevski, M. Camuseva, G. C. Fox, W. Furmanski, and G.
Premchandran, WebFlow: A visual programming paradigm for Web/Java based
coarse grain distributed computing, Concurrency: Practice and Experience, Vol. 9,
No. 6, pp. 555–577, 1997.

36. H. Casanova and J. Dongarra, NetSolve: A network server for solving computa-
tional science problems, International Journal of Supercomputer Applications and
High Performance Computing, Vol. 11, No. 3, pp. 212–223, October 1997.

37. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web Services
Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl, March 15,
2001.

38. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke,
A directory service for configuring high-performance distributed computations,
Proceedings of the 6th IEEE Symposium on High-Performance Distributed
Computing, Portland, OR, August 1997, IEEE Press, New York, pp. 365–375.

39. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, Grid information services
for distributed resource sharing, Proceedings of the 10th IEEE International Sym-
posium on High-Performance Distributed Computing, San Francisco, August 2001,
IEEE Press, New York, pp. 181–184.

40. DOE Science Grid, http://www.doesciencegrid.org/.

41. D. Ehnebuske, D. Box, G. Kakivaya, A. Layman, H. Frystyk, N. N. Mendelsohn,
S. Thatte, and D. Winer, Simple Object Access Protocol (SOAP) 1.1,
http://www.w3.org/TR/SOAP, 2000.

42. D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, A Worldwide
Flock of Condors: Load Sharing among Workstation Clusters, Technical
Report DUT-TWI-95-130, Delft University of Technology, Delft, The Netherlands,
1995.

43. X. Evers, J. F. C. M. de Jongh, R. Boontje, D. H. J. Epema, and R. van Dantzig,
Condor Flocking: Load Sharing between Pools of Workstations, Technical
Report DUT-TWI-93-104, Delft University of Technology, Delft, The Netherlands,
1993.

44. S. Fields, Hunting for wasted computing power: New software for computing
networks puts idle PC’s to work, University of Wisconsin Research Sampler,
1993.

45. R. J. Figueiredo, N. H. Kapadia, and J. A. Fortes, The PUNCH virtual file system:
Seamless access to decentralized storage services in a computational Grid, Pro-
ceedings of the 10th IEEE International Symposium on High-Performance Dis-
tributed Computing, San Francisco, August 2001, IEEE Press, New York.

46. I. Foster, The anatomy of the Grid: Enabling scalable virtual organizations, Inter-
national Journal of High-Performance Computing Applications, Vol. 15, No. 3, pp.
200–222, August 2001.

47. I. Foster, The Grid: A new infrastructure for 21st century science, Physics Today,
Vol. 55, No. 22, pp. 42–47, 2002.

48. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The physiology of the Grid: An open
Grid services architecture for distributed systems integration,
http://www.globus.org/research/papers/ogsa.pdf, February 2002.

REFERENCES 185

49. G. C. Fox, Portals for Web Based Education and Computational Science,
http://new_npac.csit.fsu.edu/users/fox/documents/generalportalmay00/exdeportay.
html, 2000.

50. G. C. Fox and W. Furmanski, High performance commodity computing, in I. Foster
and C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Francisco, 1999.

51. B. Gaidioz, R. Wolski, and B. Tourancheau, Synchronizing network probes to avoid
measurement intrusiveness with the Network Weather Service, Proceedings of the
9th IEEE High-Performance Distributed Computing Conference, pp. 147–154,
http://www.cs.ucsb.edu/rich/publications/, August 2000.

52. D. Gannon, K. Chiu, M. Govindaraju, and A. Slominski, An analysis of the
Open Grid Services Architecture, http://www.extreme.indiana.edu/gannon/
OGSAanalysis3.pdf, March 2002.

53. V. Getov, G. von Laszewski, M. Philippsen, and I. Foster, Multi-paradigm commu-
nications in Java for Grid computing, Communications of the ACM, Vol. 44, No. 10,
pp. 119–125, 2001.

54. N. H. Kapadia, R. J. Figueiredo, and J. A. Fortes, PUNCH: Web portal for running
tools, IEEE Micro, Vol. 20, No. 3, pp. 38–47, May–June 2000.

55. N. Karonis, MPICH-G2 Web page, http://www.hpclab.niu.edu/mpi/, 2001.
56. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky, SETI@home:

massively distributed computing for SETI, Computing in Science & Engineering,
Vol. 3, No. 1, pp. 78–83, January–February 2001.

57. N. Krishnan, The Jxta solution to P2P.
58. S.Krishnan,R.Bramley,D.Gannon,M.Govindaraju,R.Indurkar,A.Slominski,B.Temko,

R.Alkire,T. Drews, E.Webb, and J.Alameda,The XCAT science portal, Proceedings of
SC2001,November 10–16,2001,http://www.sc2001.org/papers/pap.pap287.pdf.

59. J. Licklider and R. W. Taylor, The computer as a communication device,
http://memex.org/licklider.pdf, 1968.

60. P. M. Lyster, L. Bergman, P. Li, D. Stanfill, B. Crippen, R. Blom, C. Pardo, and D.
Okaya, CASA gigibit supercomputing network: CALCRUST three-dimensional
real-time multi-dataset rendering, presented at Supercomputing ’92, Minneapolis,
MN, November 17–20, 1992.

61. D. Molnar, The SETI@home problem, ACM Crossroads, Vol. 1, Fall 2000,
http://www.acm.org/crossroads/columns/onpatrol/september2000.html.

62. G. E. Moore, Cramming more components onto integrated circuits, Electronics,
Vol. 38, No. 8, pp. 114–117, April 19, 1965.

63. H. Nakada, M. Sato, and S. Sekiguchi, Design and implementations of Ninf:Towards
a global computing infrastructure, Future Generation Computing Systems, Vol. 15,
No. 5–6, pp. 649–658, 1999.

64. The seven layers of the OSI model, http://www.iso.org and
http://www.webopedia.com/quick_ref/OSL_Layers.html.

65. T. Prudhomme, C. Kesselman, T. Finholt, I. Foster, D. Parsons, D. Abrams, J.-P.
Bardet, R. Pennington, J. Towns, R. Butler, J. Futrelle, N. Zaluzec, and J. Hardin,
NEESgrid: A Distributed Virtual Laboratory for Advanced Earthquake Experi-
mentation and Simulation: Scoping Study, NEES Technical Report 2001–02,
February 2001.

186 GESTALT OF THE GRID

66. T. Prudhomme and K. D. Mish. NEESgrid: A Distributed Virtual Laboratory for
Advanced Earthquake Experimentation and Simulation: Project Execution Plan,
NEES Technical Report 2001–02, June 2001.

67. F. N. C. Resolution, Definition of “Internet,”
http://www.itrd.gov/fnc/Internet_res.html, October 24, 1995.

68. L. F. Richardson, The Collected Papers of Lewis Fry Richardson, 2 volumes,
Cambridge University Press, Cambridge, 1993.

