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Preface



This book is designed for avariety of purposes. As aresearch monograph, it should be of interest to
researchers and practitioners working in the field of parallel computing. It may be used asatextina
graduate course on Parallel Algorithms, as a supplementary text in an undergraduate course on Parallel
Algorithms, or as a supplementary text in a course on Analysis of Algorithms, Parallel Computing,
Parallel Architectures, Computer Architectures, or VLS| arrays. It is also appropriate to use this book as
a supplementary text in an advanced graduate course on Vision, Image Analysis, or Computational
Geometry. Excerpts from preliminary versions of this book have been used successfully in senior
undergraduate and first year graduate courses on Analysis of Algorithms, advanced graduate courses on
Parallel Algorithms, graduate level seminars on Computational Geometry and Parallel Computing, and a
first year graduate course on Computer Architecture.

The focus of this book is on developing optimal algorithms to solve problems on sets of processors
configured as a mesh or pyramid. Basic algorithms, such as sorting, matrix multiplication, and parallel
prefix, are developed, as are algorithms to solve fundamental problemsin image processing,
computational geometry, and graph theory. The book integrates and synthesizes material from the
literature with new concepts, algorithms, and paradigms. The reader has the opportunity to gain insight
into developing efficient parallel agorithms by following the design process presented by the authors,
who originally developed the vast mgjority of the algorithms that are presented.

This book uses a consistent approach to derive efficient parallel solutions to problems based on
1. algorithmic techniques, showing how to apply paradigms such as divide-and-conquer, and
2. the development and application of fundamental data movement operations.

Such data movement operations play arole that is analogous to data structures in the sequential setting,
in that they provide a framework for describing higher level operationsin terms of lower level ones. The
basic structure of the higher level algorithmsis often unchanged, even though efficient implementations
of these data movement operations will
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vary among architectures, as will the times they require. The presentation of the material in thisbook is
such that areader should be able to adapt a given algorithm to a variety of machine models beyond those
discussed here. In fact, many of the algorithms presented in this book have already been adapted in a
straightforward fashion to related architectures, including the hypercube and a variety of bus-based mesh
architectures.

In addition to researchers working in the area of parallel agorithms, this book can aid practitioners who
need to implement efficient parallel programs. The fundamental algorithms and operations developed in
this text can be incorporated into a wide range of applications, and the design and analysis techniques
utilized can be exploited in an even greater range. The algorithms and paradigms that are presented can
be adapted to multiprocessor machines with varying degrees of granularity and possessing a variety of
processor configurations. For example, they can be utilized inside asingle VLSI chip, on specia-purpose
parallel machines, on large parallel computers, or on intermediate systems.

Overview of Chapters



Chapter 1 is an introductory chapter that defines the computer models, problems to be solved, forms of
input, and notation that will be used throughout the book. It also serves to introduce the concept of
designing machine independent parallel algorithmsin terms of abstract data movement operations. This
concept can be viewed as the parallel analogue of designing sequential algorithmsin terms of abstract
datatypes, without regard to detailed implementation issues. Many of these data movement operations
are defined in Chapter 1, while others are introduced in later chapters as they are needed.

Chapters 2, 3, and 4 focus on the mesh computer, presenting data movement operations, algorithms,
lower bounds, and paradigms. Chapter 2 gives optimal algorithms for fundamental problems such as
matrix multiplication, transitive closure, sorting, computing semigroup properties, and fundamental data
movement operations. These results serve as the foundation for mesh agorithms presented in subsequent
chapters. Chapter 3 gives optimal algorithms to solve graph and image processing problems. These
algorithms solve problems such as labeling connected components, determining bridge edges, finding
nearest neighbors in an image, and deciding whether or not figures are convex. Chapter 4 gives optimal
algorithms to solve avariety of geometric problems. These algorithms solve problems such as locating
nearest neighbors, determining

Page xv
Intersections among objects, and finding the area covered by a set of overlapping rectangles.

Chapters 5 and 6 focus on the pyramid computer, presenting data movement operations, algorithms,
lower bounds, and paradigms. Chapter 5 introduces asymptotically optimal algorithms that exploit the
(quad) tree connections that exist between layers of the pyramid. This chapter also presents optimal
solutions to problems such as computing commutative semigroup operations, answering point queries,
determining convexity properties of single figures, and deciding whether or not a given figure could have
arisen asthe digitization of a straight line segment. In Chapter 6, efficient algorithms are given that show
that the pyramid is useful for more than simple tree-like operations. Fundamental data movement
operations are derived for a variety of input formats and situations. Algorithms are given in terms of
these operations to solve complex problems for graphs and images, problems such as determining
connected components, determining the nearest neighbor of each figure, and determining convexity of
every figure. These algorithms are significantly faster than those possible for the mesh.

Throughout the book, image data is assumed to be given in the form of a black/white digitized picture;
graph data is given either as matrix input (an adjacency or weight matrix, as appropriate) or as unordered
lists of edges; and geometric data is given as unordered sets of points, line segments, rectangles, circles,
etc. For some geometric problems, and for many of the data movement operations, the data has a label
attached to each item and the problem being solved involves both the label and the associated data. For
example, one might want to determine, for each label, the smallest value associated with the label.

Recommended Use

In an algorithms-based coursg, it is recommended that the presentation of the material commence with an
introduction to some basic parallel models of computation, including the mesh, pyramid, mesh-of-trees,
hypercube, and PRAM. At the discretion of the instructor, the tree and x-tree machine models might also
be mentioned for the purpose of motivating the design of the pyramid in terms of its mix of mesh and
tree interconnections. As each model is introduced, the communication diameter of the model should be
discussed, since this serves as alower bound on the running time for many fundamental problems. In
addition, a'wire-counting' (bisection width) argument is useful in terms of
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discussing lower bounds on running times for more complex problems, such as sorting, that require
extensive data movement. Finally, for each model, an algorithm to efficiently compute a semigroup
operation (i.e., an associative binary operation, such as minimum, summation, or parity) can be described
as ameans of introducing some basic agorithmic techniques for the model. After introducing the
models, either of the following approaches are recommended.

1. In an architecture-oriented approach, one would discuss a variety of problems and solutions for each
model in sequence. First, one would look at a set of problems for the mesh, then a set of problems for the
pyramid, and so forth.

2. In aproblem-oriented approach, one would discuss algorithms and techniques to solve problem P; on
avariety of architectures, then discuss algorithms and techniques to solve problem P, on a variety of
architectures, and so forth. Thiswould allow one to directly compare algorithms, paradigms, lower
bounds, and running times within the same framework of problem and input definition. For this
approach, one may want to first develop several data movement operations on al of the architectures,
before discussing more advanced problems.

The first approach allows for a systematic traversal of the book, chapter by chapter. The second approach
requires a comparison of related sections from different chapters.

Correspondence

We are interested in receiving any constructive criticism or suggestions that you might have. Please send
all correspondence concerning this book to

Parallel Algorithms for Regular Architectures
Department of Computer Science
State University of New Y ork
Buffalo, NY 14260 USA
par a-comments@cs.buffalo.edu

The MIT Press maintains a home page on the World Wide Web at the following location:

http://www-mitpress.mit.edu/
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This web site contains information about their books and journals, including a home page for Parallel
Algorithms for Regular Architectures. Meshes and Pyramids. For those who wish to access the web site
for this book directly, it can be found at the following location:

http://www-mitpress.mit.edu/mitp/r ecent-books/comp/mileh.html

The home page for this book contains up-to-date information about this project, including corrections,
suggestions, and hot links to interesting parallel computing web sites.
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1 Overview

1.1
Introduction



Advancesin VLSl technology have provided a cost-effective means of obtaining increased
computational power by way of multiprocessor machines that consist of anywhere from afew processors
to many thousands and potentially millions of processors. These processors cooperate in various ways to
solve computationally intensive problems. While multiprocessor machines are targeted at increased
performance, such architectures are vastly different from the single processor computing machines that
are so prevalent. It isnot surprising, therefore, to find that designing algorithms to exploit the (massive)
parallelism available from these multiprocessor machines is a subject of intense research, since designing
efficient algorithms for parallel machinesis vastly different from designing efficient algorithms for
single processor machines.

From a programmer's point of view, it would be ideal to develop parallel algorithms for aparallel
random access machine (PRAM). A PRAM is a machine consisting of numerous identical processors and
aglobal memory, where all processors have the ability to access any memory location in the same fixed
unit of time, regardless of how large the memory is or how many processors are available. Unfortunately,
due to current technological limitations, PRAMs cannot be built without significant delays in the access
time, unless very few processors are used and the memory is limited. Some bus-based machines with a
small number of processors are conceptually similar in design to a PRAM. However, with current
technology, such machines cannot scale to thousands of processors while retaining the same time unit of
access to global memory.

Machines that consist of numerous processors typically take the approach of having local memory
attached to every processor, and using some interconnection network to relay messages and data between
processors. Examples of such machines include the Massively Parallel Processor (MPP) with 16,384
processors interconnected as a square grid [Batc81, Pott85]; the Thinking Machines Corporation's CM 1
and CM 2, with 65,536 processors interconnected as a square grid and as a hypercube [Hill85]; the
Thinking Machines Corporation's CM5, with thousands of processors interconnected as a fat-tree; the
Intel iPSC
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and NCube hypercubes with hundreds of processors [Inte86, HM SC86]; the Intel Paragon with hundreds
of processors interconnected as a two-dimensional torus; and the Cray T3D with hundreds of processors
interconnected as a three-dimensional torus.

Unfortunately, the interconnection networks usually have the property that not all pairs of processors can
communicate with the same delay, and so performance concerns dictate that programs should minimize
communication between processors that have large delays between them. To obtain highly efficient
programs, this apparently requires writing different programs for each different interconnection network.
However, this book attempts to show that the situation is not as bad as it seems, in that often the same
algorithmic approach can be used on awide range of networks and still yield efficient implementations.
To help achieve machine independence, many of the algorithms are expressed in terms of fundamental
data movement operations. That is, for aset of parallel models that exhibit certain common underlying
traits, such as the mesh, pyramid, mesh-of-trees, and hypercube, parallel algorithms for certain classes of
problems can be written in terms of fundamental data movement operations. These data movement
operations can be viewed as taking the place of abstract data types that are used for designing machine
and language independent serial algorithms. It isimportant to realize that an efficient implementation of
a data movement operation is typically strongly dependent upon the interconnection network. However,
such an effort allows for higher level algorithmsto be written with agreat deal of network independence.



The algorithmic problems considered in this book are chosen predominantly from the fields of image
processing, graph theory, and computational geometry. Many of the algorithms rely on efficient sorting
and matrix algorithms, which are also presented. The paradigms exhibited by these algorithms should
give the reader a good grasp on techniques for designing parallel algorithms.

Each chapter is reasonably self-contained, so the book need not be read in alinear fashion. However,
later chapters in the book do assume a knowledge of the material that is presented in the remainder of
this introductory chapter.

Section 1.2 discusses notation and parallel models of computation. Section 1.3 describes a variety of
input formats for the problems considered throughout the book, while Section 1.4 focuses on defining the
specific problems. Generic descriptions of fundamental data movement operations are given in Section
1.5. Finally, Section 1.6 serves to synthesize the material presented in these earlier sections and introduce
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fundamental paradigms for designing efficient parallel algorithms. Thisis accomplished by giving
generic paralel algorithmsin terms of abstract data movement operations to solve two fundamental
problems with various input formats.

1.2 Models of Computation

In this section, notation and general parallel models of computation are discussed. In addition, specific
models are defined for which algorithms will be presented in later chapters (or the next volume) of the
book.

1.2.1 Preliminaries

Throughout the book, ©, O, Q, o, and w notation are used, where © means 'order exactly', O means
‘order at most', Q means 'order at least', 0 means ‘order less than', and w means 'order greater than'. For
formal definitions and some examples of this notation, the reader isreferred to Appendix A.

Many of the algorithms developed in the book are recursive, often involving parallel divide-and-conquer
solution strategies. As aresult, the running times for these algorithms are often expressed in terms of
recurrence equations. General solutions to most of the recurrences that are used throughout the book are
given in Appendix B.

1.2.2 Classification Schemes

In adistributed memory, or local memory, machine, each memory cell is attached to a specific processor,
and a processor can directly access only the memory attached to it. For processor 1 to access the contents
of amemory cell attached to processor 2, a message containing a copy of the memory cell in processor 2
must be sent to processor 1. Distributed memory systems are also known as message-passing systems. A
distributed memory system is often interpreted as not having a global addressing scheme for memory,
just local addressing within each processor, though logically the (processor ID, local address) pair forms
aglobal address. All of the machine models considered in later chapters have distributed memory.

In ashared memory machine, memory is equally accessible to all processors, using aglobal addressing
mechanism. Typically, in a shared memory machine processors do not directly communicate with
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each other, but rather through the shared memory. Originally, shared memory was interpreted as meaning
all access took the same time, but thisis hard to achieve in practice. For this reason, the nonuniform
memory access (NUMA) model is more redlistic. For example, machines from Kendall Square Research
and Silicon Graphics Incorporated implement the shared memory model while maintaining physically
distributed memory over the processors. While each processor can access all memory, accessesto local
memory istypically an order of magnitude faster than accesses to memory in other processors.

A single instruction multiple data (SMD) machine typically consists of n processors, a control unit, and
an interconnection network or interconnection function. The control unit stores the program and
broadcasts the instructions to all processors simultaneously. Active processors execute the instruction on
the contents of their own local memory. Through the use of a mask, processors may bein either an active
or inactive state at any time during the execution of the program. Each processor is connected viaa unit-
time bidirectional communication link to each of its neighbors. A unit of time is generally defined to be
the time necessary for each processor to execute some fixed number of arithmetic and Boolean
operations on the contents of itslocal memory, as well asto send and receive a piece of datafrom each
of its neighbors.

A multiple instruction multiple data (MIMD) machine typically consists of n processors, n memory
modules, and an interconnection network. In contrast to the single instruction stream model, the multiple
instruction stream model allows each of the n processors to store and execute its own program.
Processors are coupled with memory modules, and are connected to each other through afixed
Interconnection scheme by bidirectional unit-time communication links.

Variants to the SIMD and MIMD descriptions just given are possible. For instance, one popular variant
Isto uncouple memory from the processors, and to allow the interconnection network to link processors
to each other and to the memory modules.

For distributed memory parallel computers, such as those discussed in this book, information is
exchanged as messages between processors, and hence the distance information travels becomes a
dominant consideration. While the logical arrangement of information in data structures plays a major
role in serial algorithms, the physical arrangement of information plays a major role in algorithms for
these distributed memory parallel computers. One uses data movement operationsin parallel computers
to perform the physical movement needed, much as one uses operations on data structures in serial
computers.
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To determine the communication time required to solve a problem on a given parallel machine, two
methods often aid in determining simple lower bounds. The distance between two processorsin a
network is defined to be the minimum number of communication links information needs to traverse to
get from one to the other. The communication diameter of a network is defined to be the maximum
distance between any two processors in the network. Therefore, the communication diameter of a
machine gives alower bound on the running time for problems where data needs to be exchanged
between processors at maximum distance. Aswill be shown later in the book, the communication
diameter is sometimes an overly optimistic lower bound for certain problems and machine models.



Another method of determining lower bounds for problems that require extensive data movementsis by a
wire-counting (wire-cutting, cut-set, bandwidth, bisection width) argument. For instance, suppose oneis
concerned with the minimum time necessary to sort or route data on a particular machine, and it can be
shown that in the worst-case, all of the data from one 'half' of the machine must be exchanged with all of
the data from the other 'half' of the machine. If there are w wires that connect the two halves of the
machine, then in 1 unit of time only 2w elements can cross these w bidirectional communication wires.
Therefore, if each half of the machine has n/2 pieces of data, then n/2w time is required ssmply to move
data between the two halves of the machine.

The term granularity is often used to refer to the number and complexity of processorsin aparallel
system. A fine-grained system has large numbers of relatively simple computational units, each having
relatively little memory. Since the individual processors cannot hold much data, they must communicate
frequently in order to do anything productive. For example, the neurons in the brain are afine-grained
system. In a course-grained system there are few, powerful processors, each with alarge amount of
memory. This enables each processor to do a significant amount of calculation using only the datain its
own memory. For example, a network of workstations is a coarse-grained system. Since the
communication to calculation ratio isrelatively high in fine-grained systems, they tend to be
implemented so that the time of communication is close to that of the time of a calculation, whilein
some (but not all) coarse-grained systems, the time for communication is very high compared to the time
for calculation. With current technology, fine-grained parallel computers have on the order of 10,000
simple processors, while coarse-grained parallel computers have on the order of 10 powerful processors.
A particularly interesting area of research is designing
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algorithms to exploit medium-grained machines, which consist of, say, 100s of microprocessors
processors that are a compromise in performance and size between processors of fine-grained and coarse-
grained machines. The majority of general-purpose parallel supercomputers today can be classified as
medium-grained machines.

In general, SIMD machines are thought of (and constructed) as fine-grained machines, where all
processors operate in lockstep fashion on the contents of their own small local memory. MIMD machines
are more often thought of as coarse-grained machines that either share a global memory or have the
memory distributed among the processors.

Many of the algorithms presented in this book for a given machine will require that aregion of the
machine simulate a larger region of the same type. For instance, if the region consists of n processors, the
algorithm might require that the region ssmulate a cn processor region, for some constant c. This can
usually be accomplished in a straightforward manner by having each processor of the region simulate ¢
processors. Notice that this will adversely affect the running time of an algorithm by a multiplicative
constant.

In all of the models described, it is assumed that every processor has a fixed number of registers (words),
each of size Q(log n), and can perform standard arithmetic and Boolean operations on the contents of
these registers in unit time. Each processor can also send or receive aword of data from each of its
neighbors in unit time. Each processor will contain a unique identification register, which provides an
ordering to the processors (though occasionally different orderings may aso be used). The contents of
thisregister will be specified for each model.



1.2.3 Mesh Computer

The mesh computer (mesh) of size nis amachine with n simple processors arranged in a square lattice.
To simplify exposition, it is assumed that n = 4°, for someinteger c. For dl i, j O[O, . .., n¥2- 1],
processor Pi,j, representing the processor in row i and column j, is connected via bidirectional unit-time

communication links to its four neighbors, processors Piﬂ,j and Pi,jilv assuming they exist. (See Figure
1.1)

Each processor contains its row and column indices, and the identification register isinitialized to the
processor's row-major index, shuffled row-major index, snake-like index, or proximity order index, as
shown in Figure 1.2, depending on the application. (If necessary, these values can be generated in ©(nv2)
time.)

The communication diameter of a mesh of size nis ©(nv2), as can be
Page 7
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Figure 1.1:
A mesh computer of sizen.

seen by examining the distance between processors in opposite corners of the mesh. This meansthat if a
processor in one corner of the mesh needs data from a processor in another corner of the mesh sometime
during an algorithm, then alower bound on the running time of the algorithm is ©(nv2).

There are some variations of the mesh that deserve mention. Moore's pattern of connecting each
processor to its 8 nearest neighbors [Moor62] has been implemented in the MasPar MP1 and MP2, and
Golay's use of a hexagonal decomposition of 2-dimensional space where each processor communicates
with its 6 nearest neighbors [ Gola69] has been implemented in the HARTS machine [CSK90]. Other
interesting variations are derived from connecting the boundaries of the mesh to form a cylinder (north-
south or east-west), torus (doughnut), spiral, and so on. In fact, the mesh topology of the Loral's
Massively Parallel Processor (MPP) is software configurable to select the interconnection of the border
elements [Pott85], and the Intel Paragon machine uses a 2-dimensional torus pattern. While toroidal
connections reduce the communication diameter by afactor of 2, as do the 8-nearest neighbor
connections, in an O-notational sense such differences are masked. Therefore, only the ssmple mesh of
Figure 1.1 will be considered.



A more significant change isto require that the word size be ©(1) instead of ©(log n). Thismodel is
known as a cellular automata, iterative array, parallel processing array, or mesh automata. It is
equivalent to requiring that all processors be copies of some fixed finite state automaton. Cellular
automata are quite popular for modeling physical and biological
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Figure 1.2:
Indexing schemes for the processors of a mesh.
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phenomena such as crystal growth, phase transitions, and plant growth. However, as a computational
model, for any fixed automaton, once n is sufficiently large, a processor does not have enough memory
to storeits D or coordinates, which seriously complicates matters. While cellular automata were widely
studied as a computational model (e.g., [Beye69, Gola69, Gray71, Levi72, Moor62, Stou82b, Stou83a,
Unge59, Unge62, VanS80]), the more powerful mesh model is used for general purpose computing. To
the best of the authors knowledge, all real mesh computers have processors capable of storing their
coordinates. There are also more powerful variations, such as the mesh computer augmented with
broadcasting [ Stou864a], but their study is outside the bounds of this book.

1.2.4 Pyramid Computer



A pyramid computer (pyramid) of size nisamachine that can be viewed as afull, rooted, 4-ary tree of
height log, n, with additional horizontal links so that each horizontal level isamesh. It is often
convenient to view the pyramid as atapering array of meshes. A pyramid of size n has at its base a mesh
of size n, and atotal of 4/;n - 1/, processors. The levels are numbered so that the base islevel 0 and the
apex islevel log,n. A processor at level i is connected via bidirectional unit-time communication links to
its 9 neighbors (assuming they exist): 4 siblings at level i, 4 children at level i - 1, and a parent at level | +
1. (A sample pyramid is given in Figure 1.3.) Each processor contains registers with its level, row, and
column coordinates, the concatenation of which are in the processor identification register. These
registers can beinitialized in ©(log n) time if necessary.

One advantage of the pyramid over the mesh is that the communication diameter of a pyramid computer
of sizenisonly ©(log n). Thisistrue since any two processors in the pyramid can exchange information
through the apex. In Chapter 5, algorithms with a running time of @(log n) are presented to solve a
variety of problems on a pyramid of size n. Of course, if too much datais trying to be passed through the
apex, then the apex becomes a bottleneck. In Chapter 6, it is shown that for a variety of problemson a
pyramid computer of size n, the Q(log n) lower bound is overly optimistic and must be replaced by a
bound closer to Q(nv4). Even to attain this larger bound, algorithms must avoid operations that require
extensive data movement, since a simple wire-counting argument shows that Q(nv2) timeisrequired for
communication-intensive problems such as sorting or routing all of the
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Figure 1.3:
A pyramid computer of size 16.
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datain the base. To see this, consider the number of wires crossing the middle of the pyramid versus the
number of items that potentially must move from one half to the other. In the base of the pyramid there
are nv2 wires crossing the middle of the pyramid, in the next level there are =22 such wires, and so on,

s
142

giving the total number of wires that crosses the middle of a pyramid of sizento be 3~'*8s(™/=1 n

T
which is 2nv2 - 2. Since all n pieces of datathat initially reside in the base of the pyramid may need to
cross from one side of the base mesh to the other, then [ﬁ:ﬂ_—J time units, or Q(n%2) timeisrequired

just to get data across the middle of the pyramid.

The reader isreferred to [Buva87, CFLS85, CIMe87, FKLV 83, Scha85, SHBV 87, Tani82a, Uhr84] for a
description of constructed and proposed pyramid computers.

1.2.5 Mesh-of-Trees Architecture

A mesh-of-trees of base size n, where nis an integral power of 4, hasatotal of 3n - 2n¥2 processors. n of
these are base processors arranged as a mesh of size n. Above each row and above each column of the
mesh is a perfect binary tree of processors. Each row (column) tree has asits leaves an entire row
(column) of base processors. All row trees are digoint, as are all column trees. Every row tree has
exactly one leaf processor in common with every column tree. Figure 1.4 shows a sample mesh-of-trees.
Each base processor is connected to 6 neighbors (assuming they exist): 4 in the base mesh, aparent in its
row tree, and a parent in its column tree. Each processor in arow or column tree that is neither aleaf nor
aroot is connected to exactly 3 neighborsin itstree: a parent and 2 children. Each root in arow or
column tree has its 2 children as neighbors. Each processor contains identity registers with itslevel, row,
and column coordinates (the base being level 0), the concatenation of which are the contents of the
processor identification register.

Like the pyramid, the mesh-of-trees also has a communication diameter proportional to the logarithm of
the number of base processors. Also, like the pyramid, a ssmple wire-counting argument shows that for
operations that require extensive data movement, such as sorting or routing, Q(n%2) timeisrequired since
only 2nv2 wires cross the middle of the mesh-of-trees. However, the mesh-of-trees can sort a restricted
amount of data given in certain configurationsin @(log n) time.

While no significant mesh-of-trees has been built, it isavery useful
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Figure 1.4:
A mesh-of-trees of base sizen = 16.
Note: The mesh connections have been omitted for clarity.

architecture in VL SI because it embeds nicely into the plane [UlIm84]. Usually the mesh-of-trees does
not include the connections between the base processors, but these connections seem particularly natural
when one is processing images in which some of the lowest level operations involve comparing adjacent
pixels. It is easy to show that these additional connections do not change the planar embedding properties
of the mesh-of-trees.

1.2.6 Hypercube

A hypercube of size n, where nis an integral power of 2, has n processors indexed by the integers {0, . . .,
n- 1}. Viewing each integer in the index range as alog, n-bit string, two processors are connected viaa
bidirectional communication link if and only if their indices differ by exactly one bit. A hypercube of
sizenis created recursively from two hypercubes of size "/, by labeling each hypercube of size "/,
identically and independently with theindices{O0, .. ., ", - 1}, and then appending a 1 in front of the bit-
strings of one of the cubes and a0 in front of the other, which 'creates’ a new link from each processor in
one cube to the corresponding processor in the other cube. See Figure 1.5. The contents of the processor
identification register corresponds to this label.

It is easy to see that like the mesh-of-trees and pyramid, the communication diameter of a hypercube of
sizenis O(log n). However, unlike the mesh-of-trees or pyramid, a wire-counting argument only shows
that
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Figure 1.5:
A hypercube of size n = 16 with the nodes labeled using a binary representation.

Q(1) timeisrequired for operations that require extensive data movement, since there are "/, wires that
connect two hypercubes of size "/, in a hypercube of size n. This allows for many problems to be solved
more efficiently on the hypercube than on the mesh, pyramid, or mesh-of-trees.



A variety of hypercubes have been marketed commercially, including fine-grained machines such as the
Connection Machine [Hill85], and medium-grained machines by companies such as Intel [Inte36],
Ncube [HM SC86], FPS [GHS86], and Ametek [Amet86]. Some machines, such as the MasPar MP1 and
MP2 and the Thinking Machines Corporation CM5, have communication properties that make them very
similar to a hypercube for most purposes.

1.2.7 Pram

A parallel random access machine (PRAM) is an idealized parallel model of computation, with a unit-
time communication diameter. A PRAM is often described as a machine that consists of a set of identical
processors and a global memory, where all processors have unit-time access to any memory location.
Alternately, a PRAM can be described as a machine consisting of a set of fully connected processors,
where memory is distributed among the processors so that each processor maintains some
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(fixed) number of memory locations.

A PRAM isnot aregular architecture, and the unit-time memory access requirement is not scalable, so
they are not the focus of this book. However, in describing algorithms for regular architectures, it is often
useful to describe a PRAM agorithm and then either perform a stepwise simulation of the PRAM
operation on the target machine, or perform a higher-level transformation by using data movement
operations. Thisis particularly true for algorithms involving the mesh-of-trees and hypercube. For this
purpose, the aternate description of the PRAM will be used, which is now stated more formally.

A PRAM of size n consists of n processors connected as a complete graph. The processor identification
register is set to a number from O to n - 1, so that no two processors have the same number. A concurrent
read, exclusive write (CREW) PRAM permits multiple processors to read data from the same memory
location simultaneously, but permits only one processor at atime to attempt to write to a given memory
location. A concurrent read, concurrent write (CRCW) PRAM permits concurrent reads as above, but
allows several processors to attempt writing to the same memory location simultaneously, with some tie-
breaking scheme used so that only one of the competing processors succeeds in the write. An exclusive
read, exclusive write (EREW) PRAM is the most restrictive version of a PRAM in that only one
processor can read and write from a given memory location at a given time. An exclusive read,
concurrent write (ERCW) PRAM is a machine that only allows one processor to read from a given
memory location at atime, while allowing multiple processors to write to any given memory location at
the same time, with some tie-breaking scheme used so that only one of the competing processors
succeedsin the write.

The reader interested in pursuing algorithms for the PRAM may wish to refer to [KaRa90, JaJa92,
Reif93].

1.3 Formsof Input

In this book, efficient algorithms are presented to solve problems on avariety of regular parallel
architectures, defined in the previous section. The mgjority of the problems will be chosen from fields
such as image processing, graph theory, and computational geometry. In this section, input formats for
the problems considered in this book are given. For the mesh and hypercube, the input data is assumed to
be distributed throughout all processors of the machine, while for the pyramid and
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mesh-of-trees, the input data is assumed to be distributed among the base processors.

1. Unordered Edge Input. The edges of a graph are initially distributed in a random fashion throughout
the processors of the machine. It is assumed that each edge of the graph is represented by a pair of
vertices, that edges may be represented more than once, and that no processor contains more than some
fixed number of edges.

2. Matrix Input. The processors of the machine are labeled in a systematic and consistent fashion so that
processor Pi.,— initially contains the (i, j) entry of the adjacency or weight matrix that represents a graph.

3. Digitized Picture Input. A digitized black/white pictureisinitialy stored one pixel (picture element)
per processor in a systematic and consistent fashion so that neighboring pixels in the picture are mapped
onto neighboring processors in the machine. It is assumed that the interpretation is ablack picture on a
white background.

4. Geometric Data Input. The geometric problems considered in this book are al planar. That is, they
occur in standard Euclidean 2-space. Geometric objects, and collections of such objects, are represented
in anumber of ways. For problemsinvolving points or sets of points, it is assumed that the input is
planar points represented as Cartesian coordinates, stored no more than some fixed number per
processor. If theinput is sets of points, then each point will also have an attached label indicating the set
it belongsto. Circles are represented by their radius and the Cartesian coordinates of their center, and are
stored no more than some fixed number per processor. Simple polygons (i.e., polygons that do not
intersect themselves) are given as labeled line segments represented by the Cartesian coordinates of their
endpoints, stored no more than some fixed number of line segments per processor.

For problems involving geometric objects, it is assumed that no two distinct points have the same x-
coordinate or y-coordinate. It is also assumed that no two endpoints from line segments have the same x-
coordinate or y-coordinate, unless the line segments share a common endpoint. These are common
assumptions in computational geometry as they simplify exposition by eliminating special
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cases. Further, by rotating the points slightly these assumptions can always be met.

1.4 Problems

This section highlights some specific problems for which efficient solutions are presented throughout the
book. For convenience, these problems have been divided into two, not necessarily digoint, broad areas:
(a) graph and image problems, and (b) problems from computational geometry. Many of the algorithms
to solve problems in graph theory, image processing, and computational geometry will rely on efficient
sorting and matrix algorithms. Therefore, the reader should note that while sorting and matrix algorithms
are not explicitly mentioned in the remainder of this section, such algorithms will be presented in later
chapters of the book.

1.4.1 Graph and I mage Problems



In this section, several graph and image problems are defined for which solutions are presented
throughout the book for a variety of machine models and input formats.

1. Component Labeling. The input to the problem is an undirected graph G = (V, E), given asan
adjacency matrix, a set of unordered edges, or as adigitized picture. It is assumed that the elements of V
have alinear order. The component labeling problem isto assign a component label to each vertex, such
that two vertices receive the same component label if and only if there is a connected path between them.
The component label will be chosen to be the minimum label of any vertex in the component. For
digitized picture input, considered as black objects on a white background, components are created by
considering black pixelsto be vertices and pairs of neighboring black pixels to be undirected edges. For
digitized picture input, the term figure will be used to refer to a (black) maximally connected component.

2. Minimal Spanning Forest. Given aweighted undirected graph, mark the edges of a minimal-weight
spanning tree for each component of the graph. For a connected graph G = (V, E), and aweight function
w that assigns a weight w(e) to every edge e 11 E, aminimal-weight spanning tree T = (V, E') of G, E' O
E, is
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a connected graph with | V| - 1 edges having the property that} -, . . w(e) isaminimum. The input can be
given as an adjacency matrix, a set of unordered edges, or adigitized picture.

3. Nearest/Farthest Neighboring Component. Given adigitized picture with its figures already labeled,
determine for each figure the label of the nearest (farthest) figure to it and its corresponding distance.

The I, metrics will be used to measure distance, where for 1 < p < w0, the |, distance from (a, b) to (c, d) is
| a=c|P + | b-d |P]V/r, and thel, distancefrom (a, b) to (c, d) ismax{| a — e |,| b~ d |}.

The reader might note that the connection scheme of the mesh is based on the |, ("taxi-cab" or "city
block™) metric. This means that efficient solutions to image problems for mesh-based models are often
easiest when expressed in terms of the |, metric. Further, simple techniques can also be applied to solve
problemsin terms of the lco metric for mesh-based models. However, for other metrics, such asthe
important |, ("Euclidean") metric, more sophisticated solution strategies will be needed for mesh-based
machines. For nonmesh-based machines, sophisticated solution strategies will be developed to solve
distance problems for all |, metrics.

4. Transitive Closure. Compute the transitive closure, denoted A*, of a symmetric Boolean matrix, A. If
Aisinterpreted as the adjacency matrix representing an undirected graph (i.e, A(i, j) = A(j, 1) = 1 means
there is an undirected edge between verticesi and |, while A(i, j) = A(j, i) = 0 means no such edge exists),
then A*(i, j) = 1if and only if verticesi and j are in the same connected component, and O otherwise.

5. Bipartite Graphs. Given an undirected graph G = (V, E), decideif G isbipartite. That is, decide
whether or not V can be partitioned into sets V, and V, so that each edge of G joins amember of V;to a

member of V..

6. Cyclic Index. Compute the cyclic index of an undirected graph G = (V, E), where the cyclic index of G
isthe largest number s so that V can be partitioned into sets V,, . . . ,V,, such that for any edge (X, y), if X

LV; then'y U Viiymogs



7. Bridge Edges. Given an undirected graph, decide which edges are bridge edges, where an edge is
called a bridge edge if its removal increases the number of components.
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8. Articulation Points. Given an undirected graph, decide which vertices are articulation points, where a
vertex is called an articulation point if its removal (along with the edges incident on it) increases the
number of components.

9. Biconnectivity. Given an undirected graph, decide for each component whether or not it is
biconnected, where a component is said to be biconnected if for any two points in the component there
are two digoint paths between them.

10. Internal Distance. Given adigitized picture, determine for each black pixel the distance of aminimal
internal path (traversing only black pixels) to a marked pixel. Notice that the distance to a marked pixel
isoo for al pixels not in the same figure as a marked pixel, and is otherwise defined to be the minimum
number of pixelsin aninternal path to a marked pixel.

11. Minimal Paths. Given two sets of pixels, A and B, mark and count the minimal distance internal paths
from Ato B.

1.4.2 Computational Geometry Problems

In this section, several problems from computational geometry are defined for which solutions are
presented throughout the book. Many algorithms from computational geometry are based on the ability
to efficiently determine the convex hull of an object. The convex hull is a geometric structure of primary
importance that has been well studied for the serial model of computation [PrSh85, Sham78, Tous30,
Avis79, Yao8l]. It has applications to normalizing patterns in image processing, obtaining triangulations
of sets of points, topological feature extraction, shape decomposition in pattern recognition, and testing
for linear separability, to name afew.

The convex hull of aset of points S denoted hull(S) or CH(S), is the smallest convex polygon P for
which each point of Sisin theinterior or on the boundary of P, as shown in Figure 1.6. A point p O Sis
defined to be an extreme point of Sif and only if p O hull(S- {p}). That is, p is an extreme point of hull
(S if and only if p ison the boundary of hull(S) at a point where atrace of the boundary resultsin a
change of slope (i.e., p issituated at a corner of the boundary). The edges between adjacent extreme
points, with respect to atrace of the boundary of this polygon, will be referred to as the edges of the hull
(9. Note that a convex polygon is completely determined by its extreme points.
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Figure 1.6:
Convex hull of S

For algorithms involving the convex hull, it is often useful to be able to represent the orientation of an
extreme point of S or an edge of the convex hull of S with respect to S. The orientation typically used
makes use of the definition of the angle of a half-plane, which isin the range [0, 2m). To define the angle
of ahalf-plane H, trandlate the origin so that it lies on the edge of H. The angle of H isthe angle a such
that H contains all rays from the origin at anglesa + 3 for 3 in (0, ). For example, when considering a
half-plane determined by the x-axis, the angle of the upper haf-planeis 0, while the angle for the lower
half-planeis

For an extreme point p of aset S the angles of support of p are represented by an interval corresponding
to the angles of half-planes with edges through p which contain S. For example, if hull(S) is an iso-
oriented rectangle, then the angles of support of the northwest extreme point are [11, 3172], the angles of
support of the southwest extreme point are [3172, 211 [ 0, the angles of support of the southeast extreme
point are [0, T72], and the angles of support of the northeast extreme point are [1V2, 1. For an edge e of
the hull of aset S, the angle of incidence
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Figure 1.7:
The angle of incidence of hull edge Aa is0, of edge ab is 17/4,0f edge be iSTV2,
and so forth. The angles of support of extreme point aare [0, Tv4], of point b
are [1V4,172], of point c are [1V2,3174], and so forth.

of eisthe angle of the half-plane containing Swith edge containing e. See Figure 1.7.

For problems involving adigitized picture D = {di,j} asinput, the pixels are mapped in a natural fashion
to the processors so that processor Pi,j assumes responsibility for pixel di,j. For convexity and proximity
problems, it often makes sense to identify processor Pi,j with the integer lattice point (i, ). In this setting,

a set of processors (possibly corresponding to a set of pixels from agiven digitized picture) is said to be
convex if and only if the corresponding set of integer lattice pointsis convey, i.e., the smallest convex
polygon containing them contains no other integer lattice points. Thisis the proper notion of convexity
for integer lattice points, but it does have the annoying property that some disconnected sets of points,
suchas{(1,1), (3,4)}, are convex.

For several of the algorithms presented, it will be useful to impose an ordering on the extreme points of
S The ordering will bein a coun-
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terclockwise fashion, starting with the easternmost point. Notice that for a given machine, the size of the
dataisfinite. Therefore, in the case of picture data, if there are multiple easternmost points, then the
southernmost one of these is chosen as the starting point in the counterclockwise ordering. For point data
input, as discussed in Section 1.3, it is assumed that no two points have the same x-coordinate. Therefore,
for point data input there exists a unique easternmost point.

For many of the convexity problems presented in the book, it is said that the extreme points of Shave
been identified, and hence hull(S) has been identified, if for each processor Q containing a point of S



1. Q has a Boolean variable 'extreme, and 'extreme’ istrue if and only if the point contained in Q isan
extreme point of S and

2. for every processor Q containing an extreme point of S

(a) Q contains the position of its point in the counterclockwise ordering,

(b) Q contains the total number of extreme points, and

(c) Q contains the positions of its adjacent extreme points in the counterclockwise ordering.

Several problems from the field of computational geometry are now defined. Solutions to these and
related problems are presented throughout the book for a variety of machine models and input formats.

1. Convex Hull Problems. This book considers avariety of problems involving convex hulls. One of the
fundamental convex hull problems for alabeled digitized picture, or for sets of planar points, isto
identify the extreme points of the convex hull for each (labeled) set of points. Given digitized picture
Input, another common query is to determine whether or not each figure is convex. A solution to the
convex hull identification problem will often be used as afirst step to solving many of the problems
described below.

2. Linear Separability. Given adigitized picture or planar point data, determine if two sets of points, say
A and B, are linearly separable. That is, determine whether or not there exists a straight line in the plane
such that all of A liesto one side of the line and all of B liesto the other side.

3. Smallest Enclosing Figures. Given a digitized picture or planar point data, determine for each set of
points a smallest enclosing box, the smallest enclosing circle, and a smallest enclosing triangle.
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4. External Diameter. Given ametric d and either adigitized picture or planar point data, determine the
external diameter for each set of points, where the external diameter of aset Sis

maz{d(s,,s2)|s,, 82 € 5}

5. Nearest Problems. Given geometric data as input, find for each point, set of points, line segment,
rectangle, or simple polygon, the nearest point, set of points, line segment, rectangle, or smple polygon,
respectively.

6. Minimal Distance Spanning Tree. Given a set of planar points, determine a minimal distance spanning
tree, where the distances are measured using the Euclidean metric.

7. Intersection Problems. For each line segment, set of line segments, rectangle, convex bull, half-plane,
circle, or ssmple polygon determine intersection information with other line segments, sets of line
segments, rectangles, half-planes, circles, or simple polygons, respectively.

8. Area Problems. Given a set of rectangles or, more generally, simple polygons, determine the total area
covered.

1.5 Data M ovement Oper ations



In designing serial algorithms, amajor concern is the proper choice and implementation of data
structures and their associated algorithms. In designing algorithms for parallel machines with regular
Interconnection topologies, the data structure is typically determined by the machine model. That is, the
physical interconnection topology of the processors will determine the data structure. Therefore, in order
to design efficient parallel algorithms for regular architectures, efficient operations are required to
manipul ate the data by exploiting the interconnection network.

Recently, there has been atrend towards devel oping cost-effective serial systemsin terms of abstract
data types (ADTs), where an ADT consists of an abstract data structure (e.g, list, tree, stack) together

with a set of basic operations to be performed on the data in the structure (e.g, find, insert, push). The
advantage of designing systemsin terms of ADTsisthat it allows the system to be designed with the

essential properties of the data type in mind, but without worrying about implementation
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constraints and details of the specific machine. In this book, abstract data movement operations are
viewed asthe parallel analogue of ADTSs. That is, parallel agorithms can be expressed in terms of
fundamental data movement operations without worrying about their implementation or the specific
interconnection of the processors.

Most of the algorithms given in this book are expressed in terms of fundamental data movement
operations, such as those defined in this section. Sorting is a central data movement operation, since
several other operations assume that the datais already in sorted order. In addition, sorting is often used
for the purpose of routing data. Thiswill be discussed in some detail during the presentation of the
concurrent read and concurrent write operations (pages 24-26). Several of the data movement operations
that are presented in this section are performed in parallel on digoint consecutive sequences of itemsin
the sorted order. These sequences will be referred to as (ordered) intervals.

1. Sorting: Suppose there isalinear ordering of a collection of processors P, and there is data D chosen
from alinearly ordered set, with D distributed one item per processor in arbitrary order. Then a sort
operation will move the elements of D so that they are stored in order with respect to P, one element per
processor. Since general-purpose sorting algorithms are of interest, only comparison-based algorithms
will be considered in this book.

2. Merging: Suppose thereisalinear ordering of a set of processors P, and that a set of data D is chosen
from alinearly ordered set. Suppose D is partitioned into subsets D, and D,, and D, is stored in order, one

item per processor, in one subset P, of the processors, and D, is stored in order, one item per processor,
in P - P, . Then amerge operation will combine D, and D, to store D in sorted order in P, one item per

processor.

Merging can be used not only to develop efficient sorting algorithms, but to develop efficient algorithms
that avoid sorting in favor of merging datathat is given as ordered subsets. Since merging can be
performed at |east as fast as sorting, it is desirable to design algorithms that favor merging over sorting
when the situation allows. This scenario will arise in intermediate stages of many of the algorithms given
in later chapters of the book.

3. Semigroup Computation: Suppose each processor has a record with data and alabel, and that these
records are in sorted order by their
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label. Determine the result of applying a unit-time associative binary operation to all dataitems with the
same label, with each processor receiving the answer for its datalabel. Such an operation is often
referred to as a semigroup operation. Examples of semigroup operations include minimum, maximum,
summation, logical-OR, logical-AND, and parity, to name afew.

4. Broadcast/Report: Broadcasting and reporting are often viewed and implemented as inverse
operations. Both operations involve moving data within digoint ordered intervals. They also both require
adistinct processor, called the leader, of each interval. In broadcasting, the leader of each ordered
interval has a dataitem which isto be delivered to all other processorsin itsinterval. In reporting, within
each interval all processors have data. A semigroup operation (i.e., an associative binary operation such
as minimum, summation, or parity) is to be applied to the data, with the result being sent to the leader of
the interval. For example, suppose each processor contains a labeled record and that processors with the
same label form an ordered interval. Then broadcast and report may be used to inform all processors of
the result of applying some semigroup operation over its ordered interval asfollows. For ease of
explanation, let the semigroup operation be minimum. First, the minimum data value of each interval is
reported to the leader of the interval, and then the leader of each interval broadcasts this minimum value
to all processorsinitsinterval.

5. Scatter/Gather: These operations are closely related to the broadcast and report operations. Suppose
each processor has a record containing data, alabel, and a Boolean flag called ‘'marked'. Further, assume
that all processors containing records with the same label form an ordered interval. A gather operation
has all records within each interval with marked=true sent to the leader of itsinterval. The scatter
operation is anatural complement to the gather operation, where the leader of each interval sends a
(potentialy different) piece of datato some set of processorsin itsinterval.

6. Concurrent Read/Write: A concurrent read may be used in a situation where a set of processors
wishes to obtain data associated with a set of keys, but where thereis no a priori knowledge asto which
processor maintains the data associate with any particular key. For example, processor P; might need to

know the data asso-
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ciated with the key 'blue, but might not know which processor in the system is responsible for
maintaining the information associated with the key 'blue.’ In fact, all processorsin the system might be
reguesting one or more pieces of data associated with, not necessarily distinct, keys. Similarly, a
concurrent write may be used in a situation where a set of processors wishes to update the data
associated with a set of keys, but again do not necessarily know for any key, which processor is
responsible for maintaining the data associated with that key. These concurrent read/write operations
generalize the read/write operations of a PRAM by making them associative, i.e., locating data by key
rather than by address.

In order to maintain consistency during concurrent read and concurrent write operations, it will be
assumed that there is at most one master record, stored in some processor, associated with each unique
key. In aconcurrent read, every processor generates one request record corresponding to each key that it
wishes to receive information about (a bounded number). A concurrent read allows multiple processors
to request information about the same key. A processor requesting information about a nonexistent key
will receive anull message at the end of the operation.



One implementation of a concurrent read on a parallel machine with n processors, based on previously
defined data movement operations, follows.

(@) Every processor creates C, master records of the form (Key, Return Address, data, MASTER'),
where C, is the maximum number of keyed master records maintained by any processor, and Return
Addressisthe index of the processor that is creating the record. (Processors maintaining less than C,

master records will create dummy records so that all processors create the same number of master
records.)

(b) Every processor creates C, request records of the form (Key, Return Address, data, 'REQUEST"),

where C, is the maximum number of request records generated by any processor, and Return
Addressisthe index of the processor that is creating the record. (Processors requesting information
associated with less than C, master records will create dummy records so that all processors create

the same number of request records.) Notice that the data fields of the request records are presently
undefined.
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(c) Sort al (C,+ C,)n records together by the Key field. In case of ties, place records with the flag
'MASTER' before records with the flag 'REQUEST .

(d) Use abroadcast within ordered intervals to propagate the data associated with each master record
to the request records with the same Key field. Thisallows all request records to find and store their
required data.

(e) Return all recordsto their original processors by sorting all records on the Return Address field.

Therefore, the time to perform a concurrent read, as described, is bounded by the time to perform afixed
number of sort and interval operations.

As with the concurrent read, in the concurrent write it will be assumed that there is at most one master
record, stored in some processor, associated with each unique key. In a concurrent write, processors
generate update records which specify the key and piece of information about that key that they wish to
update. If two or more update records contain the same key, then a master record will be updated with
the minimum data value of these records. (In other circumstances, one could replace minimum with any
other commutative, associative, binary operation.) The concurrent write may be accomplished by a
method similar to that of the concurrent read, in which case the time to compl ete the operation is
bounded by the time required for a fixed number of sort and interval operations.

7. Compression: It is often desirable to compress data into aregion of the machine where optimal
interprocessor communication is possible. The operation that places the datain such aregionis called
Compression.



8. Searching and Grouping: Suppose every processor P; contains a searching items [ Sand atarget
itemt, 0 T, 1<i < n, wherethereis an ordering on the elements of T. Further, suppose there exists a
Booleanrelation R(s, t),s 0 S t [ T. A solution to the searching problem requires each processor P, to
find the largest j such that R(s, t;) istrue. For example, consider a collection of boxes of different shapes,

where the jth box costs less than the j - 1%, and a collection of objects to put into the boxes. Viewing the
boxes as targets, the objects as searching elements, and the
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relation fitsinside as R, then the searching problem finds, for each object, the cheapest box that it fits
inside of. Depending on what is known about S T, and R, different algorithms may be the most efficient.
Cases of interest include the following.

(@) Suppose there are decreasing (increasing) functions f and g mapping s Sand t [I T into the
same linearly ordered set, and arelation U such that U(f(s), g(t)) = R(s, t). Further, suppose that U(x,
y) = trueimplies U(X, y) = true whenever X' > x (X' < x) and U(x, y') = true whenever y' <y (y' > y).
Then the searching problem can be solved by a grouping technique requiring only one pass, as
follows. Mapping ssand t'sviaf and g, respectively, sort al elements of Stogether with al elements
of T into linear order and then perform a broadcast operation within every interval delimited by
members of T so as to inform members of Sasto their interval, which gives the required answer. A
final sort based on the index of the searching and target items is used to return the items to their
original processors.

As asimple example, the reader may construct the appropriate functions f and g, the binary relation
R, and the relation U to solve the interval location problem for a set of n numbers. That is, assume
every processor has an element of aset Sof real numbers, and an element of set T={t,, t,, ..., t.},
where-o =t,<t; <...<t,<t,, =+ o, andfor each s Sitisrequired that theinterval t, < s<t;,
be determined.

(b) Suppose functions f and g that map elementsin Sand T into the same linearly ordered set cannot
be found. However, suppose that the elements of Sand T have an ordering such that R(s,t;) = true

implies R(s.1,t;) = true and R(s, t; ;) = true. In this situation, multiple parallel binary searches can be
used to solve the search problem.

(c) Finally, suppose functions f and g can be found, but the Boolean relation R only has the property
that R(s, t;)) = trueimplies R(s, t;.;) = true. For example, this would occur if the boxes mentioned
above had the property that the jth box fitsinside the j - 1s box. Another example follows.

Suppose that Sis aset of n planar points represented by
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their Cartesian coordinates (X, y), such that | < x<r. Suppose T isa set of n line segments, where
each line segment is represented by the Cartesian coordinates of its two endpoints, as [(X;, Y1), (X,
Y,)]. Further, assume that all line segments have x, =1 and x,=r. That is, the left endpoint of every
line segment is| and the right endpoint of every line segment isr. Finally, assume that no pair of line
segments intersect, so that the line segments can be ordered by saying that segment s, islessthan
segment s, if s, liesbelow s,. Note that the segments partition the vertical column| < x<r into
regions bounded above and below by consecutive line segments. Then the search problemin
guestion is that of determining, for each point in S, the region that it belongsto. See Figure 1.8.

= line segments

major line segments

Intervals are between pairs of
adjacent line segments.

Major intervals are between
pairs of adjacent major line
segments,

Figure 1.8:
Searching to find interval for points.

A solution to this search problem using a two-pass grouping technique follows. First, sort the line
segments by y-coordinate with respect to the left endpoint |. Let this oper-
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ationresult intheordered set t, t,, . . ., t,, wheret; < t,< ... <t,. Next, al processorsview t,,
toe -+ - gy for some machine dependent constant k. While viewing these values, every processor

decides which of the [n/K] major intervalsits search pointisin. Finally, Sand T are sorted so that all
points of Sare grouped together (forming ordered intervals) with al line segmentsin their major
interval. Next, all line segments in each major interval are circulated within that interval so that each
point can detect which interval it isin. A final sort returns the pointsto their original processors. The
reader should note that if the line segments of T are restricted to being horizontal line segments, then
the problem is equivalent to, and can be solved, using the method presented in (a).



9. Parallel Prefix: Givenvaluesa,, a,, . . ., &,, and abinary associative operator [, the product
computation problem is to compute the product a, (1 a,[] . . . I &a,. Theinitial prefix problemisto

compute al ninitial prefixesa,, alda,, ..., a,da,[] . .. Oa, Theinitial prefix problem when solved on
aparalel model of computation is known as parallel prefix. This operation is quite powerful. For
example, it can be used to sum elements, find the minimum or maximum of a set of elements, broadcast
values, compress data items, and so forth.

10. Reducing a Function: Given sets Q, R, and S, let g be afunction mapping Q X Rinto S, and let * bea
commutative, associative, binary operation over S. Defineamap f from Q into Shy f(q) =* {g(q, r)| r O

R}, wheref is said to be the reduction of g. For example, if Q and R are sets of pointsin some metric
space, if Sisthereal numbers, if g(q, r) isthe distance fromqtor, and if * isthe minimum, then f(q) is
the distance from q to the nearest point in R.

1.6 Sample Algorithms

In this section, generic solutions are presented to two fundamental problems that are considered in later
chapters of the book. This section serves the purpose of familiarizing the reader with

the component labeling problem,
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. the convex hull problem,
. problems involving image data,
. problems involving geometric data,
. designing generic, machine independent, parallel algorithmsin terms of fundamental abstract data
movement operations, as presented in Section 1.5, and
. general techniques, such as divide-and-conguer, data reduction, and generating cross-products

that are frequently used to design efficient parallel algorithms for regular architectures.
1.6.1 Component Labeling for Digitized Picture I nput

The component labeling problem was defined in Section 1.4.1. For the algorithms presented in this
section, it is assumed that an n x n digitized picture A = {&,j} Is stored one pixel per processor on a
machine with n2 processors. The pixels are assumed to be in one of two states: black or white. The
interpretation is that of a black picture on awhite background. The picture is stored in a natural fashion,
meaning that pixels that are adjacent in the picture are mapped to processors that are directly connected
in the machine. For ssmplicity, a 4-connected definition of connectedness for the figures (i.e., connected
black components) is assumed. That is, ablack pixel a, isaneighbor of black pixels Qv Arp & 10
and a1 (Notice that black pixels a, and 811, 1 for example, are not neighbors, though they may till
be in the same figure if there is a 4-connected path of black pixels between them.)



Each processor that contains a black pixel usesits unique index as the label of the pixel that it contains.
When a labeling agorithm terminates, every processor that contains a black pixel will store the label of
its pixel and the label of the smallest labeled pixel that its pixel is connected to. That is, each such
processor will know the label of the figure that its pixel isamember of.

A simple parallel propagation algorithm can be used to label the figures, as follows. Every black
processor (i.e., a processor containing a black pixel) initially assumes that the label of its pixel isthe
component label of the figure that its pixel isamember of. During each iteration of the algorithm, every
black processor sends its current component label to its (at most) four black neighbors. Every black

processor then compares
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Figure 1.9:
A picture containing 'blob-like' figures.

its current label with the (at most) four labels just received, and keeps as its new label the minimum of
these labels. It is easy to see that for each figure, the minimum label L is propagated from processor P, (i.
e., the processor with index L) to each black processor P; in its figure in the minimum number of steps
required to pass a message from P, to P, under the restriction that datais only passed between
neighboring black processors. Therefore, this labeling algorithm terminatesin @(D) time, where D isthe
maximum number of communication links any label must traverse. So, given 'blob-like' figures, asin
Figure 1.9, all processors can know the label of their figure in O(n) time. However, it is easy to construct
non-'blob-like' figures, such as spirals or snakes, as shown in Figure 1.10, for which this propagation
algorithm will require ©(n?) time.

In contrast to the O(n2) parallel propagation algorithm, two algorithms are given in this section that will
label all figures regardless of the number, shape, or size of the figures, much more efficiently, in the
worst case, when implemented on the machines considered in this book. Both algorithms follow a
recursive divide-and-conquer solution strategy, which will be used throughout the book to produce
efficient parallel so-
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(a) A spiral isnot a'blob-like' figure.

(b) A snakeis not a'blob-like' figure.

Figure 1.10:
Pictures consisting of non-'blob-like' figures.

Page 33



G
F
[
I / L \
J
K
Figure 1.11:

Sample labeling after recursively labeling each quadrant.

lutions to a variety of problems. Both algorithms also serve as good examples of data reduction
algorithms.

Thefirst step of these algorithmsisto recursively label the four quadrants of the picture independently,
treating each quadrant as a complete picture. After this step, the only figures that could have pixels with
differing labels are those figures that span a border between the quadrants. For instance, assuming Figure
1.11 represents the labels of figures after the independent and parallel recursive labeling of the quadrants,
then figures A and H are labeled correctly, while the other figures contain pixels with an incorrect final
label. Two methods for resolving the labeling conflicts to obtain correct global 1abels from the local
(quadrant) labels are given. Both algorithms exploit the fact that the pertinent data has been reduced from
an amount proportional to the area of the image to an amount proportional to the perimeter of the image.
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Compression
Algorithm

This method of resolving label conflicts introduces the concept of compressing data to aregion of the
machine where interprocessor communication is minimized. Specifically, the O(n) pertinent pieces of
data remaining in the machine after the recursive labeling is complete, will be moved to aregion of the
machine where subsequent computations can be performed efficiently.

1. Each black processor on the border of a quadrant, creates an edge record corresponding to an edge
between its black pixel and any of the (at most) 4 neighboring black pixels.



2. Compress these O(n) edge records to a subset of O(n) processors of the machine that will allow for
efficient interprocessor communication.

3. Inthis set of processors, the problem has now changed from a problem involving a digitized picture to
that of solving the component labeling problem for unordered edge input. Using an unordered edge input
algorithm over the data stored in this subset of processors, resolve the labels.

4. Use a concurrent read so that all processorsin the machine obtain their (possibly new) labels from this
final set of labelsjust computed.

Therefore, the running time for the entire component labeling algorithm is given by the recurrence
T(n2) = T(n2/,) + Comp(n, n?) + Edge(n) + CR(n?),

where T(n2/4) is the time to perform the recursive labeling on the input n x nimage, Comp(n) is the time
to compress O(n) items on a machine of size n2, Edge(n) is the time to perform the unordered edge
labeling algorithm for the O(n) edges contained in the compressed subset of O(n) processors, and CR(n?)
Isthe time to perform a concurrent read on a machine of size n2.