69. S. Sekiguchi, Ninf Project home page, http://ninf.apgrid.org/, February 2002.
70. F. G. Shuman, History of numerical weather prediction at the NMC, Weather and

Forecasting, Vol. 4, p. 286, 1989.
71. L. Smarr, Infrastructures for science portals,

http://www.computer.org/internet/v4n1/smarr.htm, 2001.
72. R. C. Somerville, The Forgiving Air: Understanding Environmental Change, Uni-

versity of California Press, Berkeley, CA, 1996.
73. Sun Microsystems, Web services made easier, http://java.sun.com/xml/

webservices.pdf.

74. T. Suzumura, S. Matsuoka, and H. Nakada, A Jini-based computing portal system,
http://matsu-www.is.titech.ac.jp/ suzumura/jipang/.

75. C.Team, Condor Version 6.2.2 Manual, University of Wisconsin–Madison, Madison,
WI, 2001.

76. J. Towns, The Alliance virtual machine room,
http://archive.ncsa.uiuc.edu/SCD/Alliance/VMR/, 2001.

77. S. Verma, J. Gawor, G. von Laszewski, and M. Parashar, A CORBA commodity
Grid kit, Proceedings of the 2nd International Workshop on Grid Computing in
Conjunction with Supercomputing 2001 (SC2001), Denver, CO, November 12, 2001,
http://www.globus.org/cog.

78. G. von Laszewski, I. Foster, J. Gawor, and P. Lane,A Java commodity Grid kit, Con-
currency and Computation: Practice and Experience, Vol. 13, No. 8–9, pp. 643–662,
2001.

79. G. von Laszewski, I. Foster, J. Gawor, P. Lane, N. Rehn, and M. Russell, Designing
Grid-based problem solving environments and portals, 34th Hawaiian International
Conference on System Science, Maui, HI, http://www.mcs.anl.gov/laszewsk/papers/
cog-pse-final.pdf, 2001.

80. V. A. Vyssotsky, F. J. Corbat, and R. M. Graham, Structure of the Multics supervi-
sor, Joint Computer Conference, AFIPS Conference Proceedings 27, p. 203,
http://www.multicians.org/fjcc3.html, 1965.

REFERENCES 187

CHAPTER 6

Software Development for Parallel and
Distributed Computing

M. PARASHAR

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ

S. HARIRI

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ

6.1 INTRODUCTION

In this chapter we study the software development process in high-
performance parallel and distributed computing (HPC) environments and
investigate the nature of support required at each stage of development. Our
objective is to illustrate the significance of tools and environments discussed
in this book during software development. In what follows we first highlight
some of the issues that must be addressed during HPC software development.
The HPC software development process is then described. A parallel stock
option pricing model is used as a running example in this discussion. Finally,
some existing tools applicable at each stage of the development process are
identified.

6.2 ISSUES IN HPC SOFTWARE DEVELOPMENT

In this section we highlight some of the issues that arise during HPC software
development and that must be addressed by any software development envi-
ronment. The first set of issues (Sections 6.2.1 to 6.2.5) focus primarily on effi-
cient software development and high performance. This set includes issues
pertaining to computational models, application description media, algorithm

189

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

development issues (classification, evaluation, and mapping), implementa-
tion/runtime issues and visualization and animation support. In addition to
these issues, there exists another set of equally important issues (Sections 6.2.6
to 6.2.8) that needs to be addressed. These issues involve the maintainability,
reusability, and reliability of the developed application. Some of these issues
have been addressed in [4,7,8,10,14,27–29].

6.2.1 Models for Parallel Computation

Computational models serve as a basis for specifying algorithms and as a
means to gauge their computational complexity. Existing models for parallel
computation can be classified as either general models such as the PRAM or
the circuit model, or models bound to specific machines or architectural
classes. General models abstract a large number of different architectures.
However, these models do not represent the actual operation of any real
machine, and algorithms developed based on them have to be further opti-
mized for the target system. Algorithms developed using architecture (or
machine)-specific models, on the other hand, are not portable and have to be
separately developed for each such model. Although it may not be possible to
have a single computational model applicable to all existing architectures, it
will be helpful to minimize the number of distinct models and to investigate
interrelations between different existing models.

6.2.2 Portable Application Description Medium

Existing (or proposed) application description media that are capable of
describing parallelism can be classified as either parallel extension or parallel
languages. The former class consists of classical languages such as C, Fortran,
or Pascal with appropriate language extensions to handle parallel processes,
communication, and synchronization. These languages make it easier to port
existing applications to HPC systems. However, parallelism is introduced as
an afterthought in these languages. As a result, it may not be possible to fully
express the parallelism present in the application or to exploit the potential
of the underlying hardware. Parallel languages are specifically designed with
parallelism in mind and provide primitives to express application parallelism
and exploit parallel architectures. Using these languages, however, would
require redevelopment of complete applications. Most existing application
description media are tied to a particular machine and its computational
model. For example, CMFortran and C* are specific languages for the Con-
nection Machines (TMC), MP-Fortran is targeted to the DECmpp’s (DEC),
while Occam has been designed for transputer-based systems. HPC requires
a portable and flexible application description medium that provides the capa-
bility of expressing application parallelism and that can be implemented effi-
ciently on diverse HPC architectures.

190 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

6.2.3 Parallel Algorithm Development

The utilization of HPC systems depends on the availability of efficient paral-
lel algorithms. Parallel extensions or implementations of existing sequential
algorithms are not able to exploit the parallelism inherent in the problem
because this information usually is lost (or hidden) during development of the
sequential version. Consequently, high-performance software warrants the
development of new algorithms which are specifically designed to exploit
parallelism at every level. Issues related to parallel algorithm development
include:

• Algorithm classification: the ability to classify algorithms on the basis of
their computational and communication characteristics so that
algorithms can be matched with target HPC architectures during soft-
ware development

• Algorithm evaluation: the ability to evaluate an algorithm to obtain a
realistic estimate of its complexity or potential performance, enabling the
developer to evaluate different algorithms for a problem and to make an
appropriate selection

• Algorithm mapping: the assignment of the parallel algorithm to an
appropriate HPC system based on algorithm classification and system
specifications

6.2.4 Program Implementation and Runtime

Program implementation issues address system specific decisions made during
program development, such as synchronization strategies, data decomposition,
vectorization strategies, pipelining strategies, and load balancing. These issues
define the requirements of a parallel programming environment, which
include parallel language support, syntax-directed editors, intelligent compil-
ers and cross-compilers, parallel debuggers, configuration management tools,
and performance evaluators. Runtime issues include providing efficient paral-
lel runtime libraries, dynamic scheduling and load-balancing support, as well
as support for nonintrusive monitoring and profiling of application execution.

6.2.5 Visualization and Animation

Since HPC systems can process large amounts of information at high speeds,
there is a need for visualization and animation support to enable the user to
interpret this information. Further, visualization and animation enable the
user to obtain insight into the actual execution of the application and the exist-
ing inefficiencies.

ISSUES IN HPC SOFTWARE DEVELOPMENT 191

6.2.6 Maintainability

Maintainability issues include ensuring that the software developed continues
to meet its specifications and handling any faults or bugs that might surface
during its lifetime. It also deals with the evolution and enhancement of the
software.

6.2.7 Reliability

Reliability issues include software fault tolerance, fault detection, and recov-
ery. Multiple processing units operating simultaneously and possibly in an
asynchronous fashion, as is the case in a HPC environment, make these issues
difficult to address.