Once the compression operation has been performed, interprocessor communication is reduced so that
the intermediate processing can be performed in an efficient manner. Further, reducing the
communication diameter of the remaining information typically means that many processors remain idle
during the intermediate processing. For instance, in
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the compression version of the component labeling algorithm just given on a mesh of size n2, O(n?)
processors will remain idle during the unordered edge algorithm of Step 3 that resolves the border |abels.
A number of efficient algorithms will be given in later chapters of the book that exploit data reduction
techniques. Some of these algorithms will exploit an iterative data reduction technique where at various
stages of the algorithm, the remaining pertinent data is reduced, as are the number of active processors.

Cross-Product
Algorithm

The method used in the Compression Algorithm for resolving labels relies on compressing O(n) items on
amachine of size n2 to a place where interprocessor communication is minimized. Therefore, during the
core of the algorithm, it is possible for O(n2) processorsto remain idle. In contrast to the technique used
in the Compression Algorithm, this method makes use of the available processors by creating an
adjacency matrix to represent the cross-product of the O(n) items, thereby utilizing the full complement
of the O(n2) available processors.

1. Each black processor on the border of a quadrant, creates an edge record corresponding to an edge
between its black pixel and any of the (at most) 4 neighboring black pixels.

2. Initialize all entries, except those along the diagonal, of the adjacency matrix to 0. The diagonal entries
areinitialized to 1. This correspondsto initially assuming that there are no edges in the graph, although it
Is assumed that a vertex isin the same figure as itself.



3. Using a mapping by border indices to rows and columns of an adjacency matrix, use a concurrent
write for each border processor to place a1 into an entry of the matrix corresponding to each of its edge
records.

4. The problem has now been reduced to that of solving an adjacency matrix version of the component
labeling algorithm. Using an adjacency matrix component labeling algorithm, resolve the |abels.

5. Use aconcurrent read so that all black processors obtain their (possibly new) label, where the diagonal
elements of the matrix store the final label of the entry for its row and column.
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The running time of the entire component labeling algorithm is given by
T(n2) = T(n2/4) + Create(n?) + Adj(n2) + CR(n2),

where T(n2/4) is the time to perform the recursive labeling, Create(n?) is the time to create the adjacency
matrix, including initialization and the concurrent write, Adj(n2) is the time to perform the adjacency
matrix component labeling algorithm on the machine of size n2, and CR(n2) isthe time to perform a
concurrent read on a machine of size n2.

A number of efficient algorithms will be given in later chapters of the book that exploit the concept of
creating cross-products. As a simple example, consider the problem of sorting n distinct itemson a
machine of size n2. A counting sort may be used, where a cross-product isfirst created in which the n2
ordered pairs of items are stored one per processor. Each item a need only count (sum) the number of
pairs (i, j) inwhich a < g to determineitsrank (i.e., fina position of item g, in the sorted list). The items
are then routed to their final destinations.

1.6.2 Convex Hull for Planar Point Data I nput

In Section 1.4.2, the problem of identifying the extreme points representing the convex hull of a set of
planar points was discussed. In this section, generic machine independent parallel solutionsto the convex
hull problem are given. These algorithms reinforce advantages of paradigms such as divide-and-conguer
and data reduction, and introduce new paradigms. They are also given in terms of fundamental data
movement operations, some of which were not used in the component labeling algorithms of the
previous section.

In this section, two distinct strategies are given for marking the extreme points representing the convex
hull of aset Sof n planar points distributed arbitrarily one point per processor on a machine with n
processors. Both algorithms follow a general divide-and-conquer solution strategy. The first algorithm
divides the points into a fixed number of subsets, while the second algorithm divides the pointsinto
multiple subsets.

Fixed Subset Division Algorithm

1. Preprocessing: Sort the n planar points so as to order them by x-coordinate. That is, after sorting the
points, they will be ordered
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Figure 1.12:
Upper and lower tangent lines between linearly separable sets S, and S,

so that the x-coordinate of the point in processor P; is less than the x-coordinate of the point in processor
P fori<j.
)

2. 1f n< 2, then all points are extreme points. Otherwise, let S; denote the points in processors Py, P,, . . .,
P,,», and S, denote the pointsin processors P,yp.1, Pryoioy - - -, P, . Noticethat S=S [0 S,, that S, and S,
each contain n/2 points, and that the pointsin S, have x-coordinates less than those in S,. (Dividing Sinto
2 subsets makes the presentation of this sample algorithm easier. The particular constant number of
subsets can be appropriately modified for implementation on a given machine. For example, on mesh-

based machines, Swould typically be divided into 4 subsets, one corresponding to each quadrant of the
(base) mesh.)

3. Recursively identify the extreme pointsof S. . . 1 and the extreme points of S,. (Note: thisisa
recursive call to Step 2, not Step 1.)

4. |dentify the upper and lower common tangent lines between hull(S,) and hull(S,) by performing a

grouping operation. See Figure 1.12. Two different grouping operations may be used to determine these
tangent lines.

(a) Thefirst grouping operation is based on the fact that an extreme point p, of S;, with p,; and p,,,; as
its preceding and

Page 38

succeeding extreme points, respectively, with respect to the counterclockwise ordering of the extreme
points of S, isthe left endpoint of the upper common tangent line between S, and S, if and only if no
points of S, lie above theline e+ 1P%, while at least one point of S, lies above the line Fxpr—; . (Recal
that the extreme points are labeled in counterclockwise fashion.) Similar remarks can be made about
the other three endpoints.

Searching for an endpoint is accomplished by a grouping operation that uses multiple binary searches.
For instance, the extreme point that corresponds to the left endpoint of the upper tangent line between
S, and S, may be determined as follows. (The other endpoints are determined similarly.)



I. Suppose there are n; extreme pointsof S, whicharelabeled 1, 2,...,n,.Letl =1andr =n,.

Ii. Let k = Broadcast extreme points p,, p..1, and p,, of S to the processors that are maintaining
extreme pointsfor S,.

Iii. Using a concurrent write, all processors maintaining extreme points of S, that are above theline
P+ 1Pk, Send amessage to the processor maintaining p, of S;, which in turn broadcasts the response
to all processors of S,.

iv. If thereis at least one such point of S, that is above Fr+1 7%, then the binary search continues on
the pointslabeledk + 1, k+ 2,...,r (i.e, set| =k + 1 and return to Step 4(a)ii).

v. If there are no points of S, above Fi+1 Pk, then the processor of S, that maintains p, broadcasts this
fact to the processors of S,. Thisisfollowed by performing a concurrent write, where all processors
maintaining extreme points of S, above the line Fxpr—1 , Send a message to the processor
maintaining p,, which in turn broadcasts the response to al processors of S,.

A. If there are no points of S, above Fxix—1, then the binary search continues on the set of points
labeled 1,2, ...,k-1(i.e, setr =k- 1 and return to Step 4(a)ii).

B. If thereis at least one point of S, above Fk—1, then p, isthe left endpoint of the upper tangent
line between S, and S,. Notice that p, has the property
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that all points of S, lie below the line Fe 17, while at least some points of S, lie above the line
PrPr—1

After no more than [log, n,] iterations, an extreme point of S, will be found that is the left endpoint
of the upper tangent line between S, and S,. For some of the machines considered in this book, it will
be advantageous to interleave steps of the binary search to find the left common tangent point with
steps of the binary search to find the right common tangent point, compressing all of the remaining
candidatesfrom S, and S, jointly after each pair of searches.

(b) A different grouping operation may be used in order to determine the endpoints of the upper and
lower common tangent lines. This operation is a one pass operation based on the angles of incidence
(AQI), as defined on page 20, of the hull edges. Specifically, suppose Fid;, p 0 S;, ; 0 S,, is the upper
tangent line between convex sets S, and S,, asin Figure 1.12. Then it can be shown [PrHo77] that

i. ADI(Fiim) = AOI(g;p:) < AOI(ppis), and
ii. AOI{g;1g;) < AOI(m) < AOI(g;g5+1)-

Therefore, each extreme point P, simply needs to locate the edges of the other set with angles of

incidence just above and just below the angles of incidence of Fi—1f and Bifi+1. Thisis accomplished
by sorting records representing both endpoints of the angles of support of every extreme point of S

(S,) together with records representing the angles of incidence of the hull edges of S, (S,) and then
performing broadcasts within the intervals delimited by the hull edges.



5. Eliminate all extreme points between the common tangent lines (i.e., all extreme pointsof S, and S,
that are inside the quadrilateral formed by the four endpoints representing the common tangent lines) and
renumber the remaining extreme points. This is accomplished by broadcasting the information pertaining
to the four endpoints to al processors maintaining a point of S, and then having each processor make a
constant time decision as to whether or not it remains an extreme point, and if so, what its new number is.

The running time of the algorithm is given by

T(n) =T'(n) + Sort(n),
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where Sort(n) isthe time to sort n items distributed one per processor on a machine of sizen, and T'(n) is
the time to perform all but the first (preprocessing) step. T'(n) satisfies the recurrence

T'(n) = T'(n/2) + Group(n) + Broad(n) + Elim(1),

where T'(n/2) is the time for the recursive call, Group(n) is the time to perform an appropriate grouping
operation to determine the upper and lower common tangent lines, Broad(n) is the time to perform a
broadcast operation on a machine of size n, and Elim(1) is the time required for each processor to make
the final extreme point decision.

Multiple Subset Division Algorithm

1. Preprocessing: Using sorting, partition the n planar points of Sinto nt* subsets, where k is a machine
dependent constant that minimizes the running time of the algorithm. The partitioning is done so as to
produce the following.

@5 =~ 5, whereeach of then?* sets S, S,.. . ., §,us, is OF size ni
(b) The x-coordinates of all pointsin § are less than the x-coordinates of all pointsin §, for i < j.

(c) Defineregion R to be a subset of processors of the machine responsible for set S. It is assumed that
the set § is stored in the ith subset of processors of size N0 and that this ordering holds recursively
within each such region of size n&/k

2. 1f n< 2, then al points are extreme points. Otherwise, for each region R,1 < i < n/¥, recursively
identify the extreme points of S. (Note: thisisarecursive call to Step 2, not Step 1.)

3. Using atwo pass grouping operation, each region R, determines the endpoints of the upper and lower
tangent lines between § and every other set of points S, for i # j, asfollows.

(a) Each region R,1 < i < n¥, sends n¥* query pointsto every other region R, 1 #]. The query points
are equally spaced with respect to the counterclockwise numbering of the extreme points of S. Further,
each query point is represented by two records, one corresponding to each endpoint of the range of its
angles of support.
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(b) Eachregion R,1 < i < n¥¥ receives nv* query points from every other region R, i # j. These records
are merged so that they are received completely ordered with respect to the key field (an angle).

(c) Each region R,1< i < nv, merges the O(n2¥) ordered query point records it just received with its O(n
1 ordered angle of incidence records that correspond to its hull edges.

(d) Within each region R, 1 < i < nv¥, perform a broadcast within ordered intervals, as determined by
consecutive pairs of angle of incidence records. Each set of ordered query points that arrived from
region R, i #j, now contains information that can be used to decide which consecutive pair of its query
points represents the interval of R's extreme points that needs to be further explored in search of the
endpoints of the tangent lines between R and R. (Properties of angles of incidence, as introduced on
page 39 in Step 4b of the Fixed Subset Division Algorithm, are used.)

(e) The query points are returned to their original regions ordered by angles of support, consecutive
items are compared to determine the appropriate interval, and the second pass of the grouping
operation is performed much as the first, but with the nv* query points sent to each region determined
by the appropriate consecutive pair of points determined at the end of the first pass.

4. Within each region R,1 < i < nv*, determine the minimum slope of a tangent line between R and R,
forj <i (i.e, thoseregionsto the left of R). Let p, be the extreme point of R, that is an endpoint of the
common tangent line. Determine the maximum slope of atangent line between R and R, for j > (i.e.,
those regionsto theright of R). Let p, be the extreme point of R that is an endpoint of the common
tangent line. If p, isto theleft of p,, or p, = p, and the angle open to the top, formed by these two line
segments, is less than 180°, then no points of R, are extreme points of S. Otherwise, those extreme points
of R between p, and p, are extreme points of S. See Figure 1.13.

The running time of the algorithm is given by

T(n) =T'(n) + Sort(n),
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(@) p, isto theleft of P, and the angle open to the top is > 180°. Those extreme points of R, that are
between p, and P, are extreme points of S.



(b) p, isequal to p, and the angle open to the top is> 180°. p, (= P, ) isan extreme point of S,
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(c) p, isequal to P, and the angle open to the top is< 180°. No extreme points of R are extreme points
of S



(d) p, isto the left of p,. No extreme points of R are extreme points of S.

Figure 1.13:
Using p, and p, to determine extreme points.
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where Sort(n) isthe time to sort n items distributed one per processor on a machine of size nin the
partition step, and T'(n) isthe time to perform al but thisfirst step. T'(n) satisfies the recurrence

T'(n) = T'(nY) + Group(n) + Semi(n) + Broad(n) + Elim(1),

where T(nv¥) is the time for the recursive call, Group(n) is the time to perform an appropriate grouping
operation to determine the endpoints of the upper and lower common tangent lines, Semi(n®/) isthe
time to perform a semigroup (associative binary) operation to determine minimum and maximum slopes
in aregion of size n®vX Broad(n®v/) isthe time to perform a broadcast operation within each such
region, and Elim(1) is the time required for each processor to make the final extreme point decision.

1.7 Further Remarks

In this chapter, avariety of models of computation have been defined. The problems that will be solved
in the later chapters of the book have also been introduced, along with the types of inputs that the
problems may have. The concept of describing machine independent parallel algorithms for regular
architectures in terms of abstract data movement operations was introduced, and a variety of these
fundamental data movement operations were discussed. Finally, sample parallel algorithmswere givenin
terms of abstract data movement operations that also introduced fundamental paradigms for solving
problems on regular architectures. The reader may now proceed comfortably to Chapter 2 or Chapter 5.
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2
Fundamental Mesh Algorithms

2.1 Introduction

In this chapter, standard data movement operations and fundamental algorithms are presented for the
mesh computer. All of these algorithms have optimal ©(n) worst-case running times on a mesh of size n2.
In Section 2.2, basic mesh definitions are reviewed. Section 2.3 concentrates on showing that for
problems requiring global communication, a mesh of size n2 must take Q(n) time to solve the problem.
Fundamental mesh algorithms, such as passing information in rows or columns, computing a semigroup
(i.e., associative binary) operation, and determining a parallel prefix, are given in Section 2.4. Section 2.5
presents optimal mesh algorithms to solve problems involving matrices. These problems include
transposition, multiplication, transitive closure, and inverse. Algorithms involving ordered data are
presented in Section 2.6, including algorithms for sorting, performing basic operations within (ordered)
intervals, concurrent reads and writes, and compressing data.

2.2 Definitions

The mesh computer (mesh) of size n2 is a machine with n2 ssimple processors arranged in a square lattice.
To simplify exposition, it is assumed that n =2°, for some integer c. For all i, j O[0,. . .,n - 1], processor P;
E representing the processor in row i and column j, is connected via bidirectional unit-time
communication links to its four neighbors, processors Piﬂ‘j and Pi,jii, assuming they exist. (See Figure

2.1.) Each processor has afixed number of registers (words), each of size Q(log n), and can perform
standard arithmetic and Boolean operations on the contents of these registers in unit time. Each processor
can also send or receive aword of datafrom each of its neighborsin unit time. Each processor contains
its row and column indices, as well as a unique identification register, the contents of which isinitialized
to the processor's row-major index, shuffled row-major index, snake-like index, or proximity order
index, as shown in Figure 2.2. (If necessary, these values can be generated in ©(n¥2) time.)

For some of the problems in this and subsequent mesh chapters, it
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A mesh computer of size n2,



will be convenient to conceptually partition the mesh into submeshes or squares of size S What is meant
by thisisthat the mesh will be completely partitioned into digjoint submeshes (or squares) of size S
where Sis apower of 4. Using this partitioning, the concept of the square of size S containing processor
P iswell-defined.

2.3 Lower Bounds

The communication diameter of a mesh of size n2is ©(n) since any arbitrary pair of processors can
communicate in O(n) time, and some processors require Q(n) time. For instance, information starting at
diagonally opposed corners of the mesh cannot meet in less than n - 1 steps, data from one of these
diagonally opposed processors cannot reach the other processor in less than 2n - 2 steps, information
starting in processors at opposite edges of the mesh cannot meet in less than n/2 steps, and datafrom a
processor on one edge of the mesh cannot reach a processor on the opposite edge of the mesh in less than
n- 1 steps. A problem is said to require global communication if at least one processor must receive
information that might originate in any processor. A lower bound on the worst-case running time of an
algorithm to solve a problem that requires global communication is Q(n). In fact, for many problems that
involve global communication of data, it is easy to devise inputs for which any algorithm to solve the
problem on amesh of size 2 must take Q(n) time. Similarly, alower bound on the running time of
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Figure 2.2:
Indexing schemes for the processors of a mesh.
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an algorithm in which 'distant’ processors (i.e., processors that require Q(n) steps to communicate with
each other) must exchange or combine information is Q(n).

The wire-counting (bisection width) approach can also be used to show that many problems require Q(n)
time on amesh of size n2. For example, sorting or merging require Q (n) time sinceit is possible that al
of the datainitially residing in processorsin columnsO. . . "/, - 1 must be moved to processorsin

columns'/, ... n- 1, and vice versa. Since there are n wires connecting these two sets of processors, then

in order to move n2 data items between these two sets requires Q (n) time. Similar arguments apply to
operations such as matrix transposition and component labeling of graphs.

2.4 Primitive M esh
Algorithms

Fundamental mesh algorithms, such as those presented in this section, will form the foundation of
advanced mesh algorithms that appear |ater in this chapter and throughout the book.

2.4.1 Row and Column Rotations

A frequent situation is that every processor needs to transmit afixed amount of datato be viewed by all
other processors in the same row (column). On amesh of size n2 this can be doneinn - 1 steps,
simultaneously for all processors, asfollows. Initially, all processorsin arow (column) send copies of
their datain both directions. As a processor receives data from neighboring processors, it views the data
and then (in the next step) continues to send it in the direction that it was traveling. Data that reaches
edge processors are viewed and then discarded.

Occasionally, more control is needed over the timing in terms of coordinating when each processor
receives such information. This occurs when row information is being passed around that must be
combined with column information that is also being passed around, and matching pairs of data must
arrive at the appropriate processor at the same time. (Recall that each processor only has a bounded
amount of memory, and hence cannot store all data that passes through it.) One useful variant, called row
(column) rotation, is as follows. Copies of the data from each processor move towards the easternmost
(northernmost) processor of their row (column) in lock-step fashion. Once the data reaches the extreme
processor, the copies of information reverse themselves until they
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reach the westernmost (southernmost) processor of their row (column) where they reverse themselves
again. Notice that at any step, a processor has copies of (and views) at most two sets of data. The
algorithm terminates the step before processors would simultaneously receive copies of their original
datafrom their western (southern) neighbor. This rotation takes exactly 2n - 3 steps.

2.4.2 Passing a Row (Column) Through the Mesh



Suppose that every processor of a mesh of size n2 needs to view a fixed amount of datafrom every
processor of agiven row (column). This can be done in ©(n) time as follows. Rotate all columns (rows)
simultaneously so that a copy of (the required data from) the given row (column) existsin every row
(column) of the mesh. Now, simply rotate all rows (columns) of the mesh simultaneously.

2.4.3 Semigroup Operations, Reporting, and Broadcasting

Suppose that every processor of a mesh of size n2 needs to know the result of applying some semigroup
operation (i.e., an associative binary operation such as minimum, summation, or parity) to n2 pieces of
data distributed one item per processor. The result of applying the function to the data can be computed
and distributed to all processors in ©(n) time by reporting the result to processor P, and then
broadcasting this value to all processors. To report this value to processor Py, first perform arow

rotation for all rows simultaneously, so that in ©(n) time every processor in the first column knows the
result of applying the semigroup operation over al valuesin its row. Using a column rotation in the first
column of the mesh, processor P, can know the result of applying the semigroup operation over the n
row results, which gives processor P, ,the result of applying the semigroup operation over all n2 pieces
of data. To broadcast thisvaueto all processors, smply reverse the process.

Alternately, the result of a semigroup operation could be known to all processors in ©(n) time without
performing areport and broadcast. Simply perform arow rotation simultaneously in all rows so that
every processor knows the result of applying the semigroup operation over the values stored in its row.
Then perform a column rotation simultaneously for all columns so that every processor knows the result
of applying the semigroup operation over the previously computed row values, which is
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the result of applying the semigroup operation over all n2 values. Notice that asymptotically, both
methods finish in optimal ©(n) time.

2.4.4 Parallel Prefix

Using the row-major indexing scheme of a mesh of size n2, suppose processor P, 0<i<n2-1, initialy
contains a;, and that every processor P, isto determinetheith initial prefix a,[0 g O - - - 0 &, where [ is
an associative binary operator. Notice that according to the row-major indexing scheme, processor P; 0 <

I<n2-1,residesinrowj = [i/n]. The solution to this problem can be obtained in ©(n) time by a series of
row and column rotations, as follows. (See Figure 2.3 for an example.)

1. Perform arow rotation so that every processor P; inrow j knows a., U @, O [IT&,.

2. Perform arow rotation so that processor P, .,,0 <] < n- 1, knows the value stored in processor Py y), ;.
1y namely, aj*n N aj*n+ 1 HERS a[(j+1)*n]-1.

3. Perform a column rotation in column O so that processor P, ., 1 <j<n-1, knowsV, =a, U a 0 [T11]

8 .

4. Perform arow rotation in every row j, 0<j <n- 1, to broadcast V; to al processorsin row j so they
may update their value to obtain a, [ a, [1 - - - U &, for every processor P, 0<i<n2-1.



It should be noted that if the datais originally ordered according to some indexing scheme other than
row-major, then Section 2.6.1 will show how to use sorting to put the data into row-major order, so that
parallel prefix can be computed as described, and then how to use sorting to return the values to the
required processors, all without affecting the asymptotic running time of the algorithm.

2.5 Matrix Algorithms
In this section, algorithms are presented that involve n x n matrices mapped onto meshes of size O(n?).
2.5.1 Matrix Transposition

In this section, an optimal ©(n) time algorithm is presented to compute the transpose of an n x n matrix A
= {Aw,,-} , initially stored in amesh
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Figure 2.3:
An example of computing the parallel prefix on amesh of size n2.
The operation [J is taken to be addition (+) in this example.
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of size n2 so that processor P; ; contains element A i The transpose of amatrix A isgiven by A;f:}. = A;;

The algorithm consists of two complimentary phases that are each completed in ©(n) time, as follows.
Denote diagonal processors P; ,1<1i<n, asrouters. For al above-diagonal processors Pi,j, I <j,sendthe

value of Ai,j down to diagonal processor P, ; in lock-step fashion. Each value Ai,j, | < j, reaches diagonal
processor Pj,j Ink=j - steps. As each router Pj,j recelves an Ai,j, it sends the data to the left where it will

move for k=] - i steps, until it reaches bel ow-diagona processor P;, ;. Next, in asimilar fashion all

below-diagonal processors Pi,j, I > j, send their data to the right, where diagonal processor P;, ; routes the
data upwards. Therefore, in ©(n) time every processor Pi,j contains A, ;.

Theorem 2.1 Given an n x n matrix A stored in a natural fashion on a mesh of size n2, the transpose of A
can be computed in O(n) time.

2.5.2 Matrix Multiplication

Given two n x n matrices, A and B, the matrix product C = ABisgivenby ; ; = 5 y_, A:x Bk ;. The
first algorithm of this section shows how to compute C = AB in ©(n) time on amesh of size 4n2. This
algorithm is then modified to compute C = AB in ©(n) time on a mesh of size n2,

Assume that matrix A is stored in the lower-left quadrant, matrix B is stored in the upper-right quadrant,
and that the resultant matrix C isto be constructed in the lower-right quadrant of a mesh of size 4n2, as
shown in Figure 2.4. At time 1, in lock-step fashion all processors containing an element of the first row
of A send their values to the right and all processors containing an element of the first column of B send
their values down. The processor responsible for C,,; can now begin to compute its running sum. At time
2, row 1 of A and column 1 of B continue to move in the same direction, and row 2 of A and column 2 of
B start to move right and down, respectively. In genera, at timei, the it row of A and the ith column of B
start to move right and down, respectively. Each processor that simultaneously receives a piece of data
from a processor to its left and from a processor above computes the product of these two values and
addsit to itsrunning sum. At timei + 1, every processor sends the values received during timei to
neighboring processors in the direction that they were moving. So, at timek, rows1. . . k of Aand
columns 1. .. kof B moveright and down, respectively, where thisis the first such movement for row k
of A and column k of B. Therefore, row n of A and column n of B start moving
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Figure 2.4:
Multiplying matrices on a mesh of size 4n2.

atimen, C, isthelast value determined, and the running sum for C, is completed at time 3n - 2.
Hence, the algorithm runsin ©(n) time on amesh of size 4n2.

The algorithm can be modified to run on amesh of size n2in ©(n) time, as follows. Assume that
processor P, ; initialy contains A, and B;, , and that processor P; . must contain G, at the conclusion of

the algorithm. For all columns, simultaneously perform a column rotation so that processor P; ; contains
By, For al rows, smultaneously perform arow rotation so that processor P, contains A . ;). Now,
follow the previous algorithm (adjusting for the fact that the elements are initially situated so that C,,, is

ready to begin computing its running sum) while substituting a single step of arow and column rotation
for each lock-step movement of arow or column. The elements of A are involved in the row rotation
(viewed as rotating to the left, though, as before, the values are used as they go to the right) and the
elements of B are involved in the column rotation (viewed as rotating up, though, as before, the elements
are used as they go down). Elements of A and B meet at the appropriate processors with the same timing
asin the previous algorithm. The initial row and column rotations take ©(n) time,
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and the previous algorithm requires 3n - 2 steps, so the entire algorithm is complete in ©(n) time. It
should be noted that a similar ©(n) time mesh algorithm for matrix multiplication is possible that avoids
the preprocessing row and column rotations. Such an agorithm is left to the reader.

Theorem 2.2 Given two n x n matrices A and B stored in a mesh of size n2 so that processor P; ) initially
contains Ai,j and Bi,j, the product C = AB can be computed in ©(n) time so that processor Pi,j stores Ci,j.

2.5.3 Transitive Closure



Let G=(V, E) beadirected graph, whereV ={1, ... ,n} isthe set of vertices and E is the set of edges.
Assume G isrepresented by its adjacency matrix A, where A(i, j) is 1 if thereis an edge from vertex i to
vertex j, and is O otherwise. The transitive closure of A, denoted A, isthe n x n matrix such that A (i, j) is
1if thereisapath in G from vertex i to vertex j, and is O otherwise. A" is sometimes called the
connectivity matrix of A. One can obtain A* by multiplying A by itself n times, which would lead to an
inefficient ©(n2) algorithm, or by repeatedly squaring A alogarithmic number of times, which would lead
to a suboptimal ©(nlog n) time algorithm. However, it is possible to compute A* in optimal ©(n) time by
exploiting a modification of Warshall's algorithm. A serial version of Warshall's algorithm [RND77,
Wars62] to compute the transitive closure of Aisgiven in Figure 2.5.

fork==1tondo
fori:=1tondo
forj:=1tondo

A1) = Al ) O[AGLK) O A (k)]

Figure 2.5:
Warshall's algorithm for computing the transitive closure of matrix A.

Inthisalgorithm, A, = A and A, = A*. The interpretation of A(i, j) isquitesimple: A(i, j) is1if thereisa
path from vertex i to
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vertex | using no intermediate vertex greater than k, and is O otherwise. Given this interpretation, the
assignment statement in Warshall's algorithm merely states that there is a path from vertex i to vertex |
using no intermediate vertex greater than k if and only if

1. thereisapath fromi to j using no intermediate vertex greater thank - 1, or

2. thereisapath fromi to k using no intermediate vertex greater than k - 1 and thereisapath from k to
using no intermediate vertex greater than k - 1.

In[VanS8Q], it was shown that if A(i, j) isinitially stored in processor Pi,j, then in ©(n) time A,, can be
computed, where processor P; | contains A.(i, j) when the algorithm terminates. Somewhat remarkably,

this algorithm was presented for the weak cellular automata model. What follows is essentially the
algorithm as presented in [VanS80], modified only slightly to avoid the extra complications introduced
by the cellular automata.

The movement of datain thisalgorithm is very interesting. For al k and i, the value A (i, k) moves away
from processor P; | horizontally inrow i, while for al k and j, the value A(k, j) moves away from

processor Pk,j vertically in column j. This creates a pattern of data movement that looks like
nonoverlapping diamond-shaped waves. The algorithm proceeds so that A(i, j) is computed in processor
Pi,j attime 3k + |k — i| + |k — j| — 2. The movement of the data can be observed by assuming that the

computations have been performed correctly for k - 1 and all values of i and j, and then considering the
case for k and all values of i and j, a discussion of which follows.



To calculate A(,, +), note that A ,(k, k) was "computed” in processor P, at time 3k - 3, and that A(k, k)
= A1(k, K). Hence, A(k, K) is"computed" at timet, = 3k - 2. This value will be passed north, south, east,
and west at time t, + 1. (See Figure 2.6.) At timet, + 1, processors Py ; , P11, Py (+1,@0d P receive
Ak, K) and use it to compute A (k - 1,k), Ak + 1,K), Ak, k+ 1), and A(k, k - 1), respectively. At timet,
+ 2, processors Py .y, Py 11,5 Py 41, @d P, continue to pass copies of Ak, k) to the north, south, east,
and west, respectively. In addition, at timet, + 2, processor P, initiates A(k -1,k) on itsjourney
horizontally in row k - 1, processor P, ., initiates A(k + 1, k) onitsjourney horizontaly in row k + 1,
processor P, ., initiates A(k, k + 1) onitsjourney vertically in column k + 1, and processor Py,
initiates A (k, k - 1) on itsjourney
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vertically in column k - 1. Notice that at time t, + 2 = 3K, processors Py |, Py 12, aNd Piay |41, receive the
values necessary to compute their A, values. Further, at timet,+ d, d > 2, al processors at internal
distance d from P, receive the values required to compute their A values. (Some basic algebra can be

used to show that the processors had computed their own A, ; entries before time t, + d.) In general, at
timet,+ d, d = 2, processors continue to send data received during timet,+ d - 1 in the same direction
they were going. In addition, during this time step, processors of the form P, (P ,,,) initiate the

journey of A(kxd, K) (A(k, kxd)) east and west (north and south). Thus, each entry of A, is computed at
the time claimed.

In this algorithm, no processor ever needs to hold more than a fixed number of entries. Most of these
entries are values that are received by a processor, used to compute a new value, and then propagated
along the direction they were headed to a neighboring processor. Notice that when a processor Pi,j

computes anew value A(i, j), that A(i, j) will supersede A, (i, j), which may therefore be written over.

Theorem 2.3 Given an n x n matrix A stored in a mesh of size n so that processor P;  contains A, , the
transitive closure of A may be computed in ©(n) time so that processor Pi,j knows A; ;.

It is easy to see that this pattern of data movement can be extended to show that any recurrence of the
form

fill, 1) = 9(fica(l, 1), fieal, K, fiealk 1)) (2.1)
or
fili, 1) = 9(fieali, 1), il K), ek, 1)) (2.2)

can be solved for al (i, j) in ©(n) timeif the function g can be computed in O(1) time by asingle
processor, and if (i, j) isinitially stored in processor Pi‘j. Upon termination of the algorithm, f.(i, j) will
be stored in processor P ..



Finally, some natural uses of van Scoy's transitive closure algorithm should be mentioned. The algorithm
can be used to solve the component labeling problem. Suppose that the adjacency matrix A represents an
undirected graph G. Then the connected components of G can be determined in ©(n) time on a mesh of
size n2 by computing A*, as just described, followed by arow rotation so that every processor Pi,j
determines the column index of the first non-zero entry in its row, which will be used as the component
label for vertex i.
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Figure 2.6:
Data movement of the transitive closure algorithm.
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Another application of the generalized transitive closure algorithm isto solve the all shortest path
problem. Suppose that aweight matrix Wisinitially stored one entry per processor on a mesh of size n2
such that processor Pi,j initially contains W(i, j) = 0, which represents the weight of directed edge ;;

(from vertex i to vertex j). Then, the all shortest path matrix W- = W, can be computed in optimal ©(n)
time on amesh of size n2 by following van Scoy's transitive closure algorithm. This results in processor
Pi,j storing W(i, j), which represents the minimum weight of a directed path from vertex i to vertex j.

The reason that van Scoy's algorithm may be applied is that
WL, 1) = min[Wiea(i, ), Wiea(i, K) + We- 1(k, )], (2.3)

which follows the general recurrence given in Equation 2.1. However, notice that a slight modification to
the algorithm is required in order to alow processor Pi,j to store the label of the vertex incident on vertex

I that yields the first edge in aminimal weight path from vertex i to vertex j. Details of this modification
are | eft to the reader. In addition, the problem of modifying this algorithm to alow negative weights, in

which case it is possible for all vertices on a given cycle to have a minimum weight path of -co between

each other, is aso left to the reader.

The optimal @(n) time transitive closure algorithm can also be used in a straightforward fashion to
decide whether or not agraph G, given as an adjacency matrix A, isatree. A tree with n vertices may be
defined as an undirected connected graph with n - 1 edges. The algorithm follows.

1. Determine if G isundirected: In ©(n) timeit can be determined if the graph G is undirected by
deciding whether or not AT = A, as described in Section 2.5.1.

2. Count the number of edgesin G: If the graph is undirected, then a semigroup operation (i.e., an
associative binary operation) can be used to count the number of undirected edgesin G in ©(n) time.

3. Decide whether or not G is connected: The transitive closure algorithm can be used to label the
vertices of G in @(n) time, as described on page 56. Once labeled, a semigroup operation can be used to
decideif all vertices received the same label (i.e., to decide whether or not G is connected).

Since each step of this algorithm takes ©(n) time, the entire algorithm is complete in ©(n) time.
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2.5.4 Matrix Inverse

The intent of this section is to continue with the presentation of mesh algorithms that demonstrate
Interesting movements of data. In this section, algorithms are presented that overlap pipelined data
movements in order to determine the inverse of a matrix. The beginning of this section serves as areview
of some fundamental concepts in linear algebrathat are used to determine the inverse of a matrix. The
reader who is unfamiliar with the linear algebra presented at the beginning of this section may wish to
skip this section or concentrate on the data movements that are presented.

Annxnmatrix Aiscalled nonsingular, or invertible, if and only if there exists an n x n matrix B such
that AB=BA=1,, wherel,= {e,,j} isthen x nidentity matrix definedby g . =1,for1<i<n, and 8, =

0, fori #j. The matrix B iscaled theinverse of A, itisunique, and it istypically denoted as A-L. If no
such inverse matrix exists, then A is called singular, or noninvertible.



Define an elementary row operation on a matrix A to be any one of the
following.

1. Interchange row i and row | of A.

2. Multiply row i of Aby aconstant c# 0. That is, every eIementai,jisrepIaced by cai,j,1<j <n.

3. Add a constant c timesrow i of Atorow j of A. That is, each element  , isreplacedby &, +ca; 1<
k<n.

Gaussian elimination, followed by back-substitution, can often be used to determine the inverse of a
given n x n matrix A = {a\i,j} . This method, which requires ©(n3) time on a serial machine, is described in
Figure 2.7. A sample of thisalgorithm is given in Figure 2.10. Notice that if &, = 0 at the beginning of

phasei in Step 2(a) of the algorithm presented in Figure 2.7, then the algorithm will terminate in order to
avoid division by zero. Unfortunately, this termination only means that the algorithm fails. It does not
necessarily mean that A1 does not exist (i.e., that A issingular). Later in this section, modifications to the
algorithm of Figure 2.7 will be discussed that guarantee to find the inverse of a matrix, if one exists.

To implement the algorithm given in Figure 2.7 on a mesh of size n2, a decision needs to be made as to
how and where to store the n x 2n augmented matrix [A, | I.] which will, through the use of elementary
n

row operations, be transformed into [r1,,|.4,, 1, |- Theinput to the matrix

LERS 1]
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1. Form the augmented matrix [A,,!1,].

2. Perform elementary row operationsto transform [A,, ||n] = [I]AZ] ]by
n o

TLETL

straightforward Gaussian elimination, as follows.
(a) At phasei,1 <i<n-1, dothefollowing.

i 1f & . = O, then terminate the algorithm to avoid division by 0.

Ii. Otherwise, al rowsj, j > i, userow i to eliminate (i.e., set to zero) their
entry in column i. Specificaly, foralj,i<j<n,seta, « &  -aiezit

(b) Inevery row i, sty ai,j/ar, foral j,1 <j<n. Thiscreatesthe
augmented matrix, as shown on the right side of the arrow in Figure 2.8.

(c) Thefinal step of this agorithm continuesto rely on elementary row
operations. Back-substitution uses elementary row operations to transform the
left half of the augmented matrix (which is currently in the form of an upper-
triangular matrix) into the identity matrix, as follows. (See Figure 2.9.) At phase
I,2<i<n, al rowsj,1<j<i,userow i toeliminate their entry in columni.
Specificaly, foral j, 1<j<i,seta, « & - aipzit



Figure 2.7:
Using Gaussian elimination, followed by back-substitution,
to determine the inverse of an n x n matrix A = {ai,j}.

1
ook
A ‘ I coein t | C
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Figure 2.8:
Transform A to an upper-triangular matrix.
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Figure 2.9:

Transform upper-triangular matrix to identity matrix.

inverse problem on amesh of sizenzisan n x n matrix A= {ai,j}, stored so that processor Pi,j

contains & . The problem requires the resultant matrix A= = {a; 1}, if it exists, be stored so that

processor P, ; containsal. Let |, = {qu}. Two representations for embedding [A, | l.] in amesh of
n

size n2 follow.

1. Let the n x n mesh simulate an n x 2n mesh, with each processor being responsible for two
consecutive column entries of the augmented matrix. That is, given G, , = [An, | ] = {gi,j}, let

n n
processor Pi,j be responsible for g;, 21 and g;, 2 A disadvantage of this representation is that the original

matrix must be packed into the appropriate region, and the resultant inverse matrix must be unpacked.
Although packing and unpacking can be done so as not to affect the asymptotic running times of the
algorithms, these extra steps may be avoided by using the following representation.

2. Let processor Pi,j be responsible for &, and 8, When the algorithm terminates, processor Pi,j will
contain u;_J’ . Notice that this representation initially superimposes matrix A with identity matrix I.

The second representation will be used in the mesh algorithms described in this section, asit avoids
packing and unpacking, and also allows for the algorithms to be presented in terms of elementary row
operations performed on A, with the understanding that the equivalent operations are performed on I.



Details of a straightforward implementation of the Gaussian elimination stage of the algorithm presented
in Figure 2.7 for amesh of size n2 are given in Figure 2.11. The assumption is made in the algorithm
presented in Figure 2.11 that the elements of | are moved in lock-step with the elements of A, and
equivalent operations are performed on these entries. Further, the details of the back-substitution stage of
the
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| 2 3 | 0 0
- . 4 0 i 0 Subtract 2 times the first row
- from the second row to obtain:
1 0 B 0 0 I
| 2 3 I 0 0

Subtract | times the first row
0 | 3 -2 I 0 from the third row to obtain:
I 0 B 0 0 I
| 2 3 I 0 i

Add 2 times the second row
0 | -3 -2 1 0 to the third to obtain:
o 2 5 -1 0 |
| 2 1 1 0 0

Multiply the third row by -1
0 | -3 -2 | 0 o obtain:
0 0 I 5 2 l
1 2 3 ! 0 0
0 I 3 -2 1 0
Ll 0 i 5 2 I

A has been transformed to an upper-triangular matrix.
(The example is continued on the next page.)
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(continued from previous page)
Transform the upper-triangular matrix A to the identity matrix.



I 2 3 1 i Q
0 I 3 " | 0 Add -2 times the second row to
- the first row to obtain:
] (1] 1 5 2z |
] L] 4 5 -2 {]
0 I 3 3 1 0 Add 3 times the third row to
the second row to obtain:
] 0 | 5 -2 -1
1 ] Q 5 -2 ]
Add -9 times the third row to
1] ] 0 13 5 -3
the first row (o obtain:
0 0 5 5 -2 I
| i] 0 =40 16 q
L] 1 ] 13 5 -3
L] 1] 5 2 1
I A
3
Figure 2.10:

Sample of Gaussian elimination followed by
back-substitution to determine the inverse of matrix A3x3.
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algorithm have been omitted since they are similar to the Gaussian elimination stage. At the conclusion
of the entire algorithm, including the back-substitution, A will be reduced to the identity matrix and the
initial identity matrix will have been transformed to A-1. Notice that the mesh agorithm given in Figure
2.11 finishes in ©(n3) time, which is the same as the time it takes to complete the algorithm of Figure 2.7
when implemented on a serial machine. Improvements to the mesh algorithm are now discussed.



By incorporating pipelining into the mesh algorithm of Figure 2.11, the running time can be reduced to ©
(n2). Thisis done by noticing that there is no need to wait for the ith row to be completely processed in
order to initiate computations involving the (i + 1)¥ row. Pipelining may be used to move the rows of
matrix A through the mesh, while making sure that the values arrive in the required sequence.
Specifically, computationsinvolving row i + 1 may begin as soon asrow i + 2 has completed its
computations that involve row i.

In order to further reduce the running time of the mesh algorithm given in Figure 2.11, pipelining must
occur not only row-wise (vertically), as just described, but within each row (horizontally). Horizontal
pipelining will be used to avoid the delay previously incurred in waiting for arow to complete all of its
computations before sending data to the next row. This creates awave-like movement of data, not unlike
the data movement associated with the transitive closure algorithm presented in Section 2.5.3. The
algorithm is presented in Figure 2.12. (Again, the algorithm is described with respect to the processors
operating on matrix A, where it is understood that the equivalent operations are performed by the
processors on matrix 1.) These final modifications to the mesh algorithm of Figure 2.11 produce an
optimal ©(n) time mesh implementation of the algorithm given in Figure 2.7. (It should be noted that this
algorithm is conceptually similar to the systolic array algorithms developed in [GeKu81] for
triangularizing a matrix.)

Theorem 2.4 Givenann x n matrix A = {ai,j} stored on a mesh of size n2 so that processor Pi,j contains
&, the inverse of A can be determined by the method of Gaussian elimination, followed by back-
substitution, in ®(n) time so that processor Pi,j stores;:r'_j, if the method produces the inverse.

Certain numerical stability issues have not been considered in this section. Throughout, it has been

assumed that either an exact inverse of A exists, or that the inverse of A does not exist. That is, the
elements
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{ Perform Gaussian elimination to transform A into an upper-triangular matrix.}

fori;=1ton-1do

{ Initiate the elimination process based on row i.} processor P; . terminates the algorithm if &
0.

forj:=i + 1tondo

{Userow i to perform elimination on row j. Note that a copy of row i currently existsin
row j - 1 of the mesh.}

In unit time, send a copy of the it row of Afrom row j - 1 of the mesh to row j of the mesh.
processor P; . computes row j's multiplier, M = g /a; ..
for k:=i tondo

processor P; | setsa |, — &, - Ma, k



Send M from processor P; , to processor P;, 1.

endfor
endfor

endfor
{ Perform back-substitution to finish transformation of A - |.} forall i do
forj:=itondo
processor Pi,j sends a copy of a; . to processor Pi,j+1
processor Pi,j Sets g ai,j/ai‘i

end forall

Figure 2.11:
Straightforward mesh implementation of a Gaussian elimination algorithm for finding the inverse of a matrix.
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1. Attime 3i - 2, processor P; . initiates computations involving element a; .

(@) If &, =0, then processor P; . broadcasts a'halt’ message to all processors, and the algorithm
terminates. Otherwise, the algorithm continues.

(b) Processor P; .. sends a copy of a . to processors P, ., and P, ;.
(c) Processor P setsa; . « 1.

2. When any processor Pi,j receives a data value, call it W, from processor Pi,j _1, and does not
receive a data value from processor P, _; j» processor P; | performs the following.

(a) Update &, by setting 8, - atjAN.
(b) Send an updated copy of &, to processor P; vy and a copy of W to processor Pi,jﬂ.

3. When any processor Pi,j receives adata value, cal it N, from processor P; 4y the following is
performed.

(a) If processor Pi‘j simultaneously received a piece of data, call it W, from processor Pi,j_l, then
processor Pi,j will perform the following.

I. Update & ; by setting &, — & - NW.



ii. Send a copy of N to processor P, w1y and a copy of W to processor Pi,jﬂ.

(b) If processor Pi,j does not simultaneously receive a piece of data from processor P; 1 then
processor Pi,j will perform the following.

i. Determine M = ai,j/N, the multiplicative constant to be used by row i in the Gaussian
elimination.

ii. Seta,; — 0.
iii. Send a copy of M to processor Pi,jﬂ, and a copy of N to processor P; vy

4. At time 3n- 1, back-substitution begins. Thisis similar to the Gaussian elimination given in Steps
1-3.

Figure 2.12:
An optimal mesh agorithm for using Gaussian elimination followed
by backsubstitution to find the inverse of an n x n matrix A = {ai,j} :
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of A have been assumed to be taken over afinite field. However, even with these restrictions, it is easy to
create matrices for which an inverse exists, and for which the method of finding the inverse that is given
in Figure 2.7 will falil.

To avoid asituation in which the inverse of amatrix A exists, and the method described in Figure 2.7
failsto find A-1, pivoting may be used to guarantee that for an invertible matrix over afinitefield, the
inverse will always be determined. Quite simply, pivoting deals with the situation in which at the
beginning of a phase that will perform computations with row i, entry & . = 0. The algorithm can be

modified to incorporate pivoting as follows. If & . = O at the beginning of the phase concerned with row i,
then row j and row i areinterchanged, wherei <j < n s chosen to be the smallest value such that g . # 0.
If no such j exists, then the algorithm halts with the assurance that no inverse exists.

This modification can be incorporated into the mesh implementation given in Figure 2.12 and still finish
in optimal ©(n) time. A sketch of this modification is now given, with the details |eft to the reader.
Suppose that at time 3i - 2, processor P, . detectsthat a; . = 0. At this point, processor P, . initiates a

message that will be passed down column i to search for the first nonzero entry g . Notice that if such a]

isfound, then all entriesin column i between row i and row | are necessarily zero, whileif such aj does
not exist, then processor P, - may broadcast a message to all processorsindicating that the original

matrix is singular. Assuming that such aj isfound, row j is'bubbled-up' to row i in awave-like fashion
that incorporates vertical and horizontal pipelining (starting with row j - 1 and ending with row i, each
row k is moved to row k + 1 as they detect row j moving through them). While row j is being bubbled-up,
it also initiates the Gaussian elimination of the column entries under it, following the previous algorithm.
Finally, it should be noted that when processor P; . detectsthat a; . = 0, it simply sends out aflag alerting



the other processors of the situation, instead of sending out data. Notice that this does not impede the
start of subsequent phases of the algorithm.

Corollary 25 Givenann x n matrix A = {ai,j} stored on a mesh of size n2 so that processor Pi,j contains
&, the inverse of A can be determined by the method of Gaussian elimination with pivoting, followed by
back-substitution, in @(n) time so that processor Pi,j stores;:r'_j, if Aexists. If A2 does not exist, then all
processors will be so informed. -
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2.6 AlgorithmsInvolving Ordered
Data

Besides organizing datain rows or columns, it is often advantageous to have the data ordered with
respect to alinear ordering of the processors. (For sample orderings of the mesh processors, the reader is
referred to Figure 2.2.) The snake-like ordering has been popular for mesh algorithms since it has the
useful property that processors with consecutive numbers in the ordering are adjacent in the mesh. The
shuffled row-major ordering has also been popular for mesh algorithms since it has the property that the
first quarter of the processors form one quadrant, the next quarter form another quadrant, etc., with this
property holding recursively within each quadrant. This property of shuffled row-major ordering is quite
useful for implementing recursive divide-and-conquer algorithms on a mesh. Proximity ordering
combines the advantages of the snake-like and shuffled row-major orderings, and will be used in Chapter
4 in order to facilitate a more cohesive explanation of some sophisticated algorithms. Since the proximity
ordering requires additional overhead to compute the indices, it will not be used in the algorithms
presented in this chapter or in Chapter 3.

In Section 2.6.1, optimal mesh algorithms are given for sorting data into any predefined linear ordering
of the processors. Sorting is often used to place datainto ordered intervals, i.e., digoint consecutive
sequences of itemsin the sorted order. In Section 2.6.2, the notion of row and column rotationsis
generalized to the notion of rotating data within ordered intervals. In Section 2.6.3, an optimal mesh
algorithm is given to perform an associative binary operation within every ordered interval. Section 2.6.4
presents mesh implementations of concurrent read and concurrent write. The implementations of these
operations are based on being able to efficiently sort data on the mesh. Section 2.6.5 aso uses sorting as
afundamental operation. This section presents an optimal algorithm to compress distinct elementsinto a
section of the mesh where optimal interprocessor communication will be possible. Finally, it should be
noted that many of the fundamental grouping operations, which will be introduced in Chapter 4, are
based on sorting datainto ordered intervals.

2.6.1 Sorting

It iswell known that comparison-based sorting of n2 elements on a serial machine requires Q(n2log n)
time [CLR92]. Thompson and Kung [ ThKu77] have shown that n2 elements, distributed one element per
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Figure 2.13:
A linear array of size n with input from the left and output to the right.

processor on a mesh of size n2, can be sorted in ©(n) time by using a recursive merging procedure that
adapts the odd-even transposition sort. They aso noted that any algorithm that sorts n2 elementsin ©(n)
time on amesh of size n, for some processor ordering R, can be used to sort n2 elementsin @(n) time for
any other processor ordering R', given the following constraints. Every processor i O R (i.e., every
processor at position i with respect to processor ordering R) must be able to determine, in ©(n) time, the
processor index 1(i) O R, where processor 11(i) [I R corresponds to processor i [ R'. For example,
referring back to Figure 2.2, if Risrow-major ordering and R’ is shuffled row-major ordering, then
processor i must determine 11(i) as follows.
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Sorting with respect to R may be accomplished as follows. First, sort the data with respect to R. Next,
determine for each processor i [1 R, the aforementioned index 1(i) [ R. Finally, re-sort the data with
respect to R, using the 11(i) values as keys. Notice that the reordering can be accomplished in ©(n) time if
each processor can determine its position in each ordering in ©(n) time (details | eft to the reader). In
practice, this reordering can usually be carried out by simpler operations such as row and column
rotations.

Nassimi and Sahni [NaSa79] showed that bitonic sort [Batc68] can be implemented to sort n2 elementsin

©(n) time on amesh. Much work has been done to reduce the high order coefficients of mesh sorting
algorithms, including [KuHi83, M SS86, ScSe89, SSM 89, ScSh86b], to name afew. In fact, an algorithm
Is presented in [ScSh86b] that is optimal including the high order coefficient.

Consider alinear array of n processors, in which dataitemsd,, d,, . . ., d, areinput from the left and

results are output to the right, as shown in Figure 2.13. The input data may be efficiently sorted, such that
the ith processor contains the ith smallest value, by allowing the
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processors to i) view the dataas it passes from left to right and ii) retain the minimum dataitem
encountered. The data can then be output in nonincreasing order by performing a series of n lockstep
shifts to the right. Each processor initializes both its min-reg and transfer-reg registers to +c. During
timestept, 1 <t< 2n- 1, thefollowing operations are performed. (Refer to Figure 2.14.)

1. Processor P, receivesinput dataitemd, 1<t<n.

2. Processor P, ; sends a copy of its transfer-reg register to processor
Py |t/in+ 1))t =n—1)+1<i<|(t—1)/2]

3. Every processor F;, |t/n](t —n) < i < |(t = 1)/2], comparesthe dataitem just received to the
minimum value of the data it has seen thusfar, which is stored in its min-reg register, and places the
minimum of these two valuesin min-reg and the maximum of these two valuesin transfer-reg.



Notice that at time n, the final piece of input dataisinput to and viewed by processor P, . Processor P,
sendsits final message to processor P; at timen + 1. In general, afinal message is sent from processor P, .
,toprocessor P, attimen+i,1<i<n-1 Therefore, after step 2n - 1 iscomplete, the array contains the
sorted set of data with respect to the indexing of the processors, as shown in Figure 2.14(j), which may
now be output (in nonincreasing order) by a series of n lockstep right shifts of thisfinal ordered set of
data.

Consider the problem of sorting n data items, arbitrarily distributed one per processor on a 1-dimensional
mesh of size n. Upon termination of the algorithm, assume that the data is to be distributed one per
processor such that the item contained in processor P; ; isless than or equal to the item contained in

processor P, 1<i<n- 1. Thatis, the dataisto be sorted into nondecreasing order with respect to the
indexing of the processors. Notice that a ssmulation of the first 2n - 1 steps of the linear array algorithm,
as just described, will suffice. This simulation is straightforward. In addition to the min-reg and transfer-
reg registers, each processor a'so maintains an input-reg register, which is used to track the movement of
the input dataitems as discussed in the linear array algorithm. Initially, input dataitem d, residesin the
input-reg register of processor P, ;, 1 <i < n. Thealgorithmisidentical to the linear array algorithm,
with the exception that processor P, gets the input data item from its input-reg register instead of from
the external environment, and that at the end of every step, every processor P; sends

Page 71

514271 L

R

(@) Initial configuration.

|_[ |
L -
L |
Y
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(j) Configuration at the completion of timet = 9.

Figure 2.14:

Sorting dataon alinear array of size 5 with input from the left.
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acopy of it input-reg register to processor P; ;, 1<i < n- 1, which setsitsinput-reg register to this new
value. See Figure 2.15. That is, at the end of every step, the remaining, unprocessed, input data items, are
shifted to the left in lockstep fashion so as to simulate the linear array input to processor P, from the

external environment. Therefore, the running time is again ©(n), which is optimal in the worst case.

Notice that this rotation-based sorting algorithm is the parallel analogue of selection sort. That is,
processor P, considers all n pieces of data and retains the minimum. Processor P, considers the

remaining n - 1 pieces of data and retains the minimum of these. In general, processor P; considersthen -

I largest elements and retains the minimum.

Lemma 2.6 Given n pieces of data arbitrarily distributed one per processor on a 1-dimensional mesh of
size n, in optimal @(n) time the data can be sorted by a rotation-based algorithm.



An aternative method, known as odd-even transposition sort, can also be used to give aworst-case
asymptotically optimal algorithm to sort data on a 1-dimensional mesh. Thisalgorithm is, in fact, the
parallel analogue of bubblesort, and is used as the base case in 2-dimensional mesh sorting algorithms
presented later in this section. Given n pieces of data stored one piece per processor on a 1-dimensional

mesh of size n, in odd-even transposition sort, every odd numbered processor P, ;, 1< i <, aternately
compares its data with the datain processor P, ,, 1 <i </, and datain processor P,i, 1<i <", 1. Inthe
first step, every odd numbered processor P, , receives the data element stored in processor P, ,. It

compares the keys of the data elements, keeping the larger and returning the smaller. In the second step,
every odd numbered processor P, , receives the data element stored in processor P,,, compares the keys

of the two data elements, keeps the smaller and returns the larger. This alternates for atotal of n
iterations.

The correctness of the algorithm [Habe72] is based on the fact that after | pairs of comparisons no
element ismore than n - 2i positions from itsfinal destination. Therefore, "/, pairs of comparisons are
sufficient to sort the n data el ements.

Lemma 2.7 Given n pieces of data arbitrarily distributed one per processor on a 1-dimensional mesh of
size n, in ©(n) time the data can be sorted by odd-even transposition sort.
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(c) Configuration at the completion of timet = 2.
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(f) Configuration at the completion of timet = 5.
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() Configuration at the completion of timet = 9.

Figure 2.15:
Sorting data on a 1-dimensional mesh of size 5.
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Notice that by using the snake-like ordering of processors, a 2 dimensional mesh of size n2 can be viewed
as a l-dimensional mesh of size n2. Therefore, given 1 piece of data per processor on a 2-dimensional
mesh of size n2, the odd-even transposition sort can be used to sort these n2 items in ©(n?) time. Although
thisis an improvement over the Q(n2log n) serial comparison-based sorting bound, it is quite far from the
Q(n) lower bound discussed in Section 2.4 for a 2-dimensional mesh of size n2.



Thompson and Kung [ ThKu77] present an algorithm to sort n2 elements, distributed one per processor on
a 2-dimensional mesh of size n2, in asymptotically optimal ©(n) time. This algorithm, given in Theorem
2.9, isessentially a mergesort algorithm that exploits Batcher's odd-even merge technique. Lemma 2.8
shows how Batcher's odd-even merge algorithm can be used to merge the concatenation of two ordered
sequences, distributed in anatural linear fashion one element per processor on a 1-dimensional mesh of
sizen, in asymptotically optimal ©(n) time. The techniques and results of Lemma 2.7 and Lemma 2.8
will be used in the asymptotically optimal 2-dimensional mesh sorting algorithm that is presented in
Theorem 2.9.

L emma 2.8 Given the concatenation of two ordered sequences, distributed in a natural linear fashion
one element per processor on a 1-dimensional mesh of size n, the elements may be merged by Batcher's
odd-even merge algorithmin ©(n) time.

Proof. Given the concatenation of two sorted sequences, say {u} and {v}, each of length j = 21,
distributed one element per processor on a 1-dimensional mesh of size n = 2% so that processor P,
contains u; and processor P, ., containsv;, 1 <i </, the datamay be merged into sorted order by
Batcher's odd-even merge, as follows.

(1) Unshuffle the even and odd terms to form

(a) odd sequences{uy, Us,. .., U} and {vy, vs,. . ., Vi 1}, concatenated and stored one element per
processor in the first "/, processors, and

(b) even sequences{ Uy, Uy,. . ., U} and {V,, v,,. . ., i}, concatenated and stored one element per
processor in the last "/, processors.

(2) Recursively merge the odd and even sequencesin paralel, toyield {o} and {e}, respectively, the
concatenation of which is stored one element per processor.
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(3) Shuffle the odd and even sequences back together, so that the sequence {f} ={0, e, 05, €,....,0, 8}
Is stored in alinear fashion, one element per processor.

(4) Perform a comparison-interchange between f, and f,,,, 1 =2,4,..., 2] - 2, sothat if f; < f;,,, the
elements remain in their current position, whileif f; > f;, ;, the elements are swapped.