6.2.8 Reusability

Software reusability issues, as with sequential computing, deal with software
development efficiency and costs. Designing software for reusability promotes
modular development and standardization.

6.3 HPC SOFTWARE DEVELOPMENT PROCESS

The HPC software development process is described as a set of stages that
correspond to the phases typically encountered by a developer. At each stage,
a set of support tools that can assist the developer are identified. The stages
can be viewed as a set of filters in cascade (Figure 6.1) forming a development
pipeline. The input to this system of filters is the application description and
specification which is generated from the application itself (if it is a new
problem) or from existing sequential code (porting of dusty decks). The final
output of the pipeline is a running application. Feedback loops present at some
stages signify stepwise refinement and tuning. Related discussions pertaining
to parallel computing environments and spanning parts of the software devel-
opment process can be found in [4,7,28].The stages in the HPC software devel-
opment process are described in the following sections. Parallel modeling of
stock option pricing [20] is used as a running example in the discussion.

6.4 PARALLEL MODELING OF STOCK OPTION PRICING

Stock options are contracts that give the holder of the contract the right to buy
or sell the underlying stock at some time in the future for an agreed-upon
striking or exercise price. Option contracts are traded just as stocks, and
models that quickly and accurately predict their prices are valuable to the
traders. Stock option pricing models estimate the price for an option contract

192 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

PARALLEL MODELING OF STOCK OPTION PRICING 193

Application Analysis Stage

Compile–Time/Runtime Stage

Evaluation Stage

Algorithm Development Module System-Level Mapping Module

Implementation/Coding Module Machine-Level Mapping Module

Application Development Stage

Application Specification
Filter

Application Specification
Filter

Maintenance/Evolution Stage

Evaluation Recommendation

Evaluation Specification

Application Specification

Parallelized Structure

Parallelization Specification

Dusty Decks New Application

Design Evaluator

Module

Fig. 6.1 HPDC software development process.

based on historical market trends and current market information. The model
requires three classes of inputs:

1. Market variables, which include the current stock price, call price, exer-
cise price, and time to maturity.

2. Model parameters, which include the volatility of the asset (variance of
the asset price over time), variance of the volatility, and the correlation
between asset price and volatility. These parameters cannot be observed
directly and must be estimated from historical data.

3. User inputs, which specify the nature of the required estimation (e.g.,
American/European call, constant/stochastic volatility), time of dividend
payoff, and other constraints regarding acceptable accuracy and running
times.

A number of option pricing models have been developed using varied
approaches (e.g., nonstochastic analytic models, Monte Carlo simulation
models, binomial models, and binomial models with forced recombination).
Each of these models involves a set of trade-offs in the nature and accuracy
of the estimation and suit different user requirements. In addition, these
models make varied demands in terms of programming models and comput-
ing resources.

6.5 INPUTS

The HPC software development process presented in this chapter addresses
two classes of applications:

1. “New”application development. This class of applications involves
solving new problems using the resources of a HPC environment. Devel-
opers of this class of applications have to start from scratch using a
textual description of the problem.

2. Porting of existing applications (dusty decks). This class includes devel-
opers attempting to port existing codes written for a single processor to
a HPC environment. Developers of this class of applications start off
with huge listings of (hopefully) commented source code.

The input to the software development pipeline is the application specifi-
cation in the form of a functional flow description of the application and its
requirements.The functional flow description is a very high-level flow diagram
of the application outlining the sequence of functions that have to be per-
formed. Each node (termed functional modules) in the functional flow diagram
is a black box and contains information about (1) its input(s), (2) the function
to be performed, (3) the output(s) desired, and (4) the requirements at each
node. The application specification can be thought of as corresponding to the
user requirement document in a traditional lifecycle model.

In the case of new applications, the inputs are generated from the textual
description of the problem and its requirements. In the case of dusty decks,
the developer is required to analyze the existing source code. In either case,

194 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

expert system–based tools and intelligent editors, both equipped with a knowl-
edge base to assist in analyzing the application, are required. In Figure 6.1,
these tools are included in the “Application Specification Filter” module.

The stock price modeling application comes under the first class of appli-
cations. The application specifications based on the textual description pre-
sented in Section 6.3, is shown in Figure 6.2. It consists of three functional
modules: (1) The input module accepts user specification, market information,
and historical data and generates the three inputs required by the model; (2)
the estimation module consists of the actual model and generates the stock
option pricing estimates; and (3) the output module provides a graphical
display of the estimated information to the user.The feedback from the output
module to the input module represents tuning of the user specification based
on the output.

6.6 APPLICATION ANALYSIS STAGE

The first stage of the HPC software development pipeline is the application
analysis stage. The input to this stage is the application specification as
described in Section 6.5. The function of this stage is to analyze the applica-
tion thoroughly with the objective of achieving the most efficient implemen-
tation. An attempt is made to uncover any parallelism inherent in the
application. Functional modules that can be executed concurrently are iden-
tified, and dependencies between these modules are analyzed. In addition,
the application analysis stage attempts to identify standard computational
modules, which can later be matched with a database of optimized templates
in the application development stage. The output of this stage is a detailed
process flow graph called the parallelization specification, where the nodes
represent functional components and the edges represent interdependencies.
Thus, the problems dealt with in this stage can be summarized as (1) the
module creation problem (i.e., identification of tasks which can be executed
in parallel), (2) the module classification problem (i.e., identification of stan-
dard modules), and (3) the module synchronization problem (i.e., analysis of
mutual interdependencies). This stage corresponds to the design phase in
standard software life-cycle models, and its output corresponds to the design
document.

Tools that can assist the user at this stage of software development are: (1)
smart editors, which can interactively generate directed graph models from the
application specifications; (2) intelligent tools with learning capabilities that
can use the directed graphs to analyze dependencies, identify potentially
parallelizable modules, and attempt to classify the functional modules into
standard modules; and (3) problem specific tools, which are equipped with a
database of transformations and strategies applicable to the specific problem.

The parallelization specification of the running example is shown in Figure
6.3. The Input functional module is subdivided into two functional compo-

APPLICATION ANALYSIS STAGE 195

196 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

Input Module

Inputs User Specifications;
Market Information;
Historical Data

Function Generate Model Inputs

Graphical User Interface;
High-Speed Disk I/O

Market Variables;
Model Parameters;
Estimation Specifications
Estimate Stock Option Prices
Estimated Pricing Information
Compute Engine (SIMD)

Estimated Pricing Information
Visualization of Estimated
Data; Storage onto Disk
Graphical Display;
Disk File
High-Speed, High-Resolution
Graphics;
High-Speed Disk I/O

Market Variables;
Model Parameters;
Estimation Specifications

Outputs

Require-
ments

Estimation Module

Inputs

Function
Output
Require-
ment

Output Module

Input
Functions

Outputs

Require-
ments

Fig. 6.2 Stock option pricing model: application specifications.

nents: (1) analyzing historical data and generating model parameters, and (2)
accepting market information and user inputs to generate market variables
and estimation specifications. The two components can be executed concur-
rently. The estimation module is identified as a standard computational
module and is retained as a single functional component (to avoid getting into
the details of financial modeling). The output functional module consists of
two independent functional components: (1) rendering the estimated infor-
mation onto a graphical display, and (2) writing it onto disk for subsequent
analysis.