Figure 2.16 shows an example of odd-even merge for a 1-dimensional mesh. The proof of correctness of
the algorithm can be found in the appendix of [Batc81] and relies on a straightforward counting
argument. Of primary importance, is showing that after Step (3) of the algorithm, no element is more
than one position from its final destination, and that Step (4) will properly correct any such problems.

Step (1) of the algorithm can be complete in ©(n) time since elements just march towards their
destinations. No processor is ever required to store more than a small fixed number of additional records
(one passing through from left to right and one from right to left). Step (3) isjust the inverse of Step (1)
and is also completein ©(n) time. Step (4) requires O(1) time, since al comparison-interchange
operations are digoint and can be done in parallel. Therefore, the running time of the algorithm obeys the
recurrence T(n) = T(n/2) + ©(n), which is ©(n).



An asymptotically optimal ©(n) time algorithm from [ThKu77] is now presented that will sort n2
elements on a (2-dimensional) mesh of size n2. The algorithm is based on the techniques and results
presented in the previous two lemmas.

Theorem 2.9 Given n2 pieces of data distributed one piece per processor on a mesh of size n2, in @(n)
time the data can be sorted.

Proof. The algorithm follows a standard bottom-up recursive mergesort strategy. Therefore, as with any
mergesort, the crucial step to describe is the merge step. The mergesort itself smply consists of merging
runs of length 1 to create ordered runs of length 2, then merging ordered runs of length 2 to create
ordered runs of length 4, and so on until two ordered runs, each containing half of the elements, are
merged to form the sorted list.

Given two sorted lists, the maor steps of the merge operation are similar to the steps given in the 1-
dimensional odd-even merge agorithm of Lemma 2.8, and are as follows.

1. Unshuffle
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Imitial data:

1 4 5 7 1] 2 3 6
o1y w2y wid wd) vy w2y vi3)  wid)

Unshuffle array putting odd terms to left, even terms to right:

1 5 0 3 4 7 2 a6
u(l)  w3) vl vi3) w2 ud) w2 vid)

Recursively merge even and odd indexed terms:
0 1 3 5 2 4 ] 7
ofl) of2) ofd) ofd4) e(l) e2) ed) ed)

Shuffle:
{ 2 | 4 3 6 5 7
ofl) ell) oi2) e2) o) ed) o4 o4

Comparison-Interchange e(i) with o{i + 1):
0 | 2 3 4 5 6 7
1) x(2) x3) x4 x5 x(6) (7 x(8)

Figure 2.16:
Merging the concatenation of u and v into x on a 1-dimensional mesh by odd-even merge.
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2. Recursively merge
3. Shuffle

4. Comparison-Interchange

Define M(j, k, s) to be the algorithm for merging 2s digoint arrays, each of sizej/sx k/2,inaj x k
submesh, where |, k, and s are all powers of 2, and the elements of the arrays are ordered by the snake-
like indexing scheme. Notice that M(j,2, s) can be performed by using a 1-dimensional sorting algorithm

with respect to the snake-like indexing of the 2j elementsin the x 2 array. The general algorithm for M
(J, k, s) can be expressed as follows (see Figure 2.17).

1. Unshuffle the arrays:

() Perform a single interchange on even rowsiif j > s, so that the columns contain either all even or
al odd indexed elements. If | = s, then do nothing since the columns are already segregated as such.

(b) Unshuffle all rows, as described in Lemma 2.8, so that each column has either all even or all odd
indexed terms from the original arrays.

2. Recursively merge by calling M(j, k/2, s) on each j x k/2 half of the mesh.

3. Shuffle the arrays by performing the inverse operations of Step 1 in reverse order:
() Shuffle all rows.
(b) Perform a single interchange on even rowsiif j > s.

4. Viewing thej x k mesh as a 1-dimensional mesh of size jk, defined by the snake-like indexing scheme,
perform the first 2s- 1 parallel comparison-interchange steps of the odd-even transposition sort, as
described in Lemma 2.7.

The proof of correctness is demonstrated by use of the O-1 principle [Knut73], which states that if a
network sorts all sequences of O'sand 1's, then it will sort any arbitrary sequence of elements chosen
from alinearly ordered set. Therefore, assume that all inputs to the merge algorithm are O'sand 1's. After
unshuffling, there may be as many as 2s more O's on the left half as on the right half of the | x k mesh.
After
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Merging 4 arrays with odd-even merge on a mesh of size 16.
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recursively merging each half of the mesh and shuffling the data back together, no element is more than
2s - 1 positions (in snake-like order) from its destination. Further, the first 2s - 1 steps of an odd-even
transposition sort (in snake-like order) will suffice to order these misplaced elements in the resulting

array.

Let T(j, k, s) be the time required by the algorithm M(j, k, s). The base case of the recursion is the column-
based (i.e., 1-dimensional) sorting routine M(j, 2, s), which has running time T(j, 2, s) = O(j). Fork> 2, T
(,k s =0k + s) + T(j, k/2, ), where O(k + s) isthe time required for the shuffle, unshuffle, and
comparison-interchange steps, and T(j, k/2, ) isthe time required for the recursive call. Therefore, T(j, k,
s)=0( + k+ dogk + s).



To use the merge algorithm to sort, let s = 2 and define the time to sort amesh of sizentobe§n, n) =S
(n/2, n/2) + T(n, n, 2), which is O(n). Since data may be initially distributed so that the Q(n) lower bound
of Section 2.4 holds, the ©(n) time algorithm just presented to sort n2 items, distributed one item per
processor on amesh of sizen, isoptimal. -

Corollary 2.10 Given n2 pieces of data, distributed one piece per processor on a mesh of size n2, and
some O(n) time computable index function g that assigns to each processor a unique index, wheregis
known to all processors, the data can be sorted according to thisindex function in ©(n) time.

Proof. Sort the data into snake-like order by the algorithm of Theorem 2.9, so that each processor P,
contains the ith element of the data set in avariable caled y. Each processor P, computesin O(n) time the

value x = g(i), and creates arecord (X, y). Now, sort these records with x as the key by the algorithm of
Theorem 2.9. -

2.6.2 Rotating Data within Intervals

Suppose each processor on a mesh of size N2 contains arecord consisting of akey and data, and suppose
that all processors with the same key reside in a contiguous sequence of processors (i.e., form an ordered
interval) with respect to the snake-like ordering. If it is known that there are no more than D processors
in any oneinterval, then in ©(D) time all processors can view a piece of datafrom all other processorsin
itsinterval. The datais rotated within each interval asfollows. First, using snake-like indexing, each
processor P; checks the keys of its neighbors
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P, ,and P, ,,, assuming they exist, to determineiif it isthe first or last processor initsinterval. Then the

datais rotated similar to arow rotation, with each processor passing data to adjacent processors, where
the first processor with a given key acts just as the westernmost processor of arow, and the last processor
with agiven key acts just as the easternmost processor of arow. Notice that the data may traverse more
than asingle row. This operation is most useful in situations where it is known apriori that D = O(n). For
situations where D islarge and the data rotation is used to compute an associative binary operation
within intervals, it will be more efficient to use one of the algorithms defined later in this section.

2.6.3 Semigroup Computation within Intervals

Suppose each processor on a mesh of size n2 contains arecord consisting of akey and data, and suppose
that all processors with the same key form an ordered interval in the snake-like ordering. Furthermore,
suppose that every processor needs to know the result of applying a semigroup operation (i.e., an
associative binary operation such as minimum, summation, or parity) over the pieces of datain its
ordered interval. If datais rotated in snake-like order within each interval, as described in the previous
section, the algorithm has a worst-case running time of ©(n?). In order to compute a semigroup operation
within ordered intervals in ©(n) time, the following algorithm can be performed (snake-like indexing of
the processors is assumed).



1. For every processor P, examine the key field of the data stored in processors P, ;and P, , ;. If
processor P; is awesternmost or easternmost processor in its row, and processor P, _; stores the same key,

then processor P; is marked as a pre-connecting processor. If processor P; is awesternmost or
easternmost processor in itsrow, and processor P, ., stores the same key, then processor P; is marked as
a post-connecting processor.

2. Perform arow rotation so that every processor knows whether or not
(a) its ordered interval is completely contained in its row,

(b) its ordered interval continues onto the next row (i.e., there is a post-connecting processor in its
row with the same label), or
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(c) its ordered interval was continued from the previous row (i.e., there is a pre-connecting processor
in its row with the same labdl).

3. Perform arow rotation so that every processor knows the result of computing the semigroup operation
over all datawith the samekey initsrow (i.e., initsrow restricted ordered interval).

4. Every pre-connecting processor (post-connecting processor) P; sends its restricted row result to
processor P; ; (P, .,) if processor P; isin arow for which there is not a post-connecting processor (pre-
connecting processor) with its key.

5. Perform arow rotation so that the values just transmitted are absorbed into the semigroup computation
of every processor in the row-restricted ordered interval of the processor(s) receiving data.

6. Perform a column rotation, where every processor in arow with both pre- and post-connecting
processors for its key, obtains and absorbs the running values from processors of a similar nature with its
key. (This step serves to combine results among neighboring complete rows storing the same key.)

7. Every pre-connecting processor (post-connecting processor) Pi, sends the final result for its key to
processor P; (P, .,) if processor P, , (P, ,,) isin arow for which there are not both pre- and post-

connecting processors for its key.

8. Perform afinal row rotation to distribute the result in row restricted ordered intervals for which either
apre- or post-connecting processor exists, but not both.

Since the semigroup computation within intervals is compl eted after a fixed number of row and column
rotations, the time of the algorithm is ©(n), which is optimal. It should be noted that several of the row
operations could be combined, but this would only affect the running time by a multiplicative constant.

2.6.4 Concurrent Read and Concurrent Write

Two other common data movement operations for the mesh are concurrent read and concurrent write,
also known as random access read and random access write, respectively. These operations were
described in Section 1.5 on page 22.
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Concurrent read and concurrent write are used to allow the mesh to simul ate the concurrent read and
concurrent write capabilities of a Concurrent Read, Concurrent Write Parallel Random Access Machine
(CRCW PRAM), where multiple processors are permitted to simultaneously read a value associated with
agiven key (concurrent read), and multiple processors are permitted to simultaneously attempt to update
the value associated with a given key (concurrent write). In the case of multiple writes, only one
processor succeeds, according to some tie-breaking scheme such as minimum data value.

Algorithms for restricted versions of concurrent read and concurrent write were presented in [NaSa81].
In this section, significantly different algorithms are given for more general versions of these operations.
In order to maintain consistency during concurrent read and concurrent write operations, it is assumed
that thereis at most one master record per key, where every processor maintains no more than some
fixed number of master records. In a concurrent read, every processor generates no more than some fixed
number of request records, where each request record specifies akey that is used to identify the master
record that the processor wishes to receive information about. In a concurrent write, every processor
generates no more than some fixed number of update records, where each update record includes the
key, field specification, and data corresponding to the master record it wishes to update. It should be
noted that for many applications, a processor will maintain master records and also generate request or
update records. A detailed description of a concurrent read is given for the mesh followed by a detained
mesh description of a concurrent write.

Concurrent Read

In aconcurrent read, every processor creates no more than some fixed number of master records, where
each master record consists of a key, the data associated with the key, and some bookkeeping
information. In a concurrent read, the purpose of the master records is to make the data associated with
every unique key available to any processor that might want to read it. Every processor also creates no
more than some fixed number of request records, each of which specifies the key that is associated with
the data it wishesto receive. Unlike the master records, multiple request records can specify the same
key. If aprocessor generates a request record for which there is no master record, then at the end of the
operation it will receive anull message corresponding to that request. An implementation of a concurrent
read in terms of fundamental data movement operations on a mesh of size n2 follows.
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1. All processors create the same fixed number, call it M, of master records corresponding to those keys
for which the processor is responsible. Each record contains the key and associated data, as well as the
ID (i.e., snake-like index) of the processor creating the record. Some or all of the master records created
by a processor may be ‘dummy' records, so as to balance the number of items per processor in subsequent
sort steps. Notice that since there is only one master record maintained for each key, akey value may be
represented by at most one master record somewhere in the mesh.

2. All processors create the same fixed number, call it R, of request records, which contain the desired
key, aswell asthe ID of the processor creating the record. Some or al request records created by each
processor may be ‘dummy’' records, so as to balance the number of items per processor in subsequent sort

steps.



3. Sort al (M + R) * n2 master and request records together into snake-like order by key, where tiesare
broken in favor of master records, and ties between request records are broken arbitrarily.

4. By performing a broadcast operation within ordered intervals with respect to keys, every request
record will receive a copy of the data it desires.

5. Sort the (M + R) * n2 master and request records by the snake-like index of the processor that
originally created them (i.e.,, by the ID field) so that they are returned to the initiating processors. Notice
that the master records are not conceptually needed for the sort step, but are used so as to balance the
number of itemsin each processor during this step. The master records are discarded after the sort is
complete.

The concurrent read is accomplished through a fixed number of sort and interval operations, and for
fixed constants R and M is completed in ©(n) time on amesh of size n2. (Notice that throughout most of
the algorithm, the mesh of size n2 simulates a desired mesh of size (M + R) * n2)

Concurrent Write

In aconcurrent write, every processor creates no more than some fixed number of master records,
consisting of akey and some bookkeeping information, for each of the master entries that it maintains
and iswilling
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to receive an updated value for. At the end of the concurrent write, a processor will receive arecord
corresponding to each of the master records it created, indicating the new value of a dataitem(s) to be
associated with that key. Each processor creates no more than some fixed number of update records, each
consisting of akey, a data value, and some bookkeeping information. If two or more update records
contain the same key, then the master record associated with that key, if one exists, will receive the
minimum such update data value. (In other circumstances, one could replace minimum with some other
tie-breaking mechanism, as discussed below.) An implementation of a concurrent write in terms of
fundamental data movement operations on a mesh of size n2 follows.

1. All processors create the same fixed number, call it M, of master records, corresponding to those
master entries for which the processor iswilling to receive data. Each master record contains a key and
data, aswell asthe ID (i.e., snake-like index) of the processor creating the record. Some or all of the
master records created by a processor may be 'dummy’ records, so as to balance the number of items per
processor in subsequent sort steps.

2. All processors create the same fixed number, call it U, of update records, which contain akey, field
specifier, and data, as well asthe ID of the processor creating the record. Some or all update records
created by a processor may be ‘dummy' records, so as to balance the number of items per processor in
subsequent sort steps.

3. Sort all U * n2 update records by key into snake-like order, breaking ties of the same key arbitrarily.



4. Apply the concurrent write tie-breaking mechanism within the ordered intervals. This should be a
mechanism computable in O(n) time, such as one that can be computed by performing a semigroup
operation within ordered intervals. While the tie-breaker most often needed in this book is the minimum,
other possibilities are average, product, median, mode, or choosing any value. In each ordered interval,
replace the first data item with this new value. This becomes the representative for the key, and the
record maintaining this information will be called the representative update record.

5. Sort all (M + U) * n2master and update records together by key, where ties are broken in favor of
master records, and ties between
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update records are broken in favor of the representative update record.

6. All master records obtain their updated value from their representative update record, which is stored,
If it exists, in the succeeding processor (in snake-like order).

7. Sort dl (M + U) * n2 records by the snake-like index of the processor that originally created them (i.e.,
by the ID field) so that they are returned to the initiating processors. Notice that the update records are
not conceptually needed for the sort step, but are used so as to balance the number of itemsin each
processor during this step. The update records are discarded after the sort is complete.

Like the concurrent read, the concurrent write is accomplished through a fixed number of sort and
interval operations, and is completed in ©(n) time on a mesh of size n2.

2.6.5 Compression

The worst-case communication time for k elements distributed arbitrarily over amesh of size n2is ©(n).
However, if these k elements can be placed in a submesh (square) of size 4l 1, then this bound can be
reduced to ©(k¥2). This can be accomplished as follows. Sort the k data el ements into snake-like order,
where processors that do not contain one of these elements create data with akey of «. After performing
asort, report, and broadcast, each processor that contains one of the k pieces of data knows its position in
the order (i.e., itsrank). Further, every processor knows the total number k and the value 4flez, k1. Using a
concurrent write based on the snake-like index of the processor, each processor now determines which
processor in the submesh to send its datato, and all processors in the submesh indicate their willingness
to receive. Therefore, the time required to place k pieces of data arbitrarily distributed over a mesh of

size n2 into a submesh where their worst-case communication will be minimized is ©(n).

2.7 Further Remarks

In this chapter, several fundamental mesh algorithms have been presented. These algorithms include
fundamental data movement operations, such as row and column rotations, sorting, concurrent read,
concurrent write, and data compression. Algorithms were also presented for
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solving fundamental problems such as computing semigroup (i.e., associative binary) operations, matrix
transposition, matrix multiplication, and computing the transitive closure of amatrix. All of the
algorithms run in optimal ®(n) time on amesh of size n2. It should be noted that if an input of size e is
initially stored in a submesh of size n? on amesh of size n2, m< n, then the algorithms can be modified
to runin ©(m) time. Finally, it should be noted that a mesh automaton of size n2 can also perform some
of these algorithms, such as transitive closure, matrix transpose, and modular matrix multiplication, in ©
(n) time.
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3
Mesh Algorithmsfor Images and Graphs

31
Introduction

The mesh computer is a natural architecture for solving problems that involve matrices and digitized
pictures. Thisis dueto the fact that, in either case, adjacent input elements can be mapped in a natural
fashion to the same or neighboring processors of the mesh. Given an n x n adjacency or weight matrix
representing a graph G, with n vertices mapped in a natural fashion onto a mesh of size n2, Section 3.2
presents asymptotically optimal @(n) time mesh solutions to fundamental problems from graph theory.
These problems include marking a breadth-first spanning forest of G, determining whether or not G is
bipartite, marking the articulation points and bridge edges of G, and marking a minimum-weight
spanning forest of G. These algorithms are described predominantly in terms of fundamental mesh
algorithms and data movement operations, which were presented in Chapter 2. Several of these graph
theoretic results are used to solve image problems that are presented later in the chapter. However, since
the majority of the image algorithms presented in this chapter do not rely on graph algorithms, the reader
interested primarily in image algorithms may wish to move directly to Section 3.3, referring back to the
results of Section 3.2 when necessary.

Due to the natural mapping of images to the mesh, local operations on images, such as edge detection or
median filtering, can be performed by local operations on the mesh, enabling such algorithms to exploit
efficiently the massive parallelism available. Many discussions of actual image-processing meshes, such
as SOLOMON, ILLIAC 11, CLIP4, or MPP, emphasize their speed on local operations [Dale81,
HwFu82, Reev84, Rose83, Pott85], and most of the early papers on meshes, such as those of Unger
[Unge58, Unge59, Ungeb2] and Golay [Gola69], similarly emphasized local operations.

Starting with Section 3.3, the remainder of the chapter is devoted to higher level image processing and
pattern recognition tasks that require combining information globally, including geometric problems
involving connectivity, convexity, internal distance, and external distance. For
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some problems, such as computing the Euler number [Gray71, MiPa69], counting figures [Beye69,
Levi72], and skeletization [StRo71], it is possible to iterate local operations to achieve an optimal
solution to aglobal problem. In Section 3.3.1, the Beyer-Leviadi [Beye69, Levi72] "shrinking"
approach, which is based solely on local operations, is used to give an asymptotically optimal algorithm
for counting the number of figures (i.e., connected black components) present in a digitized black/white
picture. This approach of using local operations to obtain efficient mesh solutions seems to work only for
isolated problems. Instead of local operations, most of the remaining image algorithms in this chapter
emphasize the use of data movement operations and graph-theoretic algorithms.

In Section 3.3.2, aworst-case optimal ©(n) time component labeling algorithm is presented in terms of
fundamental data movement operations and graph-theoretic algorithms. Section 3.3.2 also shows that an
algorithm to solve the component labeling problem can be constructed by local operations, but requires O
(n?) time.

In Section 3.4, optimal @(n) time algorithms are given for computing internal distances, marking
minimal internal paths, and counting the number of these paths for every figure in the image. In Section
3.5, an optimal ©(n) time algorithm is given for marking the extreme points of the convex hull for every
labeled set of processors. Optimal @(n) time algorithms are also given for deciding if the convex hull of
each figure contains pixels that are not members of the figure, for deciding if two sets of processors are
linearly separable, for solving the smallest box problem, and for deciding if each black figure is convex.

In Section 3.6, an optimal ®(n) time algorithm is given to compute the distance between figures and the
external diameter of each figure, where the distance can be measured by almost any metric. Section 3.6
also contains optimal solutions to nearest neighbor, radius query, and farthest point problems.

3.2 Fundamental Graph Algorithms

In this section, optimal mesh algorithms from [AtK084] are presented to solve some fundamental graph
theoretic problems. The reader isreferred to [AtK084] for proofs of correctness and any omitted details
of the algorithms. Given a graph G represented as an adjacency or weight matrix, algorithms are
presented to determine al bridge edges and articulation points of G, to determine whether or not G is
bipartite, and to find a minimum-weight spanning forest of G. Additional optimal
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algorithms, solving problems such as finding the length of a shortest cycle and determining the cyclic
index of agraph, appear in [AtKo84].



Some graph-theoretic definitions are necessary. For simplicity, agraph G = (V, E) consists of afinite
nonempty set of verticesV ={1,...,|V|}, and aset of edgesE [J V x V. If the edges are ordered pairs (i,
]) of vertices, then the graph is said to be directed, while if the edges are unordered pairs{i, j} of distinct
vertices, then the graph is said to be undirected. The graph is said to be weighted if there isarealvalued
weight w(i, j) for each edge (i, j), wherew(i, j) = o if thereisno edge fromi to . (If the graphis
unordered, then w(i, j) =w(j, 1).) Ani - j walk in G isafinite sequence of verticesi = vy, ...V, =] such
that (V, Vi) D Eforevery md {0, 1,...,|-1}. Verticesi and j are the endpoints (or end vertices) of
that walk, and the walk issaid to be fromi toj. The length of that walk is1, and v;, v, . . ., vy ; areits
intermediate vertices. If al intermediate vertices of awalk are distinct, then the walk is a path. A path of
positive length from avertex to itself is called acycle. A graph that contains no cyclesis termed acyclic.
Ani - j/k path (walk) isani- j path (walk) in which all intermediate vertices belongtotheset {1, 2, . . .,
K}. Ani - j/0 path is defined to be ani - j path with no intermediate vertices.

A spanning tree T of an undirected graph G is breadth first with respect to avertex r if every r - j pathiin
T isaso ashortest, or minimum distance, r - j path in G. Such a spanning tree can be assigned directions
away from the root to result in adirected tree T' rooted at r, where T' isreferred to as a directed breadth-
first (spanning) tree of the undirected graph G.

G. is used to denote the transitive closure graph of agraph G, where an edge (i, j) isin G. if and only if
thereisa (possibly degenerate) i - j path in G. (G. is often referred to as the reflexive transitive closure,

sinceit includes all edges of the form (i, i), whether or not such a nondegenerate path existsin G.) Given
adirected or undirected graph G, define R5(i), the verticesin G reachable from i, to be R;(i) = {j| there

isani - j pathin G}.

If (i,]) isan edge of G, then G - {(i, )} denotes the graph obtained by removing edge (i, j) from G, and if
visavertex of G, then G - {v} denotes the graph obtained by removing vertex v and all edges incident
on it from G.

Many of the problems given in this section consider ssimple graphs. A ssmple graph is one in which there
are no self-loops (i.e., edges from a vertex to itself). Note that the definition of graph presented on page
91 precludes parallel edges (i.e., multiple edges between the same pair of
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vertices).

Givenagraph G = (V, E), |V| = n, let S(i, j) denote the length of a shortest i- j/k path, fori,j O{1, 2, ...,
n} andke{0,1,...,n}.If thereisnoi - j/k path, then define S(i, j) to be . Theinitial values of Sare

given by
1 if{i,j) € E,
Splt,7)=4 0  ifi=3j,

a0 otherwise.



The first problem of this section is concerned with determining the length of a shortest path (i.e., the
minimum distance) between every pair of vertices. For the problems considered in this section, processor
Pi,j initially containsthe (i, j) entry of the adjacency or weight matrix. That is, it is assumed that the
matrix isstored in a natural fashion. If the end result of a given problem is to determine arelationship
between verticesi and j, then when the algorithm terminates, processor Pi,j, will know this relationship.

Theorem 3.1 Given the adjacency matrix of an undirected graph G mapped in a natural fashion onto a
mesh of size n2, in ©(n) time the minimum distance between every pair of vertices can be determined.

Proof. It is easy to show that
Sca(i, J) = min{§(i, )),S(0, k+ 1) + §(k+ 1)},

which isthe form required in order to apply the generalized transitive closure algorithm of Section 2.5.3.
Therefore, in ©(n) time all S(i, j) can be computed on a mesh of size n2 so that processor Pi,j contains the

value §(i, j).

The minimum distance between all pairs of vertices of an undirected simple graph G can be used to mark
a breadth-first spanning forest (i.e., a breadth-first spanning tree within every connected component) of G
in ©(n) time on amesh of size n2. This can be done by arbitrarily choosing aroot vertex in each
connected component and then using the generalized transitive closure algorithm to determine for every
vertex i) the minimum distance to itsroot and ii) its parent in the breadth-first spanning tree of its
component. The details, including how to create the adjacency matrix corresponding to the breadth-first
spanning forest, follow.
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Theorem 3.2 Given the adjacency matrix of an undirected ssimple graph G = (V, E) mapped in a natural
fashion onto a mesh of size n2, in ©(n) time a directed breadth-first spanning forest T = (V, A) can be
created. As a byproduct, the undirected breadth-first spanning forest edge set E, can also be created,
where E, consists of the edges of A and the edges of A directed in the opposite direction.

Proof. Compute S(i, ), for al i, j O V, by the algorithm of Theorem 3.1. Simultaneously in every row i,
perform arow rotation so that each processor in row i determinesthe index r(i) = j of the first non-co
entry S(i, j). Vertex r(i) will be the root of the spanning tree containing vertex i. (Note that r(i) can also
be used as a unique component label for the connected component containing vertex i.) Since S(i, r(i)) is

the distance from vertex i to vertex r(i), and since vertex r(i) is the root of the spanning tree containing
vertex i, then S(i, r(i)) isthe level of vertex i in the spanning tree rooted at vertex r(i). Let level(i) = S(I,

r(i)). Simultaneously in every row i, perform arow rotation to broadcast level(i). The result of this
rotation is that every processor in row i knowsthe level of vertex i in its spanning tree. Next, perform a
column rotation in every column j to broadcast level(j) from processor Pi,j to al processorsin columnj.

Now every processor Pi,j knows level(i) and level(j).

For every i #r(i), let the parent of vertex i, denoted P(i), be defined as

P (i) =min{j|(,j) O E and level(i) = level j) + 1}.



Thedirected graph T = (V, A), where A consists of all directed edges (P (i), i), isadirected breadth-first
forest. Thisforest isformed as follows. Simultaneoudly for all rowsi, perform arow rotation so that all
processors in row i know P (i), the parent of vertex i. (Thisis accomplished by arow rotation where
every processor P;, sends (k, level(k)) to be viewed by all other processorsin row i.) Next,
simultaneously for all columnsj, perform a column rotation to broadcast P (j), the parent of vertex |,
from processor Pj ,j to al processorsin column j. Every processor Pi,j now knows the value of P (i) and

P (j). Finaly, every processor P, (,-),,- determinesthat (P (j),))J A and that (P (j), j) O E,, and every
processor P; S0 determinesthat (i, P (i)) O E,. (Recall that A isthe set of edgesin adirected breadth-first
spanning forest and E, is the set of edges in the corresponding undirected breadth-first spanning forest.)

The transitive closure and rotations used to determine the level information each take ©(n) time. The
rotations used to determine parent
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information each take ©(n) time. The final step in creating T requires @(1) time. Therefore, the running
time of the algorithm is as claimed.

It is now shown that a breadth-first spanning forest may be used to determine whether or not an
undirected simple graph is bipartite, where a bipartite graph G = (V, E) isonein which all vertices of V
can be partitioned into two digoint sets of vertices, say V; and V,, where V; [ V, =V, such that every
edge in E connects a vertex of V, with avertex of V,. The algorithm consists of creating a breadth-first

gpanning forest T of G, and then using the property that G is bipartite if and only if for every vertexi in
G, the level of vertex i in spanning forest T differs by 1 from the level of vertex j in T, for every vertex |

such that (i, j) O E. Notice that those vertices on odd levels of T can be defined as V,, while those
vertices on even levels of T can be defined as V..

Corollary 3.3 Given the adjacency matrix of an undirected simple graph G = (V, E) mapped in a natural
fashion onto a mesh of size n2, in O(n) time it can be decided whether or not G is bipartite.

Proof. Using the algorithm associated with Theorem 3.2, mark a directed breadth-first spanning forest T
of G, and determine level(i) for every vertex i in G. Using the observation stated above, every processor
P; , where (i, j) O E, setsits Boolean flag bipartite to true if level(i) differsby 1 from level(j), and to

false otherwise. Every processor Pi,j, where (i, j) O E, sets bipartite to true. A simple semigroup (i.e.,

associative binary) operation can be used to compute the logical AND of these values (bipartite) in order
to obtain the answer to the query. Since the algorithm from Theorem 3.2 and the semigroup operation
both require ©(n) time, the running time of the algorithm is as claimed.

3.2.1 Bridge Edges

In this section, an optimal ©(n) time mesh algorithm is presented to determine all bridge edges of an

undirected ssmple graph G = (V, E). A bridge edge is an edge e [1 E whose removal will increase the
number of connected componentsin G.



Thefirst step of the algorithm is to mark a directed spanning forest T = (V, A), by using the algorithm
associated with Theorem 3.2. Again, let E, consist of the edges of A and the edges of A directed in the
opposite direction. Notice that the edgesin E - E, cannot be bridge edges since each such edge is not
needed for at least one spanning forest

Page 95

of G, namely T. Therefore, only the edges E, of T need to be tested. (The reader should notice that T
need not be a breadth-first spanning forest. Any spanning forest will suffice for this algorithm, including
the minimum spanning forest obtained in Section 3.2.3.)

A result from [AtKo084] will be used to detect the bridge edges. Recall that R5(i) denotes the verticesin
G reachable from i, where R;(i) = {j | thereisani - ] pathin G}, and that P(i) denotes the parent of i in
the spanning forest, as defined in Theorem 3.2. The result statesthat if i = P(j), then (i, j) U E, isabridge
edgeif and only if Ri(j) = R (j}, where ¢ = (V, E) isthe directed graph whose set of directed edgesE is
the union of A and the set of directed edges obtained by replacing every edge of E - E, by itstwo
oppositely directed edges. (l.e, (i, j) isabridge edge if and only if the set of vertices that may be reached
from j using the directed edges of the spanning forest is the same as the set of vertices that may be
reached from j using all edges of G with the exception of E, - A, the upward directed edges associated
with the spanning forest. So, (i, i) being a bridge edge means that the only way j may reach avertex of G
that is not one of its descendantsin T is by traversing the edge from j to |, its parent in the spanning tree.)
Notice that the adjacency matrix of ¢ is created by logically OR-ing the adjacency matrix of T with that
of G'=(V, E - E,), which can be donein 0(1) time. Also notice that the transitive closure of T and G can

be computed in ©(n) time by the algorithm of Section 2.5.3, giving R; and K, respectively.

In order to determine the bridge edges according to the reachability criteria, smultaneously for all i : r(i)
(i.e., for al verticesi that are not the root vertex of their spanning tree), test whether or not the ith row of
the adjacency matrix of Ry is the same asthe it row of the adjacency matrix of Hs. This can be
accomplished by performing arow rotation, simultaneously for all rows, so that every processor knows
the answer for itsrow. Finaly, in ©(n) time all diagonal processors P; . with the answer 'yes' for their

row inform processors P, , . and Pi,P(i) that the edge (P(i), i) isabridge edge of G and should be marked

as such. This can be accomplished by either performing a row rotation followed by a column rotation, or
by performing a concurrent write.

Therefore, the following is obtained.

Theorem 3.4 Given the adjacency matrix of an undirected simple graph G mapped in the natural fashion
onto a mesh of size n2, in ©(n) time all bridge edges of G can be marked.
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3.2.2 Articulation Points



Given an undirected ssmple graph G = (V, E), the problem of detecting the articulation points of G is now
examined, where an articulation point isavertex v 1 V, whose removal, along with incident edges,
increases the number of connected components of G. The algorithm presented in this section will ‘mark’
all processors P, (, for which vertex i is an articulation point, where vertex r(i) is the root of the spanning

tree containing vertex i. In addition to the previously defined graphs T and ¢, the algorithm requires an
undirected graph H = (V, E'), which isdefined as (i, j) O E' if and only if P(i) = P(j) and there is an edge
of G between R(i) and R(j). Intuitively, the edgesin H represent pairs of vertices of G that have the
same parent in T and have at least one pair of descendantsin T that are connected by an edge of G.

The agorithm will be based on examining three sets of vertices of T, namely, the roots of treesin T, the
leaves of T, and the remaining interior vertices of T. It is easy to see that the removal of aroot vertex r,
along with all incident edges, will not disconnect its component if and only if there is a path between
every pair of its children that does not includer. It is also easy to see that aleaf of T cannot be an
articulation point. A nonleaf vertex v # r(v) of T isnot an articulation point if and only if for each of its
children thereisapath in G - {v} from that child to outside the subtree rooted at v. Given sachild of vin
T, such a path surely existsif thereisan edge in E - E, between some vertex in R(S) and avertex not in
R(V). Define avertex w as special if there is an edge between a vertex in R (W) and a vertex not in Ry(P
(w)). For

Figure 3.1:
zisaspecial vertex, while sisnot.
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example, in Figure 3.1 vertex zis specia while vertex sis not.

Lemma 3.5 summarizes the three cases for deciding whether or not a given vertex is an articulation point
of G.

Lemma 3.5 Given a spanning forest T of an undirected simple graph G = (V, E), the following hold.

1. A root of atreein T isnot an articulation point of G if and only if for every pair of itschildrenin T,
say i and j, thereisani - | path using edges of G with the exception of (i, P (i)) and (j, P(j)).

2. No leaf of T isan articulation point of G.

3. A nonleaf, nonroot, vertex v is not an articulation point if and only if for each of its children thereisa
pathin G - {v} from that child to a vertex outside the subtree rooted at v.



Recall that the edgesin H represent pairs of vertices of G that have the same parent in T and have at |east
one pair of descendantsin T that are connected by an edge of G. Then it can be shown that an interior
vertex of T isnot an articulation point if and only if for every one of its children thereisapath in H from
that child to at least one special vertex. Lemmas 3.6 and 3.7 formally state these sufficient conditions for
deciding whether or not an interior vertex of T is an articulation point of G.

Lemma 3.6 Suppose sV, s#r(s). Thenthereisa path in G - { P(s)} from sto outside the subtree of P
() ifand only if thereisa path in H from sto at least one special vertex (possibly sitself).

Lemma 3.7 A vertex v # r(v) that isnot a leaf is not an articulation point if and only if for every one of
its children thereis a path in H from that child to at least one special vertex.

Therefore, following the previous discussion, efficient algorithms are needed to construct H and detect
special vertices. Fortunately, both of these can be determined in ©(n) time on amesh asize n2. The
algorithms for creating H and detecting special vertices rely on using the previously defined matrices T
and G, being able to efficiently compute the transitive closure of a matrix, being able to efficiently
multiply
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matrices, and being able to use several efficient fundamental data movement operations that have been
previously defined. The details of an optimal ©(n) time algorithm for constructing H and marking special
vertices follow.

Lemma 3.8 In ©(n) time, H = (V, E') can be created and all processorsin row i and column i can know
whether or not vertex i is special.

Algorithm: In @(n) time create T, T*, and ;. The adjacency matrix for anew graph Z = (V, X), where (i,
j) O Xif and only if thereisani - k path in T and an edge (k, j) O E - EA for some vertex k, can be created
in ©(n) time as the logical multiplication of matrices T and G' (V, E - E,).

Using a column rotation, every processor P, , sends the values of T*(x, y) and P(x) to al of the processors
in column y. When the contents of P, , reaches processor P; ,» Iprocessor P:. , checksto see whether

1. P(i)= P(x),
2. (x, y) isadirected edge of T*, and
3. (i, y) isadirected edge of Z.

If all three conditions are satisfied, then i and x are siblingsin T, y isadescendant of X in T (i.e,, y O Ry
(X)), and (a, y) O E - E, for some a [1 R(i). Hence, Pi,y can decide that H(i, x) = 1. It should be noted that
for agiven P, ¥ these three conditions are simultaneously satisfied at most once during the column

rotation, and that if H(i, X) = 1, then there must exist ay such that the three conditions hold
simultaneously. After the rotation is complete, a concurrent write or row rotation is used to create H.



In order to let every processor Pi,j know whether or not i and j are special, the above column rotation is
modified so that processor P; , checksto seeif

1. x=P(i),
2. (X, y) isnot adirected edge of T*, and
3. (i, y) isadirected edge of Z.

If these conditions are satisfied, then P, notes that vertex i is special. A final row and column rotation

send the required information to all processors. Since the row and column rotations take @(n) time, as
does the optional concurrent write, the algorithm finishesin ©(n) time.
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At this point, it is possible to describe a straightforward algorithm to determine al articulation points of
an undirected simple graph G in optimal time on a mesh. The algorithm follows the discussion in this
section of examining three general cases of verticesin G with respect to T, corresponding to the roots of
T, theleaves of T, and the interior vertices of T.

Theorem 3.9 Given the adjacency matrix of an undirected graph G mapped in the natural fashion onto a
mesh of size n2, in ©(n) time all articulation points of G can be identified.

Algorithm: Create T, T*, H, and H*. As a byproduct of this, every processor in row i and columni will
know whether or not vertex i is special. Each of these processors will also know P(i), the parent of vertex
1inT, and r(i), the root vertex of the spanning treein T containing vertex i. Every processor Pi,j can

check to seeif it can decide that vertex r(i) is an articulation point by testing to seeif P(i) = P(j) = r(i)
and H*(i, j) = 0. Either a concurrent write or a semigroup (i.e., associative binary) operation can be used
to inform processor P, () () asto whether or not vertex r(i) is an articulation point.

Next, using row rotations, every processor P; , checks to see whether or not vertex i isaleaf inT. If the
answer is affirmative, then P; ., decides that vertex i is not an articulation point. Finally, using row
rotations, every processor P; , for which P(i) # r(i) checks to see whether or not there exists a vertex k
that is special, such that H*(i, k) = 1. If the answer is negative, then P, , creates a message to inform
processor P, () that vertex P(i) is an articulation point. These messages are routed using column
rotations.

Creating T, T, H, and H* each take @(n) time, as described previously. The rotations each take @(n)
time. Therefore, the running time of the algorithm is as claimed. -

3.2.3 Minimum Spanning Tree

Given aweighted undirected graph G = (V, E), with weight w(i, j) associated with edge (i, i) (I E, this
section considers the problem of determining a minimum-weight spanning forest T = (V, E;) of G. The
weight of a spanning forest is the sum of the weights of the edges in the forest, and a minimum-weight
spanning forest (minimum spanning forest) of G is a spanning forest of G with minimal weight. (While
the weight of a minimum-weight spanning forest is unique, a minimum spanning forest
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need not be unique.) It iswell known for avariety of parallel models of computation that efficient
algorithms to determine minimum-weight spanning forests are similar to efficient component labeling
algorithms for the same parallel model and form of input [CLC82, HaSi81, SaJa81]. The minimum
spanning forest algorithm presented in this section follows the general component labeling approach
givenin [HCW79].

T is constructed through a number of stages, where at each stage clubs that represent subtrees of T are
combined by adding minimum-weight edges between them. Each club has alabel, which isthe minimum
label of any vertex in the club. Initially, each vertex of G isits own club, and the set of edges of T,
denoted E;, is empty. During each stage of the algorithm, for each club of T, a minimum-weight edge of
G joining that club with adifferent club of T is chosen, with ties broken in favor of the club of smallest
label. The set of edges just chosen is added to E;, and clubs are combined that are connected by these
edges. The process is repeated until only one club remains for each connected component. It will be clear
that the terminal condition is reached because no club will have any edges to any other club.

At most |log, n| Stages are required to reduce the initial clubs, representing the n vertices, to the final
clubs, since the number of unfinished clubsis reduced by at least afactor of 2 during each stage of the
algorithm. After each stage of the algorithm, al edges of G consisting of endpoints that are in the same
club of T may be discarded. Further, if there is more than one edge between two clubs, all but one
minimum-weight edge between the clubs may be discarded. These observations form the heart of the
algorithm associated with the following theorem.

Theorem 3.10 Given the weight matrix of an undirected simple graph G = (V, E) mapped in a natural
fashion onto a mesh of size n2, in ®(n) time a minimum-weight spanning forest T = (V, E;), can be
determined.

Algorithm: The agorithm is based on being able to efficiently collapse the vertices of G that belong to
the same club of T into asingle vertex, remove al loops from the resulting graph, and keep only a
minimum-weight edge between any pair of new vertices. Let G, denote the "collapsed” version of G right

after the tth stage of the algorithm. Stage O of the algorithm is defined by setting G, =G =(V,E)and T =
(V, B). The tth stage of the algorithm is defined by the following steps.

1. For every vertex v of G, ;, choose a minimum-weight edge (v, X), with ties broken in favor of the
smallest x. Let H, be the set of chosen edges.
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2. Add to E; the edges of G that are represented by the edgesin H..

3. G, isobtained by "collapsing” the vertices of G, ; that are in the same club (i.e., connected component)
with respect to H,. A club isrepresented as a vertex that inherits asits label the minimum label of any
vertex in the club. This"collapsed” version of G, ; might have loops and parallel edges. All loops are

discarded and only one minimum-weight edge between any pair of clubs (vertices) is kept, with ties
broken arbitrarily. Any club without edges to any other club is removed. The resulting graph is G..



Notice that just prior to the tth stage of the algorithm, G, , has as many vertices as T has unfinished clubs.
Since the number of unfinished clubsis at least halved after each iteration of the algorithm, G, ; has no
more than 7=t vertices. Assume that the weight matrix of G, is compressed to the upper-left m x m
corner of the mesh, where m< 5=, and that the tth stage of the agorithm requires ©(m) time. Then the
running time, T(n), of the entire algorithm can be expressed by the recurrence T(n) = ©(n) + T(n/2),
which is©(n).

It only remains to show that the tth stage of the algorithm can be completed in ©(m) = O(z7=r) time. At
the beginning of staget, the weight matrix of G, ; is stored in the upper-left m x mregion of the mesh, as
shown in Figure 3.2. If G_4(i, j) = 1, then processor Pi,j, wherei, j <m, containstheedge (i',]') 0 Eof G
that edge (i, j) of G, represents, aswell as the weight w(i, j) =w(i', j') of the edge. Further, the edgesof T

that were chosen before stage t are stored outside this region of the mesh as a collection of special edges
(%, y), with no more than one such edge per processor. When stage t terminates, the weight matrix of G,

must be stored in the upper-left m' x m', m' <"/, region of the mesh, and the edges of T chosen during

stage t must be stored as special edges, no more than one per processor outside the upper-left m' x m'
region, but inside the upper-left m x mregion.

In the following description of staget, referencesto all processors and operations are with respect to the
m X mregion. Stage t begins by performing arow rotation so that all processors in row x know the
minimum weight edge (X, y) in G, (with ties broken in favor of minimum y) and the edge (X, y') O E that

(X, y) represents. Using a column rotation, these specia edges are moved from diagonal processorsP; . to
processors P, .. Notice that these edges have been moved to processors outside the upper-left "/, x '/,
region but inside the m x mregion.

Further, no processor contains more than one special
edge.
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Figure 3.2:
G, isstored in the m x mregion, where m< 2t-

In order to create the adjacency matrix for H,, every processor P, , for which row x chose edge (X, y) as

the minimum weight edge, setsits entry of the adjacency matrix to 1. All other processorsin row x set
their entry to 0. Finally, every processor P, y for which row x chose edge (x, y) as the minimum weight

edge, creates amessage to inform processor P, that its entry in the adjacency matrix of H; should be 1,
and a concurrent write is performed.

The last step of staget isto create G, in the m x mregion, and then compress it to a mesh of size no more
than mT’ in the upper-left corner of the region. G, is created in the m x mregion as follows. Compute H},
the transitive closure of H,, by the algorithm given in Section 2.5.3. Perform arow rotation so that every
diagonal processor P; . determines c(i), the minimum index of a vertex in the component of H; that

contains vertex i. Using a column and row rotation, every processor Pi,j will know c(i) and c(j). Now,
every processor Pi,j for which G4(i, ) = 1, c(i) # c(j), and (i, j) represents (i', ') U E creates amessage to
inform processor P, () that G,(c(i), c(j)) = 1, that (c(i), c(j)) represents (i', j'), and that this edge has
weight w(i', j'). A concurrent write, with ties broken
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appropriately, will route the data properly.

G, can be compressed as follows. Perform arow rotation so that every processor P; ; knows whether or
not thereisaj such that G, j) = 1. Perform a column rotation in column 1 so that all processors P; ,
know the total number of verticesm' in G,, and the rank of vertex i (i.e., the position in which vertex i
will appear, if at al) in G,. Perform arow rotation, followed by a column rotation, so that all processors
Pi,j for which G(i, j) = 1 know rank(i) and rank(j). Every processor Pi,j, wherei, j < m, setsits entry for
the adjacency matrix of G, to 0. Every processor Pi,j, for which G(i, j) = 1, creates a message that

contains the original edge (i',)") U E, and its associated weight w(i', j'), for which the processor is
responsible. A concurrent write is used to route these messages to processors Py, ) Which initialize

the (rank(i), rank(j)) entry of G, tow(i', j'). Finally, al information regarding G,, may be purged from the
processors in the upper-left m' x m' region, concluding staget.

The tth stage of the algorithm consists of a fixed number of operations, all of which are restricted to them
x mregion. Therefore, the tth stage of the algorithm requires ©(m) = O(zi=r) time. Hence, the running
time of the entire agorithm is ©(n).

3.3 Connected Components

For the algorithms presented in this section, it is assumed that an n x n digitized picture A = {ai,j} IS
stored in amesh of size n2 so that processor Pi,j contains pixel & . The pixels are in one of two states:
black or white. It is useful to think of this digitization as being a black picture on a white background.

3.3.1 Counting Connected Components



This section considers the problem of counting the number of figures (i.e., connected black components)
in A by amethod known as "shrinking". The general idea of shrinking a digitized pictureis that during
every iteration of the algorithm each figure of the picture is trimmed until it becomes a single black pixel
and then vanishes, all the while preserving the connectedness properties of the figures. To count figures
by a shrinking algorithm, the processor responsible for a vanishing figure will add oneto itslocal
running sum of figures. A final report and
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broadcast over the local sums will compute the global sum and inform all processorsin the mesh asto
the total number of figuresin A.

Some definitions of connectedness arein order. A set Sof lattice points (e.g., a set of pixelsor
processors) is called 8-connected if for all P, Q [ Sthere existsafinite sequenceP=P,, P,,...,P,=Q
of points of Ssuch that P, isahorizontal, vertical, or diagonal neighbor (i.e., an 8-neighbor) of P, ;,

where1<i <. If only horizontal and vertical neighbors are considered (i.e., 4-neighbors), then Sis
called 4-connected. [RoKi82]

Beyer [Beye69] and Levialdi [Levi72] independently arrived at an interesting method of "shrinking" the
figures of a picture that guarantees that connected components (figures) always remains connected and
components that are not connected always remain disconnected. Both algorithms assume an 8-connected
definition of connectedness for the black pixels. As an aside, it should be noted that, in general, if an 8-
connected definition is used for the black pixels, then a 4-connected definition is needed for the white
pixels, and vice versa, in order to maintain the Jordan Curve Theorem (c.f., [Rose79]). The algorithm
that follows shrinks figures toward the top right of the mesh. The reader isreferred to [Levi72, Beye69]
for details.

Assume that at the end of iteration k of the algorithm, the picture A has been transformed k times
according to the "shrinking" algorithm. Denote this picture as Ak = { af i}, where A= Aiisthe original

picture. The transformation from Ak to Ak+1 is given by describing how processor Pi,j transforms af ;j to
afT!. Consider a¥; to be the top right pixel of a2 x 2 window. The transformation is given as follows.

1. If the configuration in the vicinity of white pixel ”f'.; matches either diagram presented in Figure 3.3
(), thenaf " will become black.

2. If the configuration in the vicinity of black pixel “f'.; matches the diagram presented in Figure 3.3(b),
then ufj 'will become white. (In this situation, if all of the 8-neighbors of r::f'J are white, then processor

Pi,j also increments its component counter.)

3. If neither situation illustrated in Figure 3.3 appliesto af ,, then a; ' = af

.17 | 19 I

Using this shrinking scheme, it is shown in [Levi72] that during each iteration of the algorithm only
black pixelsthat do not disconnect afigure are erased, and that white pixels do not become black when
thisimplies the merging of two or more distinct figures. Further, it is shown
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% %

(a) Two situations for which af ; iswhiteand uf}l becomes black.

%

(b) The sole situation for which af ; is black and af}“l becomes white,

Figure 3.3:
Assume that zfo, isthe top right pixel of a2 x 2 window.

Then there are exactly three situations in which a; T will be black.
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in [Levi72] that each figure will shrink to asingle black pixel, at which point it is counted, in time
proportional to the diameter of the minimum area iso-oriented rectangle that encloses the figure.

Therefore, the running time of the algorithm is determined by the time to perform the shrinking, which is
O(n), and the time to sum the counters. Since a global sum operation, as described in Section 2.4.3,
finishes in ©(n) time, the running time for the entire algorithm is ©(n). A statement of the result follows.

Theorem 3.11 Given an n x n digitized black/white image, distributed one pixel per processor on a mesh
of size n2, the number of figures (connected components) can be determined in ©(n) time. -

3.3.2 Labeling Connected Components

In this section, several algorithms are presented to label the figures (i.e., connected black components) of
adigitized black picture on awhite background. The algorithms presented in this section are mesh
implementations of the generic component labeling algorithms given in Section 1.6.1.



Asin Section 3.3.1, it isassumed that the n x n picture A = {ai,,-} Isstored in amesh of size n? so that
processor Pi,j contains pixel & . However, in contrast to the assumptions of the previous section, this

section defines two black pixelsto be neighborsif and only if they are mapped to neighboring
processors. That is, in this section a 4-connected definition of connectednessis assumed for the black
pixels. This assumption isonly for convenience of presentation, as an 8-connected definition will only
change the running times of the algorithms by a constant factor.

Every processor that contains a black pixel usesits snake-like index as the label of the pixel that it
contains. When a labeling algorithm terminates, every processor that contains a black pixel will also
store the minimum label of any pixel that its pixel is connected to. Therefore, the label of a connected
component will be the minimum label of any pixel in the component, and at the termination of the
algorithm, every processor will know the label of the connected component that its pixel is a member of.

Following the order of presentation in Section 1.6.1, the first algorithm considered in this section can be
classified as a ssimple propagation algorithm. Initially, every black processor (i.e., a processor containing
a black pixel) defines its component label to be its snake-like index. During each iteration of the
algorithm, every black processor sends its current
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component label to its (at most) four black neighbors. Every black processor then comparesits
component label with the (at most) four labels just received, and keeps as its new component label the
minimum of these labels. It is easy to see that for each figure, the minimum label L is propagated from P,
(using snake-like indexing of processors) to every processor P, initsfigure in the minimum number of
steps required to pass a message from P, to P, under the restriction that datais only passed between
neighboring black processors. Therefore, this labeling algorithm terminatesin @(D) time, where D isthe
maximum internal distance between any black pixel and the pixel of minimum label initsfigure. (The
internal distance between two black pixelsis defined to be the length of a shortest connected black path
between the pixels.) So, given 'blob-like' figures, all processors can know the label of their figure in ©(n)
time. However, it is easy to construct non-'blob-like' figures, such as the spirals or snakes depicted in
Figure 1.10 of Section 1.6.1, for which this propagation agorithm would require ©(n?) time.

As an dternative to the propagation algorithm, one might consider exploiting the generalized transitive
closure algorithm associated with Theorem 3.1 to solve the component labeling problem. Unfortunately,
this algorithm cannot be used directly since there may be ©(n2) black pixels (vertices), which would
require a matrix containing ®(n4) entries.

In contrast to the O(n?2) propagation algorithm, the next two algorithms will label al figuresin ©(n) time,
regardless of the number, shape, or size of the figures. Both algorithms use an efficient mesh
implementation of arecursive divide-and-conquer solution strategy, following the generic divide-and-
conquer component labeling algorithms presented in Section 1.6.1. (Descriptions of such agorithms
begin on page 31.)



The first step of these algorithmsisto recursively label the four quadrants of the mesh independently.
After this step, the only figures that could have an incorrect global |abel are those figures that have a
pixel on the border between the quadrants. See Figure 3.4. Each border processor P, (using snake-like
indexing of processors) that contains a black pixel examinesits (at most 2) neighboring processors in
distinct quadrants. Border processor P, creates an unordered edge record (label1, label 2, clabel 1,
clabel2) for each such border processor P, that also contains a black pixel, where label1 represents the
label corresponding to the figure of P, after the recursive labeling, label 2 represents the label
corresponding to the figure of P, after the recursive labeling, and clabel1 and clabel2 will be used to
determine the correct global labels of P, and P, and are initially defined to be label1 and label2,
respectively. There are at most 4n - 4 processors along the border, and they
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Figure 3.4:
Sample labeling after recursively labeling each quadrant.

generate at most 4n such records. (Referring to Figure 3.4, edge records would be generated for
component label pairs (1, 4), (18, 20), (18, 33), (20, 36), (4, 39), (36, 44), and (33, 39). Specifically,
using snake-like indexing, processor P; would generate edge record (1, 4, 1, 4), processor P, would
generate edge record (4, 1, 4, 1), processor P,owould generate edge record (18, 20, 18, 20), processor P2,
would generate edge record (20, 18, 20, 18), processor P,, would generate edge record (4, 39, 4, 39), and
so forth.)

An important observation is that the amount of data that needs to be processed has been reduced from an
amount proportional to the area of the mesh (image) to an amount proportional to the perimeter of the
mesh (image). Also, the form of the data has changed from image data
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representing a picture A, to geometric data in the form of an undirected graph G = (V, E), where V isthe
set of component (figure) labels for the border processors, and (i, j) O Eif andonly if i, j OV, andi #j
are connected (neighbors). For instance, referring to Figure 3.4, the unordered edge set E is{ (1, 4), (18,
20), (18, 33), (20, 36), (4, 39), (36, 44), (33, 39)}. With the exception of edge (20, 36), each of these
edges would be generated twice, and there would be a distinct edge record representing each instance.
Notice that the edge (20, 36) would be generated four times (creating four edge records, only two of
which are distinct), once each by processors with snake-like indices 26, 27, 36, and 37.

At this point, the two algorithms are distinguished. The first algorithm follows the compression
algorithm presented on page 34 of Section 1.6.1 to resolve the global |abels. The first step isto compress
the O(n) edge records to a submesh of size 4n. The problem can now be viewed as solving the connected
component labeling problem for unordered edge input given O(n) edges on amesh of size 4n, where the
vertices represent component labels and the edges represent adjacent components that need to be
combined. Sort the edge records on the first field, label 1, and let the first processor of each ordered
interval create alabel record (label1, newlabel), where newlabel isinitialized to label 1. These label
records will be used to keep track of the component label for each of the O(n) vertices. Notice that
initially each vertex corresponds to a unique component label.

For alogarithmic number of iterations, update the newlabel field associated with each vertex so that after
iteration i, newlabel represents the minimum label of vertices that are within a distance of 2-1. This can
be done as follows. Every processor maintaining label record (label1, newlabel) creates pseudo master
record (newlabel, temp-newlabel), and every processor responsible for edge record (label1, label 2,
clabel1, clabel2) creates update records (clabel 1, clabel2) and (clabel2, clabel1). A modified concurrent
write that accommodates multiple pseudo master records with identical keysis used to update the
tempnewlabel field of a pseudo master record, but only if the minimum update valueis less than
newlabel. The modified concurrent write sorts by key field, breaking tiesin favor of pseudo master
records (arbitrarily), and breaking ties of update recordsin favor of minimum datafield, before using an
interval operation to propagate the minimum update data value to all master records with that key. The
next step is to update the label records based on the new information in the pseudo master records. This
can be accomplished by performing a concurrent read based on the index of the processor with the label
record that created the pseudo
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master record. (I.e., thisinformation could be stored in afield of these records.) The final stepisto
update the current label (clabel) fields of the edge records. To do this, perform a concurrent read where
all label records (label, newlabel) act as master records, and each edge record (label 1, label2, clabel 1,
clabel2) creates request records (label 1, clabel1) and (label2, clabel2) for the purpose of updating the
values of clabell and clabel2. This completes an iteration of the unordered edge component labeling
algorithm.

Since the concurrent reads and modified concurrent write each take ©(nv2) time on a mesh of size 4n,
this unordered edge component labeling algorithm finishesin ®(nv2log n) time. Finally, all processorsin
the entire mesh of size n2 that contain a black pixel perform a concurrent read to obtain the (possibly)
updated label of their component from the label records that are stored in the submesh of size 4n.



Compression and the concurrent read each take ©(n) time. Since the unordered edge component labeling
algorithm only takes ®(n¥2log n) time (because the data was compressed to a submesh of size 4n), the
running time of the algorithm obeys the recurrence T(n2)=T(n2/4) + ©(n), which is ®(n). It should be
noted that the ©(log n) time PRAM component labeling algorithm for unordered edge input from
[ShVi82] can be simulated in the compressed mesh by having each step of the PRAM algorithm
simulated with the aid of a mesh concurrent read and concurrent write that is restricted to the compressed
region. Therefore, the algorithm given in [ShVi82] would also finish in ©(n¥2log n) time when ssimulated
in the compressed mesh. Further, [ReSt] gives an unordered edge component labeling algorithm for the
mesh that runs in edgelength time (i.e., ©(n¥2) time on a mesh of size n), thus eliminating the additional
logarithmic factor. However, even if the algorithm from [ReSt] is used in the compressed mesh, there
will be no affect on the asymptotic running time of the algorithm just described.