APPLICATION ANALYSIS STAGE 197

Input Component A Input Component B

Estimation Component

Output Component A Output Component B

Inputs User Specifications;
Market Information

Function Generate Model Inputs
Market Variables;
Estimation Specifications

Outputs

Require-
ment

Input Market variables;
Model Parameters;
Estimation Specifications
Estimate Stock Option Prices
Estimated Pricing Information
Compute Engine (SIMD)

Function
Output
Require-
ment

Input Estimated Pricing Information Estimated Pricing Information
Storage onto Disk
Disk File
High-Speed Disk I/O

Visulization of Estimated Data
Graphical Display
High-Speed, High-Resolution
Graphics

Function
Output
Require-
ments

Input
Function
Output
Require-
ment

Input Historical Data
Generate Model Inputs
Model Parameters
High-Speed Disk I/O

Function
Output
Require-
ment

Graphical User Interface

Fig. 6.3 Stock option pricing model: parallelization specifications.

6.7 APPLICATION DEVELOPMENT STAGE

The application development stage receives the parallelization specifications
as its input and produces the parallelized structure, which can then be com-
piled and executed. This stage is responsible for selecting the right algorithms
for the application, the best-suited HPC system (from among available
machines), mapping the algorithms appropriately onto the selected system,
and then implementing or coding the application. Correspondingly, the stage
is made up of five modules: (1) algorithm development module, (2) system-
level mapping module, (3) machine-level mapping module, (4) implementa-
tion/coding module, and (5) design evaluator module. These modules,
however, are not executed in any fixed sequence or a fixed number of times.
Instead, there is a feedback system from each module to the other modules
through the design evaluator module. This allows the development as well as
the tuning to proceed in an iterative manner using stepwise refinement. A
typical sequence of events in the application development stage are outlined
as follows:

• The algorithm development module uses an initial system-level mapping
(possibly specified via user directives) to select appropriate algorithms
for the functional components.

• The algorithm development module then uses the services of the design
evaluator module to evaluate candidate algorithms and to tune the
selection.

• The system-level mapping module uses feedback provided by the design
evaluator module and the algorithm development module to tune the
initial mapping.

• The machine-level mapping module selects an appropriate machine-level
distribution and mapping for the particular algorithmic implementation
and system-level mapping. Once again, feedback from the design evalu-
ator module is used to select between alternative mappings.

• This process of stepwise refinement and tuning is continued until some
termination criterion is met (e.g., until some acceptable performance is
achieved or up to a maximum time limit).

• The algorithm selected, system-level mapping, and machine-level
mapping are realized by the implementation/coding module, which gen-
erates the parallelized structure.

6.7.1 Algorithm Development Module

The function of the algorithm development module is to assist the developer
in identifying functional components in the parallelization specification and
selecting appropriate algorithmic implementations. The input information to
this module includes (1) the classification and requirements of the components

198 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

specified in the parallelization specification, (2) hardware configuration infor-
mation, and (3) mapping information generated by the system-level mapping
module. It uses this information to select the best algorithmic implementation
and the corresponding implementation template from its database. The algo-
rithm development module uses the services of the design evaluator module
to select between possible algorithmic implementations. Tools needed during
this phase include an intelligent algorithm development environment (ADE)
equipped with a database of optimized templates for different algorithmic
implementations, an evaluation of the requirements of these templates, and an
estimation of their performance on different platforms.

The algorithm chosen to implement the estimation component of the stock
option pricing model (shown in Figure 6.3) depends on the nature of the
estimation (constant/stochastic volatility, American/European calls/puts, and
dividend payoff times) to be performed and the accuracy/time constraints. For
example, models based on Monte Carlo simulation provide high accuracy.
However, these models are slow and computationally intensive and thereby
cannot be used in real-time systems. Also, these models are not suitable for
American calls/puts when early dividend payoff is possible. Binomial models
are less accurate than Monte Carlo models but are more tractable and can
handle early exercise. Models using constant volatility (as opposed to treating
volatility as a stochastic process) lack accuracy but are simple and easy to
compute. Modeling American calls wherein the option can be exercised
anytime during the life of the contract (as opposed to European calls which
can only be exercised at maturity) is more involved and requires a sophisti-
cated and computationally efficient model (e.g., binomial approximation with
forced recombination). The algorithmic implementations of the input and
output functional components must be capable of handling terminal and disk
I/O at rates specified by the time constraint parameters. The output display
must provide all information required by the user.

6.7.2 System-Level Mapping Module

The system-level mapping module is responsible for selecting the HPC system
best suited for the application. It achieves this using information about algo-
rithm requirements provided by the algorithm development module and
feedback from the design evaluation module. System-level mapping can be
accomplished in an interactive mapping environment equipped with tools for
analyzing the requirements of the functional components, and a knowledge
base consisting of analytic benchmarks for the various HPC systems.

The algorithms for stock option pricing have been implemented efficiently
on architectures like the CM2 and the DECmpp-12000 [20]. Consequently, an
appropriate mapping for the estimation functional component in the paral-
lelization specification in Figure 6.3 is an SIMD architecture. The input and
output interfaces (input/output component A) require graphics capability with
support for high-speed rendering (output display) and must be mapped to

APPLICATION DEVELOPMENT STAGE 199

appropriate graphics stations. Finally, input/output component B requires
high-speed disk I/O and must be mapped to an I/O server with such
capabilities.

6.7.3 Machine-Level Mapping Module

The machine-level mapping module performs the mapping of the functional
component(s) onto the processor(s) of the HPC system selected. This stage
resolves issues such as task partitioning, data partitioning, and control distri-
bution, and makes transformations specific to the particular system. It uses
the feedback from the design evaluator module to select between possible
alternatives. Machine-level mapping can be accomplished in an interactive
mapping environment similar to the one described for the system-level
mapping module, but equipped with information pertaining to individual com-
puting elements of a specific computer architecture.

Performance of the stock option pricing models is very sensitive to the
layout of data onto the processing elements. Optimal data layout is dictated
by the input parameters (e.g., time of dividend payoff, and terminal time) and
by the specification of the architecture onto which the component is mapped.
For example, in the binomial model, continuous time processes for stock price
and volatility are represented as discrete up/down movements forming a
binary lattice. Such lattices are generally implemented as asymmetric arrays
that are distributed onto the processing elements. It has been found that the
default mapping of these arrays (i.e., in two dimensions) on architectures like
the DECmpp 12000, lead to poor load balancing and performance, especially
for extreme values of the dividend payoff time [19]. Further, the performance
in case of such a mapping is very sensitive to this value and has to be modi-
fied for each set of inputs. Hence, in this case, it is favorable to map the arrays
explicitly as one-dimensional arrays. This is done by the machine-level
mapping module.

6.7.4 Implementation/Coding Module

The function of the implementation/coding module is to handle code genera-
tion and code filling of selected templates so as to produce a parallel program
that can then be compiled and executed on the target computer architecture.
This module incorporates all machine-specific transformations and optimized
libraries, handles the introduction of calls to communication and synchro-
nization routines, and takes care of the distribution of data among the pro-
cessing elements. It also handles any input/output redirection that may be
required.