The second algorithm differs from the first in that compression is not used in order to resolve the global
labels corresponding to the (at most) 4n - 4 border pixels. Instead, following the cross-product algorithm
presented on page 35 of Section 1.6.1, a symmetric adjacency matrix M is created to assist in coalescing
adjacent border elements, where M represents the unordered edge records generated after the recursive
call, and is created as follows. (Creating M is similar to creating G, as the last step of staget in the
algorithm of Theorem 3.10.) Sort the edge records by the first field. The first record within each interval
Ismarked as the "leader” of the interval. Resort the records with the mgjor key being those records
marked as |eaders and the minor key being the

Page 111

first label field of the record. This collects the |eaders together and allows each leader to determine the
rank of its label with respect to the distinct |abels generated at the end of the recursive labeling. All
border processors that contain arecord (label 1, label2, clabel1, clabel2) perform a concurrent read to
determine rank(label 1) and rank(label 2).

Notice that M can represent at most 2n labels (vertices). In order to maintain M, the mesh of size n2 will
simulate a mesh of size 4n2. This can be done by having each processor responsible for a2 x 2 submatrix
of M. Specifically, entry M(i, j) will be stored in processor Pfﬂ-fﬂ of the mesh of size n2. All
processors initialize their 4 entries of the adjacency matrix M to 0. Next, a concurrent write is performed
to finish the initialization of M, where every processor containing edge record (label 1, 1abel 2, clabel 1,
clabel2) creates a message to processor 1”[ remk{iabeit)] [ rankisbeiz) | to inform that processor that the (rank

(label 1), rank(label2)) entry of M should be 1.

Once the adjacency matrix M is generated, the transitive closure, M*, is computed by the algorithm of
Section 2.5.3, and arow rotation with respect to M is used to determine the label for each of the border
elements. A final concurrent read corrects any possibly incorrect labels that existed after the recursive

solution was known. The transitive closure algorithm and data movement operations each take @(n) time.
Therefore, the running time of the algorithm obeys the recurrence T(n2) = T(n2/4)+ ©(n), which is ©(n).

Theorem 3.12 Given an n x n digitized black/white image, distributed one pixel per processor on a mesh
of size n2, the figures (connected components) can be uniquely labeled in ©(n) time. -



Nassimi and Sahni [NaSa80] were the first to prove that the component labeling problem for digitized
pictures on a mesh of size n2 could be solved in ©(n) time. It should be noted that the algorithm
presented in [NaSa80] is different from the algorithm given in this section, and is quite interesting in its
own right.

3.4 Internal Distances

In this section, solutions are presented to several problems involving distances within figures of digitized
pictures. The term black (white) processor is again used to refer to a processor that maintains a black
(white) pixel. For black processors A and B, an A-B path is a sequence

Page 112

of 4-connected black processors originating at A and terminating at B. A minimal A-B pathisan A-B
path containing the minimum number of processors over all possible A - B paths. The internal distance
from A to B, denoted d(A, B), is defined to be one less than the number of processorsinaminimal A - B
path. (Note: whileaminimal A - B path may not be unique, the internal distance between A and Bis.)

The problems in this section assume that an n x n digitized black/white picture A = {ai,j} Isstoredin a
mesh of size n2 so that processor P, ; contains pixel & ;. Given a special marked black pixel X, the main

problem of this section isto determine d(S, X) for every pixel Sin the same figure as X. This problem
will be referred to as the all-points minimum distance problem. This problem occurs in image processing
[HKW82], and from its solution one can find an internal spanning treein ©(1) additional time.

The al-points minimum distance problem can be solved by a simple propagation algorithm, similar to
the propagation algorithm for labeling figures presented in Section 3.3.2. Every black processor, except
X, initializes its minimum distance from X to c. The processor containing X initializes its distance to 0.
At each iteration of the algorithm, every black processor sends its current minimum distance to its (at
most) four neighboring black processors. Every processor then takes the minimum of a) its current
distance and b) one more than the minimum of the distances that it just received, and uses this value as
its new minimum distance. Again, for 'blob-like' figures, all processors will know their minimum
distance to X in ©(n) time. However, it is again easy to construct figures, such as spirals and snakes, that
will require ©(n2) time to propagate this information. It should be noted that the algorithm will work as
described even if one marked pixel per figureisallowed. In this case, al pixels will determine the
minimum distance to the marked pixel initsfigure, if one exists.

In contrast to the O(n2) propagation algorithm, the next algorithm has a worst-case running time of ©(n).
This algorithm is based on using the generalized transitive closure operation described in Section 2.5.3. It
will be assumed that the figures of the digitized picture have been labeled in ©(n) time using the
algorithm from Section 3.3.2. It will also be assumed that all processors of the mesh have been informed
asto thelabel of X'sfigurein ©(n) time. This may be accomplished by performing arow operation that
will inform all processorsin X's row asto the label of X's figure, followed by a column operation, where
every processor in X's row informs all processors in their column asto X's label. (Alternately, a standard
report and broadcast may be used.)
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Given adirected graph G with n vertices, define S(i, j) to be the minimal length of apath fromi toj
using no intermediate vertex greater than k, asin Section 3.2. Then S, satisfies the recurrence

Sera(i, ) = min{S(i, ), S0, K) + Sk, )}

where

0 ifi=j,
Soli,j) =« 1 if there is an edge from 7 to j, and
oo otherwise.

Noticethat S...n(i, ) isd(, j).

Unfortunately, the solution to the all-pairs minimum distance problem for matrix input, given in
Theorem 3.1, cannot be used directly since there may be ©(n2) black pixels (vertices), which would
require a matrix with ©(n4) entries. To reduce the matrix to O(n?) entries, the underlying geometry of the
digitized picture is used. An optimal ©(n) time solution to the all-points minimum distance problem will
be described as a two-phase algorithm, with both phases being implemented via a recursive divide-and-
conquer strategy.

At agiven stagei of adivide-and-conquer, let k = 2'. The outer border elements of ak x k square are
defined to be those processors in rows and/or columns 0 and k - 1, with respect to the k x k square, that
contain the same label as that of the marked processor. The inner border elements of ak x k square are
defined to be those processors in rows and/or columns =+ and tg—‘ -1, with respect to the square, that
contain the same label as the marked processor. The term border elementsis used to refer to the
collection of inner and outer border elements of ak x k square. (See Figure 3.5.) Notice that the k x k
squares are assumed to be aligned so that processors P vy ., 1, 1 < €, d < [/K], mark the southeast

processor of each k x k square.

The objective of the first phase of the algorithm is to obtain the distance to the marked processor for all
border elements of the n x n mesh. This phase is implemented using a bottom-up divide-and-conquer
solution strategy. The objective of the second phase of the algorithm is to obtain the distances to the
marked processor for the remaining processors that are in the same figure as the marked processor. The
second phase will be implemented via a top-down divide-and-conquer solution strategy, where each
iteration requires an application of phase 1. The details of the algorithm are given in the proof of the
following theorem.
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Figure 3.5:
Possible border e ements of a submesh of size k2.

Theorem 3.13 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
size n2, and given a marked processor X, in ©(n) time every processor can compute its (possibly infinite)
internal distanceto X.

Proof. The algorithm consists of two phases, as previously mentioned, which are given below.

Phase 1. The first phase follows a bottom-up divide-and-conquer strategy. It is presented for an arbitrary
stage i, where k = 2'. Before performing computations at stagei on ak x k square A, the following must
hold for each of the four ¥/, x ¥/, subsquares of A at the completion of stagei - 1:

. A (4k - 15) x (4k - 15) matrix exists, with arow and column associated with each inner and outer
border element of the subsquare, and arow and column associated with the marked processor X. (By
convention, let the last row and column correspond to X.) The (i, j) entry of this matrix is the restricted
internal distance from the ith border element (or marked processor) to the jt border element (or marked
processor), where restricted internal distance
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refers to the minimum distance using only paths within the subsquare.
. Every entry in the matrix contains the unique I1Ds of the processors that the distance represents,

where the ID is the row-major index of the processor.
. Every border element has aregister containing its restricted internal distance to X.

The agorithm for stagei follows. For all k x k squares A, the distance matrix D for the border elements
and marked processor must be set up. This matrix has a maximum size of (8k - 15) x (8k - 15). Notice
that each of the 4 subsguares contributes a maximum of 2k - 4 rows and columns (representing the outer
border elements of the subsquare) to D. For simplicity, an 8k x 8k simulated mesh is used to represent D.
(Each processor of the k x k mesh simulates a mesh of size 64.)



Within each of the four ¥/, x ¥/, subsquares, compress the (4k - 15) x (4k - 15) matrix from step i - 1 to the
northwest by logically deleting the rows and columns that are not needed for the computations in square
Aat stepi. That is, by deleting from the step i - 1 matrices, those rows and columns not associated with X
or the outer border elements of the subsguare. Once each of the matrices has been compressed in its
submesh, move the matricesto the regions as illustrated in Figure 3.6. This can be accomplished viaa
concurrent write in ©(k) time since the only information necessary is the size of each of the four
submatrices, which can be computed in ©(k) time. Initialize the remaining entries of D to .

Perform arow rotation and a column rotation to propagate the coordinates (I Ds) of the processor
represented by each row and column of the matrix to the new entries (those just initialized to «) of D so
that they know which processors they represent. If an entry detects that it represents the distance between
two adjacent inner border elements that were in different squares at stagei - 1, then the « is replaced
with a distance of 1.

Now, in @(k) time compute D* by using the generalized transitive closure operation of Section 2.5.3.
Notice that D* represents the minimal internal path lengths between border elements and the marked
processor, restricted to paths within the k x k region A. Next, pass the row representing X through the k x
k subsguare so that every border element can obtain and record its (perhaps infinite) restricted distance to
X. This concludes stageii.
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Rearranging distance matricesto form D.

After O(log n) iterations, phase 1 will be complete and each of the border elements of the n x n mesh will
have its correct internal distance to X.

Phase 2. To obtain the correct internal distancesto X for all border elements of each "/, x "/, subsquare,
simply apply phase 1 to each of the "/, x "/, subsquares of the mesh. The only differencein the
reapplication of the algorithm to each of the subsquares is that the distances obtained from the outer
border elements of the "/, x "/, squares to X are correct and are used to obtain the correct internal distance

for the (possibly incorrect) inner border elements of the subsquares. To obtain the correct distance for
every processor in the same figure as the marked processor, simply continue this process recursively for
©(log n) iterations.



Analysis: The timeto label the pictureinitially and pass the label of the marked processor to al
processors is ©(n). The time to complete phase 1 is ©(n) since the time to complete each stage i of the
divide-and-conquer is ©(2). The time to complete phase 2 obeys the recurrence T(n2) = T(n2/4) + O(n),
which is ©(n), since the time to compute the distances for the border elements of ak x k square isthe
time to complete phase 1 on that k x k square, which is ©(k). Therefore, the running time of the
algorithmis©(n). -

The algorithm given above can be extended with minor modifications to the situation where there is one
marked processor per connected component. At each stage of the recursion, the last row and column of
the
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border matrix will represent the set X of processors, rather than a single processor.

Corollary 3.14 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
size n2, and given a set of marked processors X, with at most one marked processor per figure (i.e.,
connected component), in ©(n) time each processor can compute its (possibly infinite) internal distance
toX. -

In addition to knowing the internal distance between processors, it is sometimes desirable to mark
minimal internal paths and to count the number of such paths. The all-points minimum distance
algorithm presented in Theorem 3.13 can be used to mark all minimal paths between a pair of marked
processors. This may be accomplished by applying the al-points minimum distance algorithm once with
respect to each marked processor, broadcasting the minimum distance between the pair of marked
processors to all processors, and then performing local computations within every processor based on the
broadcast value and both minimum distance values. Once all of the minimal paths have been marked
between the pair, every processor on multiple paths can locally eliminate al but one of the paths. This
has the effect of marking asingle minimal path between the pair. Finally, after marking al minimal paths
between the pair, a modification of the all-points minimum distance algorithm may be used to determine
(count) the number of minimal paths between the pair of marked processors.

Theorem 3.15 Given an n x n black/white picture stored one pixel per processor in a mesh of size n2,
and given marked processors A and B, if the distance from A to B isfinite, then in ©(n) time

a) all minimal A - B paths can be marked,

b) a single minimal A - B path can be marked, and

) the number of minimal A - B paths can be determined.
Proof. Algorithms for these related problems follow.

a) The all-points minimum distance algorithm from Theorem 3.13 is performed twice; first with A asthe
marked processor, and then with B as the marked processor. Next, processor A broadcasts d(A, B) to all
processors. Now, every processor C such
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that d(A, C)+d(C, B)=d(A, B) determinesthat it is on some minimal A - B path. To mark al minimal A -
B paths, every such C "creates' an edge (C, D) to each neighbor D such that d(D, B)=d(C, B)- 1.

b) After marking all minimal A - B paths, every processor contains between zero and four edges. In order
to mark asingle minimal path, each processor discards all but one of its edges. Now there exists exactly
one directed, minimal, A - B path. In order to mark this path, perform part a) again using only the
directed edges that were just created.

c) After marking all minimal A - B paths, the remainder of the algorithm to count the number of minimal
A - B pathsis similar to phase 1 of Theorem 3.13, and is described for an arbitrary stagei of the bottom-
up divide-and-conquer strategy, where k = 2'. Assume that each k x k square contains a (4k - 2) x (4k - 2)
matrix M that represents the number of distinct minimal paths between A,B, and the outer border
elements of the k x k square, where only paths within the square are considered.

Merge four k x k squaresto create a (16k - 14) x (16k - 14) matrix M. Placea1lin M(i, ) if the (C, D)
edge exits, wherei = rank(C) and j = rank(D), where rank is with respect to M, and where C and D are
neighbors from distinct k x k squares that are merged. Next, compute the number of minimal paths
between entriesin M. The (i, j) entry of M will get the valuefi(i, j), where | = 16k - 14, and f is defined as

.irk“:_]']_{ S (i, 3) + femali k) * foalk,g)  WF dld, k)+d(k, 5) =d(3, j)

fre—uli 3) otherwise.

This requires a dlight modification of the transitive closure algorithm that was presented in Section 2.5.3.
When one processor passes an arbitrary fk-I(i, j) to another processor, it must al'so passd(i, j), since this
information is necessary in order to insure the proper evaluation of the function.

Finally, compress the matrix by deleting the rows and columns that do not represent A,B, or outer border

elements of the 2k x 2k square. The result is a matrix of size (4(2k)-2) x (4(2k)-2). Continue this
merging, computing, and compressing process until the computations have been performed on the entire
n X n mesh.
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The entry M(a, b), where A isthe ath row of the matrix and B is the bth column, contains the number of
minimal paths from A to B.

In the theorem just presented, it is not necessary to restrict A and B to single processors. With only minor
modifications to the previous algorithms, A and B can be arbitrary sets of processors. Given sets A and B
of processors, define the internal distance from A to Btobemin{d(x,y)|x O AyOB}. (If Aand B
overlap then define d(A,B) to be 0, and define marking minimal paths to mean indicating which
processors are in both sets.) With a minor modification to the matrix M, the following result is obtained.

Theorem 3.16 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
size n2, and given (not necessarily digoint) sets A and B of marked processors, in ©(n) time each
processor can compute its (perhaps infinite) distance to the set B, and the distance from A to B can be
determined. Further, if the distance from A to B isfinite, then in ©(n) time

a) all minimal A - B paths can be marked,

b) a single minimal A - B path can be marked, and



¢) the number of minimal A - B paths can be determined.

One application of these internal distance algorithmsis to the situation in which each figure has exactly
one marked pixel, for example, the pixel with ID identical to the component label of the figure. Then by
applying an algorithm closely related to those that have been presented, in ©(n) time a breadth-first
spanning tree can be constructed within each figure, where the breadth-first spanning tree of agraphisa
spanning tree such that each vertex is at the minimal possible distance from the root.

It should be noted that the previous algorithms work equally well if the edges between pixels are directed
and have arbitrary positive weights. If negative edge weights are allowed, then if thereis a cycle with a
negative total weight, the cycle can be repeated arbitrarily often to make distances as negative as desired.
Therefore, any path touching such a cycle with a negative total weight should be given atotal distance of
-c0, With proper modifications, negative weights can be accommodated.
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Theorem 3.17 Given a mesh of size n2 such that each processor contains a directed weighted edge to
each of its neighbors, where the weights can be + « or any real number, and given (not necessarily
digoint) sets A and B of processors, in ©(n) time each processor can compute its (perhaps infinite)
distance to B, d(A, B) can be determined, and it can be decided whether or not all cycles have a positive
total distance. Further, if all cycles have a positive total distance and d(A,B) isfinite, then in ©(n) time

a) all minimal A - B paths can be marked,
b) a single minimal A - B path can be marked, and
c) the number of minimal A - B paths can be deter mined.

Proof. If there is a cycle with negative total weight then the recurrence used to calculate interna
distances is no longer correct. To remedy this, when working in any square, first run the algorithm as
before, except that all diagonal entries are initialized to be +co0. The (i, i) entry of the resulting matrix is
negative if and only if vertex i ison acycle of total negative distance. (The entry isO if and only if the
vertex ison acycle of zero total distance, and is not on any negative cycles.) If the (i, i) entry is negative,
it isreplaced with -0, asis any entry other than + in the ith row and ith column. (Thisis because any
path leading into or out of a negative cycle should have a path length of -«.) Now the generalized
transitive closure algorithm is run again, where the definition (-c) + (+0) = +c0 is used. It can be shown
that the resulting matrix has the correct distances, and is therefore ready for the next stage. -

Theinternal diameter of a set A of processors is defined to be max{d(x, y) | x, y O A). (External diameters
are discussed in Section 3.6.) Fischler [Fisc80] shows how the internal diameter can be used to classify
cracksin an industrial inspection application. For an arbitrary set A of processors, an efficient algorithm
for determining the internal diameter is an open problem. However, for an important case where Aisa
connected component without holes, then itsinternal diameter can be determined efficiently. (This
includes the case of interest to Fischler.)



The outline of the solution is given, which is based on the algorithm associated with Theorem 3.13.
When working on finding distances in some square, for each black processor (vertex) P, on the border of
the square there is another black processor (vertex), denoted F(P,), that is one of the furthest processors
from P, in the square, subject to the condition that F(P,) is connected to P, in the square. (It may be
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that F(P,) is another border processor, in which case it was aready avertex, and it may be that F(P,) and
F(P,) are the same even though P, and P, are not. In these cases, the redundant vertices are eliminated.)
The important fact is that, in afigure with no holes, for each border processor P,, F(P,) can be selected
from among {F(P, ) | P, is aborder element of a subsquare} . Further, it can be shown that the largest

finite internal distance ever calculated during any stage is the internal diameter. Incorporating these facts,
the following is obtained.

Theorem 3.18 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
size n2, then in ©(n) time every processor in a figure without a hole can determine the internal diameter
of itsfigure. -

It should be noted that using techniques from [Beye69, Levi72, MiPa69], in ©(n) time each figure can
decide whether or not it has any holes.

3.5 Convexity

In this section, solutions are presented to several problems involving convexity. Central to thiswork is
the identification of the processor at position (i, j) with the integer lattice point (i, j). A set of processors
is defined to be convex if and only if the corresponding set of integer |attice pointsis convey, i.e., the
smallest convex polygon containing them contains no other integer lattice points. While thisis the proper
notion of convexity for integer lattice points, it does have the annoying property that some disconnected
sets of points, such as{ (0, 0), (2, 3)}, are convex.

The relationship between the convexity of processors and the convexity of the original figuresis
complicated by the digitization process. If the integer lattice corresponding to the processorsis placed
atop a black/white picture (not a digitized picture) and each lattice point is given the color of the point it
covers, then aconvex black figure will yield a convex set of black lattice points. For each convex set of
black lattice points, there is a convex black figure whose digitization is the given set, but thisfigureis
never unigque. Further, there are nonconvex black figures which also yield the given set. See Figure 3.7.

Some digitization schemes associate each lattice point with the center of a closed unit square (with
adjacent squares overlapping on their
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_ A nonconvex black figure
A convex black figure whose digitization is S.
whose digitizationis S.

Figure 3.7:
Convex and nonconvex figures that yield the same convex set of |attice points.
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A convex set of black lattice points which, in some digitization
schemes, cannot arise as the digitization of a convex black figure.

edges). If alattice point is colored black when all of its square is black, then once again a convex black
figure will yield a convex set of black lattice points, and for any convex set of black lattice points there
are both convex and nonconvex black figures which yield the given set.



For some digitization schemes, however, the correspondence is not quite as nice. For example, suppose
each lattice point is again viewed as the center of a closed unit square, but now it is colored black if any
part of its square is black. Convex black figures will yield convex connected sets of black lattice points,
but not all convex connected sets of black lattice points can arise as the digitization of a black convex
figure, as shown in Figure 3.8. Readers interested in pursuing the relationship between convexity and
digitization are referred to [KiRo82b], and the references contained therein.

Given aset Sof processors, the convex hull of S, denoted hull(9), is the smallest convex set of processors
that includes S. A processor P [ Sis defined to be an extreme point of Sif and only if P O hull(S{P}).
That is, the extreme points of Sare the corners of the smallest convex polygon containing S. It is said that
the extreme points of Shave been identified if each processor in Shas decided whether or not it isan
extreme point of S. It is said that the extreme points of S have been enumerated if for every processor P,

containing apoint p O S the following hold. (See Figure 3.9.)

1. P, has aBoolean variable 'extreme’, and extreme istrue if and only if p is an extreme point of S
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Figure 3.9:
Enumerated extreme points of S

2. P; stores the total number of extreme points of hull(S).

3. If pisan extreme point of S then P; stores the position of p in the counterclockwise ordering of
extreme points. (The rightmost extreme point is assigned the number 1. If there are two rightmost
extreme points, then the lower one is assigned the number 1.)



4. If pisan extreme point of S, then P; stores the Cartesian coordinates of the extreme points that precede
and succeed p, aswell asthe ID of the processors that contain them.

Many queries concerning S can be reduced to questions concerning the extreme pointsof S Onannxn
mesh, Smay have ©(n?) points, but since S has at most two extreme pointsin any row, it has O(n)
extreme points. In fact, by using alittle number theory, it has been shown that S has only O(n23) extreme
points [VoK182]. Since it takes
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Q(n) time to move data across an n x n mesh, the O(n23) bound on the number of extreme points does
not help in most algorithms, though it is crucial to the algorithm of Theorem 3.33. The reader interested
in serial algorithms and general descriptions of the convexity problems considered in this section are
referred to [Sham78, Tous30].

Thefirst problem considered in this section is that of identifying the extreme points for every labeled set
of processors. Initially, every processor contains alabel, and when the algorithm terminates each
processor must know whether or not it is an extreme point with respect to all processors containing its
label. These labels may arise as the labels of figures (i.e., connected components), but thereis no
requirement that they do so. An agorithm to solve this problem first identifies the leftmost and rightmost
processors for each label present in every row. That is, every row uses arow rotation to solve its
restricted extreme point identification problem for all labelsin its row. Sorting is then used to gather
these row-restricted extreme points together for every label, where it may be noted that no label will
contain more than 2n such points. Finaly, all row-restricted extreme points are viewed by all other row-
restricted extreme points with the same label, during which it is possible for each such point to decide
whether or not it is an extreme point with respect to its label.

The agorithms presented in this section assume that there are constant time serial algorithms enabling a
processor to decide if one integer lattice point is on the line segment between two others, if one integer
lattice point is on the line determined by two others, if one integer lattice point isin the angle determined
by three others (one of which is designated as the vertex), and if one integer lattice point isin the closed
triangle determined by three others.

Theorem 3.19 In a mesh of size n2, smultaneoudly for all labels A, in ©(n) time the extreme points of the
processors labeled A can be identified.

Proof. First, each processor determines whether or not it is either the leftmost or rightmost processor
containing its label initsrow. Thisis donein ©(n) time by rotating within every row the label and
position of all processorsin the row. When finished, each processor that is either aleftmost or rightmost
processor for itslabel withinitsrow placesitslabel and position into its sort field, while all other
processors put c and their position into their sort field. These values are sorted into snake-like order
using the label asthe key.

For all finite labels, rotate in snake-like fashion, as described in Section 2.6.2, the position information in
the sort field among all processors
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with the same label in their sort field. Since for each finite |abel there are at most 2n such positions, this
can be donein O(n) time. As the information rotates, each processor determines whether or not the
position inits sort field is an extreme point with respect to the positions that the processor has viewed.
Thisis done asfollows. Suppose X is the position in the sort field of a given processor. The positions of
at most two more processors with the same label will be stored. As each new position Y arrives, if no
other position has been stored then Y is copied. If only one other position U has been stored, then the
processor determines whether or not X is on the line segment between Y and U. If it is, then X isnot an
extreme point; otherwise Y and U are stored, unless Y is on the line determined by X and U, in which case
only U iskept.

Finally, if two positions U and V are being stored when Y arrives, then the processor determines whether
or not X isin the (perhaps degenerate) closed triangle formed by Y, U, and V. If it is, then X is not an
extreme point. Otherwise the processor needs to determine which two of Y, U, and V are to be stored.
One of these must be in the angle formed by the other two with X at the vertex, and it isthisonerthat is
eliminated. (If Y lies on the line determined by X and one of the others, then Y is eliminated.)

There is some constant C, such that after Cn time units the information is finished rotating. It is easy to
show that at any time in the computation, if a processor has not yet determined that the position in its sort
field is not an extreme point, then the position is an extreme point of the set of points that have passed
through the processor thusfar. Therefore, when the information is finished rotating, if a processor has not
yet determined that the position in its sort field is not an extreme point, then the position must be an
extreme point. (Notice that if a processor responsible for X determines that X is an extreme point, then
the hull edgesincident on X are represented by X1r and 77X, where U and V are the two positions
stored in the processor responsible for X at the end of the rotation.) A final sort step based on the snake-
like index of the processor that originated the records, sends the information back so that each processor
knows whether or not it is an extreme point for its label. Sorting, rotating data within intervals of size at
most 2n, and arow rotation each take @(n) time. Therefore, the running time of the algorithmis as
claimed.

The problem of enumerating the extreme points for every labeled set of processors can also be solved in
mesh optimal ©(n) time. Once
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the extreme points have been identified for every labeled set, sort the extreme points by label so that all
extreme points of each set are in a contiguous region of the mesh. Simultaneously within each such
ordered interval, perform arotation so that al processors know the leftmost and rightmost extreme points
(breaking ties in favor of lower) of their label, perform a semigroup (i.e., associative binary) operation to
determine the number of extreme points representing the upper hull (i.e., the number of extreme points
on or above the line between the leftmost and rightmost extreme points), and finally perform arotation
where each upper (lower) extreme point counts the number of upper (lower) extreme pointsin higher
(lower) numbered columns. With this information, every processor can determine in @(1) time the
number of the extreme point it contains with respect to the enumerated sequence of extreme points of its
label. Once the extreme points are numbered, an ordered interval rotation will allow every point to
determine the necessary information regarding its preceding and succeeding extreme points. A final sort
sends the points back to the original processors.



Given digitized picture input, a fundamental image operation is that of determining for each figure (i.e.,
connected component) whether or not it is convex. The algorithm that follows solves the problem by first
determining in each row whether or not the restriction of each figure to that row is convex. Sorting is
then used to group together the at most 2n row-restricted extreme points for each label. For each |abel
that is comprised solely of row-restricted convex segments, a rotation within ordered intervals of these
row-restricted extreme points is used to determine for each figure whether or not it is convex.

Corollary 3.20 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
sizen2, in ©(n) time every figure (i.e., connected black component) can decide whether or not it is convex.

Proof. A connected set Sof processorsis convex if and only if for each processor P, such that P O Sand
P istheright or left neighbor of aprocessor in S P O hull(S). For each such P, the algorithm will check
if P O hull(S) by checking if P isan extreme point of SO {P}.

First, use a ©(n) time labeling algorithm from Section 3.3.2 to label the processors. Then, by rotating
information within rows, each figure determinesiif itsrestriction to every row is convex, e.g., an "O"
shaped figure would find rows in which it is not convex, but a"Z" shaped one would not. By sorting with
respect to figure labels, performing a semigroup (i.e., associative binary) operation within sorted
intervals,
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and then resorting by the snake-like index of the processor creating the record, in @(n) time every
processor can know whether or not all rows of its figure are convex. The agorithm associated with
Theorem 3.19 is then used to identify the extreme points of each figure for which all rows are convex.
Thisisdone for al figures simultaneously in O(n) time, since each figure has at most 2n points involved
in the algorithm. Asthe information is rotating and the processors are determining if the position in their
sort field is an extreme point, they also determine if the processor to the right of that position (if the
position is the rightmost processor with its label in its row), or to the left of that position (if the position
Is the leftmost processor), is an extreme point. The coordinates of these extra processors are not rotated,
but the algorithm of Theorem 3.19 is performed for them. When done, if any one of these extra
processors is not an extreme point, then the figure is not convex, while otherwiseit is. Finaly, a®(n)
time concurrent read can be used to insure that each black processor knows whether or not itsfigureis
CONvex. -

In the early 1960s, Unger [Unge62] gave a ©(n) time algorithm for detecting horizontal and vertical
concavities, i.e., concavities detectable by traveling along a horizontal or vertical line, respectively. He
also noted that although any figure with such concavities is not convex, there are nonconvex figures,
such as the digitization of a pear or banana, without such concavities. So, while an algorithm to detect
features such as horizontal and vertical concavitiesis useful, it cannot be used to decide convexity. The
algorithm to detect such concavitiesis given below and is based on exploiting straightforward row and
column rotations.

Corollary 3.21 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
size n2, in ©(n) time the number of vertical and horizontal concavities can be determined for every figure
(i.e., connected black component).



Proof. First, use a ©(n) time component labeling algorithm from Section 3.3.2 to label the processors. An
algorithm to detect horizontal concavities for each figure is outlined (the vertical concavity detection
algorithm is similar). Simultaneously for al rows, perform arow rotation so that each processor
determines whether or not there are any black pixelsinitsfigureto itsleft. Each black processor with a
white processor to its left now knowsif it isthe right end of a horizontal concavity within itsrow. A sort
step to bring together information from each figure label, semigroup (i.e., associative binary) operation
within intervals to determine for each figure the number of horizontal concavities, and final sort step to
redistribute the results, can be used to inform
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every processor as to the number of horizontal concavitiesin itsfigure. Therefore, the algorithm is
completein ©(n) time. -

Solutions to two problems at the end of this section show applications of convexity that are not obvious.
First, auseful algorithm is given to decide for every figure whether or not its convex hull contains any
black pixels which are not in the figure. The algorithm follows from techniques used in the algorithms of
Theorem 3.19 and Corollary 3.20.

In ©(n) time, label the processors via the component |abeling algorithm presented in Section 3.3.2. Using
the ©(n) time algorithm of Theorem 3.19, identify the extreme points of every figure. Next, use arow
rotation to mark the leftmost and rightmost point for every label in each row. Another row rotation
determines for each figure whether or not there is a point of adifferent label in the convex hull of the
restriction of the figure to the row. For those figures that have thusfar not found a point from another
figurein their hull, perform arow rotation so that in every row the nearest point of a different label to the
left of the leftmost point and to the right of the rightmost point is determined (if they exist). Now, with
minor modifications, the core of the algorithm from Theorem 3.19 can be used to determine for every
figure whether or not any of these additional points are in the convex hull of the figure.

Corollary 3.22 Given an n x n digitized black/white picture stored one pixel per processor in a mesh of
size n2, in ©(n) time every figure (i.e., connected black component) can decide whether or not its convex
hull contains any black pixels not in the figure. Further, in ©(n) time every figure can decide whether or
not any processorsin it are in the convex hull of another figure.

The problem of determining whether or not two sets of processors are linearly separable [Tous80] is
related to determining convexity. Suppose A and B are, not necessarily digoint, sets of processors, and
that each member of A containsthe label A, and that each member of B contains the label B. Then the set
of processors labeled A islinearly separable from the set of processors labeled B if and only if there
exists astraight line in the plane such that all lattice points corresponding to processors labeled A lie on
one side of the line, and all lattice points corresponding to processors labeled B lie on the other side. An
observation that allows for the application of the algorithm associated with Corollary 3.22 to this
problem isthat two sets are linearly separable if and only if their convex hulls are digoint. Therefore, the
following is obtained.
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Corollary 3.23 In a mesh of size n2, in @(n) time it can be decided whether or not the processors labeled
A are linearly separable from the processors labeled B.



Given aset Sof pointsin the plane, a smallest (enclosing) box of S[FrSh75, Tous80] is arectangle of
smallest area containing S. Notice that a smallest enclosing box of Sis not necessarily unique, but that
the area of a smallest enclosing box of Sis unique. It can be shown that each of the sides of a smallest
enclosing box of Smust contain an extreme point of S and that at |east one side of such a box must
contain two (consecutive) extreme points of S[FrSh75]. The following algorithm finds for every hull
edge (i.e, pair of consecutive extreme points) a smallest enclosing box of the figure that has one side
collinear with the edge, and then takes the minimum over all such boxes.

Corollary 3.24 In a mesh of size n2, in ©(n) time every labeled processor can determine a smallest
enclosing box containing all processors with the same label.

Proof. First, perform the algorithm associated with Theorem 3.19, except that there is no need to perform
the final sort and send the extreme point information back to the originating processors. If a processor P
has position X inits sort field, and if X is an extreme point, then at the conclusion of the algorithm the
other two points being stored (call them U and V) are also extreme points. (If no other points are being
stored then only one processor hasits label, while if only one other point is being stored, then the
processors with that label form a straight line segment.) By using the angle UXV, P can determine
whether traveling from X to U or from X to V will produce a counterclockwise traversal around the
convex hull. For convenience, assume that it isfrom X to U.

Processor P now tries to determine the corners of the rectangle, asillustrated in Figure 3.10. It does this
by finding R, S, and T, where Ris a point furthest from the line XU, Sis a point whose projection onto
the line XU is the most negative (where X isthe origin and U is at a positive location), and T is a point
whose projection onto XU is the most positive. To enable each processor to find the coordinates of R, S
and T, corresponding to the point X that it is storing, rotate the position information again. When
finished, each processor P having an extreme point X in its sort field will know the pointsR, S and T,
that correspond to X, and hence can compute the corners and area
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Figure 3.10:
A smallest rectangle.

of its box. These boxes are rotated in snake-like fashion among the processors with the same label in
their sort field, which enables each processor to determine a smallest box for the label of the point inits
sort field. A concurrent read is used so that every labeled processor is notified regarding the identity of a
smallest enclosing box. -

3.6 External
Distances

In this section, problems are considered that involve external distances between processors, where again
the processor at position (i, j) is identified with the integer lattice point (i, j). The most common distance
measures used are the |, metrics, where for 1 < p < o, thel, distance from (a, b) to (c, d) is

[|a—-c|? 4+ | b-d|F]*?.(Thel, distance from (a, b) to (c, d) ismax{|a —c|.| b—d |}.) The
connection scheme of the mesh is based on the |, ("taxi-cab" or "city block™) metric, so problems are
usually easiest when expressed in terms of this metric (c.f., Theorem 3.25 and Theorem 3.28). Further,
simple techniques can also be applied to solve problems in terms of the |, metric. However, for
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Figure 3.11:
For a monotone metric d, d(P, Q) < d(P, R)) and d(P,Q) < d(P, R,).

other metrics, such as the important I, (Euclidean) metric, slightly more sophisticated methods are
needed to solve external distance problems on the mesh.

In this section, it is assumed that there is afunction d(x, y) which computes, in unit time, the distance
between points x and y. The function d cannot be completely arbitrary, for then there would be no
connection between the metric and the underlying geometry of the mesh. To avoid this, only monotone
metrics will be considered, where ametric d is said to be monotone if for al processors P, Q, and R, if Q
and R are neighbors and the |, distance from P to R exceeds the |, distance from P to Q, thend(P, R) = d
(P, Q). (See Figure 3.11.) All I, metrics are monotone, and it seems that monotone metrics are the only
ones ever encountered in practice.



Let Sbe aset of processors. The external diameter of Sis defined to be max{d(x,y) | x,y I §. For thel,
and |, metric, Dyer and Rosenfeld [DyRo81] presented an algorithm to compute the external diameter of
agiven set Sof processorsin O(n) time on amesh of size n2. Given amesh of size n2 with each processor
labeled black or white, Theorem 3.25 presents an algorithm to compute a nearest and farthest black
processor for each processor, as well asto compute the external diameter of a set of black processors, al
in optimal ©(n) time for the |, and |, metrics. The algorithm exploits the connection scheme of the mesh
to solve the problem by a straightforward combination of row and column rotations, during which each
processor retains the identity of a nearest or farthest neighboring black processor.
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Theorem 3.25 Given a set Sof black processors on a mesh of size n2, in ©(n) time every processor can
know a nearest and farthest black processor, and in ©(n) time every processor can know the external
diameter of S. These computations are with respect to either thel, or |, metric.

Proof. The following algorithm can be used with respect to either the |, or |, metric to determine the
nearest black neighbor for every processor in the mesh. Simultaneously for al rows, perform arow
rotation so that every processor, including those that are not black, determines a nearest black processor
initsrow (ties broken arbitrarily). Each processor now creates a neighbor record that contains its row
coordinate and the column coordinate of the nearest black processor in itsrow that was just determined.
Simultaneously for all columns, perform a column rotation, where every processor views the neighbor
records of all processorsin its column and retains the data record corresponding to a nearest black
neighbor (ties broken arbitrarily), with respect to the appropriate metric.

To determine afarthest neighbor for every processor in the mesh, ssmply modify the algorithm so that
maximum distances instead of minimum distances are retained during the rotations. To determine the
external diameter of the set Sof black processors, ssimply perform a semigroup operation taking the
maximum over all of the farthest neighbor distances, where only the distances contained in the black
processors are used. Each of the row and column rotations takes ©(n) time, as does the semigroup (i.e.,
associative binary) operation. -

Suppose that instead of one set of black processors, the input consists of multiple sets of labeled
processors. Further, suppose that it is necessary to compute the external diameter of each set with respect
to an arbitrary monotone metric, asis the case in some image algorithms that require the use of thel,

(Euclidean) metric (c.f., [Fisc80]). In the following theorem, an optimal mesh algorithm is presented to
determine the external diameter for every labeled set of processors, with respect to an arbitrary monotone
metric. The algorithm exploits the fact that for arbitrary monotone metrics, the external diameter of a set
Sof processorsis max{ d(x, y) | X, y are the rightmost or leftmost elements of Sin their rows}.

Theorem 3.26 In a mesh of size n2, for any monotone metric, in ©(n) time every labeled processor can
determine the external diameter of the processors with its label.
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Proof. Let Sdenote a set of processors. If the metric were an |, metric, then the fact that the externa
diameter of Sisequal to max{d(x, y) | X, y are extreme points of § could be exploited. For arbitrary
monotone metrics thisis no longer true, but it is true that the external diameter of Sisequal to max{ d(x,
y) | X, y are the rightmost or leftmost elements of Sin their rows}. Asin Theorem 3.19, every processor
first determinesif it is either aleftmost or rightmost processor with itslabel in itsrow. Each such
processor putsits label and coordinates into its sort field and all other processors put infinity and their
coordinates into their sort field. These elements are then sorted with the label as primary key. For each
finite label, the coordinates are now rotated (in snakelike fashion), and each processor keeps track of the
maximum distance from the coordinates in its sort field to any of the received coordinates. When the
coordinates are done rotating these maxima are rotated. The solution for each ordered interval (i.e., each
labeled set) isthe largest of the maxima. A concurrent read then insures that each |abeled processor
knows the external diameter for itslabel.

A closely related problem to that of the previous theorem is the all-points farthest point problem
[Sham78], in which for every labeled processor, the greatest distance to a processor with the same |abel
Is to be determined. With a slight change to the preceding algorithm, the following is obtai ned.

Corollary 3.27 In a mesh of size n2, for any monotone metric, in @(n) time the all-points farthest point
problem can be solved.

Theorems 3.25 and 3.26 were concerned with finding distances among processors with the same label,
while the following theorems are concerned with finding distances between processors with different
labels. The first problem considered is that of determining for every processor the distance and label to a
nearest (farthest) distinctly labeled processor, with respect to thel, and |, metrics. The algorithm
presented to solve the problem is similar to that of Theorem 3.25 in that it is based on a combination of
row and column rotations.

Theorem 3.28 In a mesh of size n2, for thel, and |, metrics, in ©(n) time every labeled processor can
determine the distance and label of a nearest and farthest processor with a different label, if such a
processor exists. Further, for every set of processors, a nearest distinctly labeled set of processors can be
determined in ©(n) time.
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Proof. Simultaneously for all rows, perform arow rotation so that every processor finds a nearest
distinctly labeled processor in itsrow. Perform a second row rotation so that every processor finds a
nearest distinctly labeled processor that is of adifferent label than the one just found. Each processor
now creates a record that contains distance and label information of the (at most) two distinctly labeled
processors just determined. Simultaneously for all columns, perform a column rotation so that every
labeled processor can detect a nearest processor of adifferent label, if such a processor exists.



This information can now be used to determine a nearest set of processors for each labeled set of
processors as follows. For every labeled processor X containing the label and coordinates of a nearest
processor Y with a different label, create a sort record containing the label of X, the distanceto Y, the
label of processor Y, and the snake-like index of X. For processors that are not labeled, create dummy
sort records. Sort these records by processor |abels (the first field of each record), with ties broken
(arbitrarily) in favor of minimum distance to a distinctly labeled processor (the second field of each
record). The leader (processor containing the first record) of each sorted interval now contains the label
of anearest distinctly labeled set of processors. Within each sorted region, broadcast to all other
processors the label contained in the leader. A final sort by the original snake-like index (fourth field of
each record) sends the label of anearest distinctly labeled set of processors back to all labeled
processors. Since sorting, broadcasting and reporting within ordered intervals, and row rotations take ©
(n) time, the running time is as claimed.

Notice that the algorithm can be modified so that in ©(n) time each |abeled processor finds a farthest
distinctly labeled processor. -

The previous theorem was restricted to finding neighboring information between processors with
different labels with respect to the |, and |, metrics. The following theorem shows that every processor
can find anearest processor of a different label, if such a processor exists, with respect to an arbitrary
monotone metric. The algorithm is similar to the previous onein that it ssmply uses a combination of row
and column rotations.

Theorem 3.29 In a mesh of size n2, for any monotone metric, in @(n) time every labeled processor can
determine the distance and label of a nearest processor with a different label, if such a processor exists.

Proof. Let P be an arbitrary processor and let Q be a nearest |abeled processor to P with adifferent label.
Let R be the processor
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in P's column and Q'srow. Since d is monotone, it must be that R and all processors between Rand Q are
either unlabeled or have the same label as P. This forms the basis of a simple algorithm that is similar to
the algorithm of Theorem 3.25. Rotate the labelsin every row so that each processor determines the
closest (in the |, sense) labeled processor to itsright. (If the processor isitself labeled, then it isthe
closest labeled processor.) Another rotation is used so that every processor finds the closest |abeled
processor to itsright with alabel different from the first found one. This procedure is also performed for
the left side. When finished, every processor has determined at most 4 |abel/coordinate records, which
are now rotated within the columns. Each processor determines the minimal distance to arecord with a
different label, completing the algorithm.

One application of thistheorem isto the situation where a digitized black/white image is given in which
each white pixel isunlabeled and each black pixel islabeled by its coordinates. In this case, the result
gives a solution to the all-points closest point problem (all-points nearest neighbor problem) [Sham78,
Tous80]. Given adigitized picture in which the figures (i.e., connected black components) have been
labeled, an application of the previous theorem and a concurrent write can be used to determine the
distance between figures, where the distance between figures A and B is defined to be min{d(P, Q) | P [
A Q[ B}.



Corollary 3.30 In a mesh of size n2, for any monotone metric, in @(n) time every processor can
deter mine the minimum distance fromits figure to a nearest figure.

Theorem 3.29 can also be applied to solve the largest empty circle problem [ Sham78] for any monotone
metric, in which each processor is marked or unmarked and a processor P must be found which
maximizes min{ d(P, Q) | Q is marked}, subject to the additional constraint that P must lie in the convex
hull of the marked processors. The algorithm that follows introduces a paradigm that exploits the fact
that one of the two input sets of data can be drastically reduced. This allows multiple copies of the
reduced set to be made available to the other (nonreduced) set of datafor processing. Specifically, once
the O(n) extreme points of the black processors are identified, n copies of these points can be placed in
distinct subsquares of the mesh so that every processor can view all O(n) such pointsin O(n) time.
(Alternately a copy of the O(n) extreme points could be place in every row (column) and a simple row
(column) rotation would allow every processor to view all O(n) extreme points.)
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Corollary 3.31 In a mesh of size n2, for any monotone metric, the largest empty circle problem can be
solved in ©(n) time.

Proof. Identify the extreme points of the black processors by using the algorithm associated with
Theorem 3.19. Compress the coordinates of these points to the upper-left submesh of sizen. Using a
concurrent read, make copies of this data in every digoint submesh of size n. Within each digoint
submesh of size n, rotate the extreme points in snake-like order so that all white processors know
whether or not they are in the convex hull of the black processors (following the method described in the
algorithm associated with Theorem 3.19). Now, use the algorithm of Theorem 3.29 so that each white
processor in the convex hull findsits nearest black pixel. Finally, to solve the largest empty circle
problem, perform a semigroup (i.e., associative binary) operation over the nearest neighbor information
in the white processors that are in the convex hull of the black processors.

Given anonempty set Sof processors, there are several natural definitions for the center of S If Sis
connected then an internal center of Sisa processor P [ Swhich minimizesmax{d(P, Q) | QU S},
where d isthe internal distance. For any metric d, a planar center of Sisapoint x in the real plane which
minimizes max{d(x, Q) | Q U S}, and arestricted planar center of Sisa processor P [1 Swhich minimizes
max{d(P, Q)| Q 0 §. For each definition of center there is also a corresponding definition of radius. For
any |, metric (1 < p < ), the planar center is unique, but the restricted planar center may not be. For
example, the four indicated pointsin Figure 3.12 are restricted planar centers, and all of the points of the
figure areinternal centers.

The proof of the following theorem is similar to that of Theorem 3.26 and will be omitted.

Theorem 3.32 In a mesh of size n2, for any monotone metric, in ©(n) time every labeled processor can
determine whether or not it isarestricted planar center among the processorswith itslabel. Further, in
©(n) time every processor can determine the restricted planar radius of the processorswith its label.

The following theorem is concerned with determining the Euclidean planar center and radius for all
figuresin ©(n) time on amesh of size n2. It should be noted that the algorithm that is presented uses facts
which are specific to the Euclidean metric.
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Figure 3.12:
All black (hashed) pixels are internal centers.
The four restricted centers, for any Ip metric, are also marked.

Theorem 3.33 In a mesh of size n?, in ©(n) time every labeled processor can deter mine the Euclidean
planar center and Euclidean planar radius of itsfigure.

Proof. For the Euclidean metric, this problem is known as the smallest enclosing circle problem
[Sham78]. The following facts and assumptions will be used.

1. If aset has only one or two points, then the smallest enclosing circle can be found in ©(1) timeif the
coordinates of the points are in a single processor.

2. For aset of 3 points, either all 3 points are on the boundary of the smallest enclosing circle, or else 2
of the points form a diameter of the circle. In either case, the center and radius of the circle can be found
in ©(1) timeif the coordinates of the points are in a single processor.

3. For aset Sof 3 or more points, there is a 3-element subset T of Ssuch that the smallest enclosing circle
of T isthe smallest enclosing
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circleof S Theradius of the smallest enclosing circle of T is the maximum radius of any smallest
enclosing circle of a 3-element subset of S. Further, T can be taken to be a subset of the extreme
points of S except when all of Slieson astraight line, in which case T contains the two endpoints and
any third point.



The agorithm is straightforward. In ©(n) time, by using the algorithm associated with Theorem 3.19,
find the extreme points of every labeled set. Next, for every labeled set S, find the smallest enclosing
circle for each 3-element subset of the extreme points. Notice that if there are e extreme points of S, then

[

thiswill requi re( 3 ) = 8(e*) calculations. However, as mentioned on page 124, on a mesh of size n2

the worst-case value of e is ©(n23), which requires only ©(n?) calculations. If these calculations must be
done in the e processors, they will require at least Q(n#3) time. Thisis prevented by using the processors
of S and not just those that are extreme points of S, to perform the calculations. If afigure hasp
processors, then e = O(min(r)23), so at most O(min(p, n)2) calculations are required. By suitably dividing
these cal culations among the p processors, they can be completed in O(n) time.

Finding the |, and |, planar radii and planar centers are particularly easy. For these two metrics, the
planar radiusis half of the diameter, which can be computed in ©(n) time by Theorem 3.28. Thel, (and |

») planar centers form a straight line segment (see Figure 3.13) which may degenerate to a single point.
The details of finding the endpoints of these segments is|eft to the reader.

Thefinal (distance) problem considered in this section is the all-points radius query, also known as the
all-points fixed radius near neighbor problem [Bent80]. Given aradiusr, determine for each pixel the
number of black pixels at distancer or less. The set of processors at distance r or less from a processor P
iscalled an r-ball centered at P.

To perform the all-points radius query efficiently, an additional restriction on the metric isimposed. A
metric isavector metric if it ismonotone and if d(P, Q) is dependent only on the vector from P's position
to Q's position. Vector metrics have the property that for any radiusr and any processors P and Q, ther-
ball centered at P isjust arigid translation (with no rotation) of the r-ball centered at Q, i.e., the metric
looks the same everywhere. All |, metrics are vector metrics, and it seems that all metrics encountered in
practice are vector metrics.
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Figure 3.13:
Figures with nonunique planar centers.

Theorem 3.34 In a mesh of size n2, for any vector metric and for any radius, the all-points radius query
can be solved in ©(n) time.



Proof. Suppose the radius r is sufficiently small so that the r-ball centered at processor P, 1, lies

entirely within the n x n mesh. The monotonicity guarantees that to traverse the perimeter of ther-ball, at
most 4n processors will be visited. (Figure 3.14 shows atypical r-ball.) Suppose each processor has a
value, denoted B, which isthe number of black pixelsinitsrow toitsleft. Consider atraversal of the
perimeter of an r-ball during which arunning total will be kept. Initially, the total is 0, and as the
traversal reaches a processor which isrightmost in its row (among those in the r-ball), the B valueis
added, plus 1 if the pixel thereisblack. At each processor which isleftmost in its row (among those in
ther-ball), the B value is subtracted. Thetotal at the end of the traversal is the number of black pixelsin
the r-ball.

Using the above procedure is quite smple. To insure that the traversal does not try to move off of the n x
n mesh, consider the n x n mesh as being in the center of a 3n x 3n mesh, where all the added pixels are
white and each real processor must simulate 9 processors. Further, redefine the r-ball centered at a
processor P to be{Q| d(P, Q) < r and thel,, distance from P to Q is< n}. Notice that the new r-ball
centered at a processor in the original mesh lies entirely in the 3n x 3n mesh and contains the same
processors of the original mesh as does the original r-ball. In particular, it contains exactly the same
number of black pixels.

To start, use arow rotation so that every processor determinesits B value. Then, all processors in the
original mesh create arecord which
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Figure 3.14:

A 5-ball about P, using the Euclidean metric.

acts astheir representative in the traversal. Since the r-balls are identical, these representatives can be
passed along in alockstep fashion as they perform the traversal and return to their originating processor.
No matter what the value of r, the modified r-ball has a perimeter of O(n), so the algorithm isfinished in
O(n) time.

3.7 Further Remarks



In this chapter, optimal ©(n) time algorithms have been presented to solve problems that involve
matrices and digitized pictures on a mesh of size n2. The algorithms are defined predominantly in terms
of fundamental mesh operations that were introduced in Chapter 2. Many of the problems considered in
this chapter involve combining information from processors far apart, in which case the use of sort-like
data movements was crucial to the development of efficient algorithms. The general techniques
demonstrated in this chapter, including divide-and-conguer, compression, expansion with cross-product,
and data reduction techniques that include changing the form of the input, can be applied
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to yield efficient solutions to awide variety of problems on a mesh computer.

In fact, smple techniques, such as propagation, can be used to solve important problems. For example,
an optimal mesh solution to the parallel visibility problem can be obtained by propagation. The parallel
visibility problem can be defined as the problem of determining the portions of each figure that are
illuminated by a given light source emitting rays of light parallel to a specified directionr. A ssimple
propagation algorithm consists of partitioning the mesh into small strips parallel to r and propagating the
light source through each strip. Initialy, the entire strip is considered visible. As each processor receives
its strip's current visibility interval, it modifiesthe interval, if necessary (i.e., if the processor contains a
black pixel that is still partially visible), and passes the interval on to the next processor in the strip.
Details of choosing the proper size of the strips, determining strip predecessor and successor information,
and general proofs of correctness are given in [DHSS87]. It should be noted that optimal mesh solutions
to visibility problems are possible for assumptions other than a distant light source emitting rays of
paralel light.

Dominance problems can also be solved using propagation techniques. Given adigitized picture A = {&;
j} stored one pixel per processor on a mesh of size N2 so that processor Pi,j contains I pixel &, issaid
to dominate pixel e ifandonlyifi>i'andj>j'. A pixe &, is called maximal if there are no other

pixelsin A that dominate it. The set of all maximal pixelsiscalled the 1% contour of A, and is denoted
MAX(A). The kth contour of A, denoted MAX(A, K), k an integer, is defined as

MAX(A) if k=1

MAX(A k) = { MAX(A - [MAX{A D U...UMAX(A k- 1)) ifk>1

A straightforward propagation algorithm, where processors send information down and to the left, can be
designed to determine the kth contour of A in optimal time on a mesh, ssmultaneously for all possible
values of k. See [DHSS91] for details.

Since it takes ©(n) time for datato travel across an n x n mesh, all of the algorithms presented in this
chapter have optimal worst-case running times. However, there may be situations where the answer can
be found faster. For example, suppose no figure (i.e., connected black component) of a digitized picture
has an |, external diameter greater than D. Then by partitioning the mesh into digjoint subsquares of size

©(D), and sharing data between adjacent squares, in ©(D) time every
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figure can determine its extreme points. Given the appropriate situation, this technique can be used with
all of the image results, reducing them to ©(D) time. One particularly interesting application of this
technigue occurs when it is combined with the algorithms of Theorem 3.34, while using the |, metric and
aradiusof D. In ©(D) time, every processor will know the number of black pixelsin a square centered at
the processor. If a processor then becomes black if and only if more than half of the processorsin its
square were previously black, then the solution to the bilevel median filtering problem with awindow of
edgelength 2D + 1 isknown in @(D) time. It should be noted that median filtering with a window of
edgelength 2D+1 on an arbitrary greylevel picture can also be accomplished in ©(D) time, but the
algorithm is far more complicated [ Stou83c].

The results of this chapter suggest many additional questions, most of which are still open. For instance,
isthere a ©(n) time algorithm for locating all internal centers? For any p, are there ©(n) time algorithms
for locating |, planar centers and computing |, planar radii?

In this chapter, the concentration has been on 2-dimensional meshes. A j-dimensional mesh of sizenj, j =
2, has ni processors arranged in aj-dimensional cubic lattice. Processor F., .. ., and processor Fj,
are connected if and only if 3.7, |s; —t:| = 1. In the O-notational analyses of agorithmsfor j-
dimensional meshes it makes sense to consider | asfixed. That is, there is no differentiation between a
step needing a constant amount of time and one needing 2' units. (A generic processor in aj-dimensional
mesh has 2 neighbors.) The reason for thisisthat a processor in aj-dimensional mesh is fundamentally
different from one in ak-dimensional mesh when j # k.

..... [

When considering 3-dimensional (or higher) "pictures,” then almost al questions are open. That is,
suppose an n x n x n (3-dimensional) picture is stored one pixel per processor inann x n x n (3-
dimensional) mesh, how fast can figures be labeled, extreme points located, internal distances
determined, diameters computed, and so forth? Notice that some methods, such as "shrinking," do not
extend to higher dimensions (consider a pair of distinct interlocked solid rings in 3-space). Further, many
of the convexity and external distance algorithms reduce the amount of data by one dimension, reducing
an n x n picture to ©(n) points, giving ©(n) time algorithms. On a j-dimensional mesh, thiswould give ©
(n-1) time algorithms, which is not necessarily optimal for j > 2.

Nassimi and Sahni [NaSa80] have extended their asymptotically optima component labeling algorithm
to all dimensions, and it is not hard to
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design a ©(n) time algorithm for finding the distance to the nearest processor with a different label, but
for most other j-dimensional problems, | > 2, ©(n) time algorithms are not known. It should be noted that
while the first component labeling algorithm given in Section 3.3.2, aswell as Nassimi and Sahni's
[NaSa80] algorithm, both extend to asymptotically optimal algorithmsin higher dimensions, it is not
possible to extend the second algorithm given in Section 3.3.2 to higher dimensions. Thisis dueto the
fact that the algorithm reduces the digitized picture component labeling problem to the transitive closure
problem, the solution of which requires n2d-) matrix entries for a picture with ni pixels. While the -
dimensional mesh of size ni islarge enough to hold the matrix for j = 2, thisisnot true for j > 2.



Similar space problems arise when attempting to extend the internal distance algorithms given in this
chapter to dimension greater than 2. The 2-dimensional algorithms considered k x k subsquares, ignoring
all of the square except for the ©(k) border elements, and constructed a distance matrix with O(k?)
entries. This matrix was able to fit in the original square. In 3-dimensions, for example, k x k x k
subcubes have ©(k2) border elements, which would require a distance matrix containing @(k4) entries.
This matrix will not fit in the original cube, so the method fails, as it would for any j-dimensional picture,
] > 2, with ni pixels stored in anatural fashion on aj-dimensional mesh of size ni. One could use asimple
propagation agorithm, where each marked processor informs its neighbors that they are at distance one,
each of which informs their neighbors they are at distance two, and so on, but this has a worst-case
running time of A(n).

The graph algorithms given in Section 3.2 closely follow the solutions originally presented in [AtKo084].
Given an undirected graph G = (V, E) and a directed breadth-first spanning tree T = (V,A) of G, then if
each vertex v [J V has adata value v.d, define the generalized x function as a function that returns for
every vV, thevalue* {v.d|Vv.disan x of vin T}, where x can be ancestor, descendant, or sibling.
Giventhat G and T are represented as adjacency matrices, asin Section 3.2, ssimple algorithms may be
constructed to compute these functions for al v I V in ©@(n) time on a mesh of size n2. Further, by
putting together the breadth-first spanning tree algorithm of Section 3.2 with these generalized x
functions, many graph algorithms, including some of the ones presented in Section 3.2, can be solved in
O(n) time.

The problems considered in Section 3.2 assume that the input isin matrix form. However, the most
general form of input for agraph G = (V, E), asdefined in Section 1.3, isto allow the edges of G to
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be distributed in an arbitrary fashion no more than one per processor in a mesh of size | E|. Matrix and
Image input can be viewed as special cases of this unordered edge input. For unordered edge input,
[ReSt] shows how to mark a spanning forest in &{|E|'/2) time, from which [Stou85a] shows how to
determine whether or not G is bipartite, mark the bridge edges and articulation points of G, determine
whether or not G is biconnected, and so on, in (| E|'/%) time. Given atree (or forest) T = (V, E)
represented as unordered edges, (| E|!/2) time algorithms are presented in [AtHa85, Stou85a] to
determine properties of T, such as the height, number of descendants, and preorder number of every
node. Notice that if matrix input isgiven, asin Section 3.2, then £2{|V'|) timeisrequired to solve any of
these problems.

Finally, connections to mesh automata should be mentioned. Aswas noted in Section 1.2.3, for any given
finite state automaton, once the mesh becomes large enough, the individual processors do not have
enough memory to store their coordinates, distances to other processors, and so forth. This means that
some of the problems solved in this chapter, such as determining the external diameter of each figure,
will not map in a straightforward fashion to mesh automata. For example, one may take a black/white
picture and want to compute the external diameter of the black pixels, where the answer is emitted by
processor P, , one bit at atime. Except for problems involving internal distances, the image problems

considered in this chapter, or an appropriately modified version, can be solved in ©(n) time on amesh
automaton by using clerks to simulate the solution given here. (Clerks appear in [ Stou82b, Stou83a] and
can be viewed as a systematic use of counters.) The problemsinvolving internal distances cause
difficulties because the solutions in this chapter create arrays having @(n2log n) bits of information,



which cannot be held in an n x n mesh automaton. Beyer [Beye69] considered the problem of having a
mesh automaton mark a minimal internal path between two given processorsin the samefigure, and it is
still an open question as to whether or not there is a ©(n) time solution to this problem.
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4
Mesh Algorithmsfor Computational Geometry

4.1 Introduction

The growing field of computational geometry has provided elegant and efficient serial computer
solutionsto avariety of problems. Particular attention has been paid to determining geometric properties
of planar figures, such as determining the convex hull, and to determining a variety of distance,
intersection, and area properties involving multiple figures. For a description of problems, efficient serial
solutions, and applications of propertiesin computational geometry, the reader isreferred to [PrLe84,
PrSh85, Tous30].

Parallel algorithms were presented in Chapter 3 which computed geometric properties of digitized
pictures, but such problems are significantly different from the problems that arise when the figures are
represented as sets of points or line segments, as is the norm in most of computational geometry. Elegant
seria solutionsto many problems in computational geometry are based on being able to efficiently
construct the planar Euclidean Voronoi diagram of a set of planar points, or use sophisticated data
structures specifically designed for geometric problems [Sham78]. Although an optimal mesh algorithm
Is presented in this chapter for constructing the VVoronoi diagram, the algorithms that are presented to
solve other geometric problems do not rely on constructing the VVoronoi diagram or manipulating
sophisticated data structures. Instead, algorithms to solve problems in computational geometry are
presented that rely on fundamental data movement operations.

Section 4.2 discusses fundamental data movement operations that are used in this chapter. General
descriptions of these operations were given in Chapter 1, and detailed mesh algorithms were given in
Chapter 2. However, the algorithms given in Chapter 2 assumed the processors were indexed by a snake-
like ordering. In this chapter, many of the algorithms assume that the processors are indexed by a
proximity ordering. In some instances, new algorithms for these operations are given that are
significantly different from those presented in Chapter 2, in order to accommodate the proximity order
index of the processors. The advantages of proximity order indexing are also discussed in Section 4.2.
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For most of the problems considered in this chapter, the input is n or fewer planar points, or pairs of
points representing line segments or edges, arbitrarily distributed one per processor on a 2-dimensional
mesh computer with n processors. Convex figures are represented by the set of their vertices, and ssmple
polygons are represented by the set of their edges. For problems involving multiple figures, each point or
edge will have alabel identifying its figure.



In Section 4.3, an algorithm is given for finding the convex hull of a set of planar points. In Section 4.4,
algorithms are presented for determining smallest enclosing rectangles of sets of points. In Section 4.5,
algorithms are presented to solve the all-nearest neighbor problem for a collection of points, to find the
minimum distance between two sets of points, and to solve the all-nearest neighbor problem for
collections of point sets. In Section 4.6, algorithms are given for finding nearest neighbors of line
segments and for deciding whether or not line segments intersect. These algorithms are used to solve
several problems involving ssmple polygons, including deciding whether or not simple polygons intersect
and solving the all-nearest neighbor problem for simple polygonsif there are no intersections. The
algorithms in this section introduce an efficient mesh implementation of multidimensional divide-and-
conquer [Bent80].

In Section 4.7, algorithms are given for deciding whether or not convex hulls intersect and for finding
intersections of convex polygons and hyperplanes. In Section 4.8, the problem of computing the diameter
of aset of planar pointsis considered. In Section 4.9, algorithms are given for determining area and
Intersection properties of iso-oriented rectangles, and the results are extended to circles and orthogonal
polygons.

In Section 4.10, an optimal mesh algorithm is presented to construct the VVoronoi diagram of a set of
planar points. This construction allows for aternative solutions to many of the problems previously
considered in this chapter. Section 4.11 discusses extensions to mesh computers of higher dimensions
and to input data of higher dimensions.

It isimportant to note that in the preceding chapter, an optimal mesh algorithm finished in ©(n) time,
which islinear in the edgelength of amesh of size n2. An n x n mesh was used simply to remain
consistent with the literature that typically considers matrices or images to be n x n. In this chapter,
however, it is most natural to consider problems involving n objects, distributed one per processor on a
mesh with n processors. Therefore, optimal mesh algorithmsin this chapter will finish in @(n2) time,
which is (again) linear in the edgelength of the mesh. Except for the extensionsin Section 4.11, every
algorithm in this chapter finishes
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in ©(n1/2) time. Section 4.11 points out that straightforward changes produce optimal algorithms for
meshes of higher dimensions and for some of the problems when the input is from a higher dimensional
space.

4.2 Preliminaries

For problems in this chapter that involve distances between figures, the term distance is used to mean
Euclidean distance. It should be noted that in most cases any reasonable metric will suffice. (Metrics
were discussed in more detail in Section 3.6.) Let d(x, y) denote the distance between points x and y, and
define the distance between two sets Sand T to be min{d(s, t) | sO S t O T}.

4.2.1 Initial Conditions



For problemsin this chapter, the datais initially distributed one piece per processor on a mesh of size n.
For datainvolving points, it is typically assumed that no two distinct points have the same x-coordinate
or y-coordinate. For datainvolving line segments, it is typically assumed that no two endpoints from
distinct line segments have the same x-coordinate or y-coordinate, unless they are from line segments
that intersect at an endpoint. These are common assumptions in computational geometry as it simplifies
exposition by eliminating specia cases. Furthermore, in ©(n2) time, arbitrary input can be rotated to
satisfy these assumptions by using sort steps to find the minimum difference in x-coordinates between
points with different x-coordinates, the minimum difference in y-coordinates between points with
different y-coordinates, the maximum difference in x-coordinates, and the maximum differencein y-
coordinates, and then determining a small angle such that rotating by that much will eliminate duplicate
coordinates and not introduce new ones.

4.2.2 Lower Bounds

For all problems considered in this chapter, it is easy to create specific arrangements of data so that the
solution cannot be obtained faster than the time it takes to combine information starting at opposite
corners of the mesh. In a 2-dimensional mesh of size n, information starting at opposite corners cannot
meet in any processor in lessthan nv2 - 1 time steps. Therefore, all problems considered in this chapter
must take Q(n22) time on amesh of sizen.

Page 150
4.2.3 Fundamental Operations on the Mesh

Severa of the data movement operations used in this chapter exploit an indexing of the processors based
on a proximity ordering. The proximity ordering used in this book combines advantages of other
orderings, as shown in Figure 1.2 of Section 1.2.3 on page 8. Proximity order is based on the concept of
space-filling curves (c.f., Section 3.3 of [Wirt86]), in particular the Peano-Hilbert scan curve [KoVar9,
LeZi86]. Notice that snake-like ordering has the useful property that processors with consecutive
numbers in the ordering are adjacent in the mesh, while shuffled row-major ordering has the property
that the first quarter of the processors form one quadrant, the next quarter form another quadrant, and so
forth, with this property holding recursively within each quadrant. This property of shuffled row-major
ordering is useful in many applications of a divide-and-conquer solution strategy.

Proximity ordering combines the advantages of the snake-like and shuffled row-major orderings. Given
row and column coordinates of a processor P, in O(log n) time a single processor can compute the
proximity order of P by a binary search technique. Similarly, given a positive integer i, the row and
column coordinates of processor P; that is, the processor with i asits proximity order index, can be
determined in O(log n) time by a single processor. Given any positive integersi < j, the shuffled row-
major property of recursively dividing indices among quadrants gives the property that the distance from
processor P; to processor P, is O((j - )¥2), and that a path of length O((j - i)¥2) can be achieved using only
processors numbered from i to j. Further, the processors numbered from i through j contain a subsquare
with more than (] - i)/8 processors.

The implementations for some of the data movement operations used in this chapter are altered in order
to accommodate the proximity ordering of the processors. These operations are described in detail, while
other necessary operations are briefly reviewed.



Many of these data movement operations will be performed in parallel on items stored in digoint
consecutively numbered (with respect to proximity ordering) processors, which will be referred to as
(ordered) intervals. It should be noted that ordered intervals may be created by sorting data into
proximity order so that related items reside in digoint consecutively indexed processors.

1. Sorting: In Section 2.6.1, it was shown that n elements, distributed one per processor on a mesh
computer of size n, can be sorted into any predefined linear order in @(n¥2) time. It should be noted
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that an algorithm that directly sortsinto proximity order can be faster by a multiplicative factor. While
such an algorithm would be useful, this does not affect the analysis of agorithms presented in this
chapter.

2. Broadcasting and Rotating Data within Intervals. Suppose each processor contains a record with data,
alabel, and aBoolean flag called 'marked'. Further, assume that all processors containing records with
the same value in the label field form an ordered interval with respect to the proximity ordering. Then
the datain all records with marked = true can be sent to all other processors holding records with the
same label in

O(max{m(r) + i(r)¥2| r alabel})

time, where m(r) is the number of marked records with label r, and i(r) isthe number of records with the
label r. Thisisaccomplished by building a breadth-first spanning tree, level by level, within each ordered
interval, and then using this spanning tree to perform the desired data movement operation. It isfirst
shown how to construct the breadth-first spanning tree within every ordered interval and then how to use
the spanning tree to perform the desired data movement operations.

At time 0, the processor corresponding to the root of every treeisidentified, with the root of atree being
defined to be at level 0. Thisis accomplished in ©(1) time by having every processor P; examine the
label of processor P; _;, where the indices are with respect to the proximity order of the processors, and
having processor P; identify itself asthe root of the tree for its ordered interval of labelsif the label of
processor P, ; isdifferent from the label of processor P; . At time 1, the root of every tree sends a
message to al of its neighbors with the same label informing them that it istheir parent. The root records

the identity of these processors asits children, and these neighbors record the identity of the root as their
parent, as well asthe fact that they are at level 1 of the tree.

At timet, processors at level t - 1 send a message to all neighbors with the same label that have not yet
recorded alevel. Each processor receiving one or more such messages at timet records the fact that it is
at level t in the breadth-first spanning tree of its label. Each processor receiving one or more such
messages also
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picks one of the senders as its parent, records the identity of this chosen parent processor, and sends a
message back to the chosen parent processor so that processors at level t - 1 in the breadth-first spanning
tree can record the identity of their children in this tree. Notice that the height of a breadth-first spanning
tree for processors with label r is O(i(r)¥2). Therefore, the breadth-first spanning tree for the processors
labeled r is constructed in ©(i(r)v2) time, since each step of the level by level construction takes ©(1)
time.

Once the spanning tree is constructed, the marked data is passed up the tree until it reaches the root, at
which point it is passed down, with each parent passing the dataitem to all of its children. Using ssmple
pipelining, the first item reaches all processorsinitsinterval in ©(i(r)¥2) time, and each subsequent item
followsin ©(1) time.

For the situation where one piece of datais circulated within each ordered interval, this operation is
referred to as broadcasting within (ordered) intervals. For the situation where multiple pieces of data are
circulated within ordered intervals, this operation is referred to as rotating data within (ordered) intervals.

3. Reporting and Semigroup Computation within Intervals: Suppose each processor has arecord with
data and alabel, and all records with the same label form an ordered interval. Further, suppose a unit-
time semigroup operation (i.e., an associative binary operation such as minimum, summation, or parity)
isto be applied to all dataitems with the same label, with all processors receiving the answer for its
label. Then this can be accomplished in @(max{i(r)v2| r alabel}) time, wherei(r) is the number of
records with label r. Thisis performed by forming a breadth-first spanning tree within every ordered
interval, followed by having the leaves start passing their values up, where once a processor receives
values from all of its children, it applies the semigroup operation to these values and its own, and passes
the result up to its parent. Once the root processor of the spanning tree has computed the answer, the
spanning tree is used to broadcast it to all processorsin theinterval.

The first phase of the semigroup operation that combines data to the root of the spanning tree within each
interval isreferred to as reporting within (ordered) intervals. Therefore, as discussed
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In previous chapters, a semigroup operation within intervals can be viewed as areport followed by a
broadcast within intervals.

4. Concurrent Read and Concurrent Write: The implementation of the concurrent read and concurrent
write operations remains as before (c.f., Section 2.6.4), except that the sorting is performed with respect
to the proximity order index. Assuming that each processor creates a fixed number of master records and
afixed number of request or update records, depending on whether the operation is a concurrent read or
concurrent write, respectively, the concurrent read and concurrent write operations can be completed in ©
(n¥2) time on amesh of sizen.



5. Compression: Suppose that on a mesh of size n, m pieces of data are randomly distributed one element
per processor. Further, suppose that it is desirable to minimize the interprocessor communication time
between the processors that contain these m pieces of data. Then in ©(nv2) time, this information can be
moved to a subsquare of size ©(m), where the communication diameter is ©(mv2). The algorithm to
perform this operation is as described in Section 2.6.5, with the exception that the sorting is done with
respect to the proximity order index. Alternately, each processor containing one of the m pertinent pieces
of data may place the piece of data augmented with akey of 1 into its sort field, while all other
processors place a dummy data entry with akey of o into their sort field. After the sort fields are filled,
the datais simply sorted into proximity order. This directly moves the m pieces of datainto a subsquare
of size ©(m) in ©(n¥2 time.

6. Searching and Grouping: The searching problem is defined in Section 1.5, as are a variety of solutions
to the problem that involve the grouping operation. The grouping operation will be used extensively in
this chapter to solve avariety of search problems. Since the multiple parallel binary search, aswell as
both the one- and two-pass grouping operations, are described in terms of sorting, concurrent reads,
concurrent writes, and operations within intervals, the searching problem can be solved in ©(n%2) time on
amesh of size n. Notice that for the two-pass agorithm, the parameter k needs to be chosen
appropriately. In this chapter, k will typically be chosen to be ©(nv2).
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4.3 The Convex
Hull

The convex hull, a geometric structure of primary importance, has been well studied for the serial model
of computation [PrSh85, Sham78, Tous80, Avis79, Y ao8l]. It has applications to normalizing patternsin
Image processing, obtaining triangulations of sets of points, topological feature extraction, shape
decomposition in pattern recognition, and testing for linear separability, to name afew.

In this section, an asymptotically optimal ©(nv2) time agorithm is presented for marking the extreme
points that represent the convex hull of a set of n or fewer planar points, initially distributed one point per
processor on a mesh of size n. The convex hull of aset Sof points, denoted hull(S), is the smallest

convex polygon P for which each point of Sisin theinterior or on the boundary of P, as shown in Figure
4.1. A point p [ Sis defined to be an extreme point of Sif p O hull(S- {p}). That is, p isan extreme
point of hull(S) if and only if p ison the boundary of hull(S) at a point where atrace of the boundary
resultsin a change of slope (i.e., p issituated at a corner of the boundary). So, if Sisfinite, then hull(S) is
aconvex polygon, and the extreme points of Sare the corners of this polygon.

For several of the algorithms presented in this chapter, it will be useful to impose an ordering on the
extreme points of S. The ordering will be in a counterclockwise fashion, starting with the easternmost
point. (Recall from Section 4.2.1, that since the number of pointsis finite and no two points have the
same x-coordinate, there must be a unique easternmost point.)

The edges of the convex hull of Swill be referred to as the edges of the hull(S). In addition, it is said that
the extreme points of Shave been identified, and hence hull(S) has been identified, if for every processor
P; containing apoint p O S the following hold.

1. P, has aBoolean variable 'extreme’, and extreme istrue if and only if p is an extreme point of S



2. P; stores the total number of extreme points of hull(S).

3. If pisan extreme point of S then P; stores the position of p in the counterclockwise ordering of
extreme points.

4. If pisan extreme point of S, then P; stores the Cartesian coordinates of the extreme points that precede
and succeed p, aswell asthe ID of the processors that contain them.
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Figure4.1:
Convex hull of S

The mesh algorithm presented in this section to solve the convex hull problem follows directly from the
generic Fixed Subset Division Algorithm of Section 1.6.2. The first (preprocessing) step of the algorithm
Isto sort the planar point datainto proximity order by x-coordinate. After this step, the x-coordinates of
all pointsin quadrant g are less than the x-coordinates of all pointsin quadrant g+ 1, 1 < q< 3, with this
property holding recursively within each quadrant. Next, the convex hull is determined simultaneously
and recursively for each of these four sets of points. Finally, these linearly separable convex hulls are
combined to form the convex hull of the entire set by determining the upper and lower common tangent
lines between pairs of linearly separable convex hulls, and eliminating the points on the inside of the
quadrilateral formed by these two tangent lines.

Theorem 4.1 Given a set Sof n or fewer planar points, distributed one per processor on a mesh
computer of size n, the extreme points of Scan be identified in ©(n2) time.

Proof. An algorithm to determine the extreme points of Sfollows.
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Figure 4.2:

Mapping pointsinto the proper quadrants.

Initially, 'extreme’ will be set to true for all points. Asit is determined that a point is not an extreme
point, thisflag will be set to false.

1. Preprocessing: Sort the points into proximity order using the x-coordinate as the major key and the y-
coordinate as the minor key.

2. If n, the number of pointsin the subsquare under consideration, isless than or equal to 2, then the
convex hull of the points is determined in constant time. Otherwise, recursively solve the convex hull
problem for the pointsin quadrants A;, A,, A;, and A,, of the subsquare under consideration. (See Figure
4.2.) Note that thisis arecursive call to Step 2 and not Step 1.

3. From hull(A,) and hull(A,), identify hull(A, OO A,). Denote the set of extreme points representing hull
(A, O A,) asB,.

4. From hull(Ag) and hull(A,), identify hull(A; T A,). Denote the set of extreme points representing hull
(A;O0 A) asB,.

5. From hull(B,) and hull(B,), identify hull(B, 0 B,).

Notice that in steps 3, 4, and 5, the convex hulls of two sets of points, say A and B, are used to identify
hull (A O B). In each of these steps,
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A and B can be picked so that hull(A) liesto the left of hull(B), and hull(A) does not intersect hull(B).
Thisis due to the partitioning of points from step 1. An explanation of how to identify hull(A [J B) from
hull(A) and hull(B) follows. (Refer to Figures 4.2 and 4.3.)



Without loss of generality, assume that the points of A arein gquadrant A,, the points of B are in quadrant
A,, and hull(A) liesto the left of hull(B). The most crucia phase of the algorithm is the identification of
points p, q U hull(A) and p', g' O hull(B), such that ;7 and gq’ represent the upper and lower common
tangent lines, respectively, between hull(A) and hull(B). (See Figure 4.3(a).) Let t, u O hull(A) be the
westernmost and easternmost extreme points of hull(A), respectively. Then p must lie on or above the
line §z, otherwise 77 would intersect hull(A). Let x, y O hull(A) be the extreme points immediately

succeeding and preceding (in the counterclockwise ordering of extreme points) p, respectively. Referring
to Figure 4.3(b), all pointsin hull(B) must lie below *# and some pointsin hull(B) must lie above Fy.

(Similar remarks can be made about the points p', g, and g'.) The details of identifying the extreme points
p and p' by a binary search technigque, as described in step 4a of the Fixed Subset Division Algorithm on
page 37, are now given. (A similar techniqueis used to identify gand q'.)

In ©(n¥2) time, every processor of A, can know the Cartesian coordinates of t and u, aswell asthe
position of t and u in the counterclockwise ordering of the extreme points of A. Initially, every processor
in A, containing an extreme point a [J hull(A) creates a record with the x-coordinate of a as key, and the
y-coordinate of a and counterclockwise order of ain hull(A) as data. Then, apair of semigroup (i.e.,
associative binary) operations is performed over these records so that all processors of A, know the
identity of the easternmost and westernmost points of A, aswell as their counterclockwise order. Without
loss of generality, assume that point u is numbered n,, and point t is numbered n,, with respect to the
counterclockwise ordering of extreme points of A.

Next, every processor in A, that contains an extreme point of hull(A) decidesif its point is above the line
fu. Notice that all such points above the line 7; are numbered in counterclockwise order n, +1, n, +
2,...,n-2,n, -1 Theprocessor in A; containing the point above tu and half way betweentand u (i.e.,

the point numbered | 2322 |), identifies this point as p. A ©(n?) time semigroup operation is used to
broadcast p to all processors of A,. The processors containing the succeeding and preceding neighbors of

p (in the counterclockwise ordering) create the equations of lines T and py, respectively. Similar
computationsin A identify p', 7z, and 377 for B.
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(@) Identifying the upper and lower common tangent lines between hull(A) and hull(B).



(b) All pointsin hull(B) must lie below T . Some pointsin hull(B) must lie above 7.

Figure 4.3:
Stitching convex hulls together.

Page 159

The coordinates of T and gy are broadcast from A, to those processorsin A, that contain a point above
.- Thisbroadcast can be accomplished viaaconcurrent read. Next, every processor in A, that just

received data decides whether or not its point isi) below TF and ii) above 7. By performing a
concurrent write, this information can be collated and routed to the processor in A, that contains the point
p. This processor can now determine if @ isabove all of the extreme pointsin B, and if & isbelow
some of the extreme points of B. If both conditions are satisfied, then p, X, and y have been identified. If
these conditions are not satisfied, then if @ isnot above al of the extreme points of B, then assign the
point x to u, recompute p as the point half way between t and the new u, compress the data, and iterate
the algorithm. If Tp isabove all of the extreme points of B, then assign the point y to t, recompute p,
compress the data, and iterate the algorithm. (The corresponding computations for p', g, and q' are
similar.)

After O(log n) iterations, p, p', g, and g will be identified since each iteration of the binary search for p
and p' eliminates half the pointsin hull(A) and half the pointsin hull(B) from further inspection. At the
end of each iteration of the binary search, the remaining data from both hull(A) and hull(B) is
compressed into the smallest square set of processors that will hold this data. The ith iteration of the
algorithm operates on O(n/2") pieces of data at communication diameter O((n/2')2). Therefore, the ith
iteration of the algorithm finishesin ©((n/2))+2) time. Notice that if the remaining data from hull(A) was
compressed to the smallest square set of processors in the upper-left corner of A, and the remaining data
from hull(B) was compressed to the smallest square set of processors in the upper-left corner of A, for
example, then the during the ith iteration of the algorithm the remaining O(n/2') pieces of data would be at
communication diameter ©(n¥2), and hence every iteration of the binary search would take ©(nv2) time.
With the joint compression of data after each iteration of the algorithm, the time for the binary search to
identify the desired points p, p', g, and g’ is given by 208"} gy, r9i)1/2), which is ©(m2). Also,
notice that the correctness of this binary search hinges on the fact that the points p and g, for example,
are never eliminated during the search and compression operation.



Finally, the positions of the extreme points of hull(A [0 B) must be computed. First, a concurrent read is
performed so that all processors know the number of pointsin hull(A), the number of pointsin hull(B),
the position of p and g in hull(A), and the position of p' and g' in hull(B). Every processor can now
compute the correct position of its
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extreme point with respect to hull(A [0 B), if indeed its point is an extreme point of hull(A O B).
Concurrent reads can be used so that every processor knows the total number of extreme points, as well
as the extreme points that are adjacent to the extreme point that it contains. Therefore, the time to
identify hull(A O B) on amesh of size n from the extreme points of linearly separable sets A and B, is
dominated by the ©(n¥2) time binary search procedure and the ©(n¥2) time data movement operations
used to compute the final position information.

The preprocessing sort step (step 1 of the algorithm, as described at the beginning of the proof) takes ©
(n¥2) time. Therefore, the running time of the algorithm is given by T(n) = ©(n¥2)+ T'(n), where T'(n) is
the time required for the remaining steps of the algorithm. As described, steps 3, 4, and 5 each take ©
(n¥2) time. (Notice that steps 3 and 4 can be performed simultaneously.) Since Step 2 isarecursive call,
steps 2 through 5 obey the recurrence T'(n) = T'(n/4) + @(n¥2), which is ©(n¥2). Therefore, the running
time of the entire algorithm is ©(n2).

As an dternative to the binary search, a one pass grouping operation, as described on page 39 in step 4b
of the Fixed Subset Division Algorithm, may be used to identify p, p', g, and ' in ©(n¥2) time. Notice
that the angles of incidence (refer to the definition on page 20) of the hull edges are monotonic with
respect to both the upper envelope (i.e., the portion of the convex hull above the line determined by the
westernmost and easternmost extreme points) and the lower envelope (i.e., the portion of the convex hull
below the line determined by the westernmost and easternmost extreme points). Therefore, a fixed
number of sort-like operations to create ordered intervals (groups), followed by a pipelined broadcast
within intervals, followed by a sort-based operation to send the results back, will also solve the search
problem for the upper and lower common tangent linesin ©(n¥2) time.

Suppose that instead of being given asingle set Scomprised of n or fewer points, the input to the convex
hull problem is n or fewer labeled points representing multiple sets. If there are only a fixed number of
labels, say L, then the previous algorithm could be performed L times, once for each labeled set, and still
enumerate the extreme points of every set in @(n2) time. If the relationship between L and n is not
known, then a minor modification can be made to the previous algorithm so that work is done
simultaneously on distinctly labeled sets of points. This modification consists of initially sorting data
with respect to the label of the points.
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Corollary 4.2 Given n or fewer |abeled planar points, distributed one per processor on a mesh computer
of size n, in ©(n¥2) time the extreme points of each labeled set can be identified.



Proof. The previous algorithm needs to be modified only slightly. Modify the first sentence of step 1 to
read, 'Sort the n points using the label as primary key, the x-coordinate as secondary key, and the y-
coordinate astertiary key.' Aswas noted in Section 4.2.3, if agiven label has m points, then those points
arenow in aninterval of processors which contains a square of size greater than m/8. The preceding
algorithm is then executed inside each such sguare, where the processors in such a square simulate 16
processors of the original algorithm. (Thislast point insures that each ssmulated processor has at most
one point.) -

Once the extreme points of the convex hull have been identified, several properties of the convex hull
can be quickly determined. For example, the area of the convex hull may be determined by triangul ating
the convex hull with respect the extreme points and a distinguished extreme point, as shown in Figure
4.4, computing the areas of the triangles, and finally summing over these areas. The centroid of the
convex hull can be computed by similar local operations over these triangles, and the perimeter of the
convex hull can be determined by simply summing the lengths of the hull edges.

Corollary 4.3 Given n or fewer |abeled points, distributed one per processor on a mesh computer of size
n, in @(n%2) time the area, perimeter, and centroid of the convex hull of each labeled set can be
determined.

Sketch of Proof. The area of the convex hull of every labeled set of pointsis computed as follows. Use
the algorithm associated with Corollary 4.2 to determine the extreme points of every labeled set of
points. Use sorting to gather all points with the same label together, where sorting is performed so that
within each labeled set, all extreme points will be stored in counterclockwise fashion before al points
interior to the convex hull. For each labeled set, A broadcast within ordered intervals can be used to send
the easternmost extreme point p, of alabeled set to all processors containing points of the set. Every
processor in the interval containing an extreme point p;, computes the area of the triangle p,pp;.1, @
shown in Figure 4.4. A semigroup (i.e., associative binary) operation within ordered intervals allows
each processor to know the total area of the convex hull of the points with its label, and a concurrent
write sends all points back to the processors where they initially resided,
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Figure 4.4:
Computing the area of a convex hull.



along with the total area of the labeled set that the point is a member of .

The perimeter of the convex hull for every labeled set of pointsis computed simply by determining the
extreme points of each labeled set of points, gathering labeled sets of extreme points together, using a
semigroup operation within ordered intervals to sum the lengths of the line segments g+ 1, for al
extreme pointsi in alabeled set, and then using a concurrent read to send the results back to the original
processors.

The x-coordinate of the centroid of afigure isthe total x-moment divided by the area, and the y-
coordinate is the total y-moment divided by the area. To determine the centroid of each convex hull, form
the triangles asin Figure 4.4, determine their moments and areas, and then add them to determine the
moments and areas of the entire convex hull.

4.4 Smallest Enclosing Figures

Problemsinvolving smallest enclosing figures have been studied extensively [Tous80, FrSh75, GV JK].
For certain packing and layout prob-
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lems, it is useful to find a minimum-area rectangle (smallest enclosing box) that encloses a set S of
planar points. (Notice that while the area of thisrectangle is unique, the rectangle itself need not be.) The
algorithm presented in the proof of Theorem 4.4 exploits the facts that

1. any enclosing rectangle of Smust enclose hull(S), and

2. asmallest enclosing box of Smust have one side collinear with an edge of the convex hull of S and
each of the other three sides must pass through an extreme point of hull(S) [FrSh75].

After enumerating the extreme points representing the convex hull of S, the algorithm relies on one pass
grouping operations so that for each hull edge e, a minimum enclosing box with one edge of the box
containing e is determined. The grouping operation follows the algorithm given in Section 1.5, operation
8a, on page 27. The final step of the algorithm uses a semigroup (i.e., associative binary) operation to
determine the minimum area over all such boxes.

Theorem 4.4 Given a set Sof n or fewer planar points, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time a smallest enclosing box of Scan be identified.

Proof. An agorithm for finding a smallest enclosing box of Sfollows.
1. Identify hull(S). Let | represent the number of edgesin hull(S).

2. For each edge e [ hull(S), 1 <1 <1, determine the minimum area enclosing box of Sthat has one side
collinear with . Denote this box as B;.

3. A smallest enclosing box of Sis B,, where

area(B) =minarea(B) |1<i<l}.



The extreme points of hull(S) can be identified in @(n¥2) time by using the algorithm associated with
Theorem 4.1. When the algorithm of Theorem 4.1 terminates, every processor containing an extreme
point x of Salso contains the preceding extreme point w and the succeeding extreme point y, with respect
to the counterclockwise ordering of extreme points of S. Each such processor now creates the hull edge
Ty of hull(S). In order to determine the minimum-area rectangle associated with such an edge, every
processor containing an edge T needs
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Figure4.5:
Determining a smallest enclosing box.

to know three additional extreme points of the S. These points are N, the last extreme point of S
encountered as aline parallel to T, starting collinear to T, passes through the hull(S); W, the last
extreme point of Sencountered as a line perpendicular to Ty passes through all of the points of hull(S)
from right to left (viewing T¥ as the southernmost edge of hull(S)); and E, the last extreme point of S
encountered as a line perpendicular to Ty passes through hull(S) from left to right. (See Figure 4.5.)

Each processor containing a hull edge ¥ can find the necessary points, N, W, and E simultaneously in ©
(n¥2) time by participating in a one pass grouping operation based on angles of incidence (AQI), as
defined on page 20. The following is a description of how each such processor can determine its
associated point N (with the determination of W and E, respectively, being similar). Every processor P,
that is responsible for ahull edge T3, creates a query record with the key defined as the angle AOI(Ty) +
T (AOI(T¥) + 3172 in the case of searching for W, and AOI(T¥) + 172 in the case of searching for E) and
with theindex i (i.e., the proximity order index of the processor) as data. Room
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Creating the slope and interval records.

Isleft in thisrecord for a description of the point N (W, E, respectively) that is to be determined. Every
processor P; that is responsible for an extreme point p in hull(S), and contains the preceding extreme
point u and the succeeding extreme point v, with respect to the counterclockwise ordering of extreme
points of hull(S), creates a master record with the angle of incidence of pu askey, and p, u, v, and j as
data. (For technical reasons that will become apparent, the processor responsible for the extreme point
with angle O contained in its angles of support, creates two additional master records, one with akey of 0
and one with akey of 21) See Figure 4.6.

Sort the master and query records together by the key field, with ties broken in favor of master records.
After sorting, every processor P, that contains a master record (AOI(pw), p, U, Vv, j) participatesin a
concurrent read so as to obtain the proximity order index of the processor containing the next master
record. Notice that the key fields of every consecutive pair of master records correspond to the angles of
support of the common extreme point. Given two consecutive master records stored in processors P; and
P, , withi < j, the set of processors P, . . . P, are referred to asagroup, and P; is considered to be the

|leader of

Page 166

the group. Perform a group-restricted broadcast of the extreme point common to the pair of master
records for the purpose of notifying all request records as to their desired point N (W, E, respectively).
This broadcast operation is almost identical to broadcasting within proximity ordered intervals, except
that after the leader of a group initializes the creation of the breadth-first spanning tree within its group,
datais only passed to those processors that are in the group. This can be done since the leader knows the
index of the first processor (itself) of the group and the last processor of the group (found during the
concurrent read).



A concurrent read compl etes the operation so that every processor containing a hull edge knows the
coordinates of the appropriate N (W, E, respectively). In 0(1) time, every processor can compute the area
of the rectangle formed by its edge xy and the three corresponding points, N, W, and E. Once a minimum
area rectangle has been determined for every hull edge, a smallest enclosing box of S can be determined
by taking a minimum over the areas of these rectanglesin ©(n¥2) time. Therefore, the entire algorithm
requires ©(nv2) time. -

Simple modifications to the algorithm associated with Theorem 4.4, asin Corollary 4.2, alow labeled
sets of points to be considered.

Corollary 4.5 Given n or fewer labeled planar points, distributed one per processor on a mesh computer
of size n, in ©(n¥2) time a smallest enclosing box can be identified for each labeled set. -

4.5 Nearest Point Problems

In this section, problems are considered that involve nearest neighbors of planar points. A variety of
nearest neighbor problems have been explored for the serial computer (c.f. [Sham78, Tous80, LiTar7,
BWY 78]). One of these problemsis the nearest neighbor query. The nearest neighbor query requires that
anearest neighbor of a single query point be identified. Given n or fewer points, distributed one per
processor on a mesh computer of size n, the nearest neighbor query can be solved in ©(nv2) time by
broadcasting a copy of the query point to al processors, having each processor compute the distance
from its point to the query point, and then taking the minimum over these resullts.

A more interesting problem is the all-nearest neighbor problem for points. Given a set Sof points, the
solution to the all-nearest neighbor problem for points consists of finding for every point p 0 S apoint q
[0 Ssuch that d(p, ) = mi nrDSd(p, r). Notice that a nearest neighbor is not
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Figure 4.7:
Nearest neighbor in acorner.



necessarily unique, but that the distance to a nearest neighbor is unique. In this section, an asymptotically
optimal algorithm is presented to solve the all-nearest neighbor problem for points. This solution easily
yields an optimal mesh solution to the closest-pair problem for points, which requires that a closest pair
of points from a given set be identified. This can be done on the mesh of size nin ©(n¥2) time by simply
taking the minimum over the all-nearest neighbor distances.

Before considering the all-nearest neighbor problem for points, a useful lemmais presented. The nearest
neighbor algorithms described in this section work by finding nearest neighbors in vertical 'strips,’ and
then in horizontal 'strips.' The lemma that follows shows that after these restricted solutions are
determined, for any rectangular region that is determined by the intersection of a vertical and horizontal
strip, there are only afew points in the region which have not yet found their global nearest neighbor.
The reader should refer to Figure 4.7 during the statement and proof of the following lemma.

Lemma 4.6 Given a set Sof planar points, in two-dimensional space, and arbitrary real numbers x; < x,
andy; <y, letR={(X, y) X, s x<xandy, <y < y,}, let D(p) =min{d(p,q) |qZp,q0 S, and
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let D'(p) = min{d(p, 0) | g # p, X< X-coordinate of g < x, or y; < y-coordinateof <y, q [ S. Thenthe
following hold.

a) If pisany element of R n Ssuch that D(p) < D'(p), then thereis a corner ¢ of the rectangle R such
that d(p, c) < D'(p).

b) There are at most 8 points p 0 R n Ssuch that thereis a corner c where d(p, ¢) < D'(p).

Proof. To prove @), noticethat if p [0 R n Sissuch that D(p) < D'(p), then thereisapoint (x, y) [ Ssuch
that D(p) = d(p, (X, ¥)), Xxisnot in theinterval [x;, X,], and y isnot in theinterval [y,, y,]. Assume x> X,

andy > vy,, with all other cases being identical. In this case, if c isthe corner (x,, ¥,), then d(p, ¢) < d(p,
(x, ¥)) = D(p) < D'(p), as was to be shown.

To show b), let ¢ be any corner, and suppose p, g O R n Sare such that d(p, ¢) < D'(p) and d(q, c) <
D'(g). It must be that the angle from pto cto g isat least 7, radians, for otherwise the further of p and g

would be closer to the other than to c. Therefore there are at most 2 points of R n Swhich are closer to c
than to any other point in R's vertical or horizontal slab. Since there are only 4 corners, b) is proven.

The agorithm presented below to solve the all-nearest neighbor problem first uses sorting to partition the
planar pointsinto digoint (linearly separable) vertical slabs, and then solves the restricted all-nearest
neighbor problem so that all points know a nearest neighbor in their vertical slab. Next, the algorithm
uses sorting to partition the planar pointsinto disjoint horizontal slabs, and then solves the restricted all-
nearest neighbor problem in each horizontal slab. At this point, it is known from the result of Lemma 4.6
that there are no more than 8 points in each rectangular region, as determined by the intersection of a
vertical and horizontal slab, that may not know their true (global) nearest neighbor. The final step of the
algorithm consists of passing these (fixed number of) points through the mesh so that each of these points
views all other points, after which all points will know their nearest neighbor.

Theorem 4.7 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, the all-nearest neighbor problem for points can be solved in ©(n¥2) time.



Proof. The algorithm isrecursive in nature. Initially, every processor P; containing a planar point p,
creates a record with the x-coordinate of
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p; as key. The datafields of this record include the y-coordinate of p;, aswell as the distance and identity
to anearest point found up to the current iteration of the algorithm. The distance field isinitialized to .
Sort the points into proximity order by their x-coordinate. (Recall from Section 4.2.1 that no two unique
points have the same x-coordinate.) After sorting, let x;, X,, X3, and X, be the x-coordinates of the pointsin
processors Py, Py ., Ps o, and P, (in proximity ordering), respectively. These values divide the planar
pointsinto 5 vertical slabs, namely,

1. (p| the x-coordinate of p < x},

2. {p| % < x-coordinate of p < x,},

3. {p| %, < x-coordinate of p < x5},
4.{p| X3 < x-coordinate of p < x,}, and
5. {p| x-coordinate of p > x,}.

Recursively solve the restricted all-nearest neighbor problems so that every point determines a nearest
neighbor (and the associated distance) in its slab. Now, repeat the process based on y-coordinates,
determining for every point, a nearest neighbor in its horizontal slab.

The planar points can now be thought of as being in at most 25 rectangular regions, determined by

X, ..., Xandyy, ..., Y, Sort the points by region to create ordered intervals of points corresponding to
regions. Within each ordered interval, perform a semigroup (i.e., associative binary) operation to
determine the, at most, 2 points (by Lemma 4.6) that are closer to each corner of the region than to their
nearest neighbor found so far. All 2* 4 * 25 (or fewer) such points are circulated to all n processors by
performing a rotation within the mesh, as described in Section 4.2.3, after which each processor P; knows
the identity and distance from its planar point p; to a nearest neighbor. (It should be noted that the
number of points that actually need to be circulated can be reduced to 128. Notice that the 9 interior
squares each have 4 corners, 9 of the exterior squares each have 2 corners of concern, and the 4 outer
squares each have 1 corner of concern. Thisisatotal of 64 critical corners, each of which might have 2
points that need to be involved in the circulating step.) Sorting and semigroup operations within the
ordered intervals corresponding to regions requires ©(n¥2) time, as does circulating (rotating) afixed
number of points through
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the mesh. Therefore, the time of the algorithm obeys the recurrence T(n) = ©(n¥2) + 2T(n/5), whichis®
(nv2), -



As stated previoudly, an efficient algorithm to solve the closest pair problem for planar points follows
directly from the result just presented for the all-nearest neighbor problem. Simply apply the preceding ©
(n¥2) time algorithm and then in ©(n¥2) time compute the minimum over the all-nearest neighbor
distances, while keeping track of a pair that generates the minimal distance.

Corollary 4.8 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, in ©(n¥2) time a closest pair of points can be identified. -

The next problem considered is the all-nearest neighbor problem for point sets. That is, for each labeled
set of planar points, find the label and distance to a nearest distinctly labeled set of points. When the
algorithm terminates, each processor that is responsible for alabeled point will know the nearest
neighbor for the set that its point is a member of. It should be noted that a solution to the all-nearest
neighbor problem for point sets will not, in general, provide a solution to the problem of detecting for
each labeled point a nearest distinctly labeled point.

The solution to the all-nearest neighbor problem for point sets exploits an algorithm, given below in
Lemma 4.9, that will determine the distance between two linearly separable sets of pointsin ©(nv2). time
on amesh of size n. The algorithm to determine the distance between two linearly separable sets works
by conceptually partitioning a dividing line between the two sets into maximal subintervals such that for
each subinterval there is asingle point from each set closest to the interval. The minimum over the
distances between these pairs of points represents the minimum distance between the two sets of points.

Lemma 4.9 Given n or fewer planar points, each labeled either A or B, distributed one per processor on
a mesh computer of size n, and given the equation of a line L that separates A and B (i.e., all points
labeled A lies on one side of L and all points labeled B lie on the other side of L), in ©(n¥2) time every
processor can determine the distance from A to B.

Proof. In ©(n¥2) time, a semigroup (i.e., associative binary) operation will determineif either Aor B is
empty, in which case the answer isinfinity. Otherwise, the equation of L, along with a choice of
orientation
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Partitioning L into maximal intervals. The labeled points correspond to the intervals.



and origin for L, is broadcast to all processorsin ©(nv2) time. Suppose a [l A and b [I B are such that d(a,
b) equals the distance from A to B. Since A and B are separated by L, then the line L must intersect line
segment ab at some point p. Since d(a, b) is the minimum distance between pointsin A and pointsin B, it
must be that aisaclosest point in Ato p, and bisaclosest point in B to p. Thisfact can be exploited, as
follows (see Figure 4.8).

1. Partition L into a set of maximal intervals such that for each interval thereis asingle element of A
which is aclosest point of A to each point of theinterval.

2. Partition L into a set of maximal intervals such that for each interval thereis asingle element of B
which isaclosest point of B to each point of the interval.

3. Perform an intersection operation on these sets of intervals to determine a closest pair (a;,b,), a [1 A,b,
[ B, for each interval ;.

4. Determine min{ d(a;, b)I(a, b)) isaclosest pair of |;}.

Details of the algorithm follow. First sort the pointsinto sets A and B. The partitioning of L, as described
in steps 1 and 2, now proceeds independently and identically. The partitioning is explained for set A.
Every interva [p,,p,] of L will be represented by two interval records, one with p, asthe key and the

other with p, asthe key. Theinterval

Page 172

records take the form (p,, p,, data), where p; is the key, and the data includes the Cartesian coordinates of
the point of A that determinesthe interval [p,, p,]. Notice that the intervalsin the partition overlap only at
their endpoints. If A consists of asingle point x, then there is only one interval, which is represented by
the creation of interval records (-o, oo, X) and (o, -c0, X). If A has more than one point stored in
processors numbered 1 through k (in proximity order), then ssmultaneously and recursively, find the
intervals given by the set of points H, in processors numbered 1 through | /2|, and those given by the set

of points H,in processors numbered | (k/2)| + 1 through k.

Notice that an interval from H, or H,, can only shrink or disappear in the final set of intervalsfor A. Since
an interval from H; (H,) may overlap many intervals from H, (H,), the intervals from H, (H,) will be used
to determine how much an interval from H, (H,) shrinks. To shrink the intervals, shrink those that came
from H, first, and then those that came from H,, as follows.



First, generate interval recordsthat also includea 1 or a2 in the datafield to indicate for each record
whether it came from H, or H,, respectively. Sort these representatives by their key (an endpoint). In case

of ties, aleft endpoint of H, precedes any endpoint of H,, and aright endpoint of H, follows any endpoint

of H,. For each interval from H,, the processors between the representatives of itsleft and right endpoints
form an interval of processorsthat is called a group. Each processor holding an interval record of H,can

determine which group the record isin, as follows. Every processor that contains a record representing
an interval of H, keyed by its left endpoint isinvolved in a concurrent read to determine the proximity

order index of the processor that contains the interval record keyed to the right endpoint of itsinterval.
Viewing each group as an ordered interval, every processor containing a representative of the left
endpoint of an interval of H, (the leader of each group) creates a spanning tree in its group, as described

in Section 4.2.3 and in the algorithm of Theorem 4.4. While the spanning tree is created within each
group, every processor representing an interval of H,isinformed as to the point that defines the H,

interval of the group that it isamember of. In afixed amount of time, every processor containing an
interval of H, determines which part of the intersection of itsinterval and the group'sinterval is closest to

its point. By finding a minimum and maximum within intervals of processors (by computing an
associative binary operation within intervals), each group can then determine the final interval (if any)
corresponding to the group's point. Finally, repeat the process, interchanging the roles of H, and H, to
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determine the final intervals.

Once the partitions corresponding to A and B have been determined, the process of finding a nearest pair
between them is similar. First, groups corresponding to intervals of A find the nearest point of any
interval of B not properly containing the A interval, and then groups corresponding to intervals of B find
the nearest point of any interval of A not properly containing the B interval. Finding the global minimum
gives the answer. The running time of the algorithm is given by the recurrence T(n) = T(n/2) + ©(n%2),
which is ©(n2). -

The solution to the all-nearest neighbor problem for point sets can be solved by using the underlying
structure of the algorithm associated with Theorem 4.7. That is, the problem isfirst solved recursively for
digoint vertical slabs and then digoint horizontal slabs. Within each rectangular region formed by the
intersection of avertical and horizontal dab, there will be points from at most 8 sets (2 with respect to
each corner of the region) which may not know the correct global solution. For each such set of pointsin
every rectangular region, the result of the previous lemma can be applied (sequentially) with respect to a
corner of the rectangular region.

Theorem 4.10 Given n or fewer labeled points representing sets of points, distributed one per processor
on a mesh computer of size n, in ©(n%2) time the all-nearest neighbor problem for point sets can be
solved.



Proof. Each point will attempt to find a nearest point of a different label, quitting only when it
determines that it cannot find a nearer neighbor than some other point in its set can find. The algorithm in
Theorem 4.7 is used, resulting in the same conclusion that for each corner of every rectangular region
(determined by the intersection of avertical and horizontal slab) there are points from at most 2 sets
which may be able to find closer pointsin the direction of the corner. The slight difference is that in each
of these regions there may be O(n) points from the same set considering possibilities in the same
direction. For a given rectangular region R, assume that a set A of labeled pointsis one of the, at most,
two closest sets of labeled pointsto acorner ¢ of the region. A tilted line L through ¢ and tangent to Risa
separating line from A n Rand the pointsin S- A on the other side of L in the target direction, where S
represents the entire set of n labeled points. (See Figure 4.9, where the direction is northeast.) Therefore,
at most 128 applications of the algorithm associated with Lemma 4.9 are needed. A final concurrent
write and concurrent read complete the operation. -
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Solution to the all-nearest neighbor problem for point sets.
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Given acollection Sof planar points, a spanning tree can be constructed by using the points as vertices
and straight lines between them as edges. A minimal-distance spanning tree is a spanning tree of Swhich
minimizes the sum of the Euclidean lengths of the tree edges. A standard approach to building minimal
spanning trees was given in Section 3.2.3. Start off with each point as being its own labeled component
(club). Then each connected component (as a point set) merges with a nearest neighbor (in case of ties,
the one of minimal label is chosen), and an edge corresponding to this minimal distance is added to the
edge set of the minimal distance spanning tree. This occurs simultaneously for all components. Each
iteration reduces the number of components by at least afactor of two, so at most log, n iterations are
needed. Using Theorem 4.7 to find nearest neighbors, and the graph labeling algorithm of [ReSt] to label
components, a minimal-distance spanning tree of a set of n or fewer planar points, distributed one per
processor on a mesh computer of size n, may be determined in ©(nv2log n) time.



Unfortunately, this agorithm is not optimal. In Section 4.10, an optimal ©(n¥2) time mesh algorithm is
given to solve the minimal-distance spanning tree problem for point data. This optimal solution is based
on a ©(n¥2) time mesh algorithm for constructing the VVoronoi diagram of a set of points, coupled with
the minimum-weight spanning tree algorithm for graphs appearing in [ReSt]. A definition of the VVoronoi
diagram, an optimal mesh algorithm for constructing it, and a number of applications of the Voronoi
diagram are given in Section 4.10.

4.6 Line Segments and Simple Polygons

In this section, problems involving line segments and simple polygons are examined. The first problem
considered isthat of determining whether or not there is an intersection among sets of planar line
segments. Thisis afundamental problem in computational geometry [Sham78, BeOt79, PrSh85]. In fact,
Preparata and Shamos [PrSh85] conjecture that in order to efficiently solve hidden-line problems, one
must first be able to solve basic intersection problems.

The first algorithm presented in this section introduces the use of a paradigm known as multidimensional
divide-and-conquer [Bent80]. In this approach, k-dimensional problems are solved by subdividing them

into smaller k-dimensional problems, plus similar (k - 1)-dimensional problems. These pieces are solved
recursively and are then glued together. When this paradigm is used on parallel computers, the smaller
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pieces can be solved simultaneously. However, this raises the possibility that an initial object may be
subdivided into several smaller objects, and if the recursion causes this to happen repeatedly, there can
be an explosion in the amount of data. The algorithms of this section prevent this by insuring that any
initial line segment never has more than two pieces representing it at the start of any level of recursion,
no matter how many levels of recursion have occurred.

The agorithm that follows in the proof of Theorem 4.11 uses multidimensional divide-and-conguer to
provide an optimal mesh solution to the problem of determining whether or not there exists an
Intersection between line segments with different labels, where line segments of the same label are
assumed to be nonintersecting except possibly at endpoints. The algorithm works by creating vertical
slabs, sending a representative of each line segment to every slab that it passes through or has an
endpoint in, and then recursively solving the problem in each vertical dab. A pitfall to this approachis
that if it is performed in a straightforward fashion, there may be an explosion in the amount of data that
exists due to the fact that each line segment may recursively generate multiple representatives at each
stage of the recursion. To avoid this, at every stage of the recursion, in each vertical dab, every
representative associated with aline segment that passes completely through the slab is examined to
determine whether or not it isintersected in the slab by a distinctly labeled line segment. If such an
Intersection exists, then the algorithm records that an intersection was detected and terminates. If there
are no intersections within a slab involving these spanning line segments (i.e., line segments that pass
completely through the slab), then the representatives corresponding to the spanning line segments may
be discarded and the algorithm may proceed recursively within the slab. This guarantees that there will
never be more than two representatives associated with any line segment at the beginning of any stage of
recursion, and that there will never be more than some fixed number of representatives associated with
each line segment in the entire mesh at any time during the algorithm.



Theorem 4.11 Given n or fewer |abeled line segments, distributed one per processor on a mesh
computer of size n, if no two line segments with the same label intersect other than at endpoints, then in®
(n¥2) time it can be determined whether or not there are any intersections of line segments with different
labels.

Proof. Each processor with alabeled line segment a# creates two line segment records. One record has
the x-coordinate of a as key, with the
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y-coordinate of a, coordinates of b, and label of g& as data, while the other record has the x-coordinate of
b as key, with the y-coordinate of b, coordinates of a, and label of a& as data. In @(n%2) time, these 2n
records are sorted into proximity order by the key field.

After sorting, the keys (x-coordinates) of the first record in processors Py, Pr,, and Ps , (With respect to

proximity order index) are used to partition the plane into 4 vertical sabs. These 3 values are then
broadcast to all processorsin ©(nv2) time. For each record representing the left endpoint a of aline
segment gk, the processor holding the record determinesif there are any slabs which the line segment
crosses completely. For each such line segment and slab pair, the processor containing the line segment
record generates a spanning line record equivalent to the line segment record except that the key isthe
left x-coordinate of the slab. The spanning line records will be used temporarily and then destroyed,
which prevents the overaccumulation of data records. Sort the spanning line records by slab, breaking
ties arbitrarily, and perform a semigroup (i.e., associative binary) operation within each ordered interval
corresponding to a slab to enumerate the spanning line segments of each slab. Finally, using these
numbers, a concurrent write is used to send the spanning line records to their slab. Thisis accomplished
in ©(n¥2) time.

Each dlab is now stored in a quadrant of the mesh. Within each quadrant of processors, in ©(n2) time it
can be determined as to whether or not there is an intersection among the spanning line segments. This
can be accomplished as follows. Sort the spanning line segments by y-intercept with the left boundary of
the slab. This determines for each spanning line segment its position relative to the other spanning line
segments with respect to the left boundary of the slab. Repeat the process to find the relative position of
each spanning line segment with respect to the right boundary of the dlab. If any spanning line segment
has different order positions for the left and right boundary, or if there were any tiesinvolving line
segments with different labels, then there is an intersection within the slab, and the problem is solved.

Otherwise, in each dab, the spanning line segments divide the slab into nonoverlapping regions. (It
should be noted that the property that line segments of the same label can only intersect at their endpoints
Is used here to guarantee that these regions are nonoverlapping. If arbitrary intersections were alowed
among line segments with the same label, then spanning line segments of the same label could cross each
other in the interior of the slab.) Any line segment not spanning this slab will intersect spanning line
segmentsif and only if itsendpointslie
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Spanning line segments, leaders, regions, and major regions.

in different regions or on one of the spanning line segments. (If the line segment does not span, but does
extend outside the slab, then one of its endpoints is temporarily treated as being the appropriate y-
intercept.)

A 2-pass grouping operation, as described on page 27, may be used to determine whether or not spanning
line segments are intersected in agiven slab. Sort all spanning line segments by the y-intercept of the left
boundary. The spanning line segments in each digoint interval of nv2 processors form a group, and the
first spanning line segment of each group isthe leader of the group. See Figure 4.10. In ©(n¥2) time,
rotate the leaders through the processors of the slab (stored in a quadrant of the mesh), using the rotation
algorithm of Section 4.2.3, where the number of processorsisi(r) = ©(n) and the number of records
being rotated is m(r) = O(n¥2). During the rotation, the maor region that a nonspanning line segment lies
inisrecorded initsrecord, where amajor region is determined by a consecutive pair of leaders, as
shown in Figure 4.10..

With respect to the left boundary of the slab, use the y-intercept of the spanning line segments and the y-
intercept of the top boundary of
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the major region for each nonspanning line segment as keys, and sort the spanning line segment and
nonspanning line segment records together, with ties broken in favor of spanning line segments. A
concurrent read is performed so that the leader of each major region can determine the proximity order
index of the next leader of amajor region, forming a group. Within each group, in @(n¥2) time, the O
(n¥2) spanning line segments are rotated. During the rotation, any intersection between a spanning line
segment and a nonspanning line segment of a different label can be detected, and the fact that such an
Intersection was detected can be recorded in the appropriate nonspanning line segment record. Finally, a
semigroup (i.e., associative binary) operation determines if any of the spanning lines segmentsin the slab
were intersected.



If such an intersection exists, then the algorithm is done, while otherwise the spanning line segments are
discarded, and in each slab the problem is recursively solved to determine whether or not there are any
Intersections among line segments of different labels with endpoints in the slab.

The running time of a single step of the algorithm is dominated by a fixed number of data movement
operations such as sorting, concurrent read, concurrent write, and (interval) grouping operations.
Therefore, step i of the algorithm operates on a subsquare of size k = n/4' and finishes in ©(kv2) time.
Hence, the running time of the entire algorithm obeys the recurrence T(n) = T(n/4) + ©(n¥2), whichis®
(nJJZ)_ .

With minor changes, the above algorithm can be modified to ignore intersections of line segments at
common endpoints, or to ignore intersections involving the endpoint of one line segment but the middle
of another.

The next problem considered is the all-nearest neighbor problem for sets of line segments. That is, for
each set of line segments, find the label and distance to a nearest distinct set of line segments. When the
algorithm terminates, each processor that is responsible for alabeled line segment will know the nearest
neighbor for the set that its line segment is a member of.

The algorithm to solve this problem combines features of the algorithm presented in the preceding
theorem with that of the algorithm of Theorem 4.10. The planeis divided into 5 vertical slabsand 5
horizontal slabs, and nearest neighbors within each are found. To find nearest neighborsin aslab, first
each line segment with an endpoint in the slab finds the nearest spanning line segment, and each
spanning line segment finds the nearest neighbor among the spanning line segments and line
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segments with an endpoint in the slab. The spanning line segments use a concurrent write to report this
back to the endpoint that generated them, and are then discarded.

Asin the algorithm of Theorem 4.10, after the nearest neighbors in slabs have been found, in each
rectangular region (determined by the intersection of avertical and horizontal slab) there are at most 8
labels with endpoints of line segmentsin the region which may not yet have found their nearest neighbor.
Lemma 4.9 can be straightforwardly extended to line segments, with the slight difference that k
nonoverlapping (except at endpoints) line segments may partition the separating line L into as many as
2k - 1 regions. A statement of the theorem follows.