With regard to the pricing model application, the implementation/coding
module is responsible for introducing machine-specific communication rou-
tines. For example, the binary estimation model makes use of the “end-of-

200 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

shift” function for its nearest-neighbor communication. The corresponding
function calls in the language used (e.g., C* on the CM2 or MPL on the
DECmpp-12000) are introduced by this module. A machine-specific opti-
mization that would be introduced by this module is the reduction of com-
munication through use of in-processor arrays. This optimization can improve
performance by about two orders of magnitude [20].

6.7.5 Design Evaluator Module

The design evaluator module is a critical component of the application devel-
opment stage. Its function is to assist the developer in evaluating different
options available to each of the other modules, and identifying the option that
provides the best performance. It receives information about the hardware
configuration, application structure, requirements of the algorithms and map-
pings selected, and uses this information to estimate the performance of the
selection on the target system. It also provides insight into the computation
and communication costs, the existing idle times, and the overheads.This infor-
mation can be used by the other modules to identify regions where further
refinement or tuning is required.The effects of different runtime scenarios can
be evaluated (e.g., system load, network contention) to enable the developer
to account for them during design. The keys features of this module are (1)
the ability to provide evaluations with the desired accuracy, with minimum
resource requirements, and within a reasonable amount of time; (2) the
ability to automate the evaluation process; and (3) the ability to perform
an evaluation within an integrated workstation environment without running
the application on the target computers. Support applicable to this module
consists primarily of performance prediction and estimation tools. Simulation
approaches can also be used to achieve some of the required functionality.

6.8 COMPILE-TIME AND RUNTIME STAGE

The compile-time/runtime stage handles the task of executing the parallelized
application generated by the development stage to produce the output
required. The input to this stage is the parallelized source code (parallelized
structure). The compile-time portion of this stage consists of optimizing com-
pilers and tools for resource allocation and initial scheduling. The runtime
portion of this stage handles runtime functions such as dynamic scheduling,
dynamic load balancing, migration, and irregular communications. It also
enables the user to (nonintrusively) instrument the code for profiling and
debugging and allows checkpointing for fault tolerance. During the execution
of the application, it accepts outputs from the various computing elements and
directs them for proper visualization. It intercepts error messages generated
and provides proper interpretation.

COMPILE-TIME AND RUNTIME STAGE 201

Compile-time and runtime issues with regard to the stock option pricing
model include allocation of the functional modules to processing elements,
communicating input data and information between these modules, collecting
and visualizing the estimated output, forwarding outputs for storage, and
finally, interactively modifying model parameters.

6.9 EVALUATION STAGE

In the evaluation stage, the developer retrospectively evaluates the design
choices made during the development stage and looks for ways to improve
the design. In this stage a thorough evaluation is performed of the execution
of the entire application, detailing communication and computation times,
communication and synchronization overheads, and existing idle times.
Further, this information is provided at all required granularities of the appli-
cation. This evaluation is then used to identify regions of the implementation
where performance improvement is possible. The evaluation methodology
enables the developer to investigate the effect on performance of various
runtime parameters such as system load and network contention, as well as
the scalability of the application with machine and problem size. The key
feature of this stage is the ability to perform evaluation with the desired accu-
racy and granularity while maintaining tractability and nonintrusiveness.
Support applicable to the evaluation stage includes various analytic tools,
monitoring tools, simulation tools, and prediction/estimation tools.

6.10 MAINTENANCE/EVOLUTION STAGE

In addition to the stages described above, encountered during the develop-
ment and execution of HPC applications, there is an additional stage in the
life cycle of this software which involves its maintenance and evolution. Main-
tenance includes monitoring the operation of the software and ensuring that
it continues to meet its specifications. It involves detecting and correcting bugs
as they surface. The maintenance stage also handles the modifications needed
to incorporate changes in the system configuration. Software evolution deals
with improving the software, adding additional functionality, and incorporat-
ing new optimizations. Another aspect of evolution is the development of
more efficient algorithms and corresponding algorithmic templates and the
incorporation of new hardware architectures. To support such a development,
the maintenance/evolution stage provides tools for the rapid prototyping of
hardware and software and for evaluating the new configuration and designs
without having to implement them. Other support required during this stage
includes tools for monitoring the performance and execution of the software,
fault detection and recovery tools, system configuration and configuration
evaluation tools and prototyping tools.

202 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

6.11 EXISTING SOFTWARE SUPPORT

In this section we identify existing tools that provide support at different stages
of the software development process. Our objective is twofold: (1) to demon-
strate the nature of support needed at each stage of the HPC software devel-
opment process; and (2) to illustrate the fact that although a large number of
individual tools or systems have been developed, there is a lack of an inte-
grated environment which can support the developer through the entire soft-
ware development process. Table 6.1 summarizes the support required at each
stage of the HPC software development process developed in this chapter.
Some existing tools applicable to the different stages are discussed briefly
below.1

6.11.1 Application Specifications Filter

The SAMTOP tool, which is proposed to be a part of the TOPSYS [5] system,
will provide the functionality required by this stage. In addition, existing

EXISTING SOFTWARE SUPPORT 203

TABLE 6.1 HPC Software Development Stages: Support Requirements

Development Stage Tools Required

Application specification filter SA/SD CASE tools
Application analysis stage Intelligent editors, problem-specific

databases
Application development stage

(a) Algorithm development module Intelligent ADEs, databases, optimized
templates

(b) System-level mapping module Intelligent mapping tools, analytic
benchmarks

(c) Machine-level mapping module Same as system-level mapping
(d) Implementation/coding module Code generation tools, code optimizers
(e) Design evaluator module Performance prediction tools

Compile-time/runtime stage Intelligent optimizing compilers, dynamic
load-balancing tools, debuggers, profilers,
visualization tools, error-handling
support, etc.

Evaluation stage Performance analysis tools, performance
monitoring tools, performance simulation
tools, performance prediction tools

Maintenance/evolution stage Monitoring tools, fault detection/recovery
tools, system configuration tools,
prototyping tools, predictive evaluation
tools

1 An extensive survey of tools and systems for high-performance parallel/distributed computing
can be found in [11,31].

SA/SD (structured analysis/structured design) CASE tools can be used at this
stage.

6.11.2 Application Analysis Stage

The Sigma editor, which is part of the FAUST [15] parallel programming
environment, provides the support required by this stage for shared memory
architectures. It provides intelligent, interactive editing and parallelizing
capabilities and incorporates a performance predictor.Another system applic-
able to this stage is Parafrase-2 [25]. The SAMTOP tool discussed above will
also provide some analysis capabilities.

6.11.3 Application Development Stage

At the application development stage, tools such as SCHEDULE [13]
and SKELETONS assist the user during algorithm development while
MARC, Paralex [23], and TEACHER 4.1 [17] provide mapping support.
SKELETONS and MARC are part of an integrated application development
and runtime environment for transputer-based systems [7]. Existing
approaches which provide some of the functionality of the design evaluator
module include methodologies proposed by Balasundaram et al. [2], Sussman
[30], and Gupta and Banerjee [16]. Support for implementation and coding is
provided by SUPERB [32] and by the system proposed by Bhatt et al. [6].
Other tools providing support during application development include the
CODE parallel programming environment [9], ParaScope [3], and SPADE [7].
SAMTOP and Sigma systems also provide some functionality required by this
stage.