Theorem 4.12 Given n or fewer |abeled line segments, distributed one per processor on a mesh
computer of size n, where line segments intersect at most at their endpoints, in ©(nv2) time the all-
nearest neighbor problem for sets of line segments can be solved. -

An algorithm derived from the one associated with Theorem 4.12, where each line segment finds a
nearest neighbor with a different label directly above it, will be useful in some of the algorithms that
appear later in this section. Horizontal slabs are not needed, nor isthere afinal stageinvolving line
segments close to corners of rectangular regions. Since the final stage is eliminated, each line segment
can find a nearest neighbor in an upward direction, rather than just finding a nearest neighbor for each
label.



Corollary 4.13 Given n or fewer labeled line segments, distributed one per processor on a mesh
computer of size n, where line segments intersect at most at their endpoints, in ©(n¥2) time every line
segment can determine a nearest neighbor of a different label above it. -

A polygon issimpleif it has the property that every two consecutive edges share only a common
endpoint, and no two nonconsecutive edges intersect. While vertices can be used to uniquely represent a
convex figure, a simple polygon cannot be represented by vertices unless they are given in an
enumerated fashion. The input to problemsin this section involving simple polygons will be in the form
of line segments that represent the polygons.

Some of the algorithms that follow will make use of an efficient solution to the connected component
labeling problem for line segments, where two line segments are connected if and only if they share a
common endpoint. Proposition 4.14 is due to Reif and Stout [ReSt].
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Proposition 4.14 Given n or fewer line segments (edges), distributed one per processor on a mesh
computer of size n, in ©(nY2) time every processor containing a line segment can know the label of the
connected component that its segment is a member of.

Consider the problem of determining for each labeled set of line segments, whether or not it forms a
simple polygon. The algorithm follows directly from the results of Proposition 4.14, which is used to
determine for each labeled set whether or not it is connected, and Theorem 4.11, which is used to
determine for each connected |abeled set whether or not any of its edges intersect.

Theorem 4.15 Given n or fewer nondegenerate labeled line segments, distributed one per processor on a
mesh computer of size n, in ©(n2) time it can be determined for each set whether or not the line
segments form a simple polygon.

Proof. Sort the line segments by labels into proximity order in @(n%2) time. Using the algorithm
associated with Proposition 4.14, for each set of line segments, simultaneously label all connected
components in @(n¥2) time. Using areport and broadcast within each set of line segments, in ©(nY2) time
discard those sets for which not al line segments received the same component label. Next, using a
concurrent read within each set, in ©(n¥2) time mark each line segment that does not satisfy the condition
that each of its endpoints intersects exactly one endpoint from a distinct line segment of its component
(set). Those components that contain marked line segments do not form simple polygons and are also
discarded. For each of the remaining sets of line segments, apply the intersection algorithm of Theorem
4.11, treating each line segment as having a unique label, and ignoring intersections at common
endpoints. Those components that contain intersections are not simple polygons, while the remaining
nondiscarded polygons are ssimple. A final ©(n¥2) time concurrent read returns the line segments to their
original processors with the solution to the query.

Consider the problem of determining whether or not there is an intersection among a set of simple
polygons. Before presenting a solution to this problem, a useful result that distinguishes the inside from
the outside of each polygon will be given. The algorithm works by finding the point of each polygon
with minimal x-coordinate, using the convex angle formed by the two edges incident on this point to
identify the inside of the polygon, and then propagating interior/exterior information to all other edges of
the polygon.
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Lemma 4.16 Given multiple simple polygons, represented by n or fewer labeled line segments,
distributed one per processor on a mesh computer of size n, in ©(n%2) time each processor containing a
line segment can determine which side of its line segment is towards the interior of its polygon.

Proof. Every processor that contains a line segment creates a line segment record with the polygon label
as major key and the x-coordinate of the leftmost of the two endpoints as minor key. Sort the line
segment records by polygon labels (key), with ties broken in favor of minimum x-coordinate. After
sorting, the first two line segments of each label intersect at the leftmost point of that polygon. Therefore,
their interior angle must be towards the interior of the polygon. For each labeled polygon, conceptually
eliminate the leftmost point from the bottommost of these two line segments. This serves to conceptually
eliminate the link between these two line segments. Now, in this modified graph, select the leftmost point
asroot, and orient the edges to form an upward directed graph. (Algorithms appearing in [ Stou85a,
AtHa85] do thisin the required time.) This graph represents a counterclockwise traversal of the polygon,
so for each edge the inside is the |eft-hand side when going upward (in the tree). A final concurrent read
allows every processor to know the orientation of the line segment that it initially contained, with respect
to its simple polygon. -

An agorithm to detect an intersection among a set of simple polygons follows directly from previous
results. First, use the line segment intersection algorithm to determine whether or not there are any
intersections among edges of polygons. If not, then the only possibility for intersection isvia
containment, i.e., if one polygon is completely contained within another. After each edge of a polygon
distinguishes the outside from the inside of its polygon, every edge finds a nearest edge directly aboveit.
Containment existsif and only if some edge is on the inside side of the nearest edge that it detects
directly aboveit.

Theorem 4.17 Given multiple simple polygons, represented by n or fewer labeled line segments,
distributed one per processor on a mesh computer of size n, in ©(n%2) time it can be decided whether or
not there is an inter section among the polygons.

Proof. From Theorem 4.11, in ©(n¥2) time it can be detected whether or not there is an intersection of
line segments. It only remains to detect if one simple polygon contains another. If there is a containment
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relationship among some polygons, then thereis at least one line segment 1 for which the closest line
segment to |, among the line segments directly aboveit, is aline segment k of a polygon that contains 1.
That is, | ison the inside of k, and hence the polygon that | isa member of is contained in the polygon
that k isamember of. Further, if no polygons are inside of others, then for every line segment I, the
closest line segment k directly above it either belongs to the same polygon as|, or else | is on the outside
of k, and hence the polygon that | belongsto is not contained in the polygon that k belongs to.

In ©(n¥2) time, temporarily give each line segment its own label and use the modified version of the
algorithm in Theorem 4.12 to find, for each line segment, the nearest neighbor directly above it (if any).
Using Lemma 4.16 to determine orientations, in @(n2) time it can be decided as to whether or not any
polygon is contained in another. The algorithm from Theorem 4.11, the modification of the algorithm
from Theorem 4.12, and the algorithm from Lemma 4.16 al finish in ©(n¥2) time. Therefore, the running
time of the algorithm is as claimed.



The following result is an immediate corollary of Theorem 4.12.

Coroallary 4.18 Given multiple noninter secting simple polygons, represented by n or fewer labeled line
segments distributed one per processor on a mesh computer of size n, in ©(n¥2) time the all-nearest
neighbor problem for simple polygons can be solved.

The final problem considered in this section involves query points and a set of nonintersecting smple
polygons. The problem isto determine for every query point, whether or not it is contained in a polygon,
and if so, the label of such apolygon.

Corollary 4.19 Given multiple noninter secting simple polygons, represented by labeled line segments,
and given a collection of points, such that there are no more than n segments and points, stored no more
than one per processor on a mesh computer of size n, in @(n2) time each point can deter mine the |abel
of a polygonitisin, if any.

Proof. Assignto all points alabel that is different from all of the polygons. Then use the modified
version of the algorithm in Theorem 4.12 to find the nearest line segment above each point. If the point is
on the inside side of this segment, then the point is in the polygon, while otherwise it is outside of it.
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4.7 I nter section of Convex Sets

This section presents efficient mesh algorithms to determine intersection properties of convex setsand to
solve the 2-variable linear programming problem. Intersection problems involving convex sets have been
considered for the serial model (c.f., [OCON82, PrSh85, ShHo76]), since many of these problems solve
classic pattern recognition queries.

The first result of this section shows that a mesh computer can be used to efficiently determine whether
or not the convex hulls of two arbitrary sets of planar points intersect. A related problem is that of
determining whether or not two sets of planar points S, and S,, are linearly separable [Tous80], where S
and S, arelinearly separableif and only if there exists aline in the plane such that all pointsin S, lieson
one side of theline, and all pointsin S, lies on the other side. It is not hard to show that sets of planar
points are linearly separable if and only if their convex hulls are digoint.

The algorithm that follows in the proof of Theorem 4.20, to determine whether or not the convex hulls of
two sets of points are linearly separable, relies heavily on the notion of angles of support, as defined on
page 19. The algorithm exploits the fact that two convex sets, S, and S,, are linearly separable if and only
if there existsapair of extreme points, p J S, and q 0 S,, as shown in Figure 4.11, such that an angle of
support of p differs by Ttfrom an angle of support of g, and that the half-planes that these angles
represent do not intersect. Every extreme point attempts to find such an extreme point of the other set.
Thisis accomplished by a one pass grouping operation based on the monotonicity of angles of support
for extreme points.



Theorem 4.20 Given n or fewer labeled planar points, representing sets S, and S,, distributed one per
processor on a mesh computer of size n, in ©(nNY2) time it can be determined as to whether or not hull(S)
and hull(S,) intersect. Further, if they do not intersect, then a separating line between S, and S, can be
determined.

Proof. If S, and S, are separated by aline L, then there are extreme pointsp 0 S, and g [0 S, such that
each of p and g has an angle of support parallel to L, and these angles of support differ by tfrom each
other (see Figure 4.11). Further, given extreme pointsp' 0 S, and ' O S,, dong with their angles of

support, in constant time it can be determined if there is such a separating line. To locate a separating
line, if one exists, representatives of the angles of support of the extreme

0 S
7

Figure 4.11:
Line L separatesp and g.

Page 185

points of S and S, will use a grouping technique to locate extreme points of the other set with an angle of
support differing by Tt

Each extreme point p [J S, creates two records containing p's coordinates and its range of supporting
angles, along with an indicator that pisin S,. One of these records has p's smallest supporting angle asits
key, and the other has p's largest supporting angle asits key. Each extreme point of S, createstwo similar

records, adding Tt (mod 21) to each angle. Further, to convert the circular ordering of angles of support
into alinear ordering, additional records are generated for an extreme point of S, having 0 as an angle of

support and an extreme point of S, having Ttas an angle of support. (These records will have keys of 0
and 2rt) All records are then sorted by key, using smallest supporting angles as a secondary key.



Notice that if extreme pointsp 0 S, and g [ S, have a separating line, then either an endpoint of g's range

of angles of support (plus 1) is within the range of p's angles of support, or vice versa, or both. For the
first and third cases, if the records are viewed as grouped by intervals of angles of support determined by
extreme pointsin S;, then by circulating the information about each extreme point in S; throughout its
interval,
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every processor holding arecord corresponding to an extreme point in S, can determine if thereisaline

separating them. Similarly, for the second case, the records can be viewed as grouped by intervals
determined by extreme pointsin S.,.

The previous theorem presents an interesting algorithm to determine whether or not the convex hulls of
two sets of planar pointsintersect. In fact, the problem of determining whether or not thereis an
Intersection among the convex hulls of multiple sets of planar points can be solved in the same
asymptotically optimal time, as follows. Use the algorithm associated with Corollary 4.2 to enumerate
the extreme points of each labeled set. Then use a concurrent read to generate the edges of the convex
hulls. Finally, use the polygon intersection algorithm of Theorem 4.17 to give the desired resullt.

Theorem 4.21 Given n or fewer labeled planar points, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time it can be determined whether or not any two |abeled sets have convex
hulls which inter sect. -

The next problem considered is that of constructing the intersection of multiple half-planes, which is
based on a straightforward bottom-up merging algorithm, where at each stage ordered intersections of
half-planes are merged. Serial solutions to this problem appear in [PrSh85].

Theorem 4.22 Given the description of n or fewer half-planes, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time their intersection can be deter mined.

Proof. Sort the half-planes into proximity order by their angles. Half-planes with the same angle can be
combined into a single half-plane using simple prefix calculations. The core of the algorithm isasimple
bottom-up merge procedure, where stage i merges 2' half-planesinto their intersection in ©(2'2) time. At
each stage, the result is a (perhaps infinite) convex figure, and when two figures are being merged, the
initial sorting guarantees that at most one is noninfinite and either one is contained in the other, they have
no intersection, their boundaries intersect in exactly one point, or their boundaries intersect in exactly
two points. These cases can easily be determined and solved using, say, the algorithm in Theorem 4.11 to
locate the intersections and the algorithm of Theorem 4.17 to determine if there is containment. -
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It was noted in [Gass69] that linear programming can be viewed as an intersection problem, determining
the intersection of half-planes and evaluating the objective function at each extreme point. Corollary 4.23
follows directly from Theorem 4.22.

Corollary 4.23 Given n or fewer 2-variable linear inequalities, distributed one per processor on a mesh
computer of size n, and a unit-time computable objective function to be maximized (minimized), thenin ©
(n¥2) time the linear programming problem can be solved. -



Since each convex polygon is the intersection of the incident half-planes corresponding to its edges, the
problem of constructing the intersection of multiple convex polygons can be solved by asimple
application of the algorithm associated with Theorem 4.22. It should be noted that the following
corollary can also be obtained by using a bottom-up merging approach which intersects pairs of convex
polygons together.

Corollary 4.24 Given multiple labeled convex polygons, represented by n or fewer labeled planar points,
distributed one per processor on a mesh computer of size n, in ©(n%2) time the common intersection of
the polygons can be constructed. -

4.8 Diameter

The problem of detecting afarthest pair and computing the diameter of a set of planar pointsis closely
related to the convex hull problem. In fact, afarthest pair of points must be a pair of extreme points of
the convex hull of the set of points [Sham78]. The distance between such a pair of points gives the
diameter of the set. An optimal mesh algorithm for computing afarthest pair and the diameter of a set, or
multiple labeled sets, of planar points follows directly from the techniques and algorithms presented in
Section 4.7. Given aset Sof n planar points, distributed one per processor on a mesh computer of sizen,
first mark the extreme points of hull(S) using the algorithm associated with Corollary 4.2, then determine
for each extreme point its angles of support as described in Section 4.7, and then based on these angles,
perform a grouping operation to find afarthest point from every point. Performing a semigroup (i.e.,
associative binary) operation over the set of point-wise farthest pairs, gives afarthest pair and the
diameter of S
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Theorem 4.25 Given n or fewer labeled planar points, distributed one per processor on a mesh
computer of size n, a farthest pair and the diameter of every labeled set can be determined in ©(nv2)
time. -

4.9 | so-oriented Rectangles and
Polygons

Problems involving rectangles have been well studied for the serial model of computation [MeCao79,
PrSh85, McCr81], since they are important to many packing and layout problems. An important class of
rectangles are the iso-oriented ones, where an iso-oriented (planar) rectangle is a planar rectangle with
the property that one pair of opposite sidesis parallel to the x-axis and the other pair is parallel to the y-
axis. In this section, the input to the problems considered is n or fewer iso-oriented planar rectangles,
distributed one per processor on a mesh computer of size n. It is assumed that each iso-oriented rectangle
Is described by the Cartesian coordinates of its four planar vertices. To distinguish the rectangles during
the course of an algorithm, each rectangle islabeled by the index of the processor that it isinitialy
contained in. Multidimensional divide-and-conguer, as introduced in Section 4.6, will be used
extensively.



Recall from Section 4.6 that for general simple polygons, it was only possible to detect whether or not an
intersection exists. The first theorem of this section shows that when the polygons are restricted to iso-
oriented rectangles, then in ©(n¥2) time, every rectangle can determine whether or not it is intersected by
another rectangle. The algorithm presented to solve this problem is based on the slab method, which has
been used extensively in this chapter. Vertical slabs are created and every rectangle sends a
representative to each slab that the rectangle passes through or terminates in. The problem is then solved
for spanning rectangles within each slab, after which the representatives of the spanning rectangles are
discarded. The algorithm then proceeds recursively within each slab. Processing and discarding the
spanning rectangle representatives at the beginning of each stage of the recursion guarantees that there
will not be an overaccumulation of data.

Theorem 4.26 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time every rectangle can determine whether or not it is intersected by
another rectangle.

Proof. Every processor initially storing a rectangle creates two representatives of the rectangle, one with
the x-coordinate of the left side
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as key, with the rest of the rectangle's description, proximity index of the processor (to be used as the
label of the rectangle), and aflag set to 'left’ as data, and the other with the x-coordinate of the right side
as the key, with the description, proximity index of the processor, and 'right' as data. After this
initialization step, there are at most 2n representatives. Each processor keeps track of the left and right
limits of the region under consideration as the algorithm progresses, similar to other slab partitioning
algorithms that have been presented in this chapter. Initially, each processor sets the left and right limits

to -0 and +oo, respectively.

Sort the representatives by the key field. The key (an x-coordinate) of the second representativein
processors Py, Py, and Py, (in proximity order) are broadcast to all processors. This serves to partition

the region into 4 vertical slabs. Every processor holding a representative of arectangle that spans one or
more slabs generates a special record describing the rectangle for each slab the rectangle completely
crosses. Initially, arectangle can cross at most two vertical slabs, but in latter stages of recursion a
rectangle may cross three slabs. The special records are then sent to the quadrant of the mesh that is
responsible for maintaining representatives of the spanned slab. Thisis accomplished by sorting the
special records with respect to slabs, performing a semigroup (i.e., associative binary) operation within
ordered intervals corresponding to slabs to enumerate the special records of each slab, and performing a
concurrent write to send special records to their appropriate slabs.



In each slab, these special records represent spanning rectangles. Notice that a spanning rectangleis
intersected by another iso-oriented rectangle in the dab, if and only if their y-coordinates overlap.
Therefore, spanning rectangle intersections have been reduced to a 1-dimensional intersection problem,
and can be solved as follows. First, perform a sort step to eliminate duplicate entries that might have
been created by aleft and right representative of the same rectangle. For each spanning and nonspanning
rectangle, two records are created, one corresponding to the y-coordinate of its top edge, and one
corresponding to the y-coordinate of its bottom edge. Sort all of these records together. Use a parallel
prefix operation to count the number of top and bottom spanning rectangle edges preceding every edge.
Use a sort to reunite top and bottom records representing the same rectangle. For every rectangle, four
important pieces of information are now known, namely, the number of top and bottom spanning
rectangle edges that precede each of its two horizontal edges. For every rectangle, if all four pieces of
data are identical then the rectangle is not intersected by a spanning
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rectangle, while otherwise it is. The rectangles then report back to the representative that created them,
and the spanning rectangles are then discarded.

Next, each processor updates the left and right limits of its slab and the algorithm proceeds recursively.
Since the spanning rectangles are discarded before the recursive call, no rectangle can ever have more
than 2 representatives (and up to 6 spanning rectangle representatives) at any one time. The time of the
algorithm satisfies the recurrence T(n) = ©(n¥2) + T(n/4). Therefore, the algorithm finishes in the time
claimed. -

By applying a similar technique, this result can be extended to circles, assuming that each circleis
represented by arecord consisting of its center and radius.

Corollary 4.27 Given the descriptions of n or fewer circles, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time every circle can determine whether or not it is intersected by another
circle.

Consider the problem of determining the area covered by a set of iso-oriented planar rectangles. Notice
that if the set of rectangles were nonintersecting, then this would be trivial. However, such arestriction is
unnecessary. The algorithm presented below is a straightforward adaptation of the algorithm associated
with Theorem 4.26, where at the beginning of each stage of recursion, the spanning rectangles are used
to eliminate portions of the nonspanning rectangles that they intersect.

Theorem 4.28 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in ©(n/2) time all processors can know the total area covered by the rectangles.

Proof. The algorithm is similar to the algorithm associated with Theorem 4.26. At each stage, when the
spanning rectangles are sent to each slab, they first determine the total measure of the y-axis that they
cover. The total area covered by the spanning rectangles is this measure times the width of the slab. Each
representative of a nonspanning rectangle in the slab now 'eliminates' the portion of itself that overlaps
spanning rectangles. That is, for a given nonspanning rectangle R with top y-coordinate y, and bottom y-
coordinate y,, the total measure M, of the y-axis covered by spanning rectangles below y, and the total

measure M, of the y-axis covered by spanning rectangles below vy, is determined.
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Figure 4.12:
'Cutting out' the spanning rectangles from a slab.

The processor responsible for R subtracts M, from y, and M, from y,. Figure 4.12 illustrates this. It has

the effect of 'cutting out' the spanning rectangles and moving everything else down. The algorithms to

determine these measures can be complete in ©(nY2) time and are |eft to the reader. A final semigroup (i.
e., associative binary) operation will determine the total area covered by the rectangles.

In the remainder of this section, results are stated that either follow or are closely related to other results
of this section. For certain packing and layout problems, it is often desirable to know the area of each
rectangle that is covered by other rectangles. An algorithm to solve this problem is quite similar to the
previous algorithm, with the exception being that the recursion takes place within the spanning
rectangles, and the total area covered within the spanning rectangle is recorded, so as to be subtracted
from the area of the spanning rectangle.

Theorem 4.29 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time every processor can know the area that its rectangle covers and that is
covered by no other rectangle.

A problem related to some of the rectangle intersection problems just described is that of determining the
maximum number of overlapping
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rectangles. A solution to this problem can be used to solve the fixed-size rectangle placement problem.
That is, given a set of planar points and a rectangle, determine a placement of the rectangle in the plane
so that the number of points covered by the rectangle is maximal. Optimal mesh algorithms solving these
problems are presented in [LuVa86b]. The results are stated in the Theorem and Corollary that follow.

Theorem 4.30 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in ©(nY2) time every processor can know the maximum number of overlapping
rectangles. -



Coroallary 4.31 Given a set of planar points and a fixed rectangle, distributed one per processor on a
mesh computer of size n, in ©(n¥2) time a placement of the rectangle in the plane that will cover a
maximal number of points can be determined. -

By combining the basic technique of multidimensional divide-and-conquer with the use of spanning
rectangles, and using the fact that the spanning rectangles have particularly ssmple properties, the
following two results are obtained.

Theorem 4.32 Given n or fewer iso-oriented planar rectangles, distributed one per processor on a mesh
computer of size n, in ©(nY2) time every processor can know a nearest neighboring rectangle to the one
that it contains. -

Theorem 4.33 Given atotal of n or fewer iso-oriented planar rectangles and planar points, distributed
one per processor on a mesh computer of size n, in ©(NY2) time every processor containing a point can
determine the number of rectangles containing the point, and every processor containing a rectangle can
determine the number of points contained in the rectangle. -

A minor modification to Theorem 4.32 will yield an optimal mesh solution to the all-nearest neighbor
problem for circles.

Corollary 4.34 Given n or fewer nonintersecting circles, distributed one per processor on a mesh
computer of size n, in ©(nY2) time every processor can know the nearest neighboring circle to the one
|

that it contains. -
Figure 4.13:

Decomposing an orthogonal polygon into iso-oriented rectangles.
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Problemsin VLSI layout often involve more than iso-oriented rectangles. Frequently the objects that
need to be considered are simple polygons with iso-oriented sides, referred to as orthogonal polygons. It
Is quite straightforward to add horizontal line segments which decompose each orthogonal polygon into a
collection of rectangles overlapping only along their edges, where the number of rectanglesisless than
the number of initial edges, and where the process takes only ©(n¥2) time. (See Figure 4.13.) Having
done this, each of the resultsin Theorems 4.28, 4.29, 4.32, and 4.33 can be extended to orthogonal
polygons, still requiring only ©(n¥2) time. The only difference is that Theorem 4.32 must be extended to
handle |abeled rectangles, finding the nearest neighbor of a different label.

Theorem 4.35 a) Given multiple simple polygons with iso-oriented sides, represented by n or fewer
labeled line segments, distributed one per processor on a mesh computer of size n, in ©(n¥2) time the
total area covered by the polygons can be determined, a nearest neighbor of each polygon can be
determined, and the area uniquely covered by each polygon can be determined.



b) Given a total of n or fewer labeled line segments (representing isooriented simple polygons) and
planar points, distributed one per processor on a mesh computer of size n, in ©(n%2) time every
processor containing a point can determine the number of polygons containing the point, and every
processor containing a line segment of a polygon can determine the number of points contained in its

polygon.
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4.10 Voronoi Diagram

The Voronoi diagram isawell known structure in computational geometry that is used to derive efficient
serial solutionsto ahost of proximity queries, including many of those that have been considered in this
chapter. Given a set Sof n planar points, the Voronoi diagram of Sis the union of n convex polygons vV
(p), p. O S where V(p;) isthe convex polygon associated with point pi that marks the region of the plane
that is closer to point p, than to any of the other n - 1 points of S. See Figures 4.14 - 4.16. The V oronoi
diagram of Shas at most 2n - 5 vertices and at most 3n - 6 edges. In [ShH075], an optima O(n log n)
seria algorithm is presented to compute the VVoronoi diagram of a set of n planar points by a divide-and-
conquer solution. The reader isreferred to [PrSh85], and the references contained therein, for an in-depth
examination of Voronoi diagrams, serial algorithms to compute properties of VVoronoi diagrams, and
applications of VVoronoi diagrams.

4.10.1 Algorithm

In this section, an asymptotically optimal mesh algorithm to compute the VVoronoi diagram of a set of
planar points, based on the algorithm described in [JeLe90], is presented. Thisresult isthen used in
Section 4.10.2 to give optimal mesh solutions to a number of geometric properties, some of which have
already been solved by other methods in this chapter.

Given aset Sof n planar points, if p;, p; O S, then the set of points closer to p; than to p, is just the half-
plane containing p, that is defined by the perpendicular bisector (bisector) of F;p;. This half-plane will be
denoted H(p;, p;). The locus of points closer to p; than to any other point, is aconvex region, given by V
(p) = n; 4 H(p;, p;), which isreferred to as the Voronoi polygon associated with p,.. As stated previously,

the Voronoi diagram of Sisthe union of all V(p;), 1 <i < n. See Figure 4.16. The edges of V(p,) are
called Voronoi edges, and the end vertices of such as edge are referred to as VVoronoi vertices. Each
Voronoi edge is a continuous portion of the bisector of two points p;, p; 1 S, denoted B(p;, p;). Given a
directed edge e = B(p,, p), where bisector point p; lies to the left of e and bisector point p, lies to the right
of e, then p, is called the left bisector point of eand p, is called the right bisector point of e. (Notice that
left and right are in reference to the relationship between the bisector points and the directed edge in the
plane, and have nothing to do with their relationship between the two
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Figure 4.14:
A set Sof planar points.

Figure 4.15:
The Voronoi polygon of aselected point in S
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Figure 4.16:
The Voronoi diagram of S denoted V(9.

Figure4.17:
Subsets L and R of Sarelinearly separable,
with each set containing half of the points.
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Figure 4.18:
The Voronoi diagram of L, denoted V(L).
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Figure 4.19:
The Voronoi diagram of R, denoted V(R).



Figure 4.20:
The Voronoi diagram of L, the Voronoi diagram of R, and the dividing chain C.
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Figure 4.21:
The Voronoi diagram of Swith the points labeled.
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bisector points.)

The mesh solution presented in this section is based on a divide-and-conquer paradigm. Consider a
partition of Sinto two subsets, L and R, where al points of L lie to the left of a separating line, and al
points of R lieto the right of the line, as shown in Figure 4.17. Let C be the collection of Voronoi edges
in V(S) which are determined by polygons representing one point from L and one point from R. Orient C
so that the pointsin L and R lie to the left and right of C, respectively, as the edges of C are traversed
from bottom up. C will be referred to as the dividing chain of L and R. See Figure 4.20.

A general mesh algorithm for constructing the Voronoi diagram of aset Sof n planar points follows.

1. Partition aset Sof n planar pointsinto linearly separable sets L and R, each of which has n/2 points,
such that the points of L lie to the left of the points of R.

2. Recursively construct V(L) and V(R). (See Figures 4.18 and 4.19.)
3. Merge V(L) and V(R) into V(S), as follows. (See Figure 4.20.)
(a) Construct C, the dividing chain of L and R, asfollows.
I. Determine the set B of edges from V(L) and V(R) that are intersected by C.
ii. Arrange the edges in B by the order in which they are intersected by C.
(b) Discard any unnecessary portions of edgesin V(L) and V(R), as determined by C.

The key to the algorithm is the merge step. For each edge ein either V(L) or V(R), it can be decided
whether or not that edge isin B (the set of edges intersected by the dividing chain C) by determining for
each of its end vertices whether it is closer to L or to R. Given an edge e = B(q,, ¢,) of V(L) with end
vertex v, that liesin Voronoi region V(q;) of V(R), it can be decided if v, is closer to L or to Rby
comparing the distances d(qj, v;) and d(q,, vy). In order to determine the Voronoi region of V(R) that v,
liesin, the algorithm associated with Corollary 4.19 may be used to determine the VVoronoi edge of V(R)
that is directly above v;. Thisinformation yields the VVoronoi polygon of R that contains v;. This method

can be used so that all Voronoi vertices of L and all Voronoi vertices of R can simultaneously determine
if they areclosertoL or to R.
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Let E, and E, be the set of Voronoi edges of V(L) and V(R), respectively. The set of edgesE = E, [ E, can
be partitioned into three sets, as follows.

1. E;: the set of edges both of whose end vertices are closer to L.

2. E,,,: the set of edges one of whose end verticesis closer to L and the other to R.



3. E,,: the set of edges both of whose end vertices are closer to R.

In [JeLe90] it has been shown that for e [ E;,

. If e d E, then C does not intersect e,
. If e d E,;, then C intersects e exactly once, and
. if e E,, thenif C intersects e, it does so twice.

Similarly, fore 0 E,,

. iIf e 0 E,, then C does not intersect e,
. if e E, then C intersects e exactly once, and
. iIf e E, thenif Cintersectse, it does so twice.

After identifying the edges B that are intersected by C, they must be sorted by the order in which they
intersect C, as C istraversed from the bottom up. Let B, be the Voronoi edges of V(L) intersected by C,
and B, be the Voronoi edges of V(R) intersected by C, where B = B, U B,. For any two edges g g [ B,
define g < g if g isintersected by C before g in the sense of traversing C from the bottom up. For each g
[ B, the end vertex closer to L is denoted Iv(g) and the end vertex closer to Ris denoted rv(e). Notice
that Iv(e) liesto the left of C, whilerv(e) liesto the right of C.

For the situation where e [ B isintersected twice by C, g isdivided into two parts, €, and e,, such that

each part isi) intersected by C exactly once and ii) has one end vertex closer to L and the other closer to
R. Specifically, & = B(p;, p) U B, n E,, isdivided into two parts, g, and &,, such that rv(e,) = Iv(e,) = q;,
where g, is the intersection of B(p;,jp) and the horizontal line passing through p,. Similarly, & = B(p;, Py )
O Br n E, isdivided into two parts, ,, and e,, such that rv(e,) = Iv(e,) = g, where g; is the intersection
of B(p;, p) and the horizontal line passing through p,.
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Each ¢ [J B is assumed to be directed from Iv(e) to rv(e). The left and right bisector points of g are
denoted by Ip(e) and rp(e), respectively. The dividing chain C intersects a sequence of restricted
Voronoi polygons while crossing edgesin B. (The reader isreferred to [PrSh85] for details of
constructing C on a serial machine in time linear in the number of edges.) In [JeLe90], it is shown how to
order any two edges &, g e B with respect to the order in which they are intersected by C.

Define MINy(e) and MAXy(e) of an edge e I B to be the minimum and maximum y-values of the two
end vertices of e, respectively. Two edges g and g are said to be y-digoint if MINy(e) > MAXy(g) or
MINy(e) > MAXy(e). Further, g issaid to be left of g if g liestotally to the |eft of the directed line from
Iv(g) to rv(g) with respect to the direction. The notion of right is defined similarly. If g and g are y-
digoint, then it is easy to order g and g since C is monotone with respect to y. However, if g and g are
not y-digoint, then g and g can be ordered according to the following. (See Figure 4.22 for intuitive
arguments. The reader is referred to [JeLe90] for details and proof of correctness.)



1. If g and g intersect at a point m, then

(a) If both g and g arein either B, or B,, then g < g if g liesto theright of g, otherwise g < &.

(b) If exactly one of g and g isin By, then
i. g <gif miscloser to L thanto Rand Iv(g) liesto theright of g, otherwise
il. g <gif miscloser to Rthanto L and Iv(e) liesto theright of g, otherwise
iii. g <@,
2. If g liesto the lft of g, then
(@) g < g if y(rv(g)) <y(Iv(e)) <y(rv(e)) or y(Iv(g)) < y(rv(e)) < y(lv(e)), otherwise
(b)e<s.
3. If g liesto theright of g, then
(@) & < g if y(lv(e)) <y(rv(e)) <y(Iv(g)) or y(rv(e)) < y(Iv(&)) < y(rv(g)), otherwise
(b) g <e.
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(b) Examples for the situation where g liesto the left of .
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(c) Examples for the situation where g liesto the right of .

Figure 4.22:
Ordering & and g with respect to the traversal of C.

Since the set of edges B that are intersected by C can be ordered, the details of the merge step in the
algorithm outlined at the beginning of the section is complete. An optimal ©(n2) time mesh algorithm is
now presented for constructing the VVoronoi diagram of aset Sof n planar points, initially distributed one
per processor on a mesh of size n. Notice that no step of the algorithm requires more than ©(nv2) time.

1. Sort the points of Shy x-coordinate. Let L be the set of pointsin processorsP,, P,, . . ., P, and Rbe
the set of pointsin processors P, 1, Py2,2, - - -5 P

2. Recursively find V(L) and V(R).

3. Merge V(L) and V(R) into V(S by constructing the dividing chain C and discarding portions of
Voronoi edgesin V(L) to the right of C and portions of VVoronoi edgesin V(R) to the left of C.

(a) Find the set of edges B in V(L) and V(R) that are intersected by C.

I. Use the algorithm associated with Corollary 4.19 to compute for each Voronoi vertex in V(L),

the Voronoi polygon of V(R) that the vertex is contained in. Similarly, for each Voronoi vertex in V
(R), determine the Voronoi polygon of V(L) that the vertex is contained in. Using this information,
determine for each such vertex whether it iscloser to L or to R.
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Ii. Based on the discussion preceding this algorithm, determine for each VVoronoi edgein V(L) and
V(R) whether or not it isintersected by C. These edges represent the set B.

iii. For the purpose of constructing the dividing chain, conceptually discard edges which lie totally
to the left or totally to the right of C.

(b) Construct the dividing chain C.

I. If the number of edgesin Bislessthan 2, then



A. find the edges of C directly from the starting and terminating bisectors. Notice that the
starting and terminating bisectors correspond to the lower and upper tangent lines, respectively,
between hull(L) and hull(R), and can be determined by applying the algorithm associated with
Theorem 4.1 to L and R. However, as noted in [JeLe90], in general this should not occur, unless
the 11 metric is used as the distance metric.

B. Exit.

Ii. Based on the discussion preceding this algorithm, sort the edgesin B according to the order in
which they are intersected by C, viewing the traversal of C from bottom up.

A.LetB={e,e,...,0} besortedsothate, <e,<...<e.

B.LetE.={e, €, ..., g} denotethe set of edgesof C such that . isimmediately above g
and such that e, and e, are the starting and terminating edges of C, respectively.

iii. Find the bisector points for each edge g, [1 E. asfollows. (Refer to Figure 4.20.)

A. Compute for each edge g [ B, the greatest edge g, < g, where g; [ B,. (The case in which
e [ B, ishandled similarly.)

B. If there is no such greatest edge g, then store the least edge in B, as ;. Record bisector
pointsIp(e) and rp(e,) for g, U E..

C. If thereis such a greatest edge g, then record bisector points Ip(e) and Ip(e) for edge . [
E, since

Page 206
e, liesintheregion V(Ip(e)) of V(L) and V(Ip(gy)) of V(R).

iv. Find the end vertices of al edgesin E, and modify, for each edgein B, its end vertices. Each
processor containing an edge e performs the following.

A. Locate one end vertex c;, which isthe intersection of € and g.
B. Obtain the other end vertex from an adjacent processor.

C. Discard the portion of the edgesin V(L) and V(R) to the right and left of the dividing chain,
respectively, by replacing the right and left end vertices, respectively, of g in B, and B, with c..

(c) For each Voronoi edge e = B(p;, p,), create two records. One record will have p, asthe key and the
other will have p; as the key. Sort all records by key fields so as to create ordered intervals out of the
Voronoi polygons.

Theorem 4.36 Given a set Sof n or fewer planar points, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time the Voronoi diagram of Scan be constructed.

4.10.2 Applications



Preparata and Shamos [PrSh85] have shown that the VVoronoi diagram is useful for solving a number of
proximity problems. They also cite examples from fields such as archaeol ogy, ecology, and molecular
modeling, for which the Voronoi diagram is an end in itself. In this section, optimal mesh solutionsto a
number of proximity problems are stated that are based on Theorem 4.36. It should be noted that some of
these problems have been solved directly in previous sections of this chapter.

The first problem, which was previously discussed in Section 4.5 and solved in optimal time on a mesh
by the algorithm associated with Theorem 4.7, is the all-nearest neighbor problem. Given a set S of
points, once V(S) is constructed, every point p [ Scan find a nearest neighbor by examining the edges of
V(p). This can be donein the required time by performing a semigroup (i.e., associative binary) operation
within ordered intervals. (When the algorithm associated with Theorem 4.36 terminates, the Voronoi
polygon associated with each point is stored in an ordered interval of the mesh.)
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Corollary 4.37 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, the all-nearest neighbor problem for points can be solved in ©(n¥2) time. -

A semigroup (i.e., associative binary) operation over the all-nearest neighbor results, gives an
asymptotically optimal algorithm to solve the closest pair problem.

Corollary 4.38 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, the closest pair problem for points can be solved in ©(n2) time. -

Given aset of planar points S apoint p is an extreme point of Sif and only if the Voronoi polygon of p
Isunbounded. Therefore, given aset Sof planar points, the extreme points of Sthat represent hull(S) can
be detected by constructing the Voronoi diagram of Sand then using a concurrent read within ordered
intervals to detect for each point p [ Swhether or not V(p) is bounded (c.f., the algorithm associated with
Theorem 4.15).

Corollary 4.39 Given a set Sof n or fewer planar points, distributed one per processor on a mesh
computer of size n, the extreme points of Scan be identified in ©(n2) time. -

The straight line dual of the Voronoi diagram isimportant for a number of applications. This diagram,
called the Delaunay diagram, represents the graph embedded in the plane obtained by adding a straight-
line segment between each pair of points of Swhose Voronoi polygons share an edge. Notice that the
diagram may be unusual in that an edge and its dual do not necessarily intersect. One immediate property
of the Delaunay diagram isthat it gives atriangulation of S

Corollary 4.40 Given a set Sof n or fewer planar points, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time the Delaunay triangulation of S can be determined. -

In Section 4.5, a nonoptimal mesh solution to the minimal-distance spanning tree problem for planar
point data was mentioned, referring the reader to this section for an optimal solution. Given acollection S
of planar points, a spanning tree can be constructed by using the points
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as vertices and straight lines between them as edges. A minimal-distance spanning tree is a spanning tree
of Swhich minimizes the sum of the Euclidean lengths of the tree edges. A minimal-distance spanning
tree of a set of planar points may be constructed in ©(n%2) time on a mesh by constructing the Delaunay
diagram in ©(n%2) time, and then applying the ©(n¥2) time minimum-weight spanning tree algorithm for
graphs appearing in [ReSt].

Corollary 4.41 Given n or fewer planar points, distributed one per processor on a mesh computer of size
n, in @(n%2) time a minimal-distance spanning tree can be constructed. -

In the remainder of this section, problems are discussed that have not been previously mentioned in this
chapter. Given two sets of planar points, S, and S,, a solution to the all-nearest neighbor between two

sets problem requires finding i) for every point p, I S, anearest neighboring point in S,, and ii) for every
point P, (I S,, anearest neighboring point in S;,. This problem is simply solved by constructing V(S,) and
V(S,), and then using the algorithm associated with Corollary 4.19 to find, for every point, the VVoronoi
polygon of the other set that it residesin.

Corollary 4.42 Given n or fewer planar points representing sets S, and S, distributed one per processor

on a mesh computer of size n, in ©(n%2) time the all-nearest neighbor between two sets problem can be
solved. -

Given aset Sof planar points, alargest empty circlein Sisalargest circle with the propertiesthat i) its
center isinternal to hull(S) and ii) it contains no points of Sinitsinterior. It can be shown that the center
of alargest empty circlein Slies either at aVVoronoi vertex of Sor at the intersection of aVVoronoi edge
and an edge of hull(S). Computing the largest empty circle centered at a Voronoi vertex of Sis
straightforward, as is computing the largest empty circle for a point that lies along a VVoronoi edge. Once
the result is known for each such possible center, a simple semigroup (i.e., associative binary) operation
determines the global largest. The challenge to this problem is finding the points of intersection between
the Voronoi edges and the edges of the convex hull of S It should be noted that a VVoronoi edge may
intersect at most 2 hull edges, whereas an edge on hull(S) may intersect multiple VVoronoi edges. A
solution to this intersection problem is similar to other intersection algorithms presented previously in
this chapter, and is |eft to the reader.
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Corollary 4.43 Given a set n or fewer planar points, distributed one per processor on a mesh computer
of size n, in ©(n/2) time the largest empty circle problem can be solved. -

Additional problems can be solved by first constructing the VVoronoi diagram of a set of points. The
reader isreferred to [PrSh85, PrLe84, Tous80], and the references contained therein, for a discussion of
such problems. Solutions to some of these problems require constructing generalized Voronoi diagrams
or farthest-neighbor VVoronoi diagrams. The properties of the (nearest-neighbor) Voronoi diagram are
similar enough to those of the farthest-neighbor Voronoi diagram, so that the farthest-neighbor V oronoi
diagram can be constructed in asymptotically optimal time on a mesh by an algorithm similar to the one
described in the previous section [JeLe90].

For instance, given aset Sof n planar points, distributed one per processor on a mesh computer of size n,
once the farthest-neighbor Voronoi diagram, denoted FVor(S), is constructed in ©(n¥2) time, a ©(nv2)
time solution to the all-farthest neighbor problemisimmediate.



Corollary 4.44 Given a set of n or fewer planar points, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time the all-farthest neighbor problem can be solved. -

In addition, once FVor(S) is constructed, the smallest enclosing circle of Scan be determined in ©(nv2)
time [JeLe90].

Corollary 4.45 Given a set Sof n or fewer planar points, distributed one per processor on a mesh
computer of size n, in ©(n¥2) time the smallest enclosing circle of Scan be determined. -

4.11 Further
Remarks

In the early 1980's, efficient parallel algorithmsto solve convex hull problemsinvolving point data began
to appear [AklI83, Chow81, NMB81]. In 1984, Miller and Stout [MiSt84b] published a paper that
included efficient parallel algorithmsto solve severa problems involving geometric properties and
distances on a mesh computer, and Chazelle [ Chaz84] published a paper that gave efficient algorithms to
solve some distance
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and intersection problems on a 1-dimensional systolic computer. Subsequently, efficient parallel
algorithms have been presented to solve additional problems on avariety of models [ACGO88, AKLy93,
ADMR94, AtGo86a, Dehn86a, JeL €90, LuVa85, MiSt88b, MiSt89q).

Given n or fewer planar points, distributed one per processor on a mesh computer of size n, algorithms
were presented in this chapter to determine a number of formal geometric structures in ©(nv2) time.
Since it takes Q(nv2) time for data to travel across a mesh computer of size n, all of the algorithms have
optimal worst-case running times and are significantly faster than the Q(n) time required for a serial
computer to process O(n) pieces of data. (In fact, many of these problems require Q(nlog n) time on a
serial computer.)

The agorithms presented in this chapter employ different approaches to solving geometric problems than
those that have been explored for these problems on a serial computer. A variety of general techniques
have been presented for the mesh computer, including multidimensional divide-and-conquer and
grouping operations to solve parallel search problems. These techniques should be applicable to
constructing efficient solutions to a wide variety of problems.

There may be situations in which the algorithms presented in this chapter can be slightly modified to
produce even faster solutions to problems. For instance, when multiple sets of objects exist, each initialy
stored in a subsquare of size no more than D, then solutions to many of the problems addressed in this
chapter may be extended so that the necessary result can be determined simultaneously for all such
objectsin @(D1?) time.



In this chapter, the concentration was on 2-dimensional meshes, since they are the ones most commonly
built. A j-dimensional mesh of size n (where n isthe jth power of some integer) has n processors arranged
in aj-dimensional cubic lattice. Processors Fy, ,....s, and Fy, . areconnected if and only if

{_l |s; — t;) = 1. That is, ageneric processor in aj-dimensional mesh has 2 neighbors. In the O-
notational analyses of algorithms for j-dimensional meshes, it makes sense to consider j asfixed. That is,
there is no differentiation between a step needing a constant amount of time and one needing 2 units of
time. The reason for thisis that a processor in aj-dimensional mesh is fundamentally different from one
in ak-dimensional mesh when | # k, since they have a different number of communication links.

A proximity ordering can be defined for a j-dimensional mesh, and al of the data movement operations
described in Section 4.2.3 can be

Page 211

extended to run in ©(n%) time, which again is optimal. Therefore, all of the optimal 2-dimensional mesh
algorithms written solely in terms of these data movement operations yield asymptotically optimal ©(nx)
time j-dimensional mesh algorithms. For afew algorithms, values of constants were chosen to make the
recurrence yield the desired result. For j-dimensional mesh algorithms, these constants need to be chosen
asafunction of j. For example, in Theorem 4.7, for 2-dimensional meshes, 5 slabs were used in each
direction, while for j-dimensional meshes, at least 1 + 2 slabs should be used in each direction.

A number of algorithms given in this chapter exploit Bentley's [Bent80] paradigm of multidimensional
divide-and-conquer. The mesh algorithms presenter in this chapter were careful to avoid possible pitfalls
that exist when multidimensional divide-and-conquer is used naively on a parallel machine. The results
presented in this chapter demonstrate that multidimensional divide-and-conquer can be applied more
simply on mesh computers to solve geometric problems involving points than it can be to solve
geometric problemsinvolving polygonal figures. case in this chapter. A point p is said to dominate a
point qif and only if the x and y coordinates of p are greater than the respective x and y coordinates of g.
(This definition can be naturally extended to higher dimensional data.) By applying a straightforward
multidimensional divide-and-conquer technique to n or fewer points on aj-dimensional mesh of size n,
dominance problems can be solved in optimal @(n*) time. Such problems include determining for every
point how many other pointsit dominates, and finding for every point whether or not it isamaxima(i.e.,
not dominated by any point). Serial algorithms for these problems appear in [Bent80] and optimal 2-
dimensional mesh algorithms appear in [Dehn864a].

A variety of visibility problems can also be solved in asymptotically optimal time on a mesh computer by
exploiting multidimensional divide-and-conquer. The parallel visibility problem for line segments can be
defined as follows. Given a set of n or fewer line segments and a light source located at infinity which
emitsrays parallel to agiven direction r, determine the portion of each line segment that is illuminated.
Given one line segment per processor on a mesh of size n, partition the mesh into two submeshes, each
of size n/2, and solve the visibility problem recursively for each of the two sets of line segments. The
problem has now been reduced from atwo dimensional problem to a one dimensional problem, in that
the solution for each set isin the form of maximal digoint intervals with respect to aline at infinity
perpendicular to r, where each interval represents a portion of aline segment visible from
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the light source or the fact that none of the line segmentsin the set are visible in the interval. A ssmple
one dimensional merge operation involving intervals of line segments compl etes the solution. In addition
to parallel visibility, problems involving perspective visibility (i.e., given asource g, determine all points
p such that Bg does not intersect any object in the set) can aso be solved in optimal time on amesh.
Details of visibility algorithms for line segments and simple polygons can be found in [Dehn87, Lu88].

Other problems can be solved in asymptotically optimal time on a mesh computer by exploiting
multidimensional divide-and-conquer to reduce the problem to the same problem in lower dimensions,
such as deciding which iso-oriented boxes are intersected be others. Some algorithms can be extended in
anatural fashion to derive optimal algorithms for higher dimensional data, even though they do not use
multidimensional divide-and-conguer. For example, for any fixed dimension j, the all-nearest neighbor
problem for points can be solved in ©(n*) time on aj-dimensional mesh by using a straightforward
extension of the algorithm associated with Theorem 4.7. For afew problems, such as finding the convex
hull, it should be possible to extend to 3-dimensional data in the same time bounds. (In fact, an optimal
algorithm is presented in [ADMR94] for solving the 3-dimensional convex hull problem on a 2-
dimensional mesh computer.) However, many of the remaining problems seem to either require too
much data movement, or the generation of too much data, when the dimension of the input increases. For
example, it is known that the convex hull of n pointsin d-dimensional space may have g(nld/2! faces,

so for d = 4, any algorithm which generates and keeps all the faces will need Q(nd2) processors to store
them, or else the memory available in each processor must be increased.
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5
Treelike Pyramid Algorithms

5.1 Introduction

Pyramid-like parallel computers have long been proposed for performing high-speed low-level image
processing [Dyer8la, Dyer8lb, Dyer82, MiSt84c, MiSt85c, Rose84, Stou82c, Stou83c, Tani81, Tani82a,
TaK 180, Uhr72, Uhr84], and avariety of such machines have been constructed [Buva87, CFL S85,
ClMe87, FKLV 83, Scha85, SHBV 87, Tani82a]. The pyramid has a simple geometry that adapts
naturally to many types of problems, and which may have ties to human vision processing. Furthermore,
the pyramid can be projected into aregular pattern in the plane, which makesit ideal for VLS
implementation [Dyer81a).

The interconnection topology of the pyramid computer consists of a combination of tree and mesh
connections, as outlined in Section 1.2.4. In Chapters 2-4, avariety of efficient mesh algorithms were
presented. Notice that such algorithms can run directly on the base mesh of apyramid. In contrast, in this
chapter, pyramid algorithms are presented that use predominantly the child-parent links of the pyramid in
order to obtain running times that are poly-logarithmic (i.e., that run in O(log® n) time, for ¢ a constant) in
the number of processors. In Chapter 6, pyramid algorithms will be given that exploit the pyramid's
combination of tree and mesh connections by combining tree and mesh algorithms to give efficient
solutions to avariety of problems in image processing, graph theory, and digital geometry when the input
iIsadigitized picture, adjacency/weight matrix, or a set of unordered edges that represent a graph.



A review of the pyramid computer is presented in Section 5.2. The focus of Section 5.3 is on lower
bounds for problems on the pyramid. At the beginning of Section 5.4, an algorithm is presented that
shows how to initialize the identity registers of all processorsin the pyramid in time proportional to the
height of the pyramid. The remainder of Section 5.4 concentrates on several standard (quad) tree-type
algorithms, where the input is either a digitized black/white picture or a set of values, initially distributed
one element per base processor.

In Section 5.5, algorithms are presented that are concerned with convexity properties of a given set of
base processors. In Section 5.5.1, convexity algorithms are presented that range in running times from
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O(log n) to decide whether or not a digitized figure is convex and to enumerate the extreme points of a
convex figure, to ©(log2 n/log log n) to enumerate the extreme points of a (not necessarily convex) set of
base processors. In Section 5.5.1, it is aso shown that the extreme points of afigure can be used to solve
problems such as determining whether or not two figures are linearly separable, as well as determining a
smallest enclosing box, the smallest enclosing circle, and the diameter of a given set of base processors.
In Section 5.5.2, some results from digital geometry are combined with convexity algorithms from
Section 5.5.1 to show that it is possible to determine in ©(log n) time whether or not a digitized n¥2 x nv2
black/white figure could have arisen as the digitization of a straight line segment.

5.2 Definitions

As a convenience, this section reviews the definition of a pyramid computer from Section 1.2.4. A
pyramid computer (pyramid) of size nisamachine that can be viewed as afull, rooted, 4-ary tree of
height log, n, with additional horizontal links so that each horizontal level isamesh. A pyramid of sizen
has at its base a mesh of size n, and atotal of 4/;n-1/; processors. The levels are numbered so that the base
islevel 0 and the apex islevel log,n. A processor at level i is connected via bidirectional unit-time
communication links to its 9 neighbors (assuming they exist): 4 siblings at level i, 4 children at level i -
1, and aparent at level i + 1. (A sample pyramid isgivenin Figure5.1.) It is assumed that each processor
has a fixed number of words (registers), each of length ©(log n), and that all arithmetic, Boolean, and
communication operations with a neighbor take unit time. Each processor contains registers with its
level, row, and column coordinates, the concatenation of which are in the processor identification
register. (In Section 5.4.1, an algorithm is given that shows how to initialize these registersin ©(log n)
time.)

5.3 Lower Bounds

A pyramid computer of size n has acommunication diameter of @(log n), meaning that any two
processors can exchange messages in O(log n) time, by communicating via the apex, and some pairs of
processors, such as those at opposite corners of the base mesh, require Q(log n) time to exchange
messages. This gives aworst-case lower bound of Q(log n) time on any problem that may require
information to be exchanged between
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Figure 5.1:
A pyramid computer of size 16.
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arbitrary processors. For problems such as counting the number of black pixelsin the base, computing a
semigroup operation (i.e., an associative binary operation such as minimum, summation, or parity) over a
set of values stored in the base, determining certain convexity properties of a digitized figure, or deciding
whether or not a digitized picture could have arisen as the digitization of a straight line segment,
algorithms will be presented later in this chapter that finish in ©(log n) time.

However, in order to sort data that initially resides one item per base processor, Q(nv2) timeis required

in the worst case. This can be seen by using a wire-counting argument that compares the number of wires
that cross the middle of the pyramid with the number of items that potentially must move from one half
of the pyramid to the other. In the base of the pyramid there are nv2 wires that cross the middle of the
pyramid, in the next level there are %such wires, and so on, giving the total number of wires that cross
the middle of apyramid of sizen to be §~}% ™~ 5% whichis2nw2 - 2. Since all n pieces of data that
initially reside in the base of the pyramid may need to cross from one side of the base mesh to the other,

then [F:‘?TJ time units, or Q(n/2) timeisrequired just to get the data across the middle of the pyramid.

This bound applies to many other problems, including most problems in computational geometry for
which the input is a collection of points arbitrarily distributed one per processor in the base. Since the
base mesh alone can sort in ©(n2) time, as described in Section 2.6.1, the pyramid computer is a poor
choice for problemsinvolving extensive data movement.



For problems considered in this chapter, poly-logarithmic running times are attainable. However, for
many of the problems considered in Chapter 6, neither the Q(log n) nor the Q(n¥2) bounds are
appropriate. In fact, for the problems considered in Chapter 6, the logarithmic bound is still true, but
overly optimistic, while the Q(n¥2) bound does not apply because not as much data needs to be moved. It
will be shown in Chapter 6 that by exploiting properties of image data, many geometric problems for
multiple figures can be solved in time approximately proportional to nv4,

5.4 Fundamental Algorithms

In this section, several fundamental pyramid computer algorithms are presented. These, and other tree-
like pyramid algorithms, may be found
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in [AhSw84, DWR8L1, Dyer79, Dyer80, Mill85a, Tani 75, Tani76].
5.4.1 Initializng | dentity Registers

In this section, a @(log n) time algorithm is presented to initialize the identity registers of all processors
in apyramid computer of size n. Initially, it is assumed that the processors do not know any of the
dimensions of the pyramid, including the number of levelsin the pyramid, the size of the base mesh, or
their mesh level with respect to the pyramid. However, the assumption is made that those processors in
the base of the pyramid can detect that they are base processors, by querying for nonexistent children,
and that the processor at the apex of the pyramid can detect that it is the apex, by querying for a
nonexistent parent.

The algorithm, as given in Figure 5.2, proceeds in two phases. During Phase 1, level information is
propagated from the base towards the apex so that every processor can determine its mesh level within
the pyramid. During Phase 2, the information flows through the pyramid from the apex to the base in
order to allow every processor to determine its row and column coordinates with respect to its mesh level.

After completing both phases of the algorithm, every processor will know its correct row, column, and
level coordinates. Recall that every processor can perform afixed number of arithmetic and Boolean
operations, as well as send or receive afixed number of words from each of its nine neighbors, al in ©
(1) time. Therefore, step 1 of Phase 1 and steps 1 and 2 of Phase 2, can be performed in ©(1) time. Every
iteration of the loop in step 3 of Phase 1, and every iteration of the loop in step 3 of Phase 2, can also be
performed in ©(1) time. Since both phases of the algorithm require a constant amount of work per
pyramid level, and since there are log,(n) + 1 levelsin the pyramid, then each of the two phases of the
algorithm requires ©(log n) time. Hence, the algorithm terminates after every processor has the required
information, which takes ©(log n) time. Note that Phase 1 and Phase 2 may be performed simultaneously
since they are independent.

Proposition 5.1 The identity registers of all processors of a pyramid computer of size n can be initialized
in®(log n) time. -

5.4.2 Bit Counting Problems

In this section, it is assumed that a digitized black/white pictureisinitially stored one pixel per processor
in the base of the pyramid. The
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Phase 1
1. Every base processor setsitslevel register to O.
2. While the apex has not determined its level do:

(a) Every processor that just initialized its level register sends the value of level
to its parent.

(b) Every processor receiving 4 identical values from its children, call them
clevel, setsits level — clevel+1.

Phase 2
1. The apex initializes (row, column) to (0,0).
2. The apex informs
(@) its northwest child that its (row, column) is (0,0),
(b) its northeast child that its (row, column) is (0,1),
(c) its southwest child that its (row, column) is (1,0), and
(d) its southeast child that its (row, column) is (1,1).
3. While the base processors are uninitialized do:

Every processor that just received its (row, column) coordinates, informs
its children as to their (row, column) coordinates, as follows.

(a) northwest child: (2* row- 1, 2* column - 1)
(b) northeast child: (2* row - 1, 2* column)
(c) southwest child: (2* row, 2* column - 1)

(d) southeast child: (2* row, 2* column)

Figure 5.2:
Initializing the identity registers.
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interpretation is that the picture represents a single black figure on awhite background. The area of the
figure, that is, the number of black pixelsin the figure, can be determined in ©(log n) time. During the
first stage of the agorithm, every processor at level 1 obtains the values of the pixels stored in its four
children (these children are base processors) and computes the number of these that are black, storing the
result in register local_count. So, at the end of stage 1, every processor at level 1 will know the number
of black pixelsthat exist in base of the subpyramid under it. At stagei, every processor at level i- 1 sends
local _count to its parent. Every processor P at level | adds the 4 values sent from its children, which
gives the total number of black pixelsin the base of the subpyramid under P, and stores thisvaluein
local _count. At the conclusion of stage log, n, the apex knows the total number of black pixelsin the
entire base. Since each of the log, n stages requires constant computation time, the algorithm runsin ©
(log n) time.

Proposition 5.2 Given a digitized black/white picture, stored one pixel per base processor, in ©(log n)
time all processors of a pyramid computer of size n can know the area of the digitized picture.

Proof. Asjust described, in @(log n) time the apex of the pyramid can know the area (number of black
pixels) of the digitized picture. Further, any piece of information stored in the apex can be sent to all
processors of the pyramid in ©(log n) time (starting with the apex and moving down to the base, at each
stage a parent distributes the information obtained during the previous stage to its four children). -

A number of additional queries for binary input, including majority, equality, and parity, can be
answered in ©(log n) time by a straightforward bottom-up counting procedure, as just described.

Proposition 5.3 Given a digitized black/white picture, stored one pixel per base processor, in ©(log n)
time all processors of a pyramid computer of size n can know the answers to the following queries.

1. Majority - Are there more black pixels than white pixelsin the picture?
2. Equality - Are the number of black and white pixels in the picture the same?

3. Parity - Are there an odd number of black pixelsin the picture?
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Proof. From Proposition 5.2, in ©(log n) time the apex can know the number of black (and similarly
white) pixels present in the digitized black/white picture that resides in the base of a pyramid computer
of sizen. In (1) additional units of time, the apex can then answer the majority, equality, and parity
queries. Finally, the apex can pass the answers down through the pyramid to every processor in ©(log n)
time.



Given an arbitrary connected planar graph G, with v vertices and e edges, the number of regions,
including the unbounded region, is given by the topologically invariant Euler number ©(G) =e-v + 2.
Given asingle arbitrary digitized black figure (i.e., connected component) F on a white background,
Minsky and Papert [MiPa69] showed that the Euler number of F can be computed by determining the
cardinality of four sets of pixels, and then computing a fixed number of arithmetic operations on these
values. Specificaly, they showed that for agiven figureF, ©(F) =C, - C, - C; + C,, where C, isthe
number of black pixels, C,isthe number of black pixelsfor which the eastern neighboring pixel is black,
C,isthe number of black pixels for which the southern neighboring pixel is black, and C, is the number

of black pixelsfor which the eastern, southern, and southeastern neighboring pixels are black.
A pyramid algorithm follows.

1. In constant time, every base processor of a pyramid of size n determines which, if any, of the four sets
its pixel isamember of.

2. Fori:=1tolog,ndo,

(a) Every processor at level i obtains the running sum of the cardinality of the four sets of pixelsfrom
each of itsfour children at level i - 1.

(b) Every processor at level i sums the four values associated with each set, compressing the 16 pieces
of datajust received down to 4 pieces of data (1 piece of data for each of the four sets).

(c) Comment: At this point, every processor at level i knows the values of C,, C,, C;, and C,, with
respect to the base processorsin its subpyramid.

3. The apex of the pyramid computes ©(F) =C,-C,- C;+ C,.
4. O(F) is broadcast from the apex to all processors of the pyramid in a straightforward top-down fashion.
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During the algorithm, notice that no processor ever needs more than afixed number of registers, each of
size ©(log n). Steps 1 and 3 each require ©(1) time. Step 4 requires ©(log n) time. Each of the ©(log n)
stages of step 2 require afixed amount of computation time. Therefore, the Euler number of asingle
figure stored in the base of a pyramid can be computed and distributed to all processors of the pyramid of
sizenin ©(log n) time.

Proposition 5.4 Given a digitized black/white picture containing a single figure (i.e., connected
component), stored one pixel per base processor, in ©(log n) time all processors of a pyramid computer
of size n can know the Euler number of the figure. -

5.4.3 Computing Commutative Associative Binary Functions



Assume that every processor P, in the base of apyramid of size n contains a, not necessarily unique,
value v,. Suppose that there exists a commutative, associative, binary operation a defined on these values
and that a(vy, . . ., v,) isto be determined. (Common examples of a are minimum, maximum, and
summation.) Notice that all processors can know the result of applying a to these valuesin ©(log n) time
by combining the results, with respect to a, from the base to the apex in ©(log n) time, and then
distributing the result from the apex down to all processorsin @(log n) time. For example, the bit-
counting algorithms of Section 5.4.2 correspond to the situation where a base processor with a black
pixel hasa 1, a base processor with awhite pixel hasa0, and a is defined to be addition (+).

Proposition 5.5 Given that the processors in the base of a pyramid each contain a value, and that a
commutative, associative, binary operation a can be computed in ©(1) time, then in ©(log n) time all
processors of a pyramid computer of size n can know the result of applying a over all of these base
values. -

5.4.4 Point Queries

Assume that every processor in the base of the pyramid contains avalue (e.g., black or white for a
digitized picture, a component label, or an integer value) and that the apex contains the coordinates of
some base
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processor. Then in ©(log n) time, numerous gueries about the value contained in this base processor can
be answered. Briefly, thisis done by first informing all base processors as to the coordinates of the query
point, and then using a bottom-up merging algorithm to obtain the desired result in ©(log n) time.

Certain queries may actually require afixed number of applications of this top-down, bottom-up
procedure. For instance, suppose that every base processor contains a, not necessarily unique, label, and
that it is necessary to determine a nearest distinctly labeled processor to the query point (the coordinates
of which are known to the apex of the pyramid). An efficient ©(log n) time algorithm to solve this
nearest-neighbor query on a pyramid of size n follows.

1. Use astandard @(log n) time top-down algorithm to inform all base processors as to the coordinates of
the query point.

2. Use a standard ©(log n) time bottom-up agorithm to send the label of the query point to the apex.
3. Use astandard ©(log n) time top-down algorithm to propagate this label down to all base processors.

4. Every base processor Pi,j creates a distance record (dist, i, j), where dist is the distance to the query
point, if the query point has adifferent label, or elseit is set to co.

5. Now the minimum distance is determined in ©(log n) time using a nearly standard bottom-up
computing algorithm, where the minimum is taken over thefirst field in these distance records, with ties
broken arbitrarily. (Notice that while the minimum distance to a distinctly labeled processor is unique,
there may be more than one processor at this distance. In the case of multiple nearest processors, this
algorithm chooses one arbitrarily.)



Therefore, in @(log n) time the apex of the pyramid knows a closest distinctly labeled point to the query
point.

5.5 Image Algorithms

In this section, algorithms that use predominantly the child-parent links of the pyramid are presented to
detect geometric properties of sets of base processors or digitized pictures that are stored in the base of
the
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pyramid. These algorithms solve problems such as enumerating the extreme points of a set of base
processors, deciding whether or not agiven figure is convex, deciding whether or not two labeled sets of
base processors are linearly separable, and deciding whether or not a given figure could have arisen as
the digitization of a straight line segment. In Chapter 6, specifically in Sections 6.4 and 6.5, additional
pyramid algorithms are presented in conjunction with sophisticated data movement operations to provide
efficient solutions to problems involving multiple figures, such as labeling figures, determining a nearest
distinctly labeled figure for each figure, and solving a variety of convexity problems.

5.5.1 Convexity Properties

Asdiscussed in Section 1.4.2, for problems involving convexity, the base processor at position (i, j) is
identified with the integer lattice point (i, j), and a set of base processorsis said to be convex if and only
if the corresponding set of integer lattice pointsis convey, i.e., the smallest convex polygon containing
them contains no other integer lattice points. Thisisthe proper notion of convexity for integer lattice
points, but it does have the annoying property that some disconnected sets of points, such as{(1, 1), (3,
4)}, are convex.

Given aset Sof base processors, the convex hull of S denoted hull(S), isthe smallest convex set of
(base) processors that includes S. A processor P [0 Sis defined to be an extreme point of Sif and only if
P O hull(S- {P}). That is, the extreme points of Sare the corners of the smallest convex polygon
containing S. It is said that the extreme points of Shave been marked if every processor P in the base of
the pyramid has a Boolean variable that istrue if and only if P isan extreme point of S. It is said that the
extreme points of Shave been enumerated if for every (base) processor P, containing apoint p [1 S the
following hold. (See Figure 5.3.)

1. P, hasaBoolean variable 'extreme’, and extreme istrue if and only if p is an extreme point of S
2. P, stores the total number of extreme points of hull(S).

3. If pisan extreme point of S then P; stores the position of p in the counterclockwise ordering of
extreme points. (The rightmost extreme point is assigned the number 1. If there are two rightmost
extreme points, then the lower one is assigned the number 1.)
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Figure5.3:
Enumerated extreme points of S

4. If pisanextreme point of S then P; stores the Cartesian coordinates of the extreme points that precede
and succeed p, aswell asthe ID of the processors that contain them.

In this section, the input at the base of the pyramid consists of either asingle digitized black figure on a
white background (i.e., there is exactly one connected component in the base) or a set of consistently
labeled processors (i.e., al base processors that contain alabel, contain the same label). Before solving
some general convexity problems for single figures, a useful lemmais presented. The algorithm
associated with this lemma shows how to enumerate a marked set of extreme pointsin ©(log n) time.
The agorithm works by using standard bottom-up and top-down tree-like operations, as described
previously in Section 5.4. Initially, the set of (at most) 8 perimeter partition points is determined, as
shown in Figure 5.4. After every processor determines the number of
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extreme pointsin the base of its subpyramid in each of the eight triangular regions, the apex will
recursively propagate intervals of numbers to children corresponding to the numbers that will be used in
enumerating the extreme points of that child's base processors.

Lemma 5.6 In a pyramid computer of size n, suppose the extreme points of a set S of base processors
have been marked. Then the extreme points of Scan be enumerated in ©(log n) time.

Proof. The algorithm requires that the processors determine certain basic information, as follows.

1. By using a bottom-up report, followed by atop-down broadcast operation, in 2log, n steps al
processors in the pyramid computer can know



(a) the total number of extreme points, and

(b) the coordinates of the rightmost-bottommaost, rightmost-topmost, topmost-rightmost, topmost-
leftmost, leftmost-topmost, |eftmost-bottommost, bottommaost-leftmost, and bottommost-rightmost
extreme points, as shown in Figure 5.4.

2. In 2log, n steps, every processor in the pyramid can know the total numbers of extreme points of Sin
the base of its subpyramid that are in each of these 8 regions. Notice that the boundaries of these
(possibly degenerate) triangular regions may be generated in unit-time by every processor of the pyramid
once they are informed as to the locations of these 8 points,

Once this information has been determined, the extreme points of Scan be labeled in ©(log n) steps by
having the apex recursively distribute ranges of the numbersto its children for each of the eight regions.
Distributing the proper numbers to the children is straightforward since the extreme points represent a
convex polygon. Notice that within each region, thisis a prefix computation.

It only remains to show that each every processor containing an extreme point of Scan determine the
location of the preceding and succeeding extreme points of Sin ©(log n) steps. During the numbering
rocess, as every processor passes ranges of numbersto its children, it also determinesif any of its
children are responsible for extreme points that have a preceding or succeeding extreme point in another
one of its
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Figure 5.4
The 8 perimeter points consist of the rightmost-bottommaost, rightmost-topmost,
topmost-rightmost, topmost-leftmost, leftmost-topmost, |eftmost-bottommost,
bottommost-leftmost, and bottommost-rightmost extreme points. These points
partition the set of extreme points into 8 'triangular regions, which are labeled
1,2,...,8. Four of theseregions (i.e., 1, 3, 5, and 7) are necessarily degenerate,
while the remaining four (i.e., 2, 4, 6, and 8) might contain additional extreme points.
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children. For each such case, the processor creates a neighbor record, which consists of the numbers of
the extreme pointsinvolved, as well as the identity of the processor creating the record. When the
numbering phase of the algorithm terminates, these neighbor records are sent down to the basein
lockstep fashion. When a base processor receives a neighbor record, it is examined to determine if either
of the numbersin the record correspond to its extreme point number. If there is a match, then the location
of the extreme point is appended to the record, and the record is sent back up to the processor that
generated it, while otherwise the record is discarded. Finally, the neighboring information is sent down to
the base in lockstep fashion so that every base processor in Sknows its number, as well as the location of
its predecessor and successor.

The agorithm requires afixed number of ©(log n) time top-down and bottom-up tree-like operations.
Therefore, the running time of the algorithm is ©(log n).

The next problem considered is that of enumerating the extreme points of a convex set of base
processors. Thisisimportant in many processing applications that require a compact description of a
single convex figure for storage or transmission purposes.

Before giving the result for enumerating the extreme points of a single convex figure, asimple technical
lemmais presented. The lemmais concerned with the fact that it is possible to take a digitized convex
figure, divide it into two parts by a straight line parallel to one of the grid axes, and have points which are
extreme points of the parts but not of the entire figure. An important consequence of the following
lemmaisthat there are only O(log n) such points.

Lemma 5.7 Given a convex figure F on a grid, suppose the grid is divided vertically in half and the
extreme points of the restriction of F to the right half are determined. Suppose p and g are extreme
points of the upper envelope of the righthand portion. Further, suppose p and g are not extreme points of
F, and that q isfurther fromthe dividing line than is p. Then q is more than twice as far from the
dividing lineasp is.

Proof. Consider a convex figure F partitioned into two pieces, F,and F,, by avertical line, where F, lies

to the left of F,. Let e and w be an easternmost and westernmost point, respectively, of F,. Without |oss
of generality, let p = (p,, p,) and q = (q,, ,) be extreme points of F, that are on or above the line &w.
Further, assume p and g are not extreme
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points of F. Then the line segment L from ¢, passing through p, and continuing on to the dividing line,
liesin the convex hull of F when viewed as afigurein the real plane (rather than just on the grid). If g
were less than twice p's distance to the dividing line, then the grid point r = (2p, - ., 2p, - d,) would lie
on L and be on the same side of the dividing line as p and g. This means that r would bein F and, in fact,
in F,. However, since p is halfway between g and r, this contradicts the assumption that p is an extreme
point of F,. -



The result that follows shows that the extreme points of a single convex set Sof base processors can be
enumerated efficiently on a pyramid computer. The algorithm first marks the extreme points and then
uses the algorithm associated with Lemma 5.6 to enumerate them. Notice that given a pair of adjacent
subsquares in the base, there are at most two places along the border between the subsquares where
elements of the convex set Sneed to be considered when combining these subsquares. Unfortunately, if a
straightforward bottom-up divide-and-conquer algorithm is used, Lemma 5.7 shows that in the worst
case there are alogarithmic number of extreme points near the border of adjacent subsquares that need to
be eliminated. While it may be possible to work out the details of such an agorithm, an interesting
recursive bottom-up divide-and-conquer algorithm will be presented instead that has no such
complications. Unlike previous algorithms presented in this chapter that rely predominantly on the child-
parent links of the pyramid, the marking algorithm presented bel ow takes advantage of the mesh
connectionsin levels above the base in order to allow the apices over neighboring subsquares in the base
to exchange information.

Theorem 5.8 In a pyramid computer of size n, suppose the base processors with a given label forma
convex set S. Then in ©(log n) time the extreme points of Scan be enumer ated.

Proof. The algorithm proceeds in two phases. The first phase of the algorithm will mark the extreme
points of S, and the second phase of the algorithm will enumerate them by applying the algorithm
associated with Lemma 5.6. Therefore, only the details of the first phase need to be presented.

The agorithm for marking extreme points works in a bottom-up fashion, where at step k, 0 < k< log,n,
decisions regarding extreme points are made by processors at level k. Consider the processors at level k
in the pyramid. These are the apices of disjoint subpyramids with bases of size 2« x 2% Call the base of
each of these digoint subpyramids a subsquare. At the end of step k, suppose that
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1. in each 2% x 2 subsguare, those points that are not extreme points of the restriction of the figure to
their subsgquare have been marked as not being extreme points, while those that are extreme pointsin
their subsguare remain as candidate extreme points for the entire figure, and

2. for every way of forming a 21 x 2%1 square from four 2¢ x 2 subsquares, each point that is not an
extreme point in the restriction of the figure to a 21 x 2“1 square has also been marked as not being an
extreme point. (Notice that these larger squares overlap, and some correspond to bases of subpyramids of
height k + 1, while others do not.)

Now, consider step k + 1, where for processors at level k + 1 the base of each of the corresponding
subpyramids s called ablock. Since each block is a 2“1 x 2<1 square formed from four 2% x 2
subsquares, it is known that at the beginning of step k + 1, those points that are not extreme points in the
restriction of the figure to their block, have aready been marked as not extreme points. The purpose of
step k + 1 (i.e., the recursive step) is to identify those points that were candidate extreme points at the
end of step k, but that are not extreme points in some square of 4 blocks. This must be done for all
possible squares of 4 blocks, not just those corresponding to the base of a subpyramid of height k + 2.



Each square of 4 blocks can be formed by merging 2 pairs of blocks together (ssmultaneously), and then
merging these rectangles together. Both merge steps are similar, so only the first will be described. Since
all 2“1 x 2%1 sguares formed from four 2 x 2% subsquares have been considered during step k, for a
(current) candidate extreme point p to be marked as not being a candidate during step k + 1, there must
be atriangle containing p with a pair of vertices, say g and r, at least 2 apart from each other, with one
of them, say g, being at least 21 from p. Further, if g causes more than p to be eliminated, then the
second point it eliminates must be at least 2 from g, the third must be at least 2<*1 from ¢, and the fourth
point must be at least 2+ 2 from . Thus, by knowing for each subsquare only some small fixed number
of candidate extreme points along the top, bottom, left, and right of a square, a processor can determine
all false extreme points in the merger of the blocks.

The apex of each block maintains the necessary information about its block. By exchanging information
with its neighbors at level k + 1, in constant time, ssmultaneously for every apex, an apex can determine
for
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each possible square of 4 blocks, which of its candidate extreme points should be eliminated from further
consideration. To finish step k + 1, every processor at level k + 1 initiates a top-down broadcast message
of the information to its block, and supplies its parent with the information necessary to start step k + 2.

The time between the start of step k + 1 and the start of step k + 2isO(1). Thetime it takesto finish the
final top-down broadcast after the last step is complete is ©(log n). Therefore, the total running timeis©

(log n). -

Given a set of enumerated extreme points, the next problem is concerned with marking a convex figure
associated with the extreme points. If the extreme points correspond to a figure that was not convex, then
the figure that is generated will be an approximation of the original figure. However, if the original figure
was 'blob'-like, then this operation can be viewed approximately as the inverse operation to that of
generating the extreme points of the figure. The algorithm is straightforward. It consists of first passing
extreme point information up the pyramid, and then passing information down to base processors so that
every base processor can decide whether or not it isin the convex hull represented by the set of
enumerated extreme points.

Theorem 5.9 In the base of a pyramid computer of size n, suppose a set of extreme points has been
enumerated. Then in ©(log n) time, the base processors corresponding to a convex figure that would
yield such a set of extreme points, can be marked.



Proof. Since the extreme points have been enumerated, every base processor containing an extreme point
knows the location of the extreme points preceding and succeeding it, with respect to the
counterclockwise ordering of extreme points. Assume that there are p extreme pointsin the figure, where
the base processor containing the ith extreme point is denoted P;, 1 < i < p. Each base processor P,
assumes responsibility for the hull edge, call it g, between its (extreme) point and the extreme point that
follows it in the counterclockwise ordering. Every processor P; can now determine in ©(1) time, the
processor in the pyramid at maximum level (i.e., closest to the apex), denoted P;  , that is an ancestor of

P; such that g crosses the boundary between the subpyramids rooted at the children of P; . Every base

processor P, now passes the hull edge g that it isresponsible for, aswell as aflag indicating which side
of g ison theinside of the convex hull, up to P; ( ;. Notice that no processor in the pyramid will be

responsible for more than 4 such
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edges. After ©(log n) time, all processorsin the pyramid will know the (at most) 4 edges in the base that
cross the boundaries of the subpyramids of its children. Thisinformation is then passed down the
pyramid in lockstep fashion from all P, , to their descendants. As each base processor receives such

information, it decidesin ©(1) time whether or not it isin the convex hull. Since the algorithm consists
of a straightforward bottom-up phase followed by a straightforward top-down phase, the running time is
as claimed.

The next result provides an optimal solution to the problem of deciding whether or not a marked set of
base processorsis convex. The algorithm is straightforward, combining the results just presented in
Theorem 5.8 and Theorem 5.9. First, use the algorithm associated with Theorem 5.8 to mark the
"extreme points' of the set. Every processor containing an extreme point determines whether or not it can
decide that the figure is not convex by examining the preceding pair of "extreme points' and the
succeeding pair of "extreme points." Combining these results, it can be decided whether or not the
"extreme points' are convex. If the set of "extreme points' are not convex, then the algorithm halts and it
Is known that the original marked set of processors is not convex. Otherwise, use the algorithm
associated with Theorem 5.8 to mark the convex hull represented by the extreme points, and compare
those marked processors with the original marked set of processors. This gives the following resullt.

Corollary 5.10 In a pyramid computer of size n, in ©(log n) time the set of base processors with a given
label can decide whether or not they are convex.

A set A of base processorsislinearly separable from a set B of base processorsif and only if thereisa
straight line in the plane such that all elements of A lie on one side of the line, and all elementsof B lie
on the other side. A well-known observation is that two such sets are linearly separable if and only if
their convex hulls are digoint. Given the enumerated extreme points of two sets of (not necessarily
distinct) base processors, in ©(log n) time it can be determined whether or not these two sets are linearly
separable, asfollows. Mark the convex hull of A such that a base processor hasthe value aif itisinthe
convex hull of A, and the convex hull B such that a base processor has the value 3 if it isin the convex
hull of B. This takes ©(log n) time by applying the algorithm associated with Theorem 5.9 once for A
and a second time for B. All base processors send to the apex a Boolean flag that is set
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to 'true’ if the processor islabeled a and 3, and that is set to 'false’ otherwise. As each processor in the
pyramid receives the four Boolean values from its children, they arelogically 'or'ed together and passed
up. In ©(log n) the apex knows the answer to the query, which it propagates to al processorsin the
pyramid in ©(log n) time. Hence the algorithm is complete in ©(log n) time.

Corollary 5.11 In a pyramid computer of size n, suppose the extreme points corresponding to a set A of
base processors have been enumerated, as have the extreme points of a set B of base processors. Thenin

©(log n) time it can be decided whether or not A islinearly separable fromB. -

The next problem considered is that of enumerating the extreme points of an arbitrary set of base
processors. This extreme point generation algorithm degrades by afactor of ©(log n/log log n) over the
convexity query algorithm in Corollary 5.10. Thisis counterintuitive in that the solution to the convexity
query problem can be obtained faster than generating the extreme points of a given set of base
processors. It should be noted that a ©(log n) time extreme point generation algorithm is an open
problem.

The extreme point generation algorithm that is presented in the proof of Theorem 5.12 follows a top-
down divide-and-conquer solution that exploits the following fact about extreme points. A pointisan
extreme point if and only if it isthe first point of the figure contacted as some line is moved towards the
figure from infinity. By way of an example, suppose that for a given digital figure embedded in an nv2 x
nv2 grid, there exist unique topmost, bottommost, leftmost, and rightmost extreme points. Then the
topmost point may be detected by finding the first point contacted as aline of slope 0 approaches the
figure from the top, the bottommost point may be detected as aline of slope 0 approaches from the
bottom, the leftmost point may be detected as aline of slope oo approaches from the left, and the
rightmost point may be detected as a line of slope « approaches from the right. In addition, for any
extreme point p of the figure that is between the topmost point and the leftmost point, there must be a
slopein the range (n-v2, n¥2) such that p isthe first point of the figure contacted as aline with this slope
comes towards the figure from the upper-left direction. If the line with slope Lﬂfﬂ Is used to detect

an extreme point between the topmost and |eftmost extreme points, then
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1. if thefirst point contacted is the topmost extreme point, then there are no extreme points of the figure
between the topmost and leftmost extreme points that will be detected by slopesin the range

(n=172, 225" while

2. if the first point contacted is the leftmost extreme point, then there are no extreme points of the figure
between the topmost and leftmost extreme points that will be detected by slopesin the range
[TI' I_.-Ezl “:I_."i 1 nl-_l'li]’ Wh||e

3. if afirst point contacted was not the topmost or leftmost extreme point, then thisfirst point (or, in the
case of a multiple detection, the outermost points contacted) is an extreme point.

These situations define a recursive search procedure that is used to detect extreme points. Notice that if a
single new extreme point isfound in an interval, then this new extreme point is used to create two
subintervals, both of which are searched for additional extreme points. These observations form the basis
of the algorithm that follows.



Theorem 5.12 In a pyramid computer of size n, the extreme points of a labeled set of base processors
can be enumerated in ©(log? n/log log n) time.

Proof. The algorithm uses a top-down divide-and-conquer solution strategy. First, an algorithm requiring
O(log? n) time will be given, after which it is shown how to modify this algorithm to reduce the running
time to ©(log2 n/loglog n). Let Sbe the set of base processors with agiven label. Observe that asalinel
of fixed slope is brought towards S, then the first element of Sto come in contact with | must be an
extreme point of S (If several elements of Scome in contact with | simultaneously, then only the two
extreme points of this 1-dimensional set of points are extreme points of S.) Notice that a processor P that
Isan extreme point of S with P, and P, the preceding and succeeding extreme points, respectively, will
be detected as an extreme point of Sby aline | that has a slope between slope( P, P) and slope(F ), asit
moves towards Sfrom the concave side of the angle formed by P,PP,, as shown in Figure 5.5.

The set Sof base processorsis embedded in an nv2 x nv2 grid. Therefore, except for vertical lines, all
lines through two processors have slopes between -nv2 and nv/2, Further, only ©(n) different slopes can
actually occur. However, since it is simpler to consider slopes that are
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Figure 5.5:
Detecting P as an extreme point.

multiples of 1/n, and since this will not cause a significant time delay, the algorithm will, in fact,
examine O(n32) slopes.



In ©(log n) time, a straightforward bottom-up algorithm is used so that the apex knows the coordinates of
the (not necessarily distinct) rightmost-bottommost, rightmost-topmost, topmost-rightmost, topmost-
leftmost, |eftmost-topmost, |eftmost-bottommost, bottommost-leftmost, and bottommost-rightmost
members of S. These are all extreme points of S and they divide the perimeter of Sinto 8 (or fewer)
intervals, as shown in Figure 5.4 on page 226. Four of these intervals, e.g., between the topmost-
rightmost and the topmost-leftmost points, contain no more extreme points, while the other four
intervals, e.g., between the topmost-rightmost and the rightmost-topmost points, might contain more
extreme points. For each of the four intervals that might contain more extreme points, thereisa
corresponding interval of line slopes that may be used to locate the extreme pointsin the interval. For
example, in theinterval between the rightmost-topmost and the topmost-rightmost extreme points, the
slopes arein the range of -nv2 to -n-v2, Let an interval refer to a pair of endpoint coordinates, along with
their associated interval of slopes. Notice that when aslope mis being used, if each base processor
computes the inner product of its (x, y) position
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with (1/m, 1), then the base processor with the greatest inner product is the one that would be reached
first. (If the line approaches from the opposite side then the base processor with the least inner product is
the one reached first.)

Initially, the apex of the pyramid is responsible for the four intervals that may contain additional extreme
points. (Referring to Figure 5.4, these are intervals 2, 4, 6, and 8.) The algorithm proceeds in stages,
where a processor isresponsible for at most 8 intervals during any stage. At the beginning of each stage,
If both endpoints of an interval that a processor is responsible for lie in the base of the subpyramid of one
of its children, then responsibility for that interval is passed on to that child (which may in turn pass it
further down). Next, for each interval that a processor is responsible for, the processor creates arecord
corresponding to the interval's endpoints and the middle slope. In a top-down fashion, starting with the
apex, copies of these records are then sent from every processor to each of its four children. Every
processor receiving such arecord ignoresit if none of the base processorsin its subpyramid could be an
extreme point as discovered by that slope, while otherwise it passes the record down to its children, along
with any such records it may generate. Notice that no processor passes more than 8 such records to any
of its children.

When these records reach the base, each element of Sdeterminesitsinner product with the indicated
slope and appends this to the record, along with the processor's coordinates, and passes this record back
to its parent. Thisinformation is passed up through the pyramid, where when a parent receives multiple
copies of an interval, it passes along only the one with the largest inner product. (If there are ties, then the
two outermost extreme points among the ties are passed up.) When this information returnsto the
processor that generated the request, this generating processor will decide on the appropriate course of
action. For example, if two new extreme points, say N, and N,, were discovered between extreme points
P, and P, , asin Figure 5.6, then the original P,P,interval isdivided into 3 new intervals, namely, P;N,

and N,P,, both of which have no more than half as many slopes asthe origina P,P, interval, and N;N,

which requires no further work. Other scenerios are treated similarly. Finally, each time an extreme point
isfound, it is marked.

Each stage of the algorithm takes ©(log n) time. Since there are O(n3/2) slopes considered, and since each
stage subdivides an interval's slopes by at least half, then there are at most ©(log n32) = ©(log n) steps.
When finished, all extreme points have been marked, and in
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Figure 5.6:
Discovering 2 new extreme pointsin an interval.

an additional ©(log n) time, the extreme points can be enumerated by applying the algorithm of Lemma
5.6.

The agorithm as described requires ©(log2 n) time. To reduce the time of the algorithm to ©(log? n/log
log n), have each processor that is responsible for an interval divide that interval's slopes into log, n
pieces, instead of 2 pieces. These records are sent down in serial fashion (i.e., pipelined), where no
processor passes more than 8log, n records to its children. Each stage still takes ©(log n) time, but

because the intervals are being broken up faster, only ©(log n/log log n) stages are needed. Therefore, the
algorithm finishes in the time indicated. -

Given a ser of base processors, a variety of properties of the set can be determined once the extreme
points have been enumerated. Algorithms for determining properties of a given set of processors, such as
asmallest enclosing box, the smallest enclosing circle, and the diameter, are presented in Section 6.5.
(Additional references for efficient pyramid computer algorithms that use extreme points to generate
geometric properties of images include [MiSt84c, MiSt84d, MiSt85c, MiSt91].) The reason that such
algorithms are not presented in this section is that they rely on advanced data movement operations that
form the foundation of Chapter 6.

5.5.2 Digitized Straight Line Segments

A major effort in digital image processing and pattern recognition has been on the fundamental problem
of deciding whether or not adigitized
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figure could have arisen as the digitization of a straight line segment (c.f., [Gaaf 77, Kim82a, KiRo82b,
Kim83, Rose74, Rose79, RoKi82)). In this section, aresult about digital arcs [KiRo82b] is combined
with Corollary 5.10 in order to prove that in optimal ©(log n) time, a pyramid computer can determine
whether or not a digitized black/white figure could have arisen as the digitization of astraight line
segment.



Digitization can make the detection of even basic properties of afigure nontrivial to determine. The
digitization scheme that is used in this section is the standard grid-intersection scheme [Rose74] for
digitizing arcs. (Section 3.5 mentions several digitization schemes, but for an in-depth discussion of
digitization schemes, the reader isreferred to [DoSm84, Gaaf 77, Rose79, RoKi82, Kim81, Kim82a,
Kim83, KiRo82b, KiSk82c], and the references contained therein.) Given a coordinate grid
superimposed on an arc A, then as A is traversed, a succession of grid lineswill be crossed. Whenever A
crosses agrid line, the processor associated with the integer lattice point nearest to the crossing line
becomes a part of A'sdigitization. In the case where A crosses agrid line halfway between two lattice
points, thetieis resolved by choosing the processor associated with the lattice point that liesto the right
of A (in the sense that A is being traversed) to be a member of the digitization of A. See Figure 5.7.

Define processors Piﬂ,j, Pi,jil’ and Piﬂ'jil to be the 8-neighbors of processor Pi,j, assuming they exist.
Given aset Sof processors, with processors P, P, [ S, then P, and P, are said to be 8-connected if and
only if there exists a connected path of 8-neighborsin Sbetween P, and P, . A set Sof processorsis an 8-
connected set if and only if for all processors P, P, O S, P, and P, are 8-connected.

An 8-connected set D of processorsisadigital arc if al but two of the processorsin D have exactly two
8-neighborsin D, and the exceptional two, called the endpoints, each have exactly one 8-neighbor in D
[KiR082b]. Given two lattice points p and g, corresponding to two processorsin D, the line segment pg
isdefined to lienear D if for any point (x, y) of B, (X, y) O R?, there exists alattice point (a, b)
corresponding to a processor P, , [J D such that max {|a — z|, |b — y|} < 1. Finaly, D issaid to have the

chord property if for every p, q O D, the line segment pg lies near D [Rose74].

Lemma 5.13 [Rose74] A digital arc hasthe chord property if and only if it isthe digitization of a
straight line segment. -
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Figure 5.7:

Grid-intersection scheme of digitization.

Lemma 5.14 [KiR082b] A set Sof base processors has the chord property if and only if Sis convex. -



From Lemmas 5.13 and 5.14, notice that D could have arisen as the digitization of a straight line segment
if and only if it isa convex digital arc. From [KiRo82b], thisimpliesthat a convex set D of two or more
processors is the digitization of astraight line segment if and only if

1. al but two of the processors of D have exactly two 8-neighborsin D, and the exceptional two have
exactly one 8-neighbor in D, and

2. D is 8-connected.

Further, it can be shown that if D is convex and satisfies property 1, then it satisfies property 2 as well.
(Thisisfalse for nonconvex sets, as can be seen by considering a disconnected set consisting of
digitizations of acircleand aline.) Thus, aconvex set D of two or more processorsis the digitization of a
straight lineif and only if it satisfies property 1.

This characterization yields an efficient agorithm to determine whether or not a set D of lattice points
could have arisen as the digitization of a straight line segment. (It is assumed that D corresponds
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to a set of labeled processors.) From Corollary 5.10, it can be decided in ©(log n) time, whether or not D
isconvex. If D is not convex, then the algorithm halts and it is known that D could not have arisen as the
digitization of a straight line segment, while otherwise the algorithm continues in an effort to determine
whether or not D isadigital arc (Property 1). To determine if Property 1 holds, each base processor that
Isamember of D determines, in ©(1) time, the number of its 8-neighbors that are members of D. By
passing these results up to the apex and combining them at each level, in ©(log n) time the apex will
know whether or not Property 1 holds, and hence knows whether D could have arisen as the digitization
of astraight line segment. This gives the following.

Theorem 5.15 Given a digitized black/white picture stored in a natural fashion one pixel per processor
in the base of a pyramid computer of size n, in ©(log n) time it can be decided whether or not the set of
black pixels could have arisen as the digitization of a straight line segment. -

5.6 Further Remarks

In this chapter, algorithms that use predominantly the child-parent links of a pyramid have been
presented. These algorithms include solutions to a variety of fundamental problems, such asinitializing
the identity registers of all processors, solving bit counting problems, computing commutative
associative binary functions, and answering point queries. All these algorithms have optimal ©(log n)
running times.

Several optimal @(log n) time algorithms were also presented to solve problems involving convexity
properties of asingle figure or set of base processors. These problems include determining whether or
not an arbitrary set of base processorsis convex and enumerating the extreme points of a convex set of
base processors. For the problem of enumerating the extreme points of an arbitrary set of base
processors, the running time of the algorithm presented in this chapter is @(log? n/log log n), and the
optimality of this agorithm was left as an open problem. Assuming that the extreme points of two
figures have been enumerated, a ©(log n) time algorithm was presented to determine whether or not the
two figures are linearly separable. Finaly, a ©(log n) time algorithm was presented to decide whether or
not a digitized picture could have arisen as the digitization of a straight line segment.



Page 240

Additional algorithms that exploit the pyramid's child-parent communication links abound. Examples
include the component labeling algorithm in [Dyer82, Tani82a, Tuck86], the feature extraction algorithm
in [Reev80], the median filtering algorithm in [Tani82b], the selection algorithm in [Stou83c], and the
polygon construction algorithm in [ Sako81].

In the next chapter, algorithms and data movement operations will be presented to solve fundamental
problems in image processing and graph theory, where the input is either an adjacency/weight matrix, a
set of unordered edges distributed arbitrarily throughout the base of the pyramid, or adigitized picture
representing multiple figures. These algorithms will require the use of intricate data movement
operations that exploit the pyramid's mixture of child-parent and mesh-connected links.

Page 241

6
Hybrid Pyramid Algorithms

6.1 Introduction

Although the geometry of the pyramid makes it a natural architecture for image processing, thereisno
reason to limit pyramid computers to low-level image processing involving tree-like operations. The
pyramid can be adapted to many other problems and should be considered as an alternative to the mesh
computer. In this chapter, avariety of data movement operations are presented for the pyramid, some of
which are customized for particular forms of input. These operations are incorporated into efficient
pyramid computer algorithms to solve fundamenta problemsin graph theory, image processing, and
digital geometry.

Much of the literature on pyramids consists of two classes of algorithms. The first concentrates on the
tree structure, using predominantly child-parent links, as discussed in Chapter 5. These algorithms work
efficiently only when the amount of data can be drastically reduced, for otherwise too much data must
pass through the apex, creating a bottleneck. The second class of pyramid agorithms concentrates on the
mesh, essentially ignoring everything above the base. Efficient mesh algorithms for avariety of problems
and input formats were presented in Chapters 2, 3, and 4.

In this chapter, athird class of pyramid computer algorithms is considered. These algorithms utilize both
the mesh and tree connections. The basic approach is as follows. Reduce O(n) pieces of initial data,
stored one piece per base processor, down to O(n2) pieces of data. Move this datato aregion of the
pyramid where interprocessor communication is as fast as possible. Obtain the solution to the
subproblem in this region, and move the results to their final locations. The region of the pyramid that
the O(nv2) pieces of datawill be moved to isthe middie level of the pyramid, which isamesh of size ©®
(n¥2). The movement to and from the middle level will often be the most time-consuming part of the
algorithm. Therefore, the focus of this chapter is on providing efficient techniques for reducing data and
on providing a collection of efficient fundamental data movement operations.



Fundamental data movement operations are presented for several algorithmic strategies, such as divide-
and-conquer, and for various formats of input data. These operations are used to give efficient solutions to
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avariety of problemsthat involve agraph G = (V, E), where V is the set of vertices and E is the set of
edges. The graph can be expressed as a collection of unordered edges, an adjacency/weight matrix, or as
adigitized black/white picture. Algorithms based on these data movement operations are presented to
solve problems including component labeling, minimal spanning forest, nearest neighbor, transitive
closure, bipartite graph, cyclic index, bridge edges, articulation points, biconnectivity, and various
geometric problems involving convexity properties. Many of these problems were discussed in Section
1.4.1. The reader isreferred to Chapter 1 for definitions of input formats and descriptions of the
problems.

The algorithms presented in this chapter have running times that are about the square root of the running
times for their mesh counterparts. Most of these algorithms are either optimal or very near optimal for
the pyramid. In Section 6.2, the concurrent read and concurrent write operations are presented for the
pyramid. These operations are then used in an algorithm to label the components of a graph, consisting of
O(n¥2) vertices, in ©(nY4 log n) time, where the graph is given as a set of unordered edges stored one per
base processor. In Section 6.3, problems are considered for graphs represented as an adjacency matrix,
stored in anatural fashion in the base of the pyramid. For this more structured input, pyramid matrix read
and pyramid matrix write operations are introduced and used to reduce the time to solve some graph
problemsto ©(nv4).

In Section 6.4, problems are considered for digitized black/white pictures, such as |abeling the black
figures (i.e., connected components). Since each black pixel is avertex, there may be ©(n) vertices, but
the geometry of the situation and the funnel read operation, which isintroduced in Section 6.4, allows the
labeling to be complete in ©(nv4) time. Section 6.4 aso introduces the operation of reducing a function.
Thisis used to solve the nearest neighbor problem for figures. This operation is somewhat unusual in that
once the relevant data has been collected at the proper level of the pyramid, it is then spread downward
to finish the calculations.

Section 6.5 concentrates on convexity problems involving i) multiple labeled sets of processors and ii)
digitized black/white pictures that consist of multiple labeled figures. The operation of a sparse pyramid
writeisintroduced, and problems for multiple figures, such as determining the extreme points, a smallest
box, the smallest enclosing circle, and the diameter of each figure are examined. Section 6.6 presents
details of the data movement operations, and Section 6.7 discusses the optimality of
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the algorithms presented in this chapter.

Throughout the chapter, related problems, such as marking minimal-weight spanning forests, finding the
transitive closure of a symmetric Boolean matrix, marking articulation points, and deciding if agraphis
bipartite, are aso solved.

6.2 Graphsas Unordered
Edges



In this section, the input graph is given as a collection of unordered edges, arbitrarily distributed one per
base processor, where edges may be represented more than once. This format is the most genera of the
input formats considered, including matrix input and digitized picture input as special cases.

6.2.1 Data Movement Operations

The generic concurrent read and concurrent write operations are described in Section 1.5. In Section
2.6.4, algorithms were presented to perform the concurrent read and concurrent write operationsin ©
(n%/2) time on amesh of size n. On a pyramid, the concurrent read and concurrent write operations are
extended to the pyramid read and pyramid write, respectively. These operations are now described,
deferring the details of the algorithms to perform these operations until Section 6.6.1.

. In apyramid write, all processors containing master records are on one level, and all processors
generating update records are on the same level or some level below. (If both levels are the same, then a
given processor might be responsible for a master record and also generate an update record.) As an
example, consider the following "sample” call.

Pyramid write from level L up to level M,
For every processor on level L,
iIf testl then send(A,, B,, C,), send(A,, B, C,);
For every processor on level M,
iIf test2 then receive(D, E, F);

Since processors generating update records are descendents of processors maintaining master records, it
must be that L < M. The termstest] and test2 are used to represent arbitrary Boolean tests.
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For aprocessor on level L, if testl istrue then the processor creates and sends two records (in this
example), one with the key value A,, with values B, and C, as data, and a second with key value A,,

with dataitems B,and C,. (The key is always the first component.) If testl isfalse, then the

processor does not send any records. A processor on level M will not try to receive arecord if test2 is
false. If test2 istrue, aprocessor on level M will try to receive asingle record (in this example),
where the value of the key goesinto D, and copies of the dataitemsgo into E and F. If test2 istrue
and no record is received, then the values of D, E, and F become c.

. A pyramid read parallels the concurrent read in the same way that the pyramid write parallels the
concurrent write. In a pyramid read, master records are maintained in processors at agiven level, and
request records are generated by processors on the same level or some level below. As an example,
consider the following "sample" call.

Pyramid read at level L from level M,
For every processor on level M,
iIf test1 then send(A,B);
For every processor on level L,
If test2 then receive(C, D);



Similar to the pyramid write, if a processor on level L requests akey C that has not been sent, then
the datafield D will be set to co.

Section 6.6.1 gives implementations of the pyramid write and pyramid read. If the top level M isamesh
of sizem, and the bottom level L isi - 1 levels below, then the time for a pyramid write (read) from (at)
level L to (from) level M isO(i + (mi)22).

Lemma 6.1 In a pyramid computer of size n, a pyramid read or pyramid write involving master records
stored at level M, a mesh of size m, and request or update records, respectively, generated at level L, L <
M, takes O(i + (mi)¥2) time, whereL isi - 1 levelsbelow M. -
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6.2.2 Component Labeling

Except for obvious differences in the computer model and data movements operations, the pyramid
computer (connected) component labeling algorithm presented in this section is similar to those
presented in [Hamb83, HCW79, Mill84a, NaSa80], Section 3.3.2, and the generic Component Labeling
Algorithm of Section 1.6.1. Given an undirected graph G = (V,E), the algorithm proceeds through a
series of stages, where at each stage the vertices are partitioned into digoint clubs. Vertices are in the
same club only if they are in the same component of the graph. A club is called unstableif it isnot an
entire component.

Initially each vertex isits own club. During a single stage of the algorithm, unstable clubs are merged
together to form larger clubs, and the number of unstable clubs decreases by at least half. This processis
repeated until no unstable clubs remain. Since each stage of the algorithm reduces the number of unstable
clubs by at least half, then at most |log, v | stages of the algorithm are needed to label a graph with v
vertices.

Every club has a unique label, which is defined to be the minimum label of any vertex in the club.
During the algorithm, let L(x) denote the current label of the club containing vertex x. Initially L(X) = X,
indicating that each vertex isits own club. During a stage of the algorithm, clubs are merged as follows.
Let u bethelabel of an unstable club. Compute M(u) = min{ L(y) | (X, y) O E, L(X) = u}. The graph
consisting of vertices that are labels of unstable clubs, and edges are of the form (u, M(u)), for all
unstable clubs u, is called a min-tree forest. Merging clubs takes the form of relabeling the min-tree
forest so that for each tree in the min-tree forest a new club isformed that is the union of al clubsin the
tree. Given amin-tree T = (V', E'), the new club that isformed from T is assigned the label N(u), where N
(u) = min“m\, M(u). Notice that in a min-tree forest, each unstable club is connected to at |east one other

unstable club, which guarantees that the number of unstable clubsis at least halved after each stage of the
algorithm. (See the example givenin Figure 6.1.)

The component labeling algorithm for a pyramid computer of sizenisgivenin Figure 6.2. It
incorporates an integer function count_keys that counts the number of distinct keysin the base. The
operation of count_keysis similar to that of the pyramid write, and is given in detail in Section 6.6.1.

Notice that the algorithm operates by moving the data to a place where the min-tree forest can be quickly
relabeled. In Figure 6.2, the
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Figure 6.1:
An example of the component labeling algorithm.

term forest_level is used to indicate the level of the pyramid at which the forest isformed. Initially, this
level must have at least v processors. Each stage of the algorithm reduces the size of the forest by at least
half, so after 2 stages, forest_|level can be increased by 1. Without this upward movement, the time of the
algorithm would increase by afactor of log n. Given aforest with f vertices, the forest can berelabeled in
O(f¥2) time on a mesh of size O(f) by the algorithm presented in [NaSa80]. This relabeling algorithm
exploits the property that a min-tree forest is essentially upward directed, in that M(u) < u. Notice that if
the forest data remained at the base of the pyramid, then the min-tree relabeling would take ©(n¥2) time.
However, by first moving the data up the pyramid, the relabeling step will take only ©(v¥2) time.

Theorem 6.2 Given a pyramid computer of size n, if the base contains
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For every base PE
Label1:=Vertex1;
Label2:=Vertex2;

v:=count_keys; {Vv isthe number of vertices}

forest_level:=log, (n/v);

for stage:=1to log, Vv do

Pyramid write from the base upto level forest_level,
For every base PE ,
send(Label1, Label2), send(Label2, Label1);
For every PE P, at level forest_level,

receive(V ertex,, neighbor), receive(Vertex, ., neighbor);

Relabel the min-tree forest, so that every PE P, at
level forest_level has
Label,:=N(Vertex,) and Label, + :=N(Vertex,.,);

Pyramid read at the base from level forest_level,
For every PE P, at level forest_level,

if Vertex, < oo then send(Vertex,,L abel,);
if Vertex,.,< o then send(Vertex,+ ,Label,,,);

For every base PE
receive(Label 1, templabel 1),
receive(Label2, templabel 2);

For every base PE ,
If templabel 1< oo then Label 1:=templabel1,
If templabel2< o then Label 2:=templabel 2;

If (stage mod 2)=0 then forest_level:=forest_level + 1;
end{for};

Figure 6.2:
Component labeling algorithm.

the unordered edges of an undirected graph with v vertices, then the above algorithm labels the
components in O(log(n)+vy2[ 1+log(n/v)]¥2) time.
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Proof. Proposition 6.24 of Section 6.6.1 shows that count_keys finishes in the time claimed. Within the
loop, at the start of an iteration, let k be the number of processors at level forest_level. The pyramid read
and pyramid write each take

O(forest_level + kv2[1 + forest level]v2)

time, and the min-tree forest relabeling takes ©(k¥2) time. Since k = n/4™"*!®¢ the time for this iteration
of theloopis

7 Joreat devel

/201 ¢ level |12
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Theinitial value of forest_level is |log,(n/v)], and forest_level increases every 2 iterations, so the total
running time of the algorithm is

log, n ' _
(F s

i=|logy(nfu}]

whichis

e (mgqnj + 12 [1 + log (")] ”i) _

v

In the worst case, when the number of vertices in the graph isv = ©(n), the pyramid algorithm takes ©
(n2) time, which is asymptotically equivalent to the running time of the mesh algorithm presented in
[ReSt]. This situation arises, for example, when considering planar graphs, for which the number of
verticesv < 3e - 6 edges. For smaller values of v, however, the pyramid algorithm exhibits significant
improvement over the mesh algorithm. Any mesh algorithm to solve this problem must take Q(n22) time,
but for a dense graph with v= ©(n22) vertices, the pyramid algorithm requires only ©(n¥4log¥2 n) time.

Given aforest with f vertices distributed one edge per base processor in a pyramid of sizef, the algorithm
presented in Figure 6.2 will label the connected components (i.e., the trees of the forest) in O(fv2) time.
Therefore, the mesh algorithm of [NaSa80] that is used to perform min-tree forest relabeling in the
pyramid component labeling algorithm given in Figure 6.2, may be replaced by arecursive call with
level forest_level viewed as the base of the pyramid.
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6.2.3 Minimal Spanning Forests



The strong similarities between component labeling algorithms and minimal spanning forest algorithms
arewell known. In particular, it has been noted that small changes to a component labeling algorithm for
aparallel computer can give a minimal spanning forest algorithm for the same computer [CLC82,
HaSi81, SaJa8l]. There are two modifications that must be made to the pyramid computer component
labeling algorithm, as presented in Figure 6.2, in order to arrive at aminimal spanning forest algorithm.
First, arecord must be kept of the edges that are used. Second, when clubs are being merged, each club
must use an edge of minimal weight, rather than an edge to a club of minimal index. Notice that a club
may have more than one minimal-weight edge, which may introduce cycles in the min-tree forest if the
edges are not chosen in a consistent manner. In order to prevent cycles, the edges may be ordered in a
consistent manner, as follows. An edge with weight w between vertex v; and vertex v, is represented by
the ordered triple (w, vy, Vv,). Define the weighted edge (w,, X, ¥;) to be less than weighted edge (W, X,
o) if 1) wy <ws,, or ii) if wy=w,and min(x,, y;) <min(X,, Y,), or iii) if w; =w,, min(X,, y;) = min(x,, ¥»),
and max(Xy, y1) < max(Xy, Yo).

Incorporating these changes is straightforward, giving the following result.

Theorem 6.3 Given a pyramid computer of size n, if the base contains the unordered weighted edges of
an undirected graph with v vertices, then a minimal spanning forest may be determined in ©(log(n) + v2
[1+ log(n/v)]¥2) time. -

Even if the edges are unweighted, spanning forests can be quite useful. In order to decide whether or not
an undirected graph G = (V, E) is bipartite, let each edge have weight 1 and use the algorithm associated
with Theorem 6.3 to select a spanning forest. Using a pyramid write, send the edges of the forest to level
|log,(n/v)]. In each tree of the forest, select the vertex of minimum label as the root, and use the mesh

algorithm in [Stou85a] at level |log,(n/v)| to determine the depth of each vertex in itsrooted tree. (This
algorithm takes ©(v¥2) time on amesh of sizev.) Say that anodeisin V;,if itsdepthiseven, and isinV,

If itsdepth isodd. It is easy to show that G is bipartite if and only if this particular choice of V, and V,is
such that every edge of E joins a member of V; and a member of V,. To check whether this property is
true, perform a pyramid read so that every base processor can
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determine the depths corresponding to the vertices of the edge that it contains. Finally, pass these results
to the apex, combining them along the way.

This agorithm takes ©(log(n) + v¥2[1 + log(n/v)]¥2) time. Notice that a variety of graph-theoretic
problems can be solved by using Theorem 6.3 to pick a spanning forest, moving the forest to level
|log, (n/v) |, using amesh algorithm at that level, and using pyramid reads and writes to move data up
and down. Mesh algorithms for several graph-theoretic problems are given in [Stou85a].

Corollary 6.4 Given a pyramid computer of size n, if the base contains the unordered edges of an
undirected graph G with v vertices, thenin ©(log(n) + v¥2[1 + log(n/v)]¥2) time the pyramid can be used
to

a) decideif G is bipartite,

b) determine the cyclic index of G,



c) find all bridge edges of G,
d) find all articulation points of G, and
€) decide if G is biconnected.

Note that some of the mesh algorithms presented in [ Stou85a] are patterned after mesh algorithms
appearing in [AtKo84], with the difference being that the algorithms in [AtK084] require matrix input,
while those in [Stou85a] use only unordered edge input. The algorithms from [AtK084] are unsuitable
because there may not be v2 processors to hold the adjacency matrix. More importantly, the algorithms
from [AtK084] are too slow because they use matrix calculations that take ©(v) time on a pyramid.
(Algorithms from [AtK084] appear in Section 3.2.)

6.3 Graphs as Adjacency Matrices

In this section, undirected graphs with nv2 vertices are considered, where the graph is given as an
adjacency or weight matrix. The (i, j) entry of the matrix is assumed to be stored in base processor Pi,j.

Because the input is now more structured, algorithms that are dlightly faster than those of Section 6.2 are
possible.

6.3.1 Data Movement Operations

The algorithms presented in this section require two new data movement operations, namely the pyramid
matrix write and pyramid matrix read.
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A pyramid matrix write performs the same basic action as a pyramid write and comes in two versions,
one for rows and one for columns. In the row (column) version, update records are generated by base
processors, where the base processors in the same row (column) generate update records with the same
key. The pyramid matrix read performs the same basic action as a pyramid read, and also comesin two
versions. For the row (column) version, request records are generated by base processors, where the base
processors in the same row (column) request information regarding the same key.

Detailed implementations of these operations appear in Section 6.6.2, where it is shown that if the master
records are maintained in amesh of sizek, k < 2nv2, then the pyramid matrix read and pyramid matrix
write operations are complete in

O(log(n) + kv2[1 + log(n/k?)]+2)

time. (Though there will never be more than n¥2 keys, k = 2n22 is allowed since the highest level holding
N2 processors actually has 2n%2 processors when n > 256 is an odd power of 4.)

6.3.2 Component Labeling and Minimal Spanning Forests



Algorithms for graphs given as adjacency or weight matrices can be adapted from those algorithms
presented in Section 6.2. for unordered edge input. This can be done by removing the call to count_keys,
initializing v to n1/2, replacing pyramid read with pyramid matrix read, and replacing pyramid write with
pyramid matrix write. The resulting algorithms are faster than those presented in Section 6.2 by afactor
of ©(log¥2 n). This comes from the fact that the running times of both the unordered edge algorithms and
the matrix algorithms sum as a geometric series, with the maor term (ignoring count-keys for the
moment) being dictated by the time to move data between the base and the middle level of the pyramid
that contains n¥2 processors. The pyramid read and pyramid write between the base and thislevel each
require

0 (Ing (nit’:’) T [ﬂw log (;%)]m) = O(log(n) + [n"*logn]'?)

= E[[nuzlugn]ui}
= O(n'og"?n)
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time, as does count_keys, while the pyramid matrix read and pyramid matrix write between the base and
thislevel only require

° (EHE(“] + () [‘ +log (W)] ”2)

= ©Sflog(n)+ 1'11"{"{1 - Ing{l]l]”ir}
= B{ﬂ].'ll""}

time. In both cases, it is assumed that n is sufficiently large (i.e., the additive log n term isinsignificant in
the ©-notation).

Theorem 6.5 Suppose the adjacency matrix of an undirected graph with nv2 verticesis stored in the base
of a pyramid computer of size n. Then the connected components can be labeled in ©(n¥4) time. -

Theorem 6.6 Suppose the weight matrix of a weighted undirected graph with nv2 verticesis stored in the
base of a pyramid computer of size n. Then a minimal spanning forest can be marked in ©(nv4) time. -

Corollary 6.7 Suppose the adjacency matrix of an undirected graph G with n1/2 verticesis stored in the
base of a pyramid computer of size n. Then in ©(n¥4) time the pyramid can be used to

a) decideif G is bipartite,

b) determine the cyclic index of G,

c) find all bridge edges of G,

d) find all articulation points of G, and

e) decide if G is biconnected.



Determining the transitive closure of a symmetric Boolean matrix stored in the base of apyramidisa
simple adaptation of component labeling. First, perform component labeling for matrix input. For
processors that are storing off-diagonal entries (i.e., for which the row and column are different), the new
entry is 1 if the row label equals the column label, while otherwise it remains O. For processors on the
diagonal, if the original entry was 1, it remains so, whileif it was 0, then it becomes | only if some other
entry in the row is 1. Pyramid matrix reads and writes can be used to determine the proper diagonal
entries, as follows. Each base processor creates a record consisting of its row index as
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the key, with its new entry stored in the datafield. A pyramid matrix write to the middie level of the
pyramid is used to combine records with the same key, breaking tiesin favor of maximum datafields. A
pyramid matrix read from thislevel isthen used so that every diagonal entry of the matrix can determine
whether or not thereisalinitsrow.

Corollary 6.8 Suppose an n¥2 x n¥2 symmetric Boolean matrix is stored in the base of a pyramid
computer of size n. Then the transitive closure of this matrix can be determined in ©(nv4) time. -

6.4 Digitized Pictures

In this section, a bottom-up divide-and-conquer approach is used to solve a variety of geometric
problems involving digitized black/white pictures stored in the base of the pyramid. In the previous
chapter, it was shown that divide-and-conquer can be used on the pyramid to produce efficient
algorithms to solve problems by quickly eliminating data as partial solutions are merged from the base to
the apex. Unfortunately, for the problems considered in this section, the data movement requirements are
substantially greater than for the problems considered in Chapter 5. In this section, new data movement
operations are introduced and efficient implementations of a divide-and-conquer strategy are
demonstrated for the pyramid. It will also be shown, in Section 6.7, that the results obtained in this
section are at most afactor of ©(log¥2 n) from optimal for the pyramid.

Throughout this section, the mesh at some level will be divided into squares of some sizet. This means
that the mesh will be completely partitioned into digoint squares of sizet, wheret is apower of 4. Using
this partitioning, the concept of the square of sizet at level | containing processor P iswell-defined,
assuming that level | isof sizet or greater. The term picture square will be used to refer to such a square
in the base.