6.11.4 Compile-Time and Runtime Stage

Support required by this stage of software development is provided by the
FAUST and TOPSYS systems discussed above. TOPSYS provides debugging
support (DETOP), while FAUST incorporates a compile-time and runtime
environment. Another tool applicable to this stage is the Parafrase-2
[25] system, which provides compile-time support for shared memory
architectures.

6.11.5 Evaluation Stage

Existing evaluation systems include PATOP and VISTOP from TOPSYS,
the Pablo performance analysis environment [26], the IPS-2 system
[18], the SIMPLE environment [22], and RPPT [12]. FAUST and RPPT
[12] specifically provide evaluation support for the CEDAR computer
system.

204 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

6.11.6 Maintenance/Evolution Stage

The PAWS systems [24] presents an approach for machine evaluation and can
be used during the maintenance/evolution stage. System prototyping capabil-
ities are provided by SiGLe [1] and Proteus [21].

REFERENCES

1. F. Andre and A. Joubert, Sigle: an evaluation tool for distributed systems, Pro-
ceedings of the International Conference on Distributed Computing Systems, pp.
466–472, 1987.

2. V. Balasundaram, G. C. Fox, K. Kennedy, and U. Kremer, An interactive environ-
ment for data partitioning and distribution, Proceedings of the 5th Distributed
Memory Computing Conference, Charleston, SC, pp. 1160–1170, April 1990.

3. V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok, The
parascope editor: an interactive parallel programming tool, Supercomputing ‘89,
Reno, NV, November 1989.

4. V. R. Basili and J. D. Musa, The future engineering of software: a management per-
spective, IEEE Computer, Vol. 24, No. 9, pp. 90–96, September 1991.

5. T. Bemmerl, A. Bode, P. Braun, O. Hansen, T. Treml, and R. Wismüller, The Design
and Implementation of TOPSYS-Ver 1.0, Technische Universität München, Institut
Für Informatik, Munich, July 1991.

6. S. Bhatt, M. Chen, C.-Y. Lin, and P. Liu, Abstractions for Parallel n-Body Simula-
tions, Technical Report DCS/TR-895, Yale University, New Haven, CT, 1992.

7. J. E. Boillat, H. Burkhart, K. M. Decker, and P. G. Kropf, Parallel computing in the
1990’s: attacking the software problem, Physics Report (review section of Physics
Letters), Vol. 207, No. 3–5, pp. 141–165, 1991.

8. G. Booch, Software Engineering with Ada, 2nd ed., Benjamin/Cummings, San
Francisco, 1986.

9. J. C. Browne, M. Azam, and S. Sobek, Code: a unified approach to parallel pro-
gramming, IEEE Software, July 1989.

10. J. P. Cavano, Software development issues facing parallel architectures, Pro-
ceedings of the 12th Annual International Computer Software and Applications
Conference, pp. 300–301, 1988.

11. D. Y. Cheng, A Survey of Parallel Programming Languages and Tools, Technical
Report RND-93-005, NAS Systems Development Branch, NASA Ames Research
Center, Moffett Field, CA, March 1993.

12. R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair, The Rice
Parallel Processing Testbed, ACM 0-89791-254-3/88/0005/0004, pp. 4–11, 1988.

13. J. J. Dongarra and D. C. Sorensen, Schedule: tools for developing and analyzing
parallel Fortran programs, in L. H. Jamieson, D. B. Gannon, and R. J. Douglas, eds.,
The Characteristics of Parallel Algorithms, MIT Press, Cambridge, MA, 1987.

14. G. C. Fox, Issues in software development for concurrent computers, Proceedings
of the 12th Annual International Computer Software and Applications Conference,
pp. 302–305, 1988.

REFERENCES 205

15. D. Gannon, Y. Gaur, V. Guarna, D. Jablonowski, and A. Malony, FAUST: an
integrated environment for parallel programming, IEEE Software, pp. 20–27, July
1989.

16. M. Gupta and P. Banerjee, Compile-time estimation of communication costs in
multicomputers, Proceedings of the 6th International Parallel Processing Sympo-
sium, Beverly Hills, CA, March 1992.

17. A. Ieumwananonthachai, A. N. Aizawa, S. R. Schwartz, B. W. Wah, and J. C. Yan,
Intelligent mapping of communicating processes in distributed computing systems,
Proceedings of Supercomputing ‘91, pp. 512–521, 1991.

18. B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S.-S. Lim, and T. Torzewski,
Ips-2: the second generation of a parallel program measurement system, IEEE
Transactions on Parallel and Distributed Systems, Vol. 1, No. 2, pp. 206–217, April
1990.

19. K. Mills, G. Cheng, M. Vinson, and G. C. Fox, Expressing Dynamic, Asymmetric,
Two-Dimensional Arrays for Improved Performance on the decmpp-12000, Techni-
cal Report SCCS-261, Northeast Parallel Architectures Center, Syracuse Univer-
sity, Syracuse, NY, October 1992.

20. K. Mills, G. Cheng, M. Vinson, S. Ranka, and G. C. Fox, Software issues and per-
formance of a parallel model for stock option pricing, Proceedings of the 5th
Australian Supercomputing Conference, Melbourne, Australia, December 1992.

21. P. H. Mills, L. S. Nyland, J. F. Prins, J. H. Reif, and R. W. Wagner, Prototyping par-
allel and distributed system in proteus, Proceedings of the 3rd IEEE Symposium
on Parallel and Distributed Processing, 1991.

22. B. Mohr, Simple: a performance evaluation tool environment for parallel and
distributed systems, Proceedings of the 2nd European Distributed Memory Com-
puting Conference (EDMCC2), pp. 80–89, April 1991.

23. Ö. Babaoğlu, L. Alvisi, A. Amoroso, R. Davoli, and L. A. Giachini, Paralex: An
Environment for Parallel Programming in Distributed Systems, Technical Report,
Department of Mathematics, University of Bologna, Bologna, Italy, 1991.

24. D. Pease, A. Gafoor, I. Ahmad, D. L. Andrews, K. Foudil-Bey, T. E. Karpinski,
M. A. Mikki, and M. Zerrouki, Paws: a performance evaluation tool for parallel
computing systems, IEEE Computer, pp. 18–29, January 1991.

25. C. D. Polychronopoulos, M. Girkar, M. R. Haghighat, C. L. Lee, and B. Leung,
Parafrase-2: an environment for parallelizing, partitioning, synchronizing and
scheduling programs on multiprocessors, Proceedings of the International Confer-
ence on Parallel Processing, Vol. 2, pp. 39–48, August 1989.

26. D. A. Reed, R. A. Aydt, T. M. Madhyastha, R. J. Noe, K. A. Shield, and B. W.
Schwartz, An Overview of the Pablo Performance Analysis Environment, Technical
Report, University of Illinois, Urbana, IL, November 1992.

27. J. H. Reif, ed., Synthesis of Parallel Algorithms, Morgan Kaufmann, San Francisco,
1993.

28. L. Russell and R. N. C. Lightfoot, Software development issues for parallel pro-
cessing, Proceedings of the 12th Annual International Computer Software and
Applications Conference, pp. 306–307, 1988.

29. D. B. Skillicorn, Models for practical parallel computation, International Journal of
Parallel Programming, Vol. 20, No. 2, pp. 133–158, 1991.

206 SOFTWARE DEVELOPMENT FOR PARALLEL AND DISTRIBUTED COMPUTING

30. A. Sussman, Execution Models for Mapping Programs onto Distributed Memory
Parallel Computers, Technical Report 189613, Institute for Computer Applications
in Science and Engineering, NASA Langley Research Center, Hampton, VA,
March 1992.

31. L. H.Turcotte, A Survey of Software Environments for Exploiting Networked Com-
puting Resources, Technical Report, Engineering Research Center for Computa-
tional Field Simulation, Mississippi State, MS, June 1993.

32. H. Zima, H. Bast, and M. Gerndt, Superb: a tool for semi-automatic SIMD/MIMD
parallelization, Parallel Computing, Vol. 6, pp. 1–18, January 1988.

REFERENCES 207

Cache coherence, directory-based, 59,
60

Capacity miss, 66
CC-NUMA, 64
client.policy, 94
Client-side, 88, 89
COMA, 65
Commercial Grid activities, 182
Commodity Grid kits, 168
Community authorization, 160
Community production Grid, 153
Compression, 72
Conflict miss, 66
Consumer, 103
CORBA, 79, 81–84, 87, 88, 90, 95, 103,

109, 126, 144
Cost-effectiveness, 2
Critical section, 71
CRL (C Region Library), 74, 75

DCOM, 79, 85–87, 89, 90, 99, 100, 103,
114, 136, 144

Delegation, 160
Design document, 195
Design evaluator module, 201
Diff, 71
DII, 83
Directory header, 69
Distributed-object computing, 79
Distributed pointer protocol, 60
Distributed shared memory, 12
Distributed shared memory (DSM)

systems:
architecture, 61, 62
hardware-based, 63–69

Accumulators, 73
Active Message, 23
Adaptive Communication Systems:

Adaptive Group Communication
Service, 29

Application-Aware Multicasting,
44–48

Control Plane, 24, 25
Data Plane, 25, 26
Multiple Communication Interfaces,

28
Multithread Communication Service,

24
Programmable Communication,

Control and Management
Service, 26–28

Resource Aware Scheduling
Algorithm (RAA), 29, 49, 50

Separation of Data and Control
Functions, 24

Alewife, 67, 68
Algorithm development module, 198,

199
Application specification filter, 193, 195,

196, 203
ASCOMA, 66
Authentication, 159
Availability, 2

Back-propagation neural network
(BPNN), 39, 42

Barriers, 71, 74, 75
Binomial models, 194, 199, 200
BOA, 83, 144
Brazos, 71, 72

INDEX

209

Tools and Environments for Parallel and Distributed Computing, Edited by Salim Hariri
and Manish Parashar
ISBN 0-471-33288-7 Copyright © 2004 John Wiley & Sons, Inc.

210 INDEX

mostly software page-based, 63,
69–72

properties, 58
software/object-based, 63, 72–76
taxonomy, 58, 63

Distributed system design framework, 6,
7

DSI, 84
Dusty decks, 192, 194
Dynamic copyset reduction, 71

Encryption, 160
Estimation module, 197
Event flags, 75
Extendibility, 2

False sharing, 70, 72
Fast Fourier Transform (FFT), 39, 40,

42
Fault tolerance, 2
FAUST, 204
FLASH, 68, 69
Functional module, 194, 195, 197

Gestalt of the Grid, 150
Global Grid Forum, 164
Globus Project, 167
Grid, 149, 150, 153
Grid appliance, 154
Grid applications:

Astrophysics Collaboratory, 175
NEESgrid, 177
Particle Physics Data Grid, 176

Grid approach, 149, 152
Grid architecture:

N-tiered architecture, 155
role-based architecture, 155
service-based architecture, 157

Grid challenges, 158
Grid community activities, see

Commercial Grid activities; Grid
middleware; Portals; Production
Grids

Grid layers:
application layer, 156
collective layer, 156
connectivity layer, 156
fabric, 155
resource layer, 156

Grid management aspects:
data, 161
execution, 162
hardware, 163
information, 161
resources, 162
security, 159
software, 162

Grid middleware:
Akenti, 170
Commodity Grid kits, 168
Globus Project, 167
Legion, 169
Network Weather Service, 171
Storage Resource Broker, 170

Grid plane, 154

High-level packet blasting, 72
High-performance distributed system, 4
High-throughput computing:

Commodity Grid kits, 168
Condor, 171
Netsolve, 172
Nimrod-G, 174
Ninf, 173

HPC software development:
application analysis, 195, 196, 204
application development, 198–201, 204
compile-time and runtime, 201, 202,

204
evaluation stage, 202, 204
inputs, 194, 195
issues, 189–192
maintenance/evolution, 202, 205
process, 192, 193
software support, 203–205

IDL, 83, 84, 88, 95, 109, 126, 142, 143
idl2java, 95
Implementation/coding module, 200, 201
In-process activation, 85
IUnknown, 86, 89

java.rmi.remote, 87, 104, 115
Joint Photographic Experts Group

(JPEG), 39, 40, 43

Latency, 5, 6
Linear equation solver, 49

INDEX 211

OMA, 82
OMG, 81
Open Grid Services Architecture, 168
Orca, 73
Out-of process activation, 85

Panda, 73
Parallel algorithms, 191
Parallel computation models, 190
Parallel sorting with regular sampling

(PSRS), 39, 41, 43
Parallel Virtual Machine (PVM), 20, 21
Parallelization specification, 193, 195, 197
PAWS, 205
POA, 83, 88, 96, 133, 134, 144
Portals:

Access Grid, 182
Commodity Grid Kit, 168
Gateway, 179
Grid Portal, 179
Hotpage, 179
JiPang, 181
Punch, 181
UNICORE, 180
Webflow, 179
Web Portal, 178
XCAT, 180

Processing technology, 5
Producer, 103
Production Grid, 152
Production Grids:

ApGrid, 166
DataGrid, 166
DOE Science Grid, 165
EuroGrid, 166
NASA Information Power Grid, 165
TeraGrid ,165

p4, 20

regedit, 101
Reliability, 2
Remote reference, 80
RMI, 79, 80, 87, 88, 90, 103, 104, 119,

144
RMIREGISTRY (also rmiregistry), 80,

88, 94, 143
RMI Security Manager, 88, 106, 107, 123,

124, 145
R-NUMA, 65

Locks, 71, 74, 75
Lockup-free caches, 68

Machine-level mapping module, 200
Madeleine I and II, 22, 23
MAGIC chip, 69
Makefile, 93, 98, 108, 114, 125, 135
Market variables, 193
Matrix, 118
Memory consistency models:

entry consistency, 61, 74
processor-consistency, 61
release consistency, 61, 76
scope consistency, 60, 72
sequential consistency, 60, 73, 74