The computations will proceed in a bottom-up fashion. The first stage of the algorithm will involve
analyzing picture squares of size 4c, for some constant ¢ that depends upon the particular problem. In
general, at the end of stagei, i = 1, picture squares of size 4°'-1 have been analyzed, where the analysisis
with respect to the particular problem being solved (e.g., labeling figures or determining nearest
neighbors). During stagei + 1, results from stage i are combined so as to analyze picture squares of size
4,
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An important property of the solution strategy presented in this section isto reduce the amount of data
from an amount proportional to the area of the picture square to an amount proportional to the perimeter
of the picture square under examination. So at the end of stage i, every picture square of size 4°-1 will be
reduced to O(2') pieces of data, from which stagei + 1 can produce the analysis for picture squares of
size 4°'. The algorithms presented in this section proceed rapidly by moving the perimeter amount of
datathat is used to represent a picture square up through the subpyramid over that picture square.

For a picture square Sof size 4°'-1, the square of size 4=+1i/21-1 at level [i/2] of the pyramid that
contains the ancestors of Sis called the data square corresponding to the picture square of S. Intuitively,
the data square corresponding to a picture square S of size mwill be asquare § of size O(m2). Further,
this data square § will be located at the middle level of the subpyramid that has Sas its base. This means
that a data square contains enough processors to store a perimeter amount of data from its respective
picture square. For the algorithms presented in this section, the focal point of work to be performed on a
picture square Sis at the data square § corresponding to the picture square S.

Note that the data square corresponding to a picture square is either the union of the data squares
corresponding to the picture square's quadrants, or elseit is the union of the parents of the quadrants data
squares. This means that the data used during stage i of the algorithm is either already in place, or must
move up only one level in the pyramid, in order to be whereit isrequired for processing during stagei +
1.

The last stage of the bottom-up divide-and-conquer algorithm is stage log,(n) - ¢ + 1, which is
responsible for an analysis over the entire picture. During the course of the algorithm, intermediate
results will not be sent down to picture squares. Therefore, at the end of the algorithm, afinal stepis
needed to move these results back down to the base. This final data movement is accomplished with a
funnel read, which is described in Section 6.4.1. Section 6.4.1 also introduces a data movement operation
called reducing a function. This operation allows data squares to perform some cal culations (such as
computing a nearest neighbor for each point from a set of points) in time proportional to the edgelength
of the square, even though mesh algorithms that finish in this time are not currently available. The
operation of reducing a function uses processors below the data square to help perform the calculations
in the desired time.
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6.4.1 Data Movement Operations

In this section, data movement operations are described that will be used in some of the bottom-up divide-
and-conquer algorithms presented later in this chapter.

. Funnel Read: Assume every base processor knows the key corresponding to data it wishes to read
from its stage 1 data square. Further, assume that for a stage i data square that is responsible for
supplying the data for a given key, either

1. one of its processors has the data, or

2. it must read the data from its stage i + 1 data square (where astage i + 1 data square means
the data square it supplies data to), or



3. one of its processors has an alias for the key and must read the data for the alias from its stage
| + 1 data square.

Noticethat if i isthe last stage of the algorithm, then the data square must have the desired data.
Finally, assume a data square of size m never receives more than ©(m) such requests. Then, the
funnel read ultimately obtains the data for all base processors in @(mv2) time, where misthe
size of the data squares at the final stage. Figure 6.3 gives a picture of afunnel read. The details
of the funnel read are deferred to Section 6.6.3.

. Reducing a function: Given sets Q, R, and S let g be afunction mapping Q x Rinto S and let * be
acommutative, associative, binary operator over S. Defineamap f from Q into Sby f(q) =*{g(qg,r)|r O
R}, wheref is said to be the reduction of g. For example, if Q and R are sets of pointsin some metric
space, if Sisthereal numbers, if g(q, r) isthe distancefromqtor, and if * is minimum, then f(q) isthe
distance from q to the nearest point in R.

Suppose the elements of Q are stored one per processor in asgquare of sizemat level i of the
pyramid, and the elements of R are aso stored one per processor in the square. (A processor may
contain an element of Q and an element of R.) Suppose g and * can both be computed in ©(1)
time. Then the operation of reducing afunction will compute f(g) and store the result in the
processor containing g, for al g O Q, in ©(my2 +my4') time. The details of this operation appear
in Section 6.6.3.
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stage 5 daia square

stage 3 dela sguare

stage | daa square

Figure 6.3:
A single processor's view of afunnel read.

6.4.2 Component Labeling

A digitized picture can be viewed as an undirected graph, where the black pixels are vertices, and
adjacent black pixels have an (undirected) edge between them. Upon termination of the digitized picture
component labeling algorithm, every base processor containing a black pixel must contain the label of
the pixel'sfigure (i.e., connected component), which will correspond to the minimum index of any
processor containing apixel initsfigure.



The component |abeling algorithm presented in this section follows the basic divide-and-conquer
strategy outlined at the beginning of Section 6.4, and is similar to the mesh algorithm of Section 3.3.2.
However, the algorithm presented in this section for the pyramid computer is significantly faster than the
optimal mesh algorithm presented in Section 3.3.2.

To initialize the algorithm, every base processor that contains a black pixel will generate an edge record
corresponding to each of its, a most four, neighboring base processors that also contains a black pixel.
So, every black processor P (i.e., every base processor P containing a black pixel) will generate an edge
record (p, g, ) corresponding to each neighboring black processor Q, where p isthe index of P, g isthe
index of Q, and the third component of the record will be used to store the com-
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ponent label of p and g generated during stage 1. Therefore, every base processor may generate as many
as four edge records, one corresponding to each of its neighbors.

Picture squares of size 256 are labeled during stage 1.. (That is, ¢ = 4 in the generic divide-and-conquer
strategy.) For every picture square of size 256, alabeling algorithm is applied to the subset of records (X,
y, o) for which both x and y are in the picture square. This means that those records for which x is on the
border of one such picture square and y is on the border of an adjacent picture square are omitted from
the stage 1 labeling process. Notice that since x and y are concatenated coordinates of processors, that in
©(1) time a processor containing arecord of the form (X, y, ) can decide whether or not xandy arein
the same picture square of size 256, and therefore can decide whether or not this record is to be included
in the stage 1 labeling. Since the size of the square to be labeled is a constant, stage 1 |abeling can be
performed in ©(1) time simultaneously for every picture square of size 256. A simple propagation
algorithm, or the unordered edge component labeling algorithm of Section 6.2.2, isall that is needed.

After completing the stage 1 labeling, notice that records of the form (X, y, o) represent edges between
distinctly labeled figures in adjacent picture squares. (These records were not included in the stage 1
labeling algorithm.) For every such record (X, y, o), perform a mesh concurrent read within x's picture
square to determine the (possibly) new label of x. Store this new label, call it |,, in the third field of the
record, so that the record now has the form (x, vy, |,). Since these records represent edges between
distinctly labeled figures of adjacent picture squares, the correct labels for the figures that these edges are
incident on have yet to be determined (even after the mesh concurrent read). However, for all other
figures (i.e., for those that do not span at |east two picture squares), their final labels have already been
determined by the stage 1 unordered edge labeling algorithm.

All original records (with updated third fields) are kept in their stage 1 data squares, and every processor
containing arecord (X, y, |,) with y outside of x's picture square generates a record (x.orig, y.orig, x.label,
y.label), where x.orig = x, y.orig =y, x.label =1,, and y.label = o, for use in the next stage of the
algorithm. There are at most 64 such records generated within a single picture square of size 256. (Each
corner pixel may generate 2 such records, and all other border pixels may generate 1.) These records are
now spread out in their stage 1 data squares so that no processor holds more than one such record. This
concludes stage 1.

Page 258



During stage i, the algorithm labels picture squares of size 43", using data squares of size 43+1#/2] at |level
[i/2], asfollows. If i isodd, then all of the necessary data (i.e., the records generated at the end of stagei
- 1) isaready present, whileif i is even, then the necessary dataisin the four data squares one level
below. In the latter case, in ©(22) time, the datais moved up and distributed so that no processor has
more than one record.

Next, perform a mesh concurrent read within each stage i data square so that every record (x.orig, y.orig,
x.label, ) can fill in the fourth field that corresponds to the label of y from the end of stagei - 1. Every
processor containing arecord (x.orig, y.orig, x.1abel, y.label) now creates arecord (x.label, y.label, ),
and component labeling is performed for this unordered edge input in the stage i data square, again using
only edges for which both vertices lie in the same stage i picture square. When finished, a processor
containing a record with a vertex outside of the picture square generates arecord (with 4 fields) for the
next stage. Since work is being performed on picture squares of size 43*', at most 25+ records can be
generated for the next stage.

After stagelog,(n) - 3, the labels of all figures have been decided. The data square for the last stageisa
level of the pyramid consisting of a mesh of size ©(nv2), for which the mesh unordered edge component
labeling algorithm of [ReSt] takes ©(nv¥4) time. The running time of the algorithm, as described, is given
by the recurrence T(n) = T(n/4) + O(n'"4), which is ©(n¥4). Unfortunately, at the end of the algorithm that
has been described, the labels remain scattered throughout the pyramid. A collation step is needed that
will enable every base processor to obtain the final label of its pixel.

Notice that if P'sfigure extends outside of P's stage 1 picture square, then the labeling information in the
stage 1 data square may be incorrect, and P would need to consult data squares of later stagesin order to
obtain the correct component label. The figure may extend outside of P's picture square for many stages,
so in advance P does not know which data square has the needed labeling information. Thisis where a
funnel read is used, moving labels from the data squares of the last stage back down towards the base,
taking ©(nv4) time, and compl eting the algorithm substantially faster than the optimal ©(n¥2) mesh
algorithm of Section 3.3.2.

Theorem 6.9 Given a digitized picture stored one pixel per processor in a natural fashion in the base of
a pyramid computer of size n, in ©(n'4) time, the connected components can be |abeled. -
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A pyramid computer component labeling algorithm designed to operate efficiently in amore restrictive
domain was introduced in [Tani82a]. The algorithm is designed to consistently |abel every "convex blob"
with the label of a distinguished member of the blob (component). The algorithm uses predominantly the
child-parent links in the pyramid, but is somewhat different from the tree-like pyramid algorithms
presented in Section 5.4.4, in that data 'bounces' between levelsinstead of just traveling directly between
the base and the apex. The algorithm finishes labeling a"convex blob" of diameter D in @(log D) time
by continually propagating the label of a distinguished black base processor to neighboring processors
that cover an entirely black piece of the blob. Therefore, the algorithm terminates in time proportional to
the logarithm of the "convex blob" with largest diameter. This algorithm is not intended for arbitrary
digitized pictures. In fact, it would require ©(nv2) time to label a D x n¥2 rectangle, for any constant D. In
contrast, the algorithm presented in this section will label any digitized picture containing multiple
figures of any shape in ©(nv4) time.



6.4.3 Nearest Neighbors

Given digitized picture input in the base of the pyramid, an efficient solution to the all-nearest neighbor
problem for figures can be obtained quite simply from the solution just presented to the digitized picture
component labeling problem. Therefore, in this section, only those aspects of the algorithm that change
will be described in detail.

In the all-nearest neighbor problem for figures, it is required that the kin of each figure be detected,
where the kin of afigure isthe |abel/distance pair representing a nearest distinctly labeled figure. (In case
of ties, the figure of smallest label is chosen.) In this section, input to the all-nearest neighbor problem is
adigitized picture with its figures aready labeled, and at the conclusion of the algorithm, every base
processor containing a black pixel will know the kin of its pixel's figure.

The bottom-up divide-and-conquer algorithm is based on the following observation. Assume that the 4
quadrants within a picture square have been analyzed. Then the only figures that might not have their
correct kin information with respect to the entire picture square, are those figures that have pixels that are
either the topmost or bottommost black pixel in its column, or the leftmost or rightmost black pixel in its
row. (Infact, it is possible to restrict the set of candidates even further, but thisis not necessary.) A pixel
that is either the topmost or bottommost black pixel in its column, or the leftmost or rightmost black
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pixel initsrow, is called a special pixel. Within a quadrant, figures with no special pixels must have
determined their kin during earlier stages of the algorithm since they are totally surrounded by other
figures within their quadrant.

Stage 1 of the algorithm analyzes picture squares of size 256. Within every picture square, for each
figure C, aclosest figure within the square is determined and stored in arecord (C, kin(C)). (Thiskin
information maybe incorrect globally, but the final funnel read will bring the correct global information
down from data squares above.) For every column i in the picture square, form the records (1, i, tr(i), tl
(i)) and (2,1, br(i), bl(i)), wheretr(i) is the row of the topmost black pixel in the column restricted to the
square, br(i) isthe row of the bottommost black pixel in the column restricted to the square, and tl(i) and
bl(i) are the labels of the pixels at locations (tr (i), i) and (br(i), i), respectively. (If the column has no
black pixel, then set the coordinatesto «.) Similarly, for every row j, form records (3, j, Ic(j), 11(j)) and
(4, ], rc()), rl(j)), corresponding to the leftmost and rightmost black pixelsin the row, respectively. These
are the records needed for the next stage of the algorithm.

The purpose of stagei + 1isto find for every black pixel represented in astagei + 1 data square, a
nearest black pixel of adifferent label within that data square. Thisis accomplished by using the
operation of reducing a function, where Q and R are the records, Sisthe real numbers, * is minimum,
and g is distance, with the exception that g gives an infinite distance if the two points have the same
label. When the operation is finished, a mesh concurrent read is used to form arecord (C, kin(C)) for
every figure C represented by one or more pixels. To generate the records for the next stage, notice that
for every columnin the stagei + 1 picture sguare there are two type 1 records. The one representing the
topmost pixel is passed to the next stage, and similar reductions occur for records of types 2, 3, and 4.

Finally, after the last stage of the agorithm, afunnel read brings the correct kin information back to the
base.



Theorem 6.10 Given a digitized picture stored one pixel per processor in a natural fashion in the base of
a pyramid computer of size n, in ©(nv4) time, the all-nearest neighbor problem for figures can be solved.

It should be noted that every black pixel can determine the location of a nearest black pixel in ©(log n)
time [Stou85b].
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6.5 Convexity

In this section, problems are considered that involve convexity of multiple figures or multiple labeled
sets of base processors. The problems include enumerating extreme points, deciding convexity, and using
extreme points to solve problems such as determining diameter, smallest enclosing rectangles, and
smallest enclosing circles for every figure. Since there may be ©(n) digoint sets of base processorsin a
pyramid computer of size n, applying the tree-like algorithms of Section 5.5.1 to one set of processors at
atime would yield substantially suboptimal running timesin the worst case. In order to efficiently
determine convexity properties for multiple sets of base processors, it appears that the algorithms must
be designed to work on multiple sets simultaneously. Further, since Q(n%2) timeisrequired if only the
base mesh of the pyramid is used, faster algorithms must use both the parent-child and mesh links that
are available in the pyramid. (Refer to Section 3.5 for optimal mesh algorithms concerning convexity of
multiple sets of processors.) Finally, the algorithms must avoid having many figures trying to send data
through the apex, for then the apex becomes a bottleneck.

The running times of algorithms presented in this section are slower than the running times of algorithms
from Section 5.5.1 that involved single figures. Nevertheless, the results presented in this section are at
most alogarithmic factor from optimal for the pyramid.

6.5.1 Data Movement Operations

The pyramid write, which was introduced in Section 6.2.1, is used to move data up the pyramid from a
given mesh level to adesired level that contains enough processors to hold all of the distinct pieces of
data being sent. For the algorithms in this section, only arestricted version of the pyramid writeis
needed. Therestriction isfor the situation where only CnP base processors wish to send a piece of datato
the highest mesh level that can hold all of this data, for fixed constants p and C. This restricted version of
the pyramid write can be performed in ©(nP2logy2 n) time. The details of the pyramid write are givenin
Section 6.6.1, and the restricted version of the pyramid write is derived directly from that.

Lemma 6.11 Fix constants p and C, where0 < Cand 0 < p < 1. Given a pyramid computer of size n,
suppose there are no more than CnP processors in the base that have a piece of data to be sent to level
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log, (= 'Cj ). (Thislevel isthe highest one with at least CnP processors.) The pyramid write will move the
data to its proper location in ©(nP2log¥2 n) time. -



A closely related data movement operation is the sparse pyramid write, which is an extension of the
pyramid write operation, and which is crucial to some of the algorithmsin this section. The sparse
pyramid write again assumes that for fixed constants p and C, only CnP base processors have a piece of
data to be sent to the mesh at the highest level of the pyramid that can hold all of this data. However, one
further restriction applies to the sparse pyramid write, namely, the assumption that in each subsquare of
size k in the base of the pyramid, O < k < n, there are no more than CkpP processors sending data. With this
additional constraint, the time for the sparse pyramid write is reduced by afactor of log¥2n over the
restricted pyramid write given in Lemma 6.11. The details are given in Section 6.6.1.

Lemma 6.12 Fix constants p and C, where0 < C and 0 < p < 1. Given a pyramid computer of size n,
suppn<e there are no more than CnP processors in the base that have a piece of data to be sent to level
log, (*=), Further, in each subsquare of size k in the base of the pyramid, 0 < k < n, assume that there
are nn,mnre than CkP processors sending data. Then a sparse pyramid write will move the data to level

log,' &/ n©O(nP/2) time.

The agorithms of this section will also use the operation of reducing afunction, as described in Section
6.4.1, aswell as an extended reduction operation. This extended reduction operation is performed for the
situation where there are three sets A,, A,, and A;, afunction g mapping A, X A, X A;into C, and an

associative, commutative operation * on C. The extended reduction of g is the function f mapping A, to C
given by

f@ =*{g(a x y) | x U A, y U A},
for a [ A,. Details of this operation are presented in Section 6.6.

Lemma 6.13 Suppose that g and * can be computed in unit time, and that A,, A,, and A; are stored one

item per processor at a level with m processors, 1 < m< n¥3, Then the reduction of g can be computed in
O(mv2) time, storing f(a) in the processor storing a. -
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6.5.2 Enumerating Extreme Points

The first agorithm presented in this section is used to enumerate the extreme points for each figure (i.e.,
connected component) in a digitized picture. The algorithm uses a bottom-up divide-and-conquer
strategy, as follows.



For each figure, first enumerate the extreme points of the restriction of the figure to each of the 4
guadrants of the picture. Next for each figure in two or more quadrants, as shown in Figure 6.4,
determine which points are extreme points in the quadrant, but are not extreme pointsin the entire figure.
These form an interval, e.g., in Figure 6.4 they are the ones between the dotted lines. To find these dotted
lines, use abinary search on the convex hull edges of the (at most 4) pieces of the figure. This binary
search follows the generic Fixed Subset Division Algorithm given in Section 1.6.2. For example, in
Figure 6.4, the topmost dotted line can be found as follows. Find aleftmost and rightmost extreme point
of the restriction of the figure to the right subimage. Using this information, find and send the upper
convex hull edge that isin the middle of these two extreme points in the enumeration ordering (as
restricted to the right subimage) to the left subimage. Next, determine if the line collinear with this edge
passes above the restriction of the figure to the left subimage, passes through or below it, or is tangent to
it (and hence isthe dotted line). In the first case, the edge and all convex hull edges preceding it in the
counterclockwise ordering (with respect to the restriction of the figure to the right subimage) are
eliminated from further consideration, while in the second case the edge and all convex hull edges
following it are eliminated.

Next, the lefthand piece sends over its middle edge, and asimilar check eliminates half of the convex
hull edges. A binary search for the top dotted line continuesin a natural fashion, alternating between the
halves. Eventually, either an edge on the dotted line is found, or el se both pieces locate a processor
representing an extreme point such that the edge on one side is too high, and the edge on the other sideis
too low. In this case the dotted line passes through the processor. Once the intervals of extreme points
between the dotted lines have been determined, it is easy to enumerate the remaining points using their
old enumeration information.

There may be @(n%2) figures merging pieces together, so for each step of the binary search, for al figures
simultaneously, a hull edge is moved up to alevel of size ©(nv2), across the level, and down to the piece
on the other side. A sparse pyramid write, with p = 1/2, may

Page 264
*e--.
o/ e
o Q e
e00C00Oe® 0000
OQGO0000O80O0000®
0O0000Oe® 00000
eQ0O0O0® #00DOO
| o000
T el W
Figure 6.4:

Not all extreme points of a quadrant are extreme points of the figure.

be used to move the data up. This sparse pyramid write can be used since, in any subsquare of sizek, if a

piece of datais being moved up, then it isin afigure crossing the border of the subsquare, and there are O
(kv2) such figures. A similar operation moves the data down. The time obeys a recurrence equation of the
form T(n) = T(n/4)+cnv4log n, ¢ a constant, which has a solution of T(n) = ©(nv4og n).



Theorem 6.14 Given a digitized black/white picture in the base of a pyramid computer of sizen, in ©
(n¥410g n) time the extreme points of every figure can be enumerated. -

Suppose it is known that all of the figuresin the digitized picture are convex. Then by incorporating the
approach of Theorem 5.8, the time of the previous theorem for enumerating the extreme points of each
figure can be reduced by afactor of ©(log n).

Corollary 6.15 In a pyramid computer of size n with a digitized picture in its base, suppose all the
figures are convex. Then the extreme points of every figure can be enumerated in ©(nv4) time. -

In Section 5.5.1, the algorithm associated with Corollary 5.10 can be used to decide whether or not a
figurein adigitized picture is convex.
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This algorithm was designed by making a minor modification to the algorithm associated with Theorem
5.8, which enumerates the extreme points of a convex figure. A similar modification can be made so that
for each figure in adigitized picture, it can be detected whether or not the figure is convex.

Corollary 6.16 Given a digitized picture stored one pixel per processor in a natural fashion in the base
of a pyramid computer of size n, in ©(n¥4) time every figure can decide whether or not it is convex. -

Suppose that an arbitrary number of (not necessarily connected) labeled sets of processors are givenin
the base of the pyramid, and that the extreme points of each such labeled set are to be enumerated. A
wire counting argument shows that in the worst case, ©(n) messages may have to cross from the left half
of the pyramid to the right half of the pyramid. Therefore, any pyramid computer algorithm to solve this
problem will require Q(n¥2) time. Since a mesh algorithm to solve this problem in ©(n2) time was
presented in Section 3.5, the pyramid structure above the base mesh may be ignored, and the mesh
computer algorithm may be used to enumerate the extreme points of every set of base processors.

Proposition 6.17 In a pyramid computer of size n, in @(n%2) time the extreme points of the processors
with the same label can be enumerated, simultaneously for all labels. -

6.5.3 Applications of Extreme Points

Given multiple labeled sets of base processors, the algorithms presented in this section make use of
enumerated extreme points. The problems considered include determining a smallest enclosing box, the
smallest enclosing circle, and the diameter for every labeled set of base processors.

Given ametric d and aset Sof base processors, the diameter of Swith respect to d is max{ d(P, Q)|P, Q

[0S . Assumethat d is one of the |, metrics, such asthe |, (taxi-cab) metric, the l,, (chessboard) metric, or
the |, (Euclidean) metric. Thel, distance from (a, b) to (c, d) is( a-c|[P +| b - d|P)v", for 1< p < e, and
thel,, distance from (a, b) to (c, d) ismax(| a- c|, | b- d|). These metrics can be computed in unit-time,
and for them the diameter is max{ d(P, Q)|P and Q are extreme points of §}. It should be noted that
metrics other than the |, metrics could also be used, and although
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adiscussion of appropriate metricsis outside the focus of this book, the reader might care to review the
discussion of metrics that was distributed throughout Section 3.6.

Given aset Sof pointsin the plane, a smallest enclosing rectangle (also known as a smallest box) isa
rectangle of least area containing S. (If rectangles of zero area contain S, then the smallest such line
segment is used as the smallest enclosing box of S) If Sisfinite, then it can be shown that a smallest
enclosing rectangle must contain an extreme point of Son each side, and at least one side must contain
two consecutive extreme points [FrSh75] (i.e., an edge of the convex hull of S). The smallest enclosing
circleisthe circle of least area containing S. Smallest enclosing rectangles and smallest enclosing circles
appear in [FrsSh75, MiSt85b, Tous80] and were discussed in Chapters 3 and 4 for the mesh.

Algorithmsto solve these problems for a single set of processors rely on the number-theoretic fact that
for a set of lattice pointsin a sguare of size k, there are O(k¥/3) extreme points [VoK 182]. Therefore, in ©
(n/6) time, a sparse pyramid write can be used to move the extreme points of alabeled set of processors
to alevel in the pyramid that consists of a mesh of size ©(n/3).

To determine diameter, let E be the set of extreme points and let d compute the given metric. Let g(e)
represent the maximum distance from e [ E to any other processor in set E. Then gisdefinedon E asg
(e) = max{d(e, x) |x O E}. Using the operation of reducing a function, g can be computed in ©(nv6) time
for al e [ E. Once thisis accomplished, the diameter of E, whichisjust max{g(e) |e O E}, can be
computed in ©(log n) time.

A smallest enclosing rectangle can be found in asimilar manner. For each hull edge, assume an
orientation of the points that has this edge as the southernmost edge parallel to the x-axis, and use the
reduction operator to find the northernmost, westernmost, and easternmost points. For each hull edge,
these three points determine the minimum-area enclosing rectangle that includes the edge. A smallest
enclosing rectangle of the entire set is found by taking a minimum over these rectangles (ties broken
arbitrarily).

The smallest enclosing circle isthe largest circle either passing through 3 of the extreme points or having
2 of the extreme points as a diameter. Thus, the smallest enclosing circle can be found by using an
extended reduction of afunction, which is complete in ©(nvs) time.

The results are summarized in the following theorem.

Theorem 6.18 In a pyramid computer of size n, suppose the extreme
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points of alabeled set of processors have been marked. Then in ©(nv6) time, the diameter (measured
with any given |, metric), smallest enclosing circle, and a smallest enclosing rectangle can be determined.

An interesting open problem is extending the results of Theorem 6.18 to the situation where multiple
figures exist (possibly with their extreme points enumerated) in the digitized picture stored in the base of
apyramid of size n. While [MiSt84c] did not consider finding the diameter, a smallest enclosing box,
and the smallest enclosing circle for multiple figures, it is straightforward to modify the algorithmsin
that paper to do so in ©(n¥3) time. However, the optimality of these resultsis open.



In Section 5.5.2, Theorem 5.15 shows that determining whether or not afigure in adigitized pictureis
convex, can be used to decide whether or not the figure could have arisen as the digitization of a straight
line segment. Using the algorithm of Corollary 6.16 to decide whether or not each figure is convex, and
following the general procedure outlined in Theorem 5.15, in ©(n¥4) time, it can be decided whether or
not each of these figures could have arisen as the digitization of a straight line segment.

Corollary 6.19 Given a digitized picture stored one pixel per processor in a natural fashion in the base
of a pyramid computer of size n, in ©(n¥4) time it can be decided for every figure whether or not it could
have arisen as the digitization of a straight line segment. -

Consider the problem of detecting whether or not the convex hull of each figure isintersected by the
convex hull of some other figure. An agorithm similar to those presented in Section 6.5.2 that makes use
of a sparse pyramid write, a grouping operation for the mesh, as described in Chapter 4, and a funnel
read, will provide an efficient pyramid solution.

Theorem 6.20 In a pyramid computer of size n, if the extreme points of each figure have been
determined, then in @(n¥4) time each figure can determine whether or not its convex hull intersects the
convex hull of any other figure. -

6.6 Data M ovement Oper ations

In this section, details of the data movement operations used throughout this chapter are presented.
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6.6.1 Pyramid Read, Pyramid Write, and Count_keys

The pyramid read and pyramid write involve master records stored at some level i, with request or update
records, respectively, generated at somelevel j, j < i. The description of the pyramid read algorithm,
which follows, is somewhat counterintuitive. Instead of request records traveling from level j to level i,
obtaining their data, and returning to level |, the algorithm works by sending the master records from
level i down to level j. For example, suppose level i isamesh of size mthat contains the master records.
Atiterationt, 1 <t<i -], squares of sizemare copied fromlevel i -t + 1 tolevel i - tin unit time, where
they are decoupled in ©(m1/2) time so that every square of sizemat level i - t + 1 creates four squares of
sizemat level i - t. After titerations, 4' digoint squares of size mexist at leve j, each of whichisa
duplicate of the master records as they are stored at level i. In order to obtain the desired information,
request records at level j ssimply perform a mesh concurrent read within their square of size m. This
algorithmiscompletein ©(i - j + 1+ (i - j + 1)mv2) time. A pyramid write algorithm that finishesin the
same time may be performed similarly. Instead of data moving down the pyramid, data flows up the
pyramid from level | to level i, where each iteration consists of combining squares of size m. When the
dataarrives at level i, afinal mesh concurrent write is performed to compl ete the operation.

Notice that during each iteration of the algorithm, work is only performed at one level of the pyramid.
The running times of these algorithms can be improved by incorporating pipelining, so that work is
performed concurrently at multiple levels of the pyramid, as follows.

Let m=n/4' and S= 4ller,[m/{i—i+1il], Conceptually, level i isamesh of sizem, and levelsj . .. i are
divided into digoint squares of size S The squares at level i are numbered from 1 to m/Susing a snake-
like ordering, asin Figure 1.2. All of the data starting in square k at level i is called packet k.



Define a cycle to be cSV2 time units, where the constant ¢, independent of nand S is chosen so that in
one cycle a square can perform all of the following.

1. Exchange packets with the next square on the same level (where next is with respect to the snake-like
ordering).

2. Make a copy of the packet in each of the four descendant squares at the level below.
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3. Perform a mesh concurrent read.

A description of an improved pyramid read algorithm follows. Packets are first passed backwards along
level i towards square 1, using the snake-like ordering, one square per cycle. Once at square 1, a packet is
moved forwards along level i, again using the snake-like ordering. Each time that a square at level |
receives a packet moving forwards, it first creates a copy of the packet in each of its four descendant
squares at level i - 1, before passing it along. Each square at level (j +1) . .. (i - 1) that receives a packet,
makes a copy of the packet in each of the four squares at the level below. Finally, each time a square at
level j receives a packet, it performs a mesh concurrent read so that the processors in the square can read
information from the current packet, after which, the packet can be discarded.

Proposition 6.21 In a pyramid computer of size n, a pyramid read at level j fromlevel i takesO(i -] + 1
+[m(i -j + 1)]v2) time, where m = n/4

Proof. The operation is finished when packet VS has moved backwards to square 1, forwards to square
n/S, down to level j, and al level j squares beneath square m/S have done a mesh concurrent read. This

takes2m/s-1 +i - j cycles, or O(i - j + 1+ [m(i - ] + 1)]¥2) time. -

For the pyramid write, assume that master records are maintained by processors on level i and update
records are generated by processorsareon level j, j < i, and mand Sare defined as above. The pyramid
writeis basically performed by running the pyramid read in reverse. Slight differences arise because
several processors at level j can send records with the same key, but perhaps different data parts, in
which case it is necessary to take a minimum (or some other appropriate commutative associate binary
function). Also, it is not initially known which packet a given record will end up in.

In general, asquare Z will have a packet's worth of data from each square feeding into it (either the four
squares below, or, for squares at level i, the four squares below and the preceding square in the snake-
like ordering). From this, Z has enough to make at least one packet's worth of data. However, since the
square it is feeding data to may have some |eft-over data from the previous cycle, the squareit is feeding
informs Z as to the number of records required. In one cycle, Z supplies the necessary data and informs
each square feeding into it as to how many records need to be replaced. Since it takes one cycle to
receive the data,
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and one cycle for Z to pass on data after the new data is received, each step of the pyramid write takes
two cycles.

Making these minor changes to the pyramid read, the following is obtained.



Proposition 6.22 In a pyramid computer of size n, a pyramid write fromlevel j up to level i can be
performed in O(i-j+ 1 +[m(i -j+1)]v2) time, where m=n/4'. «

Section 6.5 makes use of a data movement operation that is closely related to the pyramid write. The
operation is the sparse pyramid write, and it is used in circumstances where arigid relationship exists
between the amount of data in the base that needs to be sent and the amount of data that needs to be sent
from each sguare of the base.

Proposition 6.23 Fix constants p and C, where 0 < C and 0 < p < 1. Given a pyramid computer of size n,

suppose ther ( ni=® )o mor e than CnP processors in the base which have a piece of data that is to be sent
tolevel log,\ & /. (Thislevel isthe highest one with at least CnP processors.) Further, in each

subsquare of size k in the base of the pyramid, 0 < k < n, assume that there are no mor 7 ;L';:,'.‘)’:kP
processors sending data. Then a sparse pyramid write will move the data to level Iog4( T Jino(nr?)
time.

Proof. To perform a sparse pyramid write, fix p and C, and in parallel perform a sparse pyramid writein
each quadrant of the pyramid. The level that the data is written to is either the same as the desired final
level, or elseit isone level below. Merge the data together using a mesh computer operation such asa
concurrent read (see Section 2.6.4), and move up one level if necessary. For fixed p and C, the time
obeys arecurrence of the form T(n) = T(n/4) + dnP’2, d a constant, which has a solution of @(nP?2). -

The function count-keys is responsible for counting the number of distinct keys present in the base of a
pyramid of size n. If each key were represented only once, then count_keys could finish in ©(log n) time.
However, keys may be duplicated, so count-keys uses the pyramid write to eliminate duplicates. It first
tries to determine if the number of unique keysislessthan or equal to K, where K = 4rlog, log, n1. This

is accomplished by performing a pyramid write of the keys from the base to level L = log,(n/K), where
each processor at level L actsasif it
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IS maintaining one master record. When finished, a pyramid read and a tree-like semigroup operation (i.
€., an associative binary operation) are used to determine whether or not all keysreached level L. Since
each processor at level L, amesh of size K, permitted only one record to be viewed, then if there are
more than K distinct keysin the base, not all keys would have reached level L. If it is determined that al
keys have reached level L, then the number of distinct keysin the base is the number of processors at
level L that actually received arecord. Otherwise, count_keys determines if the number of keysisless
than or equal to 4K by performing a new pyramid writeto level L — L - 1. The algorithm continues by
multiplying the number of keys by 4 at each stage, and decrementing the level L representing the location
of the master records, until it reaches a stage where the pyramid write succeeds in moving all distinct
keysto level L. At this point, since exactly one copy of each key has reached level L, the total number of
keys can be counted and distributed to all processors in @(log n) time by performing a semigroup
operation.

Proposition 6.24 If there are k different keys present in the base of a pyramid computer of size n, thenin
O(log(n) + k1/9[1 + log(n/k)]/2) time, count_keys will count them.

6.6.2 Pyramid Matrix Read and Pyramid Matrix Write



The pyramid matrix read and pyramid matrix write both assume that a matrix M = {m,j} Isstored in the
pyramid so that base processor Pi,j stores matrix entry m,,. A pyramid matrix write performs the same

basic action as a pyramid write, with the exception that all processors in the same row of the matrix send
update records corresponding to the same key. (A column version of the pyramid matrix write can be
defined similarly.) Assume that update records for the pyramid matrix write are generated by base
processors, and that master records are maintained by processors at level i, and let m = n/4'. (Recall from
Section 6.3 that m < 2nv2.) Also, assume that ties are broken in favor of the minimum record. The
pyramid matrix write has two steps, namely

1. movethe datato level | = log, m, and then

2. move the datafrom level j to level i.

(Note: if m=2n12then setj =i instead of i + 1.)
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To perform the first step of the row version of the pyramid matrix write (the column version is similar),
partition the processors at level j into digjoint strings of k = 2 processors all in the same row, and call
such a string and all descendant processors of the string a prism. Notice that a prism includes k2 columns
of krowsin the base. Therefore, a prism sits over no more than k different keys. In each prism, at timej,
the first string processor receives the minimum record sent from any of its k base descendants that arein
the first row of its prism. This processor passes the record on to the next processor in itsstring. In
general, the computations are pipelined so that at timej +r - 1+p - 1, the pth processor in the string of
each prism receives the minimum record sent from any descendant base processor in the rth row of the
prism, and also receives from the preceding string processor, the minimum record sent from any base
processor in the rth row beneath any of the preceding string processors. The pth processor in the string
takes the minimum of these two values and passes it to the (p + 1) processor in its string.

Attimej + k- 1, the last processor in each string forms the minimum sent by any base processor in the
first row of its prism, and this value is sent back towards the first processor of its string. These reverse
messages are passed simultaneously with the previously mentioned ones. Finally, at timej + 2k - 2, the
last string processor (the kth one) finds the minimum record sent by any base processor in the kth row of
the prism. Simultaneously, the minimum record sent by any base processor in the first row of a prism has
moved back to the first processor of its string, and the first step of the algorithm is finished.

The second step isjust apyramid write from level j to level i. This gives the following result.

Proposition 6.25 In a pyramid computer of size n, a pyramid matrix writeto level i, 1 > [l”ﬁ?EJ takes ©
(log(n) + mv2[2 + log(n/mR)]¥2) time, wherem = 4'.

Proof. If m< nv2, then the time for the first step is ©(mv2), and the time for the second step isO(i - | + 1
+ mv2[i - | + 1]¥2). Sincej =log,mand i =log,(n/m), the result is as claimed. Otherwise, if m = 2nv2, then
thetime is ©(mv2). In this case, log,(n/mge) = -1, which iswhy thereisa2 instead of the usual 1 inside the
brackets. -

The pyramid matrix read performs the same basic action as a pyramid read, and also comesin arow and
column version. The discussion will again be for the row version, with the column version being similar.



Page 273

Assume that all request records are generated by base processors, that those in the same row request
information about the same key, and that master records are maintained by processors at level i, wherem
= n/4'. The pyramid matrix read takes 3 steps. The first step uses prisms of height j, wherej = log, m. By
using the first step of the pyramid matrix write, in ©(mv2) time, the top row (string) of each prism
contains the keys needed by the rows beneath. The second step isa pyramid read at level j from level i.
The third step reverses the first one, taking data to the base.

Proposition 6.26 In a pyramid computer of size n, a pyramid matrix read fromlevel i, i > [l“ﬁgﬂj takes
O(log(n)+mv2 [2+ log(n/me)]¥2) time, wherem = 4'. -

6.6.3 Funnel Read and Reducing a Function

The funnel read was initially discussed in Section 6.4.1. It is useful for the situation where an algorithm
leaves intermediate results in data squares scattered throughout the pyramid that must be collated and
moved to the base. Itsimplementation is straightforward. Suppose the final stage of an algorithm is stage
f. Then every stagef - 1 data square uses a pyramid read to obtain the necessary data from its stage f data
square. (Notice that this runsin time proportional to the edgelength of a stage f data square.) Continuing
downwards, every stagei - 1 data square uses a pyramid read to obtain its data from its stage i data
square. As data moves down the pyramid, the squares get smaller by afactor of 4 at each stage (see
Figure 6.3). Therefore, if the final stage of an algorithm produces data in a square of size mat level k, the
running time of the funnel read is¢ $-F- %ﬁ for ¢ aconstant, which is ©(mv2).

Proposition 6.27 Assume that the final stage of an algorithmis stage f, and that a stage f data squareis
a mesh of size m. Then a funnel read runsin ©(mv2) time. -

The operation of reducing afunction was initially discussed in Section 6.4.1. GivensetsQ, R, and S let g
be afunction mapping Q x Rinto S and let * be acommutative, associative, binary operator over S.
Define f to be the reduction of g, where f maps Q into Sby f(g) =*{g(q, r) | r O R}. For example, if Q
and R are sets of points
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in some metric space, if Sisthe real numbers, if g(q, r) isthe distance from g tor, andif * isminimum,
then f(q) is the distance from g to anearest pointin R.

Assume that the elements of Q are stored one per processor in asquare, cal it T, of sizemat level i, and
the elements of R are also stored one per processor in T. (A processor of T may contain an element of Q
and an element of R.) Further, assume g and * can both be computed in ©(1) time.

In order to describe the algorithm, some notation isin order. Let G(Q, R) denote the reduction, where for
gUQ, G(Q, R(g) =*{g(qg, r)| r OR}. Theterm computing G(Q, R) in T, means that for aset T of
processors, for each element g [ Q, thereisaprocessor in T that computes and stores the value of G(Q,
R)(g). Noticethat if aset A [ Q is partitioned into subsets A;, A,, A;, and A,, then G(A,R) = G(A,, R 0 G
(A, R) O G(A;, R) OO G(A,, R). Also, if aset B [1 Ris partitioned into subsets B, B,, B3, and B,, then G

(Q. B)(@) = G(Q, BY(@)* G(Q, B)(a) * G(Q, B3)(q) * G(Q, B,)(g), for any q LI Q.



Using these observations, the operation of reducing a function can now be presented in a straightforward
fashion. If m=1 (i.e., the number of processorsin T is 1), then the single processor just computes the
required valuein ©(1) time. If i = 0 (i.e,, if al of the datais at the base), then in ©(m) time, all values of
R are circulated among all processors holding members of Q, and each such processor calculate its
associated f value. Otherwise, Q is partitioned at level i by quadrantsinto 4 subsets, namely, Q,, Q,, Qs,
and Q,, asin thetop of Figure 6.5.

The quadrant storing Q; assumes responsibility for computing G(Q;, R). In order to compute G(Q,, R),
each processor that contains an element of Q, first sends a copy of this element to its four children. A
mesh sort-like step isused at level i -1 to create 4 copies of Q;, one in each quadrant of the descendant
processors of Q; from level i. Next, the processors at level i - 1 that are descendants of Q; from level |,
perform a pyramid read from level i in order to obtain a copy of R. (See the bottom of Figure 6.5.) A
square of size m/4 onlevel i - 1 holding Q, and R, is now responsible for computing G(Qj, Ry, which it
doesrecursively. When thisis finished, beneath each quadrant of level i, the four squares of size m/4 at
level i - 1 use apyramid write to send up their results so that a processor at level i that is responsible for
an element g O Q will receive G(Q, R)(0), G(Q, R)(q), G(Q, R;)(g), and G(Q, R,)(q). By taking the * of
these values, the processor responsible for g will compute G(Q, R)(q), and the operation is compl ete.
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level i-1

Figure 6.5:
Reduction of a function.
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Proposition 6.28 Suppose the elements of Q are stored one per processor in a square of sizemat level i,
and the elements of R are also stored one per processor in this square, and suppose g and * can be
computed in ©(1) time. Then the reduction of g can be computed in ©(mv2 + m/4') time.

Proof. It takes ©(m) time to copy the values of Q and R from level i to level i - 1. Since the size of the
squares reduces by afactor of 4 at each level, it takes ©(m) time to copy the values all the way down to
the base. (If m < n1/2, then the data does not even reach the base, instead only moving down log, m levels
until the problem has been broken into squares of size 1.) The base squares are of size m/4', so they take
O(m/4) time to compute their values. Moving data back up the pyramid, and combining results along the
way, again takes ©(m) time. Hence, the running timeis as claimed. -

The preceding operation may be extended to the following situation. Given setsP, Q, R, and S, let g be a
function mapping P x Q x Rinto S and let * be a commutative, associative, binary operator over S
Define f to be the extended reduction of g, where f maps P into Shy

f(p) =*{9(p,a, 1) g0 Q,r O R}.

If g and * can be computed in unit time, and if P, Q, and R are stored one element per processor at a
mesh level in the pyramid with m processors, 1 < m < n¥3, then this reduction of g can be computed in ©
(mv2) time. The algorithm for this reduction is analogous to the one of Proposition 6.28, except that the
partitioning and merging of the data now follows the pattern illustrated in Figure 6.6.

Proposition 6.29 Suppose the elements of P, Q, and R are stored one per processor in a square of size m,
1 <m< n¥3, and suppose * and g can be computed in ©(1) time. Then the extended reduction of g over P
x Q % R can be computed in ©(mv2) time. *

6.7 Optimality
This section is concerned with the optimality of the results presented in this chapter.

Proposition 6.30 In a pyramid computer of size n, the time needed to move B > 1 bits of data from the
first column of the base to the last column of the base is Q(log(n) + [B/log n]¥2).
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Figure 6.6:
Extended reduction of afunction.
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Proof. Assume B = log,n, and let L = |log, (&log, n) |
level L, call the entire column and all of its descendants a prism. The datainitially residesin the leftmost
prism and must move to the rightmost one. If abit only moves along communication links involving

processors at level L or below, then at least E - 1 communication links must be traversed, since there are
E prisms, and each communication link either keeps the bit in the same prism or moves it to an adjacent

one.

Figure 6.7:

and E = n'”2

Another view of the pyramid computer.

2L

. For each column of processors at




Figure 6.7 shows a side view of the processors at level L and above. The usual way of drawing the
pyramid has been dlightly altered so that all processors in the same column and level are represented as a
single processor. The labels along the wires (communication links) indicate the number of steps that
could be saved in moving data from the leftmost prism to the rightmost prism by using the wire. The
time spent traversing vertical wiresisignored since these wires do not provide any savings. As such,

vertically drawn wires are not labeled. Notice that there are /, (F/, - 1) horizontal wires labeled 1,2 (F/,)2
danted wires labeled 1, (F/,) (¥/, - 1) horizontal wires labeled 3, and so forth. Since each wire can carry at
most Clog, n bits per unit time, for some constant C, in 1 unit of time the maximum number of bits
moved by the nonvertical
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wires abovelevel L is

log, (n)—L—1

logy(n)-L 2
conio| "8 w-n(5-5)"E w0 B

i=] |

which isless than CE210g, n. Therefore, int units of time the maximum number of bits moved by wires

above level L, i.e., the maximum savings in moving data from the leftmost prism to the rightmost prism
by using wires above level L, islessthan CE2tlog, n.

Conversely, a bit of datathat reaches the rightmost prism in t units of time must have crossed labeled
wires above level L with atotal weight of at least E - 1 - t. Furthermore, if all B bits of data reach the
rightmost prism in t units of time, the total savings by using wires (i.e., the cumulative weight of the

wires) above level L must be at least B(E - 1 - t). Therefore, t must be such that

B(E-1-t) < CE2log,n,

or

BIE — 1/2
t > (B—1) =8 B .
B+ CE®logyn logn

Since the pyramid computer of size n has a communication diameter of 2log, n, thent > log, n. Hence,
the desired result is obtained. -



For many of the problems considered in this chapter, inputs can be devised for which Proposition 6.30
applies. For example, consider the problem of labeling the connected components of a digitized picture
stored in the base of a pyramid, where the input is of the form shown in Figure 6.8, where an X indicates
apixel that may or may not be black and a'Y indicates a pixel that is aways white. Notice that if the two
black processors neighboring a processor marked Y end up with the same |abel, then the processor
marked X that isin Y's row must be black. Since a'Y can determine if its black neighbors have the same
label in ©(1) time after the component labeling algorithm is finished, the component labeling algorithm
requires at least as much time as it takes to transmit ©(n¥2) bits from one edge to the opposite edge of the
pyramid. By Proposition 6.30, thisis Q(nv4/log¥2 n). Thislower bound is afactor of ©(logl/2 n) smaller
than the time achieved in Theorem 6.9, which shows that Theorem 6.9 is at most @(log¥2 n) times
optimal. For many of the problems considered in this chapter, Proposition 6.30 can be used to show that
the algorithms presented to solve these problems are not
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Figure 6.8:

An image requiring extensive data movement.
far from optimal. However, the optimality of the results presented in this chapter remains open.

Conservative data movement is defined to be the situation under which data must be moved as separate
packets that may not be combined. Note that with respect to the conservative data movement model,
severa of the algorithms given in this chapter are optimal, including, for example, the digitized picture
component labeling algorithm associated with Theorem 6.9.

6.8 Further
Remarks



Because of its similarity to some animal optic systems, its similarity to the (region) quadtree structure,
and its natural use in multiresolution image processing, the pyramid computer has long been suggested
for lowlevel image processing [Dyer8la, Dyer8lb, Dyer82, MiSt84c, MiSt85c, Rose84, Stou82c,
Stou83c, Tani81, Tani82a, TaK180, Uhr72, Uhr84]. In fact, several pyramid computers are in various
stages of construction [Buva87, CFLS85, CIMe87, FKLV 83, Scha35, SHBV 87, Tani82a]. This chapter
demonstrates that the pyramid computer can be used for more complex tasks than originally considered.
For example, efficient pyramid computer algorithms were presented in this chapter to solve higher-level
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problemsin image analysis, aswell as problemsin graph theory and digital geometry.

In this chapter, fundamental data movement operations for the pyramid computer were presented for a
variety of standard input formats. The algorithms that were presented relied heavily on these data
movement operations, as well as on fundamental solution strategies, such as divide-and-conquer. Note
that these data movement operations intermingle the use of both the child-parent and mesh-connected
links. They also make extensive use of intermediate levels of the pyramid to do calculations, store
results, and communicate data. Furthermore, the algorithms presented in this chapter show how to exploit
lower levels of the pyramid to aid in the computation of functions being performed at higher levels.

In Section 5.3, lower bounds on the running times of algorithms on a pyramid were discussed. The
communication diameter of apyramid of size n gives alower bound of Q(log n) for problemsin which
information must be exchanged between arbitrary processors. In Chapter 5, a number of pyramid
algorithms were given that have running times that are poly-logarithmic in the size of the input. In this
chapter, it was shown that for many problems on a pyramid of size n, the Q(log n) bound is overly
optimistic, and that lower bounds for these problems are closer to Q(nv4). While algorithms that are
within alogarithmic factor of this lower bound were presented, the general question of optimality for the
problems considered remains open.

In this chapter, the concentration was on 2-dimensional pyramids (i.e., pyramids over 2-dimensional
meshes at the base) since they are the ones most commonly built. However, it isinteresting to consider
higher dimensional pyramids, especially for situations involving higher dimensional data. A j-
dimensional pyramid (j-pyramid) of size n is a machine viewed as afull 2-ary tree with additional
horizontal links. The base of the j-pyramid of size nisaj-dimensional mesh of sizen, asdiscussed in
Section 4.11. Each level of the pyramid is aj-dimensional mesh with 1/2' as many processors as the
previous level. A processor at level i is connected to its neighbors (assuming they exist): 2] adjacent
processors at level i, 2 children at level i - 1, and aparent at level i + 1. In[MiSt874], it is shown that
severa of the data movement operations and algorithms presented in this chapter may be extended to j-
dimensional pyramids.

It isinteresting to compare the pyramid computer to other parallel architectures. Using the standard VLS
model in which processors are separated by at least unit distance and awire has unit width, it has been
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shown that a pyramid computer of size n can be laid out in ©(n) area by a simple modification of the
standard "H tree" layout scheme [Dyer81a]. The space of alayout for an interconnection scheme is one
measure of its cost, asisthe regularity of the layout. A mesh computer of size n also requires @(n) area
with an extremely regular layout, but because it has a communication diameter of @(nv2), it requires Q
(n¥2) time to solve all of the problems considered in this and the previous chapter, compared to, say, ©
(nv4) time needed by the pyramid computer to label the figures of an image. (Mesh computer algorithms
taking ©(n2) time to solve problems presented in this chapter appear in Chapters 2, 3, and 4.)

Another model that can be easily laid out in ©(n) areais the quadtree machine, which issmply a
pyramid computer without the nearest neighbor (mesh) links. Like the pyramid, the quadtree has a
logarithmic communication diameter, but unlike the pyramid, the apex often acts as a bottleneck. For
example, it is easy to show that the quadtree needs Q(n%2) time to label figures or find nearest neighbors
of animage, even if higher processors have additional memory (as suggested in [AhSw84]). On the
pyramid, nearest neighbor connections may be used at the intermediate levels to circumvent this
bottleneck.

General -purpose interconnection schemes such as the shuffle-exchange, butterfly, and cube-connected
cycles can be used to provide poly-logarithmic time solutions to al the problems considered in this and
the previous chapter. Unfortunately, these interconnection schemes require areathat is nearly
proportional to the square of that required to lay out the pyramid computer [UIIm84].

A more interesting model is the orthogonal trees or mesh-of-trees [UIIm84]. This model has a mesh-
connected base of size n, augmented so that each row and column of the base mesh has a binary tree over
it, with these trees being digoint except at their leaves. In thismodel, ©@(n¥210g? n) bits can be moved
from the leftmost log n columns to the rightmost log n columnsin ©(log n) time. Thisis asignificant
improvement over the pyramid computer bound presented in Proposition 6.30, though not enough to
provide poly-logarithmic time sorting. The mesh-of-trees has not received much consideration as an
Image processing machine, but for all of the problems considered in this and the previous chapter
involving images or adjacency matrices, orthogonal trees can be used to solve them in poly-logarithmic
time.

Orthogonal trees do have some drawbacks, however. While the pyramid computer can be laid out in
linear area, orthogonal trees need a factor of log2 n more area [UlIm84]. Further, orthogonal trees seem to
have few tiesto other objects of interest for researchers in image pro-
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cessing, as opposed to the neural, data structure, and multiresolution ties mentioned above for the
pyramid computer. Additional models which are closer to the pyramids, and which solve all of the image
processing problems considered herein in poly-logarithmic time, have been suggested [ Stou87].

Finally, many of the problems that have been considered for the pyramid have poly-logarithmic time
solutions on a hypercube. The major disadvantage of a hypercube, however, is that as the number of
processors is doubled, each processor of the hypercube is required to add an additional communication
link. That is, the number of bidirectional communication links required for each processor of the
hypercubeis not ©(1), asit isfor the mesh, pyramid, and mesh-of-trees, but rather ©(log n).
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A
Order Notation

Intuitively, © is used to mean 'order exactly’, O is used to mean ‘order at most', Q is used to mean 'order
at least', 0 isused to mean 'order less than', and w is used to mean 'order greater than'. Let f and g be
nonnegative functions defined on the positive integers.

1. The notation f = ©(Q) (read as"f istheta of g") may be used if and only if there are positive constants
C,, C,, and apositive integer N such that Ci*g(n) < f(n) < C,*g(n), whenever n > N.

2. The notation f = O(g) (read as "f isoh of g") may be used if and only if there is a positive constant C
and an integer N such that 0 < f(n) < C* g(n), for all n> N.

3. The notation f = Q(g) (read as"'f isomegaof g") may be used if and only if thereis a positive constant
C and an integer N such that 0 < C * g(n) < f(n), for al n>N.

4. The notation f = o(g) (read as "f islittle-oh of g") may be used if and only if there is a positive constant
C and aninteger N such that 0 < f(n) < C* g(n), for all n> N.

5. The notation f = w(g) (read as "f is little-omega of g") may be used if and only if there is a positive
constant C and an integer N such that 0 < C * g(n) <f(n), for al n>N.

When using order notation, the ssmplest function possible should be used within the ©, O, Q, o, or w.
The ideaisto use the notation to reduce complicated functions to simpler ones whose behavior is easier
to understand. Intuitively, the order notation seeks to capture the dominant term of the function, so asto
represent its asymptotic growth rate. The reader should be aware that when using order notation, the
symbol '=' should beread as'is and not 'equals.’ In fact, since order notation is used to describe set
membership, it would have been better if the symbol [J were used instead of the symbol =. However,
since the symbol '=" has become a defacto standard in the literature, it will be used throughout the book.
Using © arbitrarily for an example, it should now be clear that f = ©(g) isnot the sameas@(g) =f. In
fact, ©(g) = f ismeaningless.
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Notice from the definition of @ that if f = ©(g), then g = O(f), since if there are positive constants C,,C,,
and N such that C,*g(n) < f(n) < C,* g(n) for al n> N, then &= * f(n) < g(n) < & * f(n), for al n>N.

Some examplesof © are2 + sin(n) = ©(n), 3n+2=0(n), 102 + 4n + 2 = O(n2), 10n2 + 4n + 2 £ O(n),
and 10 * log(n) + 4 = ©(log n).



It is not always possible to determine the behavior of an algorithm using ©-notation. For example, given
aproblem with ninputs, it may be that a given algorithm takes Dn? time when nis even and Cn time
when nisodd, or one may only be able to prove that some given algorithm never uses more than En2
time and never less than Fnlog n time (asis the case for the serial version of quicksort). In the first case,
one can claim nexther @(n) nor ©(n?) to represent the running time of the algorithm, and in the second
case one can claim nexther ©(n) nor @(nlog n) to represent the running time of the algorithm. O and Q
notation allow for partial descriptions of functions.

Some examples of O notation are 3n+ 2 =0(n), since 3n + 2 < 4n, for all n= 2, 100n + 6 = O(n), since
100n + 6 < 101n, for al n> 10, 102 + 4n+ 2 = 0O(n?), since 102 + 4n + 2< 11n2, foral n>5, 3n+2# O
(1), since 3n + 2 is not less than or equal to ¢ for any constant c and all n= N, 10n2 + 4n + 2 # O(n), and
10n2 + 4n + 2 = O(n?). Of course a more desirable relationship to represent the last function is 10n2 + 4n
+ 2 = 0O(n?), but since O-notation is used to represent an upper bound, 10n2 + 4n + 2 = O(n?) isalso
technically correct.

Examples of Q notationare3n+2=Q (n), since3n+ 2= 3nfor all n>=1, 100n + 6 = Q (n), since 100n
+6=100nfor al n>=1, 10 + 4n+2 = Q(n?) since 10n2+4n+2 > n2for all N> 1, 10n2+4n+2 = Q(n),
and 10m +4n + 2 =Q (1). Again, the ssmplest and most accurate representation of the last function
would be 102 + 4n + 2 = Q (n?).

Examples of o notation are 3n2 # o(n?), since 3n2 = O(n2), 7n = o(n2), and 7n/2 = o(n2).
Examples of w notation are 3n2 # w(n?), since 3n2 = ©(n?), 7n3 = w(n2), and 7nr = w(n3)

For many of the algorithms in the book, it will be shown that the running time is O(T(n)) on a particular
machine model, for some function T(n). Further, if it is known that the problem requires Q(T(n)) time on
that model, then it can be concluded that the running time of the algorithm isin fact optimal at ©(T(n)).
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B
Recurrence
Equations

The running times for many of the algorithms presented in this book involve recurrences of the form

T(n) = d ifn=1
= al'(n/b) +en'  ifn>1,

where n isapower of b. The growth rate of T(n), which expresses the asymptotic running time of the

algorithm, is given by

B(n') if a < b
Tin) =< B(n'logn) ifa=4H
B(n'& ) if a > b,



Further, for most of the algorithms presented in this book, i takes on the value O or 1, which further
simplifies the solution to the recurrence.

For example, many of the mesh algorithms in the book operate on n2 pieces of data distributed one piece
per processor, and have running times T(n?) that are expressed as T(n?) = T(n2/4)+cn, or equivalently as T
(n?) = T(n2/4) + ©(n). From the above solution to the general recurrence, one can seethati =1/2and 1 =
a<b =412=2 sothe asymptotic running time of such an algorithm is T(n?) = ©(n).
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