Message-Passing Interface (MPI), 21,
22

Message-passing tools:
Active Message, 23
classification, 15–19

hardware-based approach, 17
software-based approach, 17–19

high-performance API, 18, 19
middleware, 19
multithreading, 17, 18

desirable features, 13–15
experimental results and analysis,

29–51
model, 12–13
socket-based, 19–20
see also Adaptive Communication

Systems; Madeleine I and II;
Message-Passing Interface;
Nexus; Parallel Virtual Machine;
p4

Metacomputer, 152
MIDL, 85, 89, 100, 143
Midway, 74
Mirage+, 72
MIT Alewife Machine, 67, 68
Modality of operation, 152
Moniker, 81, 103, 145
Monte Carlo models, 194, 199
Multicomputers, 62

Naming, 80
Networking technology, 5
Nexus, 22
NUMA, 62, 64, 65

212 INDEX

SAM, 73, 74
SAMTOP, 203
Secure execution, 161
Serialization, 81
Servant, 82
server.policy, 94
Server-side, 87, 89
Service, 157
Shared miss, 75
Sharing of resources, 2
Shasta, 75, 76
Sigma editor, 204
Single sign-on, 160
Skeleton, 81, 83
SKELETONS, 204
Software tools and environments, 6
Stanford FLASH multiprocessor, 68, 69
Stock option pricing model, 192–203
Stub, 81, 83
Synchronization operations, 61
System-level mapping module, 199, 200
S-COMA, 65

Thrashing, 65
TOPSYS, 203, 204
TreadMarks, 70, 71
Twin, 71
Type library, 89, 101, 103

UMM, 146, 147
UnicastRemoteObject, 87, 104, 106, 115,

121

Values, 73
Vector, 118
Virtual Organization, 154
Voting application, 39, 41, 44, 49

Write protocols:
multiple-writer, 70, 71
single-writer, 70
write-invalidate, 70, 72, 75
write-update, 70, 74

	Cover
	CONTENTS
	Preface
	1. Parallel and Distributed Computing
	1.1 Introduction: Basic Concepts
	1.2 Promises and Challenges of Parallel and Distributed Systems
	1.2.1 Processing Technology
	1.2.2 Networking Technology
	1.2.3 Software Tools and Environments

	1.3 Distributed System Design Framework
	References and Further Reading

	2. Message-Passing Tools
	2.1 Introduction
	2.2 Message-Passing Tools versus Distributed Shared Memory
	2.2.1 Distributed Shared Memory Model
	2.2.2 Message-Passing Model

	2.3 Message-Passing System: Desirable Features
	2.4 Classification of Message-Passing Tools
	2.4.1 Classification by Implementation

	2.5 Overview of Message-Passing Tools
	2.5.1 Socket-Based Message Passing
	2.5.2 p4
	2.5.3 Parallel Virtual Machine
	2.5.4 Message-Passing Interface
	2.5.5 Nexus
	2.5.6 Madeleine I and II
	2.5.7 Active Messages

	2.6 ACS
	2.6.1 Multithread Communications Services
	2.6.2 Separation of Data and Control Functions
	2.6.3 Programmable Communication, Control, and Management Service
	2.6.4 Multiple Communication Interfaces
	2.6.5 Adaptive Group Communication Services

	2.7 Experimental Results and Analysis
	2.7.1 Experimental Environment
	2.7.2 Performance of Primitives
	2.7.3 Application Performance Benchmarking
	2.7.4 Performance Results of Adaptive Schemes

	2.8 Conclusions
	References

	3. Distributed Shared Memory Tools
	3.1 Introduction
	3.2 Cache Coherence
	3.2.1 Directory-Based Cache Coherence

	3.3 Shared Memory Consistency Models
	3.4 Distributed Memory Architectures
	3.5 Classification of Distributed Shared Memory Systems
	3.5.1 Hardware-Based DSM Systems
	3.5.2 Mostly Software Page-Based DSM Systems
	3.5.3 All-Software Object-Based DSM Systems

	References

	4. Distributed-Object Computing Tools
	4.1 Introduction
	4.2 Basic Model
	4.2.1 RMI
	4.2.2 CORBA
	4.2.3 DCOM

	4.3 Examples
	4.3.1 Experimental Setup
	4.3.2 Developing Applications under RMI, CORBA, and DCOM
	4.3.3 Experiment 1: Ping
	4.3.4 Experiment 2: Producer–Consumer Problem
	4.3.5 Experiment 3: Numerical Computation

	4.4 Comparison of the Three Paradigms
	4.4.1 Dependency Issues
	4.4.2 Implementation Details
	4.4.3 Architecture Details
	4.4.4 Support for Additional Features
	4.4.5 Performance Comparison

	4.5 Conclusions
	References

	5. Gestalt of the Grid
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Enabling Factors

	5.2 Definitions
	5.3 Multifaceted Grid Architecture
	5.3.1 N-Tiered Grid Architecture
	5.3.2 Role-Based Grid Architecture
	5.3.3 Service-Based Grid Architecture
	5.3.4 Grid Challenges

	5.4 Grid Management Aspects
	5.4.1 Managing Grid Security
	5.4.2 Managing Grid Information
	5.4.3 Managing Grid Data
	5.4.4 Managing Grid Execution and Resources
	5.4.5 Managing Grid Software
	5.4.6 Managing Grid Hardware

	5.5 Grid Activities
	5.5.1 Community Activities
	5.5.2 Grid Middleware
	5.5.3 High-Throughput Computing

	5.6 Grid Applications
	5.6.1 Astrophysics Simulation Collaboratory
	5.6.2 Particle Physics Data Grid
	5.6.3 NEESgrid

	5.7 Portals
	5.7.1 HotPage
	5.7.2 Webflow and Gateway
	5.7.3 XCAT
	5.7.4 UNICORE
	5.7.5 JiPANG
	5.7.6 PUNCH
	5.7.7 Access Grid
	5.7.8 Commercial Grid Activities

	5.8 Conclusions
	References

	6. Software Development for Parallel and Distributed Computing
	6.1 Introduction
	6.2 Issues in HPC Software Development
	6.2.1 Models for Parallel Computation
	6.2.2 Portable Application Description Medium
	6.2.3 Parallel Algorithm Development
	6.2.4 Program Implementation and Runtime
	6.2.5 Visualization and Animation
	6.2.6 Maintainability
	6.2.7 Reliability
	6.2.8 Reusability

	6.3 HPC Software Development Process
	6.4 Parallel Modeling of Stock Option Pricing
	6.5 Inputs
	6.6 Application Analysis Stage
	6.7 Application Development Stage
	6.7.1 Algorithm Development Module
	6.7.2 System-Level Mapping Module
	6.7.3 Machine-Level Mapping Module
	6.7.4 Implementation/Coding Module
	6.7.5 Design Evaluator Module

	6.8 Compile-Time and Runtime Stage
	6.9 Evaluation Stage
	6.10 Maintenance/Evolution Stage
	6.11 Existing Software Support
	6.11.1 Application Specifications Filter
	6.11.2 Application Analysis Stage
	6.11.3 Application Development Stage
	6.11.4 Compile-Time and Runtime Stage
	6.11.5 Evaluation Stage
	6.11.6 Maintenance/Evolution Stage

	References

	Index